* config/alpha/alpha.md (unaligned_extendhidi_be): Fix.
[official-gcc.git] / gcc / loop.c
blobe20e0592ca16048b9edaf98fe9ea9a3c1f1b8eb0
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "obstack.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "recog.h"
49 #include "flags.h"
50 #include "real.h"
51 #include "loop.h"
52 #include "cselib.h"
53 #include "except.h"
54 #include "toplev.h"
55 #include "predict.h"
57 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
58 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
60 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
61 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
62 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
65 /* Vector mapping INSN_UIDs to luids.
66 The luids are like uids but increase monotonically always.
67 We use them to see whether a jump comes from outside a given loop. */
69 int *uid_luid;
71 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
72 number the insn is contained in. */
74 struct loop **uid_loop;
76 /* 1 + largest uid of any insn. */
78 int max_uid_for_loop;
80 /* 1 + luid of last insn. */
82 static int max_luid;
84 /* Number of loops detected in current function. Used as index to the
85 next few tables. */
87 static int max_loop_num;
89 /* Bound on pseudo register number before loop optimization.
90 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
91 unsigned int max_reg_before_loop;
93 /* The value to pass to the next call of reg_scan_update. */
94 static int loop_max_reg;
96 #define obstack_chunk_alloc xmalloc
97 #define obstack_chunk_free free
99 /* During the analysis of a loop, a chain of `struct movable's
100 is made to record all the movable insns found.
101 Then the entire chain can be scanned to decide which to move. */
103 struct movable
105 rtx insn; /* A movable insn */
106 rtx set_src; /* The expression this reg is set from. */
107 rtx set_dest; /* The destination of this SET. */
108 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
109 of any registers used within the LIBCALL. */
110 int consec; /* Number of consecutive following insns
111 that must be moved with this one. */
112 unsigned int regno; /* The register it sets */
113 short lifetime; /* lifetime of that register;
114 may be adjusted when matching movables
115 that load the same value are found. */
116 short savings; /* Number of insns we can move for this reg,
117 including other movables that force this
118 or match this one. */
119 unsigned int cond : 1; /* 1 if only conditionally movable */
120 unsigned int force : 1; /* 1 means MUST move this insn */
121 unsigned int global : 1; /* 1 means reg is live outside this loop */
122 /* If PARTIAL is 1, GLOBAL means something different:
123 that the reg is live outside the range from where it is set
124 to the following label. */
125 unsigned int done : 1; /* 1 inhibits further processing of this */
127 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
128 In particular, moving it does not make it
129 invariant. */
130 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
131 load SRC, rather than copying INSN. */
132 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
133 first insn of a consecutive sets group. */
134 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
135 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
136 that we should avoid changing when clearing
137 the rest of the reg. */
138 struct movable *match; /* First entry for same value */
139 struct movable *forces; /* An insn that must be moved if this is */
140 struct movable *next;
144 FILE *loop_dump_stream;
146 /* Forward declarations. */
148 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
149 static void mark_loop_jump PARAMS ((rtx, struct loop *));
150 static void prescan_loop PARAMS ((struct loop *));
151 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
152 static int consec_sets_invariant_p PARAMS ((const struct loop *,
153 rtx, int, rtx));
154 static int labels_in_range_p PARAMS ((rtx, int));
155 static void count_one_set PARAMS ((struct loop_regs *, rtx, rtx, rtx *));
156 static void note_addr_stored PARAMS ((rtx, rtx, void *));
157 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
158 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
159 static void scan_loop PARAMS ((struct loop*, int));
160 #if 0
161 static void replace_call_address PARAMS ((rtx, rtx, rtx));
162 #endif
163 static rtx skip_consec_insns PARAMS ((rtx, int));
164 static int libcall_benefit PARAMS ((rtx));
165 static void ignore_some_movables PARAMS ((struct loop_movables *));
166 static void force_movables PARAMS ((struct loop_movables *));
167 static void combine_movables PARAMS ((struct loop_movables *,
168 struct loop_regs *));
169 static int num_unmoved_movables PARAMS ((const struct loop *));
170 static int regs_match_p PARAMS ((rtx, rtx, struct loop_movables *));
171 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct loop_movables *,
172 struct loop_regs *));
173 static void add_label_notes PARAMS ((rtx, rtx));
174 static void move_movables PARAMS ((struct loop *loop, struct loop_movables *,
175 int, int));
176 static void loop_movables_add PARAMS((struct loop_movables *,
177 struct movable *));
178 static void loop_movables_free PARAMS((struct loop_movables *));
179 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
180 static void loop_bivs_find PARAMS((struct loop *));
181 static void loop_bivs_init_find PARAMS((struct loop *));
182 static void loop_bivs_check PARAMS((struct loop *));
183 static void loop_givs_find PARAMS((struct loop *));
184 static void loop_givs_check PARAMS((struct loop *));
185 static int loop_biv_eliminable_p PARAMS((struct loop *, struct iv_class *,
186 int, int));
187 static int loop_giv_reduce_benefit PARAMS((struct loop *, struct iv_class *,
188 struct induction *, rtx));
189 static void loop_givs_dead_check PARAMS((struct loop *, struct iv_class *));
190 static void loop_givs_reduce PARAMS((struct loop *, struct iv_class *));
191 static void loop_givs_rescan PARAMS((struct loop *, struct iv_class *,
192 rtx *));
193 static void loop_ivs_free PARAMS((struct loop *));
194 static void strength_reduce PARAMS ((struct loop *, int));
195 static void find_single_use_in_loop PARAMS ((struct loop_regs *, rtx, rtx));
196 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
197 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
198 static void record_biv PARAMS ((struct loop *, struct induction *,
199 rtx, rtx, rtx, rtx, rtx *,
200 int, int));
201 static void check_final_value PARAMS ((const struct loop *,
202 struct induction *));
203 static void loop_ivs_dump PARAMS((const struct loop *, FILE *, int));
204 static void loop_iv_class_dump PARAMS((const struct iv_class *, FILE *, int));
205 static void loop_biv_dump PARAMS((const struct induction *, FILE *, int));
206 static void loop_giv_dump PARAMS((const struct induction *, FILE *, int));
207 static void record_giv PARAMS ((const struct loop *, struct induction *,
208 rtx, rtx, rtx, rtx, rtx, rtx, int,
209 enum g_types, int, int, rtx *));
210 static void update_giv_derive PARAMS ((const struct loop *, rtx));
211 static void check_ext_dependant_givs PARAMS ((struct iv_class *,
212 struct loop_info *));
213 static int basic_induction_var PARAMS ((const struct loop *, rtx,
214 enum machine_mode, rtx, rtx,
215 rtx *, rtx *, rtx **));
216 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, rtx *, int *));
217 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
218 rtx *, rtx *, rtx *, int, int *,
219 enum machine_mode));
220 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
221 rtx, rtx, rtx *, rtx *, rtx *, rtx *));
222 static int check_dbra_loop PARAMS ((struct loop *, int));
223 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
224 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
225 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
226 static void combine_givs PARAMS ((struct loop_regs *, struct iv_class *));
227 static int product_cheap_p PARAMS ((rtx, rtx));
228 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
229 int, int, int));
230 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
231 struct iv_class *, int,
232 basic_block, rtx));
233 static int last_use_this_basic_block PARAMS ((rtx, rtx));
234 static void record_initial PARAMS ((rtx, rtx, void *));
235 static void update_reg_last_use PARAMS ((rtx, rtx));
236 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
237 static void loop_regs_scan PARAMS ((const struct loop *, int));
238 static int count_insns_in_loop PARAMS ((const struct loop *));
239 static void load_mems PARAMS ((const struct loop *));
240 static int insert_loop_mem PARAMS ((rtx *, void *));
241 static int replace_loop_mem PARAMS ((rtx *, void *));
242 static void replace_loop_mems PARAMS ((rtx, rtx, rtx));
243 static int replace_loop_reg PARAMS ((rtx *, void *));
244 static void replace_loop_regs PARAMS ((rtx insn, rtx, rtx));
245 static void note_reg_stored PARAMS ((rtx, rtx, void *));
246 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
247 static void try_swap_copy_prop PARAMS ((const struct loop *, rtx,
248 unsigned int));
249 static int replace_label PARAMS ((rtx *, void *));
250 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
251 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
252 static rtx gen_add_mult PARAMS ((rtx, rtx, rtx, rtx));
253 static void loop_regs_update PARAMS ((const struct loop *, rtx));
254 static int iv_add_mult_cost PARAMS ((rtx, rtx, rtx, rtx));
256 static rtx loop_insn_emit_after PARAMS((const struct loop *, basic_block,
257 rtx, rtx));
258 static rtx loop_call_insn_emit_before PARAMS((const struct loop *,
259 basic_block, rtx, rtx));
260 static rtx loop_call_insn_hoist PARAMS((const struct loop *, rtx));
261 static rtx loop_insn_sink_or_swim PARAMS((const struct loop *, rtx));
263 static void loop_dump_aux PARAMS ((const struct loop *, FILE *, int));
264 static void loop_delete_insns PARAMS ((rtx, rtx));
265 void debug_ivs PARAMS ((const struct loop *));
266 void debug_iv_class PARAMS ((const struct iv_class *));
267 void debug_biv PARAMS ((const struct induction *));
268 void debug_giv PARAMS ((const struct induction *));
269 void debug_loop PARAMS ((const struct loop *));
270 void debug_loops PARAMS ((const struct loops *));
272 typedef struct rtx_pair
274 rtx r1;
275 rtx r2;
276 } rtx_pair;
278 typedef struct loop_replace_args
280 rtx match;
281 rtx replacement;
282 rtx insn;
283 } loop_replace_args;
285 /* Nonzero iff INSN is between START and END, inclusive. */
286 #define INSN_IN_RANGE_P(INSN, START, END) \
287 (INSN_UID (INSN) < max_uid_for_loop \
288 && INSN_LUID (INSN) >= INSN_LUID (START) \
289 && INSN_LUID (INSN) <= INSN_LUID (END))
291 /* Indirect_jump_in_function is computed once per function. */
292 static int indirect_jump_in_function;
293 static int indirect_jump_in_function_p PARAMS ((rtx));
295 static int compute_luids PARAMS ((rtx, rtx, int));
297 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
298 struct induction *,
299 rtx));
301 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
302 copy the value of the strength reduced giv to its original register. */
303 static int copy_cost;
305 /* Cost of using a register, to normalize the benefits of a giv. */
306 static int reg_address_cost;
308 void
309 init_loop ()
311 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
313 reg_address_cost = address_cost (reg, SImode);
315 copy_cost = COSTS_N_INSNS (1);
318 /* Compute the mapping from uids to luids.
319 LUIDs are numbers assigned to insns, like uids,
320 except that luids increase monotonically through the code.
321 Start at insn START and stop just before END. Assign LUIDs
322 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
323 static int
324 compute_luids (start, end, prev_luid)
325 rtx start, end;
326 int prev_luid;
328 int i;
329 rtx insn;
331 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
333 if (INSN_UID (insn) >= max_uid_for_loop)
334 continue;
335 /* Don't assign luids to line-number NOTEs, so that the distance in
336 luids between two insns is not affected by -g. */
337 if (GET_CODE (insn) != NOTE
338 || NOTE_LINE_NUMBER (insn) <= 0)
339 uid_luid[INSN_UID (insn)] = ++i;
340 else
341 /* Give a line number note the same luid as preceding insn. */
342 uid_luid[INSN_UID (insn)] = i;
344 return i + 1;
347 /* Entry point of this file. Perform loop optimization
348 on the current function. F is the first insn of the function
349 and DUMPFILE is a stream for output of a trace of actions taken
350 (or 0 if none should be output). */
352 void
353 loop_optimize (f, dumpfile, flags)
354 /* f is the first instruction of a chain of insns for one function */
355 rtx f;
356 FILE *dumpfile;
357 int flags;
359 register rtx insn;
360 register int i;
361 struct loops loops_data;
362 struct loops *loops = &loops_data;
363 struct loop_info *loops_info;
365 loop_dump_stream = dumpfile;
367 init_recog_no_volatile ();
369 max_reg_before_loop = max_reg_num ();
370 loop_max_reg = max_reg_before_loop;
372 regs_may_share = 0;
374 /* Count the number of loops. */
376 max_loop_num = 0;
377 for (insn = f; insn; insn = NEXT_INSN (insn))
379 if (GET_CODE (insn) == NOTE
380 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
381 max_loop_num++;
384 /* Don't waste time if no loops. */
385 if (max_loop_num == 0)
386 return;
388 loops->num = max_loop_num;
390 /* Get size to use for tables indexed by uids.
391 Leave some space for labels allocated by find_and_verify_loops. */
392 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
394 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
395 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
396 sizeof (struct loop *));
398 /* Allocate storage for array of loops. */
399 loops->array = (struct loop *)
400 xcalloc (loops->num, sizeof (struct loop));
402 /* Find and process each loop.
403 First, find them, and record them in order of their beginnings. */
404 find_and_verify_loops (f, loops);
406 /* Allocate and initialize auxiliary loop information. */
407 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
408 for (i = 0; i < loops->num; i++)
409 loops->array[i].aux = loops_info + i;
411 /* Now find all register lifetimes. This must be done after
412 find_and_verify_loops, because it might reorder the insns in the
413 function. */
414 reg_scan (f, max_reg_before_loop, 1);
416 /* This must occur after reg_scan so that registers created by gcse
417 will have entries in the register tables.
419 We could have added a call to reg_scan after gcse_main in toplev.c,
420 but moving this call to init_alias_analysis is more efficient. */
421 init_alias_analysis ();
423 /* See if we went too far. Note that get_max_uid already returns
424 one more that the maximum uid of all insn. */
425 if (get_max_uid () > max_uid_for_loop)
426 abort ();
427 /* Now reset it to the actual size we need. See above. */
428 max_uid_for_loop = get_max_uid ();
430 /* find_and_verify_loops has already called compute_luids, but it
431 might have rearranged code afterwards, so we need to recompute
432 the luids now. */
433 max_luid = compute_luids (f, NULL_RTX, 0);
435 /* Don't leave gaps in uid_luid for insns that have been
436 deleted. It is possible that the first or last insn
437 using some register has been deleted by cross-jumping.
