Testcase from PR rtl-optimization/18611
[official-gcc.git] / gcc / function.c
blobce1fd9eb3ac84a975045a6f38b330e716571fb2c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 gcc_unreachable ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 lang_hooks.function.leave_nested (p);
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
297 void
298 pop_function_context (void)
300 pop_function_context_from (current_function_decl);
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
307 void
308 free_after_parsing (struct function *f)
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
315 lang_hooks.function.final (f);
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
322 void
323 free_after_compilation (struct function *f)
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
348 /* Allocate fixed slots in the stack frame of the current function. */
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
371 return get_func_frame_size (cfun);
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
383 We do not round to stack_boundary here.
385 FUNCTION specifies the function to allocate in. */
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
396 if (align == 0)
398 tree type;
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
411 alignment /= BITS_PER_UNIT;
413 else if (align == -1)
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
486 x = gen_rtx_MEM (mode, addr);
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
491 return x;
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
500 return assign_stack_local_1 (mode, size, align, cfun);
504 /* Removes temporary slot TEMP from LIST. */
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
516 temp->prev = temp->next = NULL;
519 /* Inserts temporary slot TEMP to LIST. */
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
531 /* Returns the list of used temp slots at LEVEL. */
533 static struct temp_slot **
534 temp_slots_at_level (int level)
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
546 /* Returns the maximal temporary slot level. */
548 static int
549 max_slot_level (void)
551 if (!used_temp_slots)
552 return -1;
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
557 /* Moves temporary slot TEMP to LEVEL. */
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
567 /* Make temporary slot TEMP available. */
569 static void
570 make_slot_available (struct temp_slot *temp)
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
581 MODE is the machine mode to be given to the returned rtx.
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
592 TYPE is the type that will be used for the stack slot. */
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
630 if (p->align == align && p->size == size)
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
637 best_p = p;
641 /* Make our best, if any, the one to use. */
642 if (best_p)
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
655 if (best_p->size - rounded_size >= alignment)
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
682 HOST_WIDE_INT frame_offset_old = frame_offset;
684 p = ggc_alloc (sizeof (struct temp_slot));
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
700 p->align = align;
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
725 selected = p;
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
755 return slot;
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
797 if (mode == BLKmode || memory_required)
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
844 return gen_reg_rtx (mode);
847 /* Combine temporary stack slots which are adjacent on the stack.
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
853 static void
854 combine_temp_slots (void)
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
871 for (p = avail_temp_slots; p; p = next)
873 int delete_p = 0;
875 next = p->next;
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
880 for (q = p->next; q; q = next_q)
882 int delete_q = 0;
884 next_q = q->next;
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
889 if (p->base_offset + p->full_size == q->base_offset)
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
896 else if (q->base_offset + q->full_size == p->base_offset)
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
914 /* Find the temp slot corresponding to the object at address X. */
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
919 struct temp_slot *p;
920 rtx next;
921 int i;
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
950 return 0;
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
956 void
957 update_temp_slot_address (rtx old, rtx new)
959 struct temp_slot *p;
961 if (rtx_equal_p (old, new))
962 return;
964 p = find_temp_slot_from_address (old);
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
973 if (GET_CODE (old) != PLUS)
974 return;
976 if (REG_P (new))
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
982 else if (GET_CODE (new) != PLUS)
983 return;
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
994 return;
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1012 void
1013 mark_temp_addr_taken (rtx x)
1015 struct temp_slot *p;
1017 if (x == 0)
1018 return;
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1039 void
1040 preserve_temp_slots (rtx x)
1042 struct temp_slot *p = 0, *next;
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1050 next = p->next;
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1056 return;
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1073 next = p->next;
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1079 return;
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1086 if (p != 0)
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1092 if (p->level == temp_slot_level)
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1096 next = q->next;
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1105 return;
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1121 void
1122 free_temp_slots (void)
1124 struct temp_slot *p, *next;
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1128 next = p->next;
1130 if (!p->keep)
1131 make_slot_available (p);
1134 combine_temp_slots ();
1137 /* Push deeper into the nesting level for stack temporaries. */
1139 void
1140 push_temp_slots (void)
1142 temp_slot_level++;
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1148 void
1149 pop_temp_slots (void)
1151 struct temp_slot *p, *next;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1159 combine_temp_slots ();
1161 temp_slot_level--;
1164 /* Initialize temporary slots. */
1166 void
1167 init_temp_slots (void)
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1199 #ifndef STACK_DYNAMIC_OFFSET
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1232 void
1233 instantiate_virtual_regs (void)
1235 rtx insn;
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1293 tree decl;
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1321 tree t;
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1343 enum machine_mode mode;
1344 rtx addr;
1346 if (x == 0)
1347 return;
1349 /* If this is a CONCAT, recurse for the pieces. */
1350 if (GET_CODE (x) == CONCAT)
1352 instantiate_decl (XEXP (x, 0), size / 2, valid_only);
1353 instantiate_decl (XEXP (x, 1), size / 2, valid_only);
1354 return;
1357 /* If this is not a MEM, no need to do anything. Similarly if the
1358 address is a constant or a register that is not a virtual register. */
1359 if (!MEM_P (x))
1360 return;
1362 addr = XEXP (x, 0);
1363 if (CONSTANT_P (addr)
1364 || (REG_P (addr)
1365 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1366 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1367 return;
1369 /* If we should only do this if the address is valid, copy the address.
1370 We need to do this so we can undo any changes that might make the
1371 address invalid. This copy is unfortunate, but probably can't be
1372 avoided. */
1374 if (valid_only)
1375 addr = copy_rtx (addr);
1377 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1379 if (valid_only && size >= 0)
1381 unsigned HOST_WIDE_INT decl_size = size;
1383 /* Now verify that the resulting address is valid for every integer or
1384 floating-point mode up to and including SIZE bytes long. We do this
1385 since the object might be accessed in any mode and frame addresses
1386 are shared. */
1388 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1389 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1390 mode = GET_MODE_WIDER_MODE (mode))
1391 if (! memory_address_p (mode, addr))
1392 return;
1394 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1395 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1396 mode = GET_MODE_WIDER_MODE (mode))
1397 if (! memory_address_p (mode, addr))
1398 return;
1401 /* Put back the address now that we have updated it and we either know
1402 it is valid or we don't care whether it is valid. */
1404 XEXP (x, 0) = addr;
1407 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1408 is a virtual register, return the equivalent hard register and set the
1409 offset indirectly through the pointer. Otherwise, return 0. */
1411 static rtx
1412 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1414 rtx new;
1415 HOST_WIDE_INT offset;
1417 if (x == virtual_incoming_args_rtx)
1418 new = arg_pointer_rtx, offset = in_arg_offset;
1419 else if (x == virtual_stack_vars_rtx)
1420 new = frame_pointer_rtx, offset = var_offset;
1421 else if (x == virtual_stack_dynamic_rtx)
1422 new = stack_pointer_rtx, offset = dynamic_offset;
1423 else if (x == virtual_outgoing_args_rtx)
1424 new = stack_pointer_rtx, offset = out_arg_offset;
1425 else if (x == virtual_cfa_rtx)
1426 new = arg_pointer_rtx, offset = cfa_offset;
1427 else
1428 return 0;
1430 *poffset = offset;
1431 return new;
1435 /* Called when instantiate_virtual_regs has failed to update the instruction.
1436 Usually this means that non-matching instruction has been emit, however for
1437 asm statements it may be the problem in the constraints. */
1438 static void
1439 instantiate_virtual_regs_lossage (rtx insn)
1441 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1442 error_for_asm (insn, "impossible constraint in %<asm%>");
1443 delete_insn (insn);
1445 /* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1452 Return 1 if we either had nothing to do or if we were able to do the
1453 needed replacement. Return 0 otherwise; we only return zero if
1454 EXTRA_INSNS is zero.
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1459 static int
1460 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
1465 HOST_WIDE_INT offset = 0;
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
1469 const char *fmt;
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1482 code = GET_CODE (x);
1484 /* Check for some special cases. */
1485 switch (code)
1487 case CONST_INT:
1488 case CONST_DOUBLE:
1489 case CONST_VECTOR:
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
1503 the actual register should receive the source minus the
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1508 rtx src = SET_SRC (x);
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1524 start_sequence ();
1525 if (!REG_P (src))
1526 temp = force_operand (src, NULL_RTX);
1527 else
1528 temp = src;
1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1530 seq = get_insns ();
1531 end_sequence ();
1533 emit_insn_before (seq, object);
1534 SET_DEST (x) = new;
1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
1537 || ! extra_insns)
1538 instantiate_virtual_regs_lossage (object);
1540 return 1;
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1551 rtx old, new_offset;
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1562 else
1564 loc = &XEXP (x, 0);
1565 goto restart;
1569 #ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1584 return 1;
1585 #endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
1591 if (!REG_P (XEXP (x, 0)))
1593 loc = &XEXP (x, 0);
1594 goto restart;
1596 return 1;
1599 new_offset = plus_constant (XEXP (x, 1), offset);
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
1605 return 1;
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
1612 changes and then call apply_change_group). */
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1620 if (! extra_insns)
1622 XEXP (x, 0) = old;
1623 return 0;
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
1629 XEXP (x, 0) = new;
1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
1632 else
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1637 XEXP (x, 0) = old;
1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
1640 start_sequence ();
1641 temp = force_operand (new, NULL_RTX);
1642 seq = get_insns ();
1643 end_sequence ();
1645 emit_insn_before (seq, object);
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1655 return 1;
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
1679 handled by our scan of decls. The only special handling we
1680 need here is to make a copy of the rtx to ensure it isn't being
1681 shared if we have to change it to a pseudo.
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
1686 proceed normally.
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
1696 #endif
1697 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
1699 #endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
1706 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708 #endif
1709 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711 #endif
1713 return 1;
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
1743 return 1;
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1751 /* Fall through to generic unary operation case. */
1752 case PREFETCH:
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
1775 just make the recursive call, since there's no chance of a problem. */
1777 if ((MEM_P (XEXP (x, 0))
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1780 || (REG_P (XEXP (x, 0))
1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1782 return 1;
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1796 if (! extra_insns)
1797 return 0;
1799 start_sequence ();
1800 temp = force_operand (temp, NULL_RTX);
1801 seq = get_insns ();
1802 end_sequence ();
1804 emit_insn_before (seq, object);
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
1807 instantiate_virtual_regs_lossage (object);
1811 return 1;
1813 default:
1814 break;
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1831 return 1;
1834 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
1840 aggregate_value_p (tree exp, tree fntype)
1842 int i, regno, nregs;
1843 rtx reg;
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 gcc_unreachable ();
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
1875 if (targetm.calls.return_in_memory (type, fntype))
1876 return 1;
1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1882 return 1;
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
1885 reg = hard_function_value (type, 0, 0);
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
1889 if (!REG_P (reg))
1890 return 0;
1892 regno = REGNO (reg);
1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
1897 return 0;
1900 /* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1903 bool
1904 use_register_for_decl (tree decl)
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1929 #ifdef NON_SAVING_SETJMP
1930 /* Protect variables not declared "register" from setjmp. */
1931 if (NON_SAVING_SETJMP
1932 && current_function_calls_setjmp
1933 && !DECL_REGISTER (decl))
1934 return false;
1935 #endif
1937 return (optimize || DECL_REGISTER (decl));
1940 /* Return true if TYPE should be passed by invisible reference. */
1942 bool
1943 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1944 tree type, bool named_arg)
1946 if (type)
1948 /* If this type contains non-trivial constructors, then it is
1949 forbidden for the middle-end to create any new copies. */
1950 if (TREE_ADDRESSABLE (type))
1951 return true;
1953 /* GCC post 3.4 passes *all* variable sized types by reference. */
1954 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1955 return true;
1958 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1961 /* Return true if TYPE, which is passed by reference, should be callee
1962 copied instead of caller copied. */
1964 bool
1965 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1966 tree type, bool named_arg)
1968 if (type && TREE_ADDRESSABLE (type))
1969 return false;
1970 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1973 /* Structures to communicate between the subroutines of assign_parms.
