gcc/
[official-gcc.git] / gcc / final.c
blob15e58e5f760336df6def37eaa5a9954c130e7f0d
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83 #include "wide-int-print.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data
87 declarations for e.g. AIX 4.x. */
88 #endif
90 #include "dwarf2out.h"
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
96 #ifdef SDB_DEBUGGING_INFO
97 #include "sdbout.h"
98 #endif
100 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
101 So define a null default for it to save conditionalization later. */
102 #ifndef CC_STATUS_INIT
103 #define CC_STATUS_INIT
104 #endif
106 /* Is the given character a logical line separator for the assembler? */
107 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
108 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
109 #endif
111 #ifndef JUMP_TABLES_IN_TEXT_SECTION
112 #define JUMP_TABLES_IN_TEXT_SECTION 0
113 #endif
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_NOTE 1
117 #define SEEN_EMITTED 2
119 /* Last insn processed by final_scan_insn. */
120 static rtx_insn *debug_insn;
121 rtx_insn *current_output_insn;
123 /* Line number of last NOTE. */
124 static int last_linenum;
126 /* Last discriminator written to assembly. */
127 static int last_discriminator;
129 /* Discriminator of current block. */
130 static int discriminator;
132 /* Highest line number in current block. */
133 static int high_block_linenum;
135 /* Likewise for function. */
136 static int high_function_linenum;
138 /* Filename of last NOTE. */
139 static const char *last_filename;
141 /* Override filename and line number. */
142 static const char *override_filename;
143 static int override_linenum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 rtx this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 #ifdef HAVE_cc0
168 /* This variable contains machine-dependent flags (defined in tm.h)
169 set and examined by output routines
170 that describe how to interpret the condition codes properly. */
172 CC_STATUS cc_status;
174 /* During output of an insn, this contains a copy of cc_status
175 from before the insn. */
177 CC_STATUS cc_prev_status;
178 #endif
180 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182 static int block_depth;
184 /* Nonzero if have enabled APP processing of our assembler output. */
186 static int app_on;
188 /* If we are outputting an insn sequence, this contains the sequence rtx.
189 Zero otherwise. */
191 rtx final_sequence;
193 #ifdef ASSEMBLER_DIALECT
195 /* Number of the assembler dialect to use, starting at 0. */
196 static int dialect_number;
197 #endif
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
202 /* True if printing into -fdump-final-insns= dump. */
203 bool final_insns_dump_p;
205 /* True if profile_function should be called, but hasn't been called yet. */
206 static bool need_profile_function;
208 static int asm_insn_count (rtx);
209 static void profile_function (FILE *);
210 static void profile_after_prologue (FILE *);
211 static bool notice_source_line (rtx_insn *, bool *);
212 static rtx walk_alter_subreg (rtx *, bool *);
213 static void output_asm_name (void);
214 static void output_alternate_entry_point (FILE *, rtx_insn *);
215 static tree get_mem_expr_from_op (rtx, int *);
216 static void output_asm_operand_names (rtx *, int *, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx_insn *);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 static int align_fuzz (rtx, rtx, int, unsigned);
227 static void collect_fn_hard_reg_usage (void);
228 static tree get_call_fndecl (rtx_insn *);
230 /* Initialize data in final at the beginning of a compilation. */
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
235 app_on = 0;
236 final_sequence = 0;
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
243 /* Default target function prologue and epilogue assembler output.
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
253 void
254 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
255 tree decl ATTRIBUTE_UNUSED,
256 bool new_is_cold ATTRIBUTE_UNUSED)
260 /* Default target hook that outputs nothing to a stream. */
261 void
262 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 /* Enable APP processing of subsequent output.
267 Used before the output from an `asm' statement. */
269 void
270 app_enable (void)
272 if (! app_on)
274 fputs (ASM_APP_ON, asm_out_file);
275 app_on = 1;
279 /* Disable APP processing of subsequent output.
280 Called from varasm.c before most kinds of output. */
282 void
283 app_disable (void)
285 if (app_on)
287 fputs (ASM_APP_OFF, asm_out_file);
288 app_on = 0;
292 /* Return the number of slots filled in the current
293 delayed branch sequence (we don't count the insn needing the
294 delay slot). Zero if not in a delayed branch sequence. */
296 #ifdef DELAY_SLOTS
298 dbr_sequence_length (void)
300 if (final_sequence != 0)
301 return XVECLEN (final_sequence, 0) - 1;
302 else
303 return 0;
305 #endif
307 /* The next two pages contain routines used to compute the length of an insn
308 and to shorten branches. */
310 /* Arrays for insn lengths, and addresses. The latter is referenced by
311 `insn_current_length'. */
313 static int *insn_lengths;
315 vec<int> insn_addresses_;
317 /* Max uid for which the above arrays are valid. */
318 static int insn_lengths_max_uid;
320 /* Address of insn being processed. Used by `insn_current_length'. */
321 int insn_current_address;
323 /* Address of insn being processed in previous iteration. */
324 int insn_last_address;
326 /* known invariant alignment of insn being processed. */
327 int insn_current_align;
329 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
330 gives the next following alignment insn that increases the known
331 alignment, or NULL_RTX if there is no such insn.
332 For any alignment obtained this way, we can again index uid_align with
333 its uid to obtain the next following align that in turn increases the
334 alignment, till we reach NULL_RTX; the sequence obtained this way
335 for each insn we'll call the alignment chain of this insn in the following
336 comments. */
338 struct label_alignment
340 short alignment;
341 short max_skip;
344 static rtx *uid_align;
345 static int *uid_shuid;
346 static struct label_alignment *label_align;
348 /* Indicate that branch shortening hasn't yet been done. */
350 void
351 init_insn_lengths (void)
353 if (uid_shuid)
355 free (uid_shuid);
356 uid_shuid = 0;
358 if (insn_lengths)
360 free (insn_lengths);
361 insn_lengths = 0;
362 insn_lengths_max_uid = 0;
364 if (HAVE_ATTR_length)
365 INSN_ADDRESSES_FREE ();
366 if (uid_align)
368 free (uid_align);
369 uid_align = 0;
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
375 length. */
376 static int
377 get_attr_length_1 (rtx uncast_insn, int (*fallback_fn) (rtx))
379 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
380 rtx body;
381 int i;
382 int length = 0;
384 if (!HAVE_ATTR_length)
385 return 0;
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 case DEBUG_INSN:
396 return 0;
398 case CALL_INSN:
399 case JUMP_INSN:
400 length = fallback_fn (insn);
401 break;
403 case INSN:
404 body = PATTERN (insn);
405 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
406 return 0;
408 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
409 length = asm_insn_count (body) * fallback_fn (insn);
410 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
411 for (i = 0; i < seq->len (); i++)
412 length += get_attr_length_1 (seq->insn (i), fallback_fn);
413 else
414 length = fallback_fn (insn);
415 break;
417 default:
418 break;
421 #ifdef ADJUST_INSN_LENGTH
422 ADJUST_INSN_LENGTH (insn, length);
423 #endif
424 return length;
427 /* Obtain the current length of an insn. If branch shortening has been done,
428 get its actual length. Otherwise, get its maximum length. */
430 get_attr_length (rtx insn)
432 return get_attr_length_1 (insn, insn_default_length);
435 /* Obtain the current length of an insn. If branch shortening has been done,
436 get its actual length. Otherwise, get its minimum length. */
438 get_attr_min_length (rtx insn)
440 return get_attr_length_1 (insn, insn_min_length);
443 /* Code to handle alignment inside shorten_branches. */
445 /* Here is an explanation how the algorithm in align_fuzz can give
446 proper results:
448 Call a sequence of instructions beginning with alignment point X
449 and continuing until the next alignment point `block X'. When `X'
450 is used in an expression, it means the alignment value of the
451 alignment point.
453 Call the distance between the start of the first insn of block X, and
454 the end of the last insn of block X `IX', for the `inner size of X'.
455 This is clearly the sum of the instruction lengths.
457 Likewise with the next alignment-delimited block following X, which we
458 shall call block Y.
460 Call the distance between the start of the first insn of block X, and
461 the start of the first insn of block Y `OX', for the `outer size of X'.
463 The estimated padding is then OX - IX.
465 OX can be safely estimated as
467 if (X >= Y)
468 OX = round_up(IX, Y)
469 else
470 OX = round_up(IX, X) + Y - X
472 Clearly est(IX) >= real(IX), because that only depends on the
473 instruction lengths, and those being overestimated is a given.
475 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
476 we needn't worry about that when thinking about OX.
478 When X >= Y, the alignment provided by Y adds no uncertainty factor
479 for branch ranges starting before X, so we can just round what we have.
480 But when X < Y, we don't know anything about the, so to speak,
481 `middle bits', so we have to assume the worst when aligning up from an
482 address mod X to one mod Y, which is Y - X. */
484 #ifndef LABEL_ALIGN
485 #define LABEL_ALIGN(LABEL) align_labels_log
486 #endif
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
492 #ifndef LABEL_ALIGN_AFTER_BARRIER
493 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
494 #endif
496 #ifndef JUMP_ALIGN
497 #define JUMP_ALIGN(LABEL) align_jumps_log
498 #endif
501 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
503 return 0;
507 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
509 return align_loops_max_skip;
513 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
515 return align_labels_max_skip;
519 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
521 return align_jumps_max_skip;
524 #ifndef ADDR_VEC_ALIGN
525 static int
526 final_addr_vec_align (rtx addr_vec)
528 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
530 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
531 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
532 return exact_log2 (align);
536 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #endif
539 #ifndef INSN_LENGTH_ALIGNMENT
540 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #endif
543 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
545 static int min_labelno, max_labelno;
547 #define LABEL_TO_ALIGNMENT(LABEL) \
548 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
550 #define LABEL_TO_MAX_SKIP(LABEL) \
551 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
553 /* For the benefit of port specific code do this also as a function. */
556 label_to_alignment (rtx label)
558 if (CODE_LABEL_NUMBER (label) <= max_labelno)
559 return LABEL_TO_ALIGNMENT (label);
560 return 0;
564 label_to_max_skip (rtx label)
566 if (CODE_LABEL_NUMBER (label) <= max_labelno)
567 return LABEL_TO_MAX_SKIP (label);
568 return 0;
571 /* The differences in addresses
572 between a branch and its target might grow or shrink depending on
573 the alignment the start insn of the range (the branch for a forward
574 branch or the label for a backward branch) starts out on; if these
575 differences are used naively, they can even oscillate infinitely.
576 We therefore want to compute a 'worst case' address difference that
577 is independent of the alignment the start insn of the range end
578 up on, and that is at least as large as the actual difference.
579 The function align_fuzz calculates the amount we have to add to the
580 naively computed difference, by traversing the part of the alignment
581 chain of the start insn of the range that is in front of the end insn
582 of the range, and considering for each alignment the maximum amount
583 that it might contribute to a size increase.
585 For casesi tables, we also want to know worst case minimum amounts of
586 address difference, in case a machine description wants to introduce
587 some common offset that is added to all offsets in a table.
588 For this purpose, align_fuzz with a growth argument of 0 computes the
589 appropriate adjustment. */
591 /* Compute the maximum delta by which the difference of the addresses of
592 START and END might grow / shrink due to a different address for start
593 which changes the size of alignment insns between START and END.
594 KNOWN_ALIGN_LOG is the alignment known for START.
595 GROWTH should be ~0 if the objective is to compute potential code size
596 increase, and 0 if the objective is to compute potential shrink.
597 The return value is undefined for any other value of GROWTH. */
599 static int
600 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
602 int uid = INSN_UID (start);
603 rtx align_label;
604 int known_align = 1 << known_align_log;
605 int end_shuid = INSN_SHUID (end);
606 int fuzz = 0;
608 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
610 int align_addr, new_align;
612 uid = INSN_UID (align_label);
613 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
614 if (uid_shuid[uid] > end_shuid)
615 break;
616 known_align_log = LABEL_TO_ALIGNMENT (align_label);
617 new_align = 1 << known_align_log;
618 if (new_align < known_align)
619 continue;
620 fuzz += (-align_addr ^ growth) & (new_align - known_align);
621 known_align = new_align;
623 return fuzz;
626 /* Compute a worst-case reference address of a branch so that it
627 can be safely used in the presence of aligned labels. Since the
628 size of the branch itself is unknown, the size of the branch is
629 not included in the range. I.e. for a forward branch, the reference
630 address is the end address of the branch as known from the previous
631 branch shortening pass, minus a value to account for possible size
632 increase due to alignment. For a backward branch, it is the start
633 address of the branch as known from the current pass, plus a value
634 to account for possible size increase due to alignment.
635 NB.: Therefore, the maximum offset allowed for backward branches needs
636 to exclude the branch size. */
639 insn_current_reference_address (rtx branch)
641 rtx dest, seq;
642 int seq_uid;
644 if (! INSN_ADDRESSES_SET_P ())
645 return 0;
647 seq = NEXT_INSN (PREV_INSN (branch));
648 seq_uid = INSN_UID (seq);
649 if (!JUMP_P (branch))
650 /* This can happen for example on the PA; the objective is to know the
651 offset to address something in front of the start of the function.
652 Thus, we can treat it like a backward branch.
653 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
654 any alignment we'd encounter, so we skip the call to align_fuzz. */
655 return insn_current_address;
656 dest = JUMP_LABEL (branch);
658 /* BRANCH has no proper alignment chain set, so use SEQ.
659 BRANCH also has no INSN_SHUID. */
660 if (INSN_SHUID (seq) < INSN_SHUID (dest))
662 /* Forward branch. */
663 return (insn_last_address + insn_lengths[seq_uid]
664 - align_fuzz (seq, dest, length_unit_log, ~0));
666 else
668 /* Backward branch. */
669 return (insn_current_address
670 + align_fuzz (dest, seq, length_unit_log, ~0));
674 /* Compute branch alignments based on frequency information in the
675 CFG. */
677 unsigned int
678 compute_alignments (void)
680 int log, max_skip, max_log;
681 basic_block bb;
682 int freq_max = 0;
683 int freq_threshold = 0;
685 if (label_align)
687 free (label_align);
688 label_align = 0;
691 max_labelno = max_label_num ();
692 min_labelno = get_first_label_num ();
693 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
695 /* If not optimizing or optimizing for size, don't assign any alignments. */
696 if (! optimize || optimize_function_for_size_p (cfun))
697 return 0;
699 if (dump_file)
701 dump_reg_info (dump_file);
702 dump_flow_info (dump_file, TDF_DETAILS);
703 flow_loops_dump (dump_file, NULL, 1);
705 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
706 FOR_EACH_BB_FN (bb, cfun)
707 if (bb->frequency > freq_max)
708 freq_max = bb->frequency;
709 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
711 if (dump_file)
712 fprintf (dump_file, "freq_max: %i\n",freq_max);
713 FOR_EACH_BB_FN (bb, cfun)
715 rtx_insn *label = BB_HEAD (bb);
716 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
717 edge e;
718 edge_iterator ei;
720 if (!LABEL_P (label)
721 || optimize_bb_for_size_p (bb))
723 if (dump_file)
724 fprintf (dump_file,
725 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
726 bb->index, bb->frequency, bb->loop_father->num,
727 bb_loop_depth (bb));
728 continue;
730 max_log = LABEL_ALIGN (label);
731 max_skip = targetm.asm_out.label_align_max_skip (label);
733 FOR_EACH_EDGE (e, ei, bb->preds)
735 if (e->flags & EDGE_FALLTHRU)
736 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
737 else
738 branch_frequency += EDGE_FREQUENCY (e);
740 if (dump_file)
742 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
743 " %2i fall %4i branch %4i",
744 bb->index, bb->frequency, bb->loop_father->num,
745 bb_loop_depth (bb),
746 fallthru_frequency, branch_frequency);
747 if (!bb->loop_father->inner && bb->loop_father->num)
748 fprintf (dump_file, " inner_loop");
749 if (bb->loop_father->header == bb)
750 fprintf (dump_file, " loop_header");
751 fprintf (dump_file, "\n");
754 /* There are two purposes to align block with no fallthru incoming edge:
755 1) to avoid fetch stalls when branch destination is near cache boundary
756 2) to improve cache efficiency in case the previous block is not executed
757 (so it does not need to be in the cache).
