re PR c++/62127 (ICE with VLA in constructor)
[official-gcc.git] / gcc / loop-unroll.c
blob2e35cb1672aab14c5f7bec605f0251d41d8616ab
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "params.h"
31 #include "expr.h"
32 #include "hash-table.h"
33 #include "recog.h"
34 #include "target.h"
35 #include "dumpfile.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx_insn *insn; /* The insn in that the induction variable occurs. */
77 rtx orig_var; /* The variable (register) for the IV before split. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
84 /* Information about accumulators to expand. */
86 struct var_to_expand
88 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
89 rtx reg; /* The accumulator which is expanded. */
90 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
91 struct var_to_expand *next; /* Next entry in walking order. */
92 enum rtx_code op; /* The type of the accumulation - addition, subtraction
93 or multiplication. */
94 int expansion_count; /* Count the number of expansions generated so far. */
95 int reuse_expansion; /* The expansion we intend to reuse to expand
96 the accumulator. If REUSE_EXPANSION is 0 reuse
97 the original accumulator. Else use
98 var_expansions[REUSE_EXPANSION - 1]. */
101 /* Hashtable helper for iv_to_split. */
103 struct iv_split_hasher : typed_free_remove <iv_to_split>
105 typedef iv_to_split value_type;
106 typedef iv_to_split compare_type;
107 static inline hashval_t hash (const value_type *);
108 static inline bool equal (const value_type *, const compare_type *);
112 /* A hash function for information about insns to split. */
114 inline hashval_t
115 iv_split_hasher::hash (const value_type *ivts)
117 return (hashval_t) INSN_UID (ivts->insn);
120 /* An equality functions for information about insns to split. */
122 inline bool
123 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
125 return i1->insn == i2->insn;
128 /* Hashtable helper for iv_to_split. */
130 struct var_expand_hasher : typed_free_remove <var_to_expand>
132 typedef var_to_expand value_type;
133 typedef var_to_expand compare_type;
134 static inline hashval_t hash (const value_type *);
135 static inline bool equal (const value_type *, const compare_type *);
138 /* Return a hash for VES. */
140 inline hashval_t
141 var_expand_hasher::hash (const value_type *ves)
143 return (hashval_t) INSN_UID (ves->insn);
146 /* Return true if I1 and I2 refer to the same instruction. */
148 inline bool
149 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
151 return i1->insn == i2->insn;
154 /* Information about optimization applied in
155 the unrolled loop. */
157 struct opt_info
159 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
160 split. */
161 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
162 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
163 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
164 insns with accumulators to expand. */
165 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
166 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
167 unsigned first_new_block; /* The first basic block that was
168 duplicated. */
169 basic_block loop_exit; /* The loop exit basic block. */
170 basic_block loop_preheader; /* The loop preheader basic block. */
173 static void decide_unrolling_and_peeling (int);
174 static void peel_loops_completely (int);
175 static void decide_peel_simple (struct loop *, int);
176 static void decide_peel_once_rolling (struct loop *, int);
177 static void decide_peel_completely (struct loop *, int);
178 static void decide_unroll_stupid (struct loop *, int);
179 static void decide_unroll_constant_iterations (struct loop *, int);
180 static void decide_unroll_runtime_iterations (struct loop *, int);
181 static void peel_loop_simple (struct loop *);
182 static void peel_loop_completely (struct loop *);
183 static void unroll_loop_stupid (struct loop *);
184 static void unroll_loop_constant_iterations (struct loop *);
185 static void unroll_loop_runtime_iterations (struct loop *);
186 static struct opt_info *analyze_insns_in_loop (struct loop *);
187 static void opt_info_start_duplication (struct opt_info *);
188 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
189 static void free_opt_info (struct opt_info *);
190 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
191 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
192 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
193 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
194 static void insert_var_expansion_initialization (struct var_to_expand *,
195 basic_block);
196 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
197 basic_block);
198 static rtx get_expansion (struct var_to_expand *);
200 /* Emit a message summarizing the unroll or peel that will be
201 performed for LOOP, along with the loop's location LOCUS, if
202 appropriate given the dump or -fopt-info settings. */
204 static void
205 report_unroll_peel (struct loop *loop, location_t locus)
207 struct niter_desc *desc;
208 int niters = 0;
209 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
211 if (loop->lpt_decision.decision == LPT_NONE)
212 return;
214 if (!dump_enabled_p ())
215 return;
217 /* In the special case where the loop never iterated, emit
218 a different message so that we don't report an unroll by 0.
219 This matches the equivalent message emitted during tree unrolling. */
220 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
221 && !loop->lpt_decision.times)
223 dump_printf_loc (report_flags, locus,
224 "loop turned into non-loop; it never loops.\n");
225 return;
228 desc = get_simple_loop_desc (loop);
230 if (desc->const_iter)
231 niters = desc->niter;
232 else if (loop->header->count)
233 niters = expected_loop_iterations (loop);
235 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
236 dump_printf_loc (report_flags, locus,
237 "loop with %d iterations completely unrolled",
238 loop->lpt_decision.times + 1);
239 else
240 dump_printf_loc (report_flags, locus,
241 "loop %s %d times",
242 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
243 ? "peeled" : "unrolled"),
244 loop->lpt_decision.times);
245 if (profile_info)
246 dump_printf (report_flags,
247 " (header execution count %d",
248 (int)loop->header->count);
249 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
250 dump_printf (report_flags,
251 "%s%s iterations %d)",
252 profile_info ? ", " : " (",
253 desc->const_iter ? "const" : "average",
254 niters);
255 else if (profile_info)
256 dump_printf (report_flags, ")");
258 dump_printf (report_flags, "\n");
261 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
262 void
263 unroll_and_peel_loops (int flags)
265 struct loop *loop;
266 bool changed = false;
268 /* First perform complete loop peeling (it is almost surely a win,
269 and affects parameters for further decision a lot). */
270 peel_loops_completely (flags);
272 /* Now decide rest of unrolling and peeling. */
273 decide_unrolling_and_peeling (flags);
275 /* Scan the loops, inner ones first. */
276 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
278 /* And perform the appropriate transformations. */
279 switch (loop->lpt_decision.decision)
281 case LPT_PEEL_COMPLETELY:
282 /* Already done. */
283 gcc_unreachable ();
284 case LPT_PEEL_SIMPLE:
285 peel_loop_simple (loop);
286 changed = true;
287 break;
288 case LPT_UNROLL_CONSTANT:
289 unroll_loop_constant_iterations (loop);
290 changed = true;
291 break;
292 case LPT_UNROLL_RUNTIME:
293 unroll_loop_runtime_iterations (loop);
294 changed = true;
295 break;
296 case LPT_UNROLL_STUPID:
297 unroll_loop_stupid (loop);
298 changed = true;
299 break;
300 case LPT_NONE:
301 break;
302 default:
303 gcc_unreachable ();
307 if (changed)
309 calculate_dominance_info (CDI_DOMINATORS);
310 fix_loop_structure (NULL);
313 iv_analysis_done ();
316 /* Check whether exit of the LOOP is at the end of loop body. */
318 static bool
319 loop_exit_at_end_p (struct loop *loop)
321 struct niter_desc *desc = get_simple_loop_desc (loop);
322 rtx_insn *insn;
324 if (desc->in_edge->dest != loop->latch)
325 return false;
327 /* Check that the latch is empty. */
328 FOR_BB_INSNS (loop->latch, insn)
330 if (NONDEBUG_INSN_P (insn))
331 return false;
334 return true;
337 /* Depending on FLAGS, check whether to peel loops completely and do so. */