1974 The first holds data persistent across all parameters, the second
1975 is cleared out for each parameter. */
1977 struct assign_parm_data_all
1979 CUMULATIVE_ARGS args_so_far;
1980 struct args_size stack_args_size;
1981 tree function_result_decl;
1982 tree orig_fnargs;
1983 rtx conversion_insns;
1984 HOST_WIDE_INT pretend_args_size;
1985 HOST_WIDE_INT extra_pretend_bytes;
1986 int reg_parm_stack_space;
1989 struct assign_parm_data_one
1991 tree nominal_type;
1992 tree passed_type;
1993 rtx entry_parm;
1994 rtx stack_parm;
1995 enum machine_mode nominal_mode;
1996 enum machine_mode passed_mode;
1997 enum machine_mode promoted_mode;
1998 struct locate_and_pad_arg_data locate;
1999 int partial;
2000 BOOL_BITFIELD named_arg : 1;
2001 BOOL_BITFIELD last_named : 1;
2002 BOOL_BITFIELD passed_pointer : 1;
2003 BOOL_BITFIELD on_stack : 1;
2004 BOOL_BITFIELD loaded_in_reg : 1;
2007 /* A subroutine of assign_parms. Initialize ALL. */
2009 static void
2010 assign_parms_initialize_all (struct assign_parm_data_all *all)
2012 tree fntype;
2014 memset (all, 0, sizeof (*all));
2016 fntype = TREE_TYPE (current_function_decl);
2018 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2019 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2020 #else
2021 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2022 current_function_decl, -1);
2023 #endif
2025 #ifdef REG_PARM_STACK_SPACE
2026 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2027 #endif
2030 /* If ARGS contains entries with complex types, split the entry into two
2031 entries of the component type. Return a new list of substitutions are
2032 needed, else the old list. */
2034 static tree
2035 split_complex_args (tree args)
2037 tree p;
2039 /* Before allocating memory, check for the common case of no complex. */
2040 for (p = args; p; p = TREE_CHAIN (p))
2042 tree type = TREE_TYPE (p);
2043 if (TREE_CODE (type) == COMPLEX_TYPE
2044 && targetm.calls.split_complex_arg (type))
2045 goto found;
2047 return args;
2049 found:
2050 args = copy_list (args);
2052 for (p = args; p; p = TREE_CHAIN (p))
2054 tree type = TREE_TYPE (p);
2055 if (TREE_CODE (type) == COMPLEX_TYPE
2056 && targetm.calls.split_complex_arg (type))
2058 tree decl;
2059 tree subtype = TREE_TYPE (type);
2061 /* Rewrite the PARM_DECL's type with its component. */
2062 TREE_TYPE (p) = subtype;
2063 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2064 DECL_MODE (p) = VOIDmode;
2065 DECL_SIZE (p) = NULL;
2066 DECL_SIZE_UNIT (p) = NULL;
2067 layout_decl (p, 0);
2069 /* Build a second synthetic decl. */
2070 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2071 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2072 layout_decl (decl, 0);
2074 /* Splice it in; skip the new decl. */
2075 TREE_CHAIN (decl) = TREE_CHAIN (p);
2076 TREE_CHAIN (p) = decl;
2077 p = decl;
2081 return args;
2084 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2085 the hidden struct return argument, and (abi willing) complex args.
2086 Return the new parameter list. */
2088 static tree
2089 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2091 tree fndecl = current_function_decl;
2092 tree fntype = TREE_TYPE (fndecl);
2093 tree fnargs = DECL_ARGUMENTS (fndecl);
2095 /* If struct value address is treated as the first argument, make it so. */
2096 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2097 && ! current_function_returns_pcc_struct
2098 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2100 tree type = build_pointer_type (TREE_TYPE (fntype));
2101 tree decl;
2103 decl = build_decl (PARM_DECL, NULL_TREE, type);
2104 DECL_ARG_TYPE (decl) = type;
2105 DECL_ARTIFICIAL (decl) = 1;
2107 TREE_CHAIN (decl) = fnargs;
2108 fnargs = decl;
2109 all->function_result_decl = decl;
2112 all->orig_fnargs = fnargs;
2114 /* If the target wants to split complex arguments into scalars, do so. */
2115 if (targetm.calls.split_complex_arg)
2116 fnargs = split_complex_args (fnargs);
2118 return fnargs;
2121 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2122 data for the parameter. Incorporate ABI specifics such as pass-by-
2123 reference and type promotion. */
2125 static void
2126 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2127 struct assign_parm_data_one *data)
2129 tree nominal_type, passed_type;
2130 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2132 memset (data, 0, sizeof (*data));
2134 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2135 if (current_function_stdarg)
2137 tree tem;
2138 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2139 if (DECL_NAME (tem))
2140 break;
2141 if (tem == 0)
2142 data->last_named = true;
2145 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2146 most machines, if this is a varargs/stdarg function, then we treat
2147 the last named arg as if it were anonymous too. */
2148 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2149 data->named_arg = 1;
2150 else
2151 data->named_arg = !data->last_named;
2153 nominal_type = TREE_TYPE (parm);
2154 passed_type = DECL_ARG_TYPE (parm);
2156 /* Look out for errors propagating this far. Also, if the parameter's
2157 type is void then its value doesn't matter. */
2158 if (TREE_TYPE (parm) == error_mark_node
2159 /* This can happen after weird syntax errors
2160 or if an enum type is defined among the parms. */
2161 || TREE_CODE (parm) != PARM_DECL
2162 || passed_type == NULL
2163 || VOID_TYPE_P (nominal_type))
2165 nominal_type = passed_type = void_type_node;
2166 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2167 goto egress;
2170 /* Find mode of arg as it is passed, and mode of arg as it should be
2171 during execution of this function. */
2172 passed_mode = TYPE_MODE (passed_type);
2173 nominal_mode = TYPE_MODE (nominal_type);
2175 /* If the parm is to be passed as a transparent union, use the type of
2176 the first field for the tests below. We have already verified that
2177 the modes are the same. */
2178 if (DECL_TRANSPARENT_UNION (parm)
2179 || (TREE_CODE (passed_type) == UNION_TYPE
2180 && TYPE_TRANSPARENT_UNION (passed_type)))
2181 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2183 /* See if this arg was passed by invisible reference. */
2184 if (pass_by_reference (&all->args_so_far, passed_mode,
2185 passed_type, data->named_arg))
2187 passed_type = nominal_type = build_pointer_type (passed_type);
2188 data->passed_pointer = true;
2189 passed_mode = nominal_mode = Pmode;
2192 /* Find mode as it is passed by the ABI. */
2193 promoted_mode = passed_mode;
2194 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2196 int unsignedp = TYPE_UNSIGNED (passed_type);
2197 promoted_mode = promote_mode (passed_type, promoted_mode,
2198 &unsignedp, 1);
2201 egress:
2202 data->nominal_type = nominal_type;
2203 data->passed_type = passed_type;
2204 data->nominal_mode = nominal_mode;
2205 data->passed_mode = passed_mode;
2206 data->promoted_mode = promoted_mode;
2209 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2211 static void
2212 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2213 struct assign_parm_data_one *data, bool no_rtl)
2215 int varargs_pretend_bytes = 0;
2217 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2218 data->promoted_mode,
2219 data->passed_type,
2220 &varargs_pretend_bytes, no_rtl);
2222 /* If the back-end has requested extra stack space, record how much is
2223 needed. Do not change pretend_args_size otherwise since it may be
2224 nonzero from an earlier partial argument. */
2225 if (varargs_pretend_bytes > 0)
2226 all->pretend_args_size = varargs_pretend_bytes;
2229 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2230 the incoming location of the current parameter. */
2232 static void
2233 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2234 struct assign_parm_data_one *data)
2236 HOST_WIDE_INT pretend_bytes = 0;
2237 rtx entry_parm;
2238 bool in_regs;
2240 if (data->promoted_mode == VOIDmode)
2242 data->entry_parm = data->stack_parm = const0_rtx;
2243 return;
2246 #ifdef FUNCTION_INCOMING_ARG
2247 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2248 data->passed_type, data->named_arg);
2249 #else
2250 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2251 data->passed_type, data->named_arg);
2252 #endif
2254 if (entry_parm == 0)
2255 data->promoted_mode = data->passed_mode;
2257 /* Determine parm's home in the stack, in case it arrives in the stack
2258 or we should pretend it did. Compute the stack position and rtx where
2259 the argument arrives and its size.
2261 There is one complexity here: If this was a parameter that would
2262 have been passed in registers, but wasn't only because it is
2263 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2264 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2265 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2266 as it was the previous time. */
2267 in_regs = entry_parm != 0;
2268 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2269 in_regs = true;
2270 #endif
2271 if (!in_regs && !data->named_arg)
2273 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2275 rtx tem;
2276 #ifdef FUNCTION_INCOMING_ARG
2277 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2278 data->passed_type, true);
2279 #else
2280 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2281 data->passed_type, true);
2282 #endif
2283 in_regs = tem != NULL;
2287 /* If this parameter was passed both in registers and in the stack, use
2288 the copy on the stack. */
2289 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2290 data->passed_type))
2291 entry_parm = 0;
2293 if (entry_parm)
2295 int partial;
2297 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2298 data->promoted_mode,
2299 data->passed_type,
2300 data->named_arg);
2301 data->partial = partial;
2303 /* The caller might already have allocated stack space for the
2304 register parameters. */
2305 if (partial != 0 && all->reg_parm_stack_space == 0)
2307 /* Part of this argument is passed in registers and part
2308 is passed on the stack. Ask the prologue code to extend
2309 the stack part so that we can recreate the full value.
2311 PRETEND_BYTES is the size of the registers we need to store.
2312 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2313 stack space that the prologue should allocate.
2315 Internally, gcc assumes that the argument pointer is aligned
2316 to STACK_BOUNDARY bits. This is used both for alignment
2317 optimizations (see init_emit) and to locate arguments that are
2318 aligned to more than PARM_BOUNDARY bits. We must preserve this
2319 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2320 a stack boundary. */
2322 /* We assume at most one partial arg, and it must be the first
2323 argument on the stack. */
2324 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2326 pretend_bytes = partial * UNITS_PER_WORD;
2327 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2329 /* We want to align relative to the actual stack pointer, so
2330 don't include this in the stack size until later. */
2331 all->extra_pretend_bytes = all->pretend_args_size;
2335 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2336 entry_parm ? data->partial : 0, current_function_decl,
2337 &all->stack_args_size, &data->locate);
2339 /* Adjust offsets to include the pretend args. */
2340 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2341 data->locate.slot_offset.constant += pretend_bytes;
2342 data->locate.offset.constant += pretend_bytes;
2344 data->entry_parm = entry_parm;
2347 /* A subroutine of assign_parms. If there is actually space on the stack
2348 for this parm, count it in stack_args_size and return true. */
2350 static bool
2351 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2352 struct assign_parm_data_one *data)
2354 /* Trivially true if we've no incoming register. */
2355 if (data->entry_parm == NULL)
2357 /* Also true if we're partially in registers and partially not,
2358 since we've arranged to drop the entire argument on the stack. */
2359 else if (data->partial != 0)
2361 /* Also true if the target says that it's passed in both registers
2362 and on the stack. */
2363 else if (GET_CODE (data->entry_parm) == PARALLEL
2364 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2366 /* Also true if the target says that there's stack allocated for
2367 all register parameters. */
2368 else if (all->reg_parm_stack_space > 0)
2370 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2371 else
2372 return false;
2374 all->stack_args_size.constant += data->locate.size.constant;
2375 if (data->locate.size.var)
2376 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2378 return true;
2381 /* A subroutine of assign_parms. Given that this parameter is allocated
2382 stack space by the ABI, find it. */
2384 static void
2385 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2387 rtx offset_rtx, stack_parm;
2388 unsigned int align, boundary;
2390 /* If we're passing this arg using a reg, make its stack home the
2391 aligned stack slot. */
2392 if (data->entry_parm)
2393 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2394 else
2395 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2397 stack_parm = current_function_internal_arg_pointer;
2398 if (offset_rtx != const0_rtx)
2399 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2400 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2402 set_mem_attributes (stack_parm, parm, 1);
2404 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2405 align = 0;
2407 /* If we're padding upward, we know that the alignment of the slot
2408 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2409 intentionally forcing upward padding. Otherwise we have to come
2410 up with a guess at the alignment based on OFFSET_RTX. */
2411 if (data->locate.where_pad == upward || data->entry_parm)
2412 align = boundary;
2413 else if (GET_CODE (offset_rtx) == CONST_INT)
2415 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2416 align = align & -align;
2418 if (align > 0)
2419 set_mem_align (stack_parm, align);
2421 if (data->entry_parm)
2422 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2424 data->stack_parm = stack_parm;
2427 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2428 always valid and contiguous. */
2430 static void
2431 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2433 rtx entry_parm = data->entry_parm;
2434 rtx stack_parm = data->stack_parm;
2436 /* If this parm was passed part in regs and part in memory, pretend it
2437 arrived entirely in memory by pushing the register-part onto the stack.
