2010-05-26 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-vrp.c
blob6ce68297d7b2419b28654486c405e571520e37b9
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
43 /* Set of SSA names found live during the RPO traversal of the function
44 for still active basic-blocks. */
45 static sbitmap *live;
47 /* Return true if the SSA name NAME is live on the edge E. */
49 static bool
50 live_on_edge (edge e, tree name)
52 return (live[e->dest->index]
53 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
56 /* Local functions. */
57 static int compare_values (tree val1, tree val2);
58 static int compare_values_warnv (tree val1, tree val2, bool *);
59 static void vrp_meet (value_range_t *, value_range_t *);
60 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
61 tree, tree, bool, bool *,
62 bool *);
64 /* Location information for ASSERT_EXPRs. Each instance of this
65 structure describes an ASSERT_EXPR for an SSA name. Since a single
66 SSA name may have more than one assertion associated with it, these
67 locations are kept in a linked list attached to the corresponding
68 SSA name. */
69 struct assert_locus_d
71 /* Basic block where the assertion would be inserted. */
72 basic_block bb;
74 /* Some assertions need to be inserted on an edge (e.g., assertions
75 generated by COND_EXPRs). In those cases, BB will be NULL. */
76 edge e;
78 /* Pointer to the statement that generated this assertion. */
79 gimple_stmt_iterator si;
81 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
82 enum tree_code comp_code;
84 /* Value being compared against. */
85 tree val;
87 /* Expression to compare. */
88 tree expr;
90 /* Next node in the linked list. */
91 struct assert_locus_d *next;
94 typedef struct assert_locus_d *assert_locus_t;
96 /* If bit I is present, it means that SSA name N_i has a list of
97 assertions that should be inserted in the IL. */
98 static bitmap need_assert_for;
100 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
101 holds a list of ASSERT_LOCUS_T nodes that describe where
102 ASSERT_EXPRs for SSA name N_I should be inserted. */
103 static assert_locus_t *asserts_for;
105 /* Value range array. After propagation, VR_VALUE[I] holds the range
106 of values that SSA name N_I may take. */
107 static value_range_t **vr_value;
109 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
110 number of executable edges we saw the last time we visited the
111 node. */
112 static int *vr_phi_edge_counts;
114 typedef struct {
115 gimple stmt;
116 tree vec;
117 } switch_update;
119 static VEC (edge, heap) *to_remove_edges;
120 DEF_VEC_O(switch_update);
121 DEF_VEC_ALLOC_O(switch_update, heap);
122 static VEC (switch_update, heap) *to_update_switch_stmts;
125 /* Return the maximum value for TYPE. */
127 static inline tree
128 vrp_val_max (const_tree type)
130 if (!INTEGRAL_TYPE_P (type))
131 return NULL_TREE;
133 return TYPE_MAX_VALUE (type);
136 /* Return the minimum value for TYPE. */
138 static inline tree
139 vrp_val_min (const_tree type)
141 if (!INTEGRAL_TYPE_P (type))
142 return NULL_TREE;
144 return TYPE_MIN_VALUE (type);
147 /* Return whether VAL is equal to the maximum value of its type. This
148 will be true for a positive overflow infinity. We can't do a
149 simple equality comparison with TYPE_MAX_VALUE because C typedefs
150 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
151 to the integer constant with the same value in the type. */
153 static inline bool
154 vrp_val_is_max (const_tree val)
156 tree type_max = vrp_val_max (TREE_TYPE (val));
157 return (val == type_max
158 || (type_max != NULL_TREE
159 && operand_equal_p (val, type_max, 0)));
162 /* Return whether VAL is equal to the minimum value of its type. This
163 will be true for a negative overflow infinity. */
165 static inline bool
166 vrp_val_is_min (const_tree val)
168 tree type_min = vrp_val_min (TREE_TYPE (val));
169 return (val == type_min
170 || (type_min != NULL_TREE
171 && operand_equal_p (val, type_min, 0)));
175 /* Return whether TYPE should use an overflow infinity distinct from
176 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
177 represent a signed overflow during VRP computations. An infinity
178 is distinct from a half-range, which will go from some number to
179 TYPE_{MIN,MAX}_VALUE. */
181 static inline bool
182 needs_overflow_infinity (const_tree type)
184 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
187 /* Return whether TYPE can support our overflow infinity
188 representation: we use the TREE_OVERFLOW flag, which only exists
189 for constants. If TYPE doesn't support this, we don't optimize
190 cases which would require signed overflow--we drop them to
191 VARYING. */
193 static inline bool
194 supports_overflow_infinity (const_tree type)
196 tree min = vrp_val_min (type), max = vrp_val_max (type);
197 #ifdef ENABLE_CHECKING
198 gcc_assert (needs_overflow_infinity (type));
199 #endif
200 return (min != NULL_TREE
201 && CONSTANT_CLASS_P (min)
202 && max != NULL_TREE
203 && CONSTANT_CLASS_P (max));
206 /* VAL is the maximum or minimum value of a type. Return a
207 corresponding overflow infinity. */
209 static inline tree
210 make_overflow_infinity (tree val)
212 #ifdef ENABLE_CHECKING
213 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
214 #endif
215 val = copy_node (val);
216 TREE_OVERFLOW (val) = 1;
217 return val;
220 /* Return a negative overflow infinity for TYPE. */
222 static inline tree
223 negative_overflow_infinity (tree type)
225 #ifdef ENABLE_CHECKING
226 gcc_assert (supports_overflow_infinity (type));
227 #endif
228 return make_overflow_infinity (vrp_val_min (type));
231 /* Return a positive overflow infinity for TYPE. */
233 static inline tree
234 positive_overflow_infinity (tree type)
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
238 #endif
239 return make_overflow_infinity (vrp_val_max (type));
242 /* Return whether VAL is a negative overflow infinity. */
244 static inline bool
245 is_negative_overflow_infinity (const_tree val)
247 return (needs_overflow_infinity (TREE_TYPE (val))
248 && CONSTANT_CLASS_P (val)
249 && TREE_OVERFLOW (val)
250 && vrp_val_is_min (val));
253 /* Return whether VAL is a positive overflow infinity. */
255 static inline bool
256 is_positive_overflow_infinity (const_tree val)
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
261 && vrp_val_is_max (val));
264 /* Return whether VAL is a positive or negative overflow infinity. */
266 static inline bool
267 is_overflow_infinity (const_tree val)
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
272 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
275 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
277 static inline bool
278 stmt_overflow_infinity (gimple stmt)
280 if (is_gimple_assign (stmt)
281 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
282 GIMPLE_SINGLE_RHS)
283 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
284 return false;
287 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
288 the same value with TREE_OVERFLOW clear. This can be used to avoid
289 confusing a regular value with an overflow value. */
291 static inline tree
292 avoid_overflow_infinity (tree val)
294 if (!is_overflow_infinity (val))
295 return val;
297 if (vrp_val_is_max (val))
298 return vrp_val_max (TREE_TYPE (val));
299 else
301 #ifdef ENABLE_CHECKING
302 gcc_assert (vrp_val_is_min (val));
303 #endif
304 return vrp_val_min (TREE_TYPE (val));
309 /* Return true if ARG is marked with the nonnull attribute in the
310 current function signature. */
312 static bool
313 nonnull_arg_p (const_tree arg)
315 tree t, attrs, fntype;
316 unsigned HOST_WIDE_INT arg_num;
318 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
320 /* The static chain decl is always non null. */
321 if (arg == cfun->static_chain_decl)
322 return true;
324 fntype = TREE_TYPE (current_function_decl);
325 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
327 /* If "nonnull" wasn't specified, we know nothing about the argument. */
328 if (attrs == NULL_TREE)
329 return false;
331 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
332 if (TREE_VALUE (attrs) == NULL_TREE)
333 return true;
335 /* Get the position number for ARG in the function signature. */
336 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
338 t = TREE_CHAIN (t), arg_num++)
340 if (t == arg)
341 break;
344 gcc_assert (t == arg);
346 /* Now see if ARG_NUM is mentioned in the nonnull list. */
347 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
349 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
350 return true;
353 return false;
357 /* Set value range VR to VR_VARYING. */
359 static inline void
360 set_value_range_to_varying (value_range_t *vr)
362 vr->type = VR_VARYING;
363 vr->min = vr->max = NULL_TREE;
364 if (vr->equiv)
365 bitmap_clear (vr->equiv);
369 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
371 static void
372 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
373 tree max, bitmap equiv)
375 #if defined ENABLE_CHECKING
376 /* Check the validity of the range. */
377 if (t == VR_RANGE || t == VR_ANTI_RANGE)
379 int cmp;
381 gcc_assert (min && max);
383 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
384 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
386 cmp = compare_values (min, max);
387 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
389 if (needs_overflow_infinity (TREE_TYPE (min)))
390 gcc_assert (!is_overflow_infinity (min)
391 || !is_overflow_infinity (max));
394 if (t == VR_UNDEFINED || t == VR_VARYING)
395 gcc_assert (min == NULL_TREE && max == NULL_TREE);
397 if (t == VR_UNDEFINED || t == VR_VARYING)
398 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
399 #endif
401 vr->type = t;
402 vr->min = min;
403 vr->max = max;
405 /* Since updating the equivalence set involves deep copying the
406 bitmaps, only do it if absolutely necessary. */
407 if (vr->equiv == NULL
408 && equiv != NULL)
409 vr->equiv = BITMAP_ALLOC (NULL);
411 if (equiv != vr->equiv)
413 if (equiv && !bitmap_empty_p (equiv))
414 bitmap_copy (vr->equiv, equiv);
415 else
416 bitmap_clear (vr->equiv);
421 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
422 This means adjusting T, MIN and MAX representing the case of a
423 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
424 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
425 In corner cases where MAX+1 or MIN-1 wraps this will fall back
426 to varying.
427 This routine exists to ease canonicalization in the case where we
428 extract ranges from var + CST op limit. */
430 static void
431 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
432 tree min, tree max, bitmap equiv)
434 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
435 if ((t != VR_RANGE
436 && t != VR_ANTI_RANGE)
437 || TREE_CODE (min) != INTEGER_CST
438 || TREE_CODE (max) != INTEGER_CST)
440 set_value_range (vr, t, min, max, equiv);
441 return;
444 /* Wrong order for min and max, to swap them and the VR type we need
445 to adjust them. */
446 if (tree_int_cst_lt (max, min))
448 tree one = build_int_cst (TREE_TYPE (min), 1);
449 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
450 max = int_const_binop (MINUS_EXPR, min, one, 0);
451 min = tmp;
453 /* There's one corner case, if we had [C+1, C] before we now have
454 that again. But this represents an empty value range, so drop
455 to varying in this case. */
456 if (tree_int_cst_lt (max, min))
458 set_value_range_to_varying (vr);
459 return;
462 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
465 /* Anti-ranges that can be represented as ranges should be so. */
466 if (t == VR_ANTI_RANGE)
468 bool is_min = vrp_val_is_min (min);
469 bool is_max = vrp_val_is_max (max);
471 if (is_min && is_max)
473 /* We cannot deal with empty ranges, drop to varying. */
474 set_value_range_to_varying (vr);
475 return;
477 else if (is_min
478 /* As a special exception preserve non-null ranges. */
479 && !(TYPE_UNSIGNED (TREE_TYPE (min))
480 && integer_zerop (max)))
482 tree one = build_int_cst (TREE_TYPE (max), 1);
483 min = int_const_binop (PLUS_EXPR, max, one, 0);
484 max = vrp_val_max (TREE_TYPE (max));
485 t = VR_RANGE;
487 else if (is_max)
489 tree one = build_int_cst (TREE_TYPE (min), 1);
490 max = int_const_binop (MINUS_EXPR, min, one, 0);
491 min = vrp_val_min (TREE_TYPE (min));
492 t = VR_RANGE;
496 set_value_range (vr, t, min, max, equiv);
499 /* Copy value range FROM into value range TO. */
501 static inline void
502 copy_value_range (value_range_t *to, value_range_t *from)
504 set_value_range (to, from->type, from->min, from->max, from->equiv);
507 /* Set value range VR to a single value. This function is only called
508 with values we get from statements, and exists to clear the
509 TREE_OVERFLOW flag so that we don't think we have an overflow
510 infinity when we shouldn't. */
512 static inline void
513 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
515 gcc_assert (is_gimple_min_invariant (val));
516 val = avoid_overflow_infinity (val);
517 set_value_range (vr, VR_RANGE, val, val, equiv);
520 /* Set value range VR to a non-negative range of type TYPE.
521 OVERFLOW_INFINITY indicates whether to use an overflow infinity
522 rather than TYPE_MAX_VALUE; this should be true if we determine
523 that the range is nonnegative based on the assumption that signed
524 overflow does not occur. */
526 static inline void
527 set_value_range_to_nonnegative (value_range_t *vr, tree type,
528 bool overflow_infinity)
530 tree zero;
532 if (overflow_infinity && !supports_overflow_infinity (type))
534 set_value_range_to_varying (vr);
535 return;
538 zero = build_int_cst (type, 0);
539 set_value_range (vr, VR_RANGE, zero,
540 (overflow_infinity
541 ? positive_overflow_infinity (type)
542 : TYPE_MAX_VALUE (type)),
543 vr->equiv);
546 /* Set value range VR to a non-NULL range of type TYPE. */
548 static inline void
549 set_value_range_to_nonnull (value_range_t *vr, tree type)
551 tree zero = build_int_cst (type, 0);
552 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
556 /* Set value range VR to a NULL range of type TYPE. */
558 static inline void
559 set_value_range_to_null (value_range_t *vr, tree type)
561 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
565 /* Set value range VR to a range of a truthvalue of type TYPE. */
567 static inline void
568 set_value_range_to_truthvalue (value_range_t *vr, tree type)
570 if (TYPE_PRECISION (type) == 1)
571 set_value_range_to_varying (vr);
572 else
573 set_value_range (vr, VR_RANGE,
574 build_int_cst (type, 0), build_int_cst (type, 1),
575 vr->equiv);
579 /* Set value range VR to VR_UNDEFINED. */
581 static inline void
582 set_value_range_to_undefined (value_range_t *vr)
584 vr->type = VR_UNDEFINED;
585 vr->min = vr->max = NULL_TREE;
586 if (vr->equiv)
587 bitmap_clear (vr->equiv);
591 /* If abs (min) < abs (max), set VR to [-max, max], if
592 abs (min) >= abs (max), set VR to [-min, min]. */
594 static void
595 abs_extent_range (value_range_t *vr, tree min, tree max)
597 int cmp;
599 gcc_assert (TREE_CODE (min) == INTEGER_CST);
600 gcc_assert (TREE_CODE (max) == INTEGER_CST);
601 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
602 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
603 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
604 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
605 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
607 set_value_range_to_varying (vr);
608 return;
610 cmp = compare_values (min, max);
611 if (cmp == -1)
612 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
613 else if (cmp == 0 || cmp == 1)
615 max = min;
616 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
618 else
620 set_value_range_to_varying (vr);
621 return;
623 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
627 /* Return value range information for VAR.
629 If we have no values ranges recorded (ie, VRP is not running), then
630 return NULL. Otherwise create an empty range if none existed for VAR. */
632 static value_range_t *
633 get_value_range (const_tree var)
635 value_range_t *vr;
636 tree sym;
637 unsigned ver = SSA_NAME_VERSION (var);
639 /* If we have no recorded ranges, then return NULL. */
640 if (! vr_value)
641 return NULL;
643 vr = vr_value[ver];
644 if (vr)
645 return vr;
647 /* Create a default value range. */
648 vr_value[ver] = vr = XCNEW (value_range_t);
650 /* Defer allocating the equivalence set. */
651 vr->equiv = NULL;
653 /* If VAR is a default definition, the variable can take any value
654 in VAR's type. */
655 sym = SSA_NAME_VAR (var);
656 if (SSA_NAME_IS_DEFAULT_DEF (var))
658 /* Try to use the "nonnull" attribute to create ~[0, 0]
659 anti-ranges for pointers. Note that this is only valid with
660 default definitions of PARM_DECLs. */
661 if (TREE_CODE (sym) == PARM_DECL
662 && POINTER_TYPE_P (TREE_TYPE (sym))
663 && nonnull_arg_p (sym))
664 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
665 else
666 set_value_range_to_varying (vr);
669 return vr;
672 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
674 static inline bool
675 vrp_operand_equal_p (const_tree val1, const_tree val2)
677 if (val1 == val2)
678 return true;
679 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
680 return false;
681 if (is_overflow_infinity (val1))
682 return is_overflow_infinity (val2);
683 return true;
686 /* Return true, if the bitmaps B1 and B2 are equal. */
688 static inline bool
689 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
691 return (b1 == b2
692 || (b1 && b2
693 && bitmap_equal_p (b1, b2)));
696 /* Update the value range and equivalence set for variable VAR to
697 NEW_VR. Return true if NEW_VR is different from VAR's previous
698 value.
700 NOTE: This function assumes that NEW_VR is a temporary value range
701 object created for the sole purpose of updating VAR's range. The
702 storage used by the equivalence set from NEW_VR will be freed by
703 this function. Do not call update_value_range when NEW_VR
704 is the range object associated with another SSA name. */
706 static inline bool
707 update_value_range (const_tree var, value_range_t *new_vr)
709 value_range_t *old_vr;
710 bool is_new;
712 /* Update the value range, if necessary. */
713 old_vr = get_value_range (var);
714 is_new = old_vr->type != new_vr->type
715 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
716 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
717 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
719 if (is_new)
720 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
721 new_vr->equiv);
723 BITMAP_FREE (new_vr->equiv);
725 return is_new;
729 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
730 point where equivalence processing can be turned on/off. */
732 static void
733 add_equivalence (bitmap *equiv, const_tree var)
735 unsigned ver = SSA_NAME_VERSION (var);
736 value_range_t *vr = vr_value[ver];
738 if (*equiv == NULL)
739 *equiv = BITMAP_ALLOC (NULL);
740 bitmap_set_bit (*equiv, ver);
741 if (vr && vr->equiv)
742 bitmap_ior_into (*equiv, vr->equiv);
746 /* Return true if VR is ~[0, 0]. */
748 static inline bool
749 range_is_nonnull (value_range_t *vr)
751 return vr->type == VR_ANTI_RANGE
752 && integer_zerop (vr->min)
753 && integer_zerop (vr->max);
757 /* Return true if VR is [0, 0]. */
759 static inline bool
760 range_is_null (value_range_t *vr)
762 return vr->type == VR_RANGE
763 && integer_zerop (vr->min)
764 && integer_zerop (vr->max);
767 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
768 a singleton. */
770 static inline bool
771 range_int_cst_p (value_range_t *vr)
773 return (vr->type == VR_RANGE
774 && TREE_CODE (vr->max) == INTEGER_CST
775 && TREE_CODE (vr->min) == INTEGER_CST
776 && !TREE_OVERFLOW (vr->max)
777 && !TREE_OVERFLOW (vr->min));
780 /* Return true if VR is a INTEGER_CST singleton. */
782 static inline bool
783 range_int_cst_singleton_p (value_range_t *vr)
785 return (range_int_cst_p (vr)
786 && tree_int_cst_equal (vr->min, vr->max));
789 /* Return true if value range VR involves at least one symbol. */
791 static inline bool
792 symbolic_range_p (value_range_t *vr)
794 return (!is_gimple_min_invariant (vr->min)
795 || !is_gimple_min_invariant (vr->max));
798 /* Return true if value range VR uses an overflow infinity. */
800 static inline bool
801 overflow_infinity_range_p (value_range_t *vr)
803 return (vr->type == VR_RANGE
804 && (is_overflow_infinity (vr->min)
805 || is_overflow_infinity (vr->max)));
808 /* Return false if we can not make a valid comparison based on VR;
809 this will be the case if it uses an overflow infinity and overflow
810 is not undefined (i.e., -fno-strict-overflow is in effect).
811 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
812 uses an overflow infinity. */
814 static bool
815 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
817 gcc_assert (vr->type == VR_RANGE);
818 if (is_overflow_infinity (vr->min))
820 *strict_overflow_p = true;
821 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
822 return false;
824 if (is_overflow_infinity (vr->max))
826 *strict_overflow_p = true;
827 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
828 return false;
830 return true;
834 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
835 ranges obtained so far. */
837 static bool
838 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
840 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
841 || (TREE_CODE (expr) == SSA_NAME
842 && ssa_name_nonnegative_p (expr)));
845 /* Return true if the result of assignment STMT is know to be non-negative.
846 If the return value is based on the assumption that signed overflow is
847 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
848 *STRICT_OVERFLOW_P.*/
850 static bool
851 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
853 enum tree_code code = gimple_assign_rhs_code (stmt);
854 switch (get_gimple_rhs_class (code))
856 case GIMPLE_UNARY_RHS:
857 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
858 gimple_expr_type (stmt),
859 gimple_assign_rhs1 (stmt),
860 strict_overflow_p);
861 case GIMPLE_BINARY_RHS:
862 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
863 gimple_expr_type (stmt),
864 gimple_assign_rhs1 (stmt),
865 gimple_assign_rhs2 (stmt),
866 strict_overflow_p);
867 case GIMPLE_SINGLE_RHS:
868 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
869 strict_overflow_p);
870 case GIMPLE_INVALID_RHS:
871 gcc_unreachable ();
872 default:
873 gcc_unreachable ();
877 /* Return true if return value of call STMT is know to be non-negative.
878 If the return value is based on the assumption that signed overflow is
879 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
880 *STRICT_OVERFLOW_P.*/
882 static bool
883 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
885 tree arg0 = gimple_call_num_args (stmt) > 0 ?
886 gimple_call_arg (stmt, 0) : NULL_TREE;
887 tree arg1 = gimple_call_num_args (stmt) > 1 ?
888 gimple_call_arg (stmt, 1) : NULL_TREE;
890 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
891 gimple_call_fndecl (stmt),
892 arg0,
893 arg1,
894 strict_overflow_p);
897 /* Return true if STMT is know to to compute a non-negative value.
898 If the return value is based on the assumption that signed overflow is
899 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
900 *STRICT_OVERFLOW_P.*/
902 static bool
903 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
905 switch (gimple_code (stmt))
907 case GIMPLE_ASSIGN:
908 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
909 case GIMPLE_CALL:
910 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
911 default:
912 gcc_unreachable ();
916 /* Return true if the result of assignment STMT is know to be non-zero.
917 If the return value is based on the assumption that signed overflow is
918 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
919 *STRICT_OVERFLOW_P.*/
921 static bool
922 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
924 enum tree_code code = gimple_assign_rhs_code (stmt);
925 switch (get_gimple_rhs_class (code))
927 case GIMPLE_UNARY_RHS:
928 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
929 gimple_expr_type (stmt),
930 gimple_assign_rhs1 (stmt),
931 strict_overflow_p);
932 case GIMPLE_BINARY_RHS:
933 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
934 gimple_expr_type (stmt),
935 gimple_assign_rhs1 (stmt),
936 gimple_assign_rhs2 (stmt),
937 strict_overflow_p);
938 case GIMPLE_SINGLE_RHS:
939 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
940 strict_overflow_p);
941 case GIMPLE_INVALID_RHS:
942 gcc_unreachable ();
943 default:
944 gcc_unreachable ();
948 /* Return true if STMT is know to to compute a non-zero value.
949 If the return value is based on the assumption that signed overflow is
950 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
951 *STRICT_OVERFLOW_P.*/
953 static bool
954 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
956 switch (gimple_code (stmt))
958 case GIMPLE_ASSIGN:
959 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
960 case GIMPLE_CALL:
961 return gimple_alloca_call_p (stmt);
962 default:
963 gcc_unreachable ();
967 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
968 obtained so far. */
970 static bool
971 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
973 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
974 return true;
976 /* If we have an expression of the form &X->a, then the expression
977 is nonnull if X is nonnull. */
978 if (is_gimple_assign (stmt)
979 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
981 tree expr = gimple_assign_rhs1 (stmt);
982 tree base = get_base_address (TREE_OPERAND (expr, 0));
984 if (base != NULL_TREE
985 && TREE_CODE (base) == INDIRECT_REF
986 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
988 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
989 if (range_is_nonnull (vr))
990 return true;
994 return false;
997 /* Returns true if EXPR is a valid value (as expected by compare_values) --
998 a gimple invariant, or SSA_NAME +- CST. */
1000 static bool
1001 valid_value_p (tree expr)
1003 if (TREE_CODE (expr) == SSA_NAME)
1004 return true;
1006 if (TREE_CODE (expr) == PLUS_EXPR
1007 || TREE_CODE (expr) == MINUS_EXPR)
1008 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1009 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1011 return is_gimple_min_invariant (expr);
1014 /* Return
1015 1 if VAL < VAL2
1016 0 if !(VAL < VAL2)
1017 -2 if those are incomparable. */
1018 static inline int
1019 operand_less_p (tree val, tree val2)
1021 /* LT is folded faster than GE and others. Inline the common case. */
1022 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1024 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1025 return INT_CST_LT_UNSIGNED (val, val2);
1026 else
1028 if (INT_CST_LT (val, val2))
1029 return 1;
1032 else
1034 tree tcmp;
1036 fold_defer_overflow_warnings ();
1038 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1040 fold_undefer_and_ignore_overflow_warnings ();
1042 if (!tcmp
1043 || TREE_CODE (tcmp) != INTEGER_CST)
1044 return -2;
1046 if (!integer_zerop (tcmp))
1047 return 1;
1050 /* val >= val2, not considering overflow infinity. */
1051 if (is_negative_overflow_infinity (val))
1052 return is_negative_overflow_infinity (val2) ? 0 : 1;
1053 else if (is_positive_overflow_infinity (val2))
1054 return is_positive_overflow_infinity (val) ? 0 : 1;
1056 return 0;
1059 /* Compare two values VAL1 and VAL2. Return
1061 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1062 -1 if VAL1 < VAL2,
1063 0 if VAL1 == VAL2,
1064 +1 if VAL1 > VAL2, and
1065 +2 if VAL1 != VAL2
1067 This is similar to tree_int_cst_compare but supports pointer values
1068 and values that cannot be compared at compile time.