438 Make sure that uid_luid for that former insn's uid
439 points to the general area where that insn used to be. */
440 for (i = 0; i < max_uid_for_loop; i++)
442 uid_luid[0] = uid_luid[i];
443 if (uid_luid[0] != 0)
444 break;
446 for (i = 0; i < max_uid_for_loop; i++)
447 if (uid_luid[i] == 0)
448 uid_luid[i] = uid_luid[i - 1];
450 /* Determine if the function has indirect jump. On some systems
451 this prevents low overhead loop instructions from being used. */
452 indirect_jump_in_function = indirect_jump_in_function_p (f);
454 /* Now scan the loops, last ones first, since this means inner ones are done
455 before outer ones. */
456 for (i = max_loop_num - 1; i >= 0; i--)
458 struct loop *loop = &loops->array[i];
460 if (! loop->invalid && loop->end)
461 scan_loop (loop, flags);
464 /* If there were lexical blocks inside the loop, they have been
465 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
466 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
467 the BLOCKs as well. */
468 if (write_symbols != NO_DEBUG)
469 reorder_blocks ();
471 end_alias_analysis ();
473 /* Clean up. */
474 free (uid_luid);
475 free (uid_loop);
476 free (loops_info);
477 free (loops->array);
480 /* Returns the next insn, in execution order, after INSN. START and
481 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
482 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
483 insn-stream; it is used with loops that are entered near the
484 bottom. */
486 static rtx
487 next_insn_in_loop (loop, insn)
488 const struct loop *loop;
489 rtx insn;
491 insn = NEXT_INSN (insn);
493 if (insn == loop->end)
495 if (loop->top)
496 /* Go to the top of the loop, and continue there. */
497 insn = loop->top;
498 else
499 /* We're done. */
500 insn = NULL_RTX;
503 if (insn == loop->scan_start)
504 /* We're done. */
505 insn = NULL_RTX;
507 return insn;
510 /* Optimize one loop described by LOOP. */
512 /* ??? Could also move memory writes out of loops if the destination address
513 is invariant, the source is invariant, the memory write is not volatile,
514 and if we can prove that no read inside the loop can read this address
515 before the write occurs. If there is a read of this address after the
516 write, then we can also mark the memory read as invariant. */
518 static void
519 scan_loop (loop, flags)
520 struct loop *loop;
521 int flags;
523 struct loop_info *loop_info = LOOP_INFO (loop);
524 struct loop_regs *regs = LOOP_REGS (loop);
525 register int i;
526 rtx loop_start = loop->start;
527 rtx loop_end = loop->end;
528 rtx p;
529 /* 1 if we are scanning insns that could be executed zero times. */
530 int maybe_never = 0;
531 /* 1 if we are scanning insns that might never be executed
532 due to a subroutine call which might exit before they are reached. */
533 int call_passed = 0;
534 /* Jump insn that enters the loop, or 0 if control drops in. */
535 rtx loop_entry_jump = 0;
536 /* Number of insns in the loop. */
537 int insn_count;
538 int tem;
539 rtx temp, update_start, update_end;
540 /* The SET from an insn, if it is the only SET in the insn. */
541 rtx set, set1;
542 /* Chain describing insns movable in current loop. */
543 struct loop_movables *movables = LOOP_MOVABLES (loop);
544 /* Ratio of extra register life span we can justify
545 for saving an instruction. More if loop doesn't call subroutines
546 since in that case saving an insn makes more difference
547 and more registers are available. */
548 int threshold;
549 /* Nonzero if we are scanning instructions in a sub-loop. */
550 int loop_depth = 0;
552 loop->top = 0;
554 movables->head = 0;
555 movables->last = 0;
557 /* Determine whether this loop starts with a jump down to a test at
558 the end. This will occur for a small number of loops with a test
559 that is too complex to duplicate in front of the loop.
561 We search for the first insn or label in the loop, skipping NOTEs.
562 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
563 (because we might have a loop executed only once that contains a
564 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
565 (in case we have a degenerate loop).
567 Note that if we mistakenly think that a loop is entered at the top
568 when, in fact, it is entered at the exit test, the only effect will be
569 slightly poorer optimization. Making the opposite error can generate
570 incorrect code. Since very few loops now start with a jump to the
571 exit test, the code here to detect that case is very conservative. */
573 for (p = NEXT_INSN (loop_start);
574 p != loop_end
575 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
576 && (GET_CODE (p) != NOTE
577 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
578 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
579 p = NEXT_INSN (p))
582 loop->scan_start = p;
584 /* If loop end is the end of the current function, then emit a
585 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
586 note insn. This is the position we use when sinking insns out of
587 the loop. */
588 if (NEXT_INSN (loop->end) != 0)
589 loop->sink = NEXT_INSN (loop->end);
590 else
591 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
593 /* Set up variables describing this loop. */
594 prescan_loop (loop);
595 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
597 /* If loop has a jump before the first label,
598 the true entry is the target of that jump.
599 Start scan from there.
600 But record in LOOP->TOP the place where the end-test jumps
601 back to so we can scan that after the end of the loop. */
602 if (GET_CODE (p) == JUMP_INSN)
604 loop_entry_jump = p;
606 /* Loop entry must be unconditional jump (and not a RETURN) */
607 if (any_uncondjump_p (p)
608 && JUMP_LABEL (p) != 0
609 /* Check to see whether the jump actually
610 jumps out of the loop (meaning it's no loop).
611 This case can happen for things like
612 do {..} while (0). If this label was generated previously
613 by loop, we can't tell anything about it and have to reject
614 the loop. */
615 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
617 loop->top = next_label (loop->scan_start);
618 loop->scan_start = JUMP_LABEL (p);
622 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
623 as required by loop_reg_used_before_p. So skip such loops. (This
624 test may never be true, but it's best to play it safe.)
626 Also, skip loops where we do not start scanning at a label. This
627 test also rejects loops starting with a JUMP_INSN that failed the
628 test above. */
630 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
631 || GET_CODE (loop->scan_start) != CODE_LABEL)
633 if (loop_dump_stream)
634 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
635 INSN_UID (loop_start), INSN_UID (loop_end));
636 return;
639 /* Allocate extra space for REGs that might be created by load_mems.
640 We allocate a little extra slop as well, in the hopes that we
641 won't have to reallocate the regs array. */
642 loop_regs_scan (loop, loop_info->mems_idx + 16);
643 insn_count = count_insns_in_loop (loop);
645 if (loop_dump_stream)
647 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
648 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
649 if (loop->cont)
650 fprintf (loop_dump_stream, "Continue at insn %d.\n",
651 INSN_UID (loop->cont));
654 /* Scan through the loop finding insns that are safe to move.
655 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
656 this reg will be considered invariant for subsequent insns.
657 We consider whether subsequent insns use the reg
658 in deciding whether it is worth actually moving.
660 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
661 and therefore it is possible that the insns we are scanning
662 would never be executed. At such times, we must make sure
663 that it is safe to execute the insn once instead of zero times.
664 When MAYBE_NEVER is 0, all insns will be executed at least once
665 so that is not a problem. */
667 for (p = next_insn_in_loop (loop, loop->scan_start);
668 p != NULL_RTX;
669 p = next_insn_in_loop (loop, p))
671 if (GET_CODE (p) == INSN
672 && (set = single_set (p))
673 && GET_CODE (SET_DEST (set)) == REG
674 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
676 int tem1 = 0;
677 int tem2 = 0;
678 int move_insn = 0;
679 rtx src = SET_SRC (set);
680 rtx dependencies = 0;
682 /* Figure out what to use as a source of this insn. If a REG_EQUIV
683 note is given or if a REG_EQUAL note with a constant operand is
684 specified, use it as the source and mark that we should move
685 this insn by calling emit_move_insn rather that duplicating the
686 insn.
688 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
689 is present. */
690 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
691 if (temp)
692 src = XEXP (temp, 0), move_insn = 1;
693 else
695 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
696 if (temp && CONSTANT_P (XEXP (temp, 0)))
697 src = XEXP (temp, 0), move_insn = 1;
698 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
700 src = XEXP (temp, 0);
701 /* A libcall block can use regs that don't appear in
702 the equivalent expression. To move the libcall,
703 we must move those regs too. */
704 dependencies = libcall_other_reg (p, src);
708 /* For parallels, add any possible uses to the depencies, as we can't move
709 the insn without resolving them first. */
710 if (GET_CODE (PATTERN (p)) == PARALLEL)
712 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
714 rtx x = XVECEXP (PATTERN (p), 0, i);
715 if (GET_CODE (x) == USE)
716 dependencies = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0), dependencies);
720 /* Don't try to optimize a register that was made
721 by loop-optimization for an inner loop.
722 We don't know its life-span, so we can't compute the benefit. */
723 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
725 else if (/* The register is used in basic blocks other
726 than the one where it is set (meaning that
727 something after this point in the loop might
728 depend on its value before the set). */
729 ! reg_in_basic_block_p (p, SET_DEST (set))
730 /* And the set is not guaranteed to be executed once
731 the loop starts, or the value before the set is
732 needed before the set occurs...
734 ??? Note we have quadratic behaviour here, mitigated
735 by the fact that the previous test will often fail for
736 large loops. Rather than re-scanning the entire loop
737 each time for register usage, we should build tables
738 of the register usage and use them here instead. */
739 && (maybe_never
740 || loop_reg_used_before_p (loop, set, p)))
741 /* It is unsafe to move the set.
743 This code used to consider it OK to move a set of a variable
744 which was not created by the user and not used in an exit test.
745 That behavior is incorrect and was removed. */
747 else if ((tem = loop_invariant_p (loop, src))
748 && (dependencies == 0
749 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
750 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
751 || (tem1
752 = consec_sets_invariant_p
753 (loop, SET_DEST (set),
754 regs->array[REGNO (SET_DEST (set))].set_in_loop,
755 p)))
756 /* If the insn can cause a trap (such as divide by zero),
757 can't move it unless it's guaranteed to be executed
758 once loop is entered. Even a function call might
759 prevent the trap insn from being reached
760 (since it might exit!) */
761 && ! ((maybe_never || call_passed)
762 && may_trap_p (src)))
764 register struct movable *m;
765 register int regno = REGNO (SET_DEST (set));
767 /* A potential lossage is where we have a case where two insns
768 can be combined as long as they are both in the loop, but
769 we move one of them outside the loop. For large loops,
770 this can lose. The most common case of this is the address
771 of a function being called.
773 Therefore, if this register is marked as being used exactly
774 once if we are in a loop with calls (a "large loop"), see if
775 we can replace the usage of this register with the source
776 of this SET. If we can, delete this insn.
778 Don't do this if P has a REG_RETVAL note or if we have
779 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
781 if (loop_info->has_call
782 && regs->array[regno].single_usage != 0
783 && regs->array[regno].single_usage != const0_rtx
784 && REGNO_FIRST_UID (regno) == INSN_UID (p)
785 && (REGNO_LAST_UID (regno)
786 == INSN_UID (regs->array[regno].single_usage))
787 && regs->array[regno].set_in_loop == 1
788 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
789 && ! side_effects_p (SET_SRC (set))
790 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
791 && (! SMALL_REGISTER_CLASSES
792 || (! (GET_CODE (SET_SRC (set)) == REG
793 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
794 /* This test is not redundant; SET_SRC (set) might be
795 a call-clobbered register and the life of REGNO
796 might span a call. */
797 && ! modified_between_p (SET_SRC (set), p,
798 regs->array[regno].single_usage)
799 && no_labels_between_p (p, regs->array[regno].single_usage)
800 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
801 regs->array[regno].single_usage))
803 /* Replace any usage in a REG_EQUAL note. Must copy the
804 new source, so that we don't get rtx sharing between the
805 SET_SOURCE and REG_NOTES of insn p. */
806 REG_NOTES (regs->array[regno].single_usage)
807 = replace_rtx (REG_NOTES (regs->array[regno].single_usage),
808 SET_DEST (set), copy_rtx (SET_SRC (set)));
810 PUT_CODE (p, NOTE);
811 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
812 NOTE_SOURCE_FILE (p) = 0;
813 regs->array[regno].set_in_loop = 0;
814 continue;
817 m = (struct movable *) xmalloc (sizeof (struct movable));
818 m->next = 0;
819 m->insn = p;
820 m->set_src = src;
821 m->dependencies = dependencies;
822 m->set_dest = SET_DEST (set);
823 m->force = 0;
824 m->consec = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
825 m->done = 0;
826 m->forces = 0;
827 m->partial = 0;
828 m->move_insn = move_insn;
829 m->move_insn_first = 0;
830 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
831 m->savemode = VOIDmode;
832 m->regno = regno;
833 /* Set M->cond if either loop_invariant_p
834 or consec_sets_invariant_p returned 2
835 (only conditionally invariant). */
836 m->cond = ((tem | tem1 | tem2) > 1);
837 m->global = LOOP_REG_GLOBAL_P (loop, regno);
838 m->match = 0;
839 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
840 m->savings = regs->array[regno].n_times_set;
841 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
842 m->savings += libcall_benefit (p);
843 regs->array[regno].set_in_loop = move_insn ? -2 : -1;
844 /* Add M to the end of the chain MOVABLES. */
845 loop_movables_add (movables, m);
847 if (m->consec > 0)
849 /* It is possible for the first instruction to have a
850 REG_EQUAL note but a non-invariant SET_SRC, so we must
851 remember the status of the first instruction in case
852 the last instruction doesn't have a REG_EQUAL note. */
853 m->move_insn_first = m->move_insn;
855 /* Skip this insn, not checking REG_LIBCALL notes. */
856 p = next_nonnote_insn (p);
857 /* Skip the consecutive insns, if there are any. */
858 p = skip_consec_insns (p, m->consec);
859 /* Back up to the last insn of the consecutive group. */
860 p = prev_nonnote_insn (p);
862 /* We must now reset m->move_insn, m->is_equiv, and possibly
863 m->set_src to correspond to the effects of all the
864 insns. */
865 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
866 if (temp)
867 m->set_src = XEXP (temp, 0), m->move_insn = 1;
868 else
870 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
871 if (temp && CONSTANT_P (XEXP (temp, 0)))
872 m->set_src = XEXP (temp, 0), m->move_insn = 1;
873 else
874 m->move_insn = 0;
877 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
880 /* If this register is always set within a STRICT_LOW_PART
881 or set to zero, then its high bytes are constant.
882 So clear them outside the loop and within the loop
883 just load the low bytes.
884 We must check that the machine has an instruction to do so.
885 Also, if the value loaded into the register
886 depends on the same register, this cannot be done. */
887 else if (SET_SRC (set) == const0_rtx
888 && GET_CODE (NEXT_INSN (p)) == INSN
889 && (set1 = single_set (NEXT_INSN (p)))
890 && GET_CODE (set1) == SET
891 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
892 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
893 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
894 == SET_DEST (set))
895 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
897 register int regno = REGNO (SET_DEST (set));
898 if (regs->array[regno].set_in_loop == 2)
900 register struct movable *m;
901 m = (struct movable *) xmalloc (sizeof (struct movable));
902 m->next = 0;
903 m->insn = p;
904 m->set_dest = SET_DEST (set);
905 m->dependencies = 0;
906 m->force = 0;
907 m->consec = 0;
908 m->done = 0;
909 m->forces = 0;
910 m->move_insn = 0;
911 m->move_insn_first = 0;
912 m->partial = 1;
913 /* If the insn may not be executed on some cycles,
914 we can't clear the whole reg; clear just high part.
915 Not even if the reg is used only within this loop.
916 Consider this:
917 while (1)
918 while (s != t) {
919 if (foo ()) x = *s;
920 use (x);
922 Clearing x before the inner loop could clobber a value
923 being saved from the last time around the outer loop.
924 However, if the reg is not used outside this loop
925 and all uses of the register are in the same
926 basic block as the store, there is no problem.
928 If this insn was made by loop, we don't know its
929 INSN_LUID and hence must make a conservative
930 assumption. */
931 m->global = (INSN_UID (p) >= max_uid_for_loop
932 || LOOP_REG_GLOBAL_P (loop, regno)
933 || (labels_in_range_p
934 (p, REGNO_FIRST_LUID (regno))));
935 if (maybe_never && m->global)
936 m->savemode = GET_MODE (SET_SRC (set1));
937 else
938 m->savemode = VOIDmode;
939 m->regno = regno;
940 m->cond = 0;
941 m->match = 0;
942 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
943 m->savings = 1;
944 regs->array[regno].set_in_loop = -1;
945 /* Add M to the end of the chain MOVABLES. */
946 loop_movables_add (movables, m);
950 /* Past a call insn, we get to insns which might not be executed
951 because the call might exit. This matters for insns that trap.
952 Constant and pure call insns always return, so they don't count. */
953 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
954 call_passed = 1;
955 /* Past a label or a jump, we get to insns for which we
956 can't count on whether or how many times they will be
957 executed during each iteration. Therefore, we can
958 only move out sets of trivial variables
959 (those not used after the loop). */
960 /* Similar code appears twice in strength_reduce. */
961 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
962 /* If we enter the loop in the middle, and scan around to the
963 beginning, don't set maybe_never for that. This must be an
964 unconditional jump, otherwise the code at the top of the
965 loop might never be executed. Unconditional jumps are
966 followed by a barrier then the loop_end. */
967 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
968 && NEXT_INSN (NEXT_INSN (p)) == loop_end
969 && any_uncondjump_p (p)))
970 maybe_never = 1;
971 else if (GET_CODE (p) == NOTE)
973 /* At the virtual top of a converted loop, insns are again known to
974 be executed: logically, the loop begins here even though the exit
975 code has been duplicated. */
976 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
977 maybe_never = call_passed = 0;
978 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
979 loop_depth++;
980 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
981 loop_depth--;
985 /* If one movable subsumes another, ignore that other. */
987 ignore_some_movables (movables);
989 /* For each movable insn, see if the reg that it loads
990 leads when it dies right into another conditionally movable insn.