2438 In the special case of a DImode or DFmode that is split, we could put
2439 it together in a pseudoreg directly, but for now that's not worth
2440 bothering with. */
2441 if (data->partial != 0)
2443 /* Handle calls that pass values in multiple non-contiguous
2444 locations. The Irix 6 ABI has examples of this. */
2445 if (GET_CODE (entry_parm) == PARALLEL)
2446 emit_group_store (validize_mem (stack_parm), entry_parm,
2447 data->passed_type,
2448 int_size_in_bytes (data->passed_type));
2449 else
2450 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2451 data->partial);
2453 entry_parm = stack_parm;
2456 /* If we didn't decide this parm came in a register, by default it came
2457 on the stack. */
2458 else if (entry_parm == NULL)
2459 entry_parm = stack_parm;
2461 /* When an argument is passed in multiple locations, we can't make use
2462 of this information, but we can save some copying if the whole argument
2463 is passed in a single register. */
2464 else if (GET_CODE (entry_parm) == PARALLEL
2465 && data->nominal_mode != BLKmode
2466 && data->passed_mode != BLKmode)
2468 size_t i, len = XVECLEN (entry_parm, 0);
2470 for (i = 0; i < len; i++)
2471 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2472 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2473 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2474 == data->passed_mode)
2475 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2477 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2478 break;
2482 data->entry_parm = entry_parm;
2485 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2486 always valid and properly aligned. */
2489 static void
2490 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2492 rtx stack_parm = data->stack_parm;
2494 /* If we can't trust the parm stack slot to be aligned enough for its
2495 ultimate type, don't use that slot after entry. We'll make another
2496 stack slot, if we need one. */
2497 if (STRICT_ALIGNMENT && stack_parm
2498 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2499 stack_parm = NULL;
2501 /* If parm was passed in memory, and we need to convert it on entry,
2502 don't store it back in that same slot. */
2503 else if (data->entry_parm == stack_parm
2504 && data->nominal_mode != BLKmode
2505 && data->nominal_mode != data->passed_mode)
2506 stack_parm = NULL;
2508 data->stack_parm = stack_parm;
2511 /* A subroutine of assign_parms. Return true if the current parameter
2512 should be stored as a BLKmode in the current frame. */
2514 static bool
2515 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2517 if (data->nominal_mode == BLKmode)
2518 return true;
2519 if (GET_CODE (data->entry_parm) == PARALLEL)
2520 return true;
2522 #ifdef BLOCK_REG_PADDING
2523 /* Only assign_parm_setup_block knows how to deal with register arguments
2524 that are padded at the least significant end. */
2525 if (REG_P (data->entry_parm)
2526 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2527 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2528 == (BYTES_BIG_ENDIAN ? upward : downward)))
2529 return true;
2530 #endif
2532 return false;
2535 /* A subroutine of assign_parms. Arrange for the parameter to be
2536 present and valid in DATA->STACK_RTL. */
2538 static void
2539 assign_parm_setup_block (struct assign_parm_data_all *all,
2540 tree parm, struct assign_parm_data_one *data)
2542 rtx entry_parm = data->entry_parm;
2543 rtx stack_parm = data->stack_parm;
2545 if (GET_CODE (entry_parm) == PARALLEL)
2546 entry_parm = emit_group_move_into_temps (entry_parm);
2548 /* If we've a non-block object that's nevertheless passed in parts,
2549 reconstitute it in register operations rather than on the stack. */
2550 if (GET_CODE (entry_parm) == PARALLEL
2551 && data->nominal_mode != BLKmode
2552 && XVECLEN (entry_parm, 0) > 1
2553 && use_register_for_decl (parm))
2555 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2557 push_to_sequence (all->conversion_insns);
2559 /* For values returned in multiple registers, handle possible
2560 incompatible calls to emit_group_store.
2562 For example, the following would be invalid, and would have to
2563 be fixed by the conditional below:
2565 emit_group_store ((reg:SF), (parallel:DF))
2566 emit_group_store ((reg:SI), (parallel:DI))
2568 An example of this are doubles in e500 v2:
2569 (parallel:DF (expr_list (reg:SI) (const_int 0))
2570 (expr_list (reg:SI) (const_int 4))). */
2571 if (data->nominal_mode != data->passed_mode)
2573 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2574 emit_group_store (t, entry_parm, NULL_TREE,
2575 GET_MODE_SIZE (GET_MODE (entry_parm)));
2576 convert_move (parmreg, t, 0);
2578 else
2579 emit_group_store (parmreg, entry_parm, data->nominal_type,
2580 int_size_in_bytes (data->nominal_type));
2582 all->conversion_insns = get_insns ();
2583 end_sequence ();
2585 SET_DECL_RTL (parm, parmreg);
2586 return;
2589 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2590 calls that pass values in multiple non-contiguous locations. */
2591 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2593 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2594 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2595 rtx mem;
2597 /* Note that we will be storing an integral number of words.
2598 So we have to be careful to ensure that we allocate an
2599 integral number of words. We do this below in the
2600 assign_stack_local if space was not allocated in the argument
2601 list. If it was, this will not work if PARM_BOUNDARY is not
2602 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2603 if it becomes a problem. Exception is when BLKmode arrives
2604 with arguments not conforming to word_mode. */
2606 if (stack_parm == 0)
2608 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2609 data->stack_parm = stack_parm;
2610 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2611 set_mem_attributes (stack_parm, parm, 1);
2613 else if (GET_CODE (entry_parm) == PARALLEL)
2615 else
2616 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2618 mem = validize_mem (stack_parm);
2620 /* Handle values in multiple non-contiguous locations. */
2621 if (GET_CODE (entry_parm) == PARALLEL)
2623 push_to_sequence (all->conversion_insns);
2624 emit_group_store (mem, entry_parm, data->passed_type, size);
2625 all->conversion_insns = get_insns ();
2626 end_sequence ();
2629 else if (size == 0)
2632 /* If SIZE is that of a mode no bigger than a word, just use
2633 that mode's store operation. */
2634 else if (size <= UNITS_PER_WORD)
2636 enum machine_mode mode
2637 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2639 if (mode != BLKmode
2640 #ifdef BLOCK_REG_PADDING
2641 && (size == UNITS_PER_WORD
2642 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2643 != (BYTES_BIG_ENDIAN ? upward : downward)))
2644 #endif
2647 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2648 emit_move_insn (change_address (mem, mode, 0), reg);
2651 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2652 machine must be aligned to the left before storing
2653 to memory. Note that the previous test doesn't
2654 handle all cases (e.g. SIZE == 3). */
2655 else if (size != UNITS_PER_WORD
2656 #ifdef BLOCK_REG_PADDING
2657 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2658 == downward)
2659 #else
2660 && BYTES_BIG_ENDIAN
2661 #endif
2664 rtx tem, x;
2665 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2666 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2668 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2669 build_int_cst (NULL_TREE, by),
2670 NULL_RTX, 1);
2671 tem = change_address (mem, word_mode, 0);
2672 emit_move_insn (tem, x);
2674 else
2675 move_block_from_reg (REGNO (entry_parm), mem,
2676 size_stored / UNITS_PER_WORD);
2678 else
2679 move_block_from_reg (REGNO (entry_parm), mem,
2680 size_stored / UNITS_PER_WORD);
2683 SET_DECL_RTL (parm, stack_parm);
2686 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2687 parameter. Get it there. Perform all ABI specified conversions. */
2689 static void
2690 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2691 struct assign_parm_data_one *data)
2693 rtx parmreg;
2694 enum machine_mode promoted_nominal_mode;
2695 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2696 bool did_conversion = false;
2698 /* Store the parm in a pseudoregister during the function, but we may
2699 need to do it in a wider mode. */
2701 promoted_nominal_mode
2702 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2704 parmreg = gen_reg_rtx (promoted_nominal_mode);
2706 if (!DECL_ARTIFICIAL (parm))
2707 mark_user_reg (parmreg);
2709 /* If this was an item that we received a pointer to,
2710 set DECL_RTL appropriately. */
2711 if (data->passed_pointer)
2713 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2714 set_mem_attributes (x, parm, 1);
2715 SET_DECL_RTL (parm, x);
2717 else
2718 SET_DECL_RTL (parm, parmreg);
2720 /* Copy the value into the register. */
2721 if (data->nominal_mode != data->passed_mode
2722 || promoted_nominal_mode != data->promoted_mode)
2724 int save_tree_used;
2726 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2727 mode, by the caller. We now have to convert it to
2728 NOMINAL_MODE, if different. However, PARMREG may be in
2729 a different mode than NOMINAL_MODE if it is being stored
2730 promoted.
2732 If ENTRY_PARM is a hard register, it might be in a register
2733 not valid for operating in its mode (e.g., an odd-numbered
2734 register for a DFmode). In that case, moves are the only
2735 thing valid, so we can't do a convert from there. This
2736 occurs when the calling sequence allow such misaligned
2737 usages.
2739 In addition, the conversion may involve a call, which could
2740 clobber parameters which haven't been copied to pseudo
2741 registers yet. Therefore, we must first copy the parm to
2742 a pseudo reg here, and save the conversion until after all
2743 parameters have been moved. */
2745 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2747 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2749 push_to_sequence (all->conversion_insns);
2750 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2752 if (GET_CODE (tempreg) == SUBREG
2753 && GET_MODE (tempreg) == data->nominal_mode
2754 && REG_P (SUBREG_REG (tempreg))
2755 && data->nominal_mode == data->passed_mode
2756 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2757 && GET_MODE_SIZE (GET_MODE (tempreg))
2758 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2760 /* The argument is already sign/zero extended, so note it
2761 into the subreg. */
2762 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2763 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2766 /* TREE_USED gets set erroneously during expand_assignment. */
2767 save_tree_used = TREE_USED (parm);
2768 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2769 TREE_USED (parm) = save_tree_used;
2770 all->conversion_insns = get_insns ();
2771 end_sequence ();
2773 did_conversion = true;
2775 else
2776 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2778 /* If we were passed a pointer but the actual value can safely live
2779 in a register, put it in one. */
2780 if (data->passed_pointer
2781 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2782 /* If by-reference argument was promoted, demote it. */
2783 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2784 || use_register_for_decl (parm)))
2786 /* We can't use nominal_mode, because it will have been set to
2787 Pmode above. We must use the actual mode of the parm. */
2788 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2789 mark_user_reg (parmreg);
2791 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2793 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2794 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2796 push_to_sequence (all->conversion_insns);
2797 emit_move_insn (tempreg, DECL_RTL (parm));
2798 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2799 emit_move_insn (parmreg, tempreg);
2800 all->conversion_insns = get_insns ();
2801 end_sequence ();
2803 did_conversion = true;
2805 else
2806 emit_move_insn (parmreg, DECL_RTL (parm));
2808 SET_DECL_RTL (parm, parmreg);
2810 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2811 now the parm. */
2812 data->stack_parm = NULL;
2815 /* If we are passed an arg by reference and it is our responsibility
2816 to make a copy, do it now.
2817 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2818 original argument, so we must recreate them in the call to
2819 FUNCTION_ARG_CALLEE_COPIES. */
2820 /* ??? Later add code to handle the case that if the argument isn't
2821 modified, don't do the copy. */
2823 else if (data->passed_pointer)
2825 tree type = TREE_TYPE (data->passed_type);
2827 if (reference_callee_copied (&all->args_so_far, TYPE_MODE (type),
2828 type, data->named_arg))
2830 rtx copy;
2832 /* This sequence may involve a library call perhaps clobbering
2833 registers that haven't been copied to pseudos yet. */
2835 push_to_sequence (all->conversion_insns);
2837 if (!COMPLETE_TYPE_P (type)
2838 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2840 /* This is a variable sized object. */
2841 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2842 TYPE_ALIGN (type));
2843 copy = gen_rtx_MEM (BLKmode, copy);
2845 else
2846 copy = assign_stack_temp (TYPE_MODE (type),
2847 int_size_in_bytes (type), 1);
2848 set_mem_attributes (copy, parm, 1);
2850 store_expr (parm, copy, 0);
2851 emit_move_insn (parmreg, XEXP (copy, 0));
2852 all->conversion_insns = get_insns ();
2853 end_sequence ();
2855 did_conversion = true;
2859 /* Mark the register as eliminable if we did no conversion and it was
2860 copied from memory at a fixed offset, and the arg pointer was not
2861 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2862 offset formed an invalid address, such memory-equivalences as we
2863 make here would screw up life analysis for it. */
2864 if (data->nominal_mode == data->passed_mode
2865 && !did_conversion
2866 && data->stack_parm != 0
2867 && MEM_P (data->stack_parm)
2868 && data->locate.offset.var == 0
2869 && reg_mentioned_p (virtual_incoming_args_rtx,
2870 XEXP (data->stack_parm, 0)))
2872 rtx linsn = get_last_insn ();
2873 rtx sinsn, set;
2875 /* Mark complex types separately. */
2876 if (GET_CODE (parmreg) == CONCAT)
2878 enum machine_mode submode
2879 = GET_MODE_INNER (GET_MODE (parmreg));
2880 int regnor = REGNO (gen_realpart (submode, parmreg));
2881 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2882 rtx stackr = gen_realpart (submode, data->stack_parm);
2883 rtx stacki = gen_imagpart (submode, data->stack_parm);
2885 /* Scan backwards for the set of the real and
2886 imaginary parts. */
2887 for (sinsn = linsn; sinsn != 0;
2888 sinsn = prev_nonnote_insn (sinsn))
2890 set = single_set (sinsn);
2891 if (set == 0)
2892 continue;
2894 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2895 REG_NOTES (sinsn)
2896 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2897 REG_NOTES (sinsn));
2898 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2899 REG_NOTES (sinsn)
2900 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2901 REG_NOTES (sinsn));
2904 else if ((set = single_set (linsn)) != 0
2905 && SET_DEST (set) == parmreg)
2906 REG_NOTES (linsn)
2907 = gen_rtx_EXPR_LIST (REG_EQUIV,
2908 data->stack_parm, REG_NOTES (linsn));
2911 /* For pointer data type, suggest pointer register. */
2912 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2913 mark_reg_pointer (parmreg,
2914 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2917 /* A subroutine of assign_parms. Allocate stack space to hold the current
2918 parameter. Get it there. Perform all ABI specified conversions. */
2920 static void
2921 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2922 struct assign_parm_data_one *data)
2924 /* Value must be stored in the stack slot STACK_PARM during function
2925 execution. */
2927 if (data->promoted_mode != data->nominal_mode)
2929 /* Conversion is required. */
2930 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2932 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2934 push_to_sequence (all->conversion_insns);
2935 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2936 TYPE_UNSIGNED (TREE_TYPE (parm)));
2938 if (data->stack_parm)
2939 /* ??? This may need a big-endian conversion on sparc64. */
2940 data->stack_parm
2941 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2943 all->conversion_insns = get_insns ();
2944 end_sequence ();
2947 if (data->entry_parm != data->stack_parm)
2949 if (data->stack_parm == 0)
2951 data->stack_parm
2952 = assign_stack_local (GET_MODE (data->entry_parm),
2953 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2955 set_mem_attributes (data->stack_parm, parm, 1);
2958 if (data->promoted_mode != data->nominal_mode)
2960 push_to_sequence (all->conversion_insns);
2961 emit_move_insn (validize_mem (data->stack_parm),
2962 validize_mem (data->entry_parm));
2963 all->conversion_insns = get_insns ();
2964 end_sequence ();
2966 else
2967 emit_move_insn (validize_mem (data->stack_parm),
2968 validize_mem (data->entry_parm));
2971 SET_DECL_RTL (parm, data->stack_parm);
2974 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2975 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2977 static void
2978 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2980 tree parm;
2982 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2984 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2985 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2987 rtx tmp, real, imag;
2988 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2990 real = DECL_RTL (fnargs);
2991 imag = DECL_RTL (TREE_CHAIN (fnargs));
2992 if (inner != GET_MODE (real))
2994 real = gen_lowpart_SUBREG (inner, real);
2995 imag = gen_lowpart_SUBREG (inner, imag);
2997 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2998 SET_DECL_RTL (parm, tmp);
3000 real = DECL_INCOMING_RTL (fnargs);
3001 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3002 if (inner != GET_MODE (real))
3004 real = gen_lowpart_SUBREG (inner, real);
3005 imag = gen_lowpart_SUBREG (inner, imag);
3007 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3008 set_decl_incoming_rtl (parm, tmp);
3009 fnargs = TREE_CHAIN (fnargs);
3011 else
3013 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3014 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3016 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3017 instead of the copy of decl, i.e. FNARGS. */
3018 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3019 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3022 fnargs = TREE_CHAIN (fnargs);
3026 /* Assign RTL expressions to the function's parameters. This may involve
3027 copying them into registers and using those registers as the DECL_RTL. */
3029 static void
3030 assign_parms (tree fndecl)
3032 struct assign_parm_data_all all;
3033 tree fnargs, parm;
3034 rtx internal_arg_pointer;
3035 int varargs_setup = 0;
3037 /* If the reg that the virtual arg pointer will be translated into is
3038 not a fixed reg or is the stack pointer, make a copy of the virtual
3039 arg pointer, and address parms via the copy. The frame pointer is
3040 considered fixed even though it is not marked as such.
