* config.gcc: Add sh-*-symbianelf target.
[official-gcc.git] / gcc / final.c
blob412d0faae7f547957da7cc703ece1e54bbcfdf91
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Highest line number in current block. */
127 static int high_block_linenum;
129 /* Likewise for function. */
130 static int high_function_linenum;
132 /* Filename of last NOTE. */
133 static const char *last_filename;
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare = 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter = 0;
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
159 CC_STATUS cc_status;
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status;
165 #endif
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth;
194 /* Nonzero if have enabled APP processing of our assembler output. */
196 static int app_on;
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
201 rtx final_sequence;
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
239 /* Initialize data in final at the beginning of a compilation. */
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
244 app_on = 0;
245 final_sequence = 0;
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
271 void
272 app_enable (void)
274 if (! app_on)
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
284 void
285 app_disable (void)
287 if (app_on)
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
298 #ifdef DELAY_SLOTS
300 dbr_sequence_length (void)
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
307 #endif
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths;
317 varray_type insn_addresses_;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
340 struct label_alignment
342 short alignment;
343 short max_skip;
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
350 /* Indicate that branch shortening hasn't yet been done. */
352 void
353 init_insn_lengths (void)
355 if (uid_shuid)
357 free (uid_shuid);
358 uid_shuid = 0;
360 if (insn_lengths)
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
371 free (uid_align);
372 uid_align = 0;
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
408 else
409 length = insn_default_length (insn);
410 break;
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
426 default:
427 break;
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno, max_labelno;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label)
546 return LABEL_TO_ALIGNMENT (label);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 int align_addr, new_align;
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
602 return fuzz;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch)
620 rtx dest, seq;
621 int seq_uid;
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
645 else
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
652 #endif /* HAVE_ATTR_length */
654 void
655 compute_alignments (void)
657 int log, max_skip, max_log;
658 basic_block bb;
660 if (label_align)
662 free (label_align);
663 label_align = 0;
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
675 FOR_EACH_BB (bb)
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
687 for (e = bb->pred; e; e = e->pred_next)
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
765 #endif
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
775 if (max_labelno != max_label_num ())
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
781 max_labelno = max_label_num ();
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
804 max_log = 0;
805 max_skip = 0;
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 int log;
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
820 else if (LABEL_P (insn))
822 rtx next;
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
861 else if (BARRIER_P (insn))
863 rtx label;
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 break;
879 #ifdef HAVE_ATTR_length
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
888 varying_length = xcalloc (max_uid, sizeof (char));
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
945 min = shuid;
946 min_lab = lab;
948 if (shuid > max)
950 max = shuid;
951 max_lab = lab;
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 uid = INSN_UID (insn);
978 insn_lengths[uid] = 0;
980 if (LABEL_P (insn))
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1069 while (something_changed)
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1083 uid = INSN_UID (insn);
1085 if (LABEL_P (insn))
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 else
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1184 if (! flags.base_after_vec && flags.max_after_vec)
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 else
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1214 continue;
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218 if (! (varying_length[uid]))
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 int i;
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233 insn_current_address += insn_lengths[inner_uid];
1236 else
1237 insn_current_address += insn_lengths[uid];
1239 continue;
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 int i;
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1263 if (inner_length != insn_lengths[inner_uid])
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1272 else
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1285 if (new_length != insn_lengths[uid])
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1296 free (varying_length);
1298 #endif /* HAVE_ATTR_length */
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1306 static int
1307 asm_insn_count (rtx body)
1309 const char *template;
1310 int count = 1;
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1321 return count;
1323 #endif
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1339 block_depth = 0;
1341 this_is_asm_operands = 0;
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1346 high_block_linenum = high_function_linenum = last_linenum;
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1350 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1419 if (! NO_PROFILE_COUNTERS)
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1428 function_section (current_function_decl);
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 #endif
1445 #endif
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 #endif
1459 #endif
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1471 void
1472 final_end_function (void)
1474 app_disable ();
1476 (*debug_hooks->end_function) (high_function_linenum);
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1510 last_ignored_compare = 0;
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1534 last = insn;
1537 #endif
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1551 LABEL_REFS (lab) = insn;
1554 #endif
1557 init_recog ();
1559 CC_STATUS_INIT;
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1582 const char *
1583 get_insn_template (int code, rtx insn)
1585 switch (insn_data[code].output_format)
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1596 default:
1597 abort ();
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1609 const char *name = LABEL_NAME (insn);
1611 switch (LABEL_KIND (insn))
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1639 rtx temp;
1640 int bb_note_count = 0;
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1654 if (INSN_P (temp))
1655 return false;
1658 return false;
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1684 insn_counter++;
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1691 switch (GET_CODE (insn))
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1697 switch (NOTE_LINE_NUMBER (insn))
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_END_TOP_COND:
1703 case NOTE_INSN_LOOP_CONT:
1704 case NOTE_INSN_LOOP_VTOP:
1705 case NOTE_INSN_FUNCTION_END:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER:
1707 case NOTE_INSN_EXPECTED_VALUE:
1708 break;
1710 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1715 to it. */
1717 unlikely_text_section ();
1718 break;
1720 case NOTE_INSN_BASIC_BLOCK:
1722 /* If we are performing the optimization that partitions
1723 basic blocks into hot & cold sections of the .o file,
1724 then at the start of each new basic block, before
1725 beginning to write code for the basic block, we need to
1726 check to see whether the basic block belongs in the hot
1727 or cold section of the .o file, and change the section we
1728 are writing to appropriately. */
1730 if (flag_reorder_blocks_and_partition
1731 && in_unlikely_text_section()
1732 && !scan_ahead_for_unlikely_executed_note (insn))
1733 text_section ();
1735 #ifdef IA64_UNWIND_INFO
1736 IA64_UNWIND_EMIT (asm_out_file, insn);
1737 #endif
1738 if (flag_debug_asm)
1739 fprintf (asm_out_file, "\t%s basic block %d\n",
1740 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1742 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1744 *seen |= SEEN_EMITTED;
1745 last_filename = NULL;
1747 else
1748 *seen |= SEEN_BB;
1750 break;
1752 case NOTE_INSN_EH_REGION_BEG:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1754 NOTE_EH_HANDLER (insn));
1755 break;
1757 case NOTE_INSN_EH_REGION_END:
1758 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1759 NOTE_EH_HANDLER (insn));
1760 break;
1762 case NOTE_INSN_PROLOGUE_END:
1763 targetm.asm_out.function_end_prologue (file);
1764 profile_after_prologue (file);
1766 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1768 *seen |= SEEN_EMITTED;
1769 last_filename = NULL;
1771 else
1772 *seen |= SEEN_NOTE;
1774 break;
1776 case NOTE_INSN_EPILOGUE_BEG:
1777 targetm.asm_out.function_begin_epilogue (file);
1778 break;
1780 case NOTE_INSN_FUNCTION_BEG:
1781 app_disable ();
1782 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1784 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1786 *seen |= SEEN_EMITTED;