759 We to catch first case, we align frequently executed blocks.
760 To catch the second, we align blocks that are executed more frequently
761 than the predecessor and the predecessor is likely to not be executed
762 when function is called. */
764 if (!has_fallthru
765 && (branch_frequency > freq_threshold
766 || (bb->frequency > bb->prev_bb->frequency * 10
767 && (bb->prev_bb->frequency
768 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
770 log = JUMP_ALIGN (label);
771 if (dump_file)
772 fprintf (dump_file, " jump alignment added.\n");
773 if (max_log < log)
775 max_log = log;
776 max_skip = targetm.asm_out.jump_align_max_skip (label);
779 /* In case block is frequent and reached mostly by non-fallthru edge,
780 align it. It is most likely a first block of loop. */
781 if (has_fallthru
782 && !(single_succ_p (bb)
783 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
784 && optimize_bb_for_speed_p (bb)
785 && branch_frequency + fallthru_frequency > freq_threshold
786 && (branch_frequency
787 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
789 log = LOOP_ALIGN (label);
790 if (dump_file)
791 fprintf (dump_file, " internal loop alignment added.\n");
792 if (max_log < log)
794 max_log = log;
795 max_skip = targetm.asm_out.loop_align_max_skip (label);
798 LABEL_TO_ALIGNMENT (label) = max_log;
799 LABEL_TO_MAX_SKIP (label) = max_skip;
802 loop_optimizer_finalize ();
803 free_dominance_info (CDI_DOMINATORS);
804 return 0;
807 /* Grow the LABEL_ALIGN array after new labels are created. */
809 static void
810 grow_label_align (void)
812 int old = max_labelno;
813 int n_labels;
814 int n_old_labels;
816 max_labelno = max_label_num ();
818 n_labels = max_labelno - min_labelno + 1;
819 n_old_labels = old - min_labelno + 1;
821 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
823 /* Range of labels grows monotonically in the function. Failing here
824 means that the initialization of array got lost. */
825 gcc_assert (n_old_labels <= n_labels);
827 memset (label_align + n_old_labels, 0,
828 (n_labels - n_old_labels) * sizeof (struct label_alignment));
831 /* Update the already computed alignment information. LABEL_PAIRS is a vector
832 made up of pairs of labels for which the alignment information of the first
833 element will be copied from that of the second element. */
835 void
836 update_alignments (vec<rtx> &label_pairs)
838 unsigned int i = 0;
839 rtx iter, label = NULL_RTX;
841 if (max_labelno != max_label_num ())
842 grow_label_align ();
844 FOR_EACH_VEC_ELT (label_pairs, i, iter)
845 if (i & 1)
847 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
848 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
850 else
851 label = iter;
854 namespace {
856 const pass_data pass_data_compute_alignments =
858 RTL_PASS, /* type */
859 "alignments", /* name */
860 OPTGROUP_NONE, /* optinfo_flags */
861 TV_NONE, /* tv_id */
862 0, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
869 class pass_compute_alignments : public rtl_opt_pass
871 public:
872 pass_compute_alignments (gcc::context *ctxt)
873 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
876 /* opt_pass methods: */
877 virtual unsigned int execute (function *) { return compute_alignments (); }
879 }; // class pass_compute_alignments
881 } // anon namespace
883 rtl_opt_pass *
884 make_pass_compute_alignments (gcc::context *ctxt)
886 return new pass_compute_alignments (ctxt);
890 /* Make a pass over all insns and compute their actual lengths by shortening
891 any branches of variable length if possible. */
893 /* shorten_branches might be called multiple times: for example, the SH
894 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
895 In order to do this, it needs proper length information, which it obtains
896 by calling shorten_branches. This cannot be collapsed with
897 shorten_branches itself into a single pass unless we also want to integrate
898 reorg.c, since the branch splitting exposes new instructions with delay
899 slots. */
901 void
902 shorten_branches (rtx_insn *first)
904 rtx_insn *insn;
905 int max_uid;
906 int i;
907 int max_log;
908 int max_skip;
909 #define MAX_CODE_ALIGN 16
910 rtx_insn *seq;
911 int something_changed = 1;
912 char *varying_length;
913 rtx body;
914 int uid;
915 rtx align_tab[MAX_CODE_ALIGN];
917 /* Compute maximum UID and allocate label_align / uid_shuid. */
918 max_uid = get_max_uid ();
920 /* Free uid_shuid before reallocating it. */
921 free (uid_shuid);
923 uid_shuid = XNEWVEC (int, max_uid);
925 if (max_labelno != max_label_num ())
926 grow_label_align ();
928 /* Initialize label_align and set up uid_shuid to be strictly
929 monotonically rising with insn order. */
930 /* We use max_log here to keep track of the maximum alignment we want to
931 impose on the next CODE_LABEL (or the current one if we are processing
932 the CODE_LABEL itself). */
934 max_log = 0;
935 max_skip = 0;
937 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
939 int log;
941 INSN_SHUID (insn) = i++;
942 if (INSN_P (insn))
943 continue;
945 if (LABEL_P (insn))
947 rtx_insn *next;
948 bool next_is_jumptable;
950 /* Merge in alignments computed by compute_alignments. */
951 log = LABEL_TO_ALIGNMENT (insn);
952 if (max_log < log)
954 max_log = log;
955 max_skip = LABEL_TO_MAX_SKIP (insn);
958 next = next_nonnote_insn (insn);
959 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
960 if (!next_is_jumptable)
962 log = LABEL_ALIGN (insn);
963 if (max_log < log)
965 max_log = log;
966 max_skip = targetm.asm_out.label_align_max_skip (insn);
969 /* ADDR_VECs only take room if read-only data goes into the text
970 section. */
971 if ((JUMP_TABLES_IN_TEXT_SECTION
972 || readonly_data_section == text_section)
973 && next_is_jumptable)
975 log = ADDR_VEC_ALIGN (next);
976 if (max_log < log)
978 max_log = log;
979 max_skip = targetm.asm_out.label_align_max_skip (insn);
982 LABEL_TO_ALIGNMENT (insn) = max_log;
983 LABEL_TO_MAX_SKIP (insn) = max_skip;
984 max_log = 0;
985 max_skip = 0;
987 else if (BARRIER_P (insn))
989 rtx_insn *label;
991 for (label = insn; label && ! INSN_P (label);
992 label = NEXT_INSN (label))
993 if (LABEL_P (label))
995 log = LABEL_ALIGN_AFTER_BARRIER (insn);
996 if (max_log < log)
998 max_log = log;
999 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1001 break;
1005 if (!HAVE_ATTR_length)
1006 return;
1008 /* Allocate the rest of the arrays. */
1009 insn_lengths = XNEWVEC (int, max_uid);
1010 insn_lengths_max_uid = max_uid;
1011 /* Syntax errors can lead to labels being outside of the main insn stream.
1012 Initialize insn_addresses, so that we get reproducible results. */
1013 INSN_ADDRESSES_ALLOC (max_uid);
1015 varying_length = XCNEWVEC (char, max_uid);
1017 /* Initialize uid_align. We scan instructions
1018 from end to start, and keep in align_tab[n] the last seen insn
1019 that does an alignment of at least n+1, i.e. the successor
1020 in the alignment chain for an insn that does / has a known
1021 alignment of n. */
1022 uid_align = XCNEWVEC (rtx, max_uid);
1024 for (i = MAX_CODE_ALIGN; --i >= 0;)
1025 align_tab[i] = NULL_RTX;
1026 seq = get_last_insn ();
1027 for (; seq; seq = PREV_INSN (seq))
1029 int uid = INSN_UID (seq);
1030 int log;
1031 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1032 uid_align[uid] = align_tab[0];
1033 if (log)
1035 /* Found an alignment label. */
1036 uid_align[uid] = align_tab[log];
1037 for (i = log - 1; i >= 0; i--)
1038 align_tab[i] = seq;
1042 /* When optimizing, we start assuming minimum length, and keep increasing
1043 lengths as we find the need for this, till nothing changes.
1044 When not optimizing, we start assuming maximum lengths, and
1045 do a single pass to update the lengths. */
1046 bool increasing = optimize != 0;
1048 #ifdef CASE_VECTOR_SHORTEN_MODE
1049 if (optimize)
1051 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1052 label fields. */
1054 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1055 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1056 int rel;
1058 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1060 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1061 int len, i, min, max, insn_shuid;
1062 int min_align;
1063 addr_diff_vec_flags flags;
1065 if (! JUMP_TABLE_DATA_P (insn)
1066 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1067 continue;
1068 pat = PATTERN (insn);
1069 len = XVECLEN (pat, 1);
1070 gcc_assert (len > 0);
1071 min_align = MAX_CODE_ALIGN;
1072 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1074 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1075 int shuid = INSN_SHUID (lab);
1076 if (shuid < min)
1078 min = shuid;
1079 min_lab = lab;
1081 if (shuid > max)
1083 max = shuid;
1084 max_lab = lab;
1086 if (min_align > LABEL_TO_ALIGNMENT (lab))
1087 min_align = LABEL_TO_ALIGNMENT (lab);
1089 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1090 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1091 insn_shuid = INSN_SHUID (insn);
1092 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1093 memset (&flags, 0, sizeof (flags));
1094 flags.min_align = min_align;
1095 flags.base_after_vec = rel > insn_shuid;
1096 flags.min_after_vec = min > insn_shuid;
1097 flags.max_after_vec = max > insn_shuid;
1098 flags.min_after_base = min > rel;
1099 flags.max_after_base = max > rel;
1100 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1102 if (increasing)
1103 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1106 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108 /* Compute initial lengths, addresses, and varying flags for each insn. */
1109 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1111 for (insn_current_address = 0, insn = first;
1112 insn != 0;
1113 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1115 uid = INSN_UID (insn);
1117 insn_lengths[uid] = 0;
1119 if (LABEL_P (insn))
1121 int log = LABEL_TO_ALIGNMENT (insn);
1122 if (log)
1124 int align = 1 << log;
1125 int new_address = (insn_current_address + align - 1) & -align;
1126 insn_lengths[uid] = new_address - insn_current_address;
1130 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1132 if (NOTE_P (insn) || BARRIER_P (insn)
1133 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1134 continue;
1135 if (INSN_DELETED_P (insn))
1136 continue;
1138 body = PATTERN (insn);
1139 if (JUMP_TABLE_DATA_P (insn))
1141 /* This only takes room if read-only data goes into the text
1142 section. */
1143 if (JUMP_TABLES_IN_TEXT_SECTION
1144 || readonly_data_section == text_section)
1145 insn_lengths[uid] = (XVECLEN (body,
1146 GET_CODE (body) == ADDR_DIFF_VEC)
1147 * GET_MODE_SIZE (GET_MODE (body)));
1148 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1151 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1152 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1154 int i;
1155 int const_delay_slots;
1156 #ifdef DELAY_SLOTS
1157 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1158 #else
1159 const_delay_slots = 0;
1160 #endif
1161 int (*inner_length_fun) (rtx)
1162 = const_delay_slots ? length_fun : insn_default_length;
1163 /* Inside a delay slot sequence, we do not do any branch shortening
1164 if the shortening could change the number of delay slots
1165 of the branch. */
1166 for (i = 0; i < body_seq->len (); i++)
1168 rtx_insn *inner_insn = body_seq->insn (i);
1169 int inner_uid = INSN_UID (inner_insn);
1170 int inner_length;
1172 if (GET_CODE (body) == ASM_INPUT
1173 || asm_noperands (PATTERN (inner_insn)) >= 0)
1174 inner_length = (asm_insn_count (PATTERN (inner_insn))
1175 * insn_default_length (inner_insn));
1176 else
1177 inner_length = inner_length_fun (inner_insn);
1179 insn_lengths[inner_uid] = inner_length;
1180 if (const_delay_slots)
1182 if ((varying_length[inner_uid]
1183 = insn_variable_length_p (inner_insn)) != 0)
1184 varying_length[uid] = 1;
1185 INSN_ADDRESSES (inner_uid) = (insn_current_address
1186 + insn_lengths[uid]);
1188 else
1189 varying_length[inner_uid] = 0;
1190 insn_lengths[uid] += inner_length;
1193 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1195 insn_lengths[uid] = length_fun (insn);
1196 varying_length[uid] = insn_variable_length_p (insn);
1199 /* If needed, do any adjustment. */
1200 #ifdef ADJUST_INSN_LENGTH
1201 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1202 if (insn_lengths[uid] < 0)
1203 fatal_insn ("negative insn length", insn);
1204 #endif
1207 /* Now loop over all the insns finding varying length insns. For each,
1208 get the current insn length. If it has changed, reflect the change.