1070 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1071 true if the return value is only valid if we assume that signed
1072 overflow is undefined. */
1074 static int
1075 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1077 if (val1 == val2)
1078 return 0;
1080 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1081 both integers. */
1082 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1083 == POINTER_TYPE_P (TREE_TYPE (val2)));
1084 /* Convert the two values into the same type. This is needed because
1085 sizetype causes sign extension even for unsigned types. */
1086 val2 = fold_convert (TREE_TYPE (val1), val2);
1087 STRIP_USELESS_TYPE_CONVERSION (val2);
1089 if ((TREE_CODE (val1) == SSA_NAME
1090 || TREE_CODE (val1) == PLUS_EXPR
1091 || TREE_CODE (val1) == MINUS_EXPR)
1092 && (TREE_CODE (val2) == SSA_NAME
1093 || TREE_CODE (val2) == PLUS_EXPR
1094 || TREE_CODE (val2) == MINUS_EXPR))
1096 tree n1, c1, n2, c2;
1097 enum tree_code code1, code2;
1099 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1100 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1101 same name, return -2. */
1102 if (TREE_CODE (val1) == SSA_NAME)
1104 code1 = SSA_NAME;
1105 n1 = val1;
1106 c1 = NULL_TREE;
1108 else
1110 code1 = TREE_CODE (val1);
1111 n1 = TREE_OPERAND (val1, 0);
1112 c1 = TREE_OPERAND (val1, 1);
1113 if (tree_int_cst_sgn (c1) == -1)
1115 if (is_negative_overflow_infinity (c1))
1116 return -2;
1117 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1118 if (!c1)
1119 return -2;
1120 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1124 if (TREE_CODE (val2) == SSA_NAME)
1126 code2 = SSA_NAME;
1127 n2 = val2;
1128 c2 = NULL_TREE;
1130 else
1132 code2 = TREE_CODE (val2);
1133 n2 = TREE_OPERAND (val2, 0);
1134 c2 = TREE_OPERAND (val2, 1);
1135 if (tree_int_cst_sgn (c2) == -1)
1137 if (is_negative_overflow_infinity (c2))
1138 return -2;
1139 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1140 if (!c2)
1141 return -2;
1142 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1146 /* Both values must use the same name. */
1147 if (n1 != n2)
1148 return -2;
1150 if (code1 == SSA_NAME
1151 && code2 == SSA_NAME)
1152 /* NAME == NAME */
1153 return 0;
1155 /* If overflow is defined we cannot simplify more. */
1156 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1157 return -2;
1159 if (strict_overflow_p != NULL
1160 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1161 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1162 *strict_overflow_p = true;
1164 if (code1 == SSA_NAME)
1166 if (code2 == PLUS_EXPR)
1167 /* NAME < NAME + CST */
1168 return -1;
1169 else if (code2 == MINUS_EXPR)
1170 /* NAME > NAME - CST */
1171 return 1;
1173 else if (code1 == PLUS_EXPR)
1175 if (code2 == SSA_NAME)
1176 /* NAME + CST > NAME */
1177 return 1;
1178 else if (code2 == PLUS_EXPR)
1179 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1180 return compare_values_warnv (c1, c2, strict_overflow_p);
1181 else if (code2 == MINUS_EXPR)
1182 /* NAME + CST1 > NAME - CST2 */
1183 return 1;
1185 else if (code1 == MINUS_EXPR)
1187 if (code2 == SSA_NAME)
1188 /* NAME - CST < NAME */
1189 return -1;
1190 else if (code2 == PLUS_EXPR)
1191 /* NAME - CST1 < NAME + CST2 */
1192 return -1;
1193 else if (code2 == MINUS_EXPR)
1194 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1195 C1 and C2 are swapped in the call to compare_values. */
1196 return compare_values_warnv (c2, c1, strict_overflow_p);
1199 gcc_unreachable ();
1202 /* We cannot compare non-constants. */
1203 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1204 return -2;
1206 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1208 /* We cannot compare overflowed values, except for overflow
1209 infinities. */
1210 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1212 if (strict_overflow_p != NULL)
1213 *strict_overflow_p = true;
1214 if (is_negative_overflow_infinity (val1))
1215 return is_negative_overflow_infinity (val2) ? 0 : -1;
1216 else if (is_negative_overflow_infinity (val2))
1217 return 1;
1218 else if (is_positive_overflow_infinity (val1))
1219 return is_positive_overflow_infinity (val2) ? 0 : 1;
1220 else if (is_positive_overflow_infinity (val2))
1221 return -1;
1222 return -2;
1225 return tree_int_cst_compare (val1, val2);
1227 else
1229 tree t;
1231 /* First see if VAL1 and VAL2 are not the same. */
1232 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1233 return 0;
1235 /* If VAL1 is a lower address than VAL2, return -1. */
1236 if (operand_less_p (val1, val2) == 1)
1237 return -1;
1239 /* If VAL1 is a higher address than VAL2, return +1. */
1240 if (operand_less_p (val2, val1) == 1)
1241 return 1;
1243 /* If VAL1 is different than VAL2, return +2.
1244 For integer constants we either have already returned -1 or 1
1245 or they are equivalent. We still might succeed in proving
1246 something about non-trivial operands. */
1247 if (TREE_CODE (val1) != INTEGER_CST
1248 || TREE_CODE (val2) != INTEGER_CST)
1250 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1251 if (t && integer_onep (t))
1252 return 2;
1255 return -2;
1259 /* Compare values like compare_values_warnv, but treat comparisons of
1260 nonconstants which rely on undefined overflow as incomparable. */
1262 static int
1263 compare_values (tree val1, tree val2)
1265 bool sop;
1266 int ret;
1268 sop = false;
1269 ret = compare_values_warnv (val1, val2, &sop);
1270 if (sop
1271 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1272 ret = -2;
1273 return ret;
1277 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1278 0 if VAL is not inside VR,
1279 -2 if we cannot tell either way.
1281 FIXME, the current semantics of this functions are a bit quirky
1282 when taken in the context of VRP. In here we do not care
1283 about VR's type. If VR is the anti-range ~[3, 5] the call
1284 value_inside_range (4, VR) will return 1.
1286 This is counter-intuitive in a strict sense, but the callers
1287 currently expect this. They are calling the function
1288 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1289 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1290 themselves.
1292 This also applies to value_ranges_intersect_p and
1293 range_includes_zero_p. The semantics of VR_RANGE and
1294 VR_ANTI_RANGE should be encoded here, but that also means
1295 adapting the users of these functions to the new semantics.
1297 Benchmark compile/20001226-1.c compilation time after changing this
1298 function. */
1300 static inline int
1301 value_inside_range (tree val, value_range_t * vr)
1303 int cmp1, cmp2;
1305 cmp1 = operand_less_p (val, vr->min);
1306 if (cmp1 == -2)
1307 return -2;
1308 if (cmp1 == 1)
1309 return 0;
1311 cmp2 = operand_less_p (vr->max, val);
1312 if (cmp2 == -2)
1313 return -2;
1315 return !cmp2;
1319 /* Return true if value ranges VR0 and VR1 have a non-empty
1320 intersection.
1322 Benchmark compile/20001226-1.c compilation time after changing this
1323 function.
1326 static inline bool
1327 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1329 /* The value ranges do not intersect if the maximum of the first range is
1330 less than the minimum of the second range or vice versa.
1331 When those relations are unknown, we can't do any better. */
1332 if (operand_less_p (vr0->max, vr1->min) != 0)
1333 return false;
1334 if (operand_less_p (vr1->max, vr0->min) != 0)
1335 return false;
1336 return true;
1340 /* Return true if VR includes the value zero, false otherwise. FIXME,
1341 currently this will return false for an anti-range like ~[-4, 3].
1342 This will be wrong when the semantics of value_inside_range are
1343 modified (currently the users of this function expect these
1344 semantics). */
1346 static inline bool
1347 range_includes_zero_p (value_range_t *vr)
1349 tree zero;
1351 gcc_assert (vr->type != VR_UNDEFINED
1352 && vr->type != VR_VARYING
1353 && !symbolic_range_p (vr));
1355 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1356 return (value_inside_range (zero, vr) == 1);
1359 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1360 false otherwise or if no value range information is available. */
1362 bool
1363 ssa_name_nonnegative_p (const_tree t)
1365 value_range_t *vr = get_value_range (t);
1367 if (INTEGRAL_TYPE_P (t)
1368 && TYPE_UNSIGNED (t))
1369 return true;
1371 if (!vr)
1372 return false;
1374 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1375 which would return a useful value should be encoded as a VR_RANGE. */
1376 if (vr->type == VR_RANGE)
1378 int result = compare_values (vr->min, integer_zero_node);
1380 return (result == 0 || result == 1);
1382 return false;
1385 /* If OP has a value range with a single constant value return that,
1386 otherwise return NULL_TREE. This returns OP itself if OP is a
1387 constant. */
1389 static tree
1390 op_with_constant_singleton_value_range (tree op)
1392 value_range_t *vr;
1394 if (is_gimple_min_invariant (op))
1395 return op;
1397 if (TREE_CODE (op) != SSA_NAME)
1398 return NULL_TREE;
1400 vr = get_value_range (op);
1401 if (vr->type == VR_RANGE
1402 && operand_equal_p (vr->min, vr->max, 0)
1403 && is_gimple_min_invariant (vr->min))
1404 return vr->min;
1406 return NULL_TREE;
1410 /* Extract value range information from an ASSERT_EXPR EXPR and store
1411 it in *VR_P. */
1413 static void
1414 extract_range_from_assert (value_range_t *vr_p, tree expr)
1416 tree var, cond, limit, min, max, type;
1417 value_range_t *var_vr, *limit_vr;
1418 enum tree_code cond_code;
1420 var = ASSERT_EXPR_VAR (expr);
1421 cond = ASSERT_EXPR_COND (expr);
1423 gcc_assert (COMPARISON_CLASS_P (cond));
1425 /* Find VAR in the ASSERT_EXPR conditional. */
1426 if (var == TREE_OPERAND (cond, 0)
1427 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1428 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1430 /* If the predicate is of the form VAR COMP LIMIT, then we just
1431 take LIMIT from the RHS and use the same comparison code. */
1432 cond_code = TREE_CODE (cond);
1433 limit = TREE_OPERAND (cond, 1);
1434 cond = TREE_OPERAND (cond, 0);
1436 else
1438 /* If the predicate is of the form LIMIT COMP VAR, then we need
1439 to flip around the comparison code to create the proper range
1440 for VAR. */
1441 cond_code = swap_tree_comparison (TREE_CODE (cond));
1442 limit = TREE_OPERAND (cond, 0);
1443 cond = TREE_OPERAND (cond, 1);
1446 limit = avoid_overflow_infinity (limit);
1448 type = TREE_TYPE (limit);
1449 gcc_assert (limit != var);
1451 /* For pointer arithmetic, we only keep track of pointer equality
1452 and inequality. */
1453 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1455 set_value_range_to_varying (vr_p);
1456 return;
1459 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1460 try to use LIMIT's range to avoid creating symbolic ranges
1461 unnecessarily. */
1462 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1464 /* LIMIT's range is only interesting if it has any useful information. */
1465 if (limit_vr
1466 && (limit_vr->type == VR_UNDEFINED
1467 || limit_vr->type == VR_VARYING
1468 || symbolic_range_p (limit_vr)))
1469 limit_vr = NULL;
1471 /* Initially, the new range has the same set of equivalences of
1472 VAR's range. This will be revised before returning the final
1473 value. Since assertions may be chained via mutually exclusive
1474 predicates, we will need to trim the set of equivalences before
1475 we are done. */
1476 gcc_assert (vr_p->equiv == NULL);
1477 add_equivalence (&vr_p->equiv, var);
1479 /* Extract a new range based on the asserted comparison for VAR and
1480 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1481 will only use it for equality comparisons (EQ_EXPR). For any
1482 other kind of assertion, we cannot derive a range from LIMIT's
1483 anti-range that can be used to describe the new range. For
1484 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1485 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1486 no single range for x_2 that could describe LE_EXPR, so we might
1487 as well build the range [b_4, +INF] for it.
1488 One special case we handle is extracting a range from a
1489 range test encoded as (unsigned)var + CST <= limit. */
1490 if (TREE_CODE (cond) == NOP_EXPR
1491 || TREE_CODE (cond) == PLUS_EXPR)
1493 if (TREE_CODE (cond) == PLUS_EXPR)
1495 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1496 TREE_OPERAND (cond, 1));
1497 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1498 cond = TREE_OPERAND (cond, 0);
1500 else
1502 min = build_int_cst (TREE_TYPE (var), 0);
1503 max = limit;
1506 /* Make sure to not set TREE_OVERFLOW on the final type
1507 conversion. We are willingly interpreting large positive
1508 unsigned values as negative singed values here. */
1509 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1510 TREE_INT_CST_HIGH (min), 0, false);
1511 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1512 TREE_INT_CST_HIGH (max), 0, false);
1514 /* We can transform a max, min range to an anti-range or
1515 vice-versa. Use set_and_canonicalize_value_range which does
1516 this for us. */
1517 if (cond_code == LE_EXPR)
1518 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1519 min, max, vr_p->equiv);
1520 else if (cond_code == GT_EXPR)
1521 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1522 min, max, vr_p->equiv);
1523 else
1524 gcc_unreachable ();
1526 else if (cond_code == EQ_EXPR)
1528 enum value_range_type range_type;
1530 if (limit_vr)
1532 range_type = limit_vr->type;
1533 min = limit_vr->min;
1534 max = limit_vr->max;
1536 else
1538 range_type = VR_RANGE;
1539 min = limit;
1540 max = limit;
1543 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1545 /* When asserting the equality VAR == LIMIT and LIMIT is another
1546 SSA name, the new range will also inherit the equivalence set
1547 from LIMIT. */
1548 if (TREE_CODE (limit) == SSA_NAME)
1549 add_equivalence (&vr_p->equiv, limit);
1551 else if (cond_code == NE_EXPR)
1553 /* As described above, when LIMIT's range is an anti-range and
1554 this assertion is an inequality (NE_EXPR), then we cannot
1555 derive anything from the anti-range. For instance, if
1556 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1557 not imply that VAR's range is [0, 0]. So, in the case of
1558 anti-ranges, we just assert the inequality using LIMIT and
1559 not its anti-range.
1561 If LIMIT_VR is a range, we can only use it to build a new
1562 anti-range if LIMIT_VR is a single-valued range. For
1563 instance, if LIMIT_VR is [0, 1], the predicate
1564 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1565 Rather, it means that for value 0 VAR should be ~[0, 0]
1566 and for value 1, VAR should be ~[1, 1]. We cannot
1567 represent these ranges.
1569 The only situation in which we can build a valid
1570 anti-range is when LIMIT_VR is a single-valued range
1571 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1572 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1573 if (limit_vr
1574 && limit_vr->type == VR_RANGE
1575 && compare_values (limit_vr->min, limit_vr->max) == 0)
1577 min = limit_vr->min;
1578 max = limit_vr->max;
1580 else
1582 /* In any other case, we cannot use LIMIT's range to build a
1583 valid anti-range. */
1584 min = max = limit;
1587 /* If MIN and MAX cover the whole range for their type, then
1588 just use the original LIMIT. */
1589 if (INTEGRAL_TYPE_P (type)
1590 && vrp_val_is_min (min)
1591 && vrp_val_is_max (max))
1592 min = max = limit;
1594 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1596 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1598 min = TYPE_MIN_VALUE (type);
1600 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1601 max = limit;
1602 else
1604 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1605 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1606 LT_EXPR. */
1607 max = limit_vr->max;
1610 /* If the maximum value forces us to be out of bounds, simply punt.
1611 It would be pointless to try and do anything more since this
1612 all should be optimized away above us. */
1613 if ((cond_code == LT_EXPR
1614 && compare_values (max, min) == 0)
1615 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1616 set_value_range_to_varying (vr_p);
1617 else
1619 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1620 if (cond_code == LT_EXPR)
1622 tree one = build_int_cst (type, 1);
1623 max = fold_build2 (MINUS_EXPR, type, max, one);
1624 if (EXPR_P (max))
1625 TREE_NO_WARNING (max) = 1;
1628 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1631 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1633 max = TYPE_MAX_VALUE (type);
1635 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1636 min = limit;
1637 else
1639 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1640 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1641 GT_EXPR. */
1642 min = limit_vr->min;
1645 /* If the minimum value forces us to be out of bounds, simply punt.
1646 It would be pointless to try and do anything more since this
1647 all should be optimized away above us. */
1648 if ((cond_code == GT_EXPR
1649 && compare_values (min, max) == 0)
1650 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1651 set_value_range_to_varying (vr_p);
1652 else
1654 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1655 if (cond_code == GT_EXPR)
1657 tree one = build_int_cst (type, 1);
1658 min = fold_build2 (PLUS_EXPR, type, min, one);
1659 if (EXPR_P (min))
1660 TREE_NO_WARNING (min) = 1;
1663 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1666 else
1667 gcc_unreachable ();
1669 /* If VAR already had a known range, it may happen that the new
1670 range we have computed and VAR's range are not compatible. For
1671 instance,
1673 if (p_5 == NULL)
1674 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1675 x_7 = p_6->fld;
1676 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1678 While the above comes from a faulty program, it will cause an ICE
1679 later because p_8 and p_6 will have incompatible ranges and at
1680 the same time will be considered equivalent. A similar situation
1681 would arise from
1683 if (i_5 > 10)
1684 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1685 if (i_5 < 5)
1686 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1688 Again i_6 and i_7 will have incompatible ranges. It would be
1689 pointless to try and do anything with i_7's range because
1690 anything dominated by 'if (i_5 < 5)' will be optimized away.
1691 Note, due to the wa in which simulation proceeds, the statement
1692 i_7 = ASSERT_EXPR <...> we would never be visited because the
1693 conditional 'if (i_5 < 5)' always evaluates to false. However,
1694 this extra check does not hurt and may protect against future
1695 changes to VRP that may get into a situation similar to the
1696 NULL pointer dereference example.
1698 Note that these compatibility tests are only needed when dealing
1699 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1700 are both anti-ranges, they will always be compatible, because two
1701 anti-ranges will always have a non-empty intersection. */
1703 var_vr = get_value_range (var);
1705 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1706 ranges or anti-ranges. */
1707 if (vr_p->type == VR_VARYING
1708 || vr_p->type == VR_UNDEFINED
1709 || var_vr->type == VR_VARYING
1710 || var_vr->type == VR_UNDEFINED
1711 || symbolic_range_p (vr_p)
1712 || symbolic_range_p (var_vr))
1713 return;
1715 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1717 /* If the two ranges have a non-empty intersection, we can
1718 refine the resulting range. Since the assert expression
1719 creates an equivalency and at the same time it asserts a
1720 predicate, we can take the intersection of the two ranges to
1721 get better precision. */
1722 if (value_ranges_intersect_p (var_vr, vr_p))
1724 /* Use the larger of the two minimums. */
1725 if (compare_values (vr_p->min, var_vr->min) == -1)
1726 min = var_vr->min;
1727 else
1728 min = vr_p->min;
1730 /* Use the smaller of the two maximums. */
1731 if (compare_values (vr_p->max, var_vr->max) == 1)
1732 max = var_vr->max;
1733 else
1734 max = vr_p->max;
1736 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1738 else
1740 /* The two ranges do not intersect, set the new range to
1741 VARYING, because we will not be able to do anything
1742 meaningful with it. */
1743 set_value_range_to_varying (vr_p);
1746 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1747 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1749 /* A range and an anti-range will cancel each other only if
1750 their ends are the same. For instance, in the example above,
1751 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1752 so VR_P should be set to VR_VARYING. */
1753 if (compare_values (var_vr->min, vr_p->min) == 0
1754 && compare_values (var_vr->max, vr_p->max) == 0)
1755 set_value_range_to_varying (vr_p);
1756 else
1758 tree min, max, anti_min, anti_max, real_min, real_max;
1759 int cmp;
1761 /* We want to compute the logical AND of the two ranges;
1762 there are three cases to consider.
1765 1. The VR_ANTI_RANGE range is completely within the
1766 VR_RANGE and the endpoints of the ranges are
1767 different. In that case the resulting range
1768 should be whichever range is more precise.
1769 Typically that will be the VR_RANGE.
1771 2. The VR_ANTI_RANGE is completely disjoint from
1772 the VR_RANGE. In this case the resulting range
1773 should be the VR_RANGE.
1775 3. There is some overlap between the VR_ANTI_RANGE
1776 and the VR_RANGE.
1778 3a. If the high limit of the VR_ANTI_RANGE resides
1779 within the VR_RANGE, then the result is a new
1780 VR_RANGE starting at the high limit of the
1781 VR_ANTI_RANGE + 1 and extending to the
1782 high limit of the original VR_RANGE.
1784 3b. If the low limit of the VR_ANTI_RANGE resides
1785 within the VR_RANGE, then the result is a new
1786 VR_RANGE starting at the low limit of the original
1787 VR_RANGE and extending to the low limit of the
1788 VR_ANTI_RANGE - 1. */
1789 if (vr_p->type == VR_ANTI_RANGE)
1791 anti_min = vr_p->min;
1792 anti_max = vr_p->max;
1793 real_min = var_vr->min;
1794 real_max = var_vr->max;
1796 else
1798 anti_min = var_vr->min;
1799 anti_max = var_vr->max;
1800 real_min = vr_p->min;
1801 real_max = vr_p->max;
1805 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1806 not including any endpoints. */
1807 if (compare_values (anti_max, real_max) == -1
1808 && compare_values (anti_min, real_min) == 1)
1810 /* If the range is covering the whole valid range of
1811 the type keep the anti-range. */
1812 if (!vrp_val_is_min (real_min)
1813 || !vrp_val_is_max (real_max))
1814 set_value_range (vr_p, VR_RANGE, real_min,
1815 real_max, vr_p->equiv);
1817 /* Case 2, VR_ANTI_RANGE completely disjoint from
1818 VR_RANGE. */
1819 else if (compare_values (anti_min, real_max) == 1
1820 || compare_values (anti_max, real_min) == -1)
1822 set_value_range (vr_p, VR_RANGE, real_min,
1823 real_max, vr_p->equiv);
1825 /* Case 3a, the anti-range extends into the low
1826 part of the real range. Thus creating a new
1827 low for the real range. */
1828 else if (((cmp = compare_values (anti_max, real_min)) == 1
1829 || cmp == 0)
1830 && compare_values (anti_max, real_max) == -1)
1832 gcc_assert (!is_positive_overflow_infinity (anti_max));
1833 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1834 && vrp_val_is_max (anti_max))
1836 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1838 set_value_range_to_varying (vr_p);
1839 return;
1841 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1843 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1844 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1845 anti_max,
1846 build_int_cst (TREE_TYPE (var_vr->min), 1));
1847 else
1848 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1849 anti_max, size_int (1));
1850 max = real_max;
1851 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1853 /* Case 3b, the anti-range extends into the high
1854 part of the real range. Thus creating a new
1855 higher for the real range. */
1856 else if (compare_values (anti_min, real_min) == 1
1857 && ((cmp = compare_values (anti_min, real_max)) == -1
1858 || cmp == 0))
1860 gcc_assert (!is_negative_overflow_infinity (anti_min));
1861 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1862 && vrp_val_is_min (anti_min))
1864 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1866 set_value_range_to_varying (vr_p);
1867 return;
1869 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1871 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1872 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1873 anti_min,
1874 build_int_cst (TREE_TYPE (var_vr->min), 1));
1875 else
1876 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1877 anti_min,
1878 size_int (-1));
1879 min = real_min;
1880 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1887 /* Extract range information from SSA name VAR and store it in VR. If
1888 VAR has an interesting range, use it. Otherwise, create the
1889 range [VAR, VAR] and return it. This is useful in situations where
1890 we may have conditionals testing values of VARYING names. For
1891 instance,
1893 x_3 = y_5;
1894 if (x_3 > y_5)
1897 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1898 always false. */
1900 static void
1901 extract_range_from_ssa_name (value_range_t *vr, tree var)
1903 value_range_t *var_vr = get_value_range (var);
1905 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1906 copy_value_range (vr, var_vr);
1907 else
1908 set_value_range (vr, VR_RANGE, var, var, NULL);
1910 add_equivalence (&vr->equiv, var);
1914 /* Wrapper around int_const_binop. If the operation overflows and we
1915 are not using wrapping arithmetic, then adjust the result to be
1916 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1917 NULL_TREE if we need to use an overflow infinity representation but
1918 the type does not support it. */
1920 static tree
1921 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1923 tree res;
1925 res = int_const_binop (code, val1, val2, 0);
1927 /* If we are using unsigned arithmetic, operate symbolically
1928 on -INF and +INF as int_const_binop only handles signed overflow. */
1929 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1931 int checkz = compare_values (res, val1);
1932 bool overflow = false;
1934 /* Ensure that res = val1 [+*] val2 >= val1
1935 or that res = val1 - val2 <= val1. */
1936 if ((code == PLUS_EXPR
1937 && !(checkz == 1 || checkz == 0))
1938 || (code == MINUS_EXPR
1939 && !(checkz == 0 || checkz == -1)))
1941 overflow = true;
1943 /* Checking for multiplication overflow is done by dividing the
1944 output of the multiplication by the first input of the
1945 multiplication. If the result of that division operation is
1946 not equal to the second input of the multiplication, then the
1947 multiplication overflowed. */
1948 else if (code == MULT_EXPR && !integer_zerop (val1))
1950 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1951 res,
1952 val1, 0);
1953 int check = compare_values (tmp, val2);
1955 if (check != 0)
1956 overflow = true;
1959 if (overflow)
1961 res = copy_node (res);
1962 TREE_OVERFLOW (res) = 1;
1966 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1967 /* If the singed operation wraps then int_const_binop has done
1968 everything we want. */
1970 else if ((TREE_OVERFLOW (res)
1971 && !TREE_OVERFLOW (val1)
1972 && !TREE_OVERFLOW (val2))
1973 || is_overflow_infinity (val1)
1974 || is_overflow_infinity (val2))
1976 /* If the operation overflowed but neither VAL1 nor VAL2 are
1977 overflown, return -INF or +INF depending on the operation
1978 and the combination of signs of the operands. */
1979 int sgn1 = tree_int_cst_sgn (val1);
1980 int sgn2 = tree_int_cst_sgn (val2);
1982 if (needs_overflow_infinity (TREE_TYPE (res))
1983 && !supports_overflow_infinity (TREE_TYPE (res)))
1984 return NULL_TREE;
1986 /* We have to punt on adding infinities of different signs,
1987 since we can't tell what the sign of the result should be.