1787 last_filename = NULL;
1789 else
1790 *seen |= SEEN_NOTE;
1792 break;
1794 case NOTE_INSN_BLOCK_BEG:
1795 if (debug_info_level == DINFO_LEVEL_NORMAL
1796 || debug_info_level == DINFO_LEVEL_VERBOSE
1797 || write_symbols == DWARF_DEBUG
1798 || write_symbols == DWARF2_DEBUG
1799 || write_symbols == VMS_AND_DWARF2_DEBUG
1800 || write_symbols == VMS_DEBUG)
1802 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1804 app_disable ();
1805 ++block_depth;
1806 high_block_linenum = last_linenum;
1808 /* Output debugging info about the symbol-block beginning. */
1809 (*debug_hooks->begin_block) (last_linenum, n);
1811 /* Mark this block as output. */
1812 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1814 break;
1816 case NOTE_INSN_BLOCK_END:
1817 if (debug_info_level == DINFO_LEVEL_NORMAL
1818 || debug_info_level == DINFO_LEVEL_VERBOSE
1819 || write_symbols == DWARF_DEBUG
1820 || write_symbols == DWARF2_DEBUG
1821 || write_symbols == VMS_AND_DWARF2_DEBUG
1822 || write_symbols == VMS_DEBUG)
1824 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1826 app_disable ();
1828 /* End of a symbol-block. */
1829 --block_depth;
1830 if (block_depth < 0)
1831 abort ();
1833 (*debug_hooks->end_block) (high_block_linenum, n);
1835 break;
1837 case NOTE_INSN_DELETED_LABEL:
1838 /* Emit the label. We may have deleted the CODE_LABEL because
1839 the label could be proved to be unreachable, though still
1840 referenced (in the form of having its address taken. */
1841 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1842 break;
1844 case NOTE_INSN_VAR_LOCATION:
1845 (*debug_hooks->var_location) (insn);
1846 break;
1848 case 0:
1849 break;
1851 default:
1852 if (NOTE_LINE_NUMBER (insn) <= 0)
1853 abort ();
1854 break;
1856 break;
1858 case BARRIER:
1859 #if defined (DWARF2_UNWIND_INFO)
1860 if (dwarf2out_do_frame ())
1861 dwarf2out_frame_debug (insn);
1862 #endif
1863 break;
1865 case CODE_LABEL:
1866 /* The target port might emit labels in the output function for
1867 some insn, e.g. sh.c output_branchy_insn. */
1868 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1870 int align = LABEL_TO_ALIGNMENT (insn);
1871 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1872 int max_skip = LABEL_TO_MAX_SKIP (insn);
1873 #endif
1875 if (align && NEXT_INSN (insn))
1877 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1878 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1879 #else
1880 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1881 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1882 #else
1883 ASM_OUTPUT_ALIGN (file, align);
1884 #endif
1885 #endif
1888 #ifdef HAVE_cc0
1889 CC_STATUS_INIT;
1890 /* If this label is reached from only one place, set the condition
1891 codes from the instruction just before the branch. */
1893 /* Disabled because some insns set cc_status in the C output code
1894 and NOTICE_UPDATE_CC alone can set incorrect status. */
1895 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1897 rtx jump = LABEL_REFS (insn);
1898 rtx barrier = prev_nonnote_insn (insn);
1899 rtx prev;
1900 /* If the LABEL_REFS field of this label has been set to point
1901 at a branch, the predecessor of the branch is a regular
1902 insn, and that branch is the only way to reach this label,
1903 set the condition codes based on the branch and its
1904 predecessor. */
1905 if (barrier && BARRIER_P (barrier)
1906 && jump && JUMP_P (jump)
1907 && (prev = prev_nonnote_insn (jump))
1908 && NONJUMP_INSN_P (prev))
1910 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1911 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1914 #endif
1915 if (prescan > 0)
1916 break;
1918 if (LABEL_NAME (insn))
1919 (*debug_hooks->label) (insn);
1921 /* If we are doing the optimization that partitions hot & cold
1922 basic blocks into separate sections of the .o file, we need
1923 to ensure the jump table ends up in the correct section... */
1925 if (flag_reorder_blocks_and_partition)
1927 rtx tmp_table, tmp_label;
1928 if (LABEL_P (insn)
1929 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1931 /* Do nothing; Do NOT change the current section. */
1933 else if (scan_ahead_for_unlikely_executed_note (insn))
1934 unlikely_text_section ();
1935 else
1937 if (in_unlikely_text_section ())
1938 text_section ();
1942 if (app_on)
1944 fputs (ASM_APP_OFF, file);
1945 app_on = 0;
1947 if (NEXT_INSN (insn) != 0
1948 && JUMP_P (NEXT_INSN (insn)))
1950 rtx nextbody = PATTERN (NEXT_INSN (insn));
1952 /* If this label is followed by a jump-table,
1953 make sure we put the label in the read-only section. Also
1954 possibly write the label and jump table together. */
1956 if (GET_CODE (nextbody) == ADDR_VEC
1957 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1959 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1960 /* In this case, the case vector is being moved by the
1961 target, so don't output the label at all. Leave that
1962 to the back end macros. */
1963 #else
1964 if (! JUMP_TABLES_IN_TEXT_SECTION)
1966 int log_align;
1968 readonly_data_section ();
1970 #ifdef ADDR_VEC_ALIGN
1971 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1972 #else
1973 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1974 #endif
1975 ASM_OUTPUT_ALIGN (file, log_align);
1977 else
1978 function_section (current_function_decl);
1980 #ifdef ASM_OUTPUT_CASE_LABEL
1981 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1982 NEXT_INSN (insn));
1983 #else
1984 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1985 #endif
1986 #endif
1987 break;
1990 if (LABEL_ALT_ENTRY_P (insn))
1991 output_alternate_entry_point (file, insn);
1992 else
1993 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1994 break;
1996 default:
1998 rtx body = PATTERN (insn);
1999 int insn_code_number;
2000 const char *template;
2001 rtx note;
2003 /* An INSN, JUMP_INSN or CALL_INSN.
2004 First check for special kinds that recog doesn't recognize. */
2006 if (GET_CODE (body) == USE /* These are just declarations. */
2007 || GET_CODE (body) == CLOBBER)
2008 break;
2010 #ifdef HAVE_cc0
2011 /* If there is a REG_CC_SETTER note on this insn, it means that
2012 the setting of the condition code was done in the delay slot
2013 of the insn that branched here. So recover the cc status
2014 from the insn that set it. */
2016 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2017 if (note)
2019 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2020 cc_prev_status = cc_status;
2022 #endif
2024 /* Detect insns that are really jump-tables
2025 and output them as such. */
2027 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2029 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2030 int vlen, idx;
2031 #endif
2033 if (prescan > 0)
2034 break;
2036 if (app_on)
2038 fputs (ASM_APP_OFF, file);
2039 app_on = 0;
2042 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2043 if (GET_CODE (body) == ADDR_VEC)
2045 #ifdef ASM_OUTPUT_ADDR_VEC
2046 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2047 #else
2048 abort ();
2049 #endif
2051 else
2053 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2054 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2055 #else
2056 abort ();
2057 #endif
2059 #else
2060 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2061 for (idx = 0; idx < vlen; idx++)
2063 if (GET_CODE (body) == ADDR_VEC)
2065 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2066 ASM_OUTPUT_ADDR_VEC_ELT
2067 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2068 #else
2069 abort ();
2070 #endif
2072 else
2074 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2075 ASM_OUTPUT_ADDR_DIFF_ELT
2076 (file,
2077 body,
2078 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2079 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2080 #else
2081 abort ();
2082 #endif
2085 #ifdef ASM_OUTPUT_CASE_END
2086 ASM_OUTPUT_CASE_END (file,
2087 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2088 insn);
2089 #endif
2090 #endif
2092 function_section (current_function_decl);
2094 break;
2096 /* Output this line note if it is the first or the last line
2097 note in a row. */
2098 if (notice_source_line (insn))
2100 (*debug_hooks->source_line) (last_linenum, last_filename);
2103 if (GET_CODE (body) == ASM_INPUT)
2105 const char *string = XSTR (body, 0);
2107 /* There's no telling what that did to the condition codes. */
2108 CC_STATUS_INIT;
2109 if (prescan > 0)
2110 break;
2112 if (string[0])
2114 if (! app_on)
2116 fputs (ASM_APP_ON, file);
2117 app_on = 1;
2119 fprintf (asm_out_file, "\t%s\n", string);
2121 break;
2124 /* Detect `asm' construct with operands. */
2125 if (asm_noperands (body) >= 0)
2127 unsigned int noperands = asm_noperands (body);
2128 rtx *ops = alloca (noperands * sizeof (rtx));
2129 const char *string;
2131 /* There's no telling what that did to the condition codes. */
2132 CC_STATUS_INIT;
2133 if (prescan > 0)
2134 break;
2136 /* Get out the operand values. */
2137 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2138 /* Inhibit aborts on what would otherwise be compiler bugs. */
2139 insn_noperands = noperands;
2140 this_is_asm_operands = insn;
2142 #ifdef FINAL_PRESCAN_INSN
2143 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2144 #endif
2146 /* Output the insn using them. */
2147 if (string[0])
2149 if (! app_on)
2151 fputs (ASM_APP_ON, file);
2152 app_on = 1;
2154 output_asm_insn (string, ops);
2157 this_is_asm_operands = 0;
2158 break;
2161 if (prescan <= 0 && app_on)
2163 fputs (ASM_APP_OFF, file);
2164 app_on = 0;
2167 if (GET_CODE (body) == SEQUENCE)
2169 /* A delayed-branch sequence */
2170 int i;
2171 rtx next;
2173 if (prescan > 0)
2174 break;
2175 final_sequence = body;
2177 /* Record the delay slots' frame information before the branch.