3042 The second time through, simply use ap to avoid generating rtx. */
3044 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3045 || ! (fixed_regs[ARG_POINTER_REGNUM]
3046 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3047 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3048 else
3049 internal_arg_pointer = virtual_incoming_args_rtx;
3050 current_function_internal_arg_pointer = internal_arg_pointer;
3052 assign_parms_initialize_all (&all);
3053 fnargs = assign_parms_augmented_arg_list (&all);
3055 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3057 struct assign_parm_data_one data;
3059 /* Extract the type of PARM; adjust it according to ABI. */
3060 assign_parm_find_data_types (&all, parm, &data);
3062 /* Early out for errors and void parameters. */
3063 if (data.passed_mode == VOIDmode)
3065 SET_DECL_RTL (parm, const0_rtx);
3066 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3067 continue;
3070 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3071 for the unnamed dummy argument following the last named argument.
3072 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3073 we only want to do this when we get to the actual last named
3074 argument, which will be the first time LAST_NAMED gets set. */
3075 if (data.last_named && !varargs_setup)
3077 varargs_setup = true;
3078 assign_parms_setup_varargs (&all, &data, false);
3081 /* Find out where the parameter arrives in this function. */
3082 assign_parm_find_entry_rtl (&all, &data);
3084 /* Find out where stack space for this parameter might be. */
3085 if (assign_parm_is_stack_parm (&all, &data))
3087 assign_parm_find_stack_rtl (parm, &data);
3088 assign_parm_adjust_entry_rtl (&data);
3091 /* Record permanently how this parm was passed. */
3092 set_decl_incoming_rtl (parm, data.entry_parm);
3094 /* Update info on where next arg arrives in registers. */
3095 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3096 data.passed_type, data.named_arg);
3098 assign_parm_adjust_stack_rtl (&data);
3100 if (assign_parm_setup_block_p (&data))
3101 assign_parm_setup_block (&all, parm, &data);
3102 else if (data.passed_pointer || use_register_for_decl (parm))
3103 assign_parm_setup_reg (&all, parm, &data);
3104 else
3105 assign_parm_setup_stack (&all, parm, &data);
3108 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3109 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3111 /* Output all parameter conversion instructions (possibly including calls)
3112 now that all parameters have been copied out of hard registers. */
3113 emit_insn (all.conversion_insns);
3115 /* If we are receiving a struct value address as the first argument, set up
3116 the RTL for the function result. As this might require code to convert
3117 the transmitted address to Pmode, we do this here to ensure that possible
3118 preliminary conversions of the address have been emitted already. */
3119 if (all.function_result_decl)
3121 tree result = DECL_RESULT (current_function_decl);
3122 rtx addr = DECL_RTL (all.function_result_decl);
3123 rtx x;
3125 if (DECL_BY_REFERENCE (result))
3126 x = addr;
3127 else
3129 addr = convert_memory_address (Pmode, addr);
3130 x = gen_rtx_MEM (DECL_MODE (result), addr);
3131 set_mem_attributes (x, result, 1);
3133 SET_DECL_RTL (result, x);
3136 /* We have aligned all the args, so add space for the pretend args. */
3137 current_function_pretend_args_size = all.pretend_args_size;
3138 all.stack_args_size.constant += all.extra_pretend_bytes;
3139 current_function_args_size = all.stack_args_size.constant;
3141 /* Adjust function incoming argument size for alignment and
3142 minimum length. */
3144 #ifdef REG_PARM_STACK_SPACE
3145 current_function_args_size = MAX (current_function_args_size,
3146 REG_PARM_STACK_SPACE (fndecl));
3147 #endif
3149 current_function_args_size
3150 = ((current_function_args_size + STACK_BYTES - 1)
3151 / STACK_BYTES) * STACK_BYTES;
3153 #ifdef ARGS_GROW_DOWNWARD
3154 current_function_arg_offset_rtx
3155 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3156 : expand_expr (size_diffop (all.stack_args_size.var,
3157 size_int (-all.stack_args_size.constant)),
3158 NULL_RTX, VOIDmode, 0));
3159 #else
3160 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3161 #endif
3163 /* See how many bytes, if any, of its args a function should try to pop
3164 on return. */
3166 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3167 current_function_args_size);
3169 /* For stdarg.h function, save info about
3170 regs and stack space used by the named args. */
3172 current_function_args_info = all.args_so_far;
3174 /* Set the rtx used for the function return value. Put this in its
3175 own variable so any optimizers that need this information don't have
3176 to include tree.h. Do this here so it gets done when an inlined
3177 function gets output. */
3179 current_function_return_rtx
3180 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3181 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3183 /* If scalar return value was computed in a pseudo-reg, or was a named
3184 return value that got dumped to the stack, copy that to the hard
3185 return register. */
3186 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3188 tree decl_result = DECL_RESULT (fndecl);
3189 rtx decl_rtl = DECL_RTL (decl_result);
3191 if (REG_P (decl_rtl)
3192 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3193 : DECL_REGISTER (decl_result))
3195 rtx real_decl_rtl;
3197 #ifdef FUNCTION_OUTGOING_VALUE
3198 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3199 fndecl);
3200 #else
3201 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3202 fndecl);
3203 #endif
3204 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3205 /* The delay slot scheduler assumes that current_function_return_rtx
3206 holds the hard register containing the return value, not a
3207 temporary pseudo. */
3208 current_function_return_rtx = real_decl_rtl;
3213 /* Indicate whether REGNO is an incoming argument to the current function
3214 that was promoted to a wider mode. If so, return the RTX for the
3215 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3216 that REGNO is promoted from and whether the promotion was signed or
3217 unsigned. */
3220 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3222 tree arg;
3224 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3225 arg = TREE_CHAIN (arg))
3226 if (REG_P (DECL_INCOMING_RTL (arg))
3227 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3228 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3230 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3231 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3233 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3234 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3235 && mode != DECL_MODE (arg))
3237 *pmode = DECL_MODE (arg);
3238 *punsignedp = unsignedp;
3239 return DECL_INCOMING_RTL (arg);
3243 return 0;
3247 /* Compute the size and offset from the start of the stacked arguments for a
3248 parm passed in mode PASSED_MODE and with type TYPE.
3250 INITIAL_OFFSET_PTR points to the current offset into the stacked
3251 arguments.
3253 The starting offset and size for this parm are returned in
3254 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3255 nonzero, the offset is that of stack slot, which is returned in
3256 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3257 padding required from the initial offset ptr to the stack slot.
3259 IN_REGS is nonzero if the argument will be passed in registers. It will
3260 never be set if REG_PARM_STACK_SPACE is not defined.
3262 FNDECL is the function in which the argument was defined.
3264 There are two types of rounding that are done. The first, controlled by
3265 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3266 list to be aligned to the specific boundary (in bits). This rounding
3267 affects the initial and starting offsets, but not the argument size.
3269 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3270 optionally rounds the size of the parm to PARM_BOUNDARY. The
3271 initial offset is not affected by this rounding, while the size always
3272 is and the starting offset may be. */
3274 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3275 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3276 callers pass in the total size of args so far as
3277 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3279 void
3280 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3281 int partial, tree fndecl ATTRIBUTE_UNUSED,
3282 struct args_size *initial_offset_ptr,
3283 struct locate_and_pad_arg_data *locate)
3285 tree sizetree;
3286 enum direction where_pad;
3287 int boundary;
3288 int reg_parm_stack_space = 0;
3289 int part_size_in_regs;
3291 #ifdef REG_PARM_STACK_SPACE
3292 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3294 /* If we have found a stack parm before we reach the end of the
3295 area reserved for registers, skip that area. */
3296 if (! in_regs)
3298 if (reg_parm_stack_space > 0)
3300 if (initial_offset_ptr->var)
3302 initial_offset_ptr->var
3303 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3304 ssize_int (reg_parm_stack_space));
3305 initial_offset_ptr->constant = 0;
3307 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3308 initial_offset_ptr->constant = reg_parm_stack_space;
3311 #endif /* REG_PARM_STACK_SPACE */
3313 part_size_in_regs = 0;
3314 if (reg_parm_stack_space == 0)
3315 part_size_in_regs = ((partial * UNITS_PER_WORD)
3316 / (PARM_BOUNDARY / BITS_PER_UNIT)
3317 * (PARM_BOUNDARY / BITS_PER_UNIT));
3319 sizetree
3320 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3321 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3322 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3323 locate->where_pad = where_pad;
3325 #ifdef ARGS_GROW_DOWNWARD
3326 locate->slot_offset.constant = -initial_offset_ptr->constant;
3327 if (initial_offset_ptr->var)
3328 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3329 initial_offset_ptr->var);
3332 tree s2 = sizetree;
3333 if (where_pad != none
3334 && (!host_integerp (sizetree, 1)
3335 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3336 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3337 SUB_PARM_SIZE (locate->slot_offset, s2);
3340 locate->slot_offset.constant += part_size_in_regs;
3342 if (!in_regs
3343 #ifdef REG_PARM_STACK_SPACE
3344 || REG_PARM_STACK_SPACE (fndecl) > 0
3345 #endif
3347 pad_to_arg_alignment (&locate->slot_offset, boundary,
3348 &locate->alignment_pad);
3350 locate->size.constant = (-initial_offset_ptr->constant
3351 - locate->slot_offset.constant);
3352 if (initial_offset_ptr->var)
3353 locate->size.var = size_binop (MINUS_EXPR,
3354 size_binop (MINUS_EXPR,
3355 ssize_int (0),
3356 initial_offset_ptr->var),
3357 locate->slot_offset.var);
3359 /* Pad_below needs the pre-rounded size to know how much to pad
3360 below. */
3361 locate->offset = locate->slot_offset;
3362 if (where_pad == downward)
3363 pad_below (&locate->offset, passed_mode, sizetree);
3365 #else /* !ARGS_GROW_DOWNWARD */
3366 if (!in_regs
3367 #ifdef REG_PARM_STACK_SPACE
3368 || REG_PARM_STACK_SPACE (fndecl) > 0
3369 #endif
3371 pad_to_arg_alignment (initial_offset_ptr, boundary,
3372 &locate->alignment_pad);
3373 locate->slot_offset = *initial_offset_ptr;
3375 #ifdef PUSH_ROUNDING
3376 if (passed_mode != BLKmode)
3377 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3378 #endif
3380 /* Pad_below needs the pre-rounded size to know how much to pad below
3381 so this must be done before rounding up. */
3382 locate->offset = locate->slot_offset;
3383 if (where_pad == downward)
3384 pad_below (&locate->offset, passed_mode, sizetree);
3386 if (where_pad != none
3387 && (!host_integerp (sizetree, 1)
3388 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3389 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3391 ADD_PARM_SIZE (locate->size, sizetree);
3393 locate->size.constant -= part_size_in_regs;
3394 #endif /* ARGS_GROW_DOWNWARD */
3397 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3398 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3400 static void
3401 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3402 struct args_size *alignment_pad)
3404 tree save_var = NULL_TREE;
3405 HOST_WIDE_INT save_constant = 0;
3406 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3407 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3409 #ifdef SPARC_STACK_BOUNDARY_HACK
3410 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3411 higher than the real alignment of %sp. However, when it does this,
3412 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3413 This is a temporary hack while the sparc port is fixed. */
3414 if (SPARC_STACK_BOUNDARY_HACK)
3415 sp_offset = 0;
3416 #endif
3418 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3420 save_var = offset_ptr->var;
3421 save_constant = offset_ptr->constant;
3424 alignment_pad->var = NULL_TREE;
3425 alignment_pad->constant = 0;
3427 if (boundary > BITS_PER_UNIT)
3429 if (offset_ptr->var)
3431 tree sp_offset_tree = ssize_int (sp_offset);
3432 tree offset = size_binop (PLUS_EXPR,
3433 ARGS_SIZE_TREE (*offset_ptr),
3434 sp_offset_tree);
3435 #ifdef ARGS_GROW_DOWNWARD
3436 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3437 #else
3438 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3439 #endif
3441 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3442 /* ARGS_SIZE_TREE includes constant term. */
3443 offset_ptr->constant = 0;
3444 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3445 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3446 save_var);
3448 else
3450 offset_ptr->constant = -sp_offset +
3451 #ifdef ARGS_GROW_DOWNWARD
3452 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3453 #else
3454 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3455 #endif
3456 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3457 alignment_pad->constant = offset_ptr->constant - save_constant;
3462 static void
3463 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3465 if (passed_mode != BLKmode)
3467 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3468 offset_ptr->constant
3469 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3470 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3471 - GET_MODE_SIZE (passed_mode));
3473 else
3475 if (TREE_CODE (sizetree) != INTEGER_CST
3476 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3478 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3479 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3480 /* Add it in. */
3481 ADD_PARM_SIZE (*offset_ptr, s2);
3482 SUB_PARM_SIZE (*offset_ptr, sizetree);
3487 /* Walk the tree of blocks describing the binding levels within a function
3488 and warn about variables the might be killed by setjmp or vfork.
