mmx.md (*vec_extractv2sf_1): Do not emit unpckhps.
[official-gcc.git] / libgcc / libgcov-util.c
blob10771332b917e33f8c9e146b51ead76caf65ba23
1 /* Utility functions for reading gcda files into in-memory
2 gcov_info structures and offline profile processing. */
3 /* Copyright (C) 2014 Free Software Foundation, Inc.
4 Contributed by Rong Xu <xur@google.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 Under Section 7 of GPL version 3, you are granted additional
19 permissions described in the GCC Runtime Library Exception, version
20 3.1, as published by the Free Software Foundation.
22 You should have received a copy of the GNU General Public License and
23 a copy of the GCC Runtime Library Exception along with this program;
24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
25 <http://www.gnu.org/licenses/>. */
28 #define IN_GCOV_TOOL 1
30 #include "libgcov.h"
31 #include "intl.h"
32 #include "diagnostic.h"
33 #include "version.h"
34 #include "demangle.h"
36 /* Borrowed from basic-block.h. */
37 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
39 extern gcov_position_t gcov_position();
40 extern int gcov_is_error();
42 /* Verbose mode for debug. */
43 static int verbose;
45 /* Set verbose flag. */
46 void gcov_set_verbose (void)
48 verbose = 1;
51 /* The following part is to read Gcda and reconstruct GCOV_INFO. */
53 #include "obstack.h"
54 #include <unistd.h>
55 #include <ftw.h>
57 static void tag_function (unsigned, unsigned);
58 static void tag_blocks (unsigned, unsigned);
59 static void tag_arcs (unsigned, unsigned);
60 static void tag_lines (unsigned, unsigned);
61 static void tag_counters (unsigned, unsigned);
62 static void tag_summary (unsigned, unsigned);
64 /* The gcov_info for the first module. */
65 static struct gcov_info *curr_gcov_info;
66 /* The gcov_info being processed. */
67 static struct gcov_info *gcov_info_head;
68 /* This variable contains all the functions in current module. */
69 static struct obstack fn_info;
70 /* The function being processed. */
71 static struct gcov_fn_info *curr_fn_info;
72 /* The number of functions seen so far. */
73 static unsigned num_fn_info;
74 /* This variable contains all the counters for current module. */
75 static int k_ctrs_mask[GCOV_COUNTERS];
76 /* The kind of counters that have been seen. */
77 static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS];
78 /* Number of kind of counters that have been seen. */
79 static int k_ctrs_types;
81 /* Merge functions for counters. */
82 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE,
83 static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = {
84 #include "gcov-counter.def"
86 #undef DEF_GCOV_COUNTER
88 /* Set the ctrs field in gcov_fn_info object FN_INFO. */
90 static void
91 set_fn_ctrs (struct gcov_fn_info *fn_info)
93 int j = 0, i;
95 for (i = 0; i < GCOV_COUNTERS; i++)
97 if (k_ctrs_mask[i] == 0)
98 continue;
99 fn_info->ctrs[j].num = k_ctrs[i].num;
100 fn_info->ctrs[j].values = k_ctrs[i].values;
101 j++;
103 if (k_ctrs_types == 0)
104 k_ctrs_types = j;
105 else
106 gcc_assert (j == k_ctrs_types);
109 /* For each tag in gcda file, we have an entry here.
110 TAG is the tag value; NAME is the tag name; and
111 PROC is the handler function. */
113 typedef struct tag_format
115 unsigned tag;
116 char const *name;
117 void (*proc) (unsigned, unsigned);
118 } tag_format_t;
120 /* Handler table for various Tags. */
122 static const tag_format_t tag_table[] =
124 {0, "NOP", NULL},
125 {0, "UNKNOWN", NULL},
126 {0, "COUNTERS", tag_counters},
127 {GCOV_TAG_FUNCTION, "FUNCTION", tag_function},
128 {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks},
129 {GCOV_TAG_ARCS, "ARCS", tag_arcs},
130 {GCOV_TAG_LINES, "LINES", tag_lines},
131 {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary},
132 {GCOV_TAG_PROGRAM_SUMMARY, "PROGRAM_SUMMARY", tag_summary},
133 {0, NULL, NULL}
136 /* Handler for reading function tag. */
138 static void
139 tag_function (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
141 int i;
143 /* write out previous fn_info. */
144 if (num_fn_info)
146 set_fn_ctrs (curr_fn_info);
147 obstack_ptr_grow (&fn_info, curr_fn_info);
150 /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active
151 counter types. */
152 curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info)
153 + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1);
155 for (i = 0; i < GCOV_COUNTERS; i++)
156 k_ctrs[i].num = 0;
157 k_ctrs_types = 0;
159 curr_fn_info->key = curr_gcov_info;
160 curr_fn_info->ident = gcov_read_unsigned ();
161 curr_fn_info->lineno_checksum = gcov_read_unsigned ();
162 curr_fn_info->cfg_checksum = gcov_read_unsigned ();
163 num_fn_info++;
165 if (verbose)
166 fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident);
169 /* Handler for reading block tag. */
171 static void
172 tag_blocks (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
174 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
175 gcc_unreachable ();