1209 When nothing changes for a full pass, we are done. */
1211 while (something_changed)
1213 something_changed = 0;
1214 insn_current_align = MAX_CODE_ALIGN - 1;
1215 for (insn_current_address = 0, insn = first;
1216 insn != 0;
1217 insn = NEXT_INSN (insn))
1219 int new_length;
1220 #ifdef ADJUST_INSN_LENGTH
1221 int tmp_length;
1222 #endif
1223 int length_align;
1225 uid = INSN_UID (insn);
1227 if (LABEL_P (insn))
1229 int log = LABEL_TO_ALIGNMENT (insn);
1231 #ifdef CASE_VECTOR_SHORTEN_MODE
1232 /* If the mode of a following jump table was changed, we
1233 may need to update the alignment of this label. */
1234 rtx_insn *next;
1235 bool next_is_jumptable;
1237 next = next_nonnote_insn (insn);
1238 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1239 if ((JUMP_TABLES_IN_TEXT_SECTION
1240 || readonly_data_section == text_section)
1241 && next_is_jumptable)
1243 int newlog = ADDR_VEC_ALIGN (next);
1244 if (newlog != log)
1246 log = newlog;
1247 LABEL_TO_ALIGNMENT (insn) = log;
1248 something_changed = 1;
1251 #endif
1253 if (log > insn_current_align)
1255 int align = 1 << log;
1256 int new_address= (insn_current_address + align - 1) & -align;
1257 insn_lengths[uid] = new_address - insn_current_address;
1258 insn_current_align = log;
1259 insn_current_address = new_address;
1261 else
1262 insn_lengths[uid] = 0;
1263 INSN_ADDRESSES (uid) = insn_current_address;
1264 continue;
1267 length_align = INSN_LENGTH_ALIGNMENT (insn);
1268 if (length_align < insn_current_align)
1269 insn_current_align = length_align;
1271 insn_last_address = INSN_ADDRESSES (uid);
1272 INSN_ADDRESSES (uid) = insn_current_address;
1274 #ifdef CASE_VECTOR_SHORTEN_MODE
1275 if (optimize
1276 && JUMP_TABLE_DATA_P (insn)
1277 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1279 rtx body = PATTERN (insn);
1280 int old_length = insn_lengths[uid];
1281 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1282 rtx min_lab = XEXP (XEXP (body, 2), 0);
1283 rtx max_lab = XEXP (XEXP (body, 3), 0);
1284 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1285 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1286 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1287 rtx prev;
1288 int rel_align = 0;
1289 addr_diff_vec_flags flags;
1290 enum machine_mode vec_mode;
1292 /* Avoid automatic aggregate initialization. */
1293 flags = ADDR_DIFF_VEC_FLAGS (body);
1295 /* Try to find a known alignment for rel_lab. */
1296 for (prev = rel_lab;
1297 prev
1298 && ! insn_lengths[INSN_UID (prev)]
1299 && ! (varying_length[INSN_UID (prev)] & 1);
1300 prev = PREV_INSN (prev))
1301 if (varying_length[INSN_UID (prev)] & 2)
1303 rel_align = LABEL_TO_ALIGNMENT (prev);
1304 break;
1307 /* See the comment on addr_diff_vec_flags in rtl.h for the
1308 meaning of the flags values. base: REL_LAB vec: INSN */
1309 /* Anything after INSN has still addresses from the last
1310 pass; adjust these so that they reflect our current
1311 estimate for this pass. */
1312 if (flags.base_after_vec)
1313 rel_addr += insn_current_address - insn_last_address;
1314 if (flags.min_after_vec)
1315 min_addr += insn_current_address - insn_last_address;
1316 if (flags.max_after_vec)
1317 max_addr += insn_current_address - insn_last_address;
1318 /* We want to know the worst case, i.e. lowest possible value
1319 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1320 its offset is positive, and we have to be wary of code shrink;
1321 otherwise, it is negative, and we have to be vary of code
1322 size increase. */
1323 if (flags.min_after_base)
1325 /* If INSN is between REL_LAB and MIN_LAB, the size
1326 changes we are about to make can change the alignment
1327 within the observed offset, therefore we have to break
1328 it up into two parts that are independent. */
1329 if (! flags.base_after_vec && flags.min_after_vec)
1331 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1332 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1334 else
1335 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1337 else
1339 if (flags.base_after_vec && ! flags.min_after_vec)
1341 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1342 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1344 else
1345 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1347 /* Likewise, determine the highest lowest possible value
1348 for the offset of MAX_LAB. */
1349 if (flags.max_after_base)
1351 if (! flags.base_after_vec && flags.max_after_vec)
1353 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1354 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1356 else
1357 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1359 else
1361 if (flags.base_after_vec && ! flags.max_after_vec)
1363 max_addr += align_fuzz (max_lab, insn, 0, 0);
1364 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1366 else
1367 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1369 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1370 max_addr - rel_addr, body);
1371 if (!increasing
1372 || (GET_MODE_SIZE (vec_mode)
1373 >= GET_MODE_SIZE (GET_MODE (body))))
1374 PUT_MODE (body, vec_mode);
1375 if (JUMP_TABLES_IN_TEXT_SECTION
1376 || readonly_data_section == text_section)
1378 insn_lengths[uid]
1379 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1380 insn_current_address += insn_lengths[uid];
1381 if (insn_lengths[uid] != old_length)
1382 something_changed = 1;
1385 continue;
1387 #endif /* CASE_VECTOR_SHORTEN_MODE */
1389 if (! (varying_length[uid]))
1391 if (NONJUMP_INSN_P (insn)
1392 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1394 int i;
1396 body = PATTERN (insn);
1397 for (i = 0; i < XVECLEN (body, 0); i++)
1399 rtx inner_insn = XVECEXP (body, 0, i);
1400 int inner_uid = INSN_UID (inner_insn);
1402 INSN_ADDRESSES (inner_uid) = insn_current_address;
1404 insn_current_address += insn_lengths[inner_uid];
1407 else
1408 insn_current_address += insn_lengths[uid];
1410 continue;
1413 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1415 int i;
1417 body = PATTERN (insn);
1418 new_length = 0;
1419 for (i = 0; i < XVECLEN (body, 0); i++)
1421 rtx inner_insn = XVECEXP (body, 0, i);
1422 int inner_uid = INSN_UID (inner_insn);
1423 int inner_length;
1425 INSN_ADDRESSES (inner_uid) = insn_current_address;
1427 /* insn_current_length returns 0 for insns with a
1428 non-varying length. */
1429 if (! varying_length[inner_uid])
1430 inner_length = insn_lengths[inner_uid];
1431 else
1432 inner_length = insn_current_length (inner_insn);
1434 if (inner_length != insn_lengths[inner_uid])
1436 if (!increasing || inner_length > insn_lengths[inner_uid])
1438 insn_lengths[inner_uid] = inner_length;
1439 something_changed = 1;
1441 else
1442 inner_length = insn_lengths[inner_uid];
1444 insn_current_address += inner_length;
1445 new_length += inner_length;
1448 else
1450 new_length = insn_current_length (insn);
1451 insn_current_address += new_length;
1454 #ifdef ADJUST_INSN_LENGTH
1455 /* If needed, do any adjustment. */
1456 tmp_length = new_length;
1457 ADJUST_INSN_LENGTH (insn, new_length);
1458 insn_current_address += (new_length - tmp_length);
1459 #endif
1461 if (new_length != insn_lengths[uid]
1462 && (!increasing || new_length > insn_lengths[uid]))
1464 insn_lengths[uid] = new_length;
1465 something_changed = 1;
1467 else
1468 insn_current_address += insn_lengths[uid] - new_length;
1470 /* For a non-optimizing compile, do only a single pass. */
1471 if (!increasing)
1472 break;
1475 free (varying_length);
1478 /* Given the body of an INSN known to be generated by an ASM statement, return
1479 the number of machine instructions likely to be generated for this insn.
1480 This is used to compute its length. */
1482 static int
1483 asm_insn_count (rtx body)
1485 const char *templ;
1487 if (GET_CODE (body) == ASM_INPUT)
1488 templ = XSTR (body, 0);
1489 else
1490 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1492 return asm_str_count (templ);
1495 /* Return the number of machine instructions likely to be generated for the
1496 inline-asm template. */
1498 asm_str_count (const char *templ)
1500 int count = 1;
1502 if (!*templ)
1503 return 0;
1505 for (; *templ; templ++)
1506 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1507 || *templ == '\n')
1508 count++;
1510 return count;
1513 /* ??? This is probably the wrong place for these. */
1514 /* Structure recording the mapping from source file and directory
1515 names at compile time to those to be embedded in debug
1516 information. */
1517 typedef struct debug_prefix_map
1519 const char *old_prefix;
1520 const char *new_prefix;
1521 size_t old_len;
1522 size_t new_len;
1523 struct debug_prefix_map *next;
1524 } debug_prefix_map;
1526 /* Linked list of such structures. */
1527 static debug_prefix_map *debug_prefix_maps;
1530 /* Record a debug file prefix mapping. ARG is the argument to
1531 -fdebug-prefix-map and must be of the form OLD=NEW. */
1533 void
1534 add_debug_prefix_map (const char *arg)
1536 debug_prefix_map *map;
1537 const char *p;
1539 p = strchr (arg, '=');
1540 if (!p)
1542 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1543 return;
1545 map = XNEW (debug_prefix_map);
1546 map->old_prefix = xstrndup (arg, p - arg);
1547 map->old_len = p - arg;
1548 p++;
1549 map->new_prefix = xstrdup (p);
1550 map->new_len = strlen (p);
1551 map->next = debug_prefix_maps;
1552 debug_prefix_maps = map;
1555 /* Perform user-specified mapping of debug filename prefixes. Return
1556 the new name corresponding to FILENAME. */
1558 const char *
1559 remap_debug_filename (const char *filename)
1561 debug_prefix_map *map;
1562 char *s;
1563 const char *name;
1564 size_t name_len;
1566 for (map = debug_prefix_maps; map; map = map->next)
1567 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1568 break;
1569 if (!map)
1570 return filename;
1571 name = filename + map->old_len;
1572 name_len = strlen (name) + 1;
1573 s = (char *) alloca (name_len + map->new_len);
1574 memcpy (s, map->new_prefix, map->new_len);
1575 memcpy (s + map->new_len, name, name_len);
1576 return ggc_strdup (s);
1579 /* Return true if DWARF2 debug info can be emitted for DECL. */
1581 static bool
1582 dwarf2_debug_info_emitted_p (tree decl)
1584 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1585 return false;
1587 if (DECL_IGNORED_P (decl))
1588 return false;
1590 return true;
1593 /* Return scope resulting from combination of S1 and S2. */
1594 static tree
1595 choose_inner_scope (tree s1, tree s2)
1597 if (!s1)
1598 return s2;
1599 if (!s2)
1600 return s1;
1601 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1602 return s1;
1603 return s2;
1606 /* Emit lexical block notes needed to change scope from S1 to S2. */
1608 static void
1609 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1611 rtx_insn *insn = orig_insn;
1612 tree com = NULL_TREE;
1613 tree ts1 = s1, ts2 = s2;
1614 tree s;
1616 while (ts1 != ts2)
1618 gcc_assert (ts1 && ts2);
1619 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1620 ts1 = BLOCK_SUPERCONTEXT (ts1);
1621 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1622 ts2 = BLOCK_SUPERCONTEXT (ts2);
1623 else
1625 ts1 = BLOCK_SUPERCONTEXT (ts1);
1626 ts2 = BLOCK_SUPERCONTEXT (ts2);
1629 com = ts1;
1631 /* Close scopes. */
1632 s = s1;
1633 while (s != com)
1635 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1636 NOTE_BLOCK (note) = s;
1637 s = BLOCK_SUPERCONTEXT (s);
1640 /* Open scopes. */
1641 s = s2;
1642 while (s != com)
1644 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1645 NOTE_BLOCK (insn) = s;
1646 s = BLOCK_SUPERCONTEXT (s);
1650 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1651 on the scope tree and the newly reordered instructions. */
1653 static void
1654 reemit_insn_block_notes (void)
1656 tree cur_block = DECL_INITIAL (cfun->decl);
1657 rtx_insn *insn;
1658 rtx_note *note;
1660 insn = get_insns ();
1661 for (; insn; insn = NEXT_INSN (insn))
1663 tree this_block;
1665 /* Prevent lexical blocks from straddling section boundaries. */
1666 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1668 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1669 s = BLOCK_SUPERCONTEXT (s))
1671 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1672 NOTE_BLOCK (note) = s;
1673 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1674 NOTE_BLOCK (note) = s;
1678 if (!active_insn_p (insn))
1679 continue;
1681 /* Avoid putting scope notes between jump table and its label. */
1682 if (JUMP_TABLE_DATA_P (insn))
1683 continue;
1685 this_block = insn_scope (insn);
1686 /* For sequences compute scope resulting from merging all scopes
1687 of instructions nested inside. */
1688 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1690 int i;
1692 this_block = NULL;
1693 for (i = 0; i < body->len (); i++)
1694 this_block = choose_inner_scope (this_block,
1695 insn_scope (body->insn (i)));
1697 if (! this_block)
1699 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1700 continue;
1701 else
1702 this_block = DECL_INITIAL (cfun->decl);
1705 if (this_block != cur_block)
1707 change_scope (insn, cur_block, this_block);
1708 cur_block = this_block;
1712 /* change_scope emits before the insn, not after. */
1713 note = emit_note (NOTE_INSN_DELETED);
1714 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1715 delete_insn (note);
1717 reorder_blocks ();
1720 /* Output assembler code for the start of a function,
1721 and initialize some of the variables in this file
1722 for the new function. The label for the function and associated
1723 assembler pseudo-ops have already been output in `assemble_start_function'.
1725 FIRST is the first insn of the rtl for the function being compiled.
1726 FILE is the file to write assembler code to.
1727 OPTIMIZE_P is nonzero if we should eliminate redundant
1728 test and compare insns. */
1730 void
1731 final_start_function (rtx_insn *first, FILE *file,
1732 int optimize_p ATTRIBUTE_UNUSED)
1734 block_depth = 0;
1736 this_is_asm_operands = 0;
1738 need_profile_function = false;
1740 last_filename = LOCATION_FILE (prologue_location);
1741 last_linenum = LOCATION_LINE (prologue_location);
1742 last_discriminator = discriminator = 0;
1744 high_block_linenum = high_function_linenum = last_linenum;
1746 if (flag_sanitize & SANITIZE_ADDRESS)
1747 asan_function_start ();
1749 if (!DECL_IGNORED_P (current_function_decl))
1750 debug_hooks->begin_prologue (last_linenum, last_filename);
1752 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1753 dwarf2out_begin_prologue (0, NULL);
1755 #ifdef LEAF_REG_REMAP
1756 if (crtl->uses_only_leaf_regs)
1757 leaf_renumber_regs (first);
1758 #endif
1760 /* The Sun386i and perhaps other machines don't work right
1761 if the profiling code comes after the prologue. */
1762 if (targetm.profile_before_prologue () && crtl->profile)
1764 if (targetm.asm_out.function_prologue
1765 == default_function_pro_epilogue
1766 #ifdef HAVE_prologue
1767 && HAVE_prologue
1768 #endif
1771 rtx_insn *insn;
1772 for (insn = first; insn; insn = NEXT_INSN (insn))
1773 if (!NOTE_P (insn))
1775 insn = NULL;
1776 break;
1778 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1779 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1780 break;
1781 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1782 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1783 continue;
1784 else
1786 insn = NULL;
1787 break;
1790 if (insn)
1791 need_profile_function = true;
1792 else
1793 profile_function (file);
1795 else
1796 profile_function (file);
1799 /* If debugging, assign block numbers to all of the blocks in this
1800 function. */
1801 if (write_symbols)
1803 reemit_insn_block_notes ();
1804 number_blocks (current_function_decl);
1805 /* We never actually put out begin/end notes for the top-level
1806 block in the function. But, conceptually, that block is
1807 always needed. */
1808 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1811 if (warn_frame_larger_than
1812 && get_frame_size () > frame_larger_than_size)
1814 /* Issue a warning */
1815 warning (OPT_Wframe_larger_than_,
1816 "the frame size of %wd bytes is larger than %wd bytes",
1817 get_frame_size (), frame_larger_than_size);
1820 /* First output the function prologue: code to set up the stack frame. */
1821 targetm.asm_out.function_prologue (file, get_frame_size ());
1823 /* If the machine represents the prologue as RTL, the profiling code must
1824 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1825 #ifdef HAVE_prologue
1826 if (! HAVE_prologue)
1827 #endif
1828 profile_after_prologue (file);
1831 static void
1832 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1834 if (!targetm.profile_before_prologue () && crtl->profile)
1835 profile_function (file);
1838 static void
1839 profile_function (FILE *file ATTRIBUTE_UNUSED)
1841 #ifndef NO_PROFILE_COUNTERS
1842 # define NO_PROFILE_COUNTERS 0
1843 #endif
1844 #ifdef ASM_OUTPUT_REG_PUSH
1845 rtx sval = NULL, chain = NULL;
1847 if (cfun->returns_struct)
1848 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1849 true);
1850 if (cfun->static_chain_decl)
1851 chain = targetm.calls.static_chain (current_function_decl, true);
1852 #endif /* ASM_OUTPUT_REG_PUSH */
1854 if (! NO_PROFILE_COUNTERS)
1856 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1857 switch_to_section (data_section);
1858 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1859 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1860 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1863 switch_to_section (current_function_section ());
1865 #ifdef ASM_OUTPUT_REG_PUSH
1866 if (sval && REG_P (sval))
1867 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1868 if (chain && REG_P (chain))
1869 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1870 #endif
1872 FUNCTION_PROFILER (file, current_function_funcdef_no);
1874 #ifdef ASM_OUTPUT_REG_PUSH
1875 if (chain && REG_P (chain))
1876 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1877 if (sval && REG_P (sval))
1878 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1879 #endif
1882 /* Output assembler code for the end of a function.