1988 Likewise for subtracting infinities of the same sign. */
1989 if (((code == PLUS_EXPR && sgn1 != sgn2)
1990 || (code == MINUS_EXPR && sgn1 == sgn2))
1991 && is_overflow_infinity (val1)
1992 && is_overflow_infinity (val2))
1993 return NULL_TREE;
1995 /* Don't try to handle division or shifting of infinities. */
1996 if ((code == TRUNC_DIV_EXPR
1997 || code == FLOOR_DIV_EXPR
1998 || code == CEIL_DIV_EXPR
1999 || code == EXACT_DIV_EXPR
2000 || code == ROUND_DIV_EXPR
2001 || code == RSHIFT_EXPR)
2002 && (is_overflow_infinity (val1)
2003 || is_overflow_infinity (val2)))
2004 return NULL_TREE;
2006 /* Notice that we only need to handle the restricted set of
2007 operations handled by extract_range_from_binary_expr.
2008 Among them, only multiplication, addition and subtraction
2009 can yield overflow without overflown operands because we
2010 are working with integral types only... except in the
2011 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2012 for division too. */
2014 /* For multiplication, the sign of the overflow is given
2015 by the comparison of the signs of the operands. */
2016 if ((code == MULT_EXPR && sgn1 == sgn2)
2017 /* For addition, the operands must be of the same sign
2018 to yield an overflow. Its sign is therefore that
2019 of one of the operands, for example the first. For
2020 infinite operands X + -INF is negative, not positive. */
2021 || (code == PLUS_EXPR
2022 && (sgn1 >= 0
2023 ? !is_negative_overflow_infinity (val2)
2024 : is_positive_overflow_infinity (val2)))
2025 /* For subtraction, non-infinite operands must be of
2026 different signs to yield an overflow. Its sign is
2027 therefore that of the first operand or the opposite of
2028 that of the second operand. A first operand of 0 counts
2029 as positive here, for the corner case 0 - (-INF), which
2030 overflows, but must yield +INF. For infinite operands 0
2031 - INF is negative, not positive. */
2032 || (code == MINUS_EXPR
2033 && (sgn1 >= 0
2034 ? !is_positive_overflow_infinity (val2)
2035 : is_negative_overflow_infinity (val2)))
2036 /* We only get in here with positive shift count, so the
2037 overflow direction is the same as the sign of val1.
2038 Actually rshift does not overflow at all, but we only
2039 handle the case of shifting overflowed -INF and +INF. */
2040 || (code == RSHIFT_EXPR
2041 && sgn1 >= 0)
2042 /* For division, the only case is -INF / -1 = +INF. */
2043 || code == TRUNC_DIV_EXPR
2044 || code == FLOOR_DIV_EXPR
2045 || code == CEIL_DIV_EXPR
2046 || code == EXACT_DIV_EXPR
2047 || code == ROUND_DIV_EXPR)
2048 return (needs_overflow_infinity (TREE_TYPE (res))
2049 ? positive_overflow_infinity (TREE_TYPE (res))
2050 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2051 else
2052 return (needs_overflow_infinity (TREE_TYPE (res))
2053 ? negative_overflow_infinity (TREE_TYPE (res))
2054 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2057 return res;
2061 /* Extract range information from a binary expression EXPR based on
2062 the ranges of each of its operands and the expression code. */
2064 static void
2065 extract_range_from_binary_expr (value_range_t *vr,
2066 enum tree_code code,
2067 tree expr_type, tree op0, tree op1)
2069 enum value_range_type type;
2070 tree min, max;
2071 int cmp;
2072 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2073 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2075 /* Not all binary expressions can be applied to ranges in a
2076 meaningful way. Handle only arithmetic operations. */
2077 if (code != PLUS_EXPR
2078 && code != MINUS_EXPR
2079 && code != POINTER_PLUS_EXPR
2080 && code != MULT_EXPR
2081 && code != TRUNC_DIV_EXPR
2082 && code != FLOOR_DIV_EXPR
2083 && code != CEIL_DIV_EXPR
2084 && code != EXACT_DIV_EXPR
2085 && code != ROUND_DIV_EXPR
2086 && code != TRUNC_MOD_EXPR
2087 && code != RSHIFT_EXPR
2088 && code != MIN_EXPR
2089 && code != MAX_EXPR
2090 && code != BIT_AND_EXPR
2091 && code != BIT_IOR_EXPR
2092 && code != TRUTH_AND_EXPR
2093 && code != TRUTH_OR_EXPR)
2095 /* We can still do constant propagation here. */
2096 tree const_op0 = op_with_constant_singleton_value_range (op0);
2097 tree const_op1 = op_with_constant_singleton_value_range (op1);
2098 if (const_op0 || const_op1)
2100 tree tem = fold_binary (code, expr_type,
2101 const_op0 ? const_op0 : op0,
2102 const_op1 ? const_op1 : op1);
2103 if (tem
2104 && is_gimple_min_invariant (tem)
2105 && !is_overflow_infinity (tem))
2107 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2108 return;
2111 set_value_range_to_varying (vr);
2112 return;
2115 /* Get value ranges for each operand. For constant operands, create
2116 a new value range with the operand to simplify processing. */
2117 if (TREE_CODE (op0) == SSA_NAME)
2118 vr0 = *(get_value_range (op0));
2119 else if (is_gimple_min_invariant (op0))
2120 set_value_range_to_value (&vr0, op0, NULL);
2121 else
2122 set_value_range_to_varying (&vr0);
2124 if (TREE_CODE (op1) == SSA_NAME)
2125 vr1 = *(get_value_range (op1));
2126 else if (is_gimple_min_invariant (op1))
2127 set_value_range_to_value (&vr1, op1, NULL);
2128 else
2129 set_value_range_to_varying (&vr1);
2131 /* If either range is UNDEFINED, so is the result. */
2132 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2134 set_value_range_to_undefined (vr);
2135 return;
2138 /* The type of the resulting value range defaults to VR0.TYPE. */
2139 type = vr0.type;
2141 /* Refuse to operate on VARYING ranges, ranges of different kinds
2142 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2143 because we may be able to derive a useful range even if one of
2144 the operands is VR_VARYING or symbolic range. Similarly for
2145 divisions. TODO, we may be able to derive anti-ranges in
2146 some cases. */
2147 if (code != BIT_AND_EXPR
2148 && code != TRUTH_AND_EXPR
2149 && code != TRUTH_OR_EXPR
2150 && code != TRUNC_DIV_EXPR
2151 && code != FLOOR_DIV_EXPR
2152 && code != CEIL_DIV_EXPR
2153 && code != EXACT_DIV_EXPR
2154 && code != ROUND_DIV_EXPR
2155 && code != TRUNC_MOD_EXPR
2156 && (vr0.type == VR_VARYING
2157 || vr1.type == VR_VARYING
2158 || vr0.type != vr1.type
2159 || symbolic_range_p (&vr0)
2160 || symbolic_range_p (&vr1)))
2162 set_value_range_to_varying (vr);
2163 return;
2166 /* Now evaluate the expression to determine the new range. */
2167 if (POINTER_TYPE_P (expr_type)
2168 || POINTER_TYPE_P (TREE_TYPE (op0))
2169 || POINTER_TYPE_P (TREE_TYPE (op1)))
2171 if (code == MIN_EXPR || code == MAX_EXPR)
2173 /* For MIN/MAX expressions with pointers, we only care about
2174 nullness, if both are non null, then the result is nonnull.
2175 If both are null, then the result is null. Otherwise they
2176 are varying. */
2177 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2178 set_value_range_to_nonnull (vr, expr_type);
2179 else if (range_is_null (&vr0) && range_is_null (&vr1))
2180 set_value_range_to_null (vr, expr_type);
2181 else
2182 set_value_range_to_varying (vr);
2184 return;
2186 gcc_assert (code == POINTER_PLUS_EXPR);
2187 /* For pointer types, we are really only interested in asserting
2188 whether the expression evaluates to non-NULL. */
2189 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2190 set_value_range_to_nonnull (vr, expr_type);
2191 else if (range_is_null (&vr0) && range_is_null (&vr1))
2192 set_value_range_to_null (vr, expr_type);
2193 else
2194 set_value_range_to_varying (vr);
2196 return;
2199 /* For integer ranges, apply the operation to each end of the
2200 range and see what we end up with. */
2201 if (code == TRUTH_AND_EXPR
2202 || code == TRUTH_OR_EXPR)
2204 /* If one of the operands is zero, we know that the whole
2205 expression evaluates zero. */
2206 if (code == TRUTH_AND_EXPR
2207 && ((vr0.type == VR_RANGE
2208 && integer_zerop (vr0.min)
2209 && integer_zerop (vr0.max))
2210 || (vr1.type == VR_RANGE
2211 && integer_zerop (vr1.min)
2212 && integer_zerop (vr1.max))))
2214 type = VR_RANGE;
2215 min = max = build_int_cst (expr_type, 0);
2217 /* If one of the operands is one, we know that the whole
2218 expression evaluates one. */
2219 else if (code == TRUTH_OR_EXPR
2220 && ((vr0.type == VR_RANGE
2221 && integer_onep (vr0.min)
2222 && integer_onep (vr0.max))
2223 || (vr1.type == VR_RANGE
2224 && integer_onep (vr1.min)
2225 && integer_onep (vr1.max))))
2227 type = VR_RANGE;
2228 min = max = build_int_cst (expr_type, 1);
2230 else if (vr0.type != VR_VARYING
2231 && vr1.type != VR_VARYING
2232 && vr0.type == vr1.type
2233 && !symbolic_range_p (&vr0)
2234 && !overflow_infinity_range_p (&vr0)
2235 && !symbolic_range_p (&vr1)
2236 && !overflow_infinity_range_p (&vr1))
2238 /* Boolean expressions cannot be folded with int_const_binop. */
2239 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2240 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2242 else
2244 /* The result of a TRUTH_*_EXPR is always true or false. */
2245 set_value_range_to_truthvalue (vr, expr_type);
2246 return;
2249 else if (code == PLUS_EXPR
2250 || code == MIN_EXPR
2251 || code == MAX_EXPR)
2253 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2254 VR_VARYING. It would take more effort to compute a precise
2255 range for such a case. For example, if we have op0 == 1 and
2256 op1 == -1 with their ranges both being ~[0,0], we would have
2257 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2258 Note that we are guaranteed to have vr0.type == vr1.type at
2259 this point. */
2260 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2262 set_value_range_to_varying (vr);
2263 return;
2266 /* For operations that make the resulting range directly
2267 proportional to the original ranges, apply the operation to
2268 the same end of each range. */
2269 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2270 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2272 /* If both additions overflowed the range kind is still correct.
2273 This happens regularly with subtracting something in unsigned
2274 arithmetic.
2275 ??? See PR30318 for all the cases we do not handle. */
2276 if (code == PLUS_EXPR
2277 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2278 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2280 min = build_int_cst_wide (TREE_TYPE (min),
2281 TREE_INT_CST_LOW (min),
2282 TREE_INT_CST_HIGH (min));
2283 max = build_int_cst_wide (TREE_TYPE (max),
2284 TREE_INT_CST_LOW (max),
2285 TREE_INT_CST_HIGH (max));
2288 else if (code == MULT_EXPR
2289 || code == TRUNC_DIV_EXPR
2290 || code == FLOOR_DIV_EXPR
2291 || code == CEIL_DIV_EXPR
2292 || code == EXACT_DIV_EXPR
2293 || code == ROUND_DIV_EXPR
2294 || code == RSHIFT_EXPR)
2296 tree val[4];
2297 size_t i;
2298 bool sop;
2300 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2301 drop to VR_VARYING. It would take more effort to compute a
2302 precise range for such a case. For example, if we have
2303 op0 == 65536 and op1 == 65536 with their ranges both being
2304 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2305 we cannot claim that the product is in ~[0,0]. Note that we
2306 are guaranteed to have vr0.type == vr1.type at this
2307 point. */
2308 if (code == MULT_EXPR
2309 && vr0.type == VR_ANTI_RANGE
2310 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2312 set_value_range_to_varying (vr);
2313 return;
2316 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2317 then drop to VR_VARYING. Outside of this range we get undefined
2318 behavior from the shift operation. We cannot even trust
2319 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2320 shifts, and the operation at the tree level may be widened. */
2321 if (code == RSHIFT_EXPR)
2323 if (vr1.type == VR_ANTI_RANGE
2324 || !vrp_expr_computes_nonnegative (op1, &sop)
2325 || (operand_less_p
2326 (build_int_cst (TREE_TYPE (vr1.max),
2327 TYPE_PRECISION (expr_type) - 1),
2328 vr1.max) != 0))
2330 set_value_range_to_varying (vr);
2331 return;
2335 else if ((code == TRUNC_DIV_EXPR
2336 || code == FLOOR_DIV_EXPR
2337 || code == CEIL_DIV_EXPR
2338 || code == EXACT_DIV_EXPR
2339 || code == ROUND_DIV_EXPR)
2340 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2342 /* For division, if op1 has VR_RANGE but op0 does not, something
2343 can be deduced just from that range. Say [min, max] / [4, max]
2344 gives [min / 4, max / 4] range. */
2345 if (vr1.type == VR_RANGE
2346 && !symbolic_range_p (&vr1)
2347 && !range_includes_zero_p (&vr1))
2349 vr0.type = type = VR_RANGE;
2350 vr0.min = vrp_val_min (TREE_TYPE (op0));
2351 vr0.max = vrp_val_max (TREE_TYPE (op1));
2353 else
2355 set_value_range_to_varying (vr);
2356 return;
2360 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2361 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2362 include 0. */
2363 if ((code == TRUNC_DIV_EXPR
2364 || code == FLOOR_DIV_EXPR
2365 || code == CEIL_DIV_EXPR
2366 || code == EXACT_DIV_EXPR
2367 || code == ROUND_DIV_EXPR)
2368 && vr0.type == VR_RANGE
2369 && (vr1.type != VR_RANGE
2370 || symbolic_range_p (&vr1)
2371 || range_includes_zero_p (&vr1)))
2373 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2374 int cmp;
2376 sop = false;
2377 min = NULL_TREE;
2378 max = NULL_TREE;
2379 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2381 /* For unsigned division or when divisor is known
2382 to be non-negative, the range has to cover
2383 all numbers from 0 to max for positive max
2384 and all numbers from min to 0 for negative min. */
2385 cmp = compare_values (vr0.max, zero);
2386 if (cmp == -1)
2387 max = zero;
2388 else if (cmp == 0 || cmp == 1)
2389 max = vr0.max;
2390 else
2391 type = VR_VARYING;
2392 cmp = compare_values (vr0.min, zero);
2393 if (cmp == 1)
2394 min = zero;
2395 else if (cmp == 0 || cmp == -1)
2396 min = vr0.min;
2397 else
2398 type = VR_VARYING;
2400 else
2402 /* Otherwise the range is -max .. max or min .. -min
2403 depending on which bound is bigger in absolute value,
2404 as the division can change the sign. */
2405 abs_extent_range (vr, vr0.min, vr0.max);
2406 return;
2408 if (type == VR_VARYING)
2410 set_value_range_to_varying (vr);
2411 return;
2415 /* Multiplications and divisions are a bit tricky to handle,
2416 depending on the mix of signs we have in the two ranges, we
2417 need to operate on different values to get the minimum and
2418 maximum values for the new range. One approach is to figure
2419 out all the variations of range combinations and do the
2420 operations.
2422 However, this involves several calls to compare_values and it
2423 is pretty convoluted. It's simpler to do the 4 operations
2424 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2425 MAX1) and then figure the smallest and largest values to form
2426 the new range. */
2427 else
2429 gcc_assert ((vr0.type == VR_RANGE
2430 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2431 && vr0.type == vr1.type);
2433 /* Compute the 4 cross operations. */
2434 sop = false;
2435 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2436 if (val[0] == NULL_TREE)
2437 sop = true;
2439 if (vr1.max == vr1.min)
2440 val[1] = NULL_TREE;
2441 else
2443 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2444 if (val[1] == NULL_TREE)
2445 sop = true;
2448 if (vr0.max == vr0.min)
2449 val[2] = NULL_TREE;
2450 else
2452 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2453 if (val[2] == NULL_TREE)
2454 sop = true;
2457 if (vr0.min == vr0.max || vr1.min == vr1.max)
2458 val[3] = NULL_TREE;
2459 else
2461 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2462 if (val[3] == NULL_TREE)
2463 sop = true;
2466 if (sop)
2468 set_value_range_to_varying (vr);
2469 return;
2472 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2473 of VAL[i]. */
2474 min = val[0];
2475 max = val[0];
2476 for (i = 1; i < 4; i++)
2478 if (!is_gimple_min_invariant (min)
2479 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2480 || !is_gimple_min_invariant (max)
2481 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2482 break;
2484 if (val[i])
2486 if (!is_gimple_min_invariant (val[i])
2487 || (TREE_OVERFLOW (val[i])
2488 && !is_overflow_infinity (val[i])))
2490 /* If we found an overflowed value, set MIN and MAX
2491 to it so that we set the resulting range to
2492 VARYING. */
2493 min = max = val[i];
2494 break;
2497 if (compare_values (val[i], min) == -1)
2498 min = val[i];
2500 if (compare_values (val[i], max) == 1)
2501 max = val[i];
2506 else if (code == TRUNC_MOD_EXPR)
2508 bool sop = false;
2509 if (vr1.type != VR_RANGE
2510 || symbolic_range_p (&vr1)
2511 || range_includes_zero_p (&vr1)
2512 || vrp_val_is_min (vr1.min))
2514 set_value_range_to_varying (vr);
2515 return;
2517 type = VR_RANGE;
2518 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2519 max = fold_unary_to_constant (ABS_EXPR, TREE_TYPE (vr1.min), vr1.min);
2520 if (tree_int_cst_lt (max, vr1.max))
2521 max = vr1.max;
2522 max = int_const_binop (MINUS_EXPR, max, integer_one_node, 0);
2523 /* If the dividend is non-negative the modulus will be
2524 non-negative as well. */
2525 if (TYPE_UNSIGNED (TREE_TYPE (max))
2526 || (vrp_expr_computes_nonnegative (op0, &sop) && !sop))
2527 min = build_int_cst (TREE_TYPE (max), 0);
2528 else
2529 min = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (max), max);
2531 else if (code == MINUS_EXPR)
2533 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2534 VR_VARYING. It would take more effort to compute a precise
2535 range for such a case. For example, if we have op0 == 1 and
2536 op1 == 1 with their ranges both being ~[0,0], we would have
2537 op0 - op1 == 0, so we cannot claim that the difference is in
2538 ~[0,0]. Note that we are guaranteed to have
2539 vr0.type == vr1.type at this point. */
2540 if (vr0.type == VR_ANTI_RANGE)
2542 set_value_range_to_varying (vr);
2543 return;
2546 /* For MINUS_EXPR, apply the operation to the opposite ends of
2547 each range. */
2548 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2549 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2551 else if (code == BIT_AND_EXPR)
2553 bool vr0_int_cst_singleton_p, vr1_int_cst_singleton_p;
2555 vr0_int_cst_singleton_p = range_int_cst_singleton_p (&vr0);
2556 vr1_int_cst_singleton_p = range_int_cst_singleton_p (&vr1);
2558 if (vr0_int_cst_singleton_p && vr1_int_cst_singleton_p)
2559 min = max = int_const_binop (code, vr0.max, vr1.max, 0);
2560 else if (vr0_int_cst_singleton_p
2561 && tree_int_cst_sgn (vr0.max) >= 0)
2563 min = build_int_cst (expr_type, 0);
2564 max = vr0.max;
2566 else if (vr1_int_cst_singleton_p
2567 && tree_int_cst_sgn (vr1.max) >= 0)
2569 type = VR_RANGE;
2570 min = build_int_cst (expr_type, 0);
2571 max = vr1.max;
2573 else
2575 set_value_range_to_varying (vr);
2576 return;
2579 else if (code == BIT_IOR_EXPR)
2581 if (range_int_cst_p (&vr0)
2582 && range_int_cst_p (&vr1)
2583 && tree_int_cst_sgn (vr0.min) >= 0
2584 && tree_int_cst_sgn (vr1.min) >= 0)
2586 double_int vr0_max = tree_to_double_int (vr0.max);
2587 double_int vr1_max = tree_to_double_int (vr1.max);
2588 double_int ior_max;
2590 /* Set all bits to the right of the most significant one to 1.
2591 For example, [0, 4] | [4, 4] = [4, 7]. */
2592 ior_max.low = vr0_max.low | vr1_max.low;
2593 ior_max.high = vr0_max.high | vr1_max.high;
2594 if (ior_max.high != 0)
2596 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2597 ior_max.high |= ((HOST_WIDE_INT) 1
2598 << floor_log2 (ior_max.high)) - 1;
2600 else if (ior_max.low != 0)
2601 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2602 << floor_log2 (ior_max.low)) - 1;
2604 /* Both of these endpoints are conservative. */
2605 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2606 max = double_int_to_tree (expr_type, ior_max);
2608 else
2610 set_value_range_to_varying (vr);
2611 return;
2614 else
2615 gcc_unreachable ();
2617 /* If either MIN or MAX overflowed, then set the resulting range to
2618 VARYING. But we do accept an overflow infinity
2619 representation. */
2620 if (min == NULL_TREE
2621 || !is_gimple_min_invariant (min)
2622 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2623 || max == NULL_TREE
2624 || !is_gimple_min_invariant (max)
2625 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2627 set_value_range_to_varying (vr);
2628 return;
2631 /* We punt if:
2632 1) [-INF, +INF]
2633 2) [-INF, +-INF(OVF)]
2634 3) [+-INF(OVF), +INF]
2635 4) [+-INF(OVF), +-INF(OVF)]