178 /* Handler for reading flow arc tag. */
180 static void
181 tag_arcs (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
183 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
184 gcc_unreachable ();
187 /* Handler for reading line tag. */
189 static void
190 tag_lines (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
192 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */
193 gcc_unreachable ();
196 /* Handler for reading counters array tag with value as TAG and length of LENGTH. */
198 static void
199 tag_counters (unsigned tag, unsigned length)
201 unsigned n_counts = GCOV_TAG_COUNTER_NUM (length);
202 gcov_type *values;
203 unsigned ix;
204 unsigned tag_ix;
206 tag_ix = GCOV_COUNTER_FOR_TAG (tag);
207 gcc_assert (tag_ix < GCOV_COUNTERS);
208 k_ctrs_mask [tag_ix] = 1;
209 gcc_assert (k_ctrs[tag_ix].num == 0);
210 k_ctrs[tag_ix].num = n_counts;
212 k_ctrs[tag_ix].values = values = (gcov_type *) xmalloc (n_counts * sizeof (gcov_type));
213 gcc_assert (values);
215 for (ix = 0; ix != n_counts; ix++)
216 values[ix] = gcov_read_counter ();
219 /* Handler for reading summary tag. */
221 static void
222 tag_summary (unsigned tag ATTRIBUTE_UNUSED, unsigned length ATTRIBUTE_UNUSED)
224 struct gcov_summary summary;
226 gcov_read_summary (&summary);
229 /* This function is called at the end of reading a gcda file.
230 It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO. */
232 static void
233 read_gcda_finalize (struct gcov_info *obj_info)
235 int i;
237 set_fn_ctrs (curr_fn_info);
238 obstack_ptr_grow (&fn_info, curr_fn_info);
240 /* We set the following fields: merge, n_functions, and functions. */
241 obj_info->n_functions = num_fn_info;
242 obj_info->functions = (const struct gcov_fn_info**) obstack_finish (&fn_info);
244 /* wrap all the counter array. */
245 for (i=0; i< GCOV_COUNTERS; i++)
247 if (k_ctrs_mask[i])
248 obj_info->merge[i] = ctr_merge_functions[i];
252 /* Read the content of a gcda file FILENAME, and return a gcov_info data structure.
253 Program level summary CURRENT_SUMMARY will also be updated. */
255 static struct gcov_info *
256 read_gcda_file (const char *filename)
258 unsigned tags[4];
259 unsigned depth = 0;
260 unsigned magic, version;
261 struct gcov_info *obj_info;
262 int i;
264 for (i=0; i< GCOV_COUNTERS; i++)
265 k_ctrs_mask[i] = 0;
266 k_ctrs_types = 0;
268 if (!gcov_open (filename))
270 fnotice (stderr, "%s:cannot open\n", filename);
271 return NULL;
274 /* Read magic. */
275 magic = gcov_read_unsigned ();
276 if (magic != GCOV_DATA_MAGIC)
278 fnotice (stderr, "%s:not a gcov data file\n", filename);
279 gcov_close ();
280 return NULL;
283 /* Read version. */
284 version = gcov_read_unsigned ();
285 if (version != GCOV_VERSION)
287 fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION);
288 gcov_close ();
289 return NULL;
292 /* Instantiate a gcov_info object. */
293 curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) +
294 sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1);
296 obj_info->version = version;
297 obstack_init (&fn_info);
298 num_fn_info = 0;
299 curr_fn_info = 0;
301 size_t len = strlen (filename) + 1;
302 char *str_dup = (char*) xmalloc (len);
304 memcpy (str_dup, filename, len);
305 obj_info->filename = str_dup;
308 /* Read stamp. */
309 obj_info->stamp = gcov_read_unsigned ();
311 while (1)
313 gcov_position_t base;
314 unsigned tag, length;
315 tag_format_t const *format;
316 unsigned tag_depth;
317 int error;
318 unsigned mask;
320 tag = gcov_read_unsigned ();
321 if (!tag)
322 break;
323 length = gcov_read_unsigned ();
324 base = gcov_position ();
325 mask = GCOV_TAG_MASK (tag) >> 1;
326 for (tag_depth = 4; mask; mask >>= 8)
328 if (((mask & 0xff) != 0xff))
330 warning (0, "%s:tag `%x' is invalid\n", filename, tag);
331 break;
333 tag_depth--;
335 for (format = tag_table; format->name; format++)
336 if (format->tag == tag)
337 goto found;
338 format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1];
339 found:;
340 if (tag)
342 if (depth && depth < tag_depth)
344 if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag))
345 warning (0, "%s:tag `%x' is incorrectly nested\n",
346 filename, tag);
348 depth = tag_depth;
349 tags[depth - 1] = tag;
352 if (format->proc)
354 unsigned long actual_length;
356 (*format->proc) (tag, length);
358 actual_length = gcov_position () - base;
359 if (actual_length > length)
360 warning (0, "%s:record size mismatch %lu bytes overread\n",
361 filename, actual_length - length);
362 else if (length > actual_length)
363 warning (0, "%s:record size mismatch %lu bytes unread\n",
364 filename, length - actual_length);
367 gcov_sync (base, length);
368 if ((error = gcov_is_error ()))
370 warning (0, error < 0 ? "%s:counter overflow at %lu\n" :
371 "%s:read error at %lu\n", filename,
372 (long unsigned) gcov_position ());
373 break;
377 read_gcda_finalize (obj_info);
378 gcov_close ();
380 return obj_info;
383 /* This will be called by ftw(). It opens and read a gcda file FILENAME.
