Support C++11 thread_local destructors.
[official-gcc.git] / gcc / mode-switching.c
blob1984a694c8987cd4843b50991cbc8124a3f23899
1 /* CPU mode switching
2 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "tm_p.h"
34 #include "function.h"
35 #include "tree-pass.h"
36 #include "df.h"
37 #include "emit-rtl.h"
39 /* We want target macros for the mode switching code to be able to refer
40 to instruction attribute values. */
41 #include "insn-attr.h"
43 #ifdef OPTIMIZE_MODE_SWITCHING
45 /* The algorithm for setting the modes consists of scanning the insn list
46 and finding all the insns which require a specific mode. Each insn gets
47 a unique struct seginfo element. These structures are inserted into a list
48 for each basic block. For each entity, there is an array of bb_info over
49 the flow graph basic blocks (local var 'bb_info'), and contains a list
50 of all insns within that basic block, in the order they are encountered.
52 For each entity, any basic block WITHOUT any insns requiring a specific
53 mode are given a single entry, without a mode. (Each basic block
54 in the flow graph must have at least one entry in the segment table.)
56 The LCM algorithm is then run over the flow graph to determine where to
57 place the sets to the highest-priority value in respect of first the first
58 insn in any one block. Any adjustments required to the transparency
59 vectors are made, then the next iteration starts for the next-lower
60 priority mode, till for each entity all modes are exhausted.
62 More details are located in the code for optimize_mode_switching(). */
64 /* This structure contains the information for each insn which requires
65 either single or double mode to be set.
66 MODE is the mode this insn must be executed in.
67 INSN_PTR is the insn to be executed (may be the note that marks the
68 beginning of a basic block).
69 BBNUM is the flow graph basic block this insn occurs in.
70 NEXT is the next insn in the same basic block. */
71 struct seginfo
73 int mode;
74 rtx insn_ptr;
75 int bbnum;
76 struct seginfo *next;
77 HARD_REG_SET regs_live;
80 struct bb_info
82 struct seginfo *seginfo;
83 int computing;
86 /* These bitmaps are used for the LCM algorithm. */
88 static sbitmap *antic;
89 static sbitmap *transp;
90 static sbitmap *comp;
92 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
93 static void add_seginfo (struct bb_info *, struct seginfo *);
94 static void reg_dies (rtx, HARD_REG_SET *);
95 static void reg_becomes_live (rtx, const_rtx, void *);
96 static void make_preds_opaque (basic_block, int);
99 /* This function will allocate a new BBINFO structure, initialized
100 with the MODE, INSN, and basic block BB parameters. */
102 static struct seginfo *
103 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
105 struct seginfo *ptr;
106 ptr = XNEW (struct seginfo);
107 ptr->mode = mode;
108 ptr->insn_ptr = insn;
109 ptr->bbnum = bb;
110 ptr->next = NULL;
111 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
112 return ptr;
115 /* Add a seginfo element to the end of a list.
116 HEAD is a pointer to the list beginning.
117 INFO is the structure to be linked in. */
119 static void
120 add_seginfo (struct bb_info *head, struct seginfo *info)
122 struct seginfo *ptr;
124 if (head->seginfo == NULL)
125 head->seginfo = info;
126 else
128 ptr = head->seginfo;
129 while (ptr->next != NULL)
130 ptr = ptr->next;
131 ptr->next = info;
135 /* Make all predecessors of basic block B opaque, recursively, till we hit
136 some that are already non-transparent, or an edge where aux is set; that
137 denotes that a mode set is to be done on that edge.
138 J is the bit number in the bitmaps that corresponds to the entity that
139 we are currently handling mode-switching for. */
141 static void
142 make_preds_opaque (basic_block b, int j)
144 edge e;
145 edge_iterator ei;
147 FOR_EACH_EDGE (e, ei, b->preds)
149 basic_block pb = e->src;
151 if (e->aux || ! TEST_BIT (transp[pb->index], j))
152 continue;
154 RESET_BIT (transp[pb->index], j);
155 make_preds_opaque (pb, j);
159 /* Record in LIVE that register REG died. */
161 static void
162 reg_dies (rtx reg, HARD_REG_SET *live)
164 int regno;
166 if (!REG_P (reg))
167 return;
169 regno = REGNO (reg);
170 if (regno < FIRST_PSEUDO_REGISTER)
171 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
174 /* Record in LIVE that register REG became live.