2636 We learn nothing when we have INF and INF(OVF) on both sides.
2637 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2638 overflow. */
2639 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2640 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2642 set_value_range_to_varying (vr);
2643 return;
2646 cmp = compare_values (min, max);
2647 if (cmp == -2 || cmp == 1)
2649 /* If the new range has its limits swapped around (MIN > MAX),
2650 then the operation caused one of them to wrap around, mark
2651 the new range VARYING. */
2652 set_value_range_to_varying (vr);
2654 else
2655 set_value_range (vr, type, min, max, NULL);
2659 /* Extract range information from a unary expression EXPR based on
2660 the range of its operand and the expression code. */
2662 static void
2663 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2664 tree type, tree op0)
2666 tree min, max;
2667 int cmp;
2668 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2670 /* Refuse to operate on certain unary expressions for which we
2671 cannot easily determine a resulting range. */
2672 if (code == FIX_TRUNC_EXPR
2673 || code == FLOAT_EXPR
2674 || code == BIT_NOT_EXPR
2675 || code == CONJ_EXPR)
2677 /* We can still do constant propagation here. */
2678 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2680 tree tem = fold_unary (code, type, op0);
2681 if (tem
2682 && is_gimple_min_invariant (tem)
2683 && !is_overflow_infinity (tem))
2685 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2686 return;
2689 set_value_range_to_varying (vr);
2690 return;
2693 /* Get value ranges for the operand. For constant operands, create
2694 a new value range with the operand to simplify processing. */
2695 if (TREE_CODE (op0) == SSA_NAME)
2696 vr0 = *(get_value_range (op0));
2697 else if (is_gimple_min_invariant (op0))
2698 set_value_range_to_value (&vr0, op0, NULL);
2699 else
2700 set_value_range_to_varying (&vr0);
2702 /* If VR0 is UNDEFINED, so is the result. */
2703 if (vr0.type == VR_UNDEFINED)
2705 set_value_range_to_undefined (vr);
2706 return;
2709 /* Refuse to operate on symbolic ranges, or if neither operand is
2710 a pointer or integral type. */
2711 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2712 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2713 || (vr0.type != VR_VARYING
2714 && symbolic_range_p (&vr0)))
2716 set_value_range_to_varying (vr);
2717 return;
2720 /* If the expression involves pointers, we are only interested in
2721 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2722 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2724 bool sop;
2726 sop = false;
2727 if (range_is_nonnull (&vr0)
2728 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2729 && !sop))
2730 set_value_range_to_nonnull (vr, type);
2731 else if (range_is_null (&vr0))
2732 set_value_range_to_null (vr, type);
2733 else
2734 set_value_range_to_varying (vr);
2736 return;
2739 /* Handle unary expressions on integer ranges. */
2740 if (CONVERT_EXPR_CODE_P (code)
2741 && INTEGRAL_TYPE_P (type)
2742 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2744 tree inner_type = TREE_TYPE (op0);
2745 tree outer_type = type;
2747 /* If VR0 is varying and we increase the type precision, assume
2748 a full range for the following transformation. */
2749 if (vr0.type == VR_VARYING
2750 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2752 vr0.type = VR_RANGE;
2753 vr0.min = TYPE_MIN_VALUE (inner_type);
2754 vr0.max = TYPE_MAX_VALUE (inner_type);
2757 /* If VR0 is a constant range or anti-range and the conversion is
2758 not truncating we can convert the min and max values and
2759 canonicalize the resulting range. Otherwise we can do the
2760 conversion if the size of the range is less than what the
2761 precision of the target type can represent and the range is
2762 not an anti-range. */
2763 if ((vr0.type == VR_RANGE
2764 || vr0.type == VR_ANTI_RANGE)
2765 && TREE_CODE (vr0.min) == INTEGER_CST
2766 && TREE_CODE (vr0.max) == INTEGER_CST
2767 && (!is_overflow_infinity (vr0.min)
2768 || (vr0.type == VR_RANGE
2769 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2770 && needs_overflow_infinity (outer_type)
2771 && supports_overflow_infinity (outer_type)))
2772 && (!is_overflow_infinity (vr0.max)
2773 || (vr0.type == VR_RANGE
2774 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2775 && needs_overflow_infinity (outer_type)
2776 && supports_overflow_infinity (outer_type)))
2777 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2778 || (vr0.type == VR_RANGE
2779 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2780 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2781 size_int (TYPE_PRECISION (outer_type)), 0)))))
2783 tree new_min, new_max;
2784 new_min = force_fit_type_double (outer_type,
2785 TREE_INT_CST_LOW (vr0.min),
2786 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2787 new_max = force_fit_type_double (outer_type,
2788 TREE_INT_CST_LOW (vr0.max),
2789 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2790 if (is_overflow_infinity (vr0.min))
2791 new_min = negative_overflow_infinity (outer_type);
2792 if (is_overflow_infinity (vr0.max))
2793 new_max = positive_overflow_infinity (outer_type);
2794 set_and_canonicalize_value_range (vr, vr0.type,
2795 new_min, new_max, NULL);
2796 return;
2799 set_value_range_to_varying (vr);
2800 return;
2803 /* Conversion of a VR_VARYING value to a wider type can result
2804 in a usable range. So wait until after we've handled conversions
2805 before dropping the result to VR_VARYING if we had a source
2806 operand that is VR_VARYING. */
2807 if (vr0.type == VR_VARYING)
2809 set_value_range_to_varying (vr);
2810 return;
2813 /* Apply the operation to each end of the range and see what we end
2814 up with. */
2815 if (code == NEGATE_EXPR
2816 && !TYPE_UNSIGNED (type))
2818 /* NEGATE_EXPR flips the range around. We need to treat
2819 TYPE_MIN_VALUE specially. */
2820 if (is_positive_overflow_infinity (vr0.max))
2821 min = negative_overflow_infinity (type);
2822 else if (is_negative_overflow_infinity (vr0.max))
2823 min = positive_overflow_infinity (type);
2824 else if (!vrp_val_is_min (vr0.max))
2825 min = fold_unary_to_constant (code, type, vr0.max);
2826 else if (needs_overflow_infinity (type))
2828 if (supports_overflow_infinity (type)
2829 && !is_overflow_infinity (vr0.min)
2830 && !vrp_val_is_min (vr0.min))
2831 min = positive_overflow_infinity (type);
2832 else
2834 set_value_range_to_varying (vr);
2835 return;
2838 else
2839 min = TYPE_MIN_VALUE (type);
2841 if (is_positive_overflow_infinity (vr0.min))
2842 max = negative_overflow_infinity (type);
2843 else if (is_negative_overflow_infinity (vr0.min))
2844 max = positive_overflow_infinity (type);
2845 else if (!vrp_val_is_min (vr0.min))
2846 max = fold_unary_to_constant (code, type, vr0.min);
2847 else if (needs_overflow_infinity (type))
2849 if (supports_overflow_infinity (type))
2850 max = positive_overflow_infinity (type);
2851 else
2853 set_value_range_to_varying (vr);
2854 return;
2857 else
2858 max = TYPE_MIN_VALUE (type);
2860 else if (code == NEGATE_EXPR
2861 && TYPE_UNSIGNED (type))
2863 if (!range_includes_zero_p (&vr0))
2865 max = fold_unary_to_constant (code, type, vr0.min);
2866 min = fold_unary_to_constant (code, type, vr0.max);
2868 else
2870 if (range_is_null (&vr0))
2871 set_value_range_to_null (vr, type);
2872 else
2873 set_value_range_to_varying (vr);
2874 return;
2877 else if (code == ABS_EXPR
2878 && !TYPE_UNSIGNED (type))
2880 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2881 useful range. */
2882 if (!TYPE_OVERFLOW_UNDEFINED (type)
2883 && ((vr0.type == VR_RANGE
2884 && vrp_val_is_min (vr0.min))
2885 || (vr0.type == VR_ANTI_RANGE
2886 && !vrp_val_is_min (vr0.min)
2887 && !range_includes_zero_p (&vr0))))
2889 set_value_range_to_varying (vr);
2890 return;
2893 /* ABS_EXPR may flip the range around, if the original range
2894 included negative values. */
2895 if (is_overflow_infinity (vr0.min))
2896 min = positive_overflow_infinity (type);
2897 else if (!vrp_val_is_min (vr0.min))
2898 min = fold_unary_to_constant (code, type, vr0.min);
2899 else if (!needs_overflow_infinity (type))
2900 min = TYPE_MAX_VALUE (type);
2901 else if (supports_overflow_infinity (type))
2902 min = positive_overflow_infinity (type);
2903 else
2905 set_value_range_to_varying (vr);
2906 return;
2909 if (is_overflow_infinity (vr0.max))
2910 max = positive_overflow_infinity (type);
2911 else if (!vrp_val_is_min (vr0.max))
2912 max = fold_unary_to_constant (code, type, vr0.max);
2913 else if (!needs_overflow_infinity (type))
2914 max = TYPE_MAX_VALUE (type);
2915 else if (supports_overflow_infinity (type)
2916 /* We shouldn't generate [+INF, +INF] as set_value_range
2917 doesn't like this and ICEs. */
2918 && !is_positive_overflow_infinity (min))
2919 max = positive_overflow_infinity (type);
2920 else
2922 set_value_range_to_varying (vr);
2923 return;
2926 cmp = compare_values (min, max);
2928 /* If a VR_ANTI_RANGEs contains zero, then we have
2929 ~[-INF, min(MIN, MAX)]. */
2930 if (vr0.type == VR_ANTI_RANGE)
2932 if (range_includes_zero_p (&vr0))
2934 /* Take the lower of the two values. */
2935 if (cmp != 1)
2936 max = min;
2938 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2939 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2940 flag_wrapv is set and the original anti-range doesn't include
2941 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2942 if (TYPE_OVERFLOW_WRAPS (type))
2944 tree type_min_value = TYPE_MIN_VALUE (type);
2946 min = (vr0.min != type_min_value
2947 ? int_const_binop (PLUS_EXPR, type_min_value,
2948 integer_one_node, 0)
2949 : type_min_value);
2951 else
2953 if (overflow_infinity_range_p (&vr0))
2954 min = negative_overflow_infinity (type);
2955 else
2956 min = TYPE_MIN_VALUE (type);
2959 else
2961 /* All else has failed, so create the range [0, INF], even for
2962 flag_wrapv since TYPE_MIN_VALUE is in the original
2963 anti-range. */
2964 vr0.type = VR_RANGE;
2965 min = build_int_cst (type, 0);
2966 if (needs_overflow_infinity (type))
2968 if (supports_overflow_infinity (type))
2969 max = positive_overflow_infinity (type);
2970 else
2972 set_value_range_to_varying (vr);
2973 return;
2976 else
2977 max = TYPE_MAX_VALUE (type);
2981 /* If the range contains zero then we know that the minimum value in the
2982 range will be zero. */
2983 else if (range_includes_zero_p (&vr0))
2985 if (cmp == 1)
2986 max = min;
2987 min = build_int_cst (type, 0);
2989 else
2991 /* If the range was reversed, swap MIN and MAX. */
2992 if (cmp == 1)
2994 tree t = min;
2995 min = max;
2996 max = t;
3000 else
3002 /* Otherwise, operate on each end of the range. */
3003 min = fold_unary_to_constant (code, type, vr0.min);
3004 max = fold_unary_to_constant (code, type, vr0.max);
3006 if (needs_overflow_infinity (type))
3008 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3010 /* If both sides have overflowed, we don't know
3011 anything. */
3012 if ((is_overflow_infinity (vr0.min)
3013 || TREE_OVERFLOW (min))
3014 && (is_overflow_infinity (vr0.max)
3015 || TREE_OVERFLOW (max)))
3017 set_value_range_to_varying (vr);
3018 return;
3021 if (is_overflow_infinity (vr0.min))
3022 min = vr0.min;
3023 else if (TREE_OVERFLOW (min))
3025 if (supports_overflow_infinity (type))
3026 min = (tree_int_cst_sgn (min) >= 0
3027 ? positive_overflow_infinity (TREE_TYPE (min))
3028 : negative_overflow_infinity (TREE_TYPE (min)));
3029 else
3031 set_value_range_to_varying (vr);
3032 return;
3036 if (is_overflow_infinity (vr0.max))
3037 max = vr0.max;
3038 else if (TREE_OVERFLOW (max))
3040 if (supports_overflow_infinity (type))
3041 max = (tree_int_cst_sgn (max) >= 0
3042 ? positive_overflow_infinity (TREE_TYPE (max))
3043 : negative_overflow_infinity (TREE_TYPE (max)));
3044 else
3046 set_value_range_to_varying (vr);
3047 return;
3053 cmp = compare_values (min, max);
3054 if (cmp == -2 || cmp == 1)
3056 /* If the new range has its limits swapped around (MIN > MAX),
3057 then the operation caused one of them to wrap around, mark
3058 the new range VARYING. */
3059 set_value_range_to_varying (vr);
3061 else
3062 set_value_range (vr, vr0.type, min, max, NULL);
3066 /* Extract range information from a conditional expression EXPR based on
3067 the ranges of each of its operands and the expression code. */
3069 static void
3070 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3072 tree op0, op1;
3073 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3074 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3076 /* Get value ranges for each operand. For constant operands, create
3077 a new value range with the operand to simplify processing. */
3078 op0 = COND_EXPR_THEN (expr);
3079 if (TREE_CODE (op0) == SSA_NAME)
3080 vr0 = *(get_value_range (op0));
3081 else if (is_gimple_min_invariant (op0))
3082 set_value_range_to_value (&vr0, op0, NULL);
3083 else
3084 set_value_range_to_varying (&vr0);
3086 op1 = COND_EXPR_ELSE (expr);
3087 if (TREE_CODE (op1) == SSA_NAME)
3088 vr1 = *(get_value_range (op1));
3089 else if (is_gimple_min_invariant (op1))
3090 set_value_range_to_value (&vr1, op1, NULL);
3091 else
3092 set_value_range_to_varying (&vr1);
3094 /* The resulting value range is the union of the operand ranges */
3095 vrp_meet (&vr0, &vr1);
3096 copy_value_range (vr, &vr0);
3100 /* Extract range information from a comparison expression EXPR based
3101 on the range of its operand and the expression code. */
3103 static void
3104 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3105 tree type, tree op0, tree op1)
3107 bool sop = false;
3108 tree val;
3110 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3111 NULL);
3113 /* A disadvantage of using a special infinity as an overflow
3114 representation is that we lose the ability to record overflow
3115 when we don't have an infinity. So we have to ignore a result
3116 which relies on overflow. */
3118 if (val && !is_overflow_infinity (val) && !sop)
3120 /* Since this expression was found on the RHS of an assignment,
3121 its type may be different from _Bool. Convert VAL to EXPR's
3122 type. */
3123 val = fold_convert (type, val);
3124 if (is_gimple_min_invariant (val))
3125 set_value_range_to_value (vr, val, vr->equiv);
3126 else
3127 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3129 else
3130 /* The result of a comparison is always true or false. */
3131 set_value_range_to_truthvalue (vr, type);
3134 /* Try to derive a nonnegative or nonzero range out of STMT relying
3135 primarily on generic routines in fold in conjunction with range data.
3136 Store the result in *VR */
3138 static void
3139 extract_range_basic (value_range_t *vr, gimple stmt)
3141 bool sop = false;
3142 tree type = gimple_expr_type (stmt);
3144 if (INTEGRAL_TYPE_P (type)
3145 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3146 set_value_range_to_nonnegative (vr, type,
3147 sop || stmt_overflow_infinity (stmt));
3148 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3149 && !sop)
3150 set_value_range_to_nonnull (vr, type);
3151 else
3152 set_value_range_to_varying (vr);
3156 /* Try to compute a useful range out of assignment STMT and store it
3157 in *VR. */
3159 static void
3160 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3162 enum tree_code code = gimple_assign_rhs_code (stmt);
3164 if (code == ASSERT_EXPR)
3165 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3166 else if (code == SSA_NAME)
3167 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3168 else if (TREE_CODE_CLASS (code) == tcc_binary
3169 || code == TRUTH_AND_EXPR
3170 || code == TRUTH_OR_EXPR
3171 || code == TRUTH_XOR_EXPR)
3172 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3173 gimple_expr_type (stmt),
3174 gimple_assign_rhs1 (stmt),
3175 gimple_assign_rhs2 (stmt));
3176 else if (TREE_CODE_CLASS (code) == tcc_unary)
3177 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3178 gimple_expr_type (stmt),
3179 gimple_assign_rhs1 (stmt));
3180 else if (code == COND_EXPR)
3181 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3182 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3183 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3184 gimple_expr_type (stmt),
3185 gimple_assign_rhs1 (stmt),
3186 gimple_assign_rhs2 (stmt));
3187 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3188 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3189 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3190 else
3191 set_value_range_to_varying (vr);
3193 if (vr->type == VR_VARYING)
3194 extract_range_basic (vr, stmt);
3197 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3198 would be profitable to adjust VR using scalar evolution information
3199 for VAR. If so, update VR with the new limits. */
3201 static void
3202 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3203 gimple stmt, tree var)
3205 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3206 enum ev_direction dir;
3208 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3209 better opportunities than a regular range, but I'm not sure. */
3210 if (vr->type == VR_ANTI_RANGE)
3211 return;
3213 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3215 /* Like in PR19590, scev can return a constant function. */
3216 if (is_gimple_min_invariant (chrec))
3218 set_value_range_to_value (vr, chrec, vr->equiv);
3219 return;
3222 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3223 return;
3225 init = initial_condition_in_loop_num (chrec, loop->num);
3226 tem = op_with_constant_singleton_value_range (init);
3227 if (tem)
3228 init = tem;
3229 step = evolution_part_in_loop_num (chrec, loop->num);
3230 tem = op_with_constant_singleton_value_range (step);
3231 if (tem)
3232 step = tem;
3234 /* If STEP is symbolic, we can't know whether INIT will be the
3235 minimum or maximum value in the range. Also, unless INIT is
3236 a simple expression, compare_values and possibly other functions
3237 in tree-vrp won't be able to handle it. */
3238 if (step == NULL_TREE
3239 || !is_gimple_min_invariant (step)
3240 || !valid_value_p (init))
3241 return;
3243 dir = scev_direction (chrec);
3244 if (/* Do not adjust ranges if we do not know whether the iv increases
3245 or decreases, ... */
3246 dir == EV_DIR_UNKNOWN
3247 /* ... or if it may wrap. */
3248 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3249 true))
3250 return;
3252 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3253 negative_overflow_infinity and positive_overflow_infinity,
3254 because we have concluded that the loop probably does not
3255 wrap. */
3257 type = TREE_TYPE (var);
3258 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3259 tmin = lower_bound_in_type (type, type);
3260 else
3261 tmin = TYPE_MIN_VALUE (type);
3262 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3263 tmax = upper_bound_in_type (type, type);
3264 else
3265 tmax = TYPE_MAX_VALUE (type);
3267 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3269 min = tmin;
3270 max = tmax;
3272 /* For VARYING or UNDEFINED ranges, just about anything we get
3273 from scalar evolutions should be better. */
3275 if (dir == EV_DIR_DECREASES)
3276 max = init;
3277 else
3278 min = init;
3280 /* If we would create an invalid range, then just assume we
3281 know absolutely nothing. This may be over-conservative,
3282 but it's clearly safe, and should happen only in unreachable
3283 parts of code, or for invalid programs. */
3284 if (compare_values (min, max) == 1)
3285 return;
3287 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3289 else if (vr->type == VR_RANGE)
3291 min = vr->min;
3292 max = vr->max;
3294 if (dir == EV_DIR_DECREASES)
3296 /* INIT is the maximum value. If INIT is lower than VR->MAX
3297 but no smaller than VR->MIN, set VR->MAX to INIT. */
3298 if (compare_values (init, max) == -1)
3300 max = init;
3302 /* If we just created an invalid range with the minimum
3303 greater than the maximum, we fail conservatively.
3304 This should happen only in unreachable
3305 parts of code, or for invalid programs. */
3306 if (compare_values (min, max) == 1)
3307 return;
3310 /* According to the loop information, the variable does not
3311 overflow. If we think it does, probably because of an
3312 overflow due to arithmetic on a different INF value,
3313 reset now. */
3314 if (is_negative_overflow_infinity (min))
3315 min = tmin;
3317 else
3319 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3320 if (compare_values (init, min) == 1)
3322 min = init;
3324 /* Again, avoid creating invalid range by failing. */
3325 if (compare_values (min, max) == 1)
3326 return;
3329 if (is_positive_overflow_infinity (max))
3330 max = tmax;
3333 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3337 /* Return true if VAR may overflow at STMT. This checks any available
3338 loop information to see if we can determine that VAR does not
3339 overflow. */
3341 static bool
3342 vrp_var_may_overflow (tree var, gimple stmt)
3344 struct loop *l;
3345 tree chrec, init, step;
3347 if (current_loops == NULL)
3348 return true;
3350 l = loop_containing_stmt (stmt);
3351 if (l == NULL
3352 || !loop_outer (l))
3353 return true;
3355 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3356 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3357 return true;
3359 init = initial_condition_in_loop_num (chrec, l->num);
3360 step = evolution_part_in_loop_num (chrec, l->num);
3362 if (step == NULL_TREE
3363 || !is_gimple_min_invariant (step)
3364 || !valid_value_p (init))
3365 return true;
3367 /* If we get here, we know something useful about VAR based on the
3368 loop information. If it wraps, it may overflow. */
3370 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3371 true))
3372 return true;
3374 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3376 print_generic_expr (dump_file, var, 0);
3377 fprintf (dump_file, ": loop information indicates does not overflow\n");
3380 return false;
3384 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3386 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3387 all the values in the ranges.
3389 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3391 - Return NULL_TREE if it is not always possible to determine the
3392 value of the comparison.