2178 This is needed for delayed calls: see execute_cfa_program(). */
2179 #if defined (DWARF2_UNWIND_INFO)
2180 if (dwarf2out_do_frame ())
2181 for (i = 1; i < XVECLEN (body, 0); i++)
2182 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2183 #endif
2185 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2186 force the restoration of a comparison that was previously
2187 thought unnecessary. If that happens, cancel this sequence
2188 and cause that insn to be restored. */
2190 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2191 if (next != XVECEXP (body, 0, 1))
2193 final_sequence = 0;
2194 return next;
2197 for (i = 1; i < XVECLEN (body, 0); i++)
2199 rtx insn = XVECEXP (body, 0, i);
2200 rtx next = NEXT_INSN (insn);
2201 /* We loop in case any instruction in a delay slot gets
2202 split. */
2204 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2205 while (insn != next);
2207 #ifdef DBR_OUTPUT_SEQEND
2208 DBR_OUTPUT_SEQEND (file);
2209 #endif
2210 final_sequence = 0;
2212 /* If the insn requiring the delay slot was a CALL_INSN, the
2213 insns in the delay slot are actually executed before the
2214 called function. Hence we don't preserve any CC-setting
2215 actions in these insns and the CC must be marked as being
2216 clobbered by the function. */
2217 if (CALL_P (XVECEXP (body, 0, 0)))
2219 CC_STATUS_INIT;
2221 break;
2224 /* We have a real machine instruction as rtl. */
2226 body = PATTERN (insn);
2228 #ifdef HAVE_cc0
2229 set = single_set (insn);
2231 /* Check for redundant test and compare instructions
2232 (when the condition codes are already set up as desired).
2233 This is done only when optimizing; if not optimizing,
2234 it should be possible for the user to alter a variable
2235 with the debugger in between statements
2236 and the next statement should reexamine the variable
2237 to compute the condition codes. */
2239 if (optimize)
2241 if (set
2242 && GET_CODE (SET_DEST (set)) == CC0
2243 && insn != last_ignored_compare)
2245 if (GET_CODE (SET_SRC (set)) == SUBREG)
2246 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2247 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2249 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2250 XEXP (SET_SRC (set), 0)
2251 = alter_subreg (&XEXP (SET_SRC (set), 0));
2252 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2253 XEXP (SET_SRC (set), 1)
2254 = alter_subreg (&XEXP (SET_SRC (set), 1));
2256 if ((cc_status.value1 != 0
2257 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2258 || (cc_status.value2 != 0
2259 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2261 /* Don't delete insn if it has an addressing side-effect. */
2262 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2263 /* or if anything in it is volatile. */
2264 && ! volatile_refs_p (PATTERN (insn)))
2266 /* We don't really delete the insn; just ignore it. */
2267 last_ignored_compare = insn;
2268 break;
2273 #endif
2275 #ifndef STACK_REGS
2276 /* Don't bother outputting obvious no-ops, even without -O.
2277 This optimization is fast and doesn't interfere with debugging.
2278 Don't do this if the insn is in a delay slot, since this
2279 will cause an improper number of delay insns to be written. */
2280 if (final_sequence == 0
2281 && prescan >= 0
2282 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2283 && REG_P (SET_SRC (body))
2284 && REG_P (SET_DEST (body))
2285 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2286 break;
2287 #endif
2289 #ifdef HAVE_cc0
2290 /* If this is a conditional branch, maybe modify it
2291 if the cc's are in a nonstandard state
2292 so that it accomplishes the same thing that it would
2293 do straightforwardly if the cc's were set up normally. */
2295 if (cc_status.flags != 0
2296 && JUMP_P (insn)
2297 && GET_CODE (body) == SET
2298 && SET_DEST (body) == pc_rtx
2299 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2300 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2301 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2302 /* This is done during prescan; it is not done again
2303 in final scan when prescan has been done. */
2304 && prescan >= 0)
2306 /* This function may alter the contents of its argument
2307 and clear some of the cc_status.flags bits.
2308 It may also return 1 meaning condition now always true
2309 or -1 meaning condition now always false
2310 or 2 meaning condition nontrivial but altered. */
2311 int result = alter_cond (XEXP (SET_SRC (body), 0));
2312 /* If condition now has fixed value, replace the IF_THEN_ELSE
2313 with its then-operand or its else-operand. */
2314 if (result == 1)
2315 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2316 if (result == -1)
2317 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2319 /* The jump is now either unconditional or a no-op.
2320 If it has become a no-op, don't try to output it.
2321 (It would not be recognized.) */
2322 if (SET_SRC (body) == pc_rtx)
2324 delete_insn (insn);
2325 break;
2327 else if (GET_CODE (SET_SRC (body)) == RETURN)
2328 /* Replace (set (pc) (return)) with (return). */
2329 PATTERN (insn) = body = SET_SRC (body);
2331 /* Rerecognize the instruction if it has changed. */
2332 if (result != 0)
2333 INSN_CODE (insn) = -1;
2336 /* Make same adjustments to instructions that examine the
2337 condition codes without jumping and instructions that
2338 handle conditional moves (if this machine has either one). */
2340 if (cc_status.flags != 0
2341 && set != 0)
2343 rtx cond_rtx, then_rtx, else_rtx;
2345 if (!JUMP_P (insn)
2346 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2348 cond_rtx = XEXP (SET_SRC (set), 0);
2349 then_rtx = XEXP (SET_SRC (set), 1);
2350 else_rtx = XEXP (SET_SRC (set), 2);
2352 else
2354 cond_rtx = SET_SRC (set);
2355 then_rtx = const_true_rtx;
2356 else_rtx = const0_rtx;
2359 switch (GET_CODE (cond_rtx))
2361 case GTU:
2362 case GT:
2363 case LTU:
2364 case LT:
2365 case GEU:
2366 case GE:
2367 case LEU:
2368 case LE:
2369 case EQ:
2370 case NE:
2372 int result;
2373 if (XEXP (cond_rtx, 0) != cc0_rtx)
2374 break;
2375 result = alter_cond (cond_rtx);
2376 if (result == 1)
2377 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2378 else if (result == -1)
2379 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2380 else if (result == 2)
2381 INSN_CODE (insn) = -1;
2382 if (SET_DEST (set) == SET_SRC (set))
2383 delete_insn (insn);
2385 break;
2387 default:
2388 break;
2392 #endif
2394 #ifdef HAVE_peephole
2395 /* Do machine-specific peephole optimizations if desired. */
2397 if (optimize && !flag_no_peephole && !nopeepholes)
2399 rtx next = peephole (insn);
2400 /* When peepholing, if there were notes within the peephole,
2401 emit them before the peephole. */
2402 if (next != 0 && next != NEXT_INSN (insn))
2404 rtx prev = PREV_INSN (insn);
2406 for (note = NEXT_INSN (insn); note != next;
2407 note = NEXT_INSN (note))
2408 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2410 /* In case this is prescan, put the notes
2411 in proper position for later rescan. */
2412 note = NEXT_INSN (insn);
2413 PREV_INSN (note) = prev;
2414 NEXT_INSN (prev) = note;
2415 NEXT_INSN (PREV_INSN (next)) = insn;
2416 PREV_INSN (insn) = PREV_INSN (next);
2417 NEXT_INSN (insn) = next;
2418 PREV_INSN (next) = insn;
2421 /* PEEPHOLE might have changed this. */
2422 body = PATTERN (insn);
2424 #endif
2426 /* Try to recognize the instruction.