384 Return a non-zero value to stop the tree walk. */
386 static int
387 ftw_read_file (const char *filename,
388 const struct stat *status ATTRIBUTE_UNUSED,
389 int type)
391 int filename_len;
392 int suffix_len;
393 struct gcov_info *obj_info;
395 /* Only read regular files. */
396 if (type != FTW_F)
397 return 0;
399 filename_len = strlen (filename);
400 suffix_len = strlen (GCOV_DATA_SUFFIX);
402 if (filename_len <= suffix_len)
403 return 0;
405 if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX))
406 return 0;
408 if (verbose)
409 fnotice (stderr, "reading file: %s\n", filename);
411 obj_info = read_gcda_file (filename);
412 if (!obj_info)
413 return 0;
415 obj_info->next = gcov_info_head;
416 gcov_info_head = obj_info;
418 return 0;
421 /* Initializer for reading a profile dir. */
423 static inline void
424 read_profile_dir_init (void)
426 gcov_info_head = 0;
429 /* Driver for read a profile directory and convert into gcov_info list in memory.
430 Return NULL on error,
431 Return the head of gcov_info list on success. */
433 struct gcov_info *
434 gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED)
436 char *pwd;
437 int ret;
439 read_profile_dir_init ();
441 if (access (dir_name, R_OK) != 0)
443 fnotice (stderr, "cannot access directory %s\n", dir_name);
444 return NULL;
446 pwd = getcwd (NULL, 0);
447 gcc_assert (pwd);
448 ret = chdir (dir_name);
449 if (ret !=0)
451 fnotice (stderr, "%s is not a directory\n", dir_name);
452 return NULL;
454 ftw (".", ftw_read_file, 50);
455 ret = chdir (pwd);
456 free (pwd);
459 return gcov_info_head;;
462 /* This part of the code is to merge profile counters. These
463 variables are set in merge_wrapper and to be used by
464 global function gcov_read_counter_mem() and gcov_get_merge_weight. */
466 /* We save the counter value address to this variable. */
467 static gcov_type *gcov_value_buf;
469 /* The number of counter values to be read by current merging. */
470 static gcov_unsigned_t gcov_value_buf_size;
472 /* The index of counter values being read. */
473 static gcov_unsigned_t gcov_value_buf_pos;
475 /* The weight of current merging. */
476 static unsigned gcov_merge_weight;
478 /* Read a counter value from gcov_value_buf array. */
480 gcov_type
481 gcov_read_counter_mem (void)
483 gcov_type ret;
484 gcc_assert (gcov_value_buf_pos < gcov_value_buf_size);
485 ret = *(gcov_value_buf + gcov_value_buf_pos);
486 ++gcov_value_buf_pos;
487 return ret;
490 /* Return the recorded merge weight. */
492 unsigned
493 gcov_get_merge_weight (void)
495 return gcov_merge_weight;
498 /* A wrapper function for merge functions. It sets up the
499 value buffer and weights and then calls the merge function. */
501 static void
502 merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n,
503 gcov_type *v2, unsigned w)
505 gcov_value_buf = v2;
506 gcov_value_buf_pos = 0;
507 gcov_value_buf_size = n;
508 gcov_merge_weight = w;
509 (*f) (v1, n);
512 /* Offline tool to manipulate profile data.
513 This tool targets on matched profiles. But it has some tolerance on
514 unmatched profiles.
515 When merging p1 to p2 (p2 is the dst),
516 * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight;
517 emit warning
518 * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by
519 specified weight; emit warning.
520 * m.gcda in both p1 and p2:
521 ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge.