338 static void
339 peel_loops_completely (int flags)
341 struct loop *loop;
342 bool changed = false;
344 /* Scan the loops, the inner ones first. */
345 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
347 loop->lpt_decision.decision = LPT_NONE;
348 location_t locus = get_loop_location (loop);
350 if (dump_enabled_p ())
351 dump_printf_loc (TDF_RTL, locus,
352 ";; *** Considering loop %d at BB %d for "
353 "complete peeling ***\n",
354 loop->num, loop->header->index);
356 loop->ninsns = num_loop_insns (loop);
358 decide_peel_once_rolling (loop, flags);
359 if (loop->lpt_decision.decision == LPT_NONE)
360 decide_peel_completely (loop, flags);
362 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
364 report_unroll_peel (loop, locus);
365 peel_loop_completely (loop);
366 changed = true;
370 if (changed)
372 calculate_dominance_info (CDI_DOMINATORS);
373 fix_loop_structure (NULL);
377 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
378 static void
379 decide_unrolling_and_peeling (int flags)
381 struct loop *loop;
383 /* Scan the loops, inner ones first. */
384 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
386 loop->lpt_decision.decision = LPT_NONE;
387 location_t locus = get_loop_location (loop);
389 if (dump_enabled_p ())
390 dump_printf_loc (TDF_RTL, locus,
391 ";; *** Considering loop %d at BB %d for "
392 "unrolling and peeling ***\n",
393 loop->num, loop->header->index);
395 /* Do not peel cold areas. */
396 if (optimize_loop_for_size_p (loop))
398 if (dump_file)
399 fprintf (dump_file, ";; Not considering loop, cold area\n");
400 continue;
403 /* Can the loop be manipulated? */
404 if (!can_duplicate_loop_p (loop))
406 if (dump_file)
407 fprintf (dump_file,
408 ";; Not considering loop, cannot duplicate\n");
409 continue;
412 /* Skip non-innermost loops. */
413 if (loop->inner)
415 if (dump_file)
416 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
417 continue;
420 loop->ninsns = num_loop_insns (loop);
421 loop->av_ninsns = average_num_loop_insns (loop);
423 /* Try transformations one by one in decreasing order of
424 priority. */
426 decide_unroll_constant_iterations (loop, flags);
427 if (loop->lpt_decision.decision == LPT_NONE)
428 decide_unroll_runtime_iterations (loop, flags);
429 if (loop->lpt_decision.decision == LPT_NONE)
430 decide_unroll_stupid (loop, flags);
431 if (loop->lpt_decision.decision == LPT_NONE)
432 decide_peel_simple (loop, flags);
434 report_unroll_peel (loop, locus);
438 /* Decide whether the LOOP is once rolling and suitable for complete
439 peeling. */
440 static void
441 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
443 struct niter_desc *desc;
445 if (dump_file)
446 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
448 /* Is the loop small enough? */
449 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
451 if (dump_file)
452 fprintf (dump_file, ";; Not considering loop, is too big\n");
453 return;
456 /* Check for simple loops. */
457 desc = get_simple_loop_desc (loop);
459 /* Check number of iterations. */
460 if (!desc->simple_p
461 || desc->assumptions
462 || desc->infinite
463 || !desc->const_iter
464 || (desc->niter != 0
465 && get_max_loop_iterations_int (loop) != 0))
467 if (dump_file)
468 fprintf (dump_file,
469 ";; Unable to prove that the loop rolls exactly once\n");
470 return;
473 /* Success. */
474 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
477 /* Decide whether the LOOP is suitable for complete peeling. */
478 static void
479 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
481 unsigned npeel;
482 struct niter_desc *desc;
484 if (dump_file)
485 fprintf (dump_file, "\n;; Considering peeling completely\n");
487 /* Skip non-innermost loops. */
488 if (loop->inner)
490 if (dump_file)
491 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
492 return;
495 /* Do not peel cold areas. */
496 if (optimize_loop_for_size_p (loop))
498 if (dump_file)
499 fprintf (dump_file, ";; Not considering loop, cold area\n");
500 return;
503 /* Can the loop be manipulated? */
504 if (!can_duplicate_loop_p (loop))
506 if (dump_file)
507 fprintf (dump_file,
508 ";; Not considering loop, cannot duplicate\n");
509 return;
512 /* npeel = number of iterations to peel. */
513 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
514 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
515 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
517 /* Is the loop small enough? */
518 if (!npeel)
520 if (dump_file)
521 fprintf (dump_file, ";; Not considering loop, is too big\n");
522 return;
525 /* Check for simple loops. */
526 desc = get_simple_loop_desc (loop);
528 /* Check number of iterations. */
529 if (!desc->simple_p
530 || desc->assumptions
531 || !desc->const_iter
532 || desc->infinite)
534 if (dump_file)
535 fprintf (dump_file,
536 ";; Unable to prove that the loop iterates constant times\n");
537 return;
540 if (desc->niter > npeel - 1)
542 if (dump_file)
544 fprintf (dump_file,
545 ";; Not peeling loop completely, rolls too much (");
546 fprintf (dump_file, "%"PRId64, desc->niter);
547 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
549 return;
552 /* Success. */
553 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
556 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
557 completely. The transformation done:
559 for (i = 0; i < 4; i++)
560 body;
564 i = 0;
565 body; i++;
566 body; i++;
567 body; i++;
568 body; i++;
570 static void
571 peel_loop_completely (struct loop *loop)
573 sbitmap wont_exit;
574 unsigned HOST_WIDE_INT npeel;
575 unsigned i;
576 edge ein;
577 struct niter_desc *desc = get_simple_loop_desc (loop);
578 struct opt_info *opt_info = NULL;
580 npeel = desc->niter;
582 if (npeel)
584 bool ok;
586 wont_exit = sbitmap_alloc (npeel + 1);
587 bitmap_ones (wont_exit);
588 bitmap_clear_bit (wont_exit, 0);
589 if (desc->noloop_assumptions)
590 bitmap_clear_bit (wont_exit, 1);
592 auto_vec<edge> remove_edges;
593 if (flag_split_ivs_in_unroller)
594 opt_info = analyze_insns_in_loop (loop);
596 opt_info_start_duplication (opt_info);
597 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
598 npeel,
599 wont_exit, desc->out_edge,
600 &remove_edges,
601 DLTHE_FLAG_UPDATE_FREQ
602 | DLTHE_FLAG_COMPLETTE_PEEL
603 | (opt_info
604 ? DLTHE_RECORD_COPY_NUMBER : 0));
605 gcc_assert (ok);
607 free (wont_exit);
609 if (opt_info)
611 apply_opt_in_copies (opt_info, npeel, false, true);
612 free_opt_info (opt_info);
615 /* Remove the exit edges. */
616 FOR_EACH_VEC_ELT (remove_edges, i, ein)
617 remove_path (ein);
620 ein = desc->in_edge;
621 free_simple_loop_desc (loop);
623 /* Now remove the unreachable part of the last iteration and cancel
624 the loop. */
625 remove_path (ein);
627 if (dump_file)
628 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
631 /* Decide whether to unroll LOOP iterating constant number of times
632 and how much. */
634 static void
635 decide_unroll_constant_iterations (struct loop *loop, int flags)
637 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
638 struct niter_desc *desc;
639 widest_int iterations;
641 if (!(flags & UAP_UNROLL))
643 /* We were not asked to, just return back silently. */
644 return;
647 if (dump_file)
648 fprintf (dump_file,
649 "\n;; Considering unrolling loop with constant "
650 "number of iterations\n");
652 /* nunroll = total number of copies of the original loop body in
653 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
654 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
655 nunroll_by_av
656 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
657 if (nunroll > nunroll_by_av)
658 nunroll = nunroll_by_av;
659 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
660 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
662 if (targetm.loop_unroll_adjust)
663 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
665 /* Skip big loops. */
666 if (nunroll <= 1)
668 if (dump_file)
669 fprintf (dump_file, ";; Not considering loop, is too big\n");
670 return;
673 /* Check for simple loops. */
674 desc = get_simple_loop_desc (loop);
676 /* Check number of iterations. */
677 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
679 if (dump_file)
680 fprintf (dump_file,
681 ";; Unable to prove that the loop iterates constant times\n");
682 return;
685 /* Check whether the loop rolls enough to consider.