2427 If successful, verify that the operands satisfy the
2428 constraints for the instruction. Crash if they don't,
2429 since `reload' should have changed them so that they do. */
2431 insn_code_number = recog_memoized (insn);
2432 cleanup_subreg_operands (insn);
2434 /* Dump the insn in the assembly for debugging. */
2435 if (flag_dump_rtl_in_asm)
2437 print_rtx_head = ASM_COMMENT_START;
2438 print_rtl_single (asm_out_file, insn);
2439 print_rtx_head = "";
2442 if (! constrain_operands_cached (1))
2443 fatal_insn_not_found (insn);
2445 /* Some target machines need to prescan each insn before
2446 it is output. */
2448 #ifdef FINAL_PRESCAN_INSN
2449 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2450 #endif
2452 #ifdef HAVE_conditional_execution
2453 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2454 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2455 else
2456 current_insn_predicate = NULL_RTX;
2457 #endif
2459 #ifdef HAVE_cc0
2460 cc_prev_status = cc_status;
2462 /* Update `cc_status' for this instruction.
2463 The instruction's output routine may change it further.
2464 If the output routine for a jump insn needs to depend
2465 on the cc status, it should look at cc_prev_status. */
2467 NOTICE_UPDATE_CC (body, insn);
2468 #endif
2470 current_output_insn = debug_insn = insn;
2472 #if defined (DWARF2_UNWIND_INFO)
2473 if (CALL_P (insn) && dwarf2out_do_frame ())
2474 dwarf2out_frame_debug (insn);
2475 #endif
2477 /* Find the proper template for this insn. */
2478 template = get_insn_template (insn_code_number, insn);
2480 /* If the C code returns 0, it means that it is a jump insn
2481 which follows a deleted test insn, and that test insn
2482 needs to be reinserted. */
2483 if (template == 0)
2485 rtx prev;
2487 if (prev_nonnote_insn (insn) != last_ignored_compare)
2488 abort ();
2490 /* We have already processed the notes between the setter and
2491 the user. Make sure we don't process them again, this is
2492 particularly important if one of the notes is a block
2493 scope note or an EH note. */
2494 for (prev = insn;
2495 prev != last_ignored_compare;
2496 prev = PREV_INSN (prev))
2498 if (NOTE_P (prev))
2499 delete_insn (prev); /* Use delete_note. */
2502 return prev;
2505 /* If the template is the string "#", it means that this insn must
2506 be split. */
2507 if (template[0] == '#' && template[1] == '\0')
2509 rtx new = try_split (body, insn, 0);
2511 /* If we didn't split the insn, go away. */
2512 if (new == insn && PATTERN (new) == body)
2513 fatal_insn ("could not split insn", insn);
2515 #ifdef HAVE_ATTR_length
2516 /* This instruction should have been split in shorten_branches,
2517 to ensure that we would have valid length info for the
2518 splitees. */
2519 abort ();
2520 #endif
2522 return new;
2525 if (prescan > 0)
2526 break;
2528 #ifdef IA64_UNWIND_INFO
2529 IA64_UNWIND_EMIT (asm_out_file, insn);
2530 #endif
2531 /* Output assembler code from the template. */
2533 output_asm_insn (template, recog_data.operand);
2535 /* If necessary, report the effect that the instruction has on
2536 the unwind info. We've already done this for delay slots
2537 and call instructions. */
2538 #if defined (DWARF2_UNWIND_INFO)
2539 if (NONJUMP_INSN_P (insn)
2540 #if !defined (HAVE_prologue)
2541 && !ACCUMULATE_OUTGOING_ARGS
2542 #endif
2543 && final_sequence == 0
2544 && dwarf2out_do_frame ())
2545 dwarf2out_frame_debug (insn);
2546 #endif
2548 #if 0
2549 /* It's not at all clear why we did this and doing so used to
2550 interfere with tests that used REG_WAS_0 notes, which are
2551 now gone, so let's try with this out. */
2553 /* Mark this insn as having been output. */
2554 INSN_DELETED_P (insn) = 1;
2555 #endif
2557 /* Emit information for vtable gc. */
2558 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2560 current_output_insn = debug_insn = 0;
2563 return NEXT_INSN (insn);
2566 /* Output debugging info to the assembler file FILE
2567 based on the NOTE-insn INSN, assumed to be a line number. */
2569 static bool
2570 notice_source_line (rtx insn)
2572 const char *filename = insn_file (insn);
2573 int linenum = insn_line (insn);
2575 if (filename && (filename != last_filename || last_linenum != linenum))
2577 last_filename = filename;
2578 last_linenum = linenum;
2579 high_block_linenum = MAX (last_linenum, high_block_linenum);
2580 high_function_linenum = MAX (last_linenum, high_function_linenum);
2581 return true;
2583 return false;
2586 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2587 directly to the desired hard register. */
2589 void
2590 cleanup_subreg_operands (rtx insn)
2592 int i;
2593 extract_insn_cached (insn);
2594 for (i = 0; i < recog_data.n_operands; i++)
2596 /* The following test cannot use recog_data.operand when testing
2597 for a SUBREG: the underlying object might have been changed
2598 already if we are inside a match_operator expression that
2599 matches the else clause. Instead we test the underlying
2600 expression directly. */
2601 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2602 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2603 else if (GET_CODE (recog_data.operand[i]) == PLUS
2604 || GET_CODE (recog_data.operand[i]) == MULT
2605 || MEM_P (recog_data.operand[i]))
2606 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2609 for (i = 0; i < recog_data.n_dups; i++)
2611 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2612 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2613 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2614 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2615 || MEM_P (*recog_data.dup_loc[i]))
2616 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2620 /* If X is a SUBREG, replace it with a REG or a MEM,
2621 based on the thing it is a subreg of. */
2624 alter_subreg (rtx *xp)
2626 rtx x = *xp;
2627 rtx y = SUBREG_REG (x);
2629 /* simplify_subreg does not remove subreg from volatile references.
2630 We are required to. */
2631 if (MEM_P (y))
2632 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2633 else
2635 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2636 SUBREG_BYTE (x));
2638 if (new != 0)
2639 *xp = new;
2640 /* Simplify_subreg can't handle some REG cases, but we have to. */
2641 else if (REG_P (y))
2643 unsigned int regno = subreg_hard_regno (x, 1);
2644 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2646 else
2647 abort ();
2650 return *xp;
2653 /* Do alter_subreg on all the SUBREGs contained in X. */
2655 static rtx
2656 walk_alter_subreg (rtx *xp)
2658 rtx x = *xp;
2659 switch (GET_CODE (x))
2661 case PLUS:
2662 case MULT:
2663 case AND:
2664 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2665 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2666 break;
2668 case MEM:
2669 case ZERO_EXTEND:
2670 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2671 break;
2673 case SUBREG:
2674 return alter_subreg (xp);
2676 default:
2677 break;
2680 return *xp;
2683 #ifdef HAVE_cc0
2685 /* Given BODY, the body of a jump instruction, alter the jump condition
2686 as required by the bits that are set in cc_status.flags.
2687 Not all of the bits there can be handled at this level in all cases.
2689 The value is normally 0.
2690 1 means that the condition has become always true.
2691 -1 means that the condition has become always false.