175 This is called via note_stores. */
177 static void
178 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
180 int regno;
182 if (GET_CODE (reg) == SUBREG)
183 reg = SUBREG_REG (reg);
185 if (!REG_P (reg))
186 return;
188 regno = REGNO (reg);
189 if (regno < FIRST_PSEUDO_REGISTER)
190 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
193 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
194 and vice versa. */
195 #if defined (MODE_ENTRY) != defined (MODE_EXIT)
196 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
197 #endif
199 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
200 /* Split the fallthrough edge to the exit block, so that we can note
201 that there NORMAL_MODE is required. Return the new block if it's
202 inserted before the exit block. Otherwise return null. */
204 static basic_block
205 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
207 edge eg;
208 edge_iterator ei;
209 basic_block pre_exit;
211 /* The only non-call predecessor at this stage is a block with a
212 fallthrough edge; there can be at most one, but there could be
213 none at all, e.g. when exit is called. */
214 pre_exit = 0;
215 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR->preds)
216 if (eg->flags & EDGE_FALLTHRU)
218 basic_block src_bb = eg->src;
219 rtx last_insn, ret_reg;
221 gcc_assert (!pre_exit);
222 /* If this function returns a value at the end, we have to
223 insert the final mode switch before the return value copy
224 to its hard register. */
225 if (EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 1
226 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
227 && GET_CODE (PATTERN (last_insn)) == USE
228 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
230 int ret_start = REGNO (ret_reg);
231 int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
232 int ret_end = ret_start + nregs;
233 int short_block = 0;
234 int maybe_builtin_apply = 0;
235 int forced_late_switch = 0;
236 rtx before_return_copy;
240 rtx return_copy = PREV_INSN (last_insn);
241 rtx return_copy_pat, copy_reg;
242 int copy_start, copy_num;
243 int j;
245 if (INSN_P (return_copy))
247 /* When using SJLJ exceptions, the call to the
248 unregister function is inserted between the
249 clobber of the return value and the copy.
250 We do not want to split the block before this
251 or any other call; if we have not found the
252 copy yet, the copy must have been deleted. */
253 if (CALL_P (return_copy))
255 short_block = 1;
256 break;
258 return_copy_pat = PATTERN (return_copy);
259 switch (GET_CODE (return_copy_pat))
261 case USE:
262 /* Skip __builtin_apply pattern. */
263 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
264 && (targetm.calls.function_value_regno_p
265 (REGNO (XEXP (return_copy_pat, 0)))))
267 maybe_builtin_apply = 1;
268 last_insn = return_copy;
269 continue;
271 break;
273 case ASM_OPERANDS:
274 /* Skip barrier insns. */
275 if (!MEM_VOLATILE_P (return_copy_pat))
276 break;
278 /* Fall through. */
280 case ASM_INPUT:
281 case UNSPEC_VOLATILE:
282 last_insn = return_copy;
283 continue;
285 default:
286 break;
289 /* If the return register is not (in its entirety)
290 likely spilled, the return copy might be
291 partially or completely optimized away. */
292 return_copy_pat = single_set (return_copy);
293 if (!return_copy_pat)
295 return_copy_pat = PATTERN (return_copy);
296 if (GET_CODE (return_copy_pat) != CLOBBER)
297 break;
298 else if (!optimize)
300 /* This might be (clobber (reg [<result>]))
301 when not optimizing. Then check if
302 the previous insn is the clobber for
303 the return register. */
304 copy_reg = SET_DEST (return_copy_pat);
305 if (GET_CODE (copy_reg) == REG
306 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
308 if (INSN_P (PREV_INSN (return_copy)))
310 return_copy = PREV_INSN (return_copy);
311 return_copy_pat = PATTERN (return_copy);
312 if (GET_CODE (return_copy_pat) != CLOBBER)
313 break;
318 copy_reg = SET_DEST (return_copy_pat);
319 if (GET_CODE (copy_reg) == REG)