686 Consult also loop bounds and profile; in the case the loop has more
687 than one exit it may well loop less than determined maximal number
688 of iterations. */
689 if (desc->niter < 2 * nunroll
690 || ((get_estimated_loop_iterations (loop, &iterations)
691 || get_max_loop_iterations (loop, &iterations))
692 && wi::ltu_p (iterations, 2 * nunroll)))
694 if (dump_file)
695 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
696 return;
699 /* Success; now compute number of iterations to unroll. We alter
700 nunroll so that as few as possible copies of loop body are
701 necessary, while still not decreasing the number of unrollings
702 too much (at most by 1). */
703 best_copies = 2 * nunroll + 10;
705 i = 2 * nunroll + 2;
706 if (i - 1 >= desc->niter)
707 i = desc->niter - 2;
709 for (; i >= nunroll - 1; i--)
711 unsigned exit_mod = desc->niter % (i + 1);
713 if (!loop_exit_at_end_p (loop))
714 n_copies = exit_mod + i + 1;
715 else if (exit_mod != (unsigned) i
716 || desc->noloop_assumptions != NULL_RTX)
717 n_copies = exit_mod + i + 2;
718 else
719 n_copies = i + 1;
721 if (n_copies < best_copies)
723 best_copies = n_copies;
724 best_unroll = i;
728 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
729 loop->lpt_decision.times = best_unroll;
732 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
733 The transformation does this:
735 for (i = 0; i < 102; i++)
736 body;
738 ==> (LOOP->LPT_DECISION.TIMES == 3)
740 i = 0;
741 body; i++;
742 body; i++;
743 while (i < 102)
745 body; i++;
746 body; i++;
747 body; i++;
748 body; i++;
751 static void
752 unroll_loop_constant_iterations (struct loop *loop)
754 unsigned HOST_WIDE_INT niter;
755 unsigned exit_mod;
756 sbitmap wont_exit;
757 unsigned i;
758 edge e;
759 unsigned max_unroll = loop->lpt_decision.times;
760 struct niter_desc *desc = get_simple_loop_desc (loop);
761 bool exit_at_end = loop_exit_at_end_p (loop);
762 struct opt_info *opt_info = NULL;
763 bool ok;
765 niter = desc->niter;
767 /* Should not get here (such loop should be peeled instead). */
768 gcc_assert (niter > max_unroll + 1);
770 exit_mod = niter % (max_unroll + 1);
772 wont_exit = sbitmap_alloc (max_unroll + 1);
773 bitmap_ones (wont_exit);
775 auto_vec<edge> remove_edges;
776 if (flag_split_ivs_in_unroller
777 || flag_variable_expansion_in_unroller)
778 opt_info = analyze_insns_in_loop (loop);
780 if (!exit_at_end)
782 /* The exit is not at the end of the loop; leave exit test
783 in the first copy, so that the loops that start with test
784 of exit condition have continuous body after unrolling. */
786 if (dump_file)
787 fprintf (dump_file, ";; Condition at beginning of loop.\n");
789 /* Peel exit_mod iterations. */
790 bitmap_clear_bit (wont_exit, 0);
791 if (desc->noloop_assumptions)
792 bitmap_clear_bit (wont_exit, 1);
794 if (exit_mod)
796 opt_info_start_duplication (opt_info);
797 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
798 exit_mod,
799 wont_exit, desc->out_edge,
800 &remove_edges,
801 DLTHE_FLAG_UPDATE_FREQ
802 | (opt_info && exit_mod > 1
803 ? DLTHE_RECORD_COPY_NUMBER
804 : 0));
805 gcc_assert (ok);
807 if (opt_info && exit_mod > 1)
808 apply_opt_in_copies (opt_info, exit_mod, false, false);
810 desc->noloop_assumptions = NULL_RTX;
811 desc->niter -= exit_mod;
812 loop->nb_iterations_upper_bound -= exit_mod;
813 if (loop->any_estimate
814 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
815 loop->nb_iterations_estimate -= exit_mod;
816 else
817 loop->any_estimate = false;
820 bitmap_set_bit (wont_exit, 1);
822 else
824 /* Leave exit test in last copy, for the same reason as above if
825 the loop tests the condition at the end of loop body. */
827 if (dump_file)
828 fprintf (dump_file, ";; Condition at end of loop.\n");
830 /* We know that niter >= max_unroll + 2; so we do not need to care of
831 case when we would exit before reaching the loop. So just peel
832 exit_mod + 1 iterations. */
833 if (exit_mod != max_unroll
834 || desc->noloop_assumptions)
836 bitmap_clear_bit (wont_exit, 0);
837 if (desc->noloop_assumptions)
838 bitmap_clear_bit (wont_exit, 1);
840 opt_info_start_duplication (opt_info);
841 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
842 exit_mod + 1,
843 wont_exit, desc->out_edge,
844 &remove_edges,
845 DLTHE_FLAG_UPDATE_FREQ
846 | (opt_info && exit_mod > 0
847 ? DLTHE_RECORD_COPY_NUMBER
848 : 0));
849 gcc_assert (ok);
851 if (opt_info && exit_mod > 0)
852 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
854 desc->niter -= exit_mod + 1;
855 loop->nb_iterations_upper_bound -= exit_mod + 1;
856 if (loop->any_estimate
857 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
858 loop->nb_iterations_estimate -= exit_mod + 1;
859 else
860 loop->any_estimate = false;
861 desc->noloop_assumptions = NULL_RTX;
863 bitmap_set_bit (wont_exit, 0);
864 bitmap_set_bit (wont_exit, 1);
867 bitmap_clear_bit (wont_exit, max_unroll);
870 /* Now unroll the loop. */
872 opt_info_start_duplication (opt_info);
873 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
874 max_unroll,
875 wont_exit, desc->out_edge,
876 &remove_edges,
877 DLTHE_FLAG_UPDATE_FREQ
878 | (opt_info
879 ? DLTHE_RECORD_COPY_NUMBER
880 : 0));
881 gcc_assert (ok);
883 if (opt_info)
885 apply_opt_in_copies (opt_info, max_unroll, true, true);
886 free_opt_info (opt_info);
889 free (wont_exit);
891 if (exit_at_end)
893 basic_block exit_block = get_bb_copy (desc->in_edge->src);
894 /* Find a new in and out edge; they are in the last copy we have made. */
896 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
898 desc->out_edge = EDGE_SUCC (exit_block, 0);
899 desc->in_edge = EDGE_SUCC (exit_block, 1);
901 else
903 desc->out_edge = EDGE_SUCC (exit_block, 1);
904 desc->in_edge = EDGE_SUCC (exit_block, 0);
908 desc->niter /= max_unroll + 1;
909 loop->nb_iterations_upper_bound
910 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
911 if (loop->any_estimate)
912 loop->nb_iterations_estimate
913 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
914 desc->niter_expr = GEN_INT (desc->niter);
916 /* Remove the edges. */
917 FOR_EACH_VEC_ELT (remove_edges, i, e)
918 remove_path (e);
920 if (dump_file)
921 fprintf (dump_file,
922 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
923 max_unroll, num_loop_insns (loop));
926 /* Decide whether to unroll LOOP iterating runtime computable number of times
927 and how much. */
928 static void
929 decide_unroll_runtime_iterations (struct loop *loop, int flags)
931 unsigned nunroll, nunroll_by_av, i;
932 struct niter_desc *desc;
933 widest_int iterations;
935 if (!(flags & UAP_UNROLL))
937 /* We were not asked to, just return back silently. */
938 return;
941 if (dump_file)
942 fprintf (dump_file,
943 "\n;; Considering unrolling loop with runtime "
944 "computable number of iterations\n");
946 /* nunroll = total number of copies of the original loop body in
947 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
948 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
949 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
950 if (nunroll > nunroll_by_av)
951 nunroll = nunroll_by_av;
952 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
953 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
955 if (targetm.loop_unroll_adjust)
956 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
958 /* Skip big loops. */
959 if (nunroll <= 1)
961 if (dump_file)
962 fprintf (dump_file, ";; Not considering loop, is too big\n");
963 return;
966 /* Check for simple loops. */
967 desc = get_simple_loop_desc (loop);
969 /* Check simpleness. */
970 if (!desc->simple_p || desc->assumptions)
972 if (dump_file)
973 fprintf (dump_file,
974 ";; Unable to prove that the number of iterations "
975 "can be counted in runtime\n");
976 return;
979 if (desc->const_iter)
981 if (dump_file)
982 fprintf (dump_file, ";; Loop iterates constant times\n");
983 return;
986 /* Check whether the loop rolls. */
987 if ((get_estimated_loop_iterations (loop, &iterations)
988 || get_max_loop_iterations (loop, &iterations))
989 && wi::ltu_p (iterations, 2 * nunroll))
991 if (dump_file)
992 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
993 return;
996 /* Success; now force nunroll to be power of 2, as we are unable to
997 cope with overflows in computation of number of iterations. */
998 for (i = 1; 2 * i <= nunroll; i *= 2)
999 continue;
1001 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1002 loop->lpt_decision.times = i - 1;
1005 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1006 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1007 and NULL is returned instead. */
1009 basic_block
1010 split_edge_and_insert (edge e, rtx_insn *insns)
1012 basic_block bb;
1014 if (!insns)
1015 return NULL;
1016 bb = split_edge (e);
1017 emit_insn_after (insns, BB_END (bb));
1019 /* ??? We used to assume that INSNS can contain control flow insns, and
1020 that we had to try to find sub basic blocks in BB to maintain a valid
1021 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1022 and call break_superblocks when going out of cfglayout mode. But it
1023 turns out that this never happens; and that if it does ever happen,
1024 the verify_flow_info at the end of the RTL loop passes would fail.