2692 2 means that COND has been altered. */
2694 static int
2695 alter_cond (rtx cond)
2697 int value = 0;
2699 if (cc_status.flags & CC_REVERSED)
2701 value = 2;
2702 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2705 if (cc_status.flags & CC_INVERTED)
2707 value = 2;
2708 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2711 if (cc_status.flags & CC_NOT_POSITIVE)
2712 switch (GET_CODE (cond))
2714 case LE:
2715 case LEU:
2716 case GEU:
2717 /* Jump becomes unconditional. */
2718 return 1;
2720 case GT:
2721 case GTU:
2722 case LTU:
2723 /* Jump becomes no-op. */
2724 return -1;
2726 case GE:
2727 PUT_CODE (cond, EQ);
2728 value = 2;
2729 break;
2731 case LT:
2732 PUT_CODE (cond, NE);
2733 value = 2;
2734 break;
2736 default:
2737 break;
2740 if (cc_status.flags & CC_NOT_NEGATIVE)
2741 switch (GET_CODE (cond))
2743 case GE:
2744 case GEU:
2745 /* Jump becomes unconditional. */
2746 return 1;
2748 case LT:
2749 case LTU:
2750 /* Jump becomes no-op. */
2751 return -1;
2753 case LE:
2754 case LEU:
2755 PUT_CODE (cond, EQ);
2756 value = 2;
2757 break;
2759 case GT:
2760 case GTU:
2761 PUT_CODE (cond, NE);
2762 value = 2;
2763 break;
2765 default:
2766 break;
2769 if (cc_status.flags & CC_NO_OVERFLOW)
2770 switch (GET_CODE (cond))
2772 case GEU:
2773 /* Jump becomes unconditional. */
2774 return 1;
2776 case LEU:
2777 PUT_CODE (cond, EQ);
2778 value = 2;
2779 break;
2781 case GTU:
2782 PUT_CODE (cond, NE);
2783 value = 2;
2784 break;
2786 case LTU:
2787 /* Jump becomes no-op. */
2788 return -1;
2790 default:
2791 break;
2794 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2795 switch (GET_CODE (cond))
2797 default:
2798 abort ();
2800 case NE:
2801 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2802 value = 2;
2803 break;
2805 case EQ:
2806 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2807 value = 2;
2808 break;
2811 if (cc_status.flags & CC_NOT_SIGNED)
2812 /* The flags are valid if signed condition operators are converted
2813 to unsigned. */
2814 switch (GET_CODE (cond))
2816 case LE:
2817 PUT_CODE (cond, LEU);
2818 value = 2;
2819 break;
2821 case LT:
2822 PUT_CODE (cond, LTU);
2823 value = 2;
2824 break;
2826 case GT:
2827 PUT_CODE (cond, GTU);
2828 value = 2;
2829 break;
2831 case GE:
2832 PUT_CODE (cond, GEU);
2833 value = 2;
2834 break;
2836 default:
2837 break;
2840 return value;
2842 #endif
2844 /* Report inconsistency between the assembler template and the operands.
2845 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2847 void
2848 output_operand_lossage (const char *msgid, ...)
2850 char *fmt_string;
2851 char *new_message;
2852 const char *pfx_str;
2853 va_list ap;
2855 va_start (ap, msgid);
2857 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2858 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2859 vasprintf (&new_message, fmt_string, ap);
2861 if (this_is_asm_operands)
2862 error_for_asm (this_is_asm_operands, "%s", new_message);
2863 else
2864 internal_error ("%s", new_message);
2866 free (fmt_string);
2867 free (new_message);
2868 va_end (ap);
2871 /* Output of assembler code from a template, and its subroutines. */
2873 /* Annotate the assembly with a comment describing the pattern and
2874 alternative used. */
2876 static void
2877 output_asm_name (void)
2879 if (debug_insn)
2881 int num = INSN_CODE (debug_insn);
2882 fprintf (asm_out_file, "\t%s %d\t%s",
2883 ASM_COMMENT_START, INSN_UID (debug_insn),
2884 insn_data[num].name);
2885 if (insn_data[num].n_alternatives > 1)
2886 fprintf (asm_out_file, "/%d", which_alternative + 1);
2887 #ifdef HAVE_ATTR_length
2888 fprintf (asm_out_file, "\t[length = %d]",
2889 get_attr_length (debug_insn));
2890 #endif
2891 /* Clear this so only the first assembler insn
2892 of any rtl insn will get the special comment for -dp. */
2893 debug_insn = 0;
2897 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2898 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2899 corresponds to the address of the object and 0 if to the object. */
2901 static tree
2902 get_mem_expr_from_op (rtx op, int *paddressp)
2904 tree expr;
2905 int inner_addressp;
2907 *paddressp = 0;
2909 if (REG_P (op))
2910 return REG_EXPR (op);
2911 else if (!MEM_P (op))
2912 return 0;
2914 if (MEM_EXPR (op) != 0)
2915 return MEM_EXPR (op);
2917 /* Otherwise we have an address, so indicate it and look at the address. */
2918 *paddressp = 1;
2919 op = XEXP (op, 0);
2921 /* First check if we have a decl for the address, then look at the right side
2922 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2923 But don't allow the address to itself be indirect. */
2924 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2925 return expr;
2926 else if (GET_CODE (op) == PLUS
2927 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2928 return expr;
2930 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2931 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2932 op = XEXP (op, 0);
2934 expr = get_mem_expr_from_op (op, &inner_addressp);
2935 return inner_addressp ? 0 : expr;
2938 /* Output operand names for assembler instructions. OPERANDS is the
2939 operand vector, OPORDER is the order to write the operands, and NOPS
2940 is the number of operands to write. */
2942 static void
2943 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2945 int wrote = 0;
2946 int i;
2948 for (i = 0; i < nops; i++)
2950 int addressp;
2951 rtx op = operands[oporder[i]];
2952 tree expr = get_mem_expr_from_op (op, &addressp);
2954 fprintf (asm_out_file, "%c%s",
2955 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2956 wrote = 1;
2957 if (expr)
2959 fprintf (asm_out_file, "%s",
2960 addressp ? "*" : "");
2961 print_mem_expr (asm_out_file, expr);
2962 wrote = 1;
2964 else if (REG_P (op) && ORIGINAL_REGNO (op)
2965 && ORIGINAL_REGNO (op) != REGNO (op))
2966 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2970 /* Output text from TEMPLATE to the assembler output file,
2971 obeying %-directions to substitute operands taken from
2972 the vector OPERANDS.
2974 %N (for N a digit) means print operand N in usual manner.
2975 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2976 and print the label name with no punctuation.
2977 %cN means require operand N to be a constant
2978 and print the constant expression with no punctuation.
2979 %aN means expect operand N to be a memory address
2980 (not a memory reference!) and print a reference
2981 to that address.
2982 %nN means expect operand N to be a constant
2983 and print a constant expression for minus the value
2984 of the operand, with no other punctuation. */
2986 void
2987 output_asm_insn (const char *template, rtx *operands)
2989 const char *p;
2990 int c;
2991 #ifdef ASSEMBLER_DIALECT
2992 int dialect = 0;
2993 #endif
2994 int oporder[MAX_RECOG_OPERANDS];
2995 char opoutput[MAX_RECOG_OPERANDS];
2996 int ops = 0;
2998 /* An insn may return a null string template
2999 in a case where no assembler code is needed. */
3000 if (*template == 0)
3001 return;
3003 memset (opoutput, 0, sizeof opoutput);
3004 p = template;
3005 putc ('\t', asm_out_file);
3007 #ifdef ASM_OUTPUT_OPCODE
3008 ASM_OUTPUT_OPCODE (asm_out_file, p);
3009 #endif
3011 while ((c = *p++))
3012 switch (c)
3014 case '\n':
3015 if (flag_verbose_asm)
3016 output_asm_operand_names (operands, oporder, ops);
3017 if (flag_print_asm_name)
3018 output_asm_name ();
3020 ops = 0;
3021 memset (opoutput, 0, sizeof opoutput);
3023 putc (c, asm_out_file);
3024 #ifdef ASM_OUTPUT_OPCODE
3025 while ((c = *p) == '\t')
3027 putc (c, asm_out_file);
3028 p++;
3030 ASM_OUTPUT_OPCODE (asm_out_file, p);
3031 #endif
3032 break;
3034 #ifdef ASSEMBLER_DIALECT
3035 case '{':
3037 int i;
3039 if (dialect)
3040 output_operand_lossage ("nested assembly dialect alternatives");
3041 else
3042 dialect = 1;
3044 /* If we want the first dialect, do nothing. Otherwise, skip
3045 DIALECT_NUMBER of strings ending with '|'. */
3046 for (i = 0; i < dialect_number; i++)
3048 while (*p && *p != '}' && *p++ != '|')
3050 if (*p == '}')
3051 break;
3052 if (*p == '|')
3053 p++;
3056 if (*p == '\0')
3057 output_operand_lossage ("unterminated assembly dialect alternative");
3059 break;
3061 case '|':
3062 if (dialect)
3064 /* Skip to close brace. */
3067 if (*p == '\0')
3069 output_operand_lossage ("unterminated assembly dialect alternative");
3070 break;
3073 while (*p++ != '}');
3074 dialect = 0;
3076 else
3077 putc (c, asm_out_file);
3078 break;
3080 case '}':
3081 if (! dialect)
3082 putc (c, asm_out_file);
3083 dialect = 0;
3084 break;
3085 #endif
3087 case '%':
3088 /* %% outputs a single %. */
3089 if (*p == '%')
3091 p++;
3092 putc (c, asm_out_file);
3094 /* %= outputs a number which is unique to each insn in the entire
3095 compilation. This is useful for making local labels that are
3096 referred to more than once in a given insn. */
3097 else if (*p == '=')
3099 p++;
3100 fprintf (asm_out_file, "%d", insn_counter);
3102 /* % followed by a letter and some digits
3103 outputs an operand in a special way depending on the letter.