320 copy_start = REGNO (copy_reg);
321 else if (GET_CODE (copy_reg) == SUBREG
322 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
323 copy_start = REGNO (SUBREG_REG (copy_reg));
324 else
325 break;
326 if (copy_start >= FIRST_PSEUDO_REGISTER)
327 break;
328 copy_num
329 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
331 /* If the return register is not likely spilled, - as is
332 the case for floating point on SH4 - then it might
333 be set by an arithmetic operation that needs a
334 different mode than the exit block. */
335 for (j = n_entities - 1; j >= 0; j--)
337 int e = entity_map[j];
338 int mode = MODE_NEEDED (e, return_copy);
340 if (mode != num_modes[e] && mode != MODE_EXIT (e))
341 break;
343 if (j >= 0)
345 /* For the SH4, floating point loads depend on fpscr,
346 thus we might need to put the final mode switch
347 after the return value copy. That is still OK,
348 because a floating point return value does not
349 conflict with address reloads. */
350 if (copy_start >= ret_start
351 && copy_start + copy_num <= ret_end
352 && OBJECT_P (SET_SRC (return_copy_pat)))
353 forced_late_switch = 1;
354 break;
357 if (copy_start >= ret_start
358 && copy_start + copy_num <= ret_end)
359 nregs -= copy_num;
360 else if (!maybe_builtin_apply
361 || !targetm.calls.function_value_regno_p
362 (copy_start))
363 break;
364 last_insn = return_copy;
366 /* ??? Exception handling can lead to the return value
367 copy being already separated from the return value use,
368 as in unwind-dw2.c .
369 Similarly, conditionally returning without a value,
370 and conditionally using builtin_return can lead to an
371 isolated use. */
372 if (return_copy == BB_HEAD (src_bb))
374 short_block = 1;
375 break;
377 last_insn = return_copy;
379 while (nregs);
381 /* If we didn't see a full return value copy, verify that there
382 is a plausible reason for this. If some, but not all of the
383 return register is likely spilled, we can expect that there
384 is a copy for the likely spilled part. */
385 gcc_assert (!nregs
386 || forced_late_switch
387 || short_block
388 || !(targetm.class_likely_spilled_p
389 (REGNO_REG_CLASS (ret_start)))
390 || (nregs
391 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
392 /* For multi-hard-register floating point
393 values, sometimes the likely-spilled part
394 is ordinarily copied first, then the other
395 part is set with an arithmetic operation.
396 This doesn't actually cause reload
397 failures, so let it pass. */
398 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
399 && nregs != 1));
401 if (INSN_P (last_insn))
403 before_return_copy
404 = emit_note_before (NOTE_INSN_DELETED, last_insn);
405 /* Instructions preceding LAST_INSN in the same block might
406 require a different mode than MODE_EXIT, so if we might
407 have such instructions, keep them in a separate block
408 from pre_exit. */
409 if (last_insn != BB_HEAD (src_bb))
410 src_bb = split_block (src_bb,
411 PREV_INSN (before_return_copy))->dest;
413 else
414 before_return_copy = last_insn;
415 pre_exit = split_block (src_bb, before_return_copy)->src;
417 else
419 pre_exit = split_edge (eg);
423 return pre_exit;
425 #endif
427 /* Find all insns that need a particular mode setting, and insert the
428 necessary mode switches. Return true if we did work. */
430 static int
431 optimize_mode_switching (void)
433 rtx insn;
434 int e;
435 basic_block bb;
436 int need_commit = 0;
437 sbitmap *kill;
438 struct edge_list *edge_list;
439 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
440 #define N_ENTITIES ARRAY_SIZE (num_modes)
441 int entity_map[N_ENTITIES];
442 struct bb_info *bb_info[N_ENTITIES];
443 int i, j;
444 int n_entities;
445 int max_num_modes = 0;
446 bool emitted ATTRIBUTE_UNUSED = false;
447 basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
449 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
450 if (OPTIMIZE_MODE_SWITCHING (e))
452 int entry_exit_extra = 0;
454 /* Create the list of segments within each basic block.