991 If so, record that the second insn "forces" the first one,
992 since the second can be moved only if the first is. */
994 force_movables (movables);
996 /* See if there are multiple movable insns that load the same value.
997 If there are, make all but the first point at the first one
998 through the `match' field, and add the priorities of them
999 all together as the priority of the first. */
1001 combine_movables (movables, regs);
1003 /* Now consider each movable insn to decide whether it is worth moving.
1004 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1006 Generally this increases code size, so do not move moveables when
1007 optimizing for code size. */
1009 if (! optimize_size)
1010 move_movables (loop, movables, threshold, insn_count);
1012 /* Now candidates that still are negative are those not moved.
1013 Change regs->array[I].set_in_loop to indicate that those are not actually
1014 invariant. */
1015 for (i = 0; i < regs->num; i++)
1016 if (regs->array[i].set_in_loop < 0)
1017 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1019 /* Now that we've moved some things out of the loop, we might be able to
1020 hoist even more memory references. */
1021 load_mems (loop);
1023 /* Recalculate regs->array if load_mems has created new registers. */
1024 if (max_reg_num () > regs->num)
1025 loop_regs_scan (loop, 0);
1027 for (update_start = loop_start;
1028 PREV_INSN (update_start)
1029 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1030 update_start = PREV_INSN (update_start))
1032 update_end = NEXT_INSN (loop_end);
1034 reg_scan_update (update_start, update_end, loop_max_reg);
1035 loop_max_reg = max_reg_num ();
1037 if (flag_strength_reduce)
1039 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1040 /* Ensure our label doesn't go away. */
1041 LABEL_NUSES (update_end)++;
1043 strength_reduce (loop, flags);
1045 reg_scan_update (update_start, update_end, loop_max_reg);
1046 loop_max_reg = max_reg_num ();
1048 if (update_end && GET_CODE (update_end) == CODE_LABEL
1049 && --LABEL_NUSES (update_end) == 0)
1050 delete_insn (update_end);
1054 /* The movable information is required for strength reduction. */
1055 loop_movables_free (movables);
1057 free (regs->array);
1058 regs->array = 0;
1059 regs->num = 0;
1062 /* Add elements to *OUTPUT to record all the pseudo-regs
1063 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1065 void
1066 record_excess_regs (in_this, not_in_this, output)
1067 rtx in_this, not_in_this;
1068 rtx *output;
1070 enum rtx_code code;
1071 const char *fmt;
1072 int i;
1074 code = GET_CODE (in_this);
1076 switch (code)
1078 case PC:
1079 case CC0:
1080 case CONST_INT:
1081 case CONST_DOUBLE:
1082 case CONST:
1083 case SYMBOL_REF:
1084 case LABEL_REF:
1085 return;
1087 case REG:
1088 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1089 && ! reg_mentioned_p (in_this, not_in_this))
1090 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1091 return;
1093 default:
1094 break;
1097 fmt = GET_RTX_FORMAT (code);
1098 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1100 int j;
1102 switch (fmt[i])
1104 case 'E':
1105 for (j = 0; j < XVECLEN (in_this, i); j++)
1106 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1107 break;
1109 case 'e':
1110 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1111 break;
1116 /* Check what regs are referred to in the libcall block ending with INSN,
1117 aside from those mentioned in the equivalent value.
1118 If there are none, return 0.
1119 If there are one or more, return an EXPR_LIST containing all of them. */
1122 libcall_other_reg (insn, equiv)
1123 rtx insn, equiv;
1125 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1126 rtx p = XEXP (note, 0);
1127 rtx output = 0;
1129 /* First, find all the regs used in the libcall block
1130 that are not mentioned as inputs to the result. */
1132 while (p != insn)
1134 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1135 || GET_CODE (p) == CALL_INSN)
1136 record_excess_regs (PATTERN (p), equiv, &output);
1137 p = NEXT_INSN (p);
1140 return output;
1143 /* Return 1 if all uses of REG
1144 are between INSN and the end of the basic block. */
1146 static int
1147 reg_in_basic_block_p (insn, reg)
1148 rtx insn, reg;
1150 int regno = REGNO (reg);
1151 rtx p;
1153 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1154 return 0;
1156 /* Search this basic block for the already recorded last use of the reg. */
1157 for (p = insn; p; p = NEXT_INSN (p))
1159 switch (GET_CODE (p))
1161 case NOTE:
1162 break;
1164 case INSN:
1165 case CALL_INSN:
1166 /* Ordinary insn: if this is the last use, we win. */
1167 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1168 return 1;
1169 break;
1171 case JUMP_INSN:
1172 /* Jump insn: if this is the last use, we win. */
1173 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1174 return 1;
1175 /* Otherwise, it's the end of the basic block, so we lose. */
1176 return 0;
1178 case CODE_LABEL:
1179 case BARRIER:
1180 /* It's the end of the basic block, so we lose. */
1181 return 0;
1183 default:
1184 break;
1188 /* The "last use" that was recorded can't be found after the first
1189 use. This can happen when the last use was deleted while
1190 processing an inner loop, this inner loop was then completely
1191 unrolled, and the outer loop is always exited after the inner loop,
1192 so that everything after the first use becomes a single basic block. */
1193 return 1;
1196 /* Compute the benefit of eliminating the insns in the block whose
1197 last insn is LAST. This may be a group of insns used to compute a
1198 value directly or can contain a library call. */
1200 static int
1201 libcall_benefit (last)
1202 rtx last;
1204 rtx insn;
1205 int benefit = 0;
1207 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1208 insn != last; insn = NEXT_INSN (insn))
1210 if (GET_CODE (insn) == CALL_INSN)
1211 benefit += 10; /* Assume at least this many insns in a library
1212 routine. */
1213 else if (GET_CODE (insn) == INSN
1214 && GET_CODE (PATTERN (insn)) != USE
1215 && GET_CODE (PATTERN (insn)) != CLOBBER)
1216 benefit++;
1219 return benefit;
1222 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1224 static rtx
1225 skip_consec_insns (insn, count)
1226 rtx insn;
1227 int count;
1229 for (; count > 0; count--)
1231 rtx temp;
1233 /* If first insn of libcall sequence, skip to end. */
1234 /* Do this at start of loop, since INSN is guaranteed to
1235 be an insn here. */
1236 if (GET_CODE (insn) != NOTE
1237 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1238 insn = XEXP (temp, 0);
1241 insn = NEXT_INSN (insn);
1242 while (GET_CODE (insn) == NOTE);
1245 return insn;
1248 /* Ignore any movable whose insn falls within a libcall
1249 which is part of another movable.
1250 We make use of the fact that the movable for the libcall value
1251 was made later and so appears later on the chain. */
1253 static void
1254 ignore_some_movables (movables)
1255 struct loop_movables *movables;
1257 register struct movable *m, *m1;
1259 for (m = movables->head; m; m = m->next)
1261 /* Is this a movable for the value of a libcall? */
1262 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1263 if (note)
1265 rtx insn;
1266 /* Check for earlier movables inside that range,
1267 and mark them invalid. We cannot use LUIDs here because
1268 insns created by loop.c for prior loops don't have LUIDs.
1269 Rather than reject all such insns from movables, we just
1270 explicitly check each insn in the libcall (since invariant
1271 libcalls aren't that common). */
1272 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1273 for (m1 = movables->head; m1 != m; m1 = m1->next)
1274 if (m1->insn == insn)
1275 m1->done = 1;
1280 /* For each movable insn, see if the reg that it loads
1281 leads when it dies right into another conditionally movable insn.
1282 If so, record that the second insn "forces" the first one,
1283 since the second can be moved only if the first is. */
1285 static void
1286 force_movables (movables)
1287 struct loop_movables *movables;
1289 register struct movable *m, *m1;
1290 for (m1 = movables->head; m1; m1 = m1->next)
1291 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1292 if (!m1->partial && !m1->done)
1294 int regno = m1->regno;
1295 for (m = m1->next; m; m = m->next)
1296 /* ??? Could this be a bug? What if CSE caused the
1297 register of M1 to be used after this insn?
1298 Since CSE does not update regno_last_uid,
1299 this insn M->insn might not be where it dies.
1300 But very likely this doesn't matter; what matters is
1301 that M's reg is computed from M1's reg. */
1302 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1303 && !m->done)
1304 break;
1305 if (m != 0 && m->set_src == m1->set_dest
1306 /* If m->consec, m->set_src isn't valid. */
1307 && m->consec == 0)
1308 m = 0;
1310 /* Increase the priority of the moving the first insn
1311 since it permits the second to be moved as well. */
1312 if (m != 0)
1314 m->forces = m1;
1315 m1->lifetime += m->lifetime;
1316 m1->savings += m->savings;
1321 /* Find invariant expressions that are equal and can be combined into
1322 one register. */
1324 static void
1325 combine_movables (movables, regs)
1326 struct loop_movables *movables;
1327 struct loop_regs *regs;
1329 register struct movable *m;
1330 char *matched_regs = (char *) xmalloc (regs->num);
1331 enum machine_mode mode;
1333 /* Regs that are set more than once are not allowed to match
1334 or be matched. I'm no longer sure why not. */
1335 /* Perhaps testing m->consec_sets would be more appropriate here? */
1337 for (m = movables->head; m; m = m->next)
1338 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1339 && !m->partial)
1341 register struct movable *m1;
1342 int regno = m->regno;
1344 memset (matched_regs, 0, regs->num);
1345 matched_regs[regno] = 1;
1347 /* We want later insns to match the first one. Don't make the first
1348 one match any later ones. So start this loop at m->next. */
1349 for (m1 = m->next; m1; m1 = m1->next)
1350 if (m != m1 && m1->match == 0
1351 && regs->array[m1->regno].n_times_set == 1
1352 /* A reg used outside the loop mustn't be eliminated. */
1353 && !m1->global
1354 /* A reg used for zero-extending mustn't be eliminated. */
1355 && !m1->partial
1356 && (matched_regs[m1->regno]
1359 /* Can combine regs with different modes loaded from the
1360 same constant only if the modes are the same or
1361 if both are integer modes with M wider or the same
1362 width as M1. The check for integer is redundant, but
1363 safe, since the only case of differing destination
1364 modes with equal sources is when both sources are
1365 VOIDmode, i.e., CONST_INT. */
1366 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1367 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1368 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1369 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1370 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1371 /* See if the source of M1 says it matches M. */
1372 && ((GET_CODE (m1->set_src) == REG
1373 && matched_regs[REGNO (m1->set_src)])
1374 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1375 movables, regs))))
1376 && ((m->dependencies == m1->dependencies)
1377 || rtx_equal_p (m->dependencies, m1->dependencies)))
1379 m->lifetime += m1->lifetime;
1380 m->savings += m1->savings;
1381 m1->done = 1;
1382 m1->match = m;
1383 matched_regs[m1->regno] = 1;
1387 /* Now combine the regs used for zero-extension.
1388 This can be done for those not marked `global'
1389 provided their lives don't overlap. */
1391 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1392 mode = GET_MODE_WIDER_MODE (mode))
1394 register struct movable *m0 = 0;
1396 /* Combine all the registers for extension from mode MODE.
1397 Don't combine any that are used outside this loop. */
1398 for (m = movables->head; m; m = m->next)
1399 if (m->partial && ! m->global
1400 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1402 register struct movable *m1;
1403 int first = REGNO_FIRST_LUID (m->regno);
1404 int last = REGNO_LAST_LUID (m->regno);
1406 if (m0 == 0)
1408 /* First one: don't check for overlap, just record it. */
1409 m0 = m;
1410 continue;
1413 /* Make sure they extend to the same mode.
1414 (Almost always true.) */
1415 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1416 continue;
1418 /* We already have one: check for overlap with those
1419 already combined together. */
1420 for (m1 = movables->head; m1 != m; m1 = m1->next)
1421 if (m1 == m0 || (m1->partial && m1->match == m0))
1422 if (! (REGNO_FIRST_LUID (m1->regno) > last
1423 || REGNO_LAST_LUID (m1->regno) < first))
1424 goto overlap;
1426 /* No overlap: we can combine this with the others. */
1427 m0->lifetime += m->lifetime;
1428 m0->savings += m->savings;
1429 m->done = 1;
1430 m->match = m0;
1432 overlap:
1437 /* Clean up. */
1438 free (matched_regs);
1441 /* Returns the number of movable instructions in LOOP that were not
1442 moved outside the loop. */
1444 static int
1445 num_unmoved_movables (loop)
1446 const struct loop *loop;
1448 int num = 0;
1449 struct movable *m;
1451 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1452 if (!m->done)
1453 ++num;
1455 return num;
1459 /* Return 1 if regs X and Y will become the same if moved. */
1461 static int
1462 regs_match_p (x, y, movables)
1463 rtx x, y;
1464 struct loop_movables *movables;
1466 unsigned int xn = REGNO (x);
1467 unsigned int yn = REGNO (y);
1468 struct movable *mx, *my;
1470 for (mx = movables->head; mx; mx = mx->next)
1471 if (mx->regno == xn)
1472 break;
1474 for (my = movables->head; my; my = my->next)
1475 if (my->regno == yn)
1476 break;
1478 return (mx && my
1479 && ((mx->match == my->match && mx->match != 0)
1480 || mx->match == my
1481 || mx == my->match));
1484 /* Return 1 if X and Y are identical-looking rtx's.
1485 This is the Lisp function EQUAL for rtx arguments.
1487 If two registers are matching movables or a movable register and an
1488 equivalent constant, consider them equal. */
1490 static int
1491 rtx_equal_for_loop_p (x, y, movables, regs)
1492 rtx x, y;
1493 struct loop_movables *movables;
1494 struct loop_regs *regs;
1496 register int i;
1497 register int j;
1498 register struct movable *m;
1499 register enum rtx_code code;
1500 register const char *fmt;
1502 if (x == y)
1503 return 1;
1504 if (x == 0 || y == 0)
1505 return 0;
1507 code = GET_CODE (x);
1509 /* If we have a register and a constant, they may sometimes be
1510 equal. */
1511 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1512 && CONSTANT_P (y))
1514 for (m = movables->head; m; m = m->next)
1515 if (m->move_insn && m->regno == REGNO (x)
1516 && rtx_equal_p (m->set_src, y))
1517 return 1;
1519 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1520 && CONSTANT_P (x))
1522 for (m = movables->head; m; m = m->next)
1523 if (m->move_insn && m->regno == REGNO (y)
1524 && rtx_equal_p (m->set_src, x))
1525 return 1;
1528 /* Otherwise, rtx's of different codes cannot be equal. */
1529 if (code != GET_CODE (y))
1530 return 0;
1532 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1533 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1535 if (GET_MODE (x) != GET_MODE (y))
1536 return 0;
1538 /* These three types of rtx's can be compared nonrecursively. */
1539 if (code == REG)
1540 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1542 if (code == LABEL_REF)
1543 return XEXP (x, 0) == XEXP (y, 0);
1544 if (code == SYMBOL_REF)
1545 return XSTR (x, 0) == XSTR (y, 0);
1547 /* Compare the elements. If any pair of corresponding elements
1548 fail to match, return 0 for the whole things. */
1550 fmt = GET_RTX_FORMAT (code);
1551 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1553 switch (fmt[i])
1555 case 'w':
1556 if (XWINT (x, i) != XWINT (y, i))
1557 return 0;
1558 break;
1560 case 'i':
1561 if (XINT (x, i) != XINT (y, i))
1562 return 0;
1563 break;
1565 case 'E':
1566 /* Two vectors must have the same length. */
1567 if (XVECLEN (x, i) != XVECLEN (y, i))
1568 return 0;
1570 /* And the corresponding elements must match. */
1571 for (j = 0; j < XVECLEN (x, i); j++)
1572 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1573 movables, regs) == 0)
1574 return 0;
1575 break;
1577 case 'e':
1578 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1579 == 0)
1580 return 0;
1581 break;
1583 case 's':
1584 if (strcmp (XSTR (x, i), XSTR (y, i)))
1585 return 0;
1586 break;
1588 case 'u':
1589 /* These are just backpointers, so they don't matter. */
1590 break;
1592 case '0':
1593 break;
1595 /* It is believed that rtx's at this level will never
1596 contain anything but integers and other rtx's,
1597 except for within LABEL_REFs and SYMBOL_REFs. */
1598 default:
1599 abort ();
1602 return 1;
1605 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1606 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1607 references is incremented once for each added note. */
1609 static void
1610 add_label_notes (x, insns)
1611 rtx x;
1612 rtx insns;
1614 enum rtx_code code = GET_CODE (x);
1615 int i, j;
1616 const char *fmt;
1617 rtx insn;
1619 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1621 /* This code used to ignore labels that referred to dispatch tables to
1622 avoid flow generating (slighly) worse code.