1026 There are two reasons why we expected we could have control flow insns
1027 in INSNS. The first is when a comparison has to be done in parts, and
1028 the second is when the number of iterations is computed for loops with
1029 the number of iterations known at runtime. In both cases, test cases
1030 to get control flow in INSNS appear to be impossible to construct:
1032 * If do_compare_rtx_and_jump needs several branches to do comparison
1033 in a mode that needs comparison by parts, we cannot analyze the
1034 number of iterations of the loop, and we never get to unrolling it.
1036 * The code in expand_divmod that was suspected to cause creation of
1037 branching code seems to be only accessed for signed division. The
1038 divisions used by # of iterations analysis are always unsigned.
1039 Problems might arise on architectures that emits branching code
1040 for some operations that may appear in the unroller (especially
1041 for division), but we have no such architectures.
1043 Considering all this, it was decided that we should for now assume
1044 that INSNS can in theory contain control flow insns, but in practice
1045 it never does. So we don't handle the theoretical case, and should
1046 a real failure ever show up, we have a pretty good clue for how to
1047 fix it. */
1049 return bb;
1052 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
1053 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
1054 in order to create a jump. */
1056 static rtx_insn *
1057 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
1058 rtx_insn *cinsn)
1060 rtx_insn *seq, *jump;
1061 rtx cond;
1062 enum machine_mode mode;
1064 mode = GET_MODE (op0);
1065 if (mode == VOIDmode)
1066 mode = GET_MODE (op1);
1068 start_sequence ();
1069 if (GET_MODE_CLASS (mode) == MODE_CC)
1071 /* A hack -- there seems to be no easy generic way how to make a
1072 conditional jump from a ccmode comparison. */
1073 gcc_assert (cinsn);
1074 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
1075 gcc_assert (GET_CODE (cond) == comp);
1076 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
1077 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
1078 emit_jump_insn (copy_insn (PATTERN (cinsn)));
1079 jump = get_last_insn ();
1080 gcc_assert (JUMP_P (jump));
1081 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
1082 LABEL_NUSES (JUMP_LABEL (jump))++;
1083 redirect_jump (jump, label, 0);
1085 else
1087 gcc_assert (!cinsn);
1089 op0 = force_operand (op0, NULL_RTX);
1090 op1 = force_operand (op1, NULL_RTX);
1091 do_compare_rtx_and_jump (op0, op1, comp, 0,
1092 mode, NULL_RTX, NULL_RTX, label, -1);
1093 jump = get_last_insn ();
1094 gcc_assert (JUMP_P (jump));
1095 JUMP_LABEL (jump) = label;
1096 LABEL_NUSES (label)++;
1098 add_int_reg_note (jump, REG_BR_PROB, prob);
1100 seq = get_insns ();
1101 end_sequence ();
1103 return seq;
1106 /* Unroll LOOP for which we are able to count number of iterations in runtime
1107 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1108 extra care for case n < 0):
1110 for (i = 0; i < n; i++)
1111 body;
1113 ==> (LOOP->LPT_DECISION.TIMES == 3)
1115 i = 0;
1116 mod = n % 4;
1118 switch (mod)
1120 case 3:
1121 body; i++;
1122 case 2:
1123 body; i++;
1124 case 1:
1125 body; i++;
1126 case 0: ;
1129 while (i < n)
1131 body; i++;
1132 body; i++;
1133 body; i++;
1134 body; i++;
1137 static void
1138 unroll_loop_runtime_iterations (struct loop *loop)
1140 rtx old_niter, niter, tmp;
1141 rtx_insn *init_code, *branch_code;
1142 unsigned i, j, p;
1143 basic_block preheader, *body, swtch, ezc_swtch;
1144 sbitmap wont_exit;
1145 int may_exit_copy;
1146 unsigned n_peel;
1147 edge e;
1148 bool extra_zero_check, last_may_exit;
1149 unsigned max_unroll = loop->lpt_decision.times;
1150 struct niter_desc *desc = get_simple_loop_desc (loop);
1151 bool exit_at_end = loop_exit_at_end_p (loop);
1152 struct opt_info *opt_info = NULL;
1153 bool ok;
1155 if (flag_split_ivs_in_unroller
1156 || flag_variable_expansion_in_unroller)
1157 opt_info = analyze_insns_in_loop (loop);
1159 /* Remember blocks whose dominators will have to be updated. */
1160 auto_vec<basic_block> dom_bbs;
1162 body = get_loop_body (loop);
1163 for (i = 0; i < loop->num_nodes; i++)
1165 vec<basic_block> ldom;
1166 basic_block bb;
1168 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1169 FOR_EACH_VEC_ELT (ldom, j, bb)
1170 if (!flow_bb_inside_loop_p (loop, bb))
1171 dom_bbs.safe_push (bb);
1173 ldom.release ();
1175 free (body);
1177 if (!exit_at_end)
1179 /* Leave exit in first copy (for explanation why see comment in
1180 unroll_loop_constant_iterations). */
1181 may_exit_copy = 0;
1182 n_peel = max_unroll - 1;
1183 extra_zero_check = true;
1184 last_may_exit = false;
1186 else
1188 /* Leave exit in last copy (for explanation why see comment in
1189 unroll_loop_constant_iterations). */
1190 may_exit_copy = max_unroll;
1191 n_peel = max_unroll;
1192 extra_zero_check = false;
1193 last_may_exit = true;
1196 /* Get expression for number of iterations. */
1197 start_sequence ();
1198 old_niter = niter = gen_reg_rtx (desc->mode);
1199 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1200 if (tmp != niter)
1201 emit_move_insn (niter, tmp);
1203 /* Count modulo by ANDing it with max_unroll; we use the fact that
1204 the number of unrollings is a power of two, and thus this is correct
1205 even if there is overflow in the computation. */
1206 niter = expand_simple_binop (desc->mode, AND,
1207 niter, gen_int_mode (max_unroll, desc->mode),
1208 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1210 init_code = get_insns ();
1211 end_sequence ();
1212 unshare_all_rtl_in_chain (init_code);
1214 /* Precondition the loop. */
1215 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1217 auto_vec<edge> remove_edges;
1219 wont_exit = sbitmap_alloc (max_unroll + 2);
1221 /* Peel the first copy of loop body (almost always we must leave exit test
1222 here; the only exception is when we have extra zero check and the number
1223 of iterations is reliable. Also record the place of (possible) extra
1224 zero check. */
1225 bitmap_clear (wont_exit);
1226 if (extra_zero_check
1227 && !desc->noloop_assumptions)
1228 bitmap_set_bit (wont_exit, 1);
1229 ezc_swtch = loop_preheader_edge (loop)->src;
1230 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1231 1, wont_exit, desc->out_edge,
1232 &remove_edges,
1233 DLTHE_FLAG_UPDATE_FREQ);
1234 gcc_assert (ok);
1236 /* Record the place where switch will be built for preconditioning. */
1237 swtch = split_edge (loop_preheader_edge (loop));
1239 for (i = 0; i < n_peel; i++)
1241 /* Peel the copy. */
1242 bitmap_clear (wont_exit);
1243 if (i != n_peel - 1 || !last_may_exit)
1244 bitmap_set_bit (wont_exit, 1);
1245 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1246 1, wont_exit, desc->out_edge,
1247 &remove_edges,
1248 DLTHE_FLAG_UPDATE_FREQ);
1249 gcc_assert (ok);
1251 /* Create item for switch. */
1252 j = n_peel - i - (extra_zero_check ? 0 : 1);
1253 p = REG_BR_PROB_BASE / (i + 2);
1255 preheader = split_edge (loop_preheader_edge (loop));
1256 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1257 block_label (preheader), p,
1258 NULL);
1260 /* We rely on the fact that the compare and jump cannot be optimized out,
1261 and hence the cfg we create is correct. */
1262 gcc_assert (branch_code != NULL_RTX);
1264 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1265 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1266 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1267 e = make_edge (swtch, preheader,
1268 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1269 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1270 e->probability = p;
1273 if (extra_zero_check)
1275 /* Add branch for zero iterations. */
1276 p = REG_BR_PROB_BASE / (max_unroll + 1);
1277 swtch = ezc_swtch;
1278 preheader = split_edge (loop_preheader_edge (loop));
1279 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1280 block_label (preheader), p,
1281 NULL);
1282 gcc_assert (branch_code != NULL_RTX);