455 If NORMAL_MODE is defined, allow for two extra
456 blocks split from the entry and exit block. */
457 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
458 entry_exit_extra = 3;
459 #endif
460 bb_info[n_entities]
461 = XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra);
462 entity_map[n_entities++] = e;
463 if (num_modes[e] > max_num_modes)
464 max_num_modes = num_modes[e];
467 if (! n_entities)
468 return 0;
470 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
471 /* Split the edge from the entry block, so that we can note that
472 there NORMAL_MODE is supplied. */
473 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
474 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
475 #endif
477 df_analyze ();
479 /* Create the bitmap vectors. */
481 antic = sbitmap_vector_alloc (last_basic_block, n_entities);
482 transp = sbitmap_vector_alloc (last_basic_block, n_entities);
483 comp = sbitmap_vector_alloc (last_basic_block, n_entities);
485 sbitmap_vector_ones (transp, last_basic_block);
487 for (j = n_entities - 1; j >= 0; j--)
489 int e = entity_map[j];
490 int no_mode = num_modes[e];
491 struct bb_info *info = bb_info[j];
493 /* Determine what the first use (if any) need for a mode of entity E is.
494 This will be the mode that is anticipatable for this block.
495 Also compute the initial transparency settings. */
496 FOR_EACH_BB (bb)
498 struct seginfo *ptr;
499 int last_mode = no_mode;
500 bool any_set_required = false;
501 HARD_REG_SET live_now;
503 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
505 /* Pretend the mode is clobbered across abnormal edges. */
507 edge_iterator ei;
508 edge e;
509 FOR_EACH_EDGE (e, ei, bb->preds)
510 if (e->flags & EDGE_COMPLEX)
511 break;
512 if (e)
514 ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now);
515 add_seginfo (info + bb->index, ptr);
516 RESET_BIT (transp[bb->index], j);
520 FOR_BB_INSNS (bb, insn)
522 if (INSN_P (insn))
524 int mode = MODE_NEEDED (e, insn);
525 rtx link;
527 if (mode != no_mode && mode != last_mode)
529 any_set_required = true;
530 last_mode = mode;
531 ptr = new_seginfo (mode, insn, bb->index, live_now);
532 add_seginfo (info + bb->index, ptr);
533 RESET_BIT (transp[bb->index], j);
535 #ifdef MODE_AFTER
536 last_mode = MODE_AFTER (e, last_mode, insn);
537 #endif
538 /* Update LIVE_NOW. */
539 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
540 if (REG_NOTE_KIND (link) == REG_DEAD)
541 reg_dies (XEXP (link, 0), &live_now);
543 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
544 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
545 if (REG_NOTE_KIND (link) == REG_UNUSED)
546 reg_dies (XEXP (link, 0), &live_now);
550 info[bb->index].computing = last_mode;
551 /* Check for blocks without ANY mode requirements.
552 N.B. because of MODE_AFTER, last_mode might still be different
553 from no_mode. */
554 if (!any_set_required)
556 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
557 add_seginfo (info + bb->index, ptr);
560 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
562 int mode = MODE_ENTRY (e);
564 if (mode != no_mode)
566 bb = post_entry;
568 /* By always making this nontransparent, we save
569 an extra check in make_preds_opaque. We also
570 need this to avoid confusing pre_edge_lcm when
571 antic is cleared but transp and comp are set. */
572 RESET_BIT (transp[bb->index], j);
574 /* Insert a fake computing definition of MODE into entry
575 blocks which compute no mode. This represents the mode on
576 entry. */
577 info[bb->index].computing = mode;
579 if (pre_exit)
580 info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
583 #endif /* NORMAL_MODE */
586 kill = sbitmap_vector_alloc (last_basic_block, n_entities);
587 for (i = 0; i < max_num_modes; i++)
589 int current_mode[N_ENTITIES];
590 sbitmap *del;
591 sbitmap *insert;
593 /* Set the anticipatable and computing arrays. */
594 sbitmap_vector_zero (antic, last_basic_block);
595 sbitmap_vector_zero (comp, last_basic_block);
596 for (j = n_entities - 1; j >= 0; j--)
598 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
599 struct bb_info *info = bb_info[j];
601 FOR_EACH_BB (bb)