3489 This is done after calling flow_analysis and before global_alloc
3490 clobbers the pseudo-regs to hard regs. */
3492 void
3493 setjmp_vars_warning (tree block)
3495 tree decl, sub;
3497 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3499 if (TREE_CODE (decl) == VAR_DECL
3500 && DECL_RTL_SET_P (decl)
3501 && REG_P (DECL_RTL (decl))
3502 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3503 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3504 " or %<vfork%>",
3505 decl, decl);
3508 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3509 setjmp_vars_warning (sub);
3512 /* Do the appropriate part of setjmp_vars_warning
3513 but for arguments instead of local variables. */
3515 void
3516 setjmp_args_warning (void)
3518 tree decl;
3519 for (decl = DECL_ARGUMENTS (current_function_decl);
3520 decl; decl = TREE_CHAIN (decl))
3521 if (DECL_RTL (decl) != 0
3522 && REG_P (DECL_RTL (decl))
3523 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3524 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3525 decl, decl);
3529 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3530 and create duplicate blocks. */
3531 /* ??? Need an option to either create block fragments or to create
3532 abstract origin duplicates of a source block. It really depends
3533 on what optimization has been performed. */
3535 void
3536 reorder_blocks (void)
3538 tree block = DECL_INITIAL (current_function_decl);
3539 varray_type block_stack;
3541 if (block == NULL_TREE)
3542 return;
3544 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3546 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3547 clear_block_marks (block);
3549 /* Prune the old trees away, so that they don't get in the way. */
3550 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3551 BLOCK_CHAIN (block) = NULL_TREE;
3553 /* Recreate the block tree from the note nesting. */
3554 reorder_blocks_1 (get_insns (), block, &block_stack);
3555 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3557 /* Remove deleted blocks from the block fragment chains. */
3558 reorder_fix_fragments (block);
3561 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3563 void
3564 clear_block_marks (tree block)
3566 while (block)
3568 TREE_ASM_WRITTEN (block) = 0;
3569 clear_block_marks (BLOCK_SUBBLOCKS (block));
3570 block = BLOCK_CHAIN (block);
3574 static void
3575 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3577 rtx insn;
3579 for (insn = insns; insn; insn = NEXT_INSN (insn))
3581 if (NOTE_P (insn))
3583 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3585 tree block = NOTE_BLOCK (insn);
3587 /* If we have seen this block before, that means it now
3588 spans multiple address regions. Create a new fragment. */
3589 if (TREE_ASM_WRITTEN (block))
3591 tree new_block = copy_node (block);
3592 tree origin;
3594 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3595 ? BLOCK_FRAGMENT_ORIGIN (block)
3596 : block);
3597 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3598 BLOCK_FRAGMENT_CHAIN (new_block)
3599 = BLOCK_FRAGMENT_CHAIN (origin);
3600 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3602 NOTE_BLOCK (insn) = new_block;
3603 block = new_block;
3606 BLOCK_SUBBLOCKS (block) = 0;
3607 TREE_ASM_WRITTEN (block) = 1;
3608 /* When there's only one block for the entire function,
3609 current_block == block and we mustn't do this, it
3610 will cause infinite recursion. */
3611 if (block != current_block)
3613 BLOCK_SUPERCONTEXT (block) = current_block;
3614 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3615 BLOCK_SUBBLOCKS (current_block) = block;
3616 current_block = block;
3618 VARRAY_PUSH_TREE (*p_block_stack, block);
3620 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3622 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3623 VARRAY_POP (*p_block_stack);
3624 BLOCK_SUBBLOCKS (current_block)
3625 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3626 current_block = BLOCK_SUPERCONTEXT (current_block);
3632 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3633 appears in the block tree, select one of the fragments to become
3634 the new origin block. */
3636 static void
3637 reorder_fix_fragments (tree block)
3639 while (block)
3641 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3642 tree new_origin = NULL_TREE;
3644 if (dup_origin)
3646 if (! TREE_ASM_WRITTEN (dup_origin))
3648 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3650 /* Find the first of the remaining fragments. There must
3651 be at least one -- the current block. */
3652 while (! TREE_ASM_WRITTEN (new_origin))
3653 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3654 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3657 else if (! dup_origin)
3658 new_origin = block;
3660 /* Re-root the rest of the fragments to the new origin. In the
3661 case that DUP_ORIGIN was null, that means BLOCK was the origin
3662 of a chain of fragments and we want to remove those fragments
3663 that didn't make it to the output. */
3664 if (new_origin)
3666 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3667 tree chain = *pp;
3669 while (chain)
3671 if (TREE_ASM_WRITTEN (chain))
3673 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3674 *pp = chain;
3675 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3677 chain = BLOCK_FRAGMENT_CHAIN (chain);
3679 *pp = NULL_TREE;
3682 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3683 block = BLOCK_CHAIN (block);
3687 /* Reverse the order of elements in the chain T of blocks,
3688 and return the new head of the chain (old last element). */
3690 tree
3691 blocks_nreverse (tree t)
3693 tree prev = 0, decl, next;
3694 for (decl = t; decl; decl = next)
3696 next = BLOCK_CHAIN (decl);
3697 BLOCK_CHAIN (decl) = prev;
3698 prev = decl;
3700 return prev;
3703 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3704 non-NULL, list them all into VECTOR, in a depth-first preorder
3705 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3706 blocks. */
3708 static int
3709 all_blocks (tree block, tree *vector)
3711 int n_blocks = 0;
3713 while (block)
3715 TREE_ASM_WRITTEN (block) = 0;
3717 /* Record this block. */
3718 if (vector)
3719 vector[n_blocks] = block;
3721 ++n_blocks;
3723 /* Record the subblocks, and their subblocks... */
3724 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3725 vector ? vector + n_blocks : 0);
3726 block = BLOCK_CHAIN (block);
3729 return n_blocks;
3732 /* Return a vector containing all the blocks rooted at BLOCK. The
3733 number of elements in the vector is stored in N_BLOCKS_P. The
3734 vector is dynamically allocated; it is the caller's responsibility
3735 to call `free' on the pointer returned. */
3737 static tree *
3738 get_block_vector (tree block, int *n_blocks_p)
3740 tree *block_vector;
3742 *n_blocks_p = all_blocks (block, NULL);
3743 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3744 all_blocks (block, block_vector);
3746 return block_vector;
3749 static GTY(()) int next_block_index = 2;
3751 /* Set BLOCK_NUMBER for all the blocks in FN. */
3753 void
3754 number_blocks (tree fn)
3756 int i;
3757 int n_blocks;
3758 tree *block_vector;
3760 /* For SDB and XCOFF debugging output, we start numbering the blocks
3761 from 1 within each function, rather than keeping a running
3762 count. */
3763 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3764 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3765 next_block_index = 1;
3766 #endif
3768 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3770 /* The top-level BLOCK isn't numbered at all. */
3771 for (i = 1; i < n_blocks; ++i)
3772 /* We number the blocks from two. */
3773 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3775 free (block_vector);
3777 return;
3780 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3782 tree
3783 debug_find_var_in_block_tree (tree var, tree block)
3785 tree t;
3787 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3788 if (t == var)
3789 return block;
3791 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3793 tree ret = debug_find_var_in_block_tree (var, t);
3794 if (ret)
3795 return ret;
3798 return NULL_TREE;
3801 /* Allocate a function structure for FNDECL and set its contents
3802 to the defaults. */
3804 void
3805 allocate_struct_function (tree fndecl)
3807 tree result;
3808 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3810 cfun = ggc_alloc_cleared (sizeof (struct function));
3812 cfun->stack_alignment_needed = STACK_BOUNDARY;
3813 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3815 current_function_funcdef_no = funcdef_no++;
3817 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3819 init_eh_for_function ();
3821 lang_hooks.function.init (cfun);
3822 if (init_machine_status)
3823 cfun->machine = (*init_machine_status) ();
3825 if (fndecl == NULL)
3826 return;
3828 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3829 cfun->decl = fndecl;
3831 result = DECL_RESULT (fndecl);
3832 if (aggregate_value_p (result, fndecl))
3834 #ifdef PCC_STATIC_STRUCT_RETURN
3835 current_function_returns_pcc_struct = 1;
3836 #endif
3837 current_function_returns_struct = 1;
3840 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3842 current_function_stdarg
3843 = (fntype
3844 && TYPE_ARG_TYPES (fntype) != 0
3845 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3846 != void_type_node));
3849 /* Reset cfun, and other non-struct-function variables to defaults as
3850 appropriate for emitting rtl at the start of a function. */
3852 static void
3853 prepare_function_start (tree fndecl)
3855 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3856 cfun = DECL_STRUCT_FUNCTION (fndecl);
3857 else
3858 allocate_struct_function (fndecl);
3859 init_emit ();
3860 init_varasm_status (cfun);
3861 init_expr ();
3863 cse_not_expected = ! optimize;
3865 /* Caller save not needed yet. */
3866 caller_save_needed = 0;
3868 /* We haven't done register allocation yet. */
3869 reg_renumber = 0;
3871 /* Indicate that we have not instantiated virtual registers yet. */
3872 virtuals_instantiated = 0;
3874 /* Indicate that we want CONCATs now. */
3875 generating_concat_p = 1;
3877 /* Indicate we have no need of a frame pointer yet. */
3878 frame_pointer_needed = 0;
3881 /* Initialize the rtl expansion mechanism so that we can do simple things
3882 like generate sequences. This is used to provide a context during global
3883 initialization of some passes. */
3884 void
3885 init_dummy_function_start (void)
3887 prepare_function_start (NULL);
3890 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3891 and initialize static variables for generating RTL for the statements
3892 of the function. */
3894 void
3895 init_function_start (tree subr)
3897 prepare_function_start (subr);
3899 /* Prevent ever trying to delete the first instruction of a
3900 function. Also tell final how to output a linenum before the
3901 function prologue. Note linenums could be missing, e.g. when
3902 compiling a Java .class file. */
3903 if (! DECL_IS_BUILTIN (subr))
3904 emit_line_note (DECL_SOURCE_LOCATION (subr));
3906 /* Make sure first insn is a note even if we don't want linenums.
3907 This makes sure the first insn will never be deleted.
3908 Also, final expects a note to appear there. */
3909 emit_note (NOTE_INSN_DELETED);
3911 /* Warn if this value is an aggregate type,
3912 regardless of which calling convention we are using for it. */
3913 if (warn_aggregate_return
3914 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3915 warning ("function returns an aggregate");
3918 /* Make sure all values used by the optimization passes have sane
3919 defaults. */
3920 void
3921 init_function_for_compilation (void)
3923 reg_renumber = 0;
3925 /* No prologue/epilogue insns yet. */
3926 VARRAY_GROW (prologue, 0);
3927 VARRAY_GROW (epilogue, 0);
3928 VARRAY_GROW (sibcall_epilogue, 0);
3931 /* Expand a call to __main at the beginning of a possible main function. */
3933 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3934 #undef HAS_INIT_SECTION
3935 #define HAS_INIT_SECTION
3936 #endif
3938 void
3939 expand_main_function (void)
3941 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3942 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3944 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3945 rtx tmp, seq;
3947 start_sequence ();
3948 /* Forcibly align the stack. */
3949 #ifdef STACK_GROWS_DOWNWARD
3950 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3951 stack_pointer_rtx, 1, OPTAB_WIDEN);
3952 #else
3953 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3954 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3955 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3956 stack_pointer_rtx, 1, OPTAB_WIDEN);
3957 #endif
3958 if (tmp != stack_pointer_rtx)
3959 emit_move_insn (stack_pointer_rtx, tmp);
3961 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3962 tmp = force_reg (Pmode, const0_rtx);
3963 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3964 seq = get_insns ();
3965 end_sequence ();
3967 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3968 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3969 break;
3970 if (tmp)
3971 emit_insn_before (seq, tmp);
3972 else
3973 emit_insn (seq);
3975 #endif
3977 #ifndef HAS_INIT_SECTION
3978 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3979 #endif
3982 /* The PENDING_SIZES represent the sizes of variable-sized types.