1883 For clarity, args are same as those of `final_start_function'
1884 even though not all of them are needed. */
1886 void
1887 final_end_function (void)
1889 app_disable ();
1891 if (!DECL_IGNORED_P (current_function_decl))
1892 debug_hooks->end_function (high_function_linenum);
1894 /* Finally, output the function epilogue:
1895 code to restore the stack frame and return to the caller. */
1896 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1898 /* And debug output. */
1899 if (!DECL_IGNORED_P (current_function_decl))
1900 debug_hooks->end_epilogue (last_linenum, last_filename);
1902 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1903 && dwarf2out_do_frame ())
1904 dwarf2out_end_epilogue (last_linenum, last_filename);
1908 /* Dumper helper for basic block information. FILE is the assembly
1909 output file, and INSN is the instruction being emitted. */
1911 static void
1912 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1913 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1915 basic_block bb;
1917 if (!flag_debug_asm)
1918 return;
1920 if (INSN_UID (insn) < bb_map_size
1921 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1923 edge e;
1924 edge_iterator ei;
1926 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1927 if (bb->frequency)
1928 fprintf (file, " freq:%d", bb->frequency);
1929 if (bb->count)
1930 fprintf (file, " count:%"PRId64,
1931 bb->count);
1932 fprintf (file, " seq:%d", (*bb_seqn)++);
1933 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1934 FOR_EACH_EDGE (e, ei, bb->preds)
1936 dump_edge_info (file, e, TDF_DETAILS, 0);
1938 fprintf (file, "\n");
1940 if (INSN_UID (insn) < bb_map_size
1941 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1943 edge e;
1944 edge_iterator ei;
1946 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1947 FOR_EACH_EDGE (e, ei, bb->succs)
1949 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1951 fprintf (file, "\n");
1955 /* Output assembler code for some insns: all or part of a function.
1956 For description of args, see `final_start_function', above. */
1958 void
1959 final (rtx_insn *first, FILE *file, int optimize_p)
1961 rtx_insn *insn, *next;
1962 int seen = 0;
1964 /* Used for -dA dump. */
1965 basic_block *start_to_bb = NULL;
1966 basic_block *end_to_bb = NULL;
1967 int bb_map_size = 0;
1968 int bb_seqn = 0;
1970 last_ignored_compare = 0;
1972 #ifdef HAVE_cc0
1973 for (insn = first; insn; insn = NEXT_INSN (insn))
1975 /* If CC tracking across branches is enabled, record the insn which
1976 jumps to each branch only reached from one place. */
1977 if (optimize_p && JUMP_P (insn))
1979 rtx lab = JUMP_LABEL (insn);
1980 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1982 LABEL_REFS (lab) = insn;
1986 #endif
1988 init_recog ();
1990 CC_STATUS_INIT;
1992 if (flag_debug_asm)
1994 basic_block bb;
1996 bb_map_size = get_max_uid () + 1;
1997 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1998 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2000 /* There is no cfg for a thunk. */
2001 if (!cfun->is_thunk)
2002 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2004 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2005 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2009 /* Output the insns. */
2010 for (insn = first; insn;)
2012 if (HAVE_ATTR_length)
2014 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2016 /* This can be triggered by bugs elsewhere in the compiler if
2017 new insns are created after init_insn_lengths is called. */
2018 gcc_assert (NOTE_P (insn));
2019 insn_current_address = -1;
2021 else
2022 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2025 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2026 bb_map_size, &bb_seqn);
2027 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2030 if (flag_debug_asm)
2032 free (start_to_bb);
2033 free (end_to_bb);
2036 /* Remove CFI notes, to avoid compare-debug failures. */
2037 for (insn = first; insn; insn = next)
2039 next = NEXT_INSN (insn);
2040 if (NOTE_P (insn)
2041 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2042 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2043 delete_insn (insn);
2047 const char *
2048 get_insn_template (int code, rtx insn)
2050 switch (insn_data[code].output_format)
2052 case INSN_OUTPUT_FORMAT_SINGLE:
2053 return insn_data[code].output.single;
2054 case INSN_OUTPUT_FORMAT_MULTI:
2055 return insn_data[code].output.multi[which_alternative];
2056 case INSN_OUTPUT_FORMAT_FUNCTION:
2057 gcc_assert (insn);
2058 return (*insn_data[code].output.function) (recog_data.operand,
2059 as_a <rtx_insn *> (insn));
2061 default:
2062 gcc_unreachable ();
2066 /* Emit the appropriate declaration for an alternate-entry-point
2067 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2068 LABEL_KIND != LABEL_NORMAL.
2070 The case fall-through in this function is intentional. */
2071 static void
2072 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2074 const char *name = LABEL_NAME (insn);
2076 switch (LABEL_KIND (insn))
2078 case LABEL_WEAK_ENTRY:
2079 #ifdef ASM_WEAKEN_LABEL
2080 ASM_WEAKEN_LABEL (file, name);
2081 #endif
2082 case LABEL_GLOBAL_ENTRY:
2083 targetm.asm_out.globalize_label (file, name);
2084 case LABEL_STATIC_ENTRY:
2085 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2086 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2087 #endif
2088 ASM_OUTPUT_LABEL (file, name);
2089 break;
2091 case LABEL_NORMAL:
2092 default:
2093 gcc_unreachable ();
2097 /* Given a CALL_INSN, find and return the nested CALL. */
2098 static rtx
2099 call_from_call_insn (rtx_call_insn *insn)
2101 rtx x;
2102 gcc_assert (CALL_P (insn));
2103 x = PATTERN (insn);
2105 while (GET_CODE (x) != CALL)
2107 switch (GET_CODE (x))
2109 default:
2110 gcc_unreachable ();
2111 case COND_EXEC:
2112 x = COND_EXEC_CODE (x);
2113 break;
2114 case PARALLEL:
2115 x = XVECEXP (x, 0, 0);
2116 break;
2117 case SET:
2118 x = XEXP (x, 1);
2119 break;
2122 return x;
2125 /* The final scan for one insn, INSN.
2126 Args are same as in `final', except that INSN
2127 is the insn being scanned.
2128 Value returned is the next insn to be scanned.
2130 NOPEEPHOLES is the flag to disallow peephole processing (currently
2131 used for within delayed branch sequence output).
2133 SEEN is used to track the end of the prologue, for emitting
2134 debug information. We force the emission of a line note after
2135 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2137 rtx_insn *
2138 final_scan_insn (rtx uncast_insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2139 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2141 #ifdef HAVE_cc0
2142 rtx set;
2143 #endif
2144 rtx_insn *next;
2146 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
2148 insn_counter++;
2150 /* Ignore deleted insns. These can occur when we split insns (due to a
2151 template of "#") while not optimizing. */
2152 if (INSN_DELETED_P (insn))
2153 return NEXT_INSN (insn);
2155 switch (GET_CODE (insn))
2157 case NOTE:
2158 switch (NOTE_KIND (insn))
2160 case NOTE_INSN_DELETED:
2161 break;
2163 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2164 in_cold_section_p = !in_cold_section_p;
2166 if (dwarf2out_do_frame ())
2167 dwarf2out_switch_text_section ();
2168 else if (!DECL_IGNORED_P (current_function_decl))
2169 debug_hooks->switch_text_section ();
2171 switch_to_section (current_function_section ());
2172 targetm.asm_out.function_switched_text_sections (asm_out_file,
2173 current_function_decl,
2174 in_cold_section_p);
2175 /* Emit a label for the split cold section. Form label name by
2176 suffixing "cold" to the original function's name. */
2177 if (in_cold_section_p)
2179 tree cold_function_name
2180 = clone_function_name (current_function_decl, "cold");
2181 ASM_OUTPUT_LABEL (asm_out_file,
2182 IDENTIFIER_POINTER (cold_function_name));
2184 break;
2186 case NOTE_INSN_BASIC_BLOCK:
2187 if (need_profile_function)
2189 profile_function (asm_out_file);
2190 need_profile_function = false;
2193 if (targetm.asm_out.unwind_emit)
2194 targetm.asm_out.unwind_emit (asm_out_file, insn);
2196 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2198 break;
2200 case NOTE_INSN_EH_REGION_BEG:
2201 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2202 NOTE_EH_HANDLER (insn));
2203 break;
2205 case NOTE_INSN_EH_REGION_END:
2206 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2207 NOTE_EH_HANDLER (insn));
2208 break;
2210 case NOTE_INSN_PROLOGUE_END:
2211 targetm.asm_out.function_end_prologue (file);
2212 profile_after_prologue (file);
2214 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2216 *seen |= SEEN_EMITTED;
2217 force_source_line = true;
2219 else
2220 *seen |= SEEN_NOTE;
2222 break;
2224 case NOTE_INSN_EPILOGUE_BEG:
2225 if (!DECL_IGNORED_P (current_function_decl))
2226 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2227 targetm.asm_out.function_begin_epilogue (file);
2228 break;
2230 case NOTE_INSN_CFI:
2231 dwarf2out_emit_cfi (NOTE_CFI (insn));
2232 break;
2234 case NOTE_INSN_CFI_LABEL:
2235 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2236 NOTE_LABEL_NUMBER (insn));
2237 break;
2239 case NOTE_INSN_FUNCTION_BEG:
2240 if (need_profile_function)
2242 profile_function (asm_out_file);
2243 need_profile_function = false;
2246 app_disable ();
2247 if (!DECL_IGNORED_P (current_function_decl))
2248 debug_hooks->end_prologue (last_linenum, last_filename);
2250 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2252 *seen |= SEEN_EMITTED;
2253 force_source_line = true;
2255 else
2256 *seen |= SEEN_NOTE;
2258 break;
2260 case NOTE_INSN_BLOCK_BEG:
2261 if (debug_info_level == DINFO_LEVEL_NORMAL
2262 || debug_info_level == DINFO_LEVEL_VERBOSE
2263 || write_symbols == DWARF2_DEBUG
2264 || write_symbols == VMS_AND_DWARF2_DEBUG
2265 || write_symbols == VMS_DEBUG)
2267 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2269 app_disable ();
2270 ++block_depth;
2271 high_block_linenum = last_linenum;
2273 /* Output debugging info about the symbol-block beginning. */
2274 if (!DECL_IGNORED_P (current_function_decl))
2275 debug_hooks->begin_block (last_linenum, n);
2277 /* Mark this block as output. */
2278 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2280 if (write_symbols == DBX_DEBUG
2281 || write_symbols == SDB_DEBUG)
2283 location_t *locus_ptr
2284 = block_nonartificial_location (NOTE_BLOCK (insn));
2286 if (locus_ptr != NULL)
2288 override_filename = LOCATION_FILE (*locus_ptr);
2289 override_linenum = LOCATION_LINE (*locus_ptr);
2292 break;
2294 case NOTE_INSN_BLOCK_END:
2295 if (debug_info_level == DINFO_LEVEL_NORMAL
2296 || debug_info_level == DINFO_LEVEL_VERBOSE
2297 || write_symbols == DWARF2_DEBUG
2298 || write_symbols == VMS_AND_DWARF2_DEBUG
2299 || write_symbols == VMS_DEBUG)
2301 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2303 app_disable ();
2305 /* End of a symbol-block. */
2306 --block_depth;
2307 gcc_assert (block_depth >= 0);
2309 if (!DECL_IGNORED_P (current_function_decl))
2310 debug_hooks->end_block (high_block_linenum, n);
2312 if (write_symbols == DBX_DEBUG
2313 || write_symbols == SDB_DEBUG)
2315 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2316 location_t *locus_ptr
2317 = block_nonartificial_location (outer_block);
2319 if (locus_ptr != NULL)
2321 override_filename = LOCATION_FILE (*locus_ptr);
2322 override_linenum = LOCATION_LINE (*locus_ptr);
2324 else
2326 override_filename = NULL;
2327 override_linenum = 0;
2330 break;
2332 case NOTE_INSN_DELETED_LABEL:
2333 /* Emit the label. We may have deleted the CODE_LABEL because
2334 the label could be proved to be unreachable, though still
2335 referenced (in the form of having its address taken. */
2336 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2337 break;
2339 case NOTE_INSN_DELETED_DEBUG_LABEL:
2340 /* Similarly, but need to use different namespace for it. */
2341 if (CODE_LABEL_NUMBER (insn) != -1)
2342 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2343 break;
2345 case NOTE_INSN_VAR_LOCATION:
2346 case NOTE_INSN_CALL_ARG_LOCATION:
2347 if (!DECL_IGNORED_P (current_function_decl))
2348 debug_hooks->var_location (insn);
2349 break;
2351 default:
2352 gcc_unreachable ();
2353 break;
2355 break;
2357 case BARRIER:
2358 break;
2360 case CODE_LABEL:
2361 /* The target port might emit labels in the output function for
2362 some insn, e.g. sh.c output_branchy_insn. */
2363 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2365 int align = LABEL_TO_ALIGNMENT (insn);
2366 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2367 int max_skip = LABEL_TO_MAX_SKIP (insn);
2368 #endif
2370 if (align && NEXT_INSN (insn))
2372 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2373 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2374 #else
2375 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2376 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2377 #else
2378 ASM_OUTPUT_ALIGN (file, align);
2379 #endif
2380 #endif
2383 CC_STATUS_INIT;
2385 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2386 debug_hooks->label (as_a <rtx_code_label *> (insn));
2388 app_disable ();
2390 next = next_nonnote_insn (insn);
2391 /* If this label is followed by a jump-table, make sure we put
2392 the label in the read-only section. Also possibly write the
2393 label and jump table together. */
2394 if (next != 0 && JUMP_TABLE_DATA_P (next))
2396 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2397 /* In this case, the case vector is being moved by the
2398 target, so don't output the label at all. Leave that
2399 to the back end macros. */
2400 #else
2401 if (! JUMP_TABLES_IN_TEXT_SECTION)
2403 int log_align;
2405 switch_to_section (targetm.asm_out.function_rodata_section
2406 (current_function_decl));
2408 #ifdef ADDR_VEC_ALIGN
2409 log_align = ADDR_VEC_ALIGN (next);
2410 #else
2411 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2412 #endif
2413 ASM_OUTPUT_ALIGN (file, log_align);
2415 else
2416 switch_to_section (current_function_section ());
2418 #ifdef ASM_OUTPUT_CASE_LABEL
2419 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2420 next);
2421 #else
2422 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2423 #endif
2424 #endif
2425 break;
2427 if (LABEL_ALT_ENTRY_P (insn))
2428 output_alternate_entry_point (file, insn);
2429 else
2430 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2431 break;
2433 default:
2435 rtx body = PATTERN (insn);
2436 int insn_code_number;
2437 const char *templ;
2438 bool is_stmt;
2440 /* Reset this early so it is correct for ASM statements. */
2441 current_insn_predicate = NULL_RTX;
2443 /* An INSN, JUMP_INSN or CALL_INSN.