3394 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3395 overflow infinity was used in the test. */
3398 static tree
3399 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3400 bool *strict_overflow_p)
3402 /* VARYING or UNDEFINED ranges cannot be compared. */
3403 if (vr0->type == VR_VARYING
3404 || vr0->type == VR_UNDEFINED
3405 || vr1->type == VR_VARYING
3406 || vr1->type == VR_UNDEFINED)
3407 return NULL_TREE;
3409 /* Anti-ranges need to be handled separately. */
3410 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3412 /* If both are anti-ranges, then we cannot compute any
3413 comparison. */
3414 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3415 return NULL_TREE;
3417 /* These comparisons are never statically computable. */
3418 if (comp == GT_EXPR
3419 || comp == GE_EXPR
3420 || comp == LT_EXPR
3421 || comp == LE_EXPR)
3422 return NULL_TREE;
3424 /* Equality can be computed only between a range and an
3425 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3426 if (vr0->type == VR_RANGE)
3428 /* To simplify processing, make VR0 the anti-range. */
3429 value_range_t *tmp = vr0;
3430 vr0 = vr1;
3431 vr1 = tmp;
3434 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3436 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3437 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3438 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3440 return NULL_TREE;
3443 if (!usable_range_p (vr0, strict_overflow_p)
3444 || !usable_range_p (vr1, strict_overflow_p))
3445 return NULL_TREE;
3447 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3448 operands around and change the comparison code. */
3449 if (comp == GT_EXPR || comp == GE_EXPR)
3451 value_range_t *tmp;
3452 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3453 tmp = vr0;
3454 vr0 = vr1;
3455 vr1 = tmp;
3458 if (comp == EQ_EXPR)
3460 /* Equality may only be computed if both ranges represent
3461 exactly one value. */
3462 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3463 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3465 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3466 strict_overflow_p);
3467 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3468 strict_overflow_p);
3469 if (cmp_min == 0 && cmp_max == 0)
3470 return boolean_true_node;
3471 else if (cmp_min != -2 && cmp_max != -2)
3472 return boolean_false_node;
3474 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3475 else if (compare_values_warnv (vr0->min, vr1->max,
3476 strict_overflow_p) == 1
3477 || compare_values_warnv (vr1->min, vr0->max,
3478 strict_overflow_p) == 1)
3479 return boolean_false_node;
3481 return NULL_TREE;
3483 else if (comp == NE_EXPR)
3485 int cmp1, cmp2;
3487 /* If VR0 is completely to the left or completely to the right
3488 of VR1, they are always different. Notice that we need to
3489 make sure that both comparisons yield similar results to
3490 avoid comparing values that cannot be compared at
3491 compile-time. */
3492 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3493 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3494 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3495 return boolean_true_node;
3497 /* If VR0 and VR1 represent a single value and are identical,
3498 return false. */
3499 else if (compare_values_warnv (vr0->min, vr0->max,
3500 strict_overflow_p) == 0
3501 && compare_values_warnv (vr1->min, vr1->max,
3502 strict_overflow_p) == 0
3503 && compare_values_warnv (vr0->min, vr1->min,
3504 strict_overflow_p) == 0
3505 && compare_values_warnv (vr0->max, vr1->max,
3506 strict_overflow_p) == 0)
3507 return boolean_false_node;
3509 /* Otherwise, they may or may not be different. */
3510 else
3511 return NULL_TREE;
3513 else if (comp == LT_EXPR || comp == LE_EXPR)
3515 int tst;
3517 /* If VR0 is to the left of VR1, return true. */
3518 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3519 if ((comp == LT_EXPR && tst == -1)
3520 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3522 if (overflow_infinity_range_p (vr0)
3523 || overflow_infinity_range_p (vr1))
3524 *strict_overflow_p = true;
3525 return boolean_true_node;
3528 /* If VR0 is to the right of VR1, return false. */
3529 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3530 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3531 || (comp == LE_EXPR && tst == 1))
3533 if (overflow_infinity_range_p (vr0)
3534 || overflow_infinity_range_p (vr1))
3535 *strict_overflow_p = true;
3536 return boolean_false_node;
3539 /* Otherwise, we don't know. */
3540 return NULL_TREE;
3543 gcc_unreachable ();
3547 /* Given a value range VR, a value VAL and a comparison code COMP, return
3548 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3549 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3550 always returns false. Return NULL_TREE if it is not always
3551 possible to determine the value of the comparison. Also set
3552 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3553 infinity was used in the test. */
3555 static tree
3556 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3557 bool *strict_overflow_p)
3559 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3560 return NULL_TREE;
3562 /* Anti-ranges need to be handled separately. */
3563 if (vr->type == VR_ANTI_RANGE)
3565 /* For anti-ranges, the only predicates that we can compute at
3566 compile time are equality and inequality. */
3567 if (comp == GT_EXPR
3568 || comp == GE_EXPR
3569 || comp == LT_EXPR
3570 || comp == LE_EXPR)
3571 return NULL_TREE;
3573 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3574 if (value_inside_range (val, vr) == 1)
3575 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3577 return NULL_TREE;
3580 if (!usable_range_p (vr, strict_overflow_p))
3581 return NULL_TREE;
3583 if (comp == EQ_EXPR)
3585 /* EQ_EXPR may only be computed if VR represents exactly
3586 one value. */
3587 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3589 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3590 if (cmp == 0)
3591 return boolean_true_node;
3592 else if (cmp == -1 || cmp == 1 || cmp == 2)
3593 return boolean_false_node;
3595 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3596 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3597 return boolean_false_node;
3599 return NULL_TREE;
3601 else if (comp == NE_EXPR)
3603 /* If VAL is not inside VR, then they are always different. */
3604 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3605 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3606 return boolean_true_node;
3608 /* If VR represents exactly one value equal to VAL, then return
3609 false. */
3610 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3611 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3612 return boolean_false_node;
3614 /* Otherwise, they may or may not be different. */
3615 return NULL_TREE;
3617 else if (comp == LT_EXPR || comp == LE_EXPR)
3619 int tst;
3621 /* If VR is to the left of VAL, return true. */
3622 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3623 if ((comp == LT_EXPR && tst == -1)
3624 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3626 if (overflow_infinity_range_p (vr))
3627 *strict_overflow_p = true;
3628 return boolean_true_node;
3631 /* If VR is to the right of VAL, return false. */
3632 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3633 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3634 || (comp == LE_EXPR && tst == 1))
3636 if (overflow_infinity_range_p (vr))
3637 *strict_overflow_p = true;
3638 return boolean_false_node;
3641 /* Otherwise, we don't know. */
3642 return NULL_TREE;
3644 else if (comp == GT_EXPR || comp == GE_EXPR)
3646 int tst;
3648 /* If VR is to the right of VAL, return true. */
3649 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3650 if ((comp == GT_EXPR && tst == 1)
3651 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3653 if (overflow_infinity_range_p (vr))
3654 *strict_overflow_p = true;
3655 return boolean_true_node;
3658 /* If VR is to the left of VAL, return false. */
3659 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3660 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3661 || (comp == GE_EXPR && tst == -1))
3663 if (overflow_infinity_range_p (vr))
3664 *strict_overflow_p = true;
3665 return boolean_false_node;
3668 /* Otherwise, we don't know. */
3669 return NULL_TREE;
3672 gcc_unreachable ();
3676 /* Debugging dumps. */
3678 void dump_value_range (FILE *, value_range_t *);
3679 void debug_value_range (value_range_t *);
3680 void dump_all_value_ranges (FILE *);
3681 void debug_all_value_ranges (void);
3682 void dump_vr_equiv (FILE *, bitmap);
3683 void debug_vr_equiv (bitmap);
3686 /* Dump value range VR to FILE. */
3688 void
3689 dump_value_range (FILE *file, value_range_t *vr)
3691 if (vr == NULL)
3692 fprintf (file, "[]");
3693 else if (vr->type == VR_UNDEFINED)
3694 fprintf (file, "UNDEFINED");
3695 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3697 tree type = TREE_TYPE (vr->min);
3699 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3701 if (is_negative_overflow_infinity (vr->min))
3702 fprintf (file, "-INF(OVF)");
3703 else if (INTEGRAL_TYPE_P (type)
3704 && !TYPE_UNSIGNED (type)
3705 && vrp_val_is_min (vr->min))
3706 fprintf (file, "-INF");
3707 else
3708 print_generic_expr (file, vr->min, 0);
3710 fprintf (file, ", ");
3712 if (is_positive_overflow_infinity (vr->max))
3713 fprintf (file, "+INF(OVF)");
3714 else if (INTEGRAL_TYPE_P (type)
3715 && vrp_val_is_max (vr->max))
3716 fprintf (file, "+INF");
3717 else
3718 print_generic_expr (file, vr->max, 0);
3720 fprintf (file, "]");
3722 if (vr->equiv)
3724 bitmap_iterator bi;
3725 unsigned i, c = 0;
3727 fprintf (file, " EQUIVALENCES: { ");
3729 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3731 print_generic_expr (file, ssa_name (i), 0);
3732 fprintf (file, " ");
3733 c++;
3736 fprintf (file, "} (%u elements)", c);
3739 else if (vr->type == VR_VARYING)
3740 fprintf (file, "VARYING");
3741 else
3742 fprintf (file, "INVALID RANGE");
3746 /* Dump value range VR to stderr. */
3748 void
3749 debug_value_range (value_range_t *vr)
3751 dump_value_range (stderr, vr);
3752 fprintf (stderr, "\n");
3756 /* Dump value ranges of all SSA_NAMEs to FILE. */
3758 void
3759 dump_all_value_ranges (FILE *file)
3761 size_t i;
3763 for (i = 0; i < num_ssa_names; i++)
3765 if (vr_value[i])
3767 print_generic_expr (file, ssa_name (i), 0);
3768 fprintf (file, ": ");
3769 dump_value_range (file, vr_value[i]);
3770 fprintf (file, "\n");
3774 fprintf (file, "\n");
3778 /* Dump all value ranges to stderr. */
3780 void
3781 debug_all_value_ranges (void)
3783 dump_all_value_ranges (stderr);
3787 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3788 create a new SSA name N and return the assertion assignment
3789 'V = ASSERT_EXPR <V, V OP W>'. */
3791 static gimple
3792 build_assert_expr_for (tree cond, tree v)
3794 tree n;
3795 gimple assertion;
3797 gcc_assert (TREE_CODE (v) == SSA_NAME);
3798 n = duplicate_ssa_name (v, NULL);
3800 if (COMPARISON_CLASS_P (cond))
3802 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3803 assertion = gimple_build_assign (n, a);
3805 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3807 /* Given !V, build the assignment N = false. */
3808 tree op0 = TREE_OPERAND (cond, 0);
3809 gcc_assert (op0 == v);
3810 assertion = gimple_build_assign (n, boolean_false_node);
3812 else if (TREE_CODE (cond) == SSA_NAME)
3814 /* Given V, build the assignment N = true. */
3815 gcc_assert (v == cond);
3816 assertion = gimple_build_assign (n, boolean_true_node);
3818 else
3819 gcc_unreachable ();
3821 SSA_NAME_DEF_STMT (n) = assertion;
3823 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3824 operand of the ASSERT_EXPR. Register the new name and the old one
3825 in the replacement table so that we can fix the SSA web after
3826 adding all the ASSERT_EXPRs. */
3827 register_new_name_mapping (n, v);
3829 return assertion;
3833 /* Return false if EXPR is a predicate expression involving floating
3834 point values. */
3836 static inline bool
3837 fp_predicate (gimple stmt)
3839 GIMPLE_CHECK (stmt, GIMPLE_COND);
3841 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3845 /* If the range of values taken by OP can be inferred after STMT executes,
3846 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3847 describes the inferred range. Return true if a range could be
3848 inferred. */
3850 static bool
3851 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3853 *val_p = NULL_TREE;
3854 *comp_code_p = ERROR_MARK;
3856 /* Do not attempt to infer anything in names that flow through
3857 abnormal edges. */
3858 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3859 return false;
3861 /* Similarly, don't infer anything from statements that may throw
3862 exceptions. */
3863 if (stmt_could_throw_p (stmt))
3864 return false;
3866 /* If STMT is the last statement of a basic block with no
3867 successors, there is no point inferring anything about any of its
3868 operands. We would not be able to find a proper insertion point
3869 for the assertion, anyway. */
3870 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3871 return false;
3873 /* We can only assume that a pointer dereference will yield
3874 non-NULL if -fdelete-null-pointer-checks is enabled. */
3875 if (flag_delete_null_pointer_checks
3876 && POINTER_TYPE_P (TREE_TYPE (op))
3877 && gimple_code (stmt) != GIMPLE_ASM)
3879 unsigned num_uses, num_loads, num_stores;
3881 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3882 if (num_loads + num_stores > 0)
3884 *val_p = build_int_cst (TREE_TYPE (op), 0);
3885 *comp_code_p = NE_EXPR;
3886 return true;
3890 return false;
3894 void dump_asserts_for (FILE *, tree);
3895 void debug_asserts_for (tree);
3896 void dump_all_asserts (FILE *);
3897 void debug_all_asserts (void);
3899 /* Dump all the registered assertions for NAME to FILE. */
3901 void
3902 dump_asserts_for (FILE *file, tree name)
3904 assert_locus_t loc;
3906 fprintf (file, "Assertions to be inserted for ");
3907 print_generic_expr (file, name, 0);
3908 fprintf (file, "\n");
3910 loc = asserts_for[SSA_NAME_VERSION (name)];
3911 while (loc)
3913 fprintf (file, "\t");
3914 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3915 fprintf (file, "\n\tBB #%d", loc->bb->index);
3916 if (loc->e)
3918 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3919 loc->e->dest->index);
3920 dump_edge_info (file, loc->e, 0);
3922 fprintf (file, "\n\tPREDICATE: ");
3923 print_generic_expr (file, name, 0);
3924 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3925 print_generic_expr (file, loc->val, 0);
3926 fprintf (file, "\n\n");
3927 loc = loc->next;
3930 fprintf (file, "\n");
3934 /* Dump all the registered assertions for NAME to stderr. */
3936 void
3937 debug_asserts_for (tree name)
3939 dump_asserts_for (stderr, name);
3943 /* Dump all the registered assertions for all the names to FILE. */
3945 void
3946 dump_all_asserts (FILE *file)
3948 unsigned i;
3949 bitmap_iterator bi;
3951 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3952 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3953 dump_asserts_for (file, ssa_name (i));
3954 fprintf (file, "\n");
3958 /* Dump all the registered assertions for all the names to stderr. */
3960 void
3961 debug_all_asserts (void)
3963 dump_all_asserts (stderr);
3967 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3968 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3969 E->DEST, then register this location as a possible insertion point
3970 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3972 BB, E and SI provide the exact insertion point for the new
3973 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3974 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3975 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3976 must not be NULL. */
3978 static void
3979 register_new_assert_for (tree name, tree expr,
3980 enum tree_code comp_code,
3981 tree val,
3982 basic_block bb,
3983 edge e,
3984 gimple_stmt_iterator si)
3986 assert_locus_t n, loc, last_loc;
3987 basic_block dest_bb;
3989 #if defined ENABLE_CHECKING
3990 gcc_assert (bb == NULL || e == NULL);
3992 if (e == NULL)
3993 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3994 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3995 #endif
3997 /* Never build an assert comparing against an integer constant with
3998 TREE_OVERFLOW set. This confuses our undefined overflow warning
3999 machinery. */
4000 if (TREE_CODE (val) == INTEGER_CST
4001 && TREE_OVERFLOW (val))
4002 val = build_int_cst_wide (TREE_TYPE (val),
4003 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4005 /* The new assertion A will be inserted at BB or E. We need to
4006 determine if the new location is dominated by a previously
4007 registered location for A. If we are doing an edge insertion,
4008 assume that A will be inserted at E->DEST. Note that this is not
4009 necessarily true.
4011 If E is a critical edge, it will be split. But even if E is
4012 split, the new block will dominate the same set of blocks that
4013 E->DEST dominates.
4015 The reverse, however, is not true, blocks dominated by E->DEST
4016 will not be dominated by the new block created to split E. So,
4017 if the insertion location is on a critical edge, we will not use
4018 the new location to move another assertion previously registered
4019 at a block dominated by E->DEST. */
4020 dest_bb = (bb) ? bb : e->dest;
4022 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4023 VAL at a block dominating DEST_BB, then we don't need to insert a new
4024 one. Similarly, if the same assertion already exists at a block
4025 dominated by DEST_BB and the new location is not on a critical
4026 edge, then update the existing location for the assertion (i.e.,
4027 move the assertion up in the dominance tree).
4029 Note, this is implemented as a simple linked list because there
4030 should not be more than a handful of assertions registered per
4031 name. If this becomes a performance problem, a table hashed by
4032 COMP_CODE and VAL could be implemented. */
4033 loc = asserts_for[SSA_NAME_VERSION (name)];
4034 last_loc = loc;
4035 while (loc)
4037 if (loc->comp_code == comp_code
4038 && (loc->val == val
4039 || operand_equal_p (loc->val, val, 0))
4040 && (loc->expr == expr
4041 || operand_equal_p (loc->expr, expr, 0)))
4043 /* If the assertion NAME COMP_CODE VAL has already been
4044 registered at a basic block that dominates DEST_BB, then
4045 we don't need to insert the same assertion again. Note
4046 that we don't check strict dominance here to avoid
4047 replicating the same assertion inside the same basic
4048 block more than once (e.g., when a pointer is
4049 dereferenced several times inside a block).
4051 An exception to this rule are edge insertions. If the
4052 new assertion is to be inserted on edge E, then it will
4053 dominate all the other insertions that we may want to
4054 insert in DEST_BB. So, if we are doing an edge
4055 insertion, don't do this dominance check. */
4056 if (e == NULL
4057 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4058 return;
4060 /* Otherwise, if E is not a critical edge and DEST_BB
4061 dominates the existing location for the assertion, move
4062 the assertion up in the dominance tree by updating its
4063 location information. */
4064 if ((e == NULL || !EDGE_CRITICAL_P (e))
4065 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4067 loc->bb = dest_bb;
4068 loc->e = e;
4069 loc->si = si;
4070 return;
4074 /* Update the last node of the list and move to the next one. */
4075 last_loc = loc;
4076 loc = loc->next;
4079 /* If we didn't find an assertion already registered for
4080 NAME COMP_CODE VAL, add a new one at the end of the list of
4081 assertions associated with NAME. */
4082 n = XNEW (struct assert_locus_d);
4083 n->bb = dest_bb;
4084 n->e = e;
4085 n->si = si;
4086 n->comp_code = comp_code;
4087 n->val = val;
4088 n->expr = expr;
4089 n->next = NULL;
4091 if (last_loc)
4092 last_loc->next = n;
4093 else
4094 asserts_for[SSA_NAME_VERSION (name)] = n;
4096 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4099 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4100 Extract a suitable test code and value and store them into *CODE_P and
4101 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4103 If no extraction was possible, return FALSE, otherwise return TRUE.
4105 If INVERT is true, then we invert the result stored into *CODE_P. */
4107 static bool
4108 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4109 tree cond_op0, tree cond_op1,
4110 bool invert, enum tree_code *code_p,
4111 tree *val_p)
4113 enum tree_code comp_code;
4114 tree val;
4116 /* Otherwise, we have a comparison of the form NAME COMP VAL
4117 or VAL COMP NAME. */
4118 if (name == cond_op1)
4120 /* If the predicate is of the form VAL COMP NAME, flip
4121 COMP around because we need to register NAME as the
4122 first operand in the predicate. */
4123 comp_code = swap_tree_comparison (cond_code);
4124 val = cond_op0;
4126 else
4128 /* The comparison is of the form NAME COMP VAL, so the
4129 comparison code remains unchanged. */
4130 comp_code = cond_code;
4131 val = cond_op1;
4134 /* Invert the comparison code as necessary. */
4135 if (invert)
4136 comp_code = invert_tree_comparison (comp_code, 0);
4138 /* VRP does not handle float types. */
4139 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4140 return false;
4142 /* Do not register always-false predicates.
4143 FIXME: this works around a limitation in fold() when dealing with
4144 enumerations. Given 'enum { N1, N2 } x;', fold will not
4145 fold 'if (x > N2)' to 'if (0)'. */
4146 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4147 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4149 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4150 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4152 if (comp_code == GT_EXPR
4153 && (!max
4154 || compare_values (val, max) == 0))
4155 return false;
4157 if (comp_code == LT_EXPR
4158 && (!min
4159 || compare_values (val, min) == 0))
4160 return false;
4162 *code_p = comp_code;
4163 *val_p = val;
4164 return true;
4167 /* Try to register an edge assertion for SSA name NAME on edge E for
4168 the condition COND contributing to the conditional jump pointed to by BSI.
4169 Invert the condition COND if INVERT is true.
4170 Return true if an assertion for NAME could be registered. */
4172 static bool
4173 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4174 enum tree_code cond_code,
4175 tree cond_op0, tree cond_op1, bool invert)
4177 tree val;
4178 enum tree_code comp_code;
4179 bool retval = false;
4181 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4182 cond_op0,
4183 cond_op1,
4184 invert, &comp_code, &val))
4185 return false;
4187 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4188 reachable from E. */
4189 if (live_on_edge (e, name)
4190 && !has_single_use (name))
4192 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4193 retval = true;
4196 /* In the case of NAME <= CST and NAME being defined as
4197 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4198 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4199 This catches range and anti-range tests. */
4200 if ((comp_code == LE_EXPR
4201 || comp_code == GT_EXPR)
4202 && TREE_CODE (val) == INTEGER_CST
4203 && TYPE_UNSIGNED (TREE_TYPE (val)))
4205 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4206 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4208 /* Extract CST2 from the (optional) addition. */
4209 if (is_gimple_assign (def_stmt)
4210 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4212 name2 = gimple_assign_rhs1 (def_stmt);
4213 cst2 = gimple_assign_rhs2 (def_stmt);
4214 if (TREE_CODE (name2) == SSA_NAME
4215 && TREE_CODE (cst2) == INTEGER_CST)
4216 def_stmt = SSA_NAME_DEF_STMT (name2);
4219 /* Extract NAME2 from the (optional) sign-changing cast. */
4220 if (gimple_assign_cast_p (def_stmt))
4222 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4223 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4224 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4225 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4226 name3 = gimple_assign_rhs1 (def_stmt);
4229 /* If name3 is used later, create an ASSERT_EXPR for it. */
4230 if (name3 != NULL_TREE
4231 && TREE_CODE (name3) == SSA_NAME
4232 && (cst2 == NULL_TREE
4233 || TREE_CODE (cst2) == INTEGER_CST)
4234 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4235 && live_on_edge (e, name3)
4236 && !has_single_use (name3))
4238 tree tmp;
4240 /* Build an expression for the range test. */
4241 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4242 if (cst2 != NULL_TREE)
4243 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4245 if (dump_file)
4247 fprintf (dump_file, "Adding assert for ");
4248 print_generic_expr (dump_file, name3, 0);
4249 fprintf (dump_file, " from ");
4250 print_generic_expr (dump_file, tmp, 0);
4251 fprintf (dump_file, "\n");
4254 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4256 retval = true;
4259 /* If name2 is used later, create an ASSERT_EXPR for it. */
4260 if (name2 != NULL_TREE
4261 && TREE_CODE (name2) == SSA_NAME
4262 && TREE_CODE (cst2) == INTEGER_CST
4263 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4264 && live_on_edge (e, name2)
4265 && !has_single_use (name2))
4267 tree tmp;
4269 /* Build an expression for the range test. */
4270 tmp = name2;
4271 if (TREE_TYPE (name) != TREE_TYPE (name2))
4272 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4273 if (cst2 != NULL_TREE)
4274 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4276 if (dump_file)
4278 fprintf (dump_file, "Adding assert for ");
4279 print_generic_expr (dump_file, name2, 0);
4280 fprintf (dump_file, " from ");
4281 print_generic_expr (dump_file, tmp, 0);
4282 fprintf (dump_file, "\n");
4285 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4287 retval = true;
4291 return retval;
4294 /* OP is an operand of a truth value expression which is known to have
4295 a particular value. Register any asserts for OP and for any
4296 operands in OP's defining statement.
4298 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4299 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4301 static bool
4302 register_edge_assert_for_1 (tree op, enum tree_code code,
4303 edge e, gimple_stmt_iterator bsi)
4305 bool retval = false;
4306 gimple op_def;
4307 tree val;
4308 enum tree_code rhs_code;
4310 /* We only care about SSA_NAMEs. */
4311 if (TREE_CODE (op) != SSA_NAME)
4312 return false;
4314 /* We know that OP will have a zero or nonzero value. If OP is used
4315 more than once go ahead and register an assert for OP.
4317 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4318 it will always be set for OP (because OP is used in a COND_EXPR in
4319 the subgraph). */
4320 if (!has_single_use (op))
4322 val = build_int_cst (TREE_TYPE (op), 0);
4323 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4324 retval = true;
4327 /* Now look at how OP is set. If it's set from a comparison,
4328 a truth operation or some bit operations, then we may be able
4329 to register information about the operands of that assignment. */
4330 op_def = SSA_NAME_DEF_STMT (op);
4331 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4332 return retval;
4334 rhs_code = gimple_assign_rhs_code (op_def);
4336 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4338 bool invert = (code == EQ_EXPR ? true : false);
4339 tree op0 = gimple_assign_rhs1 (op_def);
4340 tree op1 = gimple_assign_rhs2 (op_def);
4342 if (TREE_CODE (op0) == SSA_NAME)
4343 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4344 invert);
4345 if (TREE_CODE (op1) == SSA_NAME)
4346 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4347 invert);
4349 else if ((code == NE_EXPR
4350 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4351 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4352 || (code == EQ_EXPR
4353 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4354 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4356 /* Recurse on each operand. */
4357 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4358 code, e, bsi);
4359 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4360 code, e, bsi);
4362 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4364 /* Recurse, flipping CODE. */
4365 code = invert_tree_comparison (code, false);
4366 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4367 code, e, bsi);
4369 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4371 /* Recurse through the copy. */
4372 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4373 code, e, bsi);
4375 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4377 /* Recurse through the type conversion. */
4378 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4379 code, e, bsi);
4382 return retval;
4385 /* Try to register an edge assertion for SSA name NAME on edge E for
4386 the condition COND contributing to the conditional jump pointed to by SI.
4387 Return true if an assertion for NAME could be registered. */
4389 static bool
4390 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4391 enum tree_code cond_code, tree cond_op0,
4392 tree cond_op1)
4394 tree val;
4395 enum tree_code comp_code;
4396 bool retval = false;
4397 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4399 /* Do not attempt to infer anything in names that flow through
4400 abnormal edges. */
4401 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4402 return false;
4404 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4405 cond_op0, cond_op1,
4406 is_else_edge,
4407 &comp_code, &val))
4408 return false;
4410 /* Register ASSERT_EXPRs for name. */
4411 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4412 cond_op1, is_else_edge);
4415 /* If COND is effectively an equality test of an SSA_NAME against
4416 the value zero or one, then we may be able to assert values
4417 for SSA_NAMEs which flow into COND. */
4419 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4420 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4421 have nonzero value. */
4422 if (((comp_code == EQ_EXPR && integer_onep (val))
4423 || (comp_code == NE_EXPR && integer_zerop (val))))
4425 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4427 if (is_gimple_assign (def_stmt)
4428 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4429 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4431 tree op0 = gimple_assign_rhs1 (def_stmt);
4432 tree op1 = gimple_assign_rhs2 (def_stmt);
4433 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4434 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4438 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4439 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4440 have zero value. */
4441 if (((comp_code == EQ_EXPR && integer_zerop (val))
4442 || (comp_code == NE_EXPR && integer_onep (val))))
4444 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4446 if (is_gimple_assign (def_stmt)
4447 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4448 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4449 necessarily zero value. */
4450 || (comp_code == EQ_EXPR
4451 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4453 tree op0 = gimple_assign_rhs1 (def_stmt);
4454 tree op1 = gimple_assign_rhs2 (def_stmt);
4455 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4456 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4460 return retval;
4464 /* Determine whether the outgoing edges of BB should receive an
4465 ASSERT_EXPR for each of the operands of BB's LAST statement.
4466 The last statement of BB must be a COND_EXPR.
4468 If any of the sub-graphs rooted at BB have an interesting use of
4469 the predicate operands, an assert location node is added to the
4470 list of assertions for the corresponding operands. */
4472 static bool
4473 find_conditional_asserts (basic_block bb, gimple last)
4475 bool need_assert;
4476 gimple_stmt_iterator bsi;
4477 tree op;
4478 edge_iterator ei;
4479 edge e;
4480 ssa_op_iter iter;
4482 need_assert = false;
4483 bsi = gsi_for_stmt (last);
4485 /* Look for uses of the operands in each of the sub-graphs
4486 rooted at BB. We need to check each of the outgoing edges
4487 separately, so that we know what kind of ASSERT_EXPR to
4488 insert. */
4489 FOR_EACH_EDGE (e, ei, bb->succs)
4491 if (e->dest == bb)
4492 continue;
4494 /* Register the necessary assertions for each operand in the
4495 conditional predicate. */
4496 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4498 need_assert |= register_edge_assert_for (op, e, bsi,
4499 gimple_cond_code (last),
4500 gimple_cond_lhs (last),
4501 gimple_cond_rhs (last));
4505 return need_assert;
4508 /* Compare two case labels sorting first by the destination label uid
4509 and then by the case value. */
4511 static int
4512 compare_case_labels (const void *p1, const void *p2)
4514 const_tree const case1 = *(const_tree const*)p1;
4515 const_tree const case2 = *(const_tree const*)p2;
4516 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4517 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4519 if (uid1 < uid2)
4520 return -1;
4521 else if (uid1 == uid2)
4523 /* Make sure the default label is first in a group. */
4524 if (!CASE_LOW (case1))
4525 return -1;
4526 else if (!CASE_LOW (case2))
4527 return 1;
4528 else
4529 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4531 else
4532 return 1;
4535 /* Determine whether the outgoing edges of BB should receive an
4536 ASSERT_EXPR for each of the operands of BB's LAST statement.
4537 The last statement of BB must be a SWITCH_EXPR.
4539 If any of the sub-graphs rooted at BB have an interesting use of
4540 the predicate operands, an assert location node is added to the
4541 list of assertions for the corresponding operands. */
4543 static bool
4544 find_switch_asserts (basic_block bb, gimple last)
4546 bool need_assert;
4547 gimple_stmt_iterator bsi;
4548 tree op;
4549 edge e;
4550 tree vec2;
4551 size_t n = gimple_switch_num_labels(last);
4552 #if GCC_VERSION >= 4000
4553 unsigned int idx;
4554 #else
4555 /* Work around GCC 3.4 bug (PR 37086). */
4556 volatile unsigned int idx;
4557 #endif
4559 need_assert = false;
4560 bsi = gsi_for_stmt (last);
4561 op = gimple_switch_index (last);
4562 if (TREE_CODE (op) != SSA_NAME)
4563 return false;
4565 /* Build a vector of case labels sorted by destination label. */
4566 vec2 = make_tree_vec (n);
4567 for (idx = 0; idx < n; ++idx)
4568 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4569 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4571 for (idx = 0; idx < n; ++idx)
4573 tree min, max;
4574 tree cl = TREE_VEC_ELT (vec2, idx);
4576 min = CASE_LOW (cl);
4577 max = CASE_HIGH (cl);
4579 /* If there are multiple case labels with the same destination
4580 we need to combine them to a single value range for the edge. */
4581 if (idx + 1 < n
4582 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4584 /* Skip labels until the last of the group. */
4585 do {
4586 ++idx;
4587 } while (idx < n
4588 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4589 --idx;
4591 /* Pick up the maximum of the case label range. */
4592 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4593 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4594 else
4595 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4598 /* Nothing to do if the range includes the default label until we
4599 can register anti-ranges. */
4600 if (min == NULL_TREE)
4601 continue;
4603 /* Find the edge to register the assert expr on. */
4604 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4606 /* Register the necessary assertions for the operand in the
4607 SWITCH_EXPR. */
4608 need_assert |= register_edge_assert_for (op, e, bsi,
4609 max ? GE_EXPR : EQ_EXPR,
4611 fold_convert (TREE_TYPE (op),
4612 min));
4613 if (max)
4615 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4617 fold_convert (TREE_TYPE (op),
4618 max));
4622 return need_assert;
4626 /* Traverse all the statements in block BB looking for statements that
4627 may generate useful assertions for the SSA names in their operand.