522 ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep
523 p2->m.gcda->f and
524 drop p1->m.gcda->f. A warning is emitted. */
526 /* Add INFO2's counter to INFO1, multiplying by weight W. */
528 static int
529 gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w)
531 unsigned f_ix;
532 unsigned n_functions = info1->n_functions;
533 int has_mismatch = 0;
535 gcc_assert (info2->n_functions == n_functions);
536 for (f_ix = 0; f_ix < n_functions; f_ix++)
538 unsigned t_ix;
539 const struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix];
540 const struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix];
541 const struct gcov_ctr_info *ci_ptr1, *ci_ptr2;
543 if (!gfi_ptr1 || gfi_ptr1->key != info1)
544 continue;
545 if (!gfi_ptr2 || gfi_ptr2->key != info2)
546 continue;
548 if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum)
550 fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n",
551 info1->filename);
552 has_mismatch = 1;
553 continue;
555 ci_ptr1 = gfi_ptr1->ctrs;
556 ci_ptr2 = gfi_ptr2->ctrs;
557 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
559 gcov_merge_fn merge1 = info1->merge[t_ix];
560 gcov_merge_fn merge2 = info2->merge[t_ix];
562 gcc_assert (merge1 == merge2);
563 if (!merge1)
564 continue;
565 gcc_assert (ci_ptr1->num == ci_ptr2->num);
566 merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, ci_ptr2->values, w);
567 ci_ptr1++;
568 ci_ptr2++;
572 return has_mismatch;
575 /* Find and return the match gcov_info object for INFO from ARRAY.
576 SIZE is the length of ARRAY.
577 Return NULL if there is no match. */
579 static struct gcov_info *
580 find_match_gcov_info (struct gcov_info **array, int size,
581 struct gcov_info *info)
583 struct gcov_info *gi_ptr;
584 struct gcov_info *ret = NULL;
585 int i;
587 for (i = 0; i < size; i++)
589 gi_ptr = array[i];
590 if (gi_ptr == 0)
591 continue;
592 if (!strcmp (gi_ptr->filename, info->filename))
594 ret = gi_ptr;
595 array[i] = 0;
596 break;
600 if (ret && ret->n_functions != info->n_functions)
602 fnotice (stderr, "mismatched profiles in %s (%d functions"
603 " vs %d functions)\n",
604 ret->filename,
605 ret->n_functions,
606 info->n_functions);
607 ret = NULL;
609 return ret;
612 /* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE.
613 Return 0 on success: without mismatch.
614 Reutrn 1 on error. */
617 gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile,
618 int w1, int w2)
620 struct gcov_info *gi_ptr;
621 struct gcov_info **tgt_infos;
622 struct gcov_info *tgt_tail;
623 struct gcov_info **in_src_not_tgt;
624 unsigned tgt_cnt = 0, src_cnt = 0;
625 unsigned unmatch_info_cnt = 0;
626 unsigned int i;
628 for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next)
629 tgt_cnt++;
630 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
631 src_cnt++;
632 tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
633 * tgt_cnt);
634 gcc_assert (tgt_infos);
635 in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *)
636 * src_cnt);
637 gcc_assert (in_src_not_tgt);
639 for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++)
640 tgt_infos[i] = gi_ptr;
642 tgt_tail = tgt_infos[tgt_cnt - 1];
644 /* First pass on tgt_profile, we multiply w1 to all counters. */
645 if (w1 > 1)
647 for (i = 0; i < tgt_cnt; i++)
648 gcov_merge (tgt_infos[i], tgt_infos[i], w1-1);
651 /* Second pass, add src_profile to the tgt_profile. */
652 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next)
654 struct gcov_info *gi_ptr1;
656 gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr);
657 if (gi_ptr1 == NULL)
659 in_src_not_tgt[unmatch_info_cnt++] = gi_ptr;
660 continue;
662 gcov_merge (gi_ptr1, gi_ptr, w2);
665 /* For modules in src but not in tgt. We adjust the counter and append. */
666 for (i = 0; i < unmatch_info_cnt; i++)
668 gi_ptr = in_src_not_tgt[i];
669 gcov_merge (gi_ptr, gi_ptr, w2 - 1);
670 tgt_tail->next = gi_ptr;
671 tgt_tail = gi_ptr;
674 return 0;
677 typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*);
679 /* Performing FN upon arc counters. */
681 static void
682 __gcov_add_counter_op (gcov_type *counters, unsigned n_counters,
683 counter_op_fn fn, void *data1, void *data2)
685 for (; n_counters; counters++, n_counters--)
687 gcov_type val = *counters;
688 *counters = fn(val, data1, data2);
692 /* Performing FN upon ior counters. */
694 static void
695 __gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
696 unsigned n_counters ATTRIBUTE_UNUSED,
697 counter_op_fn fn ATTRIBUTE_UNUSED,
698 void *data1 ATTRIBUTE_UNUSED,
699 void *data2 ATTRIBUTE_UNUSED)
701 /* Do nothing. */
704 /* Performing FN upon time-profile counters. */
706 static void
707 __gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED,
708 unsigned n_counters ATTRIBUTE_UNUSED,
709 counter_op_fn fn ATTRIBUTE_UNUSED,
710 void *data1 ATTRIBUTE_UNUSED,
711 void *data2 ATTRIBUTE_UNUSED)
713 /* Do nothing. */
716 /* Performaing FN upon delta counters. */