1624 We no longer ignore such label references (see LABEL_REF handling in
1625 mark_jump_label for additional information). */
1626 for (insn = insns; insn; insn = NEXT_INSN (insn))
1627 if (reg_mentioned_p (XEXP (x, 0), insn))
1629 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1630 REG_NOTES (insn));
1631 if (LABEL_P (XEXP (x, 0)))
1632 LABEL_NUSES (XEXP (x, 0))++;
1636 fmt = GET_RTX_FORMAT (code);
1637 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1639 if (fmt[i] == 'e')
1640 add_label_notes (XEXP (x, i), insns);
1641 else if (fmt[i] == 'E')
1642 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1643 add_label_notes (XVECEXP (x, i, j), insns);
1647 /* Scan MOVABLES, and move the insns that deserve to be moved.
1648 If two matching movables are combined, replace one reg with the
1649 other throughout. */
1651 static void
1652 move_movables (loop, movables, threshold, insn_count)
1653 struct loop *loop;
1654 struct loop_movables *movables;
1655 int threshold;
1656 int insn_count;
1658 struct loop_regs *regs = LOOP_REGS (loop);
1659 int nregs = regs->num;
1660 rtx new_start = 0;
1661 register struct movable *m;
1662 register rtx p;
1663 rtx loop_start = loop->start;
1664 rtx loop_end = loop->end;
1665 /* Map of pseudo-register replacements to handle combining
1666 when we move several insns that load the same value
1667 into different pseudo-registers. */
1668 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1669 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1671 for (m = movables->head; m; m = m->next)
1673 /* Describe this movable insn. */
1675 if (loop_dump_stream)
1677 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1678 INSN_UID (m->insn), m->regno, m->lifetime);
1679 if (m->consec > 0)
1680 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1681 if (m->cond)
1682 fprintf (loop_dump_stream, "cond ");
1683 if (m->force)
1684 fprintf (loop_dump_stream, "force ");
1685 if (m->global)
1686 fprintf (loop_dump_stream, "global ");
1687 if (m->done)
1688 fprintf (loop_dump_stream, "done ");
1689 if (m->move_insn)
1690 fprintf (loop_dump_stream, "move-insn ");
1691 if (m->match)
1692 fprintf (loop_dump_stream, "matches %d ",
1693 INSN_UID (m->match->insn));
1694 if (m->forces)
1695 fprintf (loop_dump_stream, "forces %d ",
1696 INSN_UID (m->forces->insn));
1699 /* Ignore the insn if it's already done (it matched something else).
1700 Otherwise, see if it is now safe to move. */
1702 if (!m->done
1703 && (! m->cond
1704 || (1 == loop_invariant_p (loop, m->set_src)
1705 && (m->dependencies == 0
1706 || 1 == loop_invariant_p (loop, m->dependencies))
1707 && (m->consec == 0
1708 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1709 m->consec + 1,
1710 m->insn))))
1711 && (! m->forces || m->forces->done))
1713 register int regno;
1714 register rtx p;
1715 int savings = m->savings;
1717 /* We have an insn that is safe to move.
1718 Compute its desirability. */
1720 p = m->insn;
1721 regno = m->regno;
1723 if (loop_dump_stream)
1724 fprintf (loop_dump_stream, "savings %d ", savings);
1726 if (regs->array[regno].moved_once && loop_dump_stream)
1727 fprintf (loop_dump_stream, "halved since already moved ");
1729 /* An insn MUST be moved if we already moved something else
1730 which is safe only if this one is moved too: that is,
1731 if already_moved[REGNO] is nonzero. */
1733 /* An insn is desirable to move if the new lifetime of the
1734 register is no more than THRESHOLD times the old lifetime.
1735 If it's not desirable, it means the loop is so big
1736 that moving won't speed things up much,
1737 and it is liable to make register usage worse. */
1739 /* It is also desirable to move if it can be moved at no
1740 extra cost because something else was already moved. */
1742 if (already_moved[regno]
1743 || flag_move_all_movables
1744 || (threshold * savings * m->lifetime) >=
1745 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1746 || (m->forces && m->forces->done
1747 && regs->array[m->forces->regno].n_times_set == 1))
1749 int count;
1750 register struct movable *m1;
1751 rtx first = NULL_RTX;
1753 /* Now move the insns that set the reg. */
1755 if (m->partial && m->match)
1757 rtx newpat, i1;
1758 rtx r1, r2;
1759 /* Find the end of this chain of matching regs.
1760 Thus, we load each reg in the chain from that one reg.
1761 And that reg is loaded with 0 directly,
1762 since it has ->match == 0. */
1763 for (m1 = m; m1->match; m1 = m1->match);
1764 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1765 SET_DEST (PATTERN (m1->insn)));
1766 i1 = loop_insn_hoist (loop, newpat);
1768 /* Mark the moved, invariant reg as being allowed to
1769 share a hard reg with the other matching invariant. */
1770 REG_NOTES (i1) = REG_NOTES (m->insn);
1771 r1 = SET_DEST (PATTERN (m->insn));
1772 r2 = SET_DEST (PATTERN (m1->insn));
1773 regs_may_share
1774 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1775 gen_rtx_EXPR_LIST (VOIDmode, r2,
1776 regs_may_share));
1777 delete_insn (m->insn);
1779 if (new_start == 0)
1780 new_start = i1;
1782 if (loop_dump_stream)
1783 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1785 /* If we are to re-generate the item being moved with a
1786 new move insn, first delete what we have and then emit
1787 the move insn before the loop. */
1788 else if (m->move_insn)
1790 rtx i1, temp, seq;
1792 for (count = m->consec; count >= 0; count--)
1794 /* If this is the first insn of a library call sequence,
1795 skip to the end. */
1796 if (GET_CODE (p) != NOTE
1797 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1798 p = XEXP (temp, 0);
1800 /* If this is the last insn of a libcall sequence, then
1801 delete every insn in the sequence except the last.
1802 The last insn is handled in the normal manner. */
1803 if (GET_CODE (p) != NOTE
1804 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1806 temp = XEXP (temp, 0);
1807 while (temp != p)
1808 temp = delete_insn (temp);
1811 temp = p;
1812 p = delete_insn (p);
1814 /* simplify_giv_expr expects that it can walk the insns
1815 at m->insn forwards and see this old sequence we are
1816 tossing here. delete_insn does preserve the next
1817 pointers, but when we skip over a NOTE we must fix
1818 it up. Otherwise that code walks into the non-deleted
1819 insn stream. */
1820 while (p && GET_CODE (p) == NOTE)
1821 p = NEXT_INSN (temp) = NEXT_INSN (p);
1824 start_sequence ();
1825 emit_move_insn (m->set_dest, m->set_src);
1826 temp = get_insns ();
1827 seq = gen_sequence ();
1828 end_sequence ();
1830 add_label_notes (m->set_src, temp);
1832 i1 = loop_insn_hoist (loop, seq);
1833 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 REG_NOTES (i1)
1835 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1836 m->set_src, REG_NOTES (i1));
1838 if (loop_dump_stream)
1839 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1841 /* The more regs we move, the less we like moving them. */
1842 threshold -= 3;
1844 else
1846 for (count = m->consec; count >= 0; count--)
1848 rtx i1, temp;
1850 /* If first insn of libcall sequence, skip to end. */
1851 /* Do this at start of loop, since p is guaranteed to
1852 be an insn here. */
1853 if (GET_CODE (p) != NOTE
1854 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1855 p = XEXP (temp, 0);
1857 /* If last insn of libcall sequence, move all
1858 insns except the last before the loop. The last
1859 insn is handled in the normal manner. */
1860 if (GET_CODE (p) != NOTE
1861 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1863 rtx fn_address = 0;
1864 rtx fn_reg = 0;
1865 rtx fn_address_insn = 0;
1867 first = 0;
1868 for (temp = XEXP (temp, 0); temp != p;
1869 temp = NEXT_INSN (temp))
1871 rtx body;
1872 rtx n;
1873 rtx next;
1875 if (GET_CODE (temp) == NOTE)
1876 continue;
1878 body = PATTERN (temp);
1880 /* Find the next insn after TEMP,
1881 not counting USE or NOTE insns. */
1882 for (next = NEXT_INSN (temp); next != p;
1883 next = NEXT_INSN (next))
1884 if (! (GET_CODE (next) == INSN
1885 && GET_CODE (PATTERN (next)) == USE)
1886 && GET_CODE (next) != NOTE)
1887 break;
1889 /* If that is the call, this may be the insn
1890 that loads the function address.
1892 Extract the function address from the insn
1893 that loads it into a register.
1894 If this insn was cse'd, we get incorrect code.
1896 So emit a new move insn that copies the
1897 function address into the register that the
1898 call insn will use. flow.c will delete any
1899 redundant stores that we have created. */
1900 if (GET_CODE (next) == CALL_INSN
1901 && GET_CODE (body) == SET
1902 && GET_CODE (SET_DEST (body)) == REG
1903 && (n = find_reg_note (temp, REG_EQUAL,
1904 NULL_RTX)))
1906 fn_reg = SET_SRC (body);
1907 if (GET_CODE (fn_reg) != REG)
1908 fn_reg = SET_DEST (body);
1909 fn_address = XEXP (n, 0);
1910 fn_address_insn = temp;
1912 /* We have the call insn.
1913 If it uses the register we suspect it might,
1914 load it with the correct address directly. */
1915 if (GET_CODE (temp) == CALL_INSN
1916 && fn_address != 0
1917 && reg_referenced_p (fn_reg, body))
1918 loop_insn_emit_after (loop, 0, fn_address_insn,
1919 gen_move_insn
1920 (fn_reg, fn_address));
1922 if (GET_CODE (temp) == CALL_INSN)
1924 i1 = loop_call_insn_hoist (loop, body);
1925 /* Because the USAGE information potentially
1926 contains objects other than hard registers
1927 we need to copy it. */
1928 if (CALL_INSN_FUNCTION_USAGE (temp))
1929 CALL_INSN_FUNCTION_USAGE (i1)
1930 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1932 else
1933 i1 = loop_insn_hoist (loop, body);
1934 if (first == 0)
1935 first = i1;
1936 if (temp == fn_address_insn)
1937 fn_address_insn = i1;
1938 REG_NOTES (i1) = REG_NOTES (temp);
1939 delete_insn (temp);
1941 if (new_start == 0)
1942 new_start = first;
1944 if (m->savemode != VOIDmode)
1946 /* P sets REG to zero; but we should clear only
1947 the bits that are not covered by the mode
1948 m->savemode. */
1949 rtx reg = m->set_dest;
1950 rtx sequence;
1951 rtx tem;
1953 start_sequence ();
1954 tem = expand_simple_binop
1955 (GET_MODE (reg), AND, reg,
1956 GEN_INT ((((HOST_WIDE_INT) 1
1957 << GET_MODE_BITSIZE (m->savemode)))
1958 - 1),
1959 reg, 1, OPTAB_LIB_WIDEN);
1960 if (tem == 0)
1961 abort ();
1962 if (tem != reg)
1963 emit_move_insn (reg, tem);
1964 sequence = gen_sequence ();
1965 end_sequence ();
1966 i1 = loop_insn_hoist (loop, sequence);
1968 else if (GET_CODE (p) == CALL_INSN)
1970 i1 = loop_call_insn_hoist (loop, PATTERN (p));
1971 /* Because the USAGE information potentially
1972 contains objects other than hard registers
1973 we need to copy it. */
1974 if (CALL_INSN_FUNCTION_USAGE (p))
1975 CALL_INSN_FUNCTION_USAGE (i1)
1976 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
1978 else if (count == m->consec && m->move_insn_first)
1980 rtx seq;
1981 /* The SET_SRC might not be invariant, so we must
1982 use the REG_EQUAL note. */
1983 start_sequence ();
1984 emit_move_insn (m->set_dest, m->set_src);
1985 temp = get_insns ();
1986 seq = gen_sequence ();
1987 end_sequence ();
1989 add_label_notes (m->set_src, temp);
1991 i1 = loop_insn_hoist (loop, seq);
1992 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1993 REG_NOTES (i1)
1994 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
1995 : REG_EQUAL),
1996 m->set_src, REG_NOTES (i1));
1998 else
1999 i1 = loop_insn_hoist (loop, PATTERN (p));
2001 if (REG_NOTES (i1) == 0)
2003 REG_NOTES (i1) = REG_NOTES (p);
2005 /* If there is a REG_EQUAL note present whose value
2006 is not loop invariant, then delete it, since it
2007 may cause problems with later optimization passes.
2008 It is possible for cse to create such notes
2009 like this as a result of record_jump_cond. */
2011 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2012 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2013 remove_note (i1, temp);
2016 if (new_start == 0)
2017 new_start = i1;
2019 if (loop_dump_stream)
2020 fprintf (loop_dump_stream, " moved to %d",
2021 INSN_UID (i1));
2023 /* If library call, now fix the REG_NOTES that contain
2024 insn pointers, namely REG_LIBCALL on FIRST
2025 and REG_RETVAL on I1. */
2026 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2028 XEXP (temp, 0) = first;
2029 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2030 XEXP (temp, 0) = i1;
2033 temp = p;
2034 delete_insn (p);
2035 p = NEXT_INSN (p);
2037 /* simplify_giv_expr expects that it can walk the insns
2038 at m->insn forwards and see this old sequence we are
2039 tossing here. delete_insn does preserve the next
2040 pointers, but when we skip over a NOTE we must fix
2041 it up. Otherwise that code walks into the non-deleted
2042 insn stream. */
2043 while (p && GET_CODE (p) == NOTE)
2044 p = NEXT_INSN (temp) = NEXT_INSN (p);
2047 /* The more regs we move, the less we like moving them. */
2048 threshold -= 3;
2051 /* Any other movable that loads the same register
2052 MUST be moved. */
2053 already_moved[regno] = 1;
2055 /* This reg has been moved out of one loop. */
2056 regs->array[regno].moved_once = 1;
2058 /* The reg set here is now invariant. */
2059 if (! m->partial)
2060 regs->array[regno].set_in_loop = 0;
2062 m->done = 1;
2064 /* Change the length-of-life info for the register
2065 to say it lives at least the full length of this loop.
2066 This will help guide optimizations in outer loops. */
2068 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2069 /* This is the old insn before all the moved insns.
2070 We can't use the moved insn because it is out of range
2071 in uid_luid. Only the old insns have luids. */
2072 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2073 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2074 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2076 /* Combine with this moved insn any other matching movables. */
2078 if (! m->partial)
2079 for (m1 = movables->head; m1; m1 = m1->next)
2080 if (m1->match == m)
2082 rtx temp;
2084 /* Schedule the reg loaded by M1
2085 for replacement so that shares the reg of M.
2086 If the modes differ (only possible in restricted
2087 circumstances, make a SUBREG.