1284 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1285 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1286 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1287 e = make_edge (swtch, preheader,
1288 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1289 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1290 e->probability = p;
1293 /* Recount dominators for outer blocks. */
1294 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1296 /* And unroll loop. */
1298 bitmap_ones (wont_exit);
1299 bitmap_clear_bit (wont_exit, may_exit_copy);
1300 opt_info_start_duplication (opt_info);
1302 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1303 max_unroll,
1304 wont_exit, desc->out_edge,
1305 &remove_edges,
1306 DLTHE_FLAG_UPDATE_FREQ
1307 | (opt_info
1308 ? DLTHE_RECORD_COPY_NUMBER
1309 : 0));
1310 gcc_assert (ok);
1312 if (opt_info)
1314 apply_opt_in_copies (opt_info, max_unroll, true, true);
1315 free_opt_info (opt_info);
1318 free (wont_exit);
1320 if (exit_at_end)
1322 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1323 /* Find a new in and out edge; they are in the last copy we have
1324 made. */
1326 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1328 desc->out_edge = EDGE_SUCC (exit_block, 0);
1329 desc->in_edge = EDGE_SUCC (exit_block, 1);
1331 else
1333 desc->out_edge = EDGE_SUCC (exit_block, 1);
1334 desc->in_edge = EDGE_SUCC (exit_block, 0);
1338 /* Remove the edges. */
1339 FOR_EACH_VEC_ELT (remove_edges, i, e)
1340 remove_path (e);
1342 /* We must be careful when updating the number of iterations due to
1343 preconditioning and the fact that the value must be valid at entry
1344 of the loop. After passing through the above code, we see that
1345 the correct new number of iterations is this: */
1346 gcc_assert (!desc->const_iter);
1347 desc->niter_expr =
1348 simplify_gen_binary (UDIV, desc->mode, old_niter,
1349 gen_int_mode (max_unroll + 1, desc->mode));
1350 loop->nb_iterations_upper_bound
1351 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1352 if (loop->any_estimate)
1353 loop->nb_iterations_estimate
1354 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1355 if (exit_at_end)
1357 desc->niter_expr =
1358 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1359 desc->noloop_assumptions = NULL_RTX;
1360 --loop->nb_iterations_upper_bound;
1361 if (loop->any_estimate
1362 && loop->nb_iterations_estimate != 0)
1363 --loop->nb_iterations_estimate;
1364 else
1365 loop->any_estimate = false;
1368 if (dump_file)
1369 fprintf (dump_file,
1370 ";; Unrolled loop %d times, counting # of iterations "
1371 "in runtime, %i insns\n",
1372 max_unroll, num_loop_insns (loop));
1375 /* Decide whether to simply peel LOOP and how much. */
1376 static void
1377 decide_peel_simple (struct loop *loop, int flags)
1379 unsigned npeel;
1380 widest_int iterations;
1382 if (!(flags & UAP_PEEL))
1384 /* We were not asked to, just return back silently. */
1385 return;
1388 if (dump_file)
1389 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1391 /* npeel = number of iterations to peel. */
1392 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1393 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1394 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1396 /* Skip big loops. */
1397 if (!npeel)
1399 if (dump_file)
1400 fprintf (dump_file, ";; Not considering loop, is too big\n");
1401 return;
1404 /* Do not simply peel loops with branches inside -- it increases number
1405 of mispredicts.
1406 Exception is when we do have profile and we however have good chance
1407 to peel proper number of iterations loop will iterate in practice.
1408 TODO: this heuristic needs tunning; while for complette unrolling
1409 the branch inside loop mostly eliminates any improvements, for
1410 peeling it is not the case. Also a function call inside loop is
1411 also branch from branch prediction POV (and probably better reason
1412 to not unroll/peel). */
1413 if (num_loop_branches (loop) > 1
1414 && profile_status_for_fn (cfun) != PROFILE_READ)
1416 if (dump_file)
1417 fprintf (dump_file, ";; Not peeling, contains branches\n");
1418 return;
1421 /* If we have realistic estimate on number of iterations, use it. */
1422 if (get_estimated_loop_iterations (loop, &iterations))
1424 if (wi::leu_p (npeel, iterations))
1426 if (dump_file)
1428 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1429 fprintf (dump_file, "%"PRId64,
1430 (int64_t) (iterations.to_shwi () + 1));
1431 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1432 npeel);
1434 return;
1436 npeel = iterations.to_shwi () + 1;
1438 /* If we have small enough bound on iterations, we can still peel (completely
1439 unroll). */
1440 else if (get_max_loop_iterations (loop, &iterations)
1441 && wi::ltu_p (iterations, npeel))
1442 npeel = iterations.to_shwi () + 1;
1443 else
1445 /* For now we have no good heuristics to decide whether loop peeling
1446 will be effective, so disable it. */
1447 if (dump_file)
1448 fprintf (dump_file,
1449 ";; Not peeling loop, no evidence it will be profitable\n");
1450 return;
1453 /* Success. */
1454 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1455 loop->lpt_decision.times = npeel;
1458 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1460 while (cond)
1461 body;
1463 ==> (LOOP->LPT_DECISION.TIMES == 3)
1465 if (!cond) goto end;
1466 body;
1467 if (!cond) goto end;
1468 body;
1469 if (!cond) goto end;
1470 body;
1471 while (cond)
1472 body;
1473 end: ;
1475 static void
1476 peel_loop_simple (struct loop *loop)
1478 sbitmap wont_exit;
1479 unsigned npeel = loop->lpt_decision.times;
1480 struct niter_desc *desc = get_simple_loop_desc (loop);
1481 struct opt_info *opt_info = NULL;
1482 bool ok;
1484 if (flag_split_ivs_in_unroller && npeel > 1)
1485 opt_info = analyze_insns_in_loop (loop);
1487 wont_exit = sbitmap_alloc (npeel + 1);
1488 bitmap_clear (wont_exit);
1490 opt_info_start_duplication (opt_info);
1492 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1493 npeel, wont_exit, NULL,
1494 NULL, DLTHE_FLAG_UPDATE_FREQ
1495 | (opt_info
1496 ? DLTHE_RECORD_COPY_NUMBER
1497 : 0));
1498 gcc_assert (ok);
1500 free (wont_exit);
1502 if (opt_info)
1504 apply_opt_in_copies (opt_info, npeel, false, false);
1505 free_opt_info (opt_info);
1508 if (desc->simple_p)
1510 if (desc->const_iter)
1512 desc->niter -= npeel;
1513 desc->niter_expr = GEN_INT (desc->niter);
1514 desc->noloop_assumptions = NULL_RTX;
1516 else
1518 /* We cannot just update niter_expr, as its value might be clobbered
1519 inside loop. We could handle this by counting the number into
1520 temporary just like we do in runtime unrolling, but it does not
1521 seem worthwhile. */
1522 free_simple_loop_desc (loop);
1525 if (dump_file)
1526 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1529 /* Decide whether to unroll LOOP stupidly and how much. */
1530 static void
1531 decide_unroll_stupid (struct loop *loop, int flags)
1533 unsigned nunroll, nunroll_by_av, i;
1534 struct niter_desc *desc;
1535 widest_int iterations;
1537 if (!(flags & UAP_UNROLL_ALL))
1539 /* We were not asked to, just return back silently. */
1540 return;
1543 if (dump_file)
1544 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1546 /* nunroll = total number of copies of the original loop body in
1547 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1548 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1549 nunroll_by_av
1550 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1551 if (nunroll > nunroll_by_av)
1552 nunroll = nunroll_by_av;
1553 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1554 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1556 if (targetm.loop_unroll_adjust)
1557 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1559 /* Skip big loops. */
1560 if (nunroll <= 1)
1562 if (dump_file)
1563 fprintf (dump_file, ";; Not considering loop, is too big\n");
1564 return;
1567 /* Check for simple loops. */
1568 desc = get_simple_loop_desc (loop);
1570 /* Check simpleness. */
1571 if (desc->simple_p && !desc->assumptions)
1573 if (dump_file)
1574 fprintf (dump_file, ";; The loop is simple\n");
1575 return;
1578 /* Do not unroll loops with branches inside -- it increases number
1579 of mispredicts.