2444 First check for special kinds that recog doesn't recognize. */
2446 if (GET_CODE (body) == USE /* These are just declarations. */
2447 || GET_CODE (body) == CLOBBER)
2448 break;
2450 #ifdef HAVE_cc0
2452 /* If there is a REG_CC_SETTER note on this insn, it means that
2453 the setting of the condition code was done in the delay slot
2454 of the insn that branched here. So recover the cc status
2455 from the insn that set it. */
2457 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2458 if (note)
2460 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2461 cc_prev_status = cc_status;
2464 #endif
2466 /* Detect insns that are really jump-tables
2467 and output them as such. */
2469 if (JUMP_TABLE_DATA_P (insn))
2471 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2472 int vlen, idx;
2473 #endif
2475 if (! JUMP_TABLES_IN_TEXT_SECTION)
2476 switch_to_section (targetm.asm_out.function_rodata_section
2477 (current_function_decl));
2478 else
2479 switch_to_section (current_function_section ());
2481 app_disable ();
2483 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2484 if (GET_CODE (body) == ADDR_VEC)
2486 #ifdef ASM_OUTPUT_ADDR_VEC
2487 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2488 #else
2489 gcc_unreachable ();
2490 #endif
2492 else
2494 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2495 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2496 #else
2497 gcc_unreachable ();
2498 #endif
2500 #else
2501 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2502 for (idx = 0; idx < vlen; idx++)
2504 if (GET_CODE (body) == ADDR_VEC)
2506 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2507 ASM_OUTPUT_ADDR_VEC_ELT
2508 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2509 #else
2510 gcc_unreachable ();
2511 #endif
2513 else
2515 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2516 ASM_OUTPUT_ADDR_DIFF_ELT
2517 (file,
2518 body,
2519 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2520 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2521 #else
2522 gcc_unreachable ();
2523 #endif
2526 #ifdef ASM_OUTPUT_CASE_END
2527 ASM_OUTPUT_CASE_END (file,
2528 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2529 insn);
2530 #endif
2531 #endif
2533 switch_to_section (current_function_section ());
2535 break;
2537 /* Output this line note if it is the first or the last line
2538 note in a row. */
2539 if (!DECL_IGNORED_P (current_function_decl)
2540 && notice_source_line (insn, &is_stmt))
2541 (*debug_hooks->source_line) (last_linenum, last_filename,
2542 last_discriminator, is_stmt);
2544 if (GET_CODE (body) == ASM_INPUT)
2546 const char *string = XSTR (body, 0);
2548 /* There's no telling what that did to the condition codes. */
2549 CC_STATUS_INIT;
2551 if (string[0])
2553 expanded_location loc;
2555 app_enable ();
2556 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2557 if (*loc.file && loc.line)
2558 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2559 ASM_COMMENT_START, loc.line, loc.file);
2560 fprintf (asm_out_file, "\t%s\n", string);
2561 #if HAVE_AS_LINE_ZERO
2562 if (*loc.file && loc.line)
2563 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2564 #endif
2566 break;
2569 /* Detect `asm' construct with operands. */
2570 if (asm_noperands (body) >= 0)
2572 unsigned int noperands = asm_noperands (body);
2573 rtx *ops = XALLOCAVEC (rtx, noperands);
2574 const char *string;
2575 location_t loc;
2576 expanded_location expanded;
2578 /* There's no telling what that did to the condition codes. */
2579 CC_STATUS_INIT;
2581 /* Get out the operand values. */
2582 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2583 /* Inhibit dying on what would otherwise be compiler bugs. */
2584 insn_noperands = noperands;
2585 this_is_asm_operands = insn;
2586 expanded = expand_location (loc);
2588 #ifdef FINAL_PRESCAN_INSN
2589 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2590 #endif
2592 /* Output the insn using them. */
2593 if (string[0])
2595 app_enable ();
2596 if (expanded.file && expanded.line)
2597 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2598 ASM_COMMENT_START, expanded.line, expanded.file);
2599 output_asm_insn (string, ops);
2600 #if HAVE_AS_LINE_ZERO
2601 if (expanded.file && expanded.line)
2602 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2603 #endif
2606 if (targetm.asm_out.final_postscan_insn)
2607 targetm.asm_out.final_postscan_insn (file, insn, ops,
2608 insn_noperands);
2610 this_is_asm_operands = 0;
2611 break;
2614 app_disable ();
2616 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2618 /* A delayed-branch sequence */
2619 int i;
2621 final_sequence = body;
2623 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2624 force the restoration of a comparison that was previously
2625 thought unnecessary. If that happens, cancel this sequence
2626 and cause that insn to be restored. */
2628 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2629 if (next != seq->insn (1))
2631 final_sequence = 0;
2632 return next;
2635 for (i = 1; i < seq->len (); i++)
2637 rtx_insn *insn = seq->insn (i);
2638 rtx_insn *next = NEXT_INSN (insn);
2639 /* We loop in case any instruction in a delay slot gets
2640 split. */
2642 insn = final_scan_insn (insn, file, 0, 1, seen);
2643 while (insn != next);
2645 #ifdef DBR_OUTPUT_SEQEND
2646 DBR_OUTPUT_SEQEND (file);
2647 #endif
2648 final_sequence = 0;
2650 /* If the insn requiring the delay slot was a CALL_INSN, the
2651 insns in the delay slot are actually executed before the
2652 called function. Hence we don't preserve any CC-setting
2653 actions in these insns and the CC must be marked as being
2654 clobbered by the function. */
2655 if (CALL_P (seq->insn (0)))
2657 CC_STATUS_INIT;
2659 break;
2662 /* We have a real machine instruction as rtl. */
2664 body = PATTERN (insn);
2666 #ifdef HAVE_cc0
2667 set = single_set (insn);
2669 /* Check for redundant test and compare instructions
2670 (when the condition codes are already set up as desired).
2671 This is done only when optimizing; if not optimizing,
2672 it should be possible for the user to alter a variable
2673 with the debugger in between statements
2674 and the next statement should reexamine the variable
2675 to compute the condition codes. */
2677 if (optimize_p)
2679 if (set
2680 && GET_CODE (SET_DEST (set)) == CC0
2681 && insn != last_ignored_compare)
2683 rtx src1, src2;
2684 if (GET_CODE (SET_SRC (set)) == SUBREG)
2685 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2687 src1 = SET_SRC (set);
2688 src2 = NULL_RTX;
2689 if (GET_CODE (SET_SRC (set)) == COMPARE)
2691 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2692 XEXP (SET_SRC (set), 0)
2693 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2694 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2695 XEXP (SET_SRC (set), 1)
2696 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2697 if (XEXP (SET_SRC (set), 1)
2698 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2699 src2 = XEXP (SET_SRC (set), 0);
2701 if ((cc_status.value1 != 0
2702 && rtx_equal_p (src1, cc_status.value1))
2703 || (cc_status.value2 != 0
2704 && rtx_equal_p (src1, cc_status.value2))
2705 || (src2 != 0 && cc_status.value1 != 0
2706 && rtx_equal_p (src2, cc_status.value1))
2707 || (src2 != 0 && cc_status.value2 != 0
2708 && rtx_equal_p (src2, cc_status.value2)))
2710 /* Don't delete insn if it has an addressing side-effect. */
2711 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2712 /* or if anything in it is volatile. */
2713 && ! volatile_refs_p (PATTERN (insn)))
2715 /* We don't really delete the insn; just ignore it. */
2716 last_ignored_compare = insn;
2717 break;
2723 /* If this is a conditional branch, maybe modify it
2724 if the cc's are in a nonstandard state
2725 so that it accomplishes the same thing that it would
2726 do straightforwardly if the cc's were set up normally. */
2728 if (cc_status.flags != 0
2729 && JUMP_P (insn)
2730 && GET_CODE (body) == SET
2731 && SET_DEST (body) == pc_rtx
2732 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2733 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2734 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2736 /* This function may alter the contents of its argument
2737 and clear some of the cc_status.flags bits.
2738 It may also return 1 meaning condition now always true
2739 or -1 meaning condition now always false
2740 or 2 meaning condition nontrivial but altered. */
2741 int result = alter_cond (XEXP (SET_SRC (body), 0));
2742 /* If condition now has fixed value, replace the IF_THEN_ELSE
2743 with its then-operand or its else-operand. */
2744 if (result == 1)
2745 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2746 if (result == -1)
2747 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2749 /* The jump is now either unconditional or a no-op.
2750 If it has become a no-op, don't try to output it.
2751 (It would not be recognized.) */
2752 if (SET_SRC (body) == pc_rtx)
2754 delete_insn (insn);
2755 break;
2757 else if (ANY_RETURN_P (SET_SRC (body)))
2758 /* Replace (set (pc) (return)) with (return). */
2759 PATTERN (insn) = body = SET_SRC (body);
2761 /* Rerecognize the instruction if it has changed. */
2762 if (result != 0)
2763 INSN_CODE (insn) = -1;
2766 /* If this is a conditional trap, maybe modify it if the cc's
2767 are in a nonstandard state so that it accomplishes the same
2768 thing that it would do straightforwardly if the cc's were
2769 set up normally. */
2770 if (cc_status.flags != 0
2771 && NONJUMP_INSN_P (insn)
2772 && GET_CODE (body) == TRAP_IF
2773 && COMPARISON_P (TRAP_CONDITION (body))
2774 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2776 /* This function may alter the contents of its argument
2777 and clear some of the cc_status.flags bits.
2778 It may also return 1 meaning condition now always true
2779 or -1 meaning condition now always false
2780 or 2 meaning condition nontrivial but altered. */
2781 int result = alter_cond (TRAP_CONDITION (body));
2783 /* If TRAP_CONDITION has become always false, delete the
2784 instruction. */
2785 if (result == -1)
2787 delete_insn (insn);
2788 break;
2791 /* If TRAP_CONDITION has become always true, replace
2792 TRAP_CONDITION with const_true_rtx. */
2793 if (result == 1)
2794 TRAP_CONDITION (body) = const_true_rtx;
2796 /* Rerecognize the instruction if it has changed. */
2797 if (result != 0)
2798 INSN_CODE (insn) = -1;
2801 /* Make same adjustments to instructions that examine the
2802 condition codes without jumping and instructions that
2803 handle conditional moves (if this machine has either one). */
2805 if (cc_status.flags != 0
2806 && set != 0)
2808 rtx cond_rtx, then_rtx, else_rtx;
2810 if (!JUMP_P (insn)
2811 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2813 cond_rtx = XEXP (SET_SRC (set), 0);
2814 then_rtx = XEXP (SET_SRC (set), 1);
2815 else_rtx = XEXP (SET_SRC (set), 2);
2817 else
2819 cond_rtx = SET_SRC (set);
2820 then_rtx = const_true_rtx;
2821 else_rtx = const0_rtx;
2824 if (COMPARISON_P (cond_rtx)
2825 && XEXP (cond_rtx, 0) == cc0_rtx)
2827 int result;
2828 result = alter_cond (cond_rtx);
2829 if (result == 1)
2830 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2831 else if (result == -1)
2832 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2833 else if (result == 2)
2834 INSN_CODE (insn) = -1;
2835 if (SET_DEST (set) == SET_SRC (set))
2836 delete_insn (insn);
2840 #endif
2842 #ifdef HAVE_peephole
2843 /* Do machine-specific peephole optimizations if desired. */
2845 if (optimize_p && !flag_no_peephole && !nopeepholes)
2847 rtx_insn *next = peephole (insn);
2848 /* When peepholing, if there were notes within the peephole,
2849 emit them before the peephole. */
2850 if (next != 0 && next != NEXT_INSN (insn))
2852 rtx_insn *note, *prev = PREV_INSN (insn);
2854 for (note = NEXT_INSN (insn); note != next;
2855 note = NEXT_INSN (note))
2856 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2858 /* Put the notes in the proper position for a later
2859 rescan. For example, the SH target can do this
2860 when generating a far jump in a delayed branch
2861 sequence. */
2862 note = NEXT_INSN (insn);
2863 SET_PREV_INSN (note) = prev;
2864 SET_NEXT_INSN (prev) = note;
2865 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2866 SET_PREV_INSN (insn) = PREV_INSN (next);
2867 SET_NEXT_INSN (insn) = next;
2868 SET_PREV_INSN (next) = insn;
2871 /* PEEPHOLE might have changed this. */
2872 body = PATTERN (insn);
2874 #endif
2876 /* Try to recognize the instruction.
2877 If successful, verify that the operands satisfy the
2878 constraints for the instruction. Crash if they don't,
2879 since `reload' should have changed them so that they do. */
2881 insn_code_number = recog_memoized (insn);
2882 cleanup_subreg_operands (insn);
2884 /* Dump the insn in the assembly for debugging (-dAP).
2885 If the final dump is requested as slim RTL, dump slim
2886 RTL to the assembly file also. */
2887 if (flag_dump_rtl_in_asm)
2889 print_rtx_head = ASM_COMMENT_START;
2890 if (! (dump_flags & TDF_SLIM))
2891 print_rtl_single (asm_out_file, insn);
2892 else
2893 dump_insn_slim (asm_out_file, insn);
2894 print_rtx_head = "";
2897 if (! constrain_operands_cached (1))
2898 fatal_insn_not_found (insn);
2900 /* Some target machines need to prescan each insn before
2901 it is output. */
2903 #ifdef FINAL_PRESCAN_INSN
2904 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2905 #endif
2907 if (targetm.have_conditional_execution ()
2908 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2909 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2911 #ifdef HAVE_cc0
2912 cc_prev_status = cc_status;
2914 /* Update `cc_status' for this instruction.
2915 The instruction's output routine may change it further.
2916 If the output routine for a jump insn needs to depend
2917 on the cc status, it should look at cc_prev_status. */
2919 NOTICE_UPDATE_CC (body, insn);
2920 #endif
2922 current_output_insn = debug_insn = insn;
2924 /* Find the proper template for this insn. */
2925 templ = get_insn_template (insn_code_number, insn);
2927 /* If the C code returns 0, it means that it is a jump insn
2928 which follows a deleted test insn, and that test insn
2929 needs to be reinserted. */
2930 if (templ == 0)
2932 rtx_insn *prev;
2934 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2936 /* We have already processed the notes between the setter and
2937 the user. Make sure we don't process them again, this is
2938 particularly important if one of the notes is a block
2939 scope note or an EH note. */
2940 for (prev = insn;
2941 prev != last_ignored_compare;
2942 prev = PREV_INSN (prev))
2944 if (NOTE_P (prev))
2945 delete_insn (prev); /* Use delete_note. */
2948 return prev;
2951 /* If the template is the string "#", it means that this insn must
2952 be split. */
2953 if (templ[0] == '#' && templ[1] == '\0')
2955 rtx_insn *new_rtx = try_split (body, insn, 0);
2957 /* If we didn't split the insn, go away. */
2958 if (new_rtx == insn && PATTERN (new_rtx) == body)
2959 fatal_insn ("could not split insn", insn);
2961 /* If we have a length attribute, this instruction should have
2962 been split in shorten_branches, to ensure that we would have
2963 valid length info for the splitees. */
2964 gcc_assert (!HAVE_ATTR_length);
2966 return new_rtx;
2969 /* ??? This will put the directives in the wrong place if
2970 get_insn_template outputs assembly directly. However calling it
2971 before get_insn_template breaks if the insns is split. */
2972 if (targetm.asm_out.unwind_emit_before_insn
2973 && targetm.asm_out.unwind_emit)
2974 targetm.asm_out.unwind_emit (asm_out_file, insn);
2976 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
2978 rtx x = call_from_call_insn (call_insn);
2979 x = XEXP (x, 0);
2980 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2982 tree t;
2983 x = XEXP (x, 0);
2984 t = SYMBOL_REF_DECL (x);
2985 if (t)
2986 assemble_external (t);
2988 if (!DECL_IGNORED_P (current_function_decl))
2989 debug_hooks->var_location (insn);
2992 /* Output assembler code from the template. */
2993 output_asm_insn (templ, recog_data.operand);
2995 /* Some target machines need to postscan each insn after
2996 it is output. */
2997 if (targetm.asm_out.final_postscan_insn)
2998 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2999 recog_data.n_operands);
3001 if (!targetm.asm_out.unwind_emit_before_insn
3002 && targetm.asm_out.unwind_emit)
3003 targetm.asm_out.unwind_emit (asm_out_file, insn);
3005 current_output_insn = debug_insn = 0;
3008 return NEXT_INSN (insn);
3011 /* Return whether a source line note needs to be emitted before INSN.