3104 Letters `acln' are implemented directly.
3105 Other letters are passed to `output_operand' so that
3106 the PRINT_OPERAND macro can define them. */
3107 else if (ISALPHA (*p))
3109 int letter = *p++;
3110 c = atoi (p);
3112 if (! ISDIGIT (*p))
3113 output_operand_lossage ("operand number missing after %%-letter");
3114 else if (this_is_asm_operands
3115 && (c < 0 || (unsigned int) c >= insn_noperands))
3116 output_operand_lossage ("operand number out of range");
3117 else if (letter == 'l')
3118 output_asm_label (operands[c]);
3119 else if (letter == 'a')
3120 output_address (operands[c]);
3121 else if (letter == 'c')
3123 if (CONSTANT_ADDRESS_P (operands[c]))
3124 output_addr_const (asm_out_file, operands[c]);
3125 else
3126 output_operand (operands[c], 'c');
3128 else if (letter == 'n')
3130 if (GET_CODE (operands[c]) == CONST_INT)
3131 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3132 - INTVAL (operands[c]));
3133 else
3135 putc ('-', asm_out_file);
3136 output_addr_const (asm_out_file, operands[c]);
3139 else
3140 output_operand (operands[c], letter);
3142 if (!opoutput[c])
3143 oporder[ops++] = c;
3144 opoutput[c] = 1;
3146 while (ISDIGIT (c = *p))
3147 p++;
3149 /* % followed by a digit outputs an operand the default way. */
3150 else if (ISDIGIT (*p))
3152 c = atoi (p);
3153 if (this_is_asm_operands
3154 && (c < 0 || (unsigned int) c >= insn_noperands))
3155 output_operand_lossage ("operand number out of range");
3156 else
3157 output_operand (operands[c], 0);
3159 if (!opoutput[c])
3160 oporder[ops++] = c;
3161 opoutput[c] = 1;
3163 while (ISDIGIT (c = *p))
3164 p++;
3166 /* % followed by punctuation: output something for that
3167 punctuation character alone, with no operand.
3168 The PRINT_OPERAND macro decides what is actually done. */
3169 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3170 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3171 output_operand (NULL_RTX, *p++);
3172 #endif
3173 else
3174 output_operand_lossage ("invalid %%-code");
3175 break;
3177 default:
3178 putc (c, asm_out_file);
3181 /* Write out the variable names for operands, if we know them. */
3182 if (flag_verbose_asm)
3183 output_asm_operand_names (operands, oporder, ops);
3184 if (flag_print_asm_name)
3185 output_asm_name ();
3187 putc ('\n', asm_out_file);
3190 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3192 void
3193 output_asm_label (rtx x)
3195 char buf[256];
3197 if (GET_CODE (x) == LABEL_REF)
3198 x = XEXP (x, 0);
3199 if (LABEL_P (x)
3200 || (NOTE_P (x)
3201 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3202 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3203 else
3204 output_operand_lossage ("`%%l' operand isn't a label");
3206 assemble_name (asm_out_file, buf);
3209 /* Print operand X using machine-dependent assembler syntax.
3210 The macro PRINT_OPERAND is defined just to control this function.
3211 CODE is a non-digit that preceded the operand-number in the % spec,
3212 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3213 between the % and the digits.
3214 When CODE is a non-letter, X is 0.
3216 The meanings of the letters are machine-dependent and controlled
3217 by PRINT_OPERAND. */
3219 static void
3220 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3222 if (x && GET_CODE (x) == SUBREG)
3223 x = alter_subreg (&x);
3225 /* If X is a pseudo-register, abort now rather than writing trash to the
3226 assembler file. */
3228 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3229 abort ();
3231 PRINT_OPERAND (asm_out_file, x, code);
3234 /* Print a memory reference operand for address X
3235 using machine-dependent assembler syntax.
3236 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3238 void
3239 output_address (rtx x)
3241 walk_alter_subreg (&x);
3242 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3245 /* Print an integer constant expression in assembler syntax.
3246 Addition and subtraction are the only arithmetic
3247 that may appear in these expressions. */
3249 void
3250 output_addr_const (FILE *file, rtx x)
3252 char buf[256];
3254 restart:
3255 switch (GET_CODE (x))
3257 case PC:
3258 putc ('.', file);
3259 break;
3261 case SYMBOL_REF:
3262 if (SYMBOL_REF_DECL (x))
3263 mark_decl_referenced (SYMBOL_REF_DECL (x));
3264 #ifdef ASM_OUTPUT_SYMBOL_REF
3265 ASM_OUTPUT_SYMBOL_REF (file, x);
3266 #else
3267 assemble_name (file, XSTR (x, 0));
3268 #endif
3269 break;
3271 case LABEL_REF:
3272 x = XEXP (x, 0);
3273 /* Fall through. */
3274 case CODE_LABEL:
3275 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3276 #ifdef ASM_OUTPUT_LABEL_REF
3277 ASM_OUTPUT_LABEL_REF (file, buf);
3278 #else
3279 assemble_name (file, buf);
3280 #endif
3281 break;
3283 case CONST_INT:
3284 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3285 break;
3287 case CONST:
3288 /* This used to output parentheses around the expression,
3289 but that does not work on the 386 (either ATT or BSD assembler). */
3290 output_addr_const (file, XEXP (x, 0));
3291 break;
3293 case CONST_DOUBLE:
3294 if (GET_MODE (x) == VOIDmode)
3296 /* We can use %d if the number is one word and positive. */
3297 if (CONST_DOUBLE_HIGH (x))
3298 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3299 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3300 else if (CONST_DOUBLE_LOW (x) < 0)
3301 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3302 else
3303 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3305 else
3306 /* We can't handle floating point constants;
3307 PRINT_OPERAND must handle them. */
3308 output_operand_lossage ("floating constant misused");
3309 break;
3311 case PLUS:
3312 /* Some assemblers need integer constants to appear last (eg masm). */
3313 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3315 output_addr_const (file, XEXP (x, 1));
3316 if (INTVAL (XEXP (x, 0)) >= 0)
3317 fprintf (file, "+");
3318 output_addr_const (file, XEXP (x, 0));
3320 else
3322 output_addr_const (file, XEXP (x, 0));
3323 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3324 || INTVAL (XEXP (x, 1)) >= 0)
3325 fprintf (file, "+");
3326 output_addr_const (file, XEXP (x, 1));
3328 break;
3330 case MINUS:
3331 /* Avoid outputting things like x-x or x+5-x,
3332 since some assemblers can't handle that. */
3333 x = simplify_subtraction (x);
3334 if (GET_CODE (x) != MINUS)
3335 goto restart;
3337 output_addr_const (file, XEXP (x, 0));
3338 fprintf (file, "-");
3339 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3340 || GET_CODE (XEXP (x, 1)) == PC
3341 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3342 output_addr_const (file, XEXP (x, 1));
3343 else
3345 fputs (targetm.asm_out.open_paren, file);
3346 output_addr_const (file, XEXP (x, 1));
3347 fputs (targetm.asm_out.close_paren, file);
3349 break;
3351 case ZERO_EXTEND:
3352 case SIGN_EXTEND:
3353 case SUBREG:
3354 output_addr_const (file, XEXP (x, 0));
3355 break;
3357 default:
3358 #ifdef OUTPUT_ADDR_CONST_EXTRA
3359 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3360 break;
3362 fail:
3363 #endif
3364 output_operand_lossage ("invalid expression as operand");
3368 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3369 %R prints the value of REGISTER_PREFIX.