3983 Create RTL for the various sizes now (using temporary variables),
3984 so that we can refer to the sizes from the RTL we are generating
3985 for the current function. The PENDING_SIZES are a TREE_LIST. The
3986 TREE_VALUE of each node is a SAVE_EXPR. */
3988 static void
3989 expand_pending_sizes (tree pending_sizes)
3991 tree tem;
3993 /* Evaluate now the sizes of any types declared among the arguments. */
3994 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3995 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3998 /* Start the RTL for a new function, and set variables used for
3999 emitting RTL.
4000 SUBR is the FUNCTION_DECL node.
4001 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4002 the function's parameters, which must be run at any return statement. */
4004 void
4005 expand_function_start (tree subr)
4007 /* Make sure volatile mem refs aren't considered
4008 valid operands of arithmetic insns. */
4009 init_recog_no_volatile ();
4011 current_function_profile
4012 = (profile_flag
4013 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4015 current_function_limit_stack
4016 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4018 /* Make the label for return statements to jump to. Do not special
4019 case machines with special return instructions -- they will be
4020 handled later during jump, ifcvt, or epilogue creation. */
4021 return_label = gen_label_rtx ();
4023 /* Initialize rtx used to return the value. */
4024 /* Do this before assign_parms so that we copy the struct value address
4025 before any library calls that assign parms might generate. */
4027 /* Decide whether to return the value in memory or in a register. */
4028 if (aggregate_value_p (DECL_RESULT (subr), subr))
4030 /* Returning something that won't go in a register. */
4031 rtx value_address = 0;
4033 #ifdef PCC_STATIC_STRUCT_RETURN
4034 if (current_function_returns_pcc_struct)
4036 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4037 value_address = assemble_static_space (size);
4039 else
4040 #endif
4042 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4043 /* Expect to be passed the address of a place to store the value.
4044 If it is passed as an argument, assign_parms will take care of
4045 it. */
4046 if (sv)
4048 value_address = gen_reg_rtx (Pmode);
4049 emit_move_insn (value_address, sv);
4052 if (value_address)
4054 rtx x = value_address;
4055 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4057 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4058 set_mem_attributes (x, DECL_RESULT (subr), 1);
4060 SET_DECL_RTL (DECL_RESULT (subr), x);
4063 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4064 /* If return mode is void, this decl rtl should not be used. */
4065 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4066 else
4068 /* Compute the return values into a pseudo reg, which we will copy
4069 into the true return register after the cleanups are done. */
4071 /* In order to figure out what mode to use for the pseudo, we
4072 figure out what the mode of the eventual return register will
4073 actually be, and use that. */
4074 rtx hard_reg
4075 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4076 subr, 1);
4078 /* Structures that are returned in registers are not aggregate_value_p,
4079 so we may see a PARALLEL or a REG. */
4080 if (REG_P (hard_reg))
4081 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4082 else
4084 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4085 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4088 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4089 result to the real return register(s). */
4090 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4093 /* Initialize rtx for parameters and local variables.
4094 In some cases this requires emitting insns. */
4095 assign_parms (subr);
4097 /* If function gets a static chain arg, store it. */
4098 if (cfun->static_chain_decl)
4100 tree parm = cfun->static_chain_decl;
4101 rtx local = gen_reg_rtx (Pmode);
4103 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4104 SET_DECL_RTL (parm, local);
4105 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4107 emit_move_insn (local, static_chain_incoming_rtx);
4110 /* If the function receives a non-local goto, then store the
4111 bits we need to restore the frame pointer. */
4112 if (cfun->nonlocal_goto_save_area)
4114 tree t_save;
4115 rtx r_save;
4117 /* ??? We need to do this save early. Unfortunately here is
4118 before the frame variable gets declared. Help out... */
4119 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4121 t_save = build4 (ARRAY_REF, ptr_type_node,
4122 cfun->nonlocal_goto_save_area,
4123 integer_zero_node, NULL_TREE, NULL_TREE);
4124 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4125 r_save = convert_memory_address (Pmode, r_save);
4127 emit_move_insn (r_save, virtual_stack_vars_rtx);
4128 update_nonlocal_goto_save_area ();
4131 /* The following was moved from init_function_start.
4132 The move is supposed to make sdb output more accurate. */
4133 /* Indicate the beginning of the function body,
4134 as opposed to parm setup. */
4135 emit_note (NOTE_INSN_FUNCTION_BEG);
4137 if (!NOTE_P (get_last_insn ()))
4138 emit_note (NOTE_INSN_DELETED);
4139 parm_birth_insn = get_last_insn ();
4141 if (current_function_profile)
4143 #ifdef PROFILE_HOOK
4144 PROFILE_HOOK (current_function_funcdef_no);
4145 #endif
4148 /* After the display initializations is where the tail-recursion label
4149 should go, if we end up needing one. Ensure we have a NOTE here
4150 since some things (like trampolines) get placed before this. */
4151 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4153 /* Evaluate now the sizes of any types declared among the arguments. */
4154 expand_pending_sizes (nreverse (get_pending_sizes ()));
4156 /* Make sure there is a line number after the function entry setup code. */
4157 force_next_line_note ();
4160 /* Undo the effects of init_dummy_function_start. */
4161 void
4162 expand_dummy_function_end (void)
4164 /* End any sequences that failed to be closed due to syntax errors. */
4165 while (in_sequence_p ())
4166 end_sequence ();
4168 /* Outside function body, can't compute type's actual size
4169 until next function's body starts. */
4171 free_after_parsing (cfun);
4172 free_after_compilation (cfun);
4173 cfun = 0;
4176 /* Call DOIT for each hard register used as a return value from
4177 the current function. */
4179 void
4180 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4182 rtx outgoing = current_function_return_rtx;
4184 if (! outgoing)
4185 return;
4187 if (REG_P (outgoing))
4188 (*doit) (outgoing, arg);
4189 else if (GET_CODE (outgoing) == PARALLEL)
4191 int i;
4193 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4195 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4197 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4198 (*doit) (x, arg);
4203 static void
4204 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4206 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4209 void
4210 clobber_return_register (void)
4212 diddle_return_value (do_clobber_return_reg, NULL);
4214 /* In case we do use pseudo to return value, clobber it too. */
4215 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4217 tree decl_result = DECL_RESULT (current_function_decl);
4218 rtx decl_rtl = DECL_RTL (decl_result);
4219 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4221 do_clobber_return_reg (decl_rtl, NULL);
4226 static void
4227 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4229 emit_insn (gen_rtx_USE (VOIDmode, reg));
4232 void
4233 use_return_register (void)
4235 diddle_return_value (do_use_return_reg, NULL);
4238 /* Possibly warn about unused parameters. */
4239 void
4240 do_warn_unused_parameter (tree fn)
4242 tree decl;
4244 for (decl = DECL_ARGUMENTS (fn);
4245 decl; decl = TREE_CHAIN (decl))
4246 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4247 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4248 warning ("%Junused parameter %qD", decl, decl);
4251 static GTY(()) rtx initial_trampoline;
4253 /* Generate RTL for the end of the current function. */
4255 void
4256 expand_function_end (void)
4258 rtx clobber_after;
4260 /* If arg_pointer_save_area was referenced only from a nested
4261 function, we will not have initialized it yet. Do that now. */
4262 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4263 get_arg_pointer_save_area (cfun);
4265 /* If we are doing stack checking and this function makes calls,
4266 do a stack probe at the start of the function to ensure we have enough
4267 space for another stack frame. */
4268 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4270 rtx insn, seq;
4272 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4273 if (CALL_P (insn))
4275 start_sequence ();
4276 probe_stack_range (STACK_CHECK_PROTECT,
4277 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4278 seq = get_insns ();
4279 end_sequence ();
4280 emit_insn_before (seq, tail_recursion_reentry);
4281 break;
4285 /* Possibly warn about unused parameters.
4286 When frontend does unit-at-a-time, the warning is already
4287 issued at finalization time. */
4288 if (warn_unused_parameter
4289 && !lang_hooks.callgraph.expand_function)
4290 do_warn_unused_parameter (current_function_decl);
4292 /* End any sequences that failed to be closed due to syntax errors. */
4293 while (in_sequence_p ())
4294 end_sequence ();
4296 clear_pending_stack_adjust ();
4297 do_pending_stack_adjust ();
4299 /* @@@ This is a kludge. We want to ensure that instructions that
4300 may trap are not moved into the epilogue by scheduling, because
4301 we don't always emit unwind information for the epilogue.
4302 However, not all machine descriptions define a blockage insn, so
4303 emit an ASM_INPUT to act as one. */
4304 if (flag_non_call_exceptions)
4305 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4307 /* Mark the end of the function body.
4308 If control reaches this insn, the function can drop through
4309 without returning a value. */
4310 emit_note (NOTE_INSN_FUNCTION_END);
4312 /* Must mark the last line number note in the function, so that the test
4313 coverage code can avoid counting the last line twice. This just tells
4314 the code to ignore the immediately following line note, since there
4315 already exists a copy of this note somewhere above. This line number
4316 note is still needed for debugging though, so we can't delete it. */
4317 if (flag_test_coverage)
4318 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4320 /* Output a linenumber for the end of the function.
4321 SDB depends on this. */
4322 force_next_line_note ();
4323 emit_line_note (input_location);
4325 /* Before the return label (if any), clobber the return
4326 registers so that they are not propagated live to the rest of
4327 the function. This can only happen with functions that drop
4328 through; if there had been a return statement, there would
4329 have either been a return rtx, or a jump to the return label.
4331 We delay actual code generation after the current_function_value_rtx
4332 is computed. */
4333 clobber_after = get_last_insn ();
4335 /* Output the label for the actual return from the function. */
4336 emit_label (return_label);
4338 /* Let except.c know where it should emit the call to unregister
4339 the function context for sjlj exceptions. */
4340 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4341 sjlj_emit_function_exit_after (get_last_insn ());
4343 /* If we had calls to alloca, and this machine needs
4344 an accurate stack pointer to exit the function,
4345 insert some code to save and restore the stack pointer. */
4346 if (! EXIT_IGNORE_STACK
4347 && current_function_calls_alloca)
4349 rtx tem = 0;
4351 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4352 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4355 /* If scalar return value was computed in a pseudo-reg, or was a named
4356 return value that got dumped to the stack, copy that to the hard
4357 return register. */
4358 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4360 tree decl_result = DECL_RESULT (current_function_decl);
4361 rtx decl_rtl = DECL_RTL (decl_result);
4363 if (REG_P (decl_rtl)
4364 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4365 : DECL_REGISTER (decl_result))
4367 rtx real_decl_rtl = current_function_return_rtx;
4369 /* This should be set in assign_parms. */
4370 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4372 /* If this is a BLKmode structure being returned in registers,
4373 then use the mode computed in expand_return. Note that if
4374 decl_rtl is memory, then its mode may have been changed,
4375 but that current_function_return_rtx has not. */
4376 if (GET_MODE (real_decl_rtl) == BLKmode)
4377 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4379 /* If a named return value dumped decl_return to memory, then
4380 we may need to re-do the PROMOTE_MODE signed/unsigned
4381 extension. */
4382 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4384 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4386 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4387 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4388 &unsignedp, 1);
4390 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4392 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4394 /* If expand_function_start has created a PARALLEL for decl_rtl,
4395 move the result to the real return registers. Otherwise, do
4396 a group load from decl_rtl for a named return. */
4397 if (GET_CODE (decl_rtl) == PARALLEL)
4398 emit_group_move (real_decl_rtl, decl_rtl);
4399 else
4400 emit_group_load (real_decl_rtl, decl_rtl,
4401 TREE_TYPE (decl_result),
4402 int_size_in_bytes (TREE_TYPE (decl_result)));
4404 else
4405 emit_move_insn (real_decl_rtl, decl_rtl);
4409 /* If returning a structure, arrange to return the address of the value
4410 in a place where debuggers expect to find it.
4412 If returning a structure PCC style,
4413 the caller also depends on this value.