1580 TODO: this heuristic needs tunning; call inside the loop body
1581 is also relatively good reason to not unroll. */
1582 if (num_loop_branches (loop) > 1)
1584 if (dump_file)
1585 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1586 return;
1589 /* Check whether the loop rolls. */
1590 if ((get_estimated_loop_iterations (loop, &iterations)
1591 || get_max_loop_iterations (loop, &iterations))
1592 && wi::ltu_p (iterations, 2 * nunroll))
1594 if (dump_file)
1595 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1596 return;
1599 /* Success. Now force nunroll to be power of 2, as it seems that this
1600 improves results (partially because of better alignments, partially
1601 because of some dark magic). */
1602 for (i = 1; 2 * i <= nunroll; i *= 2)
1603 continue;
1605 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1606 loop->lpt_decision.times = i - 1;
1609 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1611 while (cond)
1612 body;
1614 ==> (LOOP->LPT_DECISION.TIMES == 3)
1616 while (cond)
1618 body;
1619 if (!cond) break;
1620 body;
1621 if (!cond) break;
1622 body;
1623 if (!cond) break;
1624 body;
1627 static void
1628 unroll_loop_stupid (struct loop *loop)
1630 sbitmap wont_exit;
1631 unsigned nunroll = loop->lpt_decision.times;
1632 struct niter_desc *desc = get_simple_loop_desc (loop);
1633 struct opt_info *opt_info = NULL;
1634 bool ok;
1636 if (flag_split_ivs_in_unroller
1637 || flag_variable_expansion_in_unroller)
1638 opt_info = analyze_insns_in_loop (loop);
1641 wont_exit = sbitmap_alloc (nunroll + 1);
1642 bitmap_clear (wont_exit);
1643 opt_info_start_duplication (opt_info);
1645 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1646 nunroll, wont_exit,
1647 NULL, NULL,
1648 DLTHE_FLAG_UPDATE_FREQ
1649 | (opt_info
1650 ? DLTHE_RECORD_COPY_NUMBER
1651 : 0));
1652 gcc_assert (ok);
1654 if (opt_info)
1656 apply_opt_in_copies (opt_info, nunroll, true, true);
1657 free_opt_info (opt_info);
1660 free (wont_exit);
1662 if (desc->simple_p)
1664 /* We indeed may get here provided that there are nontrivial assumptions
1665 for a loop to be really simple. We could update the counts, but the
1666 problem is that we are unable to decide which exit will be taken
1667 (not really true in case the number of iterations is constant,
1668 but no one will do anything with this information, so we do not
1669 worry about it). */
1670 desc->simple_p = false;
1673 if (dump_file)
1674 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1675 nunroll, num_loop_insns (loop));
1678 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1679 Set *DEBUG_USES to the number of debug insns that reference the
1680 variable. */
1682 bool
1683 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1684 int *debug_uses)
1686 basic_block *body, bb;
1687 unsigned i;
1688 int count_ref = 0;
1689 rtx_insn *insn;
1691 body = get_loop_body (loop);
1692 for (i = 0; i < loop->num_nodes; i++)
1694 bb = body[i];
1696 FOR_BB_INSNS (bb, insn)
1697 if (!rtx_referenced_p (reg, insn))
1698 continue;
1699 else if (DEBUG_INSN_P (insn))
1700 ++*debug_uses;
1701 else if (++count_ref > 1)
1702 break;
1704 free (body);
1705 return (count_ref == 1);
1708 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1710 static void
1711 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1713 basic_block *body, bb;
1714 unsigned i;
1715 rtx_insn *insn;
1717 body = get_loop_body (loop);
1718 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1720 bb = body[i];
1722 FOR_BB_INSNS (bb, insn)
1723 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1724 continue;
1725 else
1727 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1728 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1729 if (!--debug_uses)
1730 break;
1733 free (body);
1736 /* Determine whether INSN contains an accumulator
1737 which can be expanded into separate copies,
1738 one for each copy of the LOOP body.
1740 for (i = 0 ; i < n; i++)
1741 sum += a[i];
1745 sum += a[i]
1746 ....
1747 i = i+1;
1748 sum1 += a[i]
1749 ....
1750 i = i+1
1751 sum2 += a[i];
1752 ....
1754 Return NULL if INSN contains no opportunity for expansion of accumulator.
1755 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1756 information and return a pointer to it.
1759 static struct var_to_expand *
1760 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1762 rtx set, dest, src;
1763 struct var_to_expand *ves;
1764 unsigned accum_pos;
1765 enum rtx_code code;
1766 int debug_uses = 0;
1768 set = single_set (insn);
1769 if (!set)
1770 return NULL;
1772 dest = SET_DEST (set);
1773 src = SET_SRC (set);
1774 code = GET_CODE (src);
1776 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1777 return NULL;
1779 if (FLOAT_MODE_P (GET_MODE (dest)))
1781 if (!flag_associative_math)
1782 return NULL;
1783 /* In the case of FMA, we're also changing the rounding. */
1784 if (code == FMA && !flag_unsafe_math_optimizations)
1785 return NULL;
1788 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1789 in MD. But if there is no optab to generate the insn, we can not
1790 perform the variable expansion. This can happen if an MD provides
1791 an insn but not a named pattern to generate it, for example to avoid
1792 producing code that needs additional mode switches like for x87/mmx.
1794 So we check have_insn_for which looks for an optab for the operation
1795 in SRC. If it doesn't exist, we can't perform the expansion even
1796 though INSN is valid. */
1797 if (!have_insn_for (code, GET_MODE (src)))
1798 return NULL;
1800 if (!REG_P (dest)
1801 && !(GET_CODE (dest) == SUBREG
1802 && REG_P (SUBREG_REG (dest))))
1803 return NULL;
1805 /* Find the accumulator use within the operation. */
1806 if (code == FMA)
1808 /* We only support accumulation via FMA in the ADD position. */
1809 if (!rtx_equal_p (dest, XEXP (src, 2)))
1810 return NULL;
1811 accum_pos = 2;
1813 else if (rtx_equal_p (dest, XEXP (src, 0)))
1814 accum_pos = 0;
1815 else if (rtx_equal_p (dest, XEXP (src, 1)))
1817 /* The method of expansion that we are using; which includes the
1818 initialization of the expansions with zero and the summation of
1819 the expansions at the end of the computation will yield wrong
1820 results for (x = something - x) thus avoid using it in that case. */
1821 if (code == MINUS)
1822 return NULL;
1823 accum_pos = 1;
1825 else
1826 return NULL;
1828 /* It must not otherwise be used. */
1829 if (code == FMA)
1831 if (rtx_referenced_p (dest, XEXP (src, 0))
1832 || rtx_referenced_p (dest, XEXP (src, 1)))
1833 return NULL;
1835 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1836 return NULL;
1838 /* It must be used in exactly one insn. */
1839 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1840 return NULL;
1842 if (dump_file)
1844 fprintf (dump_file, "\n;; Expanding Accumulator ");
1845 print_rtl (dump_file, dest);
1846 fprintf (dump_file, "\n");
1849 if (debug_uses)
1850 /* Instead of resetting the debug insns, we could replace each
1851 debug use in the loop with the sum or product of all expanded
1852 accummulators. Since we'll only know of all expansions at the
1853 end, we'd have to keep track of which vars_to_expand a debug
1854 insn in the loop references, take note of each copy of the
1855 debug insn during unrolling, and when it's all done, compute
1856 the sum or product of each variable and adjust the original
1857 debug insn and each copy thereof. What a pain! */
1858 reset_debug_uses_in_loop (loop, dest, debug_uses);
1860 /* Record the accumulator to expand. */
1861 ves = XNEW (struct var_to_expand);
1862 ves->insn = insn;
1863 ves->reg = copy_rtx (dest);
1864 ves->var_expansions.create (1);
1865 ves->next = NULL;
1866 ves->op = GET_CODE (src);
1867 ves->expansion_count = 0;
1868 ves->reuse_expansion = 0;
1869 return ves;
1872 /* Determine whether there is an induction variable in INSN that
1873 we would like to split during unrolling.
1875 I.e. replace
1877 i = i + 1;
1879 i = i + 1;
1881 i = i + 1;
1884 type chains by
1886 i0 = i + 1
1888 i = i0 + 1
1890 i = i0 + 2
1893 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1894 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1895 pointer to it. */
1897 static struct iv_to_split *
1898 analyze_iv_to_split_insn (rtx_insn *insn)
1900 rtx set, dest;
1901 struct rtx_iv iv;
1902 struct iv_to_split *ivts;
1903 bool ok;
1905 /* For now we just split the basic induction variables. Later this may be
1906 extended for example by selecting also addresses of memory references. */
1907 set = single_set (insn);
1908 if (!set)
1909 return NULL;
1911 dest = SET_DEST (set);
1912 if (!REG_P (dest))
1913 return NULL;
1915 if (!biv_p (insn, dest))
1916 return NULL;
1918 ok = iv_analyze_result (insn, dest, &iv);
1920 /* This used to be an assert under the assumption that if biv_p returns
1921 true that iv_analyze_result must also return true. However, that
1922 assumption is not strictly correct as evidenced by pr25569.