4628 If a statement produces a useful assertion A for name N_i, then the
4629 list of assertions already generated for N_i is scanned to
4630 determine if A is actually needed.
4632 If N_i already had the assertion A at a location dominating the
4633 current location, then nothing needs to be done. Otherwise, the
4634 new location for A is recorded instead.
4636 1- For every statement S in BB, all the variables used by S are
4637 added to bitmap FOUND_IN_SUBGRAPH.
4639 2- If statement S uses an operand N in a way that exposes a known
4640 value range for N, then if N was not already generated by an
4641 ASSERT_EXPR, create a new assert location for N. For instance,
4642 if N is a pointer and the statement dereferences it, we can
4643 assume that N is not NULL.
4645 3- COND_EXPRs are a special case of #2. We can derive range
4646 information from the predicate but need to insert different
4647 ASSERT_EXPRs for each of the sub-graphs rooted at the
4648 conditional block. If the last statement of BB is a conditional
4649 expression of the form 'X op Y', then
4651 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4653 b) If the conditional is the only entry point to the sub-graph
4654 corresponding to the THEN_CLAUSE, recurse into it. On
4655 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4656 an ASSERT_EXPR is added for the corresponding variable.
4658 c) Repeat step (b) on the ELSE_CLAUSE.
4660 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4662 For instance,
4664 if (a == 9)
4665 b = a;
4666 else
4667 b = c + 1;
4669 In this case, an assertion on the THEN clause is useful to
4670 determine that 'a' is always 9 on that edge. However, an assertion
4671 on the ELSE clause would be unnecessary.
4673 4- If BB does not end in a conditional expression, then we recurse
4674 into BB's dominator children.
4676 At the end of the recursive traversal, every SSA name will have a
4677 list of locations where ASSERT_EXPRs should be added. When a new
4678 location for name N is found, it is registered by calling
4679 register_new_assert_for. That function keeps track of all the
4680 registered assertions to prevent adding unnecessary assertions.
4681 For instance, if a pointer P_4 is dereferenced more than once in a
4682 dominator tree, only the location dominating all the dereference of
4683 P_4 will receive an ASSERT_EXPR.
4685 If this function returns true, then it means that there are names
4686 for which we need to generate ASSERT_EXPRs. Those assertions are
4687 inserted by process_assert_insertions. */
4689 static bool
4690 find_assert_locations_1 (basic_block bb, sbitmap live)
4692 gimple_stmt_iterator si;
4693 gimple last;
4694 gimple phi;
4695 bool need_assert;
4697 need_assert = false;
4698 last = last_stmt (bb);
4700 /* If BB's last statement is a conditional statement involving integer
4701 operands, determine if we need to add ASSERT_EXPRs. */
4702 if (last
4703 && gimple_code (last) == GIMPLE_COND
4704 && !fp_predicate (last)
4705 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4706 need_assert |= find_conditional_asserts (bb, last);
4708 /* If BB's last statement is a switch statement involving integer
4709 operands, determine if we need to add ASSERT_EXPRs. */
4710 if (last
4711 && gimple_code (last) == GIMPLE_SWITCH
4712 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4713 need_assert |= find_switch_asserts (bb, last);
4715 /* Traverse all the statements in BB marking used names and looking
4716 for statements that may infer assertions for their used operands. */
4717 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4719 gimple stmt;
4720 tree op;
4721 ssa_op_iter i;
4723 stmt = gsi_stmt (si);
4725 if (is_gimple_debug (stmt))
4726 continue;
4728 /* See if we can derive an assertion for any of STMT's operands. */
4729 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4731 tree value;
4732 enum tree_code comp_code;
4734 /* Mark OP in our live bitmap. */
4735 SET_BIT (live, SSA_NAME_VERSION (op));
4737 /* If OP is used in such a way that we can infer a value
4738 range for it, and we don't find a previous assertion for
4739 it, create a new assertion location node for OP. */
4740 if (infer_value_range (stmt, op, &comp_code, &value))
4742 /* If we are able to infer a nonzero value range for OP,
4743 then walk backwards through the use-def chain to see if OP
4744 was set via a typecast.
4746 If so, then we can also infer a nonzero value range
4747 for the operand of the NOP_EXPR. */
4748 if (comp_code == NE_EXPR && integer_zerop (value))
4750 tree t = op;
4751 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4753 while (is_gimple_assign (def_stmt)
4754 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4755 && TREE_CODE
4756 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4757 && POINTER_TYPE_P
4758 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4760 t = gimple_assign_rhs1 (def_stmt);
4761 def_stmt = SSA_NAME_DEF_STMT (t);
4763 /* Note we want to register the assert for the
4764 operand of the NOP_EXPR after SI, not after the
4765 conversion. */
4766 if (! has_single_use (t))
4768 register_new_assert_for (t, t, comp_code, value,
4769 bb, NULL, si);
4770 need_assert = true;
4775 /* If OP is used only once, namely in this STMT, don't
4776 bother creating an ASSERT_EXPR for it. Such an
4777 ASSERT_EXPR would do nothing but increase compile time. */
4778 if (!has_single_use (op))
4780 register_new_assert_for (op, op, comp_code, value,
4781 bb, NULL, si);
4782 need_assert = true;
4788 /* Traverse all PHI nodes in BB marking used operands. */
4789 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4791 use_operand_p arg_p;
4792 ssa_op_iter i;
4793 phi = gsi_stmt (si);
4795 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4797 tree arg = USE_FROM_PTR (arg_p);
4798 if (TREE_CODE (arg) == SSA_NAME)
4799 SET_BIT (live, SSA_NAME_VERSION (arg));
4803 return need_assert;
4806 /* Do an RPO walk over the function computing SSA name liveness
4807 on-the-fly and deciding on assert expressions to insert.
4808 Returns true if there are assert expressions to be inserted. */
4810 static bool
4811 find_assert_locations (void)
4813 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4814 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4815 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4816 int rpo_cnt, i;
4817 bool need_asserts;
4819 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4820 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4821 for (i = 0; i < rpo_cnt; ++i)
4822 bb_rpo[rpo[i]] = i;
4824 need_asserts = false;
4825 for (i = rpo_cnt-1; i >= 0; --i)
4827 basic_block bb = BASIC_BLOCK (rpo[i]);
4828 edge e;
4829 edge_iterator ei;
4831 if (!live[rpo[i]])
4833 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4834 sbitmap_zero (live[rpo[i]]);
4837 /* Process BB and update the live information with uses in
4838 this block. */
4839 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4841 /* Merge liveness into the predecessor blocks and free it. */
4842 if (!sbitmap_empty_p (live[rpo[i]]))
4844 int pred_rpo = i;
4845 FOR_EACH_EDGE (e, ei, bb->preds)
4847 int pred = e->src->index;
4848 if (e->flags & EDGE_DFS_BACK)
4849 continue;
4851 if (!live[pred])
4853 live[pred] = sbitmap_alloc (num_ssa_names);
4854 sbitmap_zero (live[pred]);
4856 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4858 if (bb_rpo[pred] < pred_rpo)
4859 pred_rpo = bb_rpo[pred];
4862 /* Record the RPO number of the last visited block that needs
4863 live information from this block. */
4864 last_rpo[rpo[i]] = pred_rpo;
4866 else
4868 sbitmap_free (live[rpo[i]]);
4869 live[rpo[i]] = NULL;
4872 /* We can free all successors live bitmaps if all their
4873 predecessors have been visited already. */
4874 FOR_EACH_EDGE (e, ei, bb->succs)
4875 if (last_rpo[e->dest->index] == i
4876 && live[e->dest->index])
4878 sbitmap_free (live[e->dest->index]);
4879 live[e->dest->index] = NULL;
4883 XDELETEVEC (rpo);
4884 XDELETEVEC (bb_rpo);
4885 XDELETEVEC (last_rpo);
4886 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4887 if (live[i])
4888 sbitmap_free (live[i]);
4889 XDELETEVEC (live);
4891 return need_asserts;
4894 /* Create an ASSERT_EXPR for NAME and insert it in the location
4895 indicated by LOC. Return true if we made any edge insertions. */
4897 static bool
4898 process_assert_insertions_for (tree name, assert_locus_t loc)
4900 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4901 gimple stmt;
4902 tree cond;
4903 gimple assert_stmt;
4904 edge_iterator ei;
4905 edge e;
4907 /* If we have X <=> X do not insert an assert expr for that. */
4908 if (loc->expr == loc->val)
4909 return false;
4911 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4912 assert_stmt = build_assert_expr_for (cond, name);
4913 if (loc->e)
4915 /* We have been asked to insert the assertion on an edge. This
4916 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4917 #if defined ENABLE_CHECKING
4918 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4919 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4920 #endif
4922 gsi_insert_on_edge (loc->e, assert_stmt);
4923 return true;
4926 /* Otherwise, we can insert right after LOC->SI iff the
4927 statement must not be the last statement in the block. */
4928 stmt = gsi_stmt (loc->si);
4929 if (!stmt_ends_bb_p (stmt))
4931 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4932 return false;
4935 /* If STMT must be the last statement in BB, we can only insert new
4936 assertions on the non-abnormal edge out of BB. Note that since
4937 STMT is not control flow, there may only be one non-abnormal edge
4938 out of BB. */
4939 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4940 if (!(e->flags & EDGE_ABNORMAL))
4942 gsi_insert_on_edge (e, assert_stmt);
4943 return true;
4946 gcc_unreachable ();
4950 /* Process all the insertions registered for every name N_i registered
4951 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4952 found in ASSERTS_FOR[i]. */
4954 static void
4955 process_assert_insertions (void)
4957 unsigned i;
4958 bitmap_iterator bi;
4959 bool update_edges_p = false;
4960 int num_asserts = 0;
4962 if (dump_file && (dump_flags & TDF_DETAILS))
4963 dump_all_asserts (dump_file);
4965 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4967 assert_locus_t loc = asserts_for[i];
4968 gcc_assert (loc);
4970 while (loc)
4972 assert_locus_t next = loc->next;
4973 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4974 free (loc);
4975 loc = next;
4976 num_asserts++;
4980 if (update_edges_p)
4981 gsi_commit_edge_inserts ();
4983 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4984 num_asserts);
4988 /* Traverse the flowgraph looking for conditional jumps to insert range
4989 expressions. These range expressions are meant to provide information
4990 to optimizations that need to reason in terms of value ranges. They
4991 will not be expanded into RTL. For instance, given:
4993 x = ...
4994 y = ...
4995 if (x < y)
4996 y = x - 2;
4997 else
4998 x = y + 3;
5000 this pass will transform the code into:
5002 x = ...
5003 y = ...
5004 if (x < y)
5006 x = ASSERT_EXPR <x, x < y>
5007 y = x - 2
5009 else
5011 y = ASSERT_EXPR <y, x <= y>
5012 x = y + 3
5015 The idea is that once copy and constant propagation have run, other
5016 optimizations will be able to determine what ranges of values can 'x'
5017 take in different paths of the code, simply by checking the reaching
5018 definition of 'x'. */
5020 static void
5021 insert_range_assertions (void)
5023 need_assert_for = BITMAP_ALLOC (NULL);
5024 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5026 calculate_dominance_info (CDI_DOMINATORS);
5028 if (find_assert_locations ())
5030 process_assert_insertions ();
5031 update_ssa (TODO_update_ssa_no_phi);
5034 if (dump_file && (dump_flags & TDF_DETAILS))
5036 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5037 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5040 free (asserts_for);
5041 BITMAP_FREE (need_assert_for);
5044 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5045 and "struct" hacks. If VRP can determine that the
5046 array subscript is a constant, check if it is outside valid
5047 range. If the array subscript is a RANGE, warn if it is
5048 non-overlapping with valid range.
5049 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5051 static void
5052 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5054 value_range_t* vr = NULL;
5055 tree low_sub, up_sub;
5056 tree low_bound, up_bound = array_ref_up_bound (ref);
5058 low_sub = up_sub = TREE_OPERAND (ref, 1);
5060 if (!up_bound || TREE_NO_WARNING (ref)
5061 || TREE_CODE (up_bound) != INTEGER_CST
5062 /* Can not check flexible arrays. */
5063 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
5064 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
5065 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
5066 /* Accesses after the end of arrays of size 0 (gcc
5067 extension) and 1 are likely intentional ("struct
5068 hack"). */
5069 || compare_tree_int (up_bound, 1) <= 0)
5070 return;
5072 low_bound = array_ref_low_bound (ref);
5074 if (TREE_CODE (low_sub) == SSA_NAME)
5076 vr = get_value_range (low_sub);
5077 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5079 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5080 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5084 if (vr && vr->type == VR_ANTI_RANGE)
5086 if (TREE_CODE (up_sub) == INTEGER_CST
5087 && tree_int_cst_lt (up_bound, up_sub)
5088 && TREE_CODE (low_sub) == INTEGER_CST
5089 && tree_int_cst_lt (low_sub, low_bound))
5091 warning_at (location, OPT_Warray_bounds,
5092 "array subscript is outside array bounds");
5093 TREE_NO_WARNING (ref) = 1;
5096 else if (TREE_CODE (up_sub) == INTEGER_CST
5097 && tree_int_cst_lt (up_bound, up_sub)
5098 && !tree_int_cst_equal (up_bound, up_sub)
5099 && (!ignore_off_by_one
5100 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5101 up_bound,
5102 integer_one_node,
5104 up_sub)))
5106 warning_at (location, OPT_Warray_bounds,
5107 "array subscript is above array bounds");
5108 TREE_NO_WARNING (ref) = 1;
5110 else if (TREE_CODE (low_sub) == INTEGER_CST
5111 && tree_int_cst_lt (low_sub, low_bound))
5113 warning_at (location, OPT_Warray_bounds,
5114 "array subscript is below array bounds");
5115 TREE_NO_WARNING (ref) = 1;
5119 /* Searches if the expr T, located at LOCATION computes
5120 address of an ARRAY_REF, and call check_array_ref on it. */
5122 static void
5123 search_for_addr_array (tree t, location_t location)
5125 while (TREE_CODE (t) == SSA_NAME)
5127 gimple g = SSA_NAME_DEF_STMT (t);
5129 if (gimple_code (g) != GIMPLE_ASSIGN)
5130 return;
5132 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5133 != GIMPLE_SINGLE_RHS)
5134 return;
5136 t = gimple_assign_rhs1 (g);
5140 /* We are only interested in addresses of ARRAY_REF's. */
5141 if (TREE_CODE (t) != ADDR_EXPR)
5142 return;
5144 /* Check each ARRAY_REFs in the reference chain. */
5147 if (TREE_CODE (t) == ARRAY_REF)
5148 check_array_ref (location, t, true /*ignore_off_by_one*/);
5150 t = TREE_OPERAND (t, 0);
5152 while (handled_component_p (t));
5155 /* walk_tree() callback that checks if *TP is
5156 an ARRAY_REF inside an ADDR_EXPR (in which an array
5157 subscript one outside the valid range is allowed). Call
5158 check_array_ref for each ARRAY_REF found. The location is
5159 passed in DATA. */
5161 static tree
5162 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5164 tree t = *tp;
5165 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5166 location_t location;
5168 if (EXPR_HAS_LOCATION (t))
5169 location = EXPR_LOCATION (t);
5170 else
5172 location_t *locp = (location_t *) wi->info;
5173 location = *locp;
5176 *walk_subtree = TRUE;
5178 if (TREE_CODE (t) == ARRAY_REF)
5179 check_array_ref (location, t, false /*ignore_off_by_one*/);
5181 if (TREE_CODE (t) == INDIRECT_REF
5182 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5183 search_for_addr_array (TREE_OPERAND (t, 0), location);
5185 if (TREE_CODE (t) == ADDR_EXPR)
5186 *walk_subtree = FALSE;
5188 return NULL_TREE;
5191 /* Walk over all statements of all reachable BBs and call check_array_bounds
5192 on them. */
5194 static void
5195 check_all_array_refs (void)
5197 basic_block bb;
5198 gimple_stmt_iterator si;
5200 FOR_EACH_BB (bb)
5202 edge_iterator ei;
5203 edge e;
5204 bool executable = false;
5206 /* Skip blocks that were found to be unreachable. */
5207 FOR_EACH_EDGE (e, ei, bb->preds)
5208 executable |= !!(e->flags & EDGE_EXECUTABLE);
5209 if (!executable)
5210 continue;
5212 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5214 gimple stmt = gsi_stmt (si);
5215 struct walk_stmt_info wi;
5216 if (!gimple_has_location (stmt))
5217 continue;
5219 if (is_gimple_call (stmt))
5221 size_t i;
5222 size_t n = gimple_call_num_args (stmt);
5223 for (i = 0; i < n; i++)
5225 tree arg = gimple_call_arg (stmt, i);
5226 search_for_addr_array (arg, gimple_location (stmt));
5229 else
5231 memset (&wi, 0, sizeof (wi));
5232 wi.info = CONST_CAST (void *, (const void *)
5233 gimple_location_ptr (stmt));
5235 walk_gimple_op (gsi_stmt (si),
5236 check_array_bounds,
5237 &wi);
5243 /* Convert range assertion expressions into the implied copies and
5244 copy propagate away the copies. Doing the trivial copy propagation
5245 here avoids the need to run the full copy propagation pass after
5246 VRP.
5248 FIXME, this will eventually lead to copy propagation removing the
5249 names that had useful range information attached to them. For
5250 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5251 then N_i will have the range [3, +INF].
5253 However, by converting the assertion into the implied copy
5254 operation N_i = N_j, we will then copy-propagate N_j into the uses
5255 of N_i and lose the range information. We may want to hold on to
5256 ASSERT_EXPRs a little while longer as the ranges could be used in
5257 things like jump threading.
5259 The problem with keeping ASSERT_EXPRs around is that passes after
5260 VRP need to handle them appropriately.
5262 Another approach would be to make the range information a first
5263 class property of the SSA_NAME so that it can be queried from
5264 any pass. This is made somewhat more complex by the need for
5265 multiple ranges to be associated with one SSA_NAME. */
5267 static void
5268 remove_range_assertions (void)
5270 basic_block bb;
5271 gimple_stmt_iterator si;
5273 /* Note that the BSI iterator bump happens at the bottom of the
5274 loop and no bump is necessary if we're removing the statement
5275 referenced by the current BSI. */
5276 FOR_EACH_BB (bb)
5277 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5279 gimple stmt = gsi_stmt (si);
5280 gimple use_stmt;
5282 if (is_gimple_assign (stmt)
5283 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5285 tree rhs = gimple_assign_rhs1 (stmt);
5286 tree var;
5287 tree cond = fold (ASSERT_EXPR_COND (rhs));
5288 use_operand_p use_p;
5289 imm_use_iterator iter;
5291 gcc_assert (cond != boolean_false_node);
5293 /* Propagate the RHS into every use of the LHS. */
5294 var = ASSERT_EXPR_VAR (rhs);
5295 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5296 gimple_assign_lhs (stmt))
5297 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5299 SET_USE (use_p, var);
5300 gcc_assert (TREE_CODE (var) == SSA_NAME);
5303 /* And finally, remove the copy, it is not needed. */
5304 gsi_remove (&si, true);
5305 release_defs (stmt);
5307 else
5308 gsi_next (&si);
5313 /* Return true if STMT is interesting for VRP. */
5315 static bool
5316 stmt_interesting_for_vrp (gimple stmt)
5318 if (gimple_code (stmt) == GIMPLE_PHI
5319 && is_gimple_reg (gimple_phi_result (stmt))
5320 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5321 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5322 return true;
5323 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5325 tree lhs = gimple_get_lhs (stmt);
5327 /* In general, assignments with virtual operands are not useful
5328 for deriving ranges, with the obvious exception of calls to
5329 builtin functions. */
5330 if (lhs && TREE_CODE (lhs) == SSA_NAME
5331 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5332 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5333 && ((is_gimple_call (stmt)
5334 && gimple_call_fndecl (stmt) != NULL_TREE
5335 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5336 || !gimple_vuse (stmt)))
5337 return true;
5339 else if (gimple_code (stmt) == GIMPLE_COND
5340 || gimple_code (stmt) == GIMPLE_SWITCH)
5341 return true;
5343 return false;
5347 /* Initialize local data structures for VRP. */
5349 static void
5350 vrp_initialize (void)
5352 basic_block bb;
5354 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5355 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5357 FOR_EACH_BB (bb)
5359 gimple_stmt_iterator si;
5361 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5363 gimple phi = gsi_stmt (si);
5364 if (!stmt_interesting_for_vrp (phi))
5366 tree lhs = PHI_RESULT (phi);
5367 set_value_range_to_varying (get_value_range (lhs));
5368 prop_set_simulate_again (phi, false);
5370 else
5371 prop_set_simulate_again (phi, true);
5374 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5376 gimple stmt = gsi_stmt (si);
5378 /* If the statement is a control insn, then we do not
5379 want to avoid simulating the statement once. Failure
5380 to do so means that those edges will never get added. */
5381 if (stmt_ends_bb_p (stmt))
5382 prop_set_simulate_again (stmt, true);
5383 else if (!stmt_interesting_for_vrp (stmt))
5385 ssa_op_iter i;
5386 tree def;
5387 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5388 set_value_range_to_varying (get_value_range (def));
5389 prop_set_simulate_again (stmt, false);
5391 else
5392 prop_set_simulate_again (stmt, true);
5398 /* Visit assignment STMT. If it produces an interesting range, record
5399 the SSA name in *OUTPUT_P. */
5401 static enum ssa_prop_result
5402 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5404 tree def, lhs;
5405 ssa_op_iter iter;
5406 enum gimple_code code = gimple_code (stmt);
5407 lhs = gimple_get_lhs (stmt);
5409 /* We only keep track of ranges in integral and pointer types. */
5410 if (TREE_CODE (lhs) == SSA_NAME
5411 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5412 /* It is valid to have NULL MIN/MAX values on a type. See
5413 build_range_type. */
5414 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5415 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5416 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5418 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5420 if (code == GIMPLE_CALL)
5421 extract_range_basic (&new_vr, stmt);
5422 else
5423 extract_range_from_assignment (&new_vr, stmt);
5425 if (update_value_range (lhs, &new_vr))
5427 *output_p = lhs;
5429 if (dump_file && (dump_flags & TDF_DETAILS))
5431 fprintf (dump_file, "Found new range for ");
5432 print_generic_expr (dump_file, lhs, 0);
5433 fprintf (dump_file, ": ");
5434 dump_value_range (dump_file, &new_vr);
5435 fprintf (dump_file, "\n\n");
5438 if (new_vr.type == VR_VARYING)
5439 return SSA_PROP_VARYING;
5441 return SSA_PROP_INTERESTING;
5444 return SSA_PROP_NOT_INTERESTING;
5447 /* Every other statement produces no useful ranges. */
5448 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5449 set_value_range_to_varying (get_value_range (def));
5451 return SSA_PROP_VARYING;
5454 /* Helper that gets the value range of the SSA_NAME with version I
5455 or a symbolic range containing the SSA_NAME only if the value range
5456 is varying or undefined. */
5458 static inline value_range_t
5459 get_vr_for_comparison (int i)
5461 value_range_t vr = *(vr_value[i]);
5463 /* If name N_i does not have a valid range, use N_i as its own
5464 range. This allows us to compare against names that may
5465 have N_i in their ranges. */
5466 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5468 vr.type = VR_RANGE;
5469 vr.min = ssa_name (i);
5470 vr.max = ssa_name (i);
5473 return vr;
5476 /* Compare all the value ranges for names equivalent to VAR with VAL
5477 using comparison code COMP. Return the same value returned by
5478 compare_range_with_value, including the setting of
5479 *STRICT_OVERFLOW_P. */
5481 static tree
5482 compare_name_with_value (enum tree_code comp, tree var, tree val,
5483 bool *strict_overflow_p)
5485 bitmap_iterator bi;
5486 unsigned i;
5487 bitmap e;
5488 tree retval, t;
5489 int used_strict_overflow;
5490 bool sop;
5491 value_range_t equiv_vr;
5493 /* Get the set of equivalences for VAR. */
5494 e = get_value_range (var)->equiv;
5496 /* Start at -1. Set it to 0 if we do a comparison without relying
5497 on overflow, or 1 if all comparisons rely on overflow. */
5498 used_strict_overflow = -1;
5500 /* Compare vars' value range with val. */
5501 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5502 sop = false;
5503 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5504 if (retval)
5505 used_strict_overflow = sop ? 1 : 0;
5507 /* If the equiv set is empty we have done all work we need to do. */
5508 if (e == NULL)
5510 if (retval
5511 && used_strict_overflow > 0)
5512 *strict_overflow_p = true;
5513 return retval;
5516 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5518 equiv_vr = get_vr_for_comparison (i);
5519 sop = false;
5520 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5521 if (t)
5523 /* If we get different answers from different members
5524 of the equivalence set this check must be in a dead
5525 code region. Folding it to a trap representation
5526 would be correct here. For now just return don't-know. */
5527 if (retval != NULL
5528 && t != retval)
5530 retval = NULL_TREE;
5531 break;
5533 retval = t;
5535 if (!sop)
5536 used_strict_overflow = 0;
5537 else if (used_strict_overflow < 0)
5538 used_strict_overflow = 1;
5542 if (retval
5543 && used_strict_overflow > 0)
5544 *strict_overflow_p = true;
5546 return retval;
5550 /* Given a comparison code COMP and names N1 and N2, compare all the
5551 ranges equivalent to N1 against all the ranges equivalent to N2
5552 to determine the value of N1 COMP N2. Return the same value
5553 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5554 whether we relied on an overflow infinity in the comparison. */
5557 static tree
5558 compare_names (enum tree_code comp, tree n1, tree n2,
5559 bool *strict_overflow_p)
5561 tree t, retval;
5562 bitmap e1, e2;
5563 bitmap_iterator bi1, bi2;
5564 unsigned i1, i2;
5565 int used_strict_overflow;
5566 static bitmap_obstack *s_obstack = NULL;
5567 static bitmap s_e1 = NULL, s_e2 = NULL;
5569 /* Compare the ranges of every name equivalent to N1 against the
5570 ranges of every name equivalent to N2. */
5571 e1 = get_value_range (n1)->equiv;
5572 e2 = get_value_range (n2)->equiv;
5574 /* Use the fake bitmaps if e1 or e2 are not available. */
5575 if (s_obstack == NULL)
5577 s_obstack = XNEW (bitmap_obstack);
5578 bitmap_obstack_initialize (s_obstack);
5579 s_e1 = BITMAP_ALLOC (s_obstack);
5580 s_e2 = BITMAP_ALLOC (s_obstack);
5582 if (e1 == NULL)
5583 e1 = s_e1;
5584 if (e2 == NULL)
5585 e2 = s_e2;
5587 /* Add N1 and N2 to their own set of equivalences to avoid
5588 duplicating the body of the loop just to check N1 and N2
5589 ranges. */
5590 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5591 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5593 /* If the equivalence sets have a common intersection, then the two
5594 names can be compared without checking their ranges. */
5595 if (bitmap_intersect_p (e1, e2))
5597 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5598 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5600 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5601 ? boolean_true_node
5602 : boolean_false_node;
5605 /* Start at -1. Set it to 0 if we do a comparison without relying
5606 on overflow, or 1 if all comparisons rely on overflow. */
5607 used_strict_overflow = -1;
5609 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5610 N2 to their own set of equivalences to avoid duplicating the body
5611 of the loop just to check N1 and N2 ranges. */
5612 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5614 value_range_t vr1 = get_vr_for_comparison (i1);
5616 t = retval = NULL_TREE;
5617 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5619 bool sop = false;
5621 value_range_t vr2 = get_vr_for_comparison (i2);
5623 t = compare_ranges (comp, &vr1, &vr2, &sop);
5624 if (t)
5626 /* If we get different answers from different members
5627 of the equivalence set this check must be in a dead
5628 code region. Folding it to a trap representation
5629 would be correct here. For now just return don't-know. */
5630 if (retval != NULL
5631 && t != retval)
5633 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5634 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5635 return NULL_TREE;
5637 retval = t;
5639 if (!sop)
5640 used_strict_overflow = 0;
5641 else if (used_strict_overflow < 0)
5642 used_strict_overflow = 1;
5646 if (retval)
5648 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5649 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5650 if (used_strict_overflow > 0)
5651 *strict_overflow_p = true;
5652 return retval;
5656 /* None of the equivalent ranges are useful in computing this
5657 comparison. */
5658 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5659 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5660 return NULL_TREE;
5663 /* Helper function for vrp_evaluate_conditional_warnv. */
5665 static tree
5666 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5667 tree op0, tree op1,
5668 bool * strict_overflow_p)
5670 value_range_t *vr0, *vr1;
5672 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5673 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5675 if (vr0 && vr1)
5676 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5677 else if (vr0 && vr1 == NULL)
5678 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5679 else if (vr0 == NULL && vr1)
5680 return (compare_range_with_value
5681 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5682 return NULL;
5685 /* Helper function for vrp_evaluate_conditional_warnv. */
5687 static tree
5688 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5689 tree op1, bool use_equiv_p,
5690 bool *strict_overflow_p, bool *only_ranges)
5692 tree ret;
5693 if (only_ranges)
5694 *only_ranges = true;
5696 /* We only deal with integral and pointer types. */
5697 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5698 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5699 return NULL_TREE;
5701 if (use_equiv_p)
5703 if (only_ranges
5704 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5705 (code, op0, op1, strict_overflow_p)))
5706 return ret;
5707 *only_ranges = false;
5708 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5709 return compare_names (code, op0, op1, strict_overflow_p);
5710 else if (TREE_CODE (op0) == SSA_NAME)
5711 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5712 else if (TREE_CODE (op1) == SSA_NAME)
5713 return (compare_name_with_value
5714 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5716 else
5717 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5718 strict_overflow_p);
5719 return NULL_TREE;
5722 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5723 information. Return NULL if the conditional can not be evaluated.