2089 Note this assumes that the target dependent files
2090 treat REG and SUBREG equally, including within
2091 GO_IF_LEGITIMATE_ADDRESS and in all the
2092 predicates since we never verify that replacing the
2093 original register with a SUBREG results in a
2094 recognizable insn. */
2095 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2096 reg_map[m1->regno] = m->set_dest;
2097 else
2098 reg_map[m1->regno]
2099 = gen_lowpart_common (GET_MODE (m1->set_dest),
2100 m->set_dest);
2102 /* Get rid of the matching insn
2103 and prevent further processing of it. */
2104 m1->done = 1;
2106 /* if library call, delete all insn except last, which
2107 is deleted below */
2108 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2109 NULL_RTX)))
2111 for (temp = XEXP (temp, 0); temp != m1->insn;
2112 temp = NEXT_INSN (temp))
2113 delete_insn (temp);
2115 delete_insn (m1->insn);
2117 /* Any other movable that loads the same register
2118 MUST be moved. */
2119 already_moved[m1->regno] = 1;
2121 /* The reg merged here is now invariant,
2122 if the reg it matches is invariant. */
2123 if (! m->partial)
2124 regs->array[m1->regno].set_in_loop = 0;
2127 else if (loop_dump_stream)
2128 fprintf (loop_dump_stream, "not desirable");
2130 else if (loop_dump_stream && !m->match)
2131 fprintf (loop_dump_stream, "not safe");
2133 if (loop_dump_stream)
2134 fprintf (loop_dump_stream, "\n");
2137 if (new_start == 0)
2138 new_start = loop_start;
2140 /* Go through all the instructions in the loop, making
2141 all the register substitutions scheduled in REG_MAP. */
2142 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2143 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2144 || GET_CODE (p) == CALL_INSN)
2146 replace_regs (PATTERN (p), reg_map, nregs, 0);
2147 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2148 INSN_CODE (p) = -1;
2151 /* Clean up. */
2152 free (reg_map);
2153 free (already_moved);
2157 static void
2158 loop_movables_add (movables, m)
2159 struct loop_movables *movables;
2160 struct movable *m;
2162 if (movables->head == 0)
2163 movables->head = m;
2164 else
2165 movables->last->next = m;
2166 movables->last = m;
2170 static void
2171 loop_movables_free (movables)
2172 struct loop_movables *movables;
2174 struct movable *m;
2175 struct movable *m_next;
2177 for (m = movables->head; m; m = m_next)
2179 m_next = m->next;
2180 free (m);
2184 #if 0
2185 /* Scan X and replace the address of any MEM in it with ADDR.
2186 REG is the address that MEM should have before the replacement. */
2188 static void
2189 replace_call_address (x, reg, addr)
2190 rtx x, reg, addr;
2192 register enum rtx_code code;
2193 register int i;
2194 register const char *fmt;
2196 if (x == 0)
2197 return;
2198 code = GET_CODE (x);
2199 switch (code)
2201 case PC:
2202 case CC0:
2203 case CONST_INT:
2204 case CONST_DOUBLE:
2205 case CONST:
2206 case SYMBOL_REF:
2207 case LABEL_REF:
2208 case REG:
2209 return;
2211 case SET:
2212 /* Short cut for very common case. */
2213 replace_call_address (XEXP (x, 1), reg, addr);
2214 return;
2216 case CALL:
2217 /* Short cut for very common case. */
2218 replace_call_address (XEXP (x, 0), reg, addr);
2219 return;
2221 case MEM:
2222 /* If this MEM uses a reg other than the one we expected,
2223 something is wrong. */
2224 if (XEXP (x, 0) != reg)
2225 abort ();
2226 XEXP (x, 0) = addr;
2227 return;
2229 default:
2230 break;
2233 fmt = GET_RTX_FORMAT (code);
2234 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2236 if (fmt[i] == 'e')
2237 replace_call_address (XEXP (x, i), reg, addr);
2238 else if (fmt[i] == 'E')
2240 register int j;
2241 for (j = 0; j < XVECLEN (x, i); j++)
2242 replace_call_address (XVECEXP (x, i, j), reg, addr);
2246 #endif
2248 /* Return the number of memory refs to addresses that vary
2249 in the rtx X. */
2251 static int
2252 count_nonfixed_reads (loop, x)
2253 const struct loop *loop;
2254 rtx x;
2256 register enum rtx_code code;
2257 register int i;
2258 register const char *fmt;
2259 int value;
2261 if (x == 0)
2262 return 0;
2264 code = GET_CODE (x);
2265 switch (code)
2267 case PC:
2268 case CC0:
2269 case CONST_INT:
2270 case CONST_DOUBLE:
2271 case CONST:
2272 case SYMBOL_REF:
2273 case LABEL_REF:
2274 case REG:
2275 return 0;
2277 case MEM:
2278 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2279 + count_nonfixed_reads (loop, XEXP (x, 0)));
2281 default:
2282 break;
2285 value = 0;
2286 fmt = GET_RTX_FORMAT (code);
2287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2289 if (fmt[i] == 'e')
2290 value += count_nonfixed_reads (loop, XEXP (x, i));
2291 if (fmt[i] == 'E')
2293 register int j;
2294 for (j = 0; j < XVECLEN (x, i); j++)
2295 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2298 return value;
2301 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2302 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2303 `unknown_address_altered', `unknown_constant_address_altered', and
2304 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2305 list `store_mems' in LOOP. */
2307 static void
2308 prescan_loop (loop)
2309 struct loop *loop;
2311 register int level = 1;
2312 rtx insn;
2313 struct loop_info *loop_info = LOOP_INFO (loop);
2314 rtx start = loop->start;
2315 rtx end = loop->end;
2316 /* The label after END. Jumping here is just like falling off the
2317 end of the loop. We use next_nonnote_insn instead of next_label
2318 as a hedge against the (pathological) case where some actual insn
2319 might end up between the two. */
2320 rtx exit_target = next_nonnote_insn (end);
2322 loop_info->has_indirect_jump = indirect_jump_in_function;
2323 loop_info->pre_header_has_call = 0;
2324 loop_info->has_call = 0;
2325 loop_info->has_nonconst_call = 0;
2326 loop_info->has_volatile = 0;
2327 loop_info->has_tablejump = 0;
2328 loop_info->has_multiple_exit_targets = 0;
2329 loop->level = 1;
2331 loop_info->unknown_address_altered = 0;
2332 loop_info->unknown_constant_address_altered = 0;
2333 loop_info->store_mems = NULL_RTX;
2334 loop_info->first_loop_store_insn = NULL_RTX;
2335 loop_info->mems_idx = 0;
2336 loop_info->num_mem_sets = 0;
2339 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2340 insn = PREV_INSN (insn))
2342 if (GET_CODE (insn) == CALL_INSN)
2344 loop_info->pre_header_has_call = 1;
2345 break;
2349 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2350 insn = NEXT_INSN (insn))
2352 if (GET_CODE (insn) == NOTE)
2354 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2356 ++level;
2357 /* Count number of loops contained in this one. */
2358 loop->level++;
2360 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2362 --level;
2365 else if (GET_CODE (insn) == CALL_INSN)
2367 if (! CONST_OR_PURE_CALL_P (insn))
2369 loop_info->unknown_address_altered = 1;
2370 loop_info->has_nonconst_call = 1;
2372 loop_info->has_call = 1;
2374 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2376 rtx label1 = NULL_RTX;
2377 rtx label2 = NULL_RTX;
2379 if (volatile_refs_p (PATTERN (insn)))
2380 loop_info->has_volatile = 1;
2382 if (GET_CODE (insn) == JUMP_INSN
2383 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2384 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2385 loop_info->has_tablejump = 1;
2387 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2388 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2389 loop_info->first_loop_store_insn = insn;
2391 if (! loop_info->has_multiple_exit_targets
2392 && GET_CODE (insn) == JUMP_INSN
2393 && GET_CODE (PATTERN (insn)) == SET
2394 && SET_DEST (PATTERN (insn)) == pc_rtx)
2396 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2398 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2399 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2401 else
2403 label1 = SET_SRC (PATTERN (insn));
2408 if (label1 && label1 != pc_rtx)
2410 if (GET_CODE (label1) != LABEL_REF)
2412 /* Something tricky. */
2413 loop_info->has_multiple_exit_targets = 1;
2414 break;
2416 else if (XEXP (label1, 0) != exit_target
2417 && LABEL_OUTSIDE_LOOP_P (label1))
2419 /* A jump outside the current loop. */
2420 loop_info->has_multiple_exit_targets = 1;
2421 break;
2425 label1 = label2;
2426 label2 = NULL_RTX;
2428 while (label1);
2431 else if (GET_CODE (insn) == RETURN)
2432 loop_info->has_multiple_exit_targets = 1;
2435 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2436 if (/* An exception thrown by a called function might land us
2437 anywhere. */
2438 ! loop_info->has_nonconst_call
2439 /* We don't want loads for MEMs moved to a location before the
2440 one at which their stack memory becomes allocated. (Note
2441 that this is not a problem for malloc, etc., since those
2442 require actual function calls. */
2443 && ! current_function_calls_alloca
2444 /* There are ways to leave the loop other than falling off the
2445 end. */
2446 && ! loop_info->has_multiple_exit_targets)
2447 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2448 insn = NEXT_INSN (insn))
2449 for_each_rtx (&insn, insert_loop_mem, loop_info);
2451 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2452 that loop_invariant_p and load_mems can use true_dependence
2453 to determine what is really clobbered. */
2454 if (loop_info->unknown_address_altered)
2456 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2458 loop_info->store_mems
2459 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2461 if (loop_info->unknown_constant_address_altered)
2463 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2465 RTX_UNCHANGING_P (mem) = 1;
2466 loop_info->store_mems
2467 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2471 /* Scan the function looking for loops. Record the start and end of each loop.
2472 Also mark as invalid loops any loops that contain a setjmp or are branched
2473 to from outside the loop. */
2475 static void
2476 find_and_verify_loops (f, loops)
2477 rtx f;
2478 struct loops *loops;
2480 rtx insn;
2481 rtx label;
2482 int num_loops;
2483 struct loop *current_loop;
2484 struct loop *next_loop;
2485 struct loop *loop;
2487 num_loops = loops->num;
2489 compute_luids (f, NULL_RTX, 0);
2491 /* If there are jumps to undefined labels,
2492 treat them as jumps out of any/all loops.
2493 This also avoids writing past end of tables when there are no loops. */
2494 uid_loop[0] = NULL;
2496 /* Find boundaries of loops, mark which loops are contained within
2497 loops, and invalidate loops that have setjmp. */
2499 num_loops = 0;
2500 current_loop = NULL;
2501 for (insn = f; insn; insn = NEXT_INSN (insn))
2503 if (GET_CODE (insn) == NOTE)
2504 switch (NOTE_LINE_NUMBER (insn))
2506 case NOTE_INSN_LOOP_BEG:
2507 next_loop = loops->array + num_loops;
2508 next_loop->num = num_loops;
2509 num_loops++;
2510 next_loop->start = insn;
2511 next_loop->outer = current_loop;
2512 current_loop = next_loop;
2513 break;
2515 case NOTE_INSN_LOOP_CONT:
2516 current_loop->cont = insn;
2517 break;
2519 case NOTE_INSN_LOOP_VTOP:
2520 current_loop->vtop = insn;
2521 break;
2523 case NOTE_INSN_LOOP_END:
2524 if (! current_loop)
2525 abort ();
2527 current_loop->end = insn;
2528 current_loop = current_loop->outer;
2529 break;
2531 default:
2532 break;
2535 if (GET_CODE (insn) == CALL_INSN
2536 && find_reg_note (insn, REG_SETJMP, NULL))
2538 /* In this case, we must invalidate our current loop and any
2539 enclosing loop. */
2540 for (loop = current_loop; loop; loop = loop->outer)
2542 loop->invalid = 1;
2543 if (loop_dump_stream)
2544 fprintf (loop_dump_stream,
2545 "\nLoop at %d ignored due to setjmp.\n",
2546 INSN_UID (loop->start));
2550 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2551 enclosing loop, but this doesn't matter. */
2552 uid_loop[INSN_UID (insn)] = current_loop;
2555 /* Any loop containing a label used in an initializer must be invalidated,
2556 because it can be jumped into from anywhere. */
2558 for (label = forced_labels; label; label = XEXP (label, 1))
2560 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2561 loop; loop = loop->outer)
2562 loop->invalid = 1;
2565 /* Any loop containing a label used for an exception handler must be
2566 invalidated, because it can be jumped into from anywhere. */
2568 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2570 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2571 loop; loop = loop->outer)
2572 loop->invalid = 1;
2575 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2576 loop that it is not contained within, that loop is marked invalid.
2577 If any INSN or CALL_INSN uses a label's address, then the loop containing
2578 that label is marked invalid, because it could be jumped into from
2579 anywhere.
2581 Also look for blocks of code ending in an unconditional branch that
2582 exits the loop. If such a block is surrounded by a conditional
2583 branch around the block, move the block elsewhere (see below) and
2584 invert the jump to point to the code block. This may eliminate a
2585 label in our loop and will simplify processing by both us and a
2586 possible second cse pass. */
2588 for (insn = f; insn; insn = NEXT_INSN (insn))
2589 if (INSN_P (insn))
2591 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2593 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2595 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2596 if (note)
2598 for (loop = uid_loop[INSN_UID (XEXP (note, 0))];
2599 loop; loop = loop->outer)
2600 loop->invalid = 1;
2604 if (GET_CODE (insn) != JUMP_INSN)
2605 continue;
2607 mark_loop_jump (PATTERN (insn), this_loop);
2609 /* See if this is an unconditional branch outside the loop. */
2610 if (this_loop
2611 && (GET_CODE (PATTERN (insn)) == RETURN
2612 || (any_uncondjump_p (insn)
2613 && onlyjump_p (insn)
2614 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2615 != this_loop)))
2616 && get_max_uid () < max_uid_for_loop)
2618 rtx p;
2619 rtx our_next = next_real_insn (insn);
2620 rtx last_insn_to_move = NEXT_INSN (insn);
2621 struct loop *dest_loop;
2622 struct loop *outer_loop = NULL;
2624 /* Go backwards until we reach the start of the loop, a label,
2625 or a JUMP_INSN. */
2626 for (p = PREV_INSN (insn);
2627 GET_CODE (p) != CODE_LABEL
2628 && ! (GET_CODE (p) == NOTE
2629 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2630 && GET_CODE (p) != JUMP_INSN;
2631 p = PREV_INSN (p))
2634 /* Check for the case where we have a jump to an inner nested
2635 loop, and do not perform the optimization in that case. */
2637 if (JUMP_LABEL (insn))
2639 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2640 if (dest_loop)
2642 for (outer_loop = dest_loop; outer_loop;
2643 outer_loop = outer_loop->outer)
2644 if (outer_loop == this_loop)
2645 break;
2649 /* Make sure that the target of P is within the current loop. */
2651 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2652 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2653 outer_loop = this_loop;
2655 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2656 we have a block of code to try to move.
2658 We look backward and then forward from the target of INSN
2659 to find a BARRIER at the same loop depth as the target.
2660 If we find such a BARRIER, we make a new label for the start
2661 of the block, invert the jump in P and point it to that label,
2662 and move the block of code to the spot we found. */
2664 if (! outer_loop
2665 && GET_CODE (p) == JUMP_INSN
2666 && JUMP_LABEL (p) != 0
2667 /* Just ignore jumps to labels that were never emitted.