718 static void
719 __gcov_delta_counter_op (gcov_type *counters, unsigned n_counters,
720 counter_op_fn fn, void *data1, void *data2)
722 unsigned i, n_measures;
724 gcc_assert (!(n_counters % 4));
725 n_measures = n_counters / 4;
726 for (i = 0; i < n_measures; i++, counters += 4)
728 counters[2] = fn (counters[2], data1, data2);
729 counters[3] = fn (counters[3], data1, data2);
733 /* Performing FN upon single counters. */
735 static void
736 __gcov_single_counter_op (gcov_type *counters, unsigned n_counters,
737 counter_op_fn fn, void *data1, void *data2)
739 unsigned i, n_measures;
741 gcc_assert (!(n_counters % 3));
742 n_measures = n_counters / 3;
743 for (i = 0; i < n_measures; i++, counters += 3)
745 counters[1] = fn (counters[1], data1, data2);
746 counters[2] = fn (counters[2], data1, data2);
750 /* Performing FN upon indirect-call profile counters. */
752 static void
753 __gcov_icall_topn_counter_op (gcov_type *counters, unsigned n_counters,
754 counter_op_fn fn, void *data1, void *data2)
756 unsigned i;
758 gcc_assert (!(n_counters % GCOV_ICALL_TOPN_NCOUNTS));
759 for (i = 0; i < n_counters; i += GCOV_ICALL_TOPN_NCOUNTS)
761 unsigned j;
762 gcov_type *value_array = &counters[i + 1];
764 for (j = 0; j < GCOV_ICALL_TOPN_NCOUNTS - 1; j += 2)
765 value_array[j + 1] = fn (value_array[j + 1], data1, data2);
769 /* Scaling the counter value V by multiplying *(float*) DATA1. */
771 static gcov_type
772 fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED)
774 float f = *(float *) data1;
775 return (gcov_type) (v * f);
778 /* Scaling the counter value V by multiplying DATA2/DATA1. */
780 static gcov_type
781 int_scale (gcov_type v, void *data1, void *data2)
783 int n = *(int *) data1;
784 int d = *(int *) data2;
785 return (gcov_type) ( RDIV (v,d) * n);
788 /* Type of function used to process counters. */
789 typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t,
790 counter_op_fn, void *, void *);
792 /* Function array to process profile counters. */
793 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \
794 __gcov ## FN_TYPE ## _counter_op,
795 static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = {
796 #include "gcov-counter.def"
798 #undef DEF_GCOV_COUNTER
800 /* Driver for scaling profile counters. */
803 gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d)
805 struct gcov_info *gi_ptr;
806 unsigned f_ix;
808 if (verbose)
809 fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d);
811 /* Scaling the counters. */
812 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
813 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
815 unsigned t_ix;
816 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
817 const struct gcov_ctr_info *ci_ptr;
819 if (!gfi_ptr || gfi_ptr->key != gi_ptr)
820 continue;
822 ci_ptr = gfi_ptr->ctrs;
823 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++)
825 gcov_merge_fn merge = gi_ptr->merge[t_ix];
827 if (!merge)
828 continue;
829 if (d == 0)
830 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
831 fp_scale, &scale_factor, NULL);
832 else
833 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num,
834 int_scale, &n, &d);
835 ci_ptr++;
839 return 0;
842 /* Driver to normalize profile counters. */
845 gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val)
847 struct gcov_info *gi_ptr;
848 gcov_type curr_max_val = 0;
849 unsigned f_ix;
850 unsigned int i;
851 float scale_factor;
853 /* Find the largest count value. */
854 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next)
855 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++)
857 unsigned t_ix;
858 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix];
859 const struct gcov_ctr_info *ci_ptr;
861 if (!gfi_ptr || gfi_ptr->key != gi_ptr)
862 continue;
864 ci_ptr = gfi_ptr->ctrs;
865 for (t_ix = 0; t_ix < 1; t_ix++)
867 for (i = 0; i < ci_ptr->num; i++)
868 if (ci_ptr->values[i] > curr_max_val)
869 curr_max_val = ci_ptr->values[i];
870 ci_ptr++;
874 scale_factor = (float)max_val / curr_max_val;
875 if (verbose)
876 fnotice (stdout, "max_val is %"PRId64"\n", curr_max_val);
878 return gcov_profile_scale (profile, scale_factor, 0, 0);
881 /* The following variables are defined in gcc/gcov-tool.c. */
882 extern int overlap_func_level;
883 extern int overlap_obj_level;
884 extern int overlap_hot_only;
885 extern int overlap_use_fullname;
886 extern double overlap_hot_threshold;
888 /* Compute the overlap score of two values. The score is defined as:
889 min (V1/SUM_1, V2/SUM_2) */
891 static double
892 calculate_2_entries (const unsigned long v1, const unsigned long v2,
893 const double sum_1, const double sum_2)
895 double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1);
896 double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2);
898 if (val2 < val1)
899 val1 = val2;
901 return val1;
904 /* Compute the overlap score between GCOV_INFO1 and GCOV_INFO2.