5724 The ranges of all the names equivalent with the operands in COND
5725 will be used when trying to compute the value. If the result is
5726 based on undefined signed overflow, issue a warning if
5727 appropriate. */
5729 static tree
5730 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5732 bool sop;
5733 tree ret;
5734 bool only_ranges;
5736 /* Some passes and foldings leak constants with overflow flag set
5737 into the IL. Avoid doing wrong things with these and bail out. */
5738 if ((TREE_CODE (op0) == INTEGER_CST
5739 && TREE_OVERFLOW (op0))
5740 || (TREE_CODE (op1) == INTEGER_CST
5741 && TREE_OVERFLOW (op1)))
5742 return NULL_TREE;
5744 sop = false;
5745 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5746 &only_ranges);
5748 if (ret && sop)
5750 enum warn_strict_overflow_code wc;
5751 const char* warnmsg;
5753 if (is_gimple_min_invariant (ret))
5755 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5756 warnmsg = G_("assuming signed overflow does not occur when "
5757 "simplifying conditional to constant");
5759 else
5761 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5762 warnmsg = G_("assuming signed overflow does not occur when "
5763 "simplifying conditional");
5766 if (issue_strict_overflow_warning (wc))
5768 location_t location;
5770 if (!gimple_has_location (stmt))
5771 location = input_location;
5772 else
5773 location = gimple_location (stmt);
5774 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
5778 if (warn_type_limits
5779 && ret && only_ranges
5780 && TREE_CODE_CLASS (code) == tcc_comparison
5781 && TREE_CODE (op0) == SSA_NAME)
5783 /* If the comparison is being folded and the operand on the LHS
5784 is being compared against a constant value that is outside of
5785 the natural range of OP0's type, then the predicate will
5786 always fold regardless of the value of OP0. If -Wtype-limits
5787 was specified, emit a warning. */
5788 tree type = TREE_TYPE (op0);
5789 value_range_t *vr0 = get_value_range (op0);
5791 if (vr0->type != VR_VARYING
5792 && INTEGRAL_TYPE_P (type)
5793 && vrp_val_is_min (vr0->min)
5794 && vrp_val_is_max (vr0->max)
5795 && is_gimple_min_invariant (op1))
5797 location_t location;
5799 if (!gimple_has_location (stmt))
5800 location = input_location;
5801 else
5802 location = gimple_location (stmt);
5804 warning_at (location, OPT_Wtype_limits,
5805 integer_zerop (ret)
5806 ? G_("comparison always false "
5807 "due to limited range of data type")
5808 : G_("comparison always true "
5809 "due to limited range of data type"));
5813 return ret;
5817 /* Visit conditional statement STMT. If we can determine which edge
5818 will be taken out of STMT's basic block, record it in
5819 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5820 SSA_PROP_VARYING. */
5822 static enum ssa_prop_result
5823 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5825 tree val;
5826 bool sop;
5828 *taken_edge_p = NULL;
5830 if (dump_file && (dump_flags & TDF_DETAILS))
5832 tree use;
5833 ssa_op_iter i;
5835 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5836 print_gimple_stmt (dump_file, stmt, 0, 0);
5837 fprintf (dump_file, "\nWith known ranges\n");
5839 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5841 fprintf (dump_file, "\t");
5842 print_generic_expr (dump_file, use, 0);
5843 fprintf (dump_file, ": ");
5844 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5847 fprintf (dump_file, "\n");
5850 /* Compute the value of the predicate COND by checking the known
5851 ranges of each of its operands.
5853 Note that we cannot evaluate all the equivalent ranges here
5854 because those ranges may not yet be final and with the current
5855 propagation strategy, we cannot determine when the value ranges
5856 of the names in the equivalence set have changed.
5858 For instance, given the following code fragment
5860 i_5 = PHI <8, i_13>
5862 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5863 if (i_14 == 1)
5866 Assume that on the first visit to i_14, i_5 has the temporary
5867 range [8, 8] because the second argument to the PHI function is
5868 not yet executable. We derive the range ~[0, 0] for i_14 and the
5869 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5870 the first time, since i_14 is equivalent to the range [8, 8], we
5871 determine that the predicate is always false.
5873 On the next round of propagation, i_13 is determined to be
5874 VARYING, which causes i_5 to drop down to VARYING. So, another
5875 visit to i_14 is scheduled. In this second visit, we compute the
5876 exact same range and equivalence set for i_14, namely ~[0, 0] and
5877 { i_5 }. But we did not have the previous range for i_5
5878 registered, so vrp_visit_assignment thinks that the range for
5879 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5880 is not visited again, which stops propagation from visiting
5881 statements in the THEN clause of that if().
5883 To properly fix this we would need to keep the previous range
5884 value for the names in the equivalence set. This way we would've
5885 discovered that from one visit to the other i_5 changed from
5886 range [8, 8] to VR_VARYING.
5888 However, fixing this apparent limitation may not be worth the
5889 additional checking. Testing on several code bases (GCC, DLV,
5890 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5891 4 more predicates folded in SPEC. */
5892 sop = false;
5894 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5895 gimple_cond_lhs (stmt),
5896 gimple_cond_rhs (stmt),
5897 false, &sop, NULL);
5898 if (val)
5900 if (!sop)
5901 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5902 else
5904 if (dump_file && (dump_flags & TDF_DETAILS))
5905 fprintf (dump_file,
5906 "\nIgnoring predicate evaluation because "
5907 "it assumes that signed overflow is undefined");
5908 val = NULL_TREE;
5912 if (dump_file && (dump_flags & TDF_DETAILS))
5914 fprintf (dump_file, "\nPredicate evaluates to: ");
5915 if (val == NULL_TREE)
5916 fprintf (dump_file, "DON'T KNOW\n");
5917 else
5918 print_generic_stmt (dump_file, val, 0);
5921 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5924 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5925 that includes the value VAL. The search is restricted to the range
5926 [START_IDX, n - 1] where n is the size of VEC.
5928 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5929 returned.
5931 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5932 it is placed in IDX and false is returned.
5934 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5935 returned. */
5937 static bool
5938 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5940 size_t n = gimple_switch_num_labels (stmt);
5941 size_t low, high;
5943 /* Find case label for minimum of the value range or the next one.
5944 At each iteration we are searching in [low, high - 1]. */
5946 for (low = start_idx, high = n; high != low; )
5948 tree t;
5949 int cmp;
5950 /* Note that i != high, so we never ask for n. */
5951 size_t i = (high + low) / 2;
5952 t = gimple_switch_label (stmt, i);
5954 /* Cache the result of comparing CASE_LOW and val. */
5955 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5957 if (cmp == 0)
5959 /* Ranges cannot be empty. */
5960 *idx = i;
5961 return true;
5963 else if (cmp > 0)
5964 high = i;
5965 else
5967 low = i + 1;
5968 if (CASE_HIGH (t) != NULL
5969 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5971 *idx = i;
5972 return true;
5977 *idx = high;
5978 return false;
5981 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5982 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5983 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5984 then MAX_IDX < MIN_IDX.
5985 Returns true if the default label is not needed. */
5987 static bool
5988 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5989 size_t *max_idx)
5991 size_t i, j;
5992 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5993 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5995 if (i == j
5996 && min_take_default
5997 && max_take_default)
5999 /* Only the default case label reached.
6000 Return an empty range. */
6001 *min_idx = 1;
6002 *max_idx = 0;
6003 return false;
6005 else
6007 bool take_default = min_take_default || max_take_default;
6008 tree low, high;
6009 size_t k;
6011 if (max_take_default)
6012 j--;
6014 /* If the case label range is continuous, we do not need
6015 the default case label. Verify that. */
6016 high = CASE_LOW (gimple_switch_label (stmt, i));
6017 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6018 high = CASE_HIGH (gimple_switch_label (stmt, i));
6019 for (k = i + 1; k <= j; ++k)
6021 low = CASE_LOW (gimple_switch_label (stmt, k));
6022 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
6024 take_default = true;
6025 break;
6027 high = low;
6028 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6029 high = CASE_HIGH (gimple_switch_label (stmt, k));
6032 *min_idx = i;
6033 *max_idx = j;
6034 return !take_default;
6038 /* Visit switch statement STMT. If we can determine which edge
6039 will be taken out of STMT's basic block, record it in
6040 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6041 SSA_PROP_VARYING. */
6043 static enum ssa_prop_result
6044 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6046 tree op, val;
6047 value_range_t *vr;
6048 size_t i = 0, j = 0;
6049 bool take_default;
6051 *taken_edge_p = NULL;
6052 op = gimple_switch_index (stmt);
6053 if (TREE_CODE (op) != SSA_NAME)
6054 return SSA_PROP_VARYING;
6056 vr = get_value_range (op);
6057 if (dump_file && (dump_flags & TDF_DETAILS))
6059 fprintf (dump_file, "\nVisiting switch expression with operand ");
6060 print_generic_expr (dump_file, op, 0);
6061 fprintf (dump_file, " with known range ");
6062 dump_value_range (dump_file, vr);
6063 fprintf (dump_file, "\n");
6066 if (vr->type != VR_RANGE
6067 || symbolic_range_p (vr))
6068 return SSA_PROP_VARYING;
6070 /* Find the single edge that is taken from the switch expression. */
6071 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6073 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6074 label */
6075 if (j < i)
6077 gcc_assert (take_default);
6078 val = gimple_switch_default_label (stmt);
6080 else
6082 /* Check if labels with index i to j and maybe the default label
6083 are all reaching the same label. */
6085 val = gimple_switch_label (stmt, i);
6086 if (take_default
6087 && CASE_LABEL (gimple_switch_default_label (stmt))
6088 != CASE_LABEL (val))
6090 if (dump_file && (dump_flags & TDF_DETAILS))
6091 fprintf (dump_file, " not a single destination for this "
6092 "range\n");
6093 return SSA_PROP_VARYING;
6095 for (++i; i <= j; ++i)
6097 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6099 if (dump_file && (dump_flags & TDF_DETAILS))
6100 fprintf (dump_file, " not a single destination for this "
6101 "range\n");
6102 return SSA_PROP_VARYING;
6107 *taken_edge_p = find_edge (gimple_bb (stmt),
6108 label_to_block (CASE_LABEL (val)));
6110 if (dump_file && (dump_flags & TDF_DETAILS))
6112 fprintf (dump_file, " will take edge to ");
6113 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6116 return SSA_PROP_INTERESTING;
6120 /* Evaluate statement STMT. If the statement produces a useful range,
6121 return SSA_PROP_INTERESTING and record the SSA name with the
6122 interesting range into *OUTPUT_P.
6124 If STMT is a conditional branch and we can determine its truth
6125 value, the taken edge is recorded in *TAKEN_EDGE_P.
6127 If STMT produces a varying value, return SSA_PROP_VARYING. */
6129 static enum ssa_prop_result
6130 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6132 tree def;
6133 ssa_op_iter iter;
6135 if (dump_file && (dump_flags & TDF_DETAILS))
6137 fprintf (dump_file, "\nVisiting statement:\n");
6138 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6139 fprintf (dump_file, "\n");
6142 if (!stmt_interesting_for_vrp (stmt))
6143 gcc_assert (stmt_ends_bb_p (stmt));
6144 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6146 /* In general, assignments with virtual operands are not useful
6147 for deriving ranges, with the obvious exception of calls to
6148 builtin functions. */
6150 if ((is_gimple_call (stmt)
6151 && gimple_call_fndecl (stmt) != NULL_TREE
6152 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6153 || !gimple_vuse (stmt))
6154 return vrp_visit_assignment_or_call (stmt, output_p);
6156 else if (gimple_code (stmt) == GIMPLE_COND)
6157 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6158 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6159 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6161 /* All other statements produce nothing of interest for VRP, so mark
6162 their outputs varying and prevent further simulation. */
6163 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6164 set_value_range_to_varying (get_value_range (def));
6166 return SSA_PROP_VARYING;
6170 /* Meet operation for value ranges. Given two value ranges VR0 and
6171 VR1, store in VR0 a range that contains both VR0 and VR1. This
6172 may not be the smallest possible such range. */
6174 static void
6175 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6177 if (vr0->type == VR_UNDEFINED)
6179 copy_value_range (vr0, vr1);
6180 return;
6183 if (vr1->type == VR_UNDEFINED)
6185 /* Nothing to do. VR0 already has the resulting range. */
6186 return;
6189 if (vr0->type == VR_VARYING)
6191 /* Nothing to do. VR0 already has the resulting range. */
6192 return;
6195 if (vr1->type == VR_VARYING)
6197 set_value_range_to_varying (vr0);
6198 return;
6201 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6203 int cmp;
6204 tree min, max;
6206 /* Compute the convex hull of the ranges. The lower limit of
6207 the new range is the minimum of the two ranges. If they
6208 cannot be compared, then give up. */
6209 cmp = compare_values (vr0->min, vr1->min);
6210 if (cmp == 0 || cmp == 1)
6211 min = vr1->min;
6212 else if (cmp == -1)
6213 min = vr0->min;
6214 else
6215 goto give_up;
6217 /* Similarly, the upper limit of the new range is the maximum
6218 of the two ranges. If they cannot be compared, then
6219 give up. */
6220 cmp = compare_values (vr0->max, vr1->max);
6221 if (cmp == 0 || cmp == -1)
6222 max = vr1->max;
6223 else if (cmp == 1)
6224 max = vr0->max;
6225 else
6226 goto give_up;
6228 /* Check for useless ranges. */
6229 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6230 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6231 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6232 goto give_up;
6234 /* The resulting set of equivalences is the intersection of
6235 the two sets. */
6236 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6237 bitmap_and_into (vr0->equiv, vr1->equiv);
6238 else if (vr0->equiv && !vr1->equiv)
6239 bitmap_clear (vr0->equiv);
6241 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6243 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6245 /* Two anti-ranges meet only if their complements intersect.
6246 Only handle the case of identical ranges. */
6247 if (compare_values (vr0->min, vr1->min) == 0
6248 && compare_values (vr0->max, vr1->max) == 0
6249 && compare_values (vr0->min, vr0->max) == 0)
6251 /* The resulting set of equivalences is the intersection of
6252 the two sets. */
6253 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6254 bitmap_and_into (vr0->equiv, vr1->equiv);
6255 else if (vr0->equiv && !vr1->equiv)
6256 bitmap_clear (vr0->equiv);
6258 else
6259 goto give_up;
6261 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6263 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6264 only handle the case where the ranges have an empty intersection.
6265 The result of the meet operation is the anti-range. */
6266 if (!symbolic_range_p (vr0)
6267 && !symbolic_range_p (vr1)
6268 && !value_ranges_intersect_p (vr0, vr1))
6270 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6271 set. We need to compute the intersection of the two
6272 equivalence sets. */
6273 if (vr1->type == VR_ANTI_RANGE)
6274 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6276 /* The resulting set of equivalences is the intersection of
6277 the two sets. */
6278 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6279 bitmap_and_into (vr0->equiv, vr1->equiv);
6280 else if (vr0->equiv && !vr1->equiv)
6281 bitmap_clear (vr0->equiv);
6283 else
6284 goto give_up;
6286 else
6287 gcc_unreachable ();
6289 return;
6291 give_up:
6292 /* Failed to find an efficient meet. Before giving up and setting
6293 the result to VARYING, see if we can at least derive a useful
6294 anti-range. FIXME, all this nonsense about distinguishing
6295 anti-ranges from ranges is necessary because of the odd
6296 semantics of range_includes_zero_p and friends. */
6297 if (!symbolic_range_p (vr0)
6298 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6299 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6300 && !symbolic_range_p (vr1)
6301 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6302 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6304 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6306 /* Since this meet operation did not result from the meeting of
6307 two equivalent names, VR0 cannot have any equivalences. */
6308 if (vr0->equiv)
6309 bitmap_clear (vr0->equiv);
6311 else
6312 set_value_range_to_varying (vr0);
6316 /* Visit all arguments for PHI node PHI that flow through executable
6317 edges. If a valid value range can be derived from all the incoming
6318 value ranges, set a new range for the LHS of PHI. */
6320 static enum ssa_prop_result
6321 vrp_visit_phi_node (gimple phi)
6323 size_t i;
6324 tree lhs = PHI_RESULT (phi);
6325 value_range_t *lhs_vr = get_value_range (lhs);
6326 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6327 int edges, old_edges;
6328 struct loop *l;
6330 copy_value_range (&vr_result, lhs_vr);
6332 if (dump_file && (dump_flags & TDF_DETAILS))
6334 fprintf (dump_file, "\nVisiting PHI node: ");
6335 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6338 edges = 0;
6339 for (i = 0; i < gimple_phi_num_args (phi); i++)
6341 edge e = gimple_phi_arg_edge (phi, i);
6343 if (dump_file && (dump_flags & TDF_DETAILS))
6345 fprintf (dump_file,
6346 "\n Argument #%d (%d -> %d %sexecutable)\n",
6347 (int) i, e->src->index, e->dest->index,
6348 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6351 if (e->flags & EDGE_EXECUTABLE)
6353 tree arg = PHI_ARG_DEF (phi, i);
6354 value_range_t vr_arg;
6356 ++edges;
6358 if (TREE_CODE (arg) == SSA_NAME)
6360 vr_arg = *(get_value_range (arg));
6362 else
6364 if (is_overflow_infinity (arg))
6366 arg = copy_node (arg);
6367 TREE_OVERFLOW (arg) = 0;
6370 vr_arg.type = VR_RANGE;
6371 vr_arg.min = arg;
6372 vr_arg.max = arg;
6373 vr_arg.equiv = NULL;
6376 if (dump_file && (dump_flags & TDF_DETAILS))
6378 fprintf (dump_file, "\t");
6379 print_generic_expr (dump_file, arg, dump_flags);
6380 fprintf (dump_file, "\n\tValue: ");
6381 dump_value_range (dump_file, &vr_arg);
6382 fprintf (dump_file, "\n");
6385 vrp_meet (&vr_result, &vr_arg);
6387 if (vr_result.type == VR_VARYING)
6388 break;
6392 /* If this is a loop PHI node SCEV may known more about its
6393 value-range. */
6394 if (current_loops
6395 && (l = loop_containing_stmt (phi))
6396 && l->header == gimple_bb (phi))
6397 adjust_range_with_scev (&vr_result, l, phi, lhs);
6399 if (vr_result.type == VR_VARYING)
6400 goto varying;
6402 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6403 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6405 /* To prevent infinite iterations in the algorithm, derive ranges
6406 when the new value is slightly bigger or smaller than the
6407 previous one. We don't do this if we have seen a new executable
6408 edge; this helps us avoid an overflow infinity for conditionals
6409 which are not in a loop. */
6410 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6411 && edges <= old_edges)
6413 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6415 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6416 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6418 /* If the new minimum is smaller or larger than the previous
6419 one, go all the way to -INF. In the first case, to avoid
6420 iterating millions of times to reach -INF, and in the
6421 other case to avoid infinite bouncing between different
6422 minimums. */
6423 if (cmp_min > 0 || cmp_min < 0)
6425 /* If we will end up with a (-INF, +INF) range, set it to
6426 VARYING. Same if the previous max value was invalid for
6427 the type and we'd end up with vr_result.min > vr_result.max. */
6428 if (vrp_val_is_max (vr_result.max)
6429 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6430 vr_result.max) > 0)
6431 goto varying;
6433 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6434 || !vrp_var_may_overflow (lhs, phi))
6435 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6436 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6437 vr_result.min =
6438 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6439 else
6440 goto varying;
6443 /* Similarly, if the new maximum is smaller or larger than
6444 the previous one, go all the way to +INF. */
6445 if (cmp_max < 0 || cmp_max > 0)
6447 /* If we will end up with a (-INF, +INF) range, set it to
6448 VARYING. Same if the previous min value was invalid for
6449 the type and we'd end up with vr_result.max < vr_result.min. */
6450 if (vrp_val_is_min (vr_result.min)
6451 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6452 vr_result.min) < 0)
6453 goto varying;
6455 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6456 || !vrp_var_may_overflow (lhs, phi))
6457 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6458 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6459 vr_result.max =
6460 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6461 else
6462 goto varying;
6467 /* If the new range is different than the previous value, keep
6468 iterating. */
6469 if (update_value_range (lhs, &vr_result))
6471 if (dump_file && (dump_flags & TDF_DETAILS))
6473 fprintf (dump_file, "Found new range for ");
6474 print_generic_expr (dump_file, lhs, 0);
6475 fprintf (dump_file, ": ");
6476 dump_value_range (dump_file, &vr_result);
6477 fprintf (dump_file, "\n\n");
6480 return SSA_PROP_INTERESTING;
6483 /* Nothing changed, don't add outgoing edges. */
6484 return SSA_PROP_NOT_INTERESTING;
6486 /* No match found. Set the LHS to VARYING. */
6487 varying:
6488 set_value_range_to_varying (lhs_vr);
6489 return SSA_PROP_VARYING;
6492 /* Simplify boolean operations if the source is known
6493 to be already a boolean. */
6494 static bool
6495 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6497 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6498 tree val = NULL;
6499 tree op0, op1;
6500 value_range_t *vr;
6501 bool sop = false;
6502 bool need_conversion;
6504 op0 = gimple_assign_rhs1 (stmt);
6505 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6507 if (TREE_CODE (op0) != SSA_NAME)
6508 return false;
6509 vr = get_value_range (op0);
6511 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6512 if (!val || !integer_onep (val))
6513 return false;
6515 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6516 if (!val || !integer_onep (val))
6517 return false;
6520 if (rhs_code == TRUTH_NOT_EXPR)
6522 rhs_code = NE_EXPR;
6523 op1 = build_int_cst (TREE_TYPE (op0), 1);
6525 else
6527 op1 = gimple_assign_rhs2 (stmt);
6529 /* Reduce number of cases to handle. */
6530 if (is_gimple_min_invariant (op1))
6532 /* Exclude anything that should have been already folded. */
6533 if (rhs_code != EQ_EXPR
6534 && rhs_code != NE_EXPR
6535 && rhs_code != TRUTH_XOR_EXPR)
6536 return false;
6538 if (!integer_zerop (op1)
6539 && !integer_onep (op1)
6540 && !integer_all_onesp (op1))
6541 return false;
6543 /* Limit the number of cases we have to consider. */
6544 if (rhs_code == EQ_EXPR)
6546 rhs_code = NE_EXPR;
6547 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6550 else
6552 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6553 if (rhs_code == EQ_EXPR)
6554 return false;
6556 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6558 vr = get_value_range (op1);
6559 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6560 if (!val || !integer_onep (val))
6561 return false;
6563 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6564 if (!val || !integer_onep (val))
6565 return false;
6570 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6572 location_t location;
6574 if (!gimple_has_location (stmt))
6575 location = input_location;
6576 else
6577 location = gimple_location (stmt);
6579 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6580 warning_at (location, OPT_Wstrict_overflow,
6581 _("assuming signed overflow does not occur when "
6582 "simplifying && or || to & or |"));
6583 else
6584 warning_at (location, OPT_Wstrict_overflow,
6585 _("assuming signed overflow does not occur when "
6586 "simplifying ==, != or ! to identity or ^"));
6589 need_conversion =
6590 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6591 TREE_TYPE (op0));
6593 /* Make sure to not sign-extend -1 as a boolean value. */
6594 if (need_conversion
6595 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6596 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6597 return false;
6599 switch (rhs_code)
6601 case TRUTH_AND_EXPR:
6602 rhs_code = BIT_AND_EXPR;
6603 break;
6604 case TRUTH_OR_EXPR:
6605 rhs_code = BIT_IOR_EXPR;
6606 break;
6607 case TRUTH_XOR_EXPR:
6608 case NE_EXPR:
6609 if (integer_zerop (op1))
6611 gimple_assign_set_rhs_with_ops (gsi,
6612 need_conversion ? NOP_EXPR : SSA_NAME,
6613 op0, NULL);
6614 update_stmt (gsi_stmt (*gsi));
6615 return true;
6618 rhs_code = BIT_XOR_EXPR;
6619 break;
6620 default:
6621 gcc_unreachable ();
6624 if (need_conversion)
6625 return false;
6627 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6628 update_stmt (gsi_stmt (*gsi));
6629 return true;
6632 /* Simplify a division or modulo operator to a right shift or
6633 bitwise and if the first operand is unsigned or is greater
6634 than zero and the second operand is an exact power of two. */
6636 static bool
6637 simplify_div_or_mod_using_ranges (gimple stmt)
6639 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6640 tree val = NULL;
6641 tree op0 = gimple_assign_rhs1 (stmt);
6642 tree op1 = gimple_assign_rhs2 (stmt);
6643 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6645 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6647 val = integer_one_node;
6649 else
6651 bool sop = false;
6653 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6655 if (val
6656 && sop
6657 && integer_onep (val)
6658 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6660 location_t location;
6662 if (!gimple_has_location (stmt))
6663 location = input_location;
6664 else
6665 location = gimple_location (stmt);
6666 warning_at (location, OPT_Wstrict_overflow,
6667 "assuming signed overflow does not occur when "
6668 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6672 if (val && integer_onep (val))
6674 tree t;
6676 if (rhs_code == TRUNC_DIV_EXPR)
6678 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6679 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6680 gimple_assign_set_rhs1 (stmt, op0);
6681 gimple_assign_set_rhs2 (stmt, t);
6683 else
6685 t = build_int_cst (TREE_TYPE (op1), 1);
6686 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6687 t = fold_convert (TREE_TYPE (op0), t);
6689 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6690 gimple_assign_set_rhs1 (stmt, op0);
6691 gimple_assign_set_rhs2 (stmt, t);
6694 update_stmt (stmt);
6695 return true;
6698 return false;
6701 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6702 ABS_EXPR. If the operand is <= 0, then simplify the
6703 ABS_EXPR into a NEGATE_EXPR. */
6705 static bool
6706 simplify_abs_using_ranges (gimple stmt)
6708 tree val = NULL;
6709 tree op = gimple_assign_rhs1 (stmt);
6710 tree type = TREE_TYPE (op);
6711 value_range_t *vr = get_value_range (op);
6713 if (TYPE_UNSIGNED (type))
6715 val = integer_zero_node;
6717 else if (vr)
6719 bool sop = false;
6721 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6722 if (!val)
6724 sop = false;
6725 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6726 &sop);
6728 if (val)
6730 if (integer_zerop (val))
6731 val = integer_one_node;
6732 else if (integer_onep (val))
6733 val = integer_zero_node;
6737 if (val
6738 && (integer_onep (val) || integer_zerop (val)))
6740 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6742 location_t location;
6744 if (!gimple_has_location (stmt))
6745 location = input_location;
6746 else
6747 location = gimple_location (stmt);
6748 warning_at (location, OPT_Wstrict_overflow,
6749 "assuming signed overflow does not occur when "
6750 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6753 gimple_assign_set_rhs1 (stmt, op);
6754 if (integer_onep (val))
6755 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6756 else
6757 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6758 update_stmt (stmt);
6759 return true;
6763 return false;
6766 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6767 a known value range VR.