2668 These always indicate compilation errors. */
2669 && INSN_UID (JUMP_LABEL (p)) != 0
2670 && any_condjump_p (p) && onlyjump_p (p)
2671 && next_real_insn (JUMP_LABEL (p)) == our_next
2672 /* If it's not safe to move the sequence, then we
2673 mustn't try. */
2674 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2675 &last_insn_to_move))
2677 rtx target
2678 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2679 struct loop *target_loop = uid_loop[INSN_UID (target)];
2680 rtx loc, loc2;
2681 rtx tmp;
2683 /* Search for possible garbage past the conditional jumps
2684 and look for the last barrier. */
2685 for (tmp = last_insn_to_move;
2686 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2687 if (GET_CODE (tmp) == BARRIER)
2688 last_insn_to_move = tmp;
2690 for (loc = target; loc; loc = PREV_INSN (loc))
2691 if (GET_CODE (loc) == BARRIER
2692 /* Don't move things inside a tablejump. */
2693 && ((loc2 = next_nonnote_insn (loc)) == 0
2694 || GET_CODE (loc2) != CODE_LABEL
2695 || (loc2 = next_nonnote_insn (loc2)) == 0
2696 || GET_CODE (loc2) != JUMP_INSN
2697 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2698 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2699 && uid_loop[INSN_UID (loc)] == target_loop)
2700 break;
2702 if (loc == 0)
2703 for (loc = target; loc; loc = NEXT_INSN (loc))
2704 if (GET_CODE (loc) == BARRIER
2705 /* Don't move things inside a tablejump. */
2706 && ((loc2 = next_nonnote_insn (loc)) == 0
2707 || GET_CODE (loc2) != CODE_LABEL
2708 || (loc2 = next_nonnote_insn (loc2)) == 0
2709 || GET_CODE (loc2) != JUMP_INSN
2710 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2711 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2712 && uid_loop[INSN_UID (loc)] == target_loop)
2713 break;
2715 if (loc)
2717 rtx cond_label = JUMP_LABEL (p);
2718 rtx new_label = get_label_after (p);
2720 /* Ensure our label doesn't go away. */
2721 LABEL_NUSES (cond_label)++;
2723 /* Verify that uid_loop is large enough and that
2724 we can invert P. */
2725 if (invert_jump (p, new_label, 1))
2727 rtx q, r;
2729 /* If no suitable BARRIER was found, create a suitable
2730 one before TARGET. Since TARGET is a fall through
2731 path, we'll need to insert an jump around our block
2732 and a add a BARRIER before TARGET.
2734 This creates an extra unconditional jump outside
2735 the loop. However, the benefits of removing rarely
2736 executed instructions from inside the loop usually
2737 outweighs the cost of the extra unconditional jump
2738 outside the loop. */
2739 if (loc == 0)
2741 rtx temp;
2743 temp = gen_jump (JUMP_LABEL (insn));
2744 temp = emit_jump_insn_before (temp, target);
2745 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2746 LABEL_NUSES (JUMP_LABEL (insn))++;
2747 loc = emit_barrier_before (target);
2750 /* Include the BARRIER after INSN and copy the
2751 block after LOC. */
2752 squeeze_notes (&new_label, &last_insn_to_move);
2753 reorder_insns (new_label, last_insn_to_move, loc);
2755 /* All those insns are now in TARGET_LOOP. */
2756 for (q = new_label;
2757 q != NEXT_INSN (last_insn_to_move);
2758 q = NEXT_INSN (q))
2759 uid_loop[INSN_UID (q)] = target_loop;
2761 /* The label jumped to by INSN is no longer a loop
2762 exit. Unless INSN does not have a label (e.g.,
2763 it is a RETURN insn), search loop->exit_labels
2764 to find its label_ref, and remove it. Also turn
2765 off LABEL_OUTSIDE_LOOP_P bit. */
2766 if (JUMP_LABEL (insn))
2768 for (q = 0, r = this_loop->exit_labels;
2770 q = r, r = LABEL_NEXTREF (r))
2771 if (XEXP (r, 0) == JUMP_LABEL (insn))
2773 LABEL_OUTSIDE_LOOP_P (r) = 0;
2774 if (q)
2775 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2776 else
2777 this_loop->exit_labels = LABEL_NEXTREF (r);
2778 break;
2781 for (loop = this_loop; loop && loop != target_loop;
2782 loop = loop->outer)
2783 loop->exit_count--;
2785 /* If we didn't find it, then something is
2786 wrong. */
2787 if (! r)
2788 abort ();
2791 /* P is now a jump outside the loop, so it must be put
2792 in loop->exit_labels, and marked as such.
2793 The easiest way to do this is to just call
2794 mark_loop_jump again for P. */
2795 mark_loop_jump (PATTERN (p), this_loop);
2797 /* If INSN now jumps to the insn after it,
2798 delete INSN. */
2799 if (JUMP_LABEL (insn) != 0
2800 && (next_real_insn (JUMP_LABEL (insn))
2801 == next_real_insn (insn)))
2802 delete_insn (insn);
2805 /* Continue the loop after where the conditional
2806 branch used to jump, since the only branch insn
2807 in the block (if it still remains) is an inter-loop
2808 branch and hence needs no processing. */
2809 insn = NEXT_INSN (cond_label);
2811 if (--LABEL_NUSES (cond_label) == 0)
2812 delete_insn (cond_label);
2814 /* This loop will be continued with NEXT_INSN (insn). */
2815 insn = PREV_INSN (insn);
2822 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2823 loops it is contained in, mark the target loop invalid.
2825 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2827 static void
2828 mark_loop_jump (x, loop)
2829 rtx x;
2830 struct loop *loop;
2832 struct loop *dest_loop;
2833 struct loop *outer_loop;
2834 int i;
2836 switch (GET_CODE (x))
2838 case PC:
2839 case USE:
2840 case CLOBBER:
2841 case REG:
2842 case MEM:
2843 case CONST_INT:
2844 case CONST_DOUBLE:
2845 case RETURN:
2846 return;
2848 case CONST:
2849 /* There could be a label reference in here. */
2850 mark_loop_jump (XEXP (x, 0), loop);
2851 return;
2853 case PLUS:
2854 case MINUS:
2855 case MULT:
2856 mark_loop_jump (XEXP (x, 0), loop);
2857 mark_loop_jump (XEXP (x, 1), loop);
2858 return;
2860 case LO_SUM:
2861 /* This may refer to a LABEL_REF or SYMBOL_REF. */
2862 mark_loop_jump (XEXP (x, 1), loop);
2863 return;
2865 case SIGN_EXTEND:
2866 case ZERO_EXTEND:
2867 mark_loop_jump (XEXP (x, 0), loop);
2868 return;
2870 case LABEL_REF:
2871 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
2873 /* Link together all labels that branch outside the loop. This
2874 is used by final_[bg]iv_value and the loop unrolling code. Also
2875 mark this LABEL_REF so we know that this branch should predict
2876 false. */
2878 /* A check to make sure the label is not in an inner nested loop,
2879 since this does not count as a loop exit. */
2880 if (dest_loop)
2882 for (outer_loop = dest_loop; outer_loop;
2883 outer_loop = outer_loop->outer)
2884 if (outer_loop == loop)
2885 break;
2887 else
2888 outer_loop = NULL;
2890 if (loop && ! outer_loop)
2892 LABEL_OUTSIDE_LOOP_P (x) = 1;
2893 LABEL_NEXTREF (x) = loop->exit_labels;
2894 loop->exit_labels = x;
2896 for (outer_loop = loop;
2897 outer_loop && outer_loop != dest_loop;
2898 outer_loop = outer_loop->outer)
2899 outer_loop->exit_count++;
2902 /* If this is inside a loop, but not in the current loop or one enclosed
2903 by it, it invalidates at least one loop. */
2905 if (! dest_loop)
2906 return;
2908 /* We must invalidate every nested loop containing the target of this
2909 label, except those that also contain the jump insn. */
2911 for (; dest_loop; dest_loop = dest_loop->outer)
2913 /* Stop when we reach a loop that also contains the jump insn. */
2914 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
2915 if (dest_loop == outer_loop)
2916 return;
2918 /* If we get here, we know we need to invalidate a loop. */
2919 if (loop_dump_stream && ! dest_loop->invalid)
2920 fprintf (loop_dump_stream,
2921 "\nLoop at %d ignored due to multiple entry points.\n",
2922 INSN_UID (dest_loop->start));
2924 dest_loop->invalid = 1;
2926 return;
2928 case SET:
2929 /* If this is not setting pc, ignore. */
2930 if (SET_DEST (x) == pc_rtx)
2931 mark_loop_jump (SET_SRC (x), loop);
2932 return;
2934 case IF_THEN_ELSE:
2935 mark_loop_jump (XEXP (x, 1), loop);
2936 mark_loop_jump (XEXP (x, 2), loop);
2937 return;
2939 case PARALLEL:
2940 case ADDR_VEC:
2941 for (i = 0; i < XVECLEN (x, 0); i++)
2942 mark_loop_jump (XVECEXP (x, 0, i), loop);
2943 return;
2945 case ADDR_DIFF_VEC:
2946 for (i = 0; i < XVECLEN (x, 1); i++)
2947 mark_loop_jump (XVECEXP (x, 1, i), loop);
2948 return;
2950 default:
2951 /* Strictly speaking this is not a jump into the loop, only a possible
2952 jump out of the loop. However, we have no way to link the destination
2953 of this jump onto the list of exit labels. To be safe we mark this
2954 loop and any containing loops as invalid. */
2955 if (loop)
2957 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
2959 if (loop_dump_stream && ! outer_loop->invalid)
2960 fprintf (loop_dump_stream,
2961 "\nLoop at %d ignored due to unknown exit jump.\n",
2962 INSN_UID (outer_loop->start));
2963 outer_loop->invalid = 1;
2966 return;
2970 /* Return nonzero if there is a label in the range from
2971 insn INSN to and including the insn whose luid is END
2972 INSN must have an assigned luid (i.e., it must not have
2973 been previously created by loop.c). */
2975 static int
2976 labels_in_range_p (insn, end)
2977 rtx insn;
2978 int end;
2980 while (insn && INSN_LUID (insn) <= end)
2982 if (GET_CODE (insn) == CODE_LABEL)
2983 return 1;
2984 insn = NEXT_INSN (insn);
2987 return 0;
2990 /* Record that a memory reference X is being set. */
2992 static void
2993 note_addr_stored (x, y, data)
2994 rtx x;
2995 rtx y ATTRIBUTE_UNUSED;
2996 void *data ATTRIBUTE_UNUSED;
2998 struct loop_info *loop_info = data;
3000 if (x == 0 || GET_CODE (x) != MEM)
3001 return;
3003 /* Count number of memory writes.
3004 This affects heuristics in strength_reduce. */
3005 loop_info->num_mem_sets++;
3007 /* BLKmode MEM means all memory is clobbered. */
3008 if (GET_MODE (x) == BLKmode)
3010 if (RTX_UNCHANGING_P (x))
3011 loop_info->unknown_constant_address_altered = 1;
3012 else
3013 loop_info->unknown_address_altered = 1;
3015 return;
3018 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3019 loop_info->store_mems);
3022 /* X is a value modified by an INSN that references a biv inside a loop
3023 exit test (ie, X is somehow related to the value of the biv). If X
3024 is a pseudo that is used more than once, then the biv is (effectively)
3025 used more than once. DATA is a pointer to a loop_regs structure. */
3027 static void
3028 note_set_pseudo_multiple_uses (x, y, data)
3029 rtx x;
3030 rtx y ATTRIBUTE_UNUSED;
3031 void *data;
3033 struct loop_regs *regs = (struct loop_regs *) data;
3035 if (x == 0)
3036 return;
3038 while (GET_CODE (x) == STRICT_LOW_PART
3039 || GET_CODE (x) == SIGN_EXTRACT
3040 || GET_CODE (x) == ZERO_EXTRACT
3041 || GET_CODE (x) == SUBREG)
3042 x = XEXP (x, 0);
3044 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3045 return;
3047 /* If we do not have usage information, or if we know the register
3048 is used more than once, note that fact for check_dbra_loop. */
3049 if (REGNO (x) >= max_reg_before_loop
3050 || ! regs->array[REGNO (x)].single_usage
3051 || regs->array[REGNO (x)].single_usage == const0_rtx)
3052 regs->multiple_uses = 1;
3055 /* Return nonzero if the rtx X is invariant over the current loop.
3057 The value is 2 if we refer to something only conditionally invariant.
3059 A memory ref is invariant if it is not volatile and does not conflict
3060 with anything stored in `loop_info->store_mems'. */
3063 loop_invariant_p (loop, x)
3064 const struct loop *loop;
3065 register rtx x;
3067 struct loop_info *loop_info = LOOP_INFO (loop);
3068 struct loop_regs *regs = LOOP_REGS (loop);
3069 register int i;
3070 register enum rtx_code code;
3071 register const char *fmt;
3072 int conditional = 0;
3073 rtx mem_list_entry;
3075 if (x == 0)
3076 return 1;
3077 code = GET_CODE (x);
3078 switch (code)
3080 case CONST_INT:
3081 case CONST_DOUBLE:
3082 case SYMBOL_REF:
3083 case CONST:
3084 return 1;
3086 case LABEL_REF:
3087 /* A LABEL_REF is normally invariant, however, if we are unrolling
3088 loops, and this label is inside the loop, then it isn't invariant.
3089 This is because each unrolled copy of the loop body will have
3090 a copy of this label. If this was invariant, then an insn loading
3091 the address of this label into a register might get moved outside
3092 the loop, and then each loop body would end up using the same label.
3094 We don't know the loop bounds here though, so just fail for all
3095 labels. */
3096 if (flag_unroll_loops)
3097 return 0;
3098 else
3099 return 1;
3101 case PC:
3102 case CC0:
3103 case UNSPEC_VOLATILE:
3104 return 0;
3106 case REG:
3107 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3108 since the reg might be set by initialization within the loop. */
3110 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3111 || x == arg_pointer_rtx)
3112 && ! current_function_has_nonlocal_goto)
3113 return 1;
3115 if (LOOP_INFO (loop)->has_call
3116 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3117 return 0;
3119 if (regs->array[REGNO (x)].set_in_loop < 0)
3120 return 2;
3122 return regs->array[REGNO (x)].set_in_loop == 0;
3124 case MEM:
3125 /* Volatile memory references must be rejected. Do this before
3126 checking for read-only items, so that volatile read-only items
3127 will be rejected also. */
3128 if (MEM_VOLATILE_P (x))
3129 return 0;
3131 /* See if there is any dependence between a store and this load. */
3132 mem_list_entry = loop_info->store_mems;
3133 while (mem_list_entry)
3135 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3136 x, rtx_varies_p))
3137 return 0;
3139 mem_list_entry = XEXP (mem_list_entry, 1);
3142 /* It's not invalidated by a store in memory
3143 but we must still verify the address is invariant. */
3144 break;
3146 case ASM_OPERANDS:
3147 /* Don't mess with insns declared volatile. */
3148 if (MEM_VOLATILE_P (x))
3149 return 0;
3150 break;
3152 default:
3153 break;
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3159 if (fmt[i] == 'e')
3161 int tem = loop_invariant_p (loop, XEXP (x, i));
3162 if (tem == 0)
3163 return 0;
3164 if (tem == 2)
3165 conditional = 1;
3167 else if (fmt[i] == 'E')
3169 register int j;
3170 for (j = 0; j < XVECLEN (x, i); j++)
3172 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3173 if (tem == 0)
3174 return 0;
3175 if (tem == 2)
3176 conditional = 1;
3182 return 1 + conditional;
3185 /* Return nonzero if all the insns in the loop that set REG
3186 are INSN and the immediately following insns,
3187 and if each of those insns sets REG in an invariant way
3188 (not counting uses of REG in them).