3370 %L prints the value of LOCAL_LABEL_PREFIX.
3371 %U prints the value of USER_LABEL_PREFIX.
3372 %I prints the value of IMMEDIATE_PREFIX.
3373 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3374 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3376 We handle alternate assembler dialects here, just like output_asm_insn. */
3378 void
3379 asm_fprintf (FILE *file, const char *p, ...)
3381 char buf[10];
3382 char *q, c;
3383 va_list argptr;
3385 va_start (argptr, p);
3387 buf[0] = '%';
3389 while ((c = *p++))
3390 switch (c)
3392 #ifdef ASSEMBLER_DIALECT
3393 case '{':
3395 int i;
3397 /* If we want the first dialect, do nothing. Otherwise, skip
3398 DIALECT_NUMBER of strings ending with '|'. */
3399 for (i = 0; i < dialect_number; i++)
3401 while (*p && *p++ != '|')
3404 if (*p == '|')
3405 p++;
3408 break;
3410 case '|':
3411 /* Skip to close brace. */
3412 while (*p && *p++ != '}')
3414 break;
3416 case '}':
3417 break;
3418 #endif
3420 case '%':
3421 c = *p++;
3422 q = &buf[1];
3423 while (strchr ("-+ #0", c))
3425 *q++ = c;
3426 c = *p++;
3428 while (ISDIGIT (c) || c == '.')
3430 *q++ = c;
3431 c = *p++;
3433 switch (c)
3435 case '%':
3436 putc ('%', file);
3437 break;
3439 case 'd': case 'i': case 'u':
3440 case 'x': case 'X': case 'o':
3441 case 'c':
3442 *q++ = c;
3443 *q = 0;
3444 fprintf (file, buf, va_arg (argptr, int));
3445 break;
3447 case 'w':
3448 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3449 'o' cases, but we do not check for those cases. It
3450 means that the value is a HOST_WIDE_INT, which may be
3451 either `long' or `long long'. */
3452 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3453 q += strlen (HOST_WIDE_INT_PRINT);
3454 *q++ = *p++;
3455 *q = 0;
3456 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3457 break;
3459 case 'l':
3460 *q++ = c;
3461 #ifdef HAVE_LONG_LONG
3462 if (*p == 'l')
3464 *q++ = *p++;
3465 *q++ = *p++;
3466 *q = 0;
3467 fprintf (file, buf, va_arg (argptr, long long));
3469 else
3470 #endif
3472 *q++ = *p++;
3473 *q = 0;
3474 fprintf (file, buf, va_arg (argptr, long));
3477 break;
3479 case 's':
3480 *q++ = c;
3481 *q = 0;
3482 fprintf (file, buf, va_arg (argptr, char *));
3483 break;
3485 case 'O':
3486 #ifdef ASM_OUTPUT_OPCODE
3487 ASM_OUTPUT_OPCODE (asm_out_file, p);
3488 #endif
3489 break;
3491 case 'R':
3492 #ifdef REGISTER_PREFIX
3493 fprintf (file, "%s", REGISTER_PREFIX);
3494 #endif
3495 break;
3497 case 'I':
3498 #ifdef IMMEDIATE_PREFIX
3499 fprintf (file, "%s", IMMEDIATE_PREFIX);
3500 #endif
3501 break;
3503 case 'L':
3504 #ifdef LOCAL_LABEL_PREFIX
3505 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3506 #endif
3507 break;
3509 case 'U':
3510 fputs (user_label_prefix, file);
3511 break;
3513 #ifdef ASM_FPRINTF_EXTENSIONS
3514 /* Uppercase letters are reserved for general use by asm_fprintf
3515 and so are not available to target specific code. In order to
3516 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3517 they are defined here. As they get turned into real extensions
3518 to asm_fprintf they should be removed from this list. */
3519 case 'A': case 'B': case 'C': case 'D': case 'E':
3520 case 'F': case 'G': case 'H': case 'J': case 'K':
3521 case 'M': case 'N': case 'P': case 'Q': case 'S':
3522 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3523 break;
3525 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3526 #endif
3527 default:
3528 abort ();
3530 break;
3532 default:
3533 putc (c, file);
3535 va_end (argptr);
3538 /* Split up a CONST_DOUBLE or integer constant rtx
3539 into two rtx's for single words,
3540 storing in *FIRST the word that comes first in memory in the target
3541 and in *SECOND the other. */
3543 void
3544 split_double (rtx value, rtx *first, rtx *second)
3546 if (GET_CODE (value) == CONST_INT)
3548 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3550 /* In this case the CONST_INT holds both target words.
3551 Extract the bits from it into two word-sized pieces.
3552 Sign extend each half to HOST_WIDE_INT. */
3553 unsigned HOST_WIDE_INT low, high;
3554 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3556 /* Set sign_bit to the most significant bit of a word. */
3557 sign_bit = 1;
3558 sign_bit <<= BITS_PER_WORD - 1;
3560 /* Set mask so that all bits of the word are set. We could
3561 have used 1 << BITS_PER_WORD instead of basing the
3562 calculation on sign_bit. However, on machines where
3563 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3564 compiler warning, even though the code would never be
3565 executed. */
3566 mask = sign_bit << 1;
3567 mask--;
3569 /* Set sign_extend as any remaining bits. */
3570 sign_extend = ~mask;
3572 /* Pick the lower word and sign-extend it. */
3573 low = INTVAL (value);
3574 low &= mask;
3575 if (low & sign_bit)
3576 low |= sign_extend;
3578 /* Pick the higher word, shifted to the least significant
3579 bits, and sign-extend it. */
3580 high = INTVAL (value);
3581 high >>= BITS_PER_WORD - 1;
3582 high >>= 1;
3583 high &= mask;
3584 if (high & sign_bit)
3585 high |= sign_extend;
3587 /* Store the words in the target machine order. */
3588 if (WORDS_BIG_ENDIAN)
3590 *first = GEN_INT (high);
3591 *second = GEN_INT (low);
3593 else
3595 *first = GEN_INT (low);
3596 *second = GEN_INT (high);
3599 else
3601 /* The rule for using CONST_INT for a wider mode
3602 is that we regard the value as signed.
3603 So sign-extend it. */
3604 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3605 if (WORDS_BIG_ENDIAN)
3607 *first = high;
3608 *second = value;
3610 else
3612 *first = value;
3613 *second = high;
3617 else if (GET_CODE (value) != CONST_DOUBLE)
3619 if (WORDS_BIG_ENDIAN)
3621 *first = const0_rtx;
3622 *second = value;
3624 else
3626 *first = value;
3627 *second = const0_rtx;
3630 else if (GET_MODE (value) == VOIDmode
3631 /* This is the old way we did CONST_DOUBLE integers. */
3632 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3634 /* In an integer, the words are defined as most and least significant.