6769 If there is one and only one value which will satisfy the
6770 conditional, then return that value. Else return NULL. */
6772 static tree
6773 test_for_singularity (enum tree_code cond_code, tree op0,
6774 tree op1, value_range_t *vr)
6776 tree min = NULL;
6777 tree max = NULL;
6779 /* Extract minimum/maximum values which satisfy the
6780 the conditional as it was written. */
6781 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6783 /* This should not be negative infinity; there is no overflow
6784 here. */
6785 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6787 max = op1;
6788 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6790 tree one = build_int_cst (TREE_TYPE (op0), 1);
6791 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6792 if (EXPR_P (max))
6793 TREE_NO_WARNING (max) = 1;
6796 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6798 /* This should not be positive infinity; there is no overflow
6799 here. */
6800 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6802 min = op1;
6803 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6805 tree one = build_int_cst (TREE_TYPE (op0), 1);
6806 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6807 if (EXPR_P (min))
6808 TREE_NO_WARNING (min) = 1;
6812 /* Now refine the minimum and maximum values using any
6813 value range information we have for op0. */
6814 if (min && max)
6816 if (compare_values (vr->min, min) == 1)
6817 min = vr->min;
6818 if (compare_values (vr->max, max) == -1)
6819 max = vr->max;
6821 /* If the new min/max values have converged to a single value,
6822 then there is only one value which can satisfy the condition,
6823 return that value. */
6824 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6825 return min;
6827 return NULL;
6830 /* Simplify a conditional using a relational operator to an equality
6831 test if the range information indicates only one value can satisfy
6832 the original conditional. */
6834 static bool
6835 simplify_cond_using_ranges (gimple stmt)
6837 tree op0 = gimple_cond_lhs (stmt);
6838 tree op1 = gimple_cond_rhs (stmt);
6839 enum tree_code cond_code = gimple_cond_code (stmt);
6841 if (cond_code != NE_EXPR
6842 && cond_code != EQ_EXPR
6843 && TREE_CODE (op0) == SSA_NAME
6844 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6845 && is_gimple_min_invariant (op1))
6847 value_range_t *vr = get_value_range (op0);
6849 /* If we have range information for OP0, then we might be
6850 able to simplify this conditional. */
6851 if (vr->type == VR_RANGE)
6853 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6855 if (new_tree)
6857 if (dump_file)
6859 fprintf (dump_file, "Simplified relational ");
6860 print_gimple_stmt (dump_file, stmt, 0, 0);
6861 fprintf (dump_file, " into ");
6864 gimple_cond_set_code (stmt, EQ_EXPR);
6865 gimple_cond_set_lhs (stmt, op0);
6866 gimple_cond_set_rhs (stmt, new_tree);
6868 update_stmt (stmt);
6870 if (dump_file)
6872 print_gimple_stmt (dump_file, stmt, 0, 0);
6873 fprintf (dump_file, "\n");
6876 return true;
6879 /* Try again after inverting the condition. We only deal
6880 with integral types here, so no need to worry about
6881 issues with inverting FP comparisons. */
6882 cond_code = invert_tree_comparison (cond_code, false);
6883 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6885 if (new_tree)
6887 if (dump_file)
6889 fprintf (dump_file, "Simplified relational ");
6890 print_gimple_stmt (dump_file, stmt, 0, 0);
6891 fprintf (dump_file, " into ");
6894 gimple_cond_set_code (stmt, NE_EXPR);
6895 gimple_cond_set_lhs (stmt, op0);
6896 gimple_cond_set_rhs (stmt, new_tree);
6898 update_stmt (stmt);
6900 if (dump_file)
6902 print_gimple_stmt (dump_file, stmt, 0, 0);
6903 fprintf (dump_file, "\n");
6906 return true;
6911 return false;
6914 /* Simplify a switch statement using the value range of the switch
6915 argument. */
6917 static bool
6918 simplify_switch_using_ranges (gimple stmt)
6920 tree op = gimple_switch_index (stmt);
6921 value_range_t *vr;
6922 bool take_default;
6923 edge e;
6924 edge_iterator ei;
6925 size_t i = 0, j = 0, n, n2;
6926 tree vec2;
6927 switch_update su;
6929 if (TREE_CODE (op) == SSA_NAME)
6931 vr = get_value_range (op);
6933 /* We can only handle integer ranges. */
6934 if (vr->type != VR_RANGE
6935 || symbolic_range_p (vr))
6936 return false;
6938 /* Find case label for min/max of the value range. */
6939 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6941 else if (TREE_CODE (op) == INTEGER_CST)
6943 take_default = !find_case_label_index (stmt, 1, op, &i);
6944 if (take_default)
6946 i = 1;
6947 j = 0;
6949 else
6951 j = i;
6954 else
6955 return false;
6957 n = gimple_switch_num_labels (stmt);
6959 /* Bail out if this is just all edges taken. */
6960 if (i == 1
6961 && j == n - 1
6962 && take_default)
6963 return false;
6965 /* Build a new vector of taken case labels. */
6966 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6967 n2 = 0;
6969 /* Add the default edge, if necessary. */
6970 if (take_default)
6971 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6973 for (; i <= j; ++i, ++n2)
6974 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6976 /* Mark needed edges. */
6977 for (i = 0; i < n2; ++i)
6979 e = find_edge (gimple_bb (stmt),
6980 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6981 e->aux = (void *)-1;
6984 /* Queue not needed edges for later removal. */
6985 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6987 if (e->aux == (void *)-1)
6989 e->aux = NULL;
6990 continue;
6993 if (dump_file && (dump_flags & TDF_DETAILS))
6995 fprintf (dump_file, "removing unreachable case label\n");
6997 VEC_safe_push (edge, heap, to_remove_edges, e);
6998 e->flags &= ~EDGE_EXECUTABLE;
7001 /* And queue an update for the stmt. */
7002 su.stmt = stmt;
7003 su.vec = vec2;
7004 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7005 return false;
7008 /* Simplify STMT using ranges if possible. */
7010 static bool
7011 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7013 gimple stmt = gsi_stmt (*gsi);
7014 if (is_gimple_assign (stmt))
7016 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7018 switch (rhs_code)
7020 case EQ_EXPR:
7021 case NE_EXPR:
7022 case TRUTH_NOT_EXPR:
7023 case TRUTH_AND_EXPR:
7024 case TRUTH_OR_EXPR:
7025 case TRUTH_XOR_EXPR:
7026 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
7027 or identity if the RHS is zero or one, and the LHS are known
7028 to be boolean values. Transform all TRUTH_*_EXPR into
7029 BIT_*_EXPR if both arguments are known to be boolean values. */
7030 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7031 return simplify_truth_ops_using_ranges (gsi, stmt);
7032 break;
7034 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7035 and BIT_AND_EXPR respectively if the first operand is greater
7036 than zero and the second operand is an exact power of two. */
7037 case TRUNC_DIV_EXPR:
7038 case TRUNC_MOD_EXPR:
7039 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7040 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7041 return simplify_div_or_mod_using_ranges (stmt);
7042 break;
7044 /* Transform ABS (X) into X or -X as appropriate. */
7045 case ABS_EXPR:
7046 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
7047 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
7048 return simplify_abs_using_ranges (stmt);
7049 break;
7051 default:
7052 break;
7055 else if (gimple_code (stmt) == GIMPLE_COND)
7056 return simplify_cond_using_ranges (stmt);
7057 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7058 return simplify_switch_using_ranges (stmt);
7060 return false;
7063 /* If the statement pointed by SI has a predicate whose value can be
7064 computed using the value range information computed by VRP, compute
7065 its value and return true. Otherwise, return false. */
7067 static bool
7068 fold_predicate_in (gimple_stmt_iterator *si)
7070 bool assignment_p = false;
7071 tree val;
7072 gimple stmt = gsi_stmt (*si);
7074 if (is_gimple_assign (stmt)
7075 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7077 assignment_p = true;
7078 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7079 gimple_assign_rhs1 (stmt),
7080 gimple_assign_rhs2 (stmt),
7081 stmt);
7083 else if (gimple_code (stmt) == GIMPLE_COND)
7084 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7085 gimple_cond_lhs (stmt),
7086 gimple_cond_rhs (stmt),
7087 stmt);
7088 else
7089 return false;
7091 if (val)
7093 if (assignment_p)
7094 val = fold_convert (gimple_expr_type (stmt), val);
7096 if (dump_file)
7098 fprintf (dump_file, "Folding predicate ");
7099 print_gimple_expr (dump_file, stmt, 0, 0);
7100 fprintf (dump_file, " to ");
7101 print_generic_expr (dump_file, val, 0);
7102 fprintf (dump_file, "\n");
7105 if (is_gimple_assign (stmt))
7106 gimple_assign_set_rhs_from_tree (si, val);
7107 else
7109 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7110 if (integer_zerop (val))
7111 gimple_cond_make_false (stmt);
7112 else if (integer_onep (val))
7113 gimple_cond_make_true (stmt);
7114 else
7115 gcc_unreachable ();
7118 return true;
7121 return false;
7124 /* Callback for substitute_and_fold folding the stmt at *SI. */
7126 static bool
7127 vrp_fold_stmt (gimple_stmt_iterator *si)
7129 if (fold_predicate_in (si))
7130 return true;
7132 return simplify_stmt_using_ranges (si);
7135 /* Stack of dest,src equivalency pairs that need to be restored after
7136 each attempt to thread a block's incoming edge to an outgoing edge.
7138 A NULL entry is used to mark the end of pairs which need to be
7139 restored. */
7140 static VEC(tree,heap) *stack;
7142 /* A trivial wrapper so that we can present the generic jump threading
7143 code with a simple API for simplifying statements. STMT is the
7144 statement we want to simplify, WITHIN_STMT provides the location
7145 for any overflow warnings. */
7147 static tree
7148 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7150 /* We only use VRP information to simplify conditionals. This is
7151 overly conservative, but it's unclear if doing more would be
7152 worth the compile time cost. */
7153 if (gimple_code (stmt) != GIMPLE_COND)
7154 return NULL;
7156 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7157 gimple_cond_lhs (stmt),
7158 gimple_cond_rhs (stmt), within_stmt);
7161 /* Blocks which have more than one predecessor and more than
7162 one successor present jump threading opportunities, i.e.,
7163 when the block is reached from a specific predecessor, we
7164 may be able to determine which of the outgoing edges will
7165 be traversed. When this optimization applies, we are able
7166 to avoid conditionals at runtime and we may expose secondary
7167 optimization opportunities.
7169 This routine is effectively a driver for the generic jump
7170 threading code. It basically just presents the generic code
7171 with edges that may be suitable for jump threading.
7173 Unlike DOM, we do not iterate VRP if jump threading was successful.
7174 While iterating may expose new opportunities for VRP, it is expected
7175 those opportunities would be very limited and the compile time cost
7176 to expose those opportunities would be significant.
7178 As jump threading opportunities are discovered, they are registered
7179 for later realization. */
7181 static void
7182 identify_jump_threads (void)
7184 basic_block bb;
7185 gimple dummy;
7186 int i;
7187 edge e;
7189 /* Ugh. When substituting values earlier in this pass we can
7190 wipe the dominance information. So rebuild the dominator
7191 information as we need it within the jump threading code. */
7192 calculate_dominance_info (CDI_DOMINATORS);
7194 /* We do not allow VRP information to be used for jump threading
7195 across a back edge in the CFG. Otherwise it becomes too
7196 difficult to avoid eliminating loop exit tests. Of course
7197 EDGE_DFS_BACK is not accurate at this time so we have to
7198 recompute it. */
7199 mark_dfs_back_edges ();
7201 /* Do not thread across edges we are about to remove. Just marking
7202 them as EDGE_DFS_BACK will do. */
7203 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7204 e->flags |= EDGE_DFS_BACK;
7206 /* Allocate our unwinder stack to unwind any temporary equivalences
7207 that might be recorded. */
7208 stack = VEC_alloc (tree, heap, 20);
7210 /* To avoid lots of silly node creation, we create a single
7211 conditional and just modify it in-place when attempting to
7212 thread jumps. */
7213 dummy = gimple_build_cond (EQ_EXPR,
7214 integer_zero_node, integer_zero_node,
7215 NULL, NULL);
7217 /* Walk through all the blocks finding those which present a
7218 potential jump threading opportunity. We could set this up
7219 as a dominator walker and record data during the walk, but
7220 I doubt it's worth the effort for the classes of jump
7221 threading opportunities we are trying to identify at this
7222 point in compilation. */
7223 FOR_EACH_BB (bb)
7225 gimple last;
7227 /* If the generic jump threading code does not find this block
7228 interesting, then there is nothing to do. */
7229 if (! potentially_threadable_block (bb))
7230 continue;
7232 /* We only care about blocks ending in a COND_EXPR. While there
7233 may be some value in handling SWITCH_EXPR here, I doubt it's
7234 terribly important. */
7235 last = gsi_stmt (gsi_last_bb (bb));
7236 if (gimple_code (last) != GIMPLE_COND)
7237 continue;
7239 /* We're basically looking for any kind of conditional with
7240 integral type arguments. */
7241 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7242 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7243 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7244 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7245 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7247 edge_iterator ei;
7249 /* We've got a block with multiple predecessors and multiple
7250 successors which also ends in a suitable conditional. For
7251 each predecessor, see if we can thread it to a specific
7252 successor. */
7253 FOR_EACH_EDGE (e, ei, bb->preds)
7255 /* Do not thread across back edges or abnormal edges
7256 in the CFG. */
7257 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7258 continue;
7260 thread_across_edge (dummy, e, true, &stack,
7261 simplify_stmt_for_jump_threading);
7266 /* We do not actually update the CFG or SSA graphs at this point as
7267 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7268 handle ASSERT_EXPRs gracefully. */
7271 /* We identified all the jump threading opportunities earlier, but could
7272 not transform the CFG at that time. This routine transforms the
7273 CFG and arranges for the dominator tree to be rebuilt if necessary.
7275 Note the SSA graph update will occur during the normal TODO
7276 processing by the pass manager. */
7277 static void
7278 finalize_jump_threads (void)
7280 thread_through_all_blocks (false);
7281 VEC_free (tree, heap, stack);
7285 /* Traverse all the blocks folding conditionals with known ranges. */
7287 static void
7288 vrp_finalize (void)
7290 size_t i;
7291 prop_value_t *single_val_range;
7292 bool do_value_subst_p;
7294 if (dump_file)
7296 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7297 dump_all_value_ranges (dump_file);
7298 fprintf (dump_file, "\n");
7301 /* We may have ended with ranges that have exactly one value. Those
7302 values can be substituted as any other const propagated
7303 value using substitute_and_fold. */
7304 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7306 do_value_subst_p = false;
7307 for (i = 0; i < num_ssa_names; i++)
7308 if (vr_value[i]
7309 && vr_value[i]->type == VR_RANGE
7310 && vr_value[i]->min == vr_value[i]->max
7311 && is_gimple_min_invariant (vr_value[i]->min))
7313 single_val_range[i].value = vr_value[i]->min;
7314 do_value_subst_p = true;
7317 if (!do_value_subst_p)
7319 /* We found no single-valued ranges, don't waste time trying to
7320 do single value substitution in substitute_and_fold. */
7321 free (single_val_range);
7322 single_val_range = NULL;
7325 substitute_and_fold (single_val_range, vrp_fold_stmt);
7327 if (warn_array_bounds)
7328 check_all_array_refs ();
7330 /* We must identify jump threading opportunities before we release
7331 the datastructures built by VRP. */
7332 identify_jump_threads ();
7334 /* Free allocated memory. */
7335 for (i = 0; i < num_ssa_names; i++)
7336 if (vr_value[i])
7338 BITMAP_FREE (vr_value[i]->equiv);
7339 free (vr_value[i]);
7342 free (single_val_range);
7343 free (vr_value);
7344 free (vr_phi_edge_counts);
7346 /* So that we can distinguish between VRP data being available
7347 and not available. */
7348 vr_value = NULL;
7349 vr_phi_edge_counts = NULL;
7353 /* Main entry point to VRP (Value Range Propagation). This pass is
7354 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7355 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7356 Programming Language Design and Implementation, pp. 67-78, 1995.
7357 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7359 This is essentially an SSA-CCP pass modified to deal with ranges
7360 instead of constants.
7362 While propagating ranges, we may find that two or more SSA name
7363 have equivalent, though distinct ranges. For instance,
7365 1 x_9 = p_3->a;
7366 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7367 3 if (p_4 == q_2)
7368 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7369 5 endif
7370 6 if (q_2)
7372 In the code above, pointer p_5 has range [q_2, q_2], but from the
7373 code we can also determine that p_5 cannot be NULL and, if q_2 had
7374 a non-varying range, p_5's range should also be compatible with it.
7376 These equivalences are created by two expressions: ASSERT_EXPR and
7377 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7378 result of another assertion, then we can use the fact that p_5 and
7379 p_4 are equivalent when evaluating p_5's range.
7381 Together with value ranges, we also propagate these equivalences
7382 between names so that we can take advantage of information from
7383 multiple ranges when doing final replacement. Note that this
7384 equivalency relation is transitive but not symmetric.
7386 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7387 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7388 in contexts where that assertion does not hold (e.g., in line 6).
7390 TODO, the main difference between this pass and Patterson's is that
7391 we do not propagate edge probabilities. We only compute whether
7392 edges can be taken or not. That is, instead of having a spectrum
7393 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7394 DON'T KNOW. In the future, it may be worthwhile to propagate
7395 probabilities to aid branch prediction. */
7397 static unsigned int
7398 execute_vrp (void)
7400 int i;
7401 edge e;
7402 switch_update *su;
7404 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7405 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7406 scev_initialize ();
7408 insert_range_assertions ();
7410 to_remove_edges = VEC_alloc (edge, heap, 10);
7411 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7412 threadedge_initialize_values ();
7414 vrp_initialize ();
7415 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7416 vrp_finalize ();
7418 /* ASSERT_EXPRs must be removed before finalizing jump threads
7419 as finalizing jump threads calls the CFG cleanup code which
7420 does not properly handle ASSERT_EXPRs. */
7421 remove_range_assertions ();
7423 /* If we exposed any new variables, go ahead and put them into
7424 SSA form now, before we handle jump threading. This simplifies
7425 interactions between rewriting of _DECL nodes into SSA form
7426 and rewriting SSA_NAME nodes into SSA form after block
7427 duplication and CFG manipulation. */
7428 update_ssa (TODO_update_ssa);
7430 finalize_jump_threads ();
7432 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7433 CFG in a broken state and requires a cfg_cleanup run. */
7434 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7435 remove_edge (e);
7436 /* Update SWITCH_EXPR case label vector. */
7437 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7439 size_t j;
7440 size_t n = TREE_VEC_LENGTH (su->vec);
7441 tree label;
7442 gimple_switch_set_num_labels (su->stmt, n);
7443 for (j = 0; j < n; j++)
7444 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7445 /* As we may have replaced the default label with a regular one
7446 make sure to make it a real default label again. This ensures
7447 optimal expansion. */
7448 label = gimple_switch_default_label (su->stmt);
7449 CASE_LOW (label) = NULL_TREE;
7450 CASE_HIGH (label) = NULL_TREE;
7453 if (VEC_length (edge, to_remove_edges) > 0)
7454 free_dominance_info (CDI_DOMINATORS);
7456 VEC_free (edge, heap, to_remove_edges);
7457 VEC_free (switch_update, heap, to_update_switch_stmts);
7458 threadedge_finalize_values ();
7460 scev_finalize ();
7461 loop_optimizer_finalize ();
7462 return 0;
7465 static bool
7466 gate_vrp (void)
7468 return flag_tree_vrp != 0;
7471 struct gimple_opt_pass pass_vrp =
7474 GIMPLE_PASS,
7475 "vrp", /* name */
7476 gate_vrp, /* gate */
7477 execute_vrp, /* execute */
7478 NULL, /* sub */
7479 NULL, /* next */
7480 0, /* static_pass_number */
7481 TV_TREE_VRP, /* tv_id */
7482 PROP_ssa, /* properties_required */
7483 0, /* properties_provided */
7484 0, /* properties_destroyed */
7485 0, /* todo_flags_start */
7486 TODO_cleanup_cfg
7487 | TODO_ggc_collect
7488 | TODO_verify_ssa
7489 | TODO_dump_func
7490 | TODO_update_ssa /* todo_flags_finish */