905 SUM_1 is the sum_all for profile1 where GCOV_INFO1 belongs.
906 SUM_2 is the sum_all for profile2 where GCOV_INFO2 belongs.
907 This function also updates cumulative score CUM_1_RESULT and
908 CUM_2_RESULT. */
910 static double
911 compute_one_gcov (const struct gcov_info *gcov_info1,
912 const struct gcov_info *gcov_info2,
913 const double sum_1, const double sum_2,
914 double *cum_1_result, double *cum_2_result)
916 unsigned f_ix;
917 double ret = 0;
918 double cum_1 = 0, cum_2 = 0;
919 const struct gcov_info *gcov_info = 0;
920 double *cum_p;
921 double sum;
923 gcc_assert (gcov_info1 || gcov_info2);
924 if (!gcov_info1)
926 gcov_info = gcov_info2;
927 cum_p = cum_2_result;
928 sum = sum_2;
929 *cum_1_result = 0;
930 } else
931 if (!gcov_info2)
933 gcov_info = gcov_info1;
934 cum_p = cum_1_result;
935 sum = sum_1;
936 *cum_2_result = 0;
939 if (gcov_info)
941 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
943 unsigned t_ix;
944 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
945 if (!gfi_ptr || gfi_ptr->key != gcov_info)
946 continue;
947 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
948 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
950 unsigned c_num;
952 if (!gcov_info->merge[t_ix])
953 continue;
955 for (c_num = 0; c_num < ci_ptr->num; c_num++)
957 cum_1 += ci_ptr->values[c_num] / sum;
959 ci_ptr++;
962 *cum_p = cum_1;
963 return 0.0;
966 for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++)
968 unsigned t_ix;
969 double func_cum_1 = 0.0;
970 double func_cum_2 = 0.0;
971 double func_val = 0.0;
972 int nonzero = 0;
973 int hot = 0;
974 const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix];
975 const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix];
977 if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1)
978 continue;
979 if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2)
980 continue;
982 const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs;
983 const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs;
984 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
986 unsigned c_num;
988 if (!gcov_info1->merge[t_ix])
989 continue;
991 for (c_num = 0; c_num < ci_ptr1->num; c_num++)
993 if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num])
995 func_val += calculate_2_entries (ci_ptr1->values[c_num],
996 ci_ptr2->values[c_num],
997 sum_1, sum_2);
999 func_cum_1 += ci_ptr1->values[c_num] / sum_1;
1000 func_cum_2 += ci_ptr2->values[c_num] / sum_2;
1001 nonzero = 1;
1002 if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold ||
1003 ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold)
1004 hot = 1;
1007 ci_ptr1++;
1008 ci_ptr2++;
1010 ret += func_val;
1011 cum_1 += func_cum_1;
1012 cum_2 += func_cum_2;
1013 if (overlap_func_level && nonzero && (!overlap_hot_only || hot))
1015 printf(" \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n",
1016 gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100);
1019 *cum_1_result = cum_1;
1020 *cum_2_result = cum_2;
1021 return ret;
1024 /* Test if all counter values in this GCOV_INFO are cold.
1025 "Cold" is defined as the counter value being less than
1026 or equal to THRESHOLD. */
1028 static bool
1029 gcov_info_count_all_cold (const struct gcov_info *gcov_info,
1030 gcov_type threshold)
1032 unsigned f_ix;
1034 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++)
1036 unsigned t_ix;
1037 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix];
1039 if (!gfi_ptr || gfi_ptr->key != gcov_info)
1040 continue;
1041 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs;
1042 for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++)
1044 unsigned c_num;
1046 if (!gcov_info->merge[t_ix])
1047 continue;
1049 for (c_num = 0; c_num < ci_ptr->num; c_num++)
1051 if (ci_ptr->values[c_num] > threshold)
1052 return false;
1054 ci_ptr++;
1058 return true;
1061 /* Test if all counter values in this GCOV_INFO are 0. */
1063 static bool
1064 gcov_info_count_all_zero (const struct gcov_info *gcov_info)
1066 return gcov_info_count_all_cold (gcov_info, 0);
1069 /* A pair of matched GCOV_INFO.