4414 And current_function_returns_pcc_struct is not necessarily set. */
4415 if (current_function_returns_struct
4416 || current_function_returns_pcc_struct)
4418 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4419 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4420 rtx outgoing;
4422 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4423 type = TREE_TYPE (type);
4424 else
4425 value_address = XEXP (value_address, 0);
4427 #ifdef FUNCTION_OUTGOING_VALUE
4428 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4429 current_function_decl);
4430 #else
4431 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4432 current_function_decl);
4433 #endif
4435 /* Mark this as a function return value so integrate will delete the
4436 assignment and USE below when inlining this function. */
4437 REG_FUNCTION_VALUE_P (outgoing) = 1;
4439 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4440 value_address = convert_memory_address (GET_MODE (outgoing),
4441 value_address);
4443 emit_move_insn (outgoing, value_address);
4445 /* Show return register used to hold result (in this case the address
4446 of the result. */
4447 current_function_return_rtx = outgoing;
4450 /* If this is an implementation of throw, do what's necessary to
4451 communicate between __builtin_eh_return and the epilogue. */
4452 expand_eh_return ();
4454 /* Emit the actual code to clobber return register. */
4456 rtx seq;
4458 start_sequence ();
4459 clobber_return_register ();
4460 expand_naked_return ();
4461 seq = get_insns ();
4462 end_sequence ();
4464 emit_insn_after (seq, clobber_after);
4467 /* Output the label for the naked return from the function. */
4468 emit_label (naked_return_label);
4470 /* ??? This should no longer be necessary since stupid is no longer with
4471 us, but there are some parts of the compiler (eg reload_combine, and
4472 sh mach_dep_reorg) that still try and compute their own lifetime info
4473 instead of using the general framework. */
4474 use_return_register ();
4478 get_arg_pointer_save_area (struct function *f)
4480 rtx ret = f->x_arg_pointer_save_area;
4482 if (! ret)
4484 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4485 f->x_arg_pointer_save_area = ret;
4488 if (f == cfun && ! f->arg_pointer_save_area_init)
4490 rtx seq;
4492 /* Save the arg pointer at the beginning of the function. The
4493 generated stack slot may not be a valid memory address, so we
4494 have to check it and fix it if necessary. */
4495 start_sequence ();
4496 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4497 seq = get_insns ();
4498 end_sequence ();
4500 push_topmost_sequence ();
4501 emit_insn_after (seq, get_insns ());
4502 pop_topmost_sequence ();
4505 return ret;
4508 /* Extend a vector that records the INSN_UIDs of INSNS
4509 (a list of one or more insns). */
4511 static void
4512 record_insns (rtx insns, varray_type *vecp)
4514 int i, len;
4515 rtx tmp;
4517 tmp = insns;
4518 len = 0;
4519 while (tmp != NULL_RTX)
4521 len++;
4522 tmp = NEXT_INSN (tmp);
4525 i = VARRAY_SIZE (*vecp);
4526 VARRAY_GROW (*vecp, i + len);
4527 tmp = insns;
4528 while (tmp != NULL_RTX)
4530 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4531 i++;
4532 tmp = NEXT_INSN (tmp);
4536 /* Set the locator of the insn chain starting at INSN to LOC. */
4537 static void
4538 set_insn_locators (rtx insn, int loc)
4540 while (insn != NULL_RTX)
4542 if (INSN_P (insn))
4543 INSN_LOCATOR (insn) = loc;
4544 insn = NEXT_INSN (insn);
4548 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4549 be running after reorg, SEQUENCE rtl is possible. */
4551 static int
4552 contains (rtx insn, varray_type vec)
4554 int i, j;
4556 if (NONJUMP_INSN_P (insn)
4557 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4559 int count = 0;
4560 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4561 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4562 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4563 count++;
4564 return count;
4566 else
4568 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4569 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4570 return 1;
4572 return 0;
4576 prologue_epilogue_contains (rtx insn)
4578 if (contains (insn, prologue))
4579 return 1;
4580 if (contains (insn, epilogue))
4581 return 1;
4582 return 0;
4586 sibcall_epilogue_contains (rtx insn)
4588 if (sibcall_epilogue)
4589 return contains (insn, sibcall_epilogue);
4590 return 0;
4593 #ifdef HAVE_return
4594 /* Insert gen_return at the end of block BB. This also means updating
4595 block_for_insn appropriately. */
4597 static void
4598 emit_return_into_block (basic_block bb, rtx line_note)
4600 emit_jump_insn_after (gen_return (), BB_END (bb));
4601 if (line_note)
4602 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4604 #endif /* HAVE_return */
4606 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4608 /* These functions convert the epilogue into a variant that does not modify the
4609 stack pointer. This is used in cases where a function returns an object
4610 whose size is not known until it is computed. The called function leaves the
4611 object on the stack, leaves the stack depressed, and returns a pointer to
4612 the object.
4614 What we need to do is track all modifications and references to the stack
4615 pointer, deleting the modifications and changing the references to point to
4616 the location the stack pointer would have pointed to had the modifications
4617 taken place.
4619 These functions need to be portable so we need to make as few assumptions
4620 about the epilogue as we can. However, the epilogue basically contains
4621 three things: instructions to reset the stack pointer, instructions to
4622 reload registers, possibly including the frame pointer, and an
4623 instruction to return to the caller.
4625 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4626 We also make no attempt to validate the insns we make since if they are
4627 invalid, we probably can't do anything valid. The intent is that these
4628 routines get "smarter" as more and more machines start to use them and
4629 they try operating on different epilogues.
4631 We use the following structure to track what the part of the epilogue that
4632 we've already processed has done. We keep two copies of the SP equivalence,
4633 one for use during the insn we are processing and one for use in the next
4634 insn. The difference is because one part of a PARALLEL may adjust SP
4635 and the other may use it. */
4637 struct epi_info
4639 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4640 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4641 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4642 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4643 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4644 should be set to once we no longer need
4645 its value. */
4646 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4647 for registers. */
4650 static void handle_epilogue_set (rtx, struct epi_info *);
4651 static void update_epilogue_consts (rtx, rtx, void *);
4652 static void emit_equiv_load (struct epi_info *);
4654 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4655 no modifications to the stack pointer. Return the new list of insns. */
4657 static rtx
4658 keep_stack_depressed (rtx insns)
4660 int j;
4661 struct epi_info info;
4662 rtx insn, next;
4664 /* If the epilogue is just a single instruction, it must be OK as is. */
4665 if (NEXT_INSN (insns) == NULL_RTX)
4666 return insns;
4668 /* Otherwise, start a sequence, initialize the information we have, and
4669 process all the insns we were given. */
4670 start_sequence ();
4672 info.sp_equiv_reg = stack_pointer_rtx;
4673 info.sp_offset = 0;
4674 info.equiv_reg_src = 0;
4676 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4677 info.const_equiv[j] = 0;
4679 insn = insns;
4680 next = NULL_RTX;
4681 while (insn != NULL_RTX)
4683 next = NEXT_INSN (insn);
4685 if (!INSN_P (insn))
4687 add_insn (insn);
4688 insn = next;
4689 continue;
4692 /* If this insn references the register that SP is equivalent to and
4693 we have a pending load to that register, we must force out the load
4694 first and then indicate we no longer know what SP's equivalent is. */
4695 if (info.equiv_reg_src != 0
4696 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4698 emit_equiv_load (&info);
4699 info.sp_equiv_reg = 0;
4702 info.new_sp_equiv_reg = info.sp_equiv_reg;
4703 info.new_sp_offset = info.sp_offset;
4705 /* If this is a (RETURN) and the return address is on the stack,
4706 update the address and change to an indirect jump. */
4707 if (GET_CODE (PATTERN (insn)) == RETURN
4708 || (GET_CODE (PATTERN (insn)) == PARALLEL
4709 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4711 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4712 rtx base = 0;
4713 HOST_WIDE_INT offset = 0;
4714 rtx jump_insn, jump_set;
4716 /* If the return address is in a register, we can emit the insn
4717 unchanged. Otherwise, it must be a MEM and we see what the
4718 base register and offset are. In any case, we have to emit any
4719 pending load to the equivalent reg of SP, if any. */
4720 if (REG_P (retaddr))
4722 emit_equiv_load (&info);
4723 add_insn (insn);
4724 insn = next;
4725 continue;
4727 else
4729 rtx ret_ptr;
4730 gcc_assert (MEM_P (retaddr));
4732 ret_ptr = XEXP (retaddr, 0);
4734 if (REG_P (ret_ptr))
4736 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4737 offset = 0;
4739 else
4741 gcc_assert (GET_CODE (ret_ptr) == PLUS
4742 && REG_P (XEXP (ret_ptr, 0))
4743 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4744 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4745 offset = INTVAL (XEXP (ret_ptr, 1));
4749 /* If the base of the location containing the return pointer
4750 is SP, we must update it with the replacement address. Otherwise,
4751 just build the necessary MEM. */
4752 retaddr = plus_constant (base, offset);
4753 if (base == stack_pointer_rtx)
4754 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4755 plus_constant (info.sp_equiv_reg,
4756 info.sp_offset));
4758 retaddr = gen_rtx_MEM (Pmode, retaddr);
4760 /* If there is a pending load to the equivalent register for SP
4761 and we reference that register, we must load our address into
4762 a scratch register and then do that load. */
4763 if (info.equiv_reg_src
4764 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4766 unsigned int regno;
4767 rtx reg;
4769 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4770 if (HARD_REGNO_MODE_OK (regno, Pmode)
4771 && !fixed_regs[regno]
4772 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4773 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4774 regno)
4775 && !refers_to_regno_p (regno,
4776 regno + hard_regno_nregs[regno]
4777 [Pmode],
4778 info.equiv_reg_src, NULL)
4779 && info.const_equiv[regno] == 0)
4780 break;
4782 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4784 reg = gen_rtx_REG (Pmode, regno);
4785 emit_move_insn (reg, retaddr);
4786 retaddr = reg;
4789 emit_equiv_load (&info);
4790 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4792 /* Show the SET in the above insn is a RETURN. */
4793 jump_set = single_set (jump_insn);
4794 gcc_assert (jump_set);
4795 SET_IS_RETURN_P (jump_set) = 1;
4798 /* If SP is not mentioned in the pattern and its equivalent register, if
4799 any, is not modified, just emit it. Otherwise, if neither is set,
4800 replace the reference to SP and emit the insn. If none of those are
4801 true, handle each SET individually. */
4802 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4803 && (info.sp_equiv_reg == stack_pointer_rtx
4804 || !reg_set_p (info.sp_equiv_reg, insn)))
4805 add_insn (insn);
4806 else if (! reg_set_p (stack_pointer_rtx, insn)
4807 && (info.sp_equiv_reg == stack_pointer_rtx
4808 || !reg_set_p (info.sp_equiv_reg, insn)))
4810 int changed;
4812 changed = validate_replace_rtx (stack_pointer_rtx,
4813 plus_constant (info.sp_equiv_reg,
4814 info.sp_offset),
4815 insn);
4816 gcc_assert (changed);
4818 add_insn (insn);
4820 else if (GET_CODE (PATTERN (insn)) == SET)
4821 handle_epilogue_set (PATTERN (insn), &info);
4822 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4824 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4825 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4826 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4828 else
4829 add_insn (insn);
4831 info.sp_equiv_reg = info.new_sp_equiv_reg;
4832 info.sp_offset = info.new_sp_offset;
4834 /* Now update any constants this insn sets. */
4835 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4836 insn = next;
4839 insns = get_insns ();
4840 end_sequence ();
4841 return insns;
4844 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4845 structure that contains information about what we've seen so far. We
4846 process this SET by either updating that data or by emitting one or
4847 more insns. */
4849 static void
4850 handle_epilogue_set (rtx set, struct epi_info *p)
4852 /* First handle the case where we are setting SP. Record what it is being
4853 set from. If unknown, abort. */
4854 if (reg_set_p (stack_pointer_rtx, set))
4856 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4858 if (GET_CODE (SET_SRC (set)) == PLUS)
4860 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4861 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4862 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4863 else
4865 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4866 && (REGNO (XEXP (SET_SRC (set), 1))
4867 < FIRST_PSEUDO_REGISTER)
4868 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4869 p->new_sp_offset
4870 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4873 else
4874 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4876 /* If we are adjusting SP, we adjust from the old data. */
4877 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4879 p->new_sp_equiv_reg = p->sp_equiv_reg;
4880 p->new_sp_offset += p->sp_offset;
4883 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4885 return;
4888 /* Next handle the case where we are setting SP's equivalent register.