3635 So order them by the target's convention. */
3636 if (WORDS_BIG_ENDIAN)
3638 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3639 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3641 else
3643 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3644 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3647 else
3649 REAL_VALUE_TYPE r;
3650 long l[2];
3651 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3653 /* Note, this converts the REAL_VALUE_TYPE to the target's
3654 format, splits up the floating point double and outputs
3655 exactly 32 bits of it into each of l[0] and l[1] --
3656 not necessarily BITS_PER_WORD bits. */
3657 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3659 /* If 32 bits is an entire word for the target, but not for the host,
3660 then sign-extend on the host so that the number will look the same
3661 way on the host that it would on the target. See for instance
3662 simplify_unary_operation. The #if is needed to avoid compiler
3663 warnings. */
3665 #if HOST_BITS_PER_LONG > 32
3666 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3668 if (l[0] & ((long) 1 << 31))
3669 l[0] |= ((long) (-1) << 32);
3670 if (l[1] & ((long) 1 << 31))
3671 l[1] |= ((long) (-1) << 32);
3673 #endif
3675 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3676 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3680 /* Return nonzero if this function has no function calls. */
3683 leaf_function_p (void)
3685 rtx insn;
3686 rtx link;
3688 if (current_function_profile || profile_arc_flag)
3689 return 0;
3691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3693 if (CALL_P (insn)
3694 && ! SIBLING_CALL_P (insn))
3695 return 0;
3696 if (NONJUMP_INSN_P (insn)
3697 && GET_CODE (PATTERN (insn)) == SEQUENCE
3698 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3699 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3700 return 0;
3702 for (link = current_function_epilogue_delay_list;
3703 link;
3704 link = XEXP (link, 1))
3706 insn = XEXP (link, 0);
3708 if (CALL_P (insn)
3709 && ! SIBLING_CALL_P (insn))
3710 return 0;
3711 if (NONJUMP_INSN_P (insn)
3712 && GET_CODE (PATTERN (insn)) == SEQUENCE
3713 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3714 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3715 return 0;
3718 return 1;
3721 /* Return 1 if branch is a forward branch.
3722 Uses insn_shuid array, so it works only in the final pass. May be used by
3723 output templates to customary add branch prediction hints.
3726 final_forward_branch_p (rtx insn)
3728 int insn_id, label_id;
3729 if (!uid_shuid)
3730 abort ();
3731 insn_id = INSN_SHUID (insn);
3732 label_id = INSN_SHUID (JUMP_LABEL (insn));
3733 /* We've hit some insns that does not have id information available. */
3734 if (!insn_id || !label_id)
3735 abort ();
3736 return insn_id < label_id;
3739 /* On some machines, a function with no call insns
3740 can run faster if it doesn't create its own register window.
3741 When output, the leaf function should use only the "output"
3742 registers. Ordinarily, the function would be compiled to use
3743 the "input" registers to find its arguments; it is a candidate
3744 for leaf treatment if it uses only the "input" registers.
3745 Leaf function treatment means renumbering so the function
3746 uses the "output" registers instead. */
3748 #ifdef LEAF_REGISTERS
3750 /* Return 1 if this function uses only the registers that can be
3751 safely renumbered. */
3754 only_leaf_regs_used (void)
3756 int i;
3757 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3759 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3760 if ((regs_ever_live[i] || global_regs[i])
3761 && ! permitted_reg_in_leaf_functions[i])
3762 return 0;
3764 if (current_function_uses_pic_offset_table
3765 && pic_offset_table_rtx != 0
3766 && REG_P (pic_offset_table_rtx)
3767 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3768 return 0;
3770 return 1;
3773 /* Scan all instructions and renumber all registers into those
3774 available in leaf functions. */
3776 static void
3777 leaf_renumber_regs (rtx first)
3779 rtx insn;
3781 /* Renumber only the actual patterns.
3782 The reg-notes can contain frame pointer refs,
3783 and renumbering them could crash, and should not be needed. */
3784 for (insn = first; insn; insn = NEXT_INSN (insn))
3785 if (INSN_P (insn))
3786 leaf_renumber_regs_insn (PATTERN (insn));
3787 for (insn = current_function_epilogue_delay_list;
3788 insn;
3789 insn = XEXP (insn, 1))
3790 if (INSN_P (XEXP (insn, 0)))
3791 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3794 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3795 available in leaf functions. */
3797 void
3798 leaf_renumber_regs_insn (rtx in_rtx)
3800 int i, j;
3801 const char *format_ptr;
3803 if (in_rtx == 0)
3804 return;
3806 /* Renumber all input-registers into output-registers.
3807 renumbered_regs would be 1 for an output-register;
3808 they */
3810 if (REG_P (in_rtx))
3812 int newreg;
3814 /* Don't renumber the same reg twice. */
3815 if (in_rtx->used)
3816 return;
3818 newreg = REGNO (in_rtx);
3819 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3820 to reach here as part of a REG_NOTE. */
3821 if (newreg >= FIRST_PSEUDO_REGISTER)
3823 in_rtx->used = 1;
3824 return;
3826 newreg = LEAF_REG_REMAP (newreg);
3827 if (newreg < 0)
3828 abort ();
3829 regs_ever_live[REGNO (in_rtx)] = 0;
3830 regs_ever_live[newreg] = 1;
3831 REGNO (in_rtx) = newreg;
3832 in_rtx->used = 1;
3835 if (INSN_P (in_rtx))
3837 /* Inside a SEQUENCE, we find insns.
3838 Renumber just the patterns of these insns,
3839 just as we do for the top-level insns. */
3840 leaf_renumber_regs_insn (PATTERN (in_rtx));
3841 return;
3844 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3846 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3847 switch (*format_ptr++)
3849 case 'e':
3850 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3851 break;
3853 case 'E':
3854 if (NULL != XVEC (in_rtx, i))
3856 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3857 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3859 break;
3861 case 'S':
3862 case 's':
3863 case '0':
3864 case 'i':
3865 case 'w':
3866 case 'n':
3867 case 'u':
3868 break;
3870 default:
3871 abort ();
3874 #endif
3877 /* When -gused is used, emit debug info for only used symbols. But in
3878 addition to the standard intercepted debug_hooks there are some direct
3879 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3880 Those routines may also be called from a higher level intercepted routine. So
3881 to prevent recording data for an inner call to one of these for an intercept,
3882 we maintain an intercept nesting counter (debug_nesting). We only save the
3883 intercepted arguments if the nesting is 1. */
3884 int debug_nesting = 0;
3886 static tree *symbol_queue;
3887 int symbol_queue_index = 0;
3888 static int symbol_queue_size = 0;
3890 /* Generate the symbols for any queued up type symbols we encountered
3891 while generating the type info for some originally used symbol.
3892 This might generate additional entries in the queue. Only when
3893 the nesting depth goes to 0 is this routine called. */
3895 void
3896 debug_flush_symbol_queue (void)
3898 int i;
3900 /* Make sure that additionally queued items are not flushed
3901 prematurely. */
3903 ++debug_nesting;
3905 for (i = 0; i < symbol_queue_index; ++i)
3907 /* If we pushed queued symbols then such symbols are must be
3908 output no matter what anyone else says. Specifically,
3909 we need to make sure dbxout_symbol() thinks the symbol was
3910 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3911 which may be set for outside reasons. */
3912 int saved_tree_used = TREE_USED (symbol_queue[i]);
3913 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3914 TREE_USED (symbol_queue[i]) = 1;
3915 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3917 #ifdef DBX_DEBUGGING_INFO
3918 dbxout_symbol (symbol_queue[i], 0);
3919 #endif
3921 TREE_USED (symbol_queue[i]) = saved_tree_used;
3922 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3925 symbol_queue_index = 0;
3926 --debug_nesting;
3929 /* Queue a type symbol needed as part of the definition of a decl
3930 symbol. These symbols are generated when debug_flush_symbol_queue()
3931 is called. */
3933 void
3934 debug_queue_symbol (tree decl)
3936 if (symbol_queue_index >= symbol_queue_size)
3938 symbol_queue_size += 10;
3939 symbol_queue = xrealloc (symbol_queue,
3940 symbol_queue_size * sizeof (tree));
3943 symbol_queue[symbol_queue_index++] = decl;
3946 /* Free symbol queue. */
3947 void
3948 debug_free_queue (void)
3950 if (symbol_queue)
3952 free (symbol_queue);
3953 symbol_queue = NULL;
3954 symbol_queue_size = 0;