1070 The flag is a bitvector:
1071 b0: obj1's all counts are 0;
1072 b1: obj1's all counts are cold (but no 0);
1073 b2: obj1 is hot;
1074 b3: no obj1 to match obj2;
1075 b4: obj2's all counts are 0;
1076 b5: obj2's all counts are cold (but no 0);
1077 b6: obj2 is hot;
1078 b7: no obj2 to match obj1;
1080 struct overlap_t {
1081 const struct gcov_info *obj1;
1082 const struct gcov_info *obj2;
1083 char flag;
1086 #define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10))
1087 #define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20))
1088 #define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40))
1090 /* Cumlative overlap dscore for profile1 and profile2. */
1091 static double overlap_sum_1, overlap_sum_2;
1093 /* sum_all for profile1 and profile2. */
1094 static gcov_type p1_sum_all, p2_sum_all;
1096 /* run_max for profile1 and profile2. */
1097 static gcov_type p1_run_max, p2_run_max;
1099 /* The number of gcda files in the profiles. */
1100 static unsigned gcda_files[2];
1102 /* The number of unique gcda files in the profiles
1103 (not existing in the other profile). */
1104 static unsigned unique_gcda_files[2];
1106 /* The number of gcda files that all counter values are 0. */
1107 static unsigned zero_gcda_files[2];
1109 /* The number of gcda files that all counter values are cold (but not 0). */
1110 static unsigned cold_gcda_files[2];
1112 /* The number of gcda files that includes hot counter values. */
1113 static unsigned hot_gcda_files[2];
1115 /* The number of gcda files with hot count value in either profiles. */
1116 static unsigned both_hot_cnt;
1118 /* The number of gcda files with all counts cold (but not 0) in
1119 both profiles. */
1120 static unsigned both_cold_cnt;
1122 /* The number of gcda files with all counts 0 in both profiles. */
1123 static unsigned both_zero_cnt;
1125 /* Extract the basename of the filename NAME. */
1127 static char *
1128 extract_file_basename (const char *name)
1130 char *str;
1131 int len = 0;
1132 char *path = xstrdup (name);
1133 char sep_str[2];
1135 sep_str[0] = DIR_SEPARATOR;
1136 sep_str[1] = 0;
1137 str = strstr(path, sep_str);
1139 len = strlen(str) + 1;
1140 path = &path[strlen(path) - len + 2];
1141 str = strstr(path, sep_str);
1142 } while(str);
1144 return path;
1147 /* Utility function to get the filename. */
1149 static const char *
1150 get_file_basename (const char *name)
1152 if (overlap_use_fullname)
1153 return name;
1154 return extract_file_basename (name);
1157 /* A utility function to set the flag for the gcda files. */
1159 static void
1160 set_flag (struct overlap_t *e)
1162 char flag = 0;
1164 if (!e->obj1)
1166 unique_gcda_files[1]++;
1167 flag = 0x8;
1169 else
1171 gcda_files[0]++;
1172 if (gcov_info_count_all_zero (e->obj1))
1174 zero_gcda_files[0]++;
1175 flag = 0x1;
1177 else
1178 if (gcov_info_count_all_cold (e->obj1, overlap_sum_1
1179 * overlap_hot_threshold))
1181 cold_gcda_files[0]++;
1182 flag = 0x2;
1184 else
1186 hot_gcda_files[0]++;
1187 flag = 0x4;
1191 if (!e->obj2)
1193 unique_gcda_files[0]++;
1194 flag |= (0x8 << 4);
1196 else
1198 gcda_files[1]++;
1199 if (gcov_info_count_all_zero (e->obj2))
1201 zero_gcda_files[1]++;
1202 flag |= (0x1 << 4);
1204 else
1205 if (gcov_info_count_all_cold (e->obj2, overlap_sum_2
1206 * overlap_hot_threshold))
1208 cold_gcda_files[1]++;
1209 flag |= (0x2 << 4);
1211 else
1213 hot_gcda_files[1]++;
1214 flag |= (0x4 << 4);
1218 gcc_assert (flag);
1219 e->flag = flag;
1222 /* Test if INFO1 and INFO2 are from the matched source file.
1223 Return 1 if they match; return 0 otherwise. */
1225 static int
1226 matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2)
1228 /* For FDO, we have to match the name. This can be expensive.