1924 Returning NULL when iv_analyze_result returns false is safe and
1925 avoids the problems in pr25569 until the iv_analyze_* routines
1926 can be fixed, which is apparently hard and time consuming
1927 according to their author. */
1928 if (! ok)
1929 return NULL;
1931 if (iv.step == const0_rtx
1932 || iv.mode != iv.extend_mode)
1933 return NULL;
1935 /* Record the insn to split. */
1936 ivts = XNEW (struct iv_to_split);
1937 ivts->insn = insn;
1938 ivts->orig_var = dest;
1939 ivts->base_var = NULL_RTX;
1940 ivts->step = iv.step;
1941 ivts->next = NULL;
1943 return ivts;
1946 /* Determines which of insns in LOOP can be optimized.
1947 Return a OPT_INFO struct with the relevant hash tables filled
1948 with all insns to be optimized. The FIRST_NEW_BLOCK field
1949 is undefined for the return value. */
1951 static struct opt_info *
1952 analyze_insns_in_loop (struct loop *loop)
1954 basic_block *body, bb;
1955 unsigned i;
1956 struct opt_info *opt_info = XCNEW (struct opt_info);
1957 rtx_insn *insn;
1958 struct iv_to_split *ivts = NULL;
1959 struct var_to_expand *ves = NULL;
1960 iv_to_split **slot1;
1961 var_to_expand **slot2;
1962 vec<edge> edges = get_loop_exit_edges (loop);
1963 edge exit;
1964 bool can_apply = false;
1966 iv_analysis_loop_init (loop);
1968 body = get_loop_body (loop);
1970 if (flag_split_ivs_in_unroller)
1972 opt_info->insns_to_split
1973 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1974 opt_info->iv_to_split_head = NULL;
1975 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1978 /* Record the loop exit bb and loop preheader before the unrolling. */
1979 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1981 if (edges.length () == 1)
1983 exit = edges[0];
1984 if (!(exit->flags & EDGE_COMPLEX))
1986 opt_info->loop_exit = split_edge (exit);
1987 can_apply = true;
1991 if (flag_variable_expansion_in_unroller
1992 && can_apply)
1994 opt_info->insns_with_var_to_expand
1995 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1996 opt_info->var_to_expand_head = NULL;
1997 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
2000 for (i = 0; i < loop->num_nodes; i++)
2002 bb = body[i];
2003 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2004 continue;
2006 FOR_BB_INSNS (bb, insn)
2008 if (!INSN_P (insn))
2009 continue;
2011 if (opt_info->insns_to_split)
2012 ivts = analyze_iv_to_split_insn (insn);
2014 if (ivts)
2016 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
2017 gcc_assert (*slot1 == NULL);
2018 *slot1 = ivts;
2019 *opt_info->iv_to_split_tail = ivts;
2020 opt_info->iv_to_split_tail = &ivts->next;
2021 continue;
2024 if (opt_info->insns_with_var_to_expand)
2025 ves = analyze_insn_to_expand_var (loop, insn);
2027 if (ves)
2029 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
2030 gcc_assert (*slot2 == NULL);
2031 *slot2 = ves;
2032 *opt_info->var_to_expand_tail = ves;
2033 opt_info->var_to_expand_tail = &ves->next;
2038 edges.release ();
2039 free (body);
2040 return opt_info;
2043 /* Called just before loop duplication. Records start of duplicated area
2044 to OPT_INFO. */
2046 static void
2047 opt_info_start_duplication (struct opt_info *opt_info)
2049 if (opt_info)
2050 opt_info->first_new_block = last_basic_block_for_fn (cfun);
2053 /* Determine the number of iterations between initialization of the base
2054 variable and the current copy (N_COPY). N_COPIES is the total number
2055 of newly created copies. UNROLLING is true if we are unrolling
2056 (not peeling) the loop. */
2058 static unsigned
2059 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2061 if (unrolling)
2063 /* If we are unrolling, initialization is done in the original loop
2064 body (number 0). */
2065 return n_copy;
2067 else
2069 /* If we are peeling, the copy in that the initialization occurs has
2070 number 1. The original loop (number 0) is the last. */
2071 if (n_copy)
2072 return n_copy - 1;
2073 else
2074 return n_copies;
2078 /* Allocate basic variable for the induction variable chain. */
2080 static void
2081 allocate_basic_variable (struct iv_to_split *ivts)
2083 rtx expr = SET_SRC (single_set (ivts->insn));
2085 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2088 /* Insert initialization of basic variable of IVTS before INSN, taking
2089 the initial value from INSN. */
2091 static void
2092 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
2094 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
2095 rtx_insn *seq;
2097 start_sequence ();
2098 expr = force_operand (expr, ivts->base_var);
2099 if (expr != ivts->base_var)
2100 emit_move_insn (ivts->base_var, expr);
2101 seq = get_insns ();
2102 end_sequence ();
2104 emit_insn_before (seq, insn);
2107 /* Replace the use of induction variable described in IVTS in INSN
2108 by base variable + DELTA * step. */
2110 static void
2111 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
2113 rtx expr, *loc, incr, var;
2114 rtx_insn *seq;
2115 enum machine_mode mode = GET_MODE (ivts->base_var);
2116 rtx src, dest, set;
2118 /* Construct base + DELTA * step. */
2119 if (!delta)
2120 expr = ivts->base_var;
2121 else
2123 incr = simplify_gen_binary (MULT, mode,
2124 ivts->step, gen_int_mode (delta, mode));
2125 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2126 ivts->base_var, incr);
2129 /* Figure out where to do the replacement. */
2130 loc = &SET_SRC (single_set (insn));
2132 /* If we can make the replacement right away, we're done. */
2133 if (validate_change (insn, loc, expr, 0))
2134 return;
2136 /* Otherwise, force EXPR into a register and try again. */
2137 start_sequence ();
2138 var = gen_reg_rtx (mode);
2139 expr = force_operand (expr, var);
2140 if (expr != var)
2141 emit_move_insn (var, expr);
2142 seq = get_insns ();
2143 end_sequence ();
2144 emit_insn_before (seq, insn);
2146 if (validate_change (insn, loc, var, 0))
2147 return;
2149 /* The last chance. Try recreating the assignment in insn
2150 completely from scratch. */
2151 set = single_set (insn);
2152 gcc_assert (set);
2154 start_sequence ();
2155 *loc = var;
2156 src = copy_rtx (SET_SRC (set));
2157 dest = copy_rtx (SET_DEST (set));
2158 src = force_operand (src, dest);
2159 if (src != dest)
2160 emit_move_insn (dest, src);
2161 seq = get_insns ();
2162 end_sequence ();
2164 emit_insn_before (seq, insn);
2165 delete_insn (insn);
2169 /* Return one expansion of the accumulator recorded in struct VE. */
2171 static rtx
2172 get_expansion (struct var_to_expand *ve)
2174 rtx reg;
2176 if (ve->reuse_expansion == 0)
2177 reg = ve->reg;
2178 else
2179 reg = ve->var_expansions[ve->reuse_expansion - 1];
2181 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2182 ve->reuse_expansion = 0;
2183 else
2184 ve->reuse_expansion++;
2186 return reg;
2190 /* Given INSN replace the uses of the accumulator recorded in VE
2191 with a new register. */
2193 static void
2194 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
2196 rtx new_reg, set;
2197 bool really_new_expansion = false;
2199 set = single_set (insn);
2200 gcc_assert (set);
2202 /* Generate a new register only if the expansion limit has not been
2203 reached. Else reuse an already existing expansion. */
2204 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2206 really_new_expansion = true;
2207 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2209 else
2210 new_reg = get_expansion (ve);
2212 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2213 if (apply_change_group ())
2214 if (really_new_expansion)
2216 ve->var_expansions.safe_push (new_reg);
2217 ve->expansion_count++;
2221 /* Initialize the variable expansions in loop preheader. PLACE is the
2222 loop-preheader basic block where the initialization of the
2223 expansions should take place. The expansions are initialized with
2224 (-0) when the operation is plus or minus to honor sign zero. This
2225 way we can prevent cases where the sign of the final result is
2226 effected by the sign of the expansion. Here is an example to
2227 demonstrate this:
2229 for (i = 0 ; i < n; i++)
2230 sum += something;
2234 sum += something
2235 ....