3012 Sets IS_STMT to TRUE if the line should be marked as a possible
3013 breakpoint location. */
3015 static bool
3016 notice_source_line (rtx_insn *insn, bool *is_stmt)
3018 const char *filename;
3019 int linenum;
3021 if (override_filename)
3023 filename = override_filename;
3024 linenum = override_linenum;
3026 else if (INSN_HAS_LOCATION (insn))
3028 expanded_location xloc = insn_location (insn);
3029 filename = xloc.file;
3030 linenum = xloc.line;
3032 else
3034 filename = NULL;
3035 linenum = 0;
3038 if (filename == NULL)
3039 return false;
3041 if (force_source_line
3042 || filename != last_filename
3043 || last_linenum != linenum)
3045 force_source_line = false;
3046 last_filename = filename;
3047 last_linenum = linenum;
3048 last_discriminator = discriminator;
3049 *is_stmt = true;
3050 high_block_linenum = MAX (last_linenum, high_block_linenum);
3051 high_function_linenum = MAX (last_linenum, high_function_linenum);
3052 return true;
3055 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3057 /* If the discriminator changed, but the line number did not,
3058 output the line table entry with is_stmt false so the
3059 debugger does not treat this as a breakpoint location. */
3060 last_discriminator = discriminator;
3061 *is_stmt = false;
3062 return true;
3065 return false;
3068 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3069 directly to the desired hard register. */
3071 void
3072 cleanup_subreg_operands (rtx insn)
3074 int i;
3075 bool changed = false;
3076 extract_insn_cached (insn);
3077 for (i = 0; i < recog_data.n_operands; i++)
3079 /* The following test cannot use recog_data.operand when testing
3080 for a SUBREG: the underlying object might have been changed
3081 already if we are inside a match_operator expression that
3082 matches the else clause. Instead we test the underlying
3083 expression directly. */
3084 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3086 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3087 changed = true;
3089 else if (GET_CODE (recog_data.operand[i]) == PLUS
3090 || GET_CODE (recog_data.operand[i]) == MULT
3091 || MEM_P (recog_data.operand[i]))
3092 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3095 for (i = 0; i < recog_data.n_dups; i++)
3097 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3099 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3100 changed = true;
3102 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3103 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3104 || MEM_P (*recog_data.dup_loc[i]))
3105 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3107 if (changed)
3108 df_insn_rescan (as_a <rtx_insn *> (insn));
3111 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3112 the thing it is a subreg of. Do it anyway if FINAL_P. */
3115 alter_subreg (rtx *xp, bool final_p)
3117 rtx x = *xp;
3118 rtx y = SUBREG_REG (x);
3120 /* simplify_subreg does not remove subreg from volatile references.
3121 We are required to. */
3122 if (MEM_P (y))
3124 int offset = SUBREG_BYTE (x);
3126 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3127 contains 0 instead of the proper offset. See simplify_subreg. */
3128 if (offset == 0
3129 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3131 int difference = GET_MODE_SIZE (GET_MODE (y))
3132 - GET_MODE_SIZE (GET_MODE (x));
3133 if (WORDS_BIG_ENDIAN)
3134 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3135 if (BYTES_BIG_ENDIAN)
3136 offset += difference % UNITS_PER_WORD;
3139 if (final_p)
3140 *xp = adjust_address (y, GET_MODE (x), offset);
3141 else
3142 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3144 else
3146 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3147 SUBREG_BYTE (x));
3149 if (new_rtx != 0)
3150 *xp = new_rtx;
3151 else if (final_p && REG_P (y))
3153 /* Simplify_subreg can't handle some REG cases, but we have to. */
3154 unsigned int regno;
3155 HOST_WIDE_INT offset;
3157 regno = subreg_regno (x);
3158 if (subreg_lowpart_p (x))
3159 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3160 else
3161 offset = SUBREG_BYTE (x);
3162 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3166 return *xp;
3169 /* Do alter_subreg on all the SUBREGs contained in X. */
3171 static rtx
3172 walk_alter_subreg (rtx *xp, bool *changed)
3174 rtx x = *xp;
3175 switch (GET_CODE (x))
3177 case PLUS:
3178 case MULT:
3179 case AND:
3180 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3181 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3182 break;
3184 case MEM:
3185 case ZERO_EXTEND:
3186 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3187 break;
3189 case SUBREG:
3190 *changed = true;
3191 return alter_subreg (xp, true);
3193 default:
3194 break;
3197 return *xp;
3200 #ifdef HAVE_cc0
3202 /* Given BODY, the body of a jump instruction, alter the jump condition
3203 as required by the bits that are set in cc_status.flags.
3204 Not all of the bits there can be handled at this level in all cases.
3206 The value is normally 0.
3207 1 means that the condition has become always true.
3208 -1 means that the condition has become always false.
3209 2 means that COND has been altered. */
3211 static int
3212 alter_cond (rtx cond)
3214 int value = 0;
3216 if (cc_status.flags & CC_REVERSED)
3218 value = 2;
3219 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3222 if (cc_status.flags & CC_INVERTED)
3224 value = 2;
3225 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3228 if (cc_status.flags & CC_NOT_POSITIVE)
3229 switch (GET_CODE (cond))
3231 case LE:
3232 case LEU:
3233 case GEU:
3234 /* Jump becomes unconditional. */
3235 return 1;
3237 case GT:
3238 case GTU:
3239 case LTU:
3240 /* Jump becomes no-op. */
3241 return -1;
3243 case GE:
3244 PUT_CODE (cond, EQ);
3245 value = 2;
3246 break;
3248 case LT:
3249 PUT_CODE (cond, NE);
3250 value = 2;
3251 break;
3253 default:
3254 break;
3257 if (cc_status.flags & CC_NOT_NEGATIVE)
3258 switch (GET_CODE (cond))
3260 case GE:
3261 case GEU:
3262 /* Jump becomes unconditional. */
3263 return 1;
3265 case LT:
3266 case LTU:
3267 /* Jump becomes no-op. */
3268 return -1;
3270 case LE:
3271 case LEU:
3272 PUT_CODE (cond, EQ);
3273 value = 2;
3274 break;
3276 case GT:
3277 case GTU:
3278 PUT_CODE (cond, NE);
3279 value = 2;
3280 break;
3282 default:
3283 break;
3286 if (cc_status.flags & CC_NO_OVERFLOW)
3287 switch (GET_CODE (cond))
3289 case GEU:
3290 /* Jump becomes unconditional. */
3291 return 1;
3293 case LEU:
3294 PUT_CODE (cond, EQ);
3295 value = 2;
3296 break;
3298 case GTU:
3299 PUT_CODE (cond, NE);
3300 value = 2;
3301 break;
3303 case LTU:
3304 /* Jump becomes no-op. */
3305 return -1;
3307 default:
3308 break;
3311 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3312 switch (GET_CODE (cond))
3314 default:
3315 gcc_unreachable ();
3317 case NE:
3318 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3319 value = 2;
3320 break;
3322 case EQ:
3323 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3324 value = 2;
3325 break;
3328 if (cc_status.flags & CC_NOT_SIGNED)
3329 /* The flags are valid if signed condition operators are converted
3330 to unsigned. */
3331 switch (GET_CODE (cond))
3333 case LE:
3334 PUT_CODE (cond, LEU);
3335 value = 2;
3336 break;
3338 case LT:
3339 PUT_CODE (cond, LTU);
3340 value = 2;
3341 break;
3343 case GT:
3344 PUT_CODE (cond, GTU);
3345 value = 2;
3346 break;
3348 case GE:
3349 PUT_CODE (cond, GEU);
3350 value = 2;
3351 break;
3353 default:
3354 break;
3357 return value;
3359 #endif
3361 /* Report inconsistency between the assembler template and the operands.
3362 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3364 void
3365 output_operand_lossage (const char *cmsgid, ...)
3367 char *fmt_string;
3368 char *new_message;
3369 const char *pfx_str;
3370 va_list ap;
3372 va_start (ap, cmsgid);
3374 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3375 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3376 vasprintf (&new_message, fmt_string, ap);
3378 if (this_is_asm_operands)
3379 error_for_asm (this_is_asm_operands, "%s", new_message);
3380 else
3381 internal_error ("%s", new_message);
3383 free (fmt_string);
3384 free (new_message);
3385 va_end (ap);
3388 /* Output of assembler code from a template, and its subroutines. */
3390 /* Annotate the assembly with a comment describing the pattern and
3391 alternative used. */
3393 static void
3394 output_asm_name (void)
3396 if (debug_insn)
3398 int num = INSN_CODE (debug_insn);
3399 fprintf (asm_out_file, "\t%s %d\t%s",
3400 ASM_COMMENT_START, INSN_UID (debug_insn),
3401 insn_data[num].name);
3402 if (insn_data[num].n_alternatives > 1)
3403 fprintf (asm_out_file, "/%d", which_alternative + 1);
3405 if (HAVE_ATTR_length)
3406 fprintf (asm_out_file, "\t[length = %d]",
3407 get_attr_length (debug_insn));
3409 /* Clear this so only the first assembler insn
3410 of any rtl insn will get the special comment for -dp. */
3411 debug_insn = 0;
3415 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3416 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3417 corresponds to the address of the object and 0 if to the object. */
3419 static tree
3420 get_mem_expr_from_op (rtx op, int *paddressp)
3422 tree expr;
3423 int inner_addressp;
3425 *paddressp = 0;
3427 if (REG_P (op))
3428 return REG_EXPR (op);
3429 else if (!MEM_P (op))
3430 return 0;
3432 if (MEM_EXPR (op) != 0)
3433 return MEM_EXPR (op);
3435 /* Otherwise we have an address, so indicate it and look at the address. */
3436 *paddressp = 1;
3437 op = XEXP (op, 0);
3439 /* First check if we have a decl for the address, then look at the right side
3440 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3441 But don't allow the address to itself be indirect. */
3442 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3443 return expr;
3444 else if (GET_CODE (op) == PLUS
3445 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3446 return expr;
3448 while (UNARY_P (op)
3449 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3450 op = XEXP (op, 0);
3452 expr = get_mem_expr_from_op (op, &inner_addressp);
3453 return inner_addressp ? 0 : expr;
3456 /* Output operand names for assembler instructions. OPERANDS is the
3457 operand vector, OPORDER is the order to write the operands, and NOPS
3458 is the number of operands to write. */
3460 static void
3461 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3463 int wrote = 0;
3464 int i;
3466 for (i = 0; i < nops; i++)
3468 int addressp;
3469 rtx op = operands[oporder[i]];
3470 tree expr = get_mem_expr_from_op (op, &addressp);
3472 fprintf (asm_out_file, "%c%s",
3473 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3474 wrote = 1;
3475 if (expr)
3477 fprintf (asm_out_file, "%s",
3478 addressp ? "*" : "");
3479 print_mem_expr (asm_out_file, expr);
3480 wrote = 1;
3482 else if (REG_P (op) && ORIGINAL_REGNO (op)
3483 && ORIGINAL_REGNO (op) != REGNO (op))
3484 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3488 #ifdef ASSEMBLER_DIALECT
3489 /* Helper function to parse assembler dialects in the asm string.
3490 This is called from output_asm_insn and asm_fprintf. */
3491 static const char *
3492 do_assembler_dialects (const char *p, int *dialect)
3494 char c = *(p - 1);
3496 switch (c)
3498 case '{':
3500 int i;
3502 if (*dialect)
3503 output_operand_lossage ("nested assembly dialect alternatives");
3504 else
3505 *dialect = 1;
3507 /* If we want the first dialect, do nothing. Otherwise, skip
3508 DIALECT_NUMBER of strings ending with '|'. */
3509 for (i = 0; i < dialect_number; i++)
3511 while (*p && *p != '}')
3513 if (*p == '|')
3515 p++;
3516 break;
3519 /* Skip over any character after a percent sign. */
3520 if (*p == '%')
3521 p++;
3522 if (*p)
3523 p++;
3526 if (*p == '}')
3527 break;
3530 if (*p == '\0')
3531 output_operand_lossage ("unterminated assembly dialect alternative");
3533 break;
3535 case '|':
3536 if (*dialect)
3538 /* Skip to close brace. */
3541 if (*p == '\0')
3543 output_operand_lossage ("unterminated assembly dialect alternative");
3544 break;
3547 /* Skip over any character after a percent sign. */
3548 if (*p == '%' && p[1])
3550 p += 2;
3551 continue;
3554 if (*p++ == '}')
3555 break;
3557 while (1);
3559 *dialect = 0;
3561 else
3562 putc (c, asm_out_file);
3563 break;
3565 case '}':
3566 if (! *dialect)
3567 putc (c, asm_out_file);
3568 *dialect = 0;
3569 break;
3570 default:
3571 gcc_unreachable ();
3574 return p;
3576 #endif
3578 /* Output text from TEMPLATE to the assembler output file,
3579 obeying %-directions to substitute operands taken from
3580 the vector OPERANDS.
3582 %N (for N a digit) means print operand N in usual manner.
3583 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3584 and print the label name with no punctuation.
3585 %cN means require operand N to be a constant
3586 and print the constant expression with no punctuation.
3587 %aN means expect operand N to be a memory address
3588 (not a memory reference!) and print a reference
3589 to that address.
3590 %nN means expect operand N to be a constant
3591 and print a constant expression for minus the value
3592 of the operand, with no other punctuation. */
3594 void
3595 output_asm_insn (const char *templ, rtx *operands)
3597 const char *p;
3598 int c;
3599 #ifdef ASSEMBLER_DIALECT
3600 int dialect = 0;
3601 #endif
3602 int oporder[MAX_RECOG_OPERANDS];
3603 char opoutput[MAX_RECOG_OPERANDS];
3604 int ops = 0;
3606 /* An insn may return a null string template
3607 in a case where no assembler code is needed. */
3608 if (*templ == 0)
3609 return;
3611 memset (opoutput, 0, sizeof opoutput);
3612 p = templ;
3613 putc ('\t', asm_out_file);
3615 #ifdef ASM_OUTPUT_OPCODE
3616 ASM_OUTPUT_OPCODE (asm_out_file, p);
3617 #endif
3619 while ((c = *p++))
3620 switch (c)
3622 case '\n':
3623 if (flag_verbose_asm)
3624 output_asm_operand_names (operands, oporder, ops);
3625 if (flag_print_asm_name)
3626 output_asm_name ();
3628 ops = 0;
3629 memset (opoutput, 0, sizeof opoutput);
3631 putc (c, asm_out_file);
3632 #ifdef ASM_OUTPUT_OPCODE
3633 while ((c = *p) == '\t')
3635 putc (c, asm_out_file);
3636 p++;
3638 ASM_OUTPUT_OPCODE (asm_out_file, p);
3639 #endif
3640 break;
3642 #ifdef ASSEMBLER_DIALECT
3643 case '{':
3644 case '}':
3645 case '|':
3646 p = do_assembler_dialects (p, &dialect);
3647 break;
3648 #endif
3650 case '%':
3651 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3652 if ASSEMBLER_DIALECT defined and these characters have a special
3653 meaning as dialect delimiters.*/
3654 if (*p == '%'
3655 #ifdef ASSEMBLER_DIALECT
3656 || *p == '{' || *p == '}' || *p == '|'
3657 #endif
3660 putc (*p, asm_out_file);
3661 p++;
3663 /* %= outputs a number which is unique to each insn in the entire
3664 compilation. This is useful for making local labels that are
3665 referred to more than once in a given insn. */
3666 else if (*p == '=')
3668 p++;
3669 fprintf (asm_out_file, "%d", insn_counter);
3671 /* % followed by a letter and some digits
3672 outputs an operand in a special way depending on the letter.