3190 The value is 2 if some of these insns are only conditionally invariant.
3192 We assume that INSN itself is the first set of REG
3193 and that its source is invariant. */
3195 static int
3196 consec_sets_invariant_p (loop, reg, n_sets, insn)
3197 const struct loop *loop;
3198 int n_sets;
3199 rtx reg, insn;
3201 struct loop_regs *regs = LOOP_REGS (loop);
3202 rtx p = insn;
3203 unsigned int regno = REGNO (reg);
3204 rtx temp;
3205 /* Number of sets we have to insist on finding after INSN. */
3206 int count = n_sets - 1;
3207 int old = regs->array[regno].set_in_loop;
3208 int value = 0;
3209 int this;
3211 /* If N_SETS hit the limit, we can't rely on its value. */
3212 if (n_sets == 127)
3213 return 0;
3215 regs->array[regno].set_in_loop = 0;
3217 while (count > 0)
3219 register enum rtx_code code;
3220 rtx set;
3222 p = NEXT_INSN (p);
3223 code = GET_CODE (p);
3225 /* If library call, skip to end of it. */
3226 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3227 p = XEXP (temp, 0);
3229 this = 0;
3230 if (code == INSN
3231 && (set = single_set (p))
3232 && GET_CODE (SET_DEST (set)) == REG
3233 && REGNO (SET_DEST (set)) == regno)
3235 this = loop_invariant_p (loop, SET_SRC (set));
3236 if (this != 0)
3237 value |= this;
3238 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3240 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3241 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3242 notes are OK. */
3243 this = (CONSTANT_P (XEXP (temp, 0))
3244 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3245 && loop_invariant_p (loop, XEXP (temp, 0))));
3246 if (this != 0)
3247 value |= this;
3250 if (this != 0)
3251 count--;
3252 else if (code != NOTE)
3254 regs->array[regno].set_in_loop = old;
3255 return 0;
3259 regs->array[regno].set_in_loop = old;
3260 /* If loop_invariant_p ever returned 2, we return 2. */
3261 return 1 + (value & 2);
3264 #if 0
3265 /* I don't think this condition is sufficient to allow INSN
3266 to be moved, so we no longer test it. */
3268 /* Return 1 if all insns in the basic block of INSN and following INSN
3269 that set REG are invariant according to TABLE. */
3271 static int
3272 all_sets_invariant_p (reg, insn, table)
3273 rtx reg, insn;
3274 short *table;
3276 register rtx p = insn;
3277 register int regno = REGNO (reg);
3279 while (1)
3281 register enum rtx_code code;
3282 p = NEXT_INSN (p);
3283 code = GET_CODE (p);
3284 if (code == CODE_LABEL || code == JUMP_INSN)
3285 return 1;
3286 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3287 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3288 && REGNO (SET_DEST (PATTERN (p))) == regno)
3290 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3291 return 0;
3295 #endif /* 0 */
3297 /* Look at all uses (not sets) of registers in X. For each, if it is
3298 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3299 a different insn, set USAGE[REGNO] to const0_rtx. */
3301 static void
3302 find_single_use_in_loop (regs, insn, x)
3303 struct loop_regs *regs;
3304 rtx insn;
3305 rtx x;
3307 enum rtx_code code = GET_CODE (x);
3308 const char *fmt = GET_RTX_FORMAT (code);
3309 int i, j;
3311 if (code == REG)
3312 regs->array[REGNO (x)].single_usage
3313 = (regs->array[REGNO (x)].single_usage != 0
3314 && regs->array[REGNO (x)].single_usage != insn)
3315 ? const0_rtx : insn;
3317 else if (code == SET)
3319 /* Don't count SET_DEST if it is a REG; otherwise count things
3320 in SET_DEST because if a register is partially modified, it won't
3321 show up as a potential movable so we don't care how USAGE is set
3322 for it. */
3323 if (GET_CODE (SET_DEST (x)) != REG)
3324 find_single_use_in_loop (regs, insn, SET_DEST (x));
3325 find_single_use_in_loop (regs, insn, SET_SRC (x));
3327 else
3328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3330 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3331 find_single_use_in_loop (regs, insn, XEXP (x, i));
3332 else if (fmt[i] == 'E')
3333 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3334 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3338 /* Count and record any set in X which is contained in INSN. Update
3339 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3340 in X. */
3342 static void
3343 count_one_set (regs, insn, x, last_set)
3344 struct loop_regs *regs;
3345 rtx insn, x;
3346 rtx *last_set;
3348 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3349 /* Don't move a reg that has an explicit clobber.
3350 It's not worth the pain to try to do it correctly. */
3351 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3353 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3355 rtx dest = SET_DEST (x);
3356 while (GET_CODE (dest) == SUBREG
3357 || GET_CODE (dest) == ZERO_EXTRACT
3358 || GET_CODE (dest) == SIGN_EXTRACT
3359 || GET_CODE (dest) == STRICT_LOW_PART)
3360 dest = XEXP (dest, 0);
3361 if (GET_CODE (dest) == REG)
3363 register int regno = REGNO (dest);
3364 /* If this is the first setting of this reg
3365 in current basic block, and it was set before,
3366 it must be set in two basic blocks, so it cannot
3367 be moved out of the loop. */
3368 if (regs->array[regno].set_in_loop > 0
3369 && last_set == 0)
3370 regs->array[regno].may_not_optimize = 1;
3371 /* If this is not first setting in current basic block,
3372 see if reg was used in between previous one and this.
3373 If so, neither one can be moved. */
3374 if (last_set[regno] != 0
3375 && reg_used_between_p (dest, last_set[regno], insn))
3376 regs->array[regno].may_not_optimize = 1;
3377 if (regs->array[regno].set_in_loop < 127)
3378 ++regs->array[regno].set_in_loop;
3379 last_set[regno] = insn;
3384 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3385 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3386 contained in insn INSN is used by any insn that precedes INSN in
3387 cyclic order starting from the loop entry point.
3389 We don't want to use INSN_LUID here because if we restrict INSN to those
3390 that have a valid INSN_LUID, it means we cannot move an invariant out
3391 from an inner loop past two loops. */
3393 static int
3394 loop_reg_used_before_p (loop, set, insn)
3395 const struct loop *loop;
3396 rtx set, insn;
3398 rtx reg = SET_DEST (set);
3399 rtx p;
3401 /* Scan forward checking for register usage. If we hit INSN, we
3402 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3403 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3405 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3406 return 1;
3408 if (p == loop->end)
3409 p = loop->start;
3412 return 0;
3415 /* A "basic induction variable" or biv is a pseudo reg that is set
3416 (within this loop) only by incrementing or decrementing it. */
3417 /* A "general induction variable" or giv is a pseudo reg whose
3418 value is a linear function of a biv. */
3420 /* Bivs are recognized by `basic_induction_var';
3421 Givs by `general_induction_var'. */
3423 /* Communication with routines called via `note_stores'. */
3425 static rtx note_insn;
3427 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3429 static rtx addr_placeholder;
3431 /* ??? Unfinished optimizations, and possible future optimizations,
3432 for the strength reduction code. */
3434 /* ??? The interaction of biv elimination, and recognition of 'constant'
3435 bivs, may cause problems. */
3437 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3438 performance problems.
3440 Perhaps don't eliminate things that can be combined with an addressing
3441 mode. Find all givs that have the same biv, mult_val, and add_val;
3442 then for each giv, check to see if its only use dies in a following
3443 memory address. If so, generate a new memory address and check to see
3444 if it is valid. If it is valid, then store the modified memory address,
3445 otherwise, mark the giv as not done so that it will get its own iv. */
3447 /* ??? Could try to optimize branches when it is known that a biv is always
3448 positive. */
3450 /* ??? When replace a biv in a compare insn, we should replace with closest
3451 giv so that an optimized branch can still be recognized by the combiner,
3452 e.g. the VAX acb insn. */
3454 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3455 was rerun in loop_optimize whenever a register was added or moved.
3456 Also, some of the optimizations could be a little less conservative. */
3458 /* Scan the loop body and call FNCALL for each insn. In the addition to the
3459 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
3460 callback.
3462 NOT_EVERY_ITERATION if current insn is not executed at least once for every
3463 loop iteration except for the last one.
3465 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
3466 loop iteration.
3468 void
3469 for_each_insn_in_loop (loop, fncall)
3470 struct loop *loop;
3471 loop_insn_callback fncall;
3473 /* This is 1 if current insn is not executed at least once for every loop
3474 iteration. */
3475 int not_every_iteration = 0;
3476 int maybe_multiple = 0;
3477 int past_loop_latch = 0;
3478 int loop_depth = 0;
3479 rtx p;
3481 /* If loop_scan_start points to the loop exit test, we have to be wary of
3482 subversive use of gotos inside expression statements. */
3483 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
3484 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
3486 /* Scan through loop to find all possible bivs. */
3488 for (p = next_insn_in_loop (loop, loop->scan_start);
3489 p != NULL_RTX;
3490 p = next_insn_in_loop (loop, p))
3492 p = fncall (loop, p, not_every_iteration, maybe_multiple);
3494 /* Past CODE_LABEL, we get to insns that may be executed multiple
3495 times. The only way we can be sure that they can't is if every
3496 jump insn between here and the end of the loop either
3497 returns, exits the loop, is a jump to a location that is still
3498 behind the label, or is a jump to the loop start. */
3500 if (GET_CODE (p) == CODE_LABEL)
3502 rtx insn = p;
3504 maybe_multiple = 0;
3506 while (1)
3508 insn = NEXT_INSN (insn);
3509 if (insn == loop->scan_start)
3510 break;
3511 if (insn == loop->end)
3513 if (loop->top != 0)
3514 insn = loop->top;
3515 else
3516 break;
3517 if (insn == loop->scan_start)
3518 break;
3521 if (GET_CODE (insn) == JUMP_INSN
3522 && GET_CODE (PATTERN (insn)) != RETURN
3523 && (!any_condjump_p (insn)
3524 || (JUMP_LABEL (insn) != 0
3525 && JUMP_LABEL (insn) != loop->scan_start
3526 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
3528 maybe_multiple = 1;
3529 break;
3534 /* Past a jump, we get to insns for which we can't count
3535 on whether they will be executed during each iteration. */
3536 /* This code appears twice in strength_reduce. There is also similar
3537 code in scan_loop. */
3538 if (GET_CODE (p) == JUMP_INSN
3539 /* If we enter the loop in the middle, and scan around to the
3540 beginning, don't set not_every_iteration for that.
3541 This can be any kind of jump, since we want to know if insns
3542 will be executed if the loop is executed. */
3543 && !(JUMP_LABEL (p) == loop->top
3544 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
3545 && any_uncondjump_p (p))
3546 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
3548 rtx label = 0;
3550 /* If this is a jump outside the loop, then it also doesn't
3551 matter. Check to see if the target of this branch is on the
3552 loop->exits_labels list. */
3554 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3555 if (XEXP (label, 0) == JUMP_LABEL (p))
3556 break;
3558 if (!label)
3559 not_every_iteration = 1;
3562 else if (GET_CODE (p) == NOTE)
3564 /* At the virtual top of a converted loop, insns are again known to
3565 be executed each iteration: logically, the loop begins here
3566 even though the exit code has been duplicated.
3568 Insns are also again known to be executed each iteration at
3569 the LOOP_CONT note. */
3570 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3571 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3572 && loop_depth == 0)
3573 not_every_iteration = 0;
3574 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3575 loop_depth++;
3576 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3577 loop_depth--;
3580 /* Note if we pass a loop latch. If we do, then we can not clear
3581 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3582 a loop since a jump before the last CODE_LABEL may have started
3583 a new loop iteration.
3585 Note that LOOP_TOP is only set for rotated loops and we need
3586 this check for all loops, so compare against the CODE_LABEL
3587 which immediately follows LOOP_START. */
3588 if (GET_CODE (p) == JUMP_INSN
3589 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
3590 past_loop_latch = 1;
3592 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3593 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3594 or not an insn is known to be executed each iteration of the
3595 loop, whether or not any iterations are known to occur.
3597 Therefore, if we have just passed a label and have no more labels
3598 between here and the test insn of the loop, and we have not passed
3599 a jump to the top of the loop, then we know these insns will be
3600 executed each iteration. */
3602 if (not_every_iteration
3603 && !past_loop_latch
3604 && GET_CODE (p) == CODE_LABEL
3605 && no_labels_between_p (p, loop->end)
3606 && loop_insn_first_p (p, loop->cont))
3607 not_every_iteration = 0;
3611 static void
3612 loop_bivs_find (loop)
3613 struct loop *loop;
3615 struct loop_regs *regs = LOOP_REGS (loop);
3616 struct loop_ivs *ivs = LOOP_IVS (loop);
3617 /* Temporary list pointers for traversing ivs->list. */
3618 struct iv_class *bl, **backbl;
3620 ivs->list = 0;
3622 for_each_insn_in_loop (loop, check_insn_for_bivs);
3624 /* Scan ivs->list to remove all regs that proved not to be bivs.
3625 Make a sanity check against regs->n_times_set. */
3626 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
3628 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
3629 /* Above happens if register modified by subreg, etc. */
3630 /* Make sure it is not recognized as a basic induction var: */
3631 || regs->array[bl->regno].n_times_set != bl->biv_count
3632 /* If never incremented, it is invariant that we decided not to
3633 move. So leave it alone. */
3634 || ! bl->incremented)
3636 if (loop_dump_stream)
3637 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
3638 bl->regno,
3639 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
3640 ? "not induction variable"
3641 : (! bl->incremented ? "never incremented"
3642 : "count error")));
3644 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
3645 *backbl = bl->next;
3647 else
3649 backbl = &bl->next;
3651 if (loop_dump_stream)
3652 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
3658 /* Determine how BIVS are initialised by looking through pre-header
3659 extended basic block. */
3660 static void
3661 loop_bivs_init_find (loop)
3662 struct loop *loop;
3664 struct loop_ivs *ivs = LOOP_IVS (loop);
3665 /* Temporary list pointers for traversing ivs->list. */
3666 struct iv_class *bl;
3667 int call_seen;
3668 rtx p;
3670 /* Find initial value for each biv by searching backwards from loop_start,
3671 halting at first label. Also record any test condition. */
3673 call_seen = 0;
3674 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3676 rtx test;
3678 note_insn = p;
3680 if (GET_CODE (p) == CALL_INSN)
3681 call_seen = 1;
3683 if (INSN_P (p))
3684 note_stores (PATTERN (p), record_initial, ivs);
3686 /* Record any test of a biv that branches around the loop if no store
3687 between it and the start of loop. We only care about tests with
3688 constants and registers and only certain of those. */
3689 if (GET_CODE (p) == JUMP_INSN
3690 && JUMP_LABEL (p) != 0
3691 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
3692 && (test = get_condition_for_loop (loop, p)) != 0
3693 && GET_CODE (XEXP (test, 0)) == REG
3694 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3695 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
3696 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
3697 && bl->init_insn == 0)
3699 /* If an NE test, we have an initial value! */
3700 if (GET_CODE (test) == NE)
3702 bl->init_insn = p;
3703 bl->init_set = gen_rtx_SET (VOIDmode,
3704 XEXP (test, 0), XEXP (test, 1));
3706 else
3707 bl->initial_test = test;
3713 /* Look at the each biv and see if we can say anything better about its
3714 initial value from any initializing insns set up above. (This is done
3715 in two passes to avoid missing SETs in a PARALLEL.) */
3716 static void
3717 loop_bivs_check (loop)
3718 struct loop *loop;
3720 struct loop_ivs *ivs = LOOP_IVS (loop);
3721 /* Temporary list pointers for traversing ivs->list. */
3722 struct iv_class *bl;
3723 struct iv_class **backbl;
3725 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
3727 rtx src;
3728 rtx note;
3730 if (! bl->init_insn)
3731 continue;
3733 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3734 is a constant, use the value of that. */
3735 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
3736 && CONSTANT_P (XEXP (note, 0)))
3737 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
3738 && CONSTANT_P (XEXP (note, 0))))
3739 src = XEXP (note, 0);
3740 else
3741 src = SET_SRC (bl->init_set);
3743 if (loop_dump_stream)
3744 fprintf (loop_dump_stream,
3745 "Biv %d: initialized at insn %d: initial value ",
3746 bl->regno, INSN_UID (bl->init_insn));
3748 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
3749 || GET_MODE (src) == VOIDmode)
3750 && valid_initial_value_p (src, bl->init_insn,
3751 LOOP_INFO (loop)->pre_header_has_call,
3752 loop->start))
3754 bl->initial_value = src;
3756 if (loop_dump_stream)
3758 print_simple_rtl (loop_dump_stream, src);
3759 fputc ('\n', loop_dump_stream);
3762 /* If we can't make it a giv,
3763 let biv keep initial value of "itself". */
3764 else if (loop_dump_stream)
3765 fprintf (loop_dump_stream, "is complex\n");
3770 /* Search the loop for general induction variables. */
3772 static void
3773 loop_givs_find (loop)
3774 struct loop* loop;
3776 for_each_insn_in_loop (loop, check_insn_for_givs);
3780 /* For each giv for which we still don't know whether or not it is
3781 replaceable, check to see if it is replaceable because its final value
3782 can be calculated. */
3784 static void
3785 loop_givs_check (loop)
3786 struct loop *loop;
3788 struct loop_ivs *ivs = LOOP_IVS (loop);
3789 struct iv_class *bl;
3791 for (bl = ivs->list; bl; bl = bl->next)
3793 struct induction *v;
3795 for (v = bl->giv; v; v = v->next_iv)
3796 if (! v->replaceable && ! v->not_replaceable)
3797 check_final_value (loop, v);
3802 /* Return non-zero if it is possible to eliminate the biv BL provided
3803 all givs are reduced. This is possible if either the reg is not
3804 used outside the loop, or we can compute what its final value will
3805 be. */
3807 static int
3808 loop_biv_eliminable_p (loop, bl, threshold, insn_count)
3809 struct loop *loop;
3810 struct iv_class *bl;
3811 int threshold;
3812 int insn_count;
3814 /* For architectures with a decrement_and_branch_until_zero insn,
3815 don't do this if we put a REG_NONNEG note on the endtest for this
3816 biv. */
3818 #ifdef HAVE_decrement_and_branch_until_zero
3819 if (bl->nonneg)
3821 if (loop_dump_stream)
3822 fprintf (loop_dump_stream,
3823 "Cannot eliminate nonneg biv %d.\n", bl->regno);
3824 return 0;
3826 #endif
3828 /* Check that biv is used outside loop or if it has a final value.