1229 Maybe we should use hash here. */
1230 if (strcmp (info1->filename, info2->filename))
1231 return 0;
1233 if (info1->n_functions != info2->n_functions)
1235 fnotice (stderr, "mismatched profiles in %s (%d functions"
1236 " vs %d functions)\n",
1237 info1->filename,
1238 info1->n_functions,
1239 info2->n_functions);
1240 return 0;
1242 return 1;
1245 /* Defined in libgcov-driver.c. */
1246 extern gcov_unsigned_t compute_summary (struct gcov_info *,
1247 struct gcov_summary *, size_t *);
1249 /* Compute the overlap score of two profiles with the head of GCOV_LIST1 and
1250 GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no
1251 match and 1.0 meaning a perfect match. */
1253 static double
1254 calculate_overlap (struct gcov_info *gcov_list1,
1255 struct gcov_info *gcov_list2)
1257 struct gcov_summary this_prg;
1258 unsigned list1_cnt = 0, list2_cnt= 0, all_cnt;
1259 unsigned int i, j;
1260 size_t max_length;
1261 const struct gcov_info *gi_ptr;
1262 struct overlap_t *all_infos;
1264 compute_summary (gcov_list1, &this_prg, &max_length);
1265 overlap_sum_1 = (double) (this_prg.ctrs[0].sum_all);
1266 p1_sum_all = this_prg.ctrs[0].sum_all;
1267 p1_run_max = this_prg.ctrs[0].run_max;
1268 compute_summary (gcov_list2, &this_prg, &max_length);
1269 overlap_sum_2 = (double) (this_prg.ctrs[0].sum_all);
1270 p2_sum_all = this_prg.ctrs[0].sum_all;
1271 p2_run_max = this_prg.ctrs[0].run_max;
1273 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next)
1274 list1_cnt++;
1275 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next)
1276 list2_cnt++;
1277 all_cnt = list1_cnt + list2_cnt;
1278 all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t)
1279 * all_cnt * 2);
1280 gcc_assert (all_infos);
1282 i = 0;
1283 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++)
1285 all_infos[i].obj1 = gi_ptr;
1286 all_infos[i].obj2 = 0;
1289 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++)
1291 all_infos[i].obj1 = 0;
1292 all_infos[i].obj2 = gi_ptr;
1295 for (i = list1_cnt; i < all_cnt; i++)
1297 if (all_infos[i].obj2 == 0)
1298 continue;
1299 for (j = 0; j < list1_cnt; j++)
1301 if (all_infos[j].obj2 != 0)
1302 continue;
1303 if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1))
1305 all_infos[j].obj2 = all_infos[i].obj2;
1306 all_infos[i].obj2 = 0;
1307 break;
1312 for (i = 0; i < all_cnt; i++)
1313 if (all_infos[i].obj1 || all_infos[i].obj2)
1315 set_flag (all_infos + i);
1316 if (FLAG_ONE_HOT (all_infos[i].flag))
1317 both_hot_cnt++;
1318 if (FLAG_BOTH_COLD(all_infos[i].flag))
1319 both_cold_cnt++;
1320 if (FLAG_BOTH_ZERO(all_infos[i].flag))
1321 both_zero_cnt++;
1324 double prg_val = 0;
1325 double sum_val = 0;
1326 double sum_cum_1 = 0;
1327 double sum_cum_2 = 0;
1329 for (i = 0; i < all_cnt; i++)
1331 double val;
1332 double cum_1, cum_2;
1333 const char *filename;
1335 if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0)
1336 continue;
1337 if (FLAG_BOTH_ZERO (all_infos[i].flag))
1338 continue;
1340 if (all_infos[i].obj1)
1341 filename = get_file_basename (all_infos[i].obj1->filename);
1342 else
1343 filename = get_file_basename (all_infos[i].obj2->filename);
1345 if (overlap_func_level)
1346 printf("\n processing %36s:\n", filename);
1348 val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2,
1349 overlap_sum_1, overlap_sum_2, &cum_1, &cum_2);
1351 if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag)))
1353 printf(" obj=%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
1354 filename, val*100, cum_1*100, cum_2*100);
1355 sum_val += val;
1356 sum_cum_1 += cum_1;
1357 sum_cum_2 += cum_2;
1360 prg_val += val;
1364 if (overlap_obj_level)
1365 printf(" SUM:%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n",
1366 "", sum_val*100, sum_cum_1*100, sum_cum_2*100);
1368 printf (" Statistics:\n"
1369 " profile1_# profile2_# overlap_#\n");
1370 printf (" gcda files: %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1],
1371 gcda_files[0]-unique_gcda_files[0]);
1372 printf (" unique files: %12u\t%12u\n", unique_gcda_files[0],
1373 unique_gcda_files[1]);
1374 printf (" hot files: %12u\t%12u\t%12u\n", hot_gcda_files[0],
1375 hot_gcda_files[1], both_hot_cnt);
1376 printf (" cold files: %12u\t%12u\t%12u\n", cold_gcda_files[0],
1377 cold_gcda_files[1], both_cold_cnt);
1378 printf (" zero files: %12u\t%12u\t%12u\n", zero_gcda_files[0],
1379 zero_gcda_files[1], both_zero_cnt);
1380 printf (" sum_all: %12"PRId64"\t%12"PRId64"\n", p1_sum_all, p2_sum_all);
1381 printf (" run_max: %12"PRId64"\t%12"PRId64"\n", p1_run_max, p2_run_max);
1383 return prg_val;
1386 /* Computer the overlap score of two lists of gcov_info objects PROFILE1 and PROFILE2.
1387 Return 0 on success: without mismatch. Reutrn 1 on error. */
1390 gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2)
1392 double result;
1394 result = calculate_overlap (profile1, profile2);
1396 if (result > 0)
1398 printf("\nProgram level overlap result is %3.2f%%\n\n", result*100);
1399 return 0;
1401 return 1;