603 if (info[bb->index].seginfo->mode == m)
604 SET_BIT (antic[bb->index], j);
606 if (info[bb->index].computing == m)
607 SET_BIT (comp[bb->index], j);
611 /* Calculate the optimal locations for the
612 placement mode switches to modes with priority I. */
614 FOR_EACH_BB (bb)
615 sbitmap_not (kill[bb->index], transp[bb->index]);
616 edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
617 kill, &insert, &del);
619 for (j = n_entities - 1; j >= 0; j--)
621 /* Insert all mode sets that have been inserted by lcm. */
622 int no_mode = num_modes[entity_map[j]];
624 /* Wherever we have moved a mode setting upwards in the flow graph,
625 the blocks between the new setting site and the now redundant
626 computation ceases to be transparent for any lower-priority
627 mode of the same entity. First set the aux field of each
628 insertion site edge non-transparent, then propagate the new
629 non-transparency from the redundant computation upwards till
630 we hit an insertion site or an already non-transparent block. */
631 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
633 edge eg = INDEX_EDGE (edge_list, e);
634 int mode;
635 basic_block src_bb;
636 HARD_REG_SET live_at_edge;
637 rtx mode_set;
639 eg->aux = 0;
641 if (! TEST_BIT (insert[e], j))
642 continue;
644 eg->aux = (void *)1;
646 mode = current_mode[j];
647 src_bb = eg->src;
649 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
651 start_sequence ();
652 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
653 mode_set = get_insns ();
654 end_sequence ();
656 /* Do not bother to insert empty sequence. */
657 if (mode_set == NULL_RTX)
658 continue;
660 /* We should not get an abnormal edge here. */
661 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
663 need_commit = 1;
664 insert_insn_on_edge (mode_set, eg);
667 FOR_EACH_BB_REVERSE (bb)
668 if (TEST_BIT (del[bb->index], j))
670 make_preds_opaque (bb, j);
671 /* Cancel the 'deleted' mode set. */
672 bb_info[j][bb->index].seginfo->mode = no_mode;
676 sbitmap_vector_free (del);
677 sbitmap_vector_free (insert);
678 clear_aux_for_edges ();
679 free_edge_list (edge_list);
682 /* Now output the remaining mode sets in all the segments. */
683 for (j = n_entities - 1; j >= 0; j--)
685 int no_mode = num_modes[entity_map[j]];
687 FOR_EACH_BB_REVERSE (bb)
689 struct seginfo *ptr, *next;
690 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
692 next = ptr->next;
693 if (ptr->mode != no_mode)
695 rtx mode_set;
697 start_sequence ();
698 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
699 mode_set = get_insns ();
700 end_sequence ();
702 /* Insert MODE_SET only if it is nonempty. */
703 if (mode_set != NULL_RTX)
705 emitted = true;
706 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
707 emit_insn_after (mode_set, ptr->insn_ptr);
708 else
709 emit_insn_before (mode_set, ptr->insn_ptr);
713 free (ptr);
717 free (bb_info[j]);
720 /* Finished. Free up all the things we've allocated. */
721 sbitmap_vector_free (kill);
722 sbitmap_vector_free (antic);
723 sbitmap_vector_free (transp);
724 sbitmap_vector_free (comp);
726 if (need_commit)
727 commit_edge_insertions ();
729 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
730 cleanup_cfg (CLEANUP_NO_INSN_DEL);
731 #else
732 if (!need_commit && !emitted)
733 return 0;
734 #endif
736 return 1;
739 #endif /* OPTIMIZE_MODE_SWITCHING */
741 static bool
742 gate_mode_switching (void)
744 #ifdef OPTIMIZE_MODE_SWITCHING
745 return true;
746 #else
747 return false;
748 #endif
751 static unsigned int
752 rest_of_handle_mode_switching (void)
754 #ifdef OPTIMIZE_MODE_SWITCHING
755 optimize_mode_switching ();
756 #endif /* OPTIMIZE_MODE_SWITCHING */
757 return 0;
761 struct rtl_opt_pass pass_mode_switching =
764 RTL_PASS,
765 "mode_sw", /* name */
766 gate_mode_switching, /* gate */
767 rest_of_handle_mode_switching, /* execute */
768 NULL, /* sub */
769 NULL, /* next */
770 0, /* static_pass_number */
771 TV_MODE_SWITCH, /* tv_id */
772 0, /* properties_required */
773 0, /* properties_provided */
774 0, /* properties_destroyed */
775 0, /* todo_flags_start */
776 TODO_df_finish | TODO_verify_rtl_sharing |
777 0 /* todo_flags_finish */