3673 Letters `acln' are implemented directly.
3674 Other letters are passed to `output_operand' so that
3675 the TARGET_PRINT_OPERAND hook can define them. */
3676 else if (ISALPHA (*p))
3678 int letter = *p++;
3679 unsigned long opnum;
3680 char *endptr;
3682 opnum = strtoul (p, &endptr, 10);
3684 if (endptr == p)
3685 output_operand_lossage ("operand number missing "
3686 "after %%-letter");
3687 else if (this_is_asm_operands && opnum >= insn_noperands)
3688 output_operand_lossage ("operand number out of range");
3689 else if (letter == 'l')
3690 output_asm_label (operands[opnum]);
3691 else if (letter == 'a')
3692 output_address (operands[opnum]);
3693 else if (letter == 'c')
3695 if (CONSTANT_ADDRESS_P (operands[opnum]))
3696 output_addr_const (asm_out_file, operands[opnum]);
3697 else
3698 output_operand (operands[opnum], 'c');
3700 else if (letter == 'n')
3702 if (CONST_INT_P (operands[opnum]))
3703 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3704 - INTVAL (operands[opnum]));
3705 else
3707 putc ('-', asm_out_file);
3708 output_addr_const (asm_out_file, operands[opnum]);
3711 else
3712 output_operand (operands[opnum], letter);
3714 if (!opoutput[opnum])
3715 oporder[ops++] = opnum;
3716 opoutput[opnum] = 1;
3718 p = endptr;
3719 c = *p;
3721 /* % followed by a digit outputs an operand the default way. */
3722 else if (ISDIGIT (*p))
3724 unsigned long opnum;
3725 char *endptr;
3727 opnum = strtoul (p, &endptr, 10);
3728 if (this_is_asm_operands && opnum >= insn_noperands)
3729 output_operand_lossage ("operand number out of range");
3730 else
3731 output_operand (operands[opnum], 0);
3733 if (!opoutput[opnum])
3734 oporder[ops++] = opnum;
3735 opoutput[opnum] = 1;
3737 p = endptr;
3738 c = *p;
3740 /* % followed by punctuation: output something for that
3741 punctuation character alone, with no operand. The
3742 TARGET_PRINT_OPERAND hook decides what is actually done. */
3743 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3744 output_operand (NULL_RTX, *p++);
3745 else
3746 output_operand_lossage ("invalid %%-code");
3747 break;
3749 default:
3750 putc (c, asm_out_file);
3753 /* Write out the variable names for operands, if we know them. */
3754 if (flag_verbose_asm)
3755 output_asm_operand_names (operands, oporder, ops);
3756 if (flag_print_asm_name)
3757 output_asm_name ();
3759 putc ('\n', asm_out_file);
3762 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3764 void
3765 output_asm_label (rtx x)
3767 char buf[256];
3769 if (GET_CODE (x) == LABEL_REF)
3770 x = XEXP (x, 0);
3771 if (LABEL_P (x)
3772 || (NOTE_P (x)
3773 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3774 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3775 else
3776 output_operand_lossage ("'%%l' operand isn't a label");
3778 assemble_name (asm_out_file, buf);
3781 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3782 output_operand. Marks SYMBOL_REFs as referenced through use of
3783 assemble_external. */
3785 static int
3786 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3788 rtx x = *xp;
3790 /* If we have a used symbol, we may have to emit assembly
3791 annotations corresponding to whether the symbol is external, weak
3792 or has non-default visibility. */
3793 if (GET_CODE (x) == SYMBOL_REF)
3795 tree t;
3797 t = SYMBOL_REF_DECL (x);
3798 if (t)
3799 assemble_external (t);
3801 return -1;
3804 return 0;
3807 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3809 void
3810 mark_symbol_refs_as_used (rtx x)
3812 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3815 /* Print operand X using machine-dependent assembler syntax.
3816 CODE is a non-digit that preceded the operand-number in the % spec,
3817 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3818 between the % and the digits.
3819 When CODE is a non-letter, X is 0.
3821 The meanings of the letters are machine-dependent and controlled
3822 by TARGET_PRINT_OPERAND. */
3824 void
3825 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3827 if (x && GET_CODE (x) == SUBREG)
3828 x = alter_subreg (&x, true);
3830 /* X must not be a pseudo reg. */
3831 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3833 targetm.asm_out.print_operand (asm_out_file, x, code);
3835 if (x == NULL_RTX)
3836 return;
3838 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3841 /* Print a memory reference operand for address X using
3842 machine-dependent assembler syntax. */
3844 void
3845 output_address (rtx x)
3847 bool changed = false;
3848 walk_alter_subreg (&x, &changed);
3849 targetm.asm_out.print_operand_address (asm_out_file, x);
3852 /* Print an integer constant expression in assembler syntax.
3853 Addition and subtraction are the only arithmetic
3854 that may appear in these expressions. */
3856 void
3857 output_addr_const (FILE *file, rtx x)
3859 char buf[256];
3861 restart:
3862 switch (GET_CODE (x))
3864 case PC:
3865 putc ('.', file);
3866 break;
3868 case SYMBOL_REF:
3869 if (SYMBOL_REF_DECL (x))
3870 assemble_external (SYMBOL_REF_DECL (x));
3871 #ifdef ASM_OUTPUT_SYMBOL_REF
3872 ASM_OUTPUT_SYMBOL_REF (file, x);
3873 #else
3874 assemble_name (file, XSTR (x, 0));
3875 #endif
3876 break;
3878 case LABEL_REF:
3879 x = XEXP (x, 0);
3880 /* Fall through. */
3881 case CODE_LABEL:
3882 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3883 #ifdef ASM_OUTPUT_LABEL_REF
3884 ASM_OUTPUT_LABEL_REF (file, buf);
3885 #else
3886 assemble_name (file, buf);
3887 #endif
3888 break;
3890 case CONST_INT:
3891 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3892 break;
3894 case CONST:
3895 /* This used to output parentheses around the expression,
3896 but that does not work on the 386 (either ATT or BSD assembler). */
3897 output_addr_const (file, XEXP (x, 0));
3898 break;
3900 case CONST_WIDE_INT:
3901 /* We do not know the mode here so we have to use a round about
3902 way to build a wide-int to get it printed properly. */
3904 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3905 CONST_WIDE_INT_NUNITS (x),
3906 CONST_WIDE_INT_NUNITS (x)
3907 * HOST_BITS_PER_WIDE_INT,
3908 false);
3909 print_decs (w, file);
3911 break;
3913 case CONST_DOUBLE:
3914 if (CONST_DOUBLE_AS_INT_P (x))
3916 /* We can use %d if the number is one word and positive. */
3917 if (CONST_DOUBLE_HIGH (x))
3918 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3919 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3920 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3921 else if (CONST_DOUBLE_LOW (x) < 0)
3922 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3923 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3924 else
3925 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3927 else
3928 /* We can't handle floating point constants;
3929 PRINT_OPERAND must handle them. */
3930 output_operand_lossage ("floating constant misused");
3931 break;
3933 case CONST_FIXED:
3934 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3935 break;
3937 case PLUS:
3938 /* Some assemblers need integer constants to appear last (eg masm). */
3939 if (CONST_INT_P (XEXP (x, 0)))
3941 output_addr_const (file, XEXP (x, 1));
3942 if (INTVAL (XEXP (x, 0)) >= 0)
3943 fprintf (file, "+");
3944 output_addr_const (file, XEXP (x, 0));
3946 else
3948 output_addr_const (file, XEXP (x, 0));
3949 if (!CONST_INT_P (XEXP (x, 1))
3950 || INTVAL (XEXP (x, 1)) >= 0)
3951 fprintf (file, "+");
3952 output_addr_const (file, XEXP (x, 1));
3954 break;
3956 case MINUS:
3957 /* Avoid outputting things like x-x or x+5-x,
3958 since some assemblers can't handle that. */
3959 x = simplify_subtraction (x);
3960 if (GET_CODE (x) != MINUS)
3961 goto restart;
3963 output_addr_const (file, XEXP (x, 0));
3964 fprintf (file, "-");
3965 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3966 || GET_CODE (XEXP (x, 1)) == PC
3967 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3968 output_addr_const (file, XEXP (x, 1));
3969 else
3971 fputs (targetm.asm_out.open_paren, file);
3972 output_addr_const (file, XEXP (x, 1));
3973 fputs (targetm.asm_out.close_paren, file);
3975 break;
3977 case ZERO_EXTEND:
3978 case SIGN_EXTEND:
3979 case SUBREG:
3980 case TRUNCATE:
3981 output_addr_const (file, XEXP (x, 0));
3982 break;
3984 default:
3985 if (targetm.asm_out.output_addr_const_extra (file, x))
3986 break;
3988 output_operand_lossage ("invalid expression as operand");
3992 /* Output a quoted string. */
3994 void
3995 output_quoted_string (FILE *asm_file, const char *string)
3997 #ifdef OUTPUT_QUOTED_STRING
3998 OUTPUT_QUOTED_STRING (asm_file, string);
3999 #else
4000 char c;
4002 putc ('\"', asm_file);
4003 while ((c = *string++) != 0)
4005 if (ISPRINT (c))
4007 if (c == '\"' || c == '\\')
4008 putc ('\\', asm_file);
4009 putc (c, asm_file);
4011 else
4012 fprintf (asm_file, "\\%03o", (unsigned char) c);
4014 putc ('\"', asm_file);
4015 #endif
4018 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4020 void
4021 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4023 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4024 if (value == 0)
4025 putc ('0', f);
4026 else
4028 char *p = buf + sizeof (buf);
4030 *--p = "0123456789abcdef"[value % 16];
4031 while ((value /= 16) != 0);
4032 *--p = 'x';
4033 *--p = '0';
4034 fwrite (p, 1, buf + sizeof (buf) - p, f);
4038 /* Internal function that prints an unsigned long in decimal in reverse.
4039 The output string IS NOT null-terminated. */
4041 static int
4042 sprint_ul_rev (char *s, unsigned long value)
4044 int i = 0;
4047 s[i] = "0123456789"[value % 10];
4048 value /= 10;
4049 i++;
4050 /* alternate version, without modulo */
4051 /* oldval = value; */
4052 /* value /= 10; */
4053 /* s[i] = "0123456789" [oldval - 10*value]; */
4054 /* i++ */
4056 while (value != 0);
4057 return i;
4060 /* Write an unsigned long as decimal to a file, fast. */
4062 void
4063 fprint_ul (FILE *f, unsigned long value)
4065 /* python says: len(str(2**64)) == 20 */
4066 char s[20];
4067 int i;
4069 i = sprint_ul_rev (s, value);
4071 /* It's probably too small to bother with string reversal and fputs. */
4074 i--;
4075 putc (s[i], f);
4077 while (i != 0);
4080 /* Write an unsigned long as decimal to a string, fast.
4081 s must be wide enough to not overflow, at least 21 chars.
4082 Returns the length of the string (without terminating '\0'). */
4085 sprint_ul (char *s, unsigned long value)
4087 int len;
4088 char tmp_c;
4089 int i;
4090 int j;
4092 len = sprint_ul_rev (s, value);
4093 s[len] = '\0';
4095 /* Reverse the string. */
4096 i = 0;
4097 j = len - 1;
4098 while (i < j)
4100 tmp_c = s[i];
4101 s[i] = s[j];
4102 s[j] = tmp_c;
4103 i++; j--;
4106 return len;
4109 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4110 %R prints the value of REGISTER_PREFIX.
4111 %L prints the value of LOCAL_LABEL_PREFIX.
4112 %U prints the value of USER_LABEL_PREFIX.
4113 %I prints the value of IMMEDIATE_PREFIX.
4114 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4115 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4117 We handle alternate assembler dialects here, just like output_asm_insn. */
4119 void
4120 asm_fprintf (FILE *file, const char *p, ...)
4122 char buf[10];
4123 char *q, c;
4124 #ifdef ASSEMBLER_DIALECT
4125 int dialect = 0;
4126 #endif
4127 va_list argptr;
4129 va_start (argptr, p);
4131 buf[0] = '%';
4133 while ((c = *p++))
4134 switch (c)
4136 #ifdef ASSEMBLER_DIALECT
4137 case '{':
4138 case '}':
4139 case '|':
4140 p = do_assembler_dialects (p, &dialect);
4141 break;
4142 #endif
4144 case '%':
4145 c = *p++;
4146 q = &buf[1];
4147 while (strchr ("-+ #0", c))
4149 *q++ = c;
4150 c = *p++;
4152 while (ISDIGIT (c) || c == '.')
4154 *q++ = c;
4155 c = *p++;
4157 switch (c)
4159 case '%':
4160 putc ('%', file);
4161 break;
4163 case 'd': case 'i': case 'u':
4164 case 'x': case 'X': case 'o':
4165 case 'c':
4166 *q++ = c;
4167 *q = 0;
4168 fprintf (file, buf, va_arg (argptr, int));
4169 break;
4171 case 'w':
4172 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4173 'o' cases, but we do not check for those cases. It
4174 means that the value is a HOST_WIDE_INT, which may be
4175 either `long' or `long long'. */
4176 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4177 q += strlen (HOST_WIDE_INT_PRINT);
4178 *q++ = *p++;
4179 *q = 0;
4180 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4181 break;
4183 case 'l':
4184 *q++ = c;
4185 #ifdef HAVE_LONG_LONG
4186 if (*p == 'l')
4188 *q++ = *p++;
4189 *q++ = *p++;
4190 *q = 0;
4191 fprintf (file, buf, va_arg (argptr, long long));
4193 else
4194 #endif
4196 *q++ = *p++;
4197 *q = 0;
4198 fprintf (file, buf, va_arg (argptr, long));
4201 break;
4203 case 's':
4204 *q++ = c;
4205 *q = 0;
4206 fprintf (file, buf, va_arg (argptr, char *));
4207 break;
4209 case 'O':
4210 #ifdef ASM_OUTPUT_OPCODE
4211 ASM_OUTPUT_OPCODE (asm_out_file, p);
4212 #endif
4213 break;
4215 case 'R':
4216 #ifdef REGISTER_PREFIX
4217 fprintf (file, "%s", REGISTER_PREFIX);
4218 #endif
4219 break;
4221 case 'I':
4222 #ifdef IMMEDIATE_PREFIX
4223 fprintf (file, "%s", IMMEDIATE_PREFIX);
4224 #endif
4225 break;
4227 case 'L':
4228 #ifdef LOCAL_LABEL_PREFIX
4229 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4230 #endif
4231 break;
4233 case 'U':
4234 fputs (user_label_prefix, file);
4235 break;
4237 #ifdef ASM_FPRINTF_EXTENSIONS
4238 /* Uppercase letters are reserved for general use by asm_fprintf
4239 and so are not available to target specific code. In order to
4240 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4241 they are defined here. As they get turned into real extensions
4242 to asm_fprintf they should be removed from this list. */
4243 case 'A': case 'B': case 'C': case 'D': case 'E':
4244 case 'F': case 'G': case 'H': case 'J': case 'K':
4245 case 'M': case 'N': case 'P': case 'Q': case 'S':
4246 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4247 break;
4249 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4250 #endif
4251 default:
4252 gcc_unreachable ();
4254 break;
4256 default:
4257 putc (c, file);
4259 va_end (argptr);
4262 /* Return nonzero if this function has no function calls. */
4265 leaf_function_p (void)
4267 rtx_insn *insn;
4269 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4270 functions even if they call mcount. */
4271 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4272 return 0;
4274 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4276 if (CALL_P (insn)
4277 && ! SIBLING_CALL_P (insn))
4278 return 0;
4279 if (NONJUMP_INSN_P (insn)
4280 && GET_CODE (PATTERN (insn)) == SEQUENCE
4281 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4282 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4283 return 0;
4286 return 1;
4289 /* Return 1 if branch is a forward branch.
4290 Uses insn_shuid array, so it works only in the final pass. May be used by
4291 output templates to customary add branch prediction hints.