4889 If we already have a value to set it to, abort. We could update, but
4890 there seems little point in handling that case. Note that we have
4891 to allow for the case where we are setting the register set in
4892 the previous part of a PARALLEL inside a single insn. But use the
4893 old offset for any updates within this insn. We must allow for the case
4894 where the register is being set in a different (usually wider) mode than
4895 Pmode). */
4896 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4898 gcc_assert (!p->equiv_reg_src
4899 && REG_P (p->new_sp_equiv_reg)
4900 && REG_P (SET_DEST (set))
4901 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4902 <= BITS_PER_WORD)
4903 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4904 p->equiv_reg_src
4905 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4906 plus_constant (p->sp_equiv_reg,
4907 p->sp_offset));
4910 /* Otherwise, replace any references to SP in the insn to its new value
4911 and emit the insn. */
4912 else
4914 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4915 plus_constant (p->sp_equiv_reg,
4916 p->sp_offset));
4917 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4918 plus_constant (p->sp_equiv_reg,
4919 p->sp_offset));
4920 emit_insn (set);
4924 /* Update the tracking information for registers set to constants. */
4926 static void
4927 update_epilogue_consts (rtx dest, rtx x, void *data)
4929 struct epi_info *p = (struct epi_info *) data;
4930 rtx new;
4932 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4933 return;
4935 /* If we are either clobbering a register or doing a partial set,
4936 show we don't know the value. */
4937 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4938 p->const_equiv[REGNO (dest)] = 0;
4940 /* If we are setting it to a constant, record that constant. */
4941 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4942 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4944 /* If this is a binary operation between a register we have been tracking
4945 and a constant, see if we can compute a new constant value. */
4946 else if (ARITHMETIC_P (SET_SRC (x))
4947 && REG_P (XEXP (SET_SRC (x), 0))
4948 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4949 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4950 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4951 && 0 != (new = simplify_binary_operation
4952 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4953 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4954 XEXP (SET_SRC (x), 1)))
4955 && GET_CODE (new) == CONST_INT)
4956 p->const_equiv[REGNO (dest)] = new;
4958 /* Otherwise, we can't do anything with this value. */
4959 else
4960 p->const_equiv[REGNO (dest)] = 0;
4963 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4965 static void
4966 emit_equiv_load (struct epi_info *p)
4968 if (p->equiv_reg_src != 0)
4970 rtx dest = p->sp_equiv_reg;
4972 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4973 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4974 REGNO (p->sp_equiv_reg));
4976 emit_move_insn (dest, p->equiv_reg_src);
4977 p->equiv_reg_src = 0;
4980 #endif
4982 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4983 this into place with notes indicating where the prologue ends and where
4984 the epilogue begins. Update the basic block information when possible. */
4986 void
4987 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4989 int inserted = 0;
4990 edge e;
4991 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4992 rtx seq;
4993 #endif
4994 #ifdef HAVE_prologue
4995 rtx prologue_end = NULL_RTX;
4996 #endif
4997 #if defined (HAVE_epilogue) || defined(HAVE_return)
4998 rtx epilogue_end = NULL_RTX;
4999 #endif
5000 edge_iterator ei;
5002 #ifdef HAVE_prologue
5003 if (HAVE_prologue)
5005 start_sequence ();
5006 seq = gen_prologue ();
5007 emit_insn (seq);
5009 /* Retain a map of the prologue insns. */
5010 record_insns (seq, &prologue);
5011 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5013 seq = get_insns ();
5014 end_sequence ();
5015 set_insn_locators (seq, prologue_locator);
5017 /* Can't deal with multiple successors of the entry block
5018 at the moment. Function should always have at least one
5019 entry point. */
5020 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
5022 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
5023 inserted = 1;
5025 #endif
5027 /* If the exit block has no non-fake predecessors, we don't need
5028 an epilogue. */
5029 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5030 if ((e->flags & EDGE_FAKE) == 0)
5031 break;
5032 if (e == NULL)
5033 goto epilogue_done;
5035 #ifdef HAVE_return
5036 if (optimize && HAVE_return)
5038 /* If we're allowed to generate a simple return instruction,
5039 then by definition we don't need a full epilogue. Examine
5040 the block that falls through to EXIT. If it does not
5041 contain any code, examine its predecessors and try to
5042 emit (conditional) return instructions. */
5044 basic_block last;
5045 rtx label;
5047 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5048 if (e->flags & EDGE_FALLTHRU)
5049 break;
5050 if (e == NULL)
5051 goto epilogue_done;
5052 last = e->src;
5054 /* Verify that there are no active instructions in the last block. */
5055 label = BB_END (last);
5056 while (label && !LABEL_P (label))
5058 if (active_insn_p (label))
5059 break;
5060 label = PREV_INSN (label);
5063 if (BB_HEAD (last) == label && LABEL_P (label))
5065 edge_iterator ei2;
5066 rtx epilogue_line_note = NULL_RTX;
5068 /* Locate the line number associated with the closing brace,
5069 if we can find one. */
5070 for (seq = get_last_insn ();
5071 seq && ! active_insn_p (seq);
5072 seq = PREV_INSN (seq))
5073 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5075 epilogue_line_note = seq;
5076 break;
5079 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5081 basic_block bb = e->src;
5082 rtx jump;
5084 if (bb == ENTRY_BLOCK_PTR)
5086 ei_next (&ei2);
5087 continue;
5090 jump = BB_END (bb);
5091 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5093 ei_next (&ei2);
5094 continue;
5097 /* If we have an unconditional jump, we can replace that
5098 with a simple return instruction. */
5099 if (simplejump_p (jump))
5101 emit_return_into_block (bb, epilogue_line_note);
5102 delete_insn (jump);
5105 /* If we have a conditional jump, we can try to replace
5106 that with a conditional return instruction. */
5107 else if (condjump_p (jump))
5109 if (! redirect_jump (jump, 0, 0))
5111 ei_next (&ei2);
5112 continue;
5115 /* If this block has only one successor, it both jumps
5116 and falls through to the fallthru block, so we can't
5117 delete the edge. */
5118 if (EDGE_COUNT (bb->succs) == 1)
5120 ei_next (&ei2);
5121 continue;
5124 else
5126 ei_next (&ei2);
5127 continue;
5130 /* Fix up the CFG for the successful change we just made. */
5131 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5134 /* Emit a return insn for the exit fallthru block. Whether
5135 this is still reachable will be determined later. */
5137 emit_barrier_after (BB_END (last));
5138 emit_return_into_block (last, epilogue_line_note);
5139 epilogue_end = BB_END (last);
5140 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5141 goto epilogue_done;
5144 #endif
5145 /* Find the edge that falls through to EXIT. Other edges may exist
5146 due to RETURN instructions, but those don't need epilogues.
5147 There really shouldn't be a mixture -- either all should have
5148 been converted or none, however... */
5150 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5151 if (e->flags & EDGE_FALLTHRU)
5152 break;
5153 if (e == NULL)
5154 goto epilogue_done;
5156 #ifdef HAVE_epilogue
5157 if (HAVE_epilogue)
5159 start_sequence ();
5160 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5162 seq = gen_epilogue ();
5164 #ifdef INCOMING_RETURN_ADDR_RTX
5165 /* If this function returns with the stack depressed and we can support
5166 it, massage the epilogue to actually do that. */
5167 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5168 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5169 seq = keep_stack_depressed (seq);
5170 #endif
5172 emit_jump_insn (seq);
5174 /* Retain a map of the epilogue insns. */
5175 record_insns (seq, &epilogue);
5176 set_insn_locators (seq, epilogue_locator);
5178 seq = get_insns ();
5179 end_sequence ();
5181 insert_insn_on_edge (seq, e);
5182 inserted = 1;
5184 else
5185 #endif
5187 basic_block cur_bb;
5189 if (! next_active_insn (BB_END (e->src)))
5190 goto epilogue_done;
5191 /* We have a fall-through edge to the exit block, the source is not
5192 at the end of the function, and there will be an assembler epilogue
5193 at the end of the function.
5194 We can't use force_nonfallthru here, because that would try to
5195 use return. Inserting a jump 'by hand' is extremely messy, so
5196 we take advantage of cfg_layout_finalize using
5197 fixup_fallthru_exit_predecessor. */
5198 cfg_layout_initialize (0);
5199 FOR_EACH_BB (cur_bb)
5200 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5201 cur_bb->rbi->next = cur_bb->next_bb;
5202 cfg_layout_finalize ();
5204 epilogue_done:
5206 if (inserted)
5207 commit_edge_insertions ();
5209 #ifdef HAVE_sibcall_epilogue
5210 /* Emit sibling epilogues before any sibling call sites. */
5211 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5213 basic_block bb = e->src;
5214 rtx insn = BB_END (bb);
5215 rtx i;
5216 rtx newinsn;
5218 if (!CALL_P (insn)
5219 || ! SIBLING_CALL_P (insn))
5221 ei_next (&ei);
5222 continue;
5225 start_sequence ();
5226 emit_insn (gen_sibcall_epilogue ());
5227 seq = get_insns ();
5228 end_sequence ();
5230 /* Retain a map of the epilogue insns. Used in life analysis to
5231 avoid getting rid of sibcall epilogue insns. Do this before we
5232 actually emit the sequence. */
5233 record_insns (seq, &sibcall_epilogue);
5234 set_insn_locators (seq, epilogue_locator);
5236 i = PREV_INSN (insn);
5237 newinsn = emit_insn_before (seq, insn);
5238 ei_next (&ei);
5240 #endif
5242 #ifdef HAVE_prologue
5243 /* This is probably all useless now that we use locators. */
5244 if (prologue_end)
5246 rtx insn, prev;
5248 /* GDB handles `break f' by setting a breakpoint on the first
5249 line note after the prologue. Which means (1) that if
5250 there are line number notes before where we inserted the
5251 prologue we should move them, and (2) we should generate a
5252 note before the end of the first basic block, if there isn't
5253 one already there.
5255 ??? This behavior is completely broken when dealing with
5256 multiple entry functions. We simply place the note always
5257 into first basic block and let alternate entry points
5258 to be missed.
5261 for (insn = prologue_end; insn; insn = prev)
5263 prev = PREV_INSN (insn);
5264 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5266 /* Note that we cannot reorder the first insn in the
5267 chain, since rest_of_compilation relies on that
5268 remaining constant. */
5269 if (prev == NULL)
5270 break;
5271 reorder_insns (insn, insn, prologue_end);
5275 /* Find the last line number note in the first block. */
5276 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5277 insn != prologue_end && insn;
5278 insn = PREV_INSN (insn))
5279 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5280 break;
5282 /* If we didn't find one, make a copy of the first line number
5283 we run across. */
5284 if (! insn)
5286 for (insn = next_active_insn (prologue_end);
5287 insn;
5288 insn = PREV_INSN (insn))
5289 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5291 emit_note_copy_after (insn, prologue_end);
5292 break;
5296 #endif
5297 #ifdef HAVE_epilogue
5298 if (epilogue_end)
5300 rtx insn, next;
5302 /* Similarly, move any line notes that appear after the epilogue.
5303 There is no need, however, to be quite so anal about the existence
5304 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5305 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5306 info generation. */
5307 for (insn = epilogue_end; insn; insn = next)
5309 next = NEXT_INSN (insn);
5310 if (NOTE_P (insn)
5311 && (NOTE_LINE_NUMBER (insn) > 0
5312 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5313 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5314 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5317 #endif
5320 /* Reposition the prologue-end and epilogue-begin notes after instruction
5321 scheduling and delayed branch scheduling. */
5323 void
5324 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5326 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5327 rtx insn, last, note;
5328 int len;
5330 if ((len = VARRAY_SIZE (prologue)) > 0)
5332 last = 0, note = 0;
5334 /* Scan from the beginning until we reach the last prologue insn.
5335 We apparently can't depend on basic_block_{head,end} after
5336 reorg has run. */
5337 for (insn = f; insn; insn = NEXT_INSN (insn))
5339 if (NOTE_P (insn))
5341 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5342 note = insn;
5344 else if (contains (insn, prologue))
5346 last = insn;
5347 if (--len == 0)
5348 break;
5352 if (last)
5354 /* Find the prologue-end note if we haven't already, and
5355 move it to just after the last prologue insn. */
5356 if (note == 0)
5358 for (note = last; (note = NEXT_INSN (note));)
5359 if (NOTE_P (note)
5360 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5361 break;
5364 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5365 if (LABEL_P (last))
5366 last = NEXT_INSN (last);
5367 reorder_insns (note, note, last);
5371 if ((len = VARRAY_SIZE (epilogue)) > 0)
5373 last = 0, note = 0;
5375 /* Scan from the end until we reach the first epilogue insn.
5376 We apparently can't depend on basic_block_{head,end} after
5377 reorg has run. */
5378 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5380 if (NOTE_P (insn))
5382 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5383 note = insn;
5385 else if (contains (insn, epilogue))
5387 last = insn;
5388 if (--len == 0)
5389 break;
5393 if (last)
5395 /* Find the epilogue-begin note if we haven't already, and
5396 move it to just before the first epilogue insn. */
5397 if (note == 0)
5399 for (note = insn; (note = PREV_INSN (note));)
5400 if (NOTE_P (note)
5401 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5402 break;
5405 if (PREV_INSN (last) != note)
5406 reorder_insns (note, note, PREV_INSN (last));
5409 #endif /* HAVE_prologue or HAVE_epilogue */
5412 /* Called once, at initialization, to initialize function.c. */
5414 void
5415 init_function_once (void)
5417 VARRAY_INT_INIT (prologue, 0, "prologue");
5418 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5419 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5422 /* Resets insn_block_boundaries array. */
5424 void
5425 reset_block_changes (void)
5427 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5428 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5431 /* Record the boundary for BLOCK. */
5432 void
5433 record_block_change (tree block)
5435 int i, n;
5436 tree last_block;
5438 if (!block)
5439 return;
5441 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5442 VARRAY_POP (cfun->ib_boundaries_block);
5443 n = get_max_uid ();
5444 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5445 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5447 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5450 /* Finishes record of boundaries. */
5451 void finalize_block_changes (void)
5453 record_block_change (DECL_INITIAL (current_function_decl));
5456 /* For INSN return the BLOCK it belongs to. */
5457 void
5458 check_block_change (rtx insn, tree *block)
5460 unsigned uid = INSN_UID (insn);
5462 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5463 return;
5465 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5468 /* Releases the ib_boundaries_block records. */
5469 void
5470 free_block_changes (void)
5472 cfun->ib_boundaries_block = NULL;
5475 /* Returns the name of the current function. */
5476 const char *
5477 current_function_name (void)
5479 return lang_hooks.decl_printable_name (cfun->decl, 2);
5482 #include "gt-function.h"