2236 i = i+1;
2237 sum1 += something
2238 ....
2239 i = i+1
2240 sum2 += something;
2241 ....
2243 When SUM is initialized with -zero and SOMETHING is also -zero; the
2244 final result of sum should be -zero thus the expansions sum1 and sum2
2245 should be initialized with -zero as well (otherwise we will get +zero
2246 as the final result). */
2248 static void
2249 insert_var_expansion_initialization (struct var_to_expand *ve,
2250 basic_block place)
2252 rtx_insn *seq;
2253 rtx var, zero_init;
2254 unsigned i;
2255 enum machine_mode mode = GET_MODE (ve->reg);
2256 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2258 if (ve->var_expansions.length () == 0)
2259 return;
2261 start_sequence ();
2262 switch (ve->op)
2264 case FMA:
2265 /* Note that we only accumulate FMA via the ADD operand. */
2266 case PLUS:
2267 case MINUS:
2268 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2270 if (honor_signed_zero_p)
2271 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2272 else
2273 zero_init = CONST0_RTX (mode);
2274 emit_move_insn (var, zero_init);
2276 break;
2278 case MULT:
2279 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2281 zero_init = CONST1_RTX (GET_MODE (var));
2282 emit_move_insn (var, zero_init);
2284 break;
2286 default:
2287 gcc_unreachable ();
2290 seq = get_insns ();
2291 end_sequence ();
2293 emit_insn_after (seq, BB_END (place));
2296 /* Combine the variable expansions at the loop exit. PLACE is the
2297 loop exit basic block where the summation of the expansions should
2298 take place. */
2300 static void
2301 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2303 rtx sum = ve->reg;
2304 rtx expr, var;
2305 rtx_insn *seq, *insn;
2306 unsigned i;
2308 if (ve->var_expansions.length () == 0)
2309 return;
2311 start_sequence ();
2312 switch (ve->op)
2314 case FMA:
2315 /* Note that we only accumulate FMA via the ADD operand. */
2316 case PLUS:
2317 case MINUS:
2318 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2319 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2320 break;
2322 case MULT:
2323 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2324 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2325 break;
2327 default:
2328 gcc_unreachable ();
2331 expr = force_operand (sum, ve->reg);
2332 if (expr != ve->reg)
2333 emit_move_insn (ve->reg, expr);
2334 seq = get_insns ();
2335 end_sequence ();
2337 insn = BB_HEAD (place);
2338 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2339 insn = NEXT_INSN (insn);
2341 emit_insn_after (seq, insn);
2344 /* Strip away REG_EQUAL notes for IVs we're splitting.
2346 Updating REG_EQUAL notes for IVs we split is tricky: We
2347 cannot tell until after unrolling, DF-rescanning, and liveness
2348 updating, whether an EQ_USE is reached by the split IV while
2349 the IV reg is still live. See PR55006.
2351 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2352 because RTL loop-iv requires us to defer rescanning insns and
2353 any notes attached to them. So resort to old techniques... */
2355 static void
2356 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
2358 struct iv_to_split *ivts;
2359 rtx note = find_reg_equal_equiv_note (insn);
2360 if (! note)
2361 return;
2362 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2363 if (reg_mentioned_p (ivts->orig_var, note))
2365 remove_note (insn, note);
2366 return;
2370 /* Apply loop optimizations in loop copies using the
2371 data which gathered during the unrolling. Structure
2372 OPT_INFO record that data.
2374 UNROLLING is true if we unrolled (not peeled) the loop.
2375 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2376 the loop (as it should happen in complete unrolling, but not in ordinary
2377 peeling of the loop). */
2379 static void
2380 apply_opt_in_copies (struct opt_info *opt_info,
2381 unsigned n_copies, bool unrolling,
2382 bool rewrite_original_loop)
2384 unsigned i, delta;
2385 basic_block bb, orig_bb;
2386 rtx_insn *insn, *orig_insn, *next;
2387 struct iv_to_split ivts_templ, *ivts;
2388 struct var_to_expand ve_templ, *ves;
2390 /* Sanity check -- we need to put initialization in the original loop
2391 body. */
2392 gcc_assert (!unrolling || rewrite_original_loop);
2394 /* Allocate the basic variables (i0). */
2395 if (opt_info->insns_to_split)
2396 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2397 allocate_basic_variable (ivts);
2399 for (i = opt_info->first_new_block;
2400 i < (unsigned) last_basic_block_for_fn (cfun);
2401 i++)
2403 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2404 orig_bb = get_bb_original (bb);
2406 /* bb->aux holds position in copy sequence initialized by
2407 duplicate_loop_to_header_edge. */
2408 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2409 unrolling);
2410 bb->aux = 0;
2411 orig_insn = BB_HEAD (orig_bb);
2412 FOR_BB_INSNS_SAFE (bb, insn, next)
2414 if (!INSN_P (insn)
2415 || (DEBUG_INSN_P (insn)
2416 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2417 continue;
2419 while (!INSN_P (orig_insn)
2420 || (DEBUG_INSN_P (orig_insn)
2421 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2422 == LABEL_DECL)))
2423 orig_insn = NEXT_INSN (orig_insn);
2425 ivts_templ.insn = orig_insn;
2426 ve_templ.insn = orig_insn;
2428 /* Apply splitting iv optimization. */
2429 if (opt_info->insns_to_split)
2431 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2433 ivts = opt_info->insns_to_split->find (&ivts_templ);
2435 if (ivts)
2437 gcc_assert (GET_CODE (PATTERN (insn))
2438 == GET_CODE (PATTERN (orig_insn)));
2440 if (!delta)
2441 insert_base_initialization (ivts, insn);
2442 split_iv (ivts, insn, delta);
2445 /* Apply variable expansion optimization. */
2446 if (unrolling && opt_info->insns_with_var_to_expand)
2448 ves = (struct var_to_expand *)
2449 opt_info->insns_with_var_to_expand->find (&ve_templ);
2450 if (ves)
2452 gcc_assert (GET_CODE (PATTERN (insn))
2453 == GET_CODE (PATTERN (orig_insn)));
2454 expand_var_during_unrolling (ves, insn);
2457 orig_insn = NEXT_INSN (orig_insn);
2461 if (!rewrite_original_loop)
2462 return;
2464 /* Initialize the variable expansions in the loop preheader
2465 and take care of combining them at the loop exit. */
2466 if (opt_info->insns_with_var_to_expand)
2468 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2469 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2470 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2471 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2474 /* Rewrite also the original loop body. Find them as originals of the blocks
2475 in the last copied iteration, i.e. those that have
2476 get_bb_copy (get_bb_original (bb)) == bb. */
2477 for (i = opt_info->first_new_block;
2478 i < (unsigned) last_basic_block_for_fn (cfun);
2479 i++)
2481 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2482 orig_bb = get_bb_original (bb);
2483 if (get_bb_copy (orig_bb) != bb)
2484 continue;
2486 delta = determine_split_iv_delta (0, n_copies, unrolling);
2487 for (orig_insn = BB_HEAD (orig_bb);
2488 orig_insn != NEXT_INSN (BB_END (bb));
2489 orig_insn = next)
2491 next = NEXT_INSN (orig_insn);
2493 if (!INSN_P (orig_insn))
2494 continue;
2496 ivts_templ.insn = orig_insn;
2497 if (opt_info->insns_to_split)
2499 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2501 ivts = (struct iv_to_split *)
2502 opt_info->insns_to_split->find (&ivts_templ);
2503 if (ivts)
2505 if (!delta)
2506 insert_base_initialization (ivts, orig_insn);
2507 split_iv (ivts, orig_insn, delta);
2508 continue;
2516 /* Release OPT_INFO. */
2518 static void
2519 free_opt_info (struct opt_info *opt_info)
2521 delete opt_info->insns_to_split;
2522 opt_info->insns_to_split = NULL;
2523 if (opt_info->insns_with_var_to_expand)
2525 struct var_to_expand *ves;
2527 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2528 ves->var_expansions.release ();
2529 delete opt_info->insns_with_var_to_expand;
2530 opt_info->insns_with_var_to_expand = NULL;
2532 free (opt_info);