4294 final_forward_branch_p (rtx_insn *insn)
4296 int insn_id, label_id;
4298 gcc_assert (uid_shuid);
4299 insn_id = INSN_SHUID (insn);
4300 label_id = INSN_SHUID (JUMP_LABEL (insn));
4301 /* We've hit some insns that does not have id information available. */
4302 gcc_assert (insn_id && label_id);
4303 return insn_id < label_id;
4306 /* On some machines, a function with no call insns
4307 can run faster if it doesn't create its own register window.
4308 When output, the leaf function should use only the "output"
4309 registers. Ordinarily, the function would be compiled to use
4310 the "input" registers to find its arguments; it is a candidate
4311 for leaf treatment if it uses only the "input" registers.
4312 Leaf function treatment means renumbering so the function
4313 uses the "output" registers instead. */
4315 #ifdef LEAF_REGISTERS
4317 /* Return 1 if this function uses only the registers that can be
4318 safely renumbered. */
4321 only_leaf_regs_used (void)
4323 int i;
4324 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4326 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4327 if ((df_regs_ever_live_p (i) || global_regs[i])
4328 && ! permitted_reg_in_leaf_functions[i])
4329 return 0;
4331 if (crtl->uses_pic_offset_table
4332 && pic_offset_table_rtx != 0
4333 && REG_P (pic_offset_table_rtx)
4334 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4335 return 0;
4337 return 1;
4340 /* Scan all instructions and renumber all registers into those
4341 available in leaf functions. */
4343 static void
4344 leaf_renumber_regs (rtx_insn *first)
4346 rtx_insn *insn;
4348 /* Renumber only the actual patterns.
4349 The reg-notes can contain frame pointer refs,
4350 and renumbering them could crash, and should not be needed. */
4351 for (insn = first; insn; insn = NEXT_INSN (insn))
4352 if (INSN_P (insn))
4353 leaf_renumber_regs_insn (PATTERN (insn));
4356 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4357 available in leaf functions. */
4359 void
4360 leaf_renumber_regs_insn (rtx in_rtx)
4362 int i, j;
4363 const char *format_ptr;
4365 if (in_rtx == 0)
4366 return;
4368 /* Renumber all input-registers into output-registers.
4369 renumbered_regs would be 1 for an output-register;
4370 they */
4372 if (REG_P (in_rtx))
4374 int newreg;
4376 /* Don't renumber the same reg twice. */
4377 if (in_rtx->used)
4378 return;
4380 newreg = REGNO (in_rtx);
4381 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4382 to reach here as part of a REG_NOTE. */
4383 if (newreg >= FIRST_PSEUDO_REGISTER)
4385 in_rtx->used = 1;
4386 return;
4388 newreg = LEAF_REG_REMAP (newreg);
4389 gcc_assert (newreg >= 0);
4390 df_set_regs_ever_live (REGNO (in_rtx), false);
4391 df_set_regs_ever_live (newreg, true);
4392 SET_REGNO (in_rtx, newreg);
4393 in_rtx->used = 1;
4396 if (INSN_P (in_rtx))
4398 /* Inside a SEQUENCE, we find insns.
4399 Renumber just the patterns of these insns,
4400 just as we do for the top-level insns. */
4401 leaf_renumber_regs_insn (PATTERN (in_rtx));
4402 return;
4405 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4407 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4408 switch (*format_ptr++)
4410 case 'e':
4411 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4412 break;
4414 case 'E':
4415 if (NULL != XVEC (in_rtx, i))
4417 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4418 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4420 break;
4422 case 'S':
4423 case 's':
4424 case '0':
4425 case 'i':
4426 case 'w':
4427 case 'n':
4428 case 'u':
4429 break;
4431 default:
4432 gcc_unreachable ();
4435 #endif
4437 /* Turn the RTL into assembly. */
4438 static unsigned int
4439 rest_of_handle_final (void)
4441 rtx x;
4442 const char *fnname;
4444 /* Get the function's name, as described by its RTL. This may be
4445 different from the DECL_NAME name used in the source file. */
4447 x = DECL_RTL (current_function_decl);
4448 gcc_assert (MEM_P (x));
4449 x = XEXP (x, 0);
4450 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4451 fnname = XSTR (x, 0);
4453 assemble_start_function (current_function_decl, fnname);
4454 final_start_function (get_insns (), asm_out_file, optimize);
4455 final (get_insns (), asm_out_file, optimize);
4456 if (flag_use_caller_save)
4457 collect_fn_hard_reg_usage ();
4458 final_end_function ();
4460 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4461 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4462 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4463 output_function_exception_table (fnname);
4465 assemble_end_function (current_function_decl, fnname);
4467 user_defined_section_attribute = false;
4469 /* Free up reg info memory. */
4470 free_reg_info ();
4472 if (! quiet_flag)
4473 fflush (asm_out_file);
4475 /* Write DBX symbols if requested. */
4477 /* Note that for those inline functions where we don't initially
4478 know for certain that we will be generating an out-of-line copy,
4479 the first invocation of this routine (rest_of_compilation) will
4480 skip over this code by doing a `goto exit_rest_of_compilation;'.
4481 Later on, wrapup_global_declarations will (indirectly) call
4482 rest_of_compilation again for those inline functions that need
4483 to have out-of-line copies generated. During that call, we
4484 *will* be routed past here. */
4486 timevar_push (TV_SYMOUT);
4487 if (!DECL_IGNORED_P (current_function_decl))
4488 debug_hooks->function_decl (current_function_decl);
4489 timevar_pop (TV_SYMOUT);
4491 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4492 DECL_INITIAL (current_function_decl) = error_mark_node;
4494 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4495 && targetm.have_ctors_dtors)
4496 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4497 decl_init_priority_lookup
4498 (current_function_decl));
4499 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4500 && targetm.have_ctors_dtors)
4501 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4502 decl_fini_priority_lookup
4503 (current_function_decl));
4504 return 0;
4507 namespace {
4509 const pass_data pass_data_final =
4511 RTL_PASS, /* type */
4512 "final", /* name */
4513 OPTGROUP_NONE, /* optinfo_flags */
4514 TV_FINAL, /* tv_id */
4515 0, /* properties_required */
4516 0, /* properties_provided */
4517 0, /* properties_destroyed */
4518 0, /* todo_flags_start */
4519 0, /* todo_flags_finish */
4522 class pass_final : public rtl_opt_pass
4524 public:
4525 pass_final (gcc::context *ctxt)
4526 : rtl_opt_pass (pass_data_final, ctxt)
4529 /* opt_pass methods: */
4530 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4532 }; // class pass_final
4534 } // anon namespace
4536 rtl_opt_pass *
4537 make_pass_final (gcc::context *ctxt)
4539 return new pass_final (ctxt);
4543 static unsigned int
4544 rest_of_handle_shorten_branches (void)
4546 /* Shorten branches. */
4547 shorten_branches (get_insns ());
4548 return 0;
4551 namespace {
4553 const pass_data pass_data_shorten_branches =
4555 RTL_PASS, /* type */
4556 "shorten", /* name */
4557 OPTGROUP_NONE, /* optinfo_flags */
4558 TV_SHORTEN_BRANCH, /* tv_id */
4559 0, /* properties_required */
4560 0, /* properties_provided */
4561 0, /* properties_destroyed */
4562 0, /* todo_flags_start */
4563 0, /* todo_flags_finish */
4566 class pass_shorten_branches : public rtl_opt_pass
4568 public:
4569 pass_shorten_branches (gcc::context *ctxt)
4570 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4573 /* opt_pass methods: */
4574 virtual unsigned int execute (function *)
4576 return rest_of_handle_shorten_branches ();
4579 }; // class pass_shorten_branches
4581 } // anon namespace
4583 rtl_opt_pass *
4584 make_pass_shorten_branches (gcc::context *ctxt)
4586 return new pass_shorten_branches (ctxt);
4590 static unsigned int
4591 rest_of_clean_state (void)
4593 rtx_insn *insn, *next;
4594 FILE *final_output = NULL;
4595 int save_unnumbered = flag_dump_unnumbered;
4596 int save_noaddr = flag_dump_noaddr;
4598 if (flag_dump_final_insns)
4600 final_output = fopen (flag_dump_final_insns, "a");
4601 if (!final_output)
4603 error ("could not open final insn dump file %qs: %m",
4604 flag_dump_final_insns);
4605 flag_dump_final_insns = NULL;
4607 else
4609 flag_dump_noaddr = flag_dump_unnumbered = 1;
4610 if (flag_compare_debug_opt || flag_compare_debug)
4611 dump_flags |= TDF_NOUID;
4612 dump_function_header (final_output, current_function_decl,
4613 dump_flags);
4614 final_insns_dump_p = true;
4616 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4617 if (LABEL_P (insn))
4618 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4619 else
4621 if (NOTE_P (insn))
4622 set_block_for_insn (insn, NULL);
4623 INSN_UID (insn) = 0;
4628 /* It is very important to decompose the RTL instruction chain here:
4629 debug information keeps pointing into CODE_LABEL insns inside the function
4630 body. If these remain pointing to the other insns, we end up preserving
4631 whole RTL chain and attached detailed debug info in memory. */
4632 for (insn = get_insns (); insn; insn = next)
4634 next = NEXT_INSN (insn);
4635 SET_NEXT_INSN (insn) = NULL;
4636 SET_PREV_INSN (insn) = NULL;
4638 if (final_output
4639 && (!NOTE_P (insn) ||
4640 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4641 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4642 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4643 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4644 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4645 print_rtl_single (final_output, insn);
4648 if (final_output)
4650 flag_dump_noaddr = save_noaddr;
4651 flag_dump_unnumbered = save_unnumbered;
4652 final_insns_dump_p = false;
4654 if (fclose (final_output))
4656 error ("could not close final insn dump file %qs: %m",
4657 flag_dump_final_insns);
4658 flag_dump_final_insns = NULL;
4662 /* In case the function was not output,
4663 don't leave any temporary anonymous types
4664 queued up for sdb output. */
4665 #ifdef SDB_DEBUGGING_INFO
4666 if (write_symbols == SDB_DEBUG)
4667 sdbout_types (NULL_TREE);
4668 #endif
4670 flag_rerun_cse_after_global_opts = 0;
4671 reload_completed = 0;
4672 epilogue_completed = 0;
4673 #ifdef STACK_REGS
4674 regstack_completed = 0;
4675 #endif
4677 /* Clear out the insn_length contents now that they are no
4678 longer valid. */
4679 init_insn_lengths ();
4681 /* Show no temporary slots allocated. */
4682 init_temp_slots ();
4684 free_bb_for_insn ();
4686 delete_tree_ssa ();
4688 /* We can reduce stack alignment on call site only when we are sure that
4689 the function body just produced will be actually used in the final
4690 executable. */
4691 if (decl_binds_to_current_def_p (current_function_decl))
4693 unsigned int pref = crtl->preferred_stack_boundary;
4694 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4695 pref = crtl->stack_alignment_needed;
4696 cgraph_node::rtl_info (current_function_decl)
4697 ->preferred_incoming_stack_boundary = pref;
4700 /* Make sure volatile mem refs aren't considered valid operands for
4701 arithmetic insns. We must call this here if this is a nested inline
4702 function, since the above code leaves us in the init_recog state,
4703 and the function context push/pop code does not save/restore volatile_ok.
4705 ??? Maybe it isn't necessary for expand_start_function to call this
4706 anymore if we do it here? */
4708 init_recog_no_volatile ();
4710 /* We're done with this function. Free up memory if we can. */
4711 free_after_parsing (cfun);
4712 free_after_compilation (cfun);
4713 return 0;
4716 namespace {
4718 const pass_data pass_data_clean_state =
4720 RTL_PASS, /* type */
4721 "*clean_state", /* name */
4722 OPTGROUP_NONE, /* optinfo_flags */
4723 TV_FINAL, /* tv_id */
4724 0, /* properties_required */
4725 0, /* properties_provided */
4726 PROP_rtl, /* properties_destroyed */
4727 0, /* todo_flags_start */
4728 0, /* todo_flags_finish */
4731 class pass_clean_state : public rtl_opt_pass
4733 public:
4734 pass_clean_state (gcc::context *ctxt)
4735 : rtl_opt_pass (pass_data_clean_state, ctxt)
4738 /* opt_pass methods: */
4739 virtual unsigned int execute (function *)
4741 return rest_of_clean_state ();
4744 }; // class pass_clean_state
4746 } // anon namespace
4748 rtl_opt_pass *
4749 make_pass_clean_state (gcc::context *ctxt)
4751 return new pass_clean_state (ctxt);
4754 /* Return true if INSN is a call to the the current function. */
4756 static bool
4757 self_recursive_call_p (rtx_insn *insn)
4759 tree fndecl = get_call_fndecl (insn);
4760 return (fndecl == current_function_decl
4761 && decl_binds_to_current_def_p (fndecl));
4764 /* Collect hard register usage for the current function. */
4766 static void
4767 collect_fn_hard_reg_usage (void)
4769 rtx_insn *insn;
4770 #ifdef STACK_REGS
4771 int i;
4772 #endif
4773 struct cgraph_rtl_info *node;
4774 HARD_REG_SET function_used_regs;
4776 /* ??? To be removed when all the ports have been fixed. */
4777 if (!targetm.call_fusage_contains_non_callee_clobbers)
4778 return;
4780 CLEAR_HARD_REG_SET (function_used_regs);
4782 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4784 HARD_REG_SET insn_used_regs;
4786 if (!NONDEBUG_INSN_P (insn))
4787 continue;
4789 if (CALL_P (insn)
4790 && !self_recursive_call_p (insn))
4792 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4793 call_used_reg_set))
4794 return;
4796 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4799 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4800 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4803 /* Be conservative - mark fixed and global registers as used. */
4804 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4806 #ifdef STACK_REGS
4807 /* Handle STACK_REGS conservatively, since the df-framework does not
4808 provide accurate information for them. */
4810 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4811 SET_HARD_REG_BIT (function_used_regs, i);
4812 #endif
4814 /* The information we have gathered is only interesting if it exposes a
4815 register from the call_used_regs that is not used in this function. */
4816 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4817 return;
4819 node = cgraph_node::rtl_info (current_function_decl);
4820 gcc_assert (node != NULL);
4822 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4823 node->function_used_regs_valid = 1;
4826 /* Get the declaration of the function called by INSN. */
4828 static tree
4829 get_call_fndecl (rtx_insn *insn)
4831 rtx note, datum;
4833 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4834 if (note == NULL_RTX)
4835 return NULL_TREE;
4837 datum = XEXP (note, 0);
4838 if (datum != NULL_RTX)
4839 return SYMBOL_REF_DECL (datum);
4841 return NULL_TREE;
4844 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4845 call targets that can be overwritten. */
4847 static struct cgraph_rtl_info *
4848 get_call_cgraph_rtl_info (rtx_insn *insn)
4850 tree fndecl;
4852 if (insn == NULL_RTX)
4853 return NULL;
4855 fndecl = get_call_fndecl (insn);
4856 if (fndecl == NULL_TREE
4857 || !decl_binds_to_current_def_p (fndecl))
4858 return NULL;
4860 return cgraph_node::rtl_info (fndecl);
4863 /* Find hard registers used by function call instruction INSN, and return them
4864 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4866 bool
4867 get_call_reg_set_usage (rtx uncast_insn, HARD_REG_SET *reg_set,
4868 HARD_REG_SET default_set)
4870 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
4871 if (flag_use_caller_save)
4873 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4874 if (node != NULL
4875 && node->function_used_regs_valid)
4877 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4878 AND_HARD_REG_SET (*reg_set, default_set);
4879 return true;
4883 COPY_HARD_REG_SET (*reg_set, default_set);
4884 return false;