3829 Compare against bl->init_insn rather than loop->start. We aren't
3830 concerned with any uses of the biv between init_insn and
3831 loop->start since these won't be affected by the value of the biv
3832 elsewhere in the function, so long as init_insn doesn't use the
3833 biv itself. */
3835 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
3836 && bl->init_insn
3837 && INSN_UID (bl->init_insn) < max_uid_for_loop
3838 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
3839 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3840 || (bl->final_value = final_biv_value (loop, bl)))
3841 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
3843 if (loop_dump_stream)
3845 fprintf (loop_dump_stream,
3846 "Cannot eliminate biv %d.\n",
3847 bl->regno);
3848 fprintf (loop_dump_stream,
3849 "First use: insn %d, last use: insn %d.\n",
3850 REGNO_FIRST_UID (bl->regno),
3851 REGNO_LAST_UID (bl->regno));
3853 return 0;
3857 /* Reduce each giv of BL that we have decided to reduce. */
3859 static void
3860 loop_givs_reduce (loop, bl)
3861 struct loop *loop;
3862 struct iv_class *bl;
3864 struct induction *v;
3866 for (v = bl->giv; v; v = v->next_iv)
3868 struct induction *tv;
3869 if (! v->ignore && v->same == 0)
3871 int auto_inc_opt = 0;
3873 /* If the code for derived givs immediately below has already
3874 allocated a new_reg, we must keep it. */
3875 if (! v->new_reg)
3876 v->new_reg = gen_reg_rtx (v->mode);
3878 #ifdef AUTO_INC_DEC
3879 /* If the target has auto-increment addressing modes, and
3880 this is an address giv, then try to put the increment
3881 immediately after its use, so that flow can create an
3882 auto-increment addressing mode. */
3883 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
3884 && bl->biv->always_executed && ! bl->biv->maybe_multiple
3885 /* We don't handle reversed biv's because bl->biv->insn
3886 does not have a valid INSN_LUID. */
3887 && ! bl->reversed
3888 && v->always_executed && ! v->maybe_multiple
3889 && INSN_UID (v->insn) < max_uid_for_loop)
3891 /* If other giv's have been combined with this one, then
3892 this will work only if all uses of the other giv's occur
3893 before this giv's insn. This is difficult to check.
3895 We simplify this by looking for the common case where
3896 there is one DEST_REG giv, and this giv's insn is the
3897 last use of the dest_reg of that DEST_REG giv. If the
3898 increment occurs after the address giv, then we can
3899 perform the optimization. (Otherwise, the increment
3900 would have to go before other_giv, and we would not be
3901 able to combine it with the address giv to get an
3902 auto-inc address.) */
3903 if (v->combined_with)
3905 struct induction *other_giv = 0;
3907 for (tv = bl->giv; tv; tv = tv->next_iv)
3908 if (tv->same == v)
3910 if (other_giv)
3911 break;
3912 else
3913 other_giv = tv;
3915 if (! tv && other_giv
3916 && REGNO (other_giv->dest_reg) < max_reg_before_loop
3917 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
3918 == INSN_UID (v->insn))
3919 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
3920 auto_inc_opt = 1;
3922 /* Check for case where increment is before the address
3923 giv. Do this test in "loop order". */
3924 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
3925 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
3926 || (INSN_LUID (bl->biv->insn)
3927 > INSN_LUID (loop->scan_start))))
3928 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
3929 && (INSN_LUID (loop->scan_start)
3930 < INSN_LUID (bl->biv->insn))))
3931 auto_inc_opt = -1;
3932 else
3933 auto_inc_opt = 1;
3935 #ifdef HAVE_cc0
3937 rtx prev;
3939 /* We can't put an insn immediately after one setting
3940 cc0, or immediately before one using cc0. */
3941 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
3942 || (auto_inc_opt == -1
3943 && (prev = prev_nonnote_insn (v->insn)) != 0
3944 && INSN_P (prev)
3945 && sets_cc0_p (PATTERN (prev))))
3946 auto_inc_opt = 0;
3948 #endif
3950 if (auto_inc_opt)
3951 v->auto_inc_opt = 1;
3953 #endif
3955 /* For each place where the biv is incremented, add an insn
3956 to increment the new, reduced reg for the giv. */
3957 for (tv = bl->biv; tv; tv = tv->next_iv)
3959 rtx insert_before;
3961 if (! auto_inc_opt)
3962 insert_before = tv->insn;
3963 else if (auto_inc_opt == 1)
3964 insert_before = NEXT_INSN (v->insn);
3965 else
3966 insert_before = v->insn;
3968 if (tv->mult_val == const1_rtx)
3969 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
3970 v->new_reg, v->new_reg,
3971 0, insert_before);
3972 else /* tv->mult_val == const0_rtx */
3973 /* A multiply is acceptable here
3974 since this is presumed to be seldom executed. */
3975 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
3976 v->add_val, v->new_reg,
3977 0, insert_before);
3980 /* Add code at loop start to initialize giv's reduced reg. */
3982 loop_iv_add_mult_hoist (loop,
3983 extend_value_for_giv (v, bl->initial_value),
3984 v->mult_val, v->add_val, v->new_reg);
3990 /* Check for givs whose first use is their definition and whose
3991 last use is the definition of another giv. If so, it is likely
3992 dead and should not be used to derive another giv nor to
3993 eliminate a biv. */
3995 static void
3996 loop_givs_dead_check (loop, bl)
3997 struct loop *loop ATTRIBUTE_UNUSED;
3998 struct iv_class *bl;
4000 struct induction *v;
4002 for (v = bl->giv; v; v = v->next_iv)
4004 if (v->ignore
4005 || (v->same && v->same->ignore))
4006 continue;
4008 if (v->giv_type == DEST_REG
4009 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4011 struct induction *v1;
4013 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4014 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4015 v->maybe_dead = 1;
4021 static void
4022 loop_givs_rescan (loop, bl, reg_map)
4023 struct loop *loop;
4024 struct iv_class *bl;
4025 rtx *reg_map;
4027 struct induction *v;
4029 for (v = bl->giv; v; v = v->next_iv)
4031 if (v->same && v->same->ignore)
4032 v->ignore = 1;
4034 if (v->ignore)
4035 continue;
4037 /* Update expression if this was combined, in case other giv was
4038 replaced. */
4039 if (v->same)
4040 v->new_reg = replace_rtx (v->new_reg,
4041 v->same->dest_reg, v->same->new_reg);
4043 /* See if this register is known to be a pointer to something. If
4044 so, see if we can find the alignment. First see if there is a
4045 destination register that is a pointer. If so, this shares the
4046 alignment too. Next see if we can deduce anything from the
4047 computational information. If not, and this is a DEST_ADDR
4048 giv, at least we know that it's a pointer, though we don't know
4049 the alignment. */
4050 if (GET_CODE (v->new_reg) == REG
4051 && v->giv_type == DEST_REG
4052 && REG_POINTER (v->dest_reg))
4053 mark_reg_pointer (v->new_reg,
4054 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4055 else if (GET_CODE (v->new_reg) == REG
4056 && REG_POINTER (v->src_reg))
4058 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4060 if (align == 0
4061 || GET_CODE (v->add_val) != CONST_INT
4062 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4063 align = 0;
4065 mark_reg_pointer (v->new_reg, align);
4067 else if (GET_CODE (v->new_reg) == REG
4068 && GET_CODE (v->add_val) == REG
4069 && REG_POINTER (v->add_val))
4071 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4073 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4074 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4075 align = 0;
4077 mark_reg_pointer (v->new_reg, align);
4079 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4080 mark_reg_pointer (v->new_reg, 0);
4082 if (v->giv_type == DEST_ADDR)
4083 /* Store reduced reg as the address in the memref where we found
4084 this giv. */
4085 validate_change (v->insn, v->location, v->new_reg, 0);
4086 else if (v->replaceable)
4088 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4090 else
4092 /* Not replaceable; emit an insn to set the original giv reg from
4093 the reduced giv, same as above. */
4094 loop_insn_emit_after (loop, 0, v->insn,
4095 gen_move_insn (v->dest_reg, v->new_reg));
4098 /* When a loop is reversed, givs which depend on the reversed
4099 biv, and which are live outside the loop, must be set to their
4100 correct final value. This insn is only needed if the giv is
4101 not replaceable. The correct final value is the same as the
4102 value that the giv starts the reversed loop with. */
4103 if (bl->reversed && ! v->replaceable)
4104 loop_iv_add_mult_sink (loop,
4105 extend_value_for_giv (v, bl->initial_value),
4106 v->mult_val, v->add_val, v->dest_reg);
4107 else if (v->final_value)
4108 loop_insn_sink_or_swim (loop,
4109 gen_move_insn (v->dest_reg, v->final_value));
4111 if (loop_dump_stream)
4113 fprintf (loop_dump_stream, "giv at %d reduced to ",
4114 INSN_UID (v->insn));
4115 print_simple_rtl (loop_dump_stream, v->new_reg);
4116 fprintf (loop_dump_stream, "\n");
4122 static int
4123 loop_giv_reduce_benefit (loop, bl, v, test_reg)
4124 struct loop *loop ATTRIBUTE_UNUSED;
4125 struct iv_class *bl;
4126 struct induction *v;
4127 rtx test_reg;
4129 int add_cost;
4130 int benefit;
4132 benefit = v->benefit;
4133 PUT_MODE (test_reg, v->mode);
4134 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4135 test_reg, test_reg);
4137 /* Reduce benefit if not replaceable, since we will insert a
4138 move-insn to replace the insn that calculates this giv. Don't do
4139 this unless the giv is a user variable, since it will often be
4140 marked non-replaceable because of the duplication of the exit
4141 code outside the loop. In such a case, the copies we insert are
4142 dead and will be deleted. So they don't have a cost. Similar
4143 situations exist. */
4144 /* ??? The new final_[bg]iv_value code does a much better job of
4145 finding replaceable giv's, and hence this code may no longer be
4146 necessary. */
4147 if (! v->replaceable && ! bl->eliminable
4148 && REG_USERVAR_P (v->dest_reg))
4149 benefit -= copy_cost;
4151 /* Decrease the benefit to count the add-insns that we will insert
4152 to increment the reduced reg for the giv. ??? This can
4153 overestimate the run-time cost of the additional insns, e.g. if
4154 there are multiple basic blocks that increment the biv, but only
4155 one of these blocks is executed during each iteration. There is
4156 no good way to detect cases like this with the current structure
4157 of the loop optimizer. This code is more accurate for
4158 determining code size than run-time benefits. */
4159 benefit -= add_cost * bl->biv_count;
4161 /* Decide whether to strength-reduce this giv or to leave the code
4162 unchanged (recompute it from the biv each time it is used). This
4163 decision can be made independently for each giv. */
4165 #ifdef AUTO_INC_DEC
4166 /* Attempt to guess whether autoincrement will handle some of the
4167 new add insns; if so, increase BENEFIT (undo the subtraction of
4168 add_cost that was done above). */
4169 if (v->giv_type == DEST_ADDR
4170 /* Increasing the benefit is risky, since this is only a guess.
4171 Avoid increasing register pressure in cases where there would
4172 be no other benefit from reducing this giv. */
4173 && benefit > 0
4174 && GET_CODE (v->mult_val) == CONST_INT)
4176 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4178 if (HAVE_POST_INCREMENT
4179 && INTVAL (v->mult_val) == size)
4180 benefit += add_cost * bl->biv_count;
4181 else if (HAVE_PRE_INCREMENT
4182 && INTVAL (v->mult_val) == size)
4183 benefit += add_cost * bl->biv_count;
4184 else if (HAVE_POST_DECREMENT
4185 && -INTVAL (v->mult_val) == size)
4186 benefit += add_cost * bl->biv_count;
4187 else if (HAVE_PRE_DECREMENT
4188 && -INTVAL (v->mult_val) == size)
4189 benefit += add_cost * bl->biv_count;
4191 #endif
4193 return benefit;
4197 /* Free IV structures for LOOP. */
4199 static void
4200 loop_ivs_free (loop)
4201 struct loop *loop;
4203 struct loop_ivs *ivs = LOOP_IVS (loop);
4204 struct iv_class *iv = ivs->list;
4206 free (ivs->regs);
4208 while (iv)
4210 struct iv_class *next = iv->next;
4211 struct induction *induction;
4212 struct induction *next_induction;
4214 for (induction = iv->biv; induction; induction = next_induction)
4216 next_induction = induction->next_iv;
4217 free (induction);
4219 for (induction = iv->giv; induction; induction = next_induction)
4221 next_induction = induction->next_iv;
4222 free (induction);
4225 free (iv);
4226 iv = next;
4231 /* Perform strength reduction and induction variable elimination.
4233 Pseudo registers created during this function will be beyond the
4234 last valid index in several tables including
4235 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
4236 problem here, because the added registers cannot be givs outside of
4237 their loop, and hence will never be reconsidered. But scan_loop
4238 must check regnos to make sure they are in bounds. */
4240 static void
4241 strength_reduce (loop, flags)
4242 struct loop *loop;
4243 int flags;
4245 struct loop_info *loop_info = LOOP_INFO (loop);
4246 struct loop_regs *regs = LOOP_REGS (loop);
4247 struct loop_ivs *ivs = LOOP_IVS (loop);
4248 rtx p;
4249 /* Temporary list pointer for traversing ivs->list. */
4250 struct iv_class *bl;
4251 /* Ratio of extra register life span we can justify
4252 for saving an instruction. More if loop doesn't call subroutines
4253 since in that case saving an insn makes more difference
4254 and more registers are available. */
4255 /* ??? could set this to last value of threshold in move_movables */
4256 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
4257 /* Map of pseudo-register replacements. */
4258 rtx *reg_map = NULL;
4259 int reg_map_size;
4260 int unrolled_insn_copies = 0;
4261 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
4262 int insn_count = count_insns_in_loop (loop);
4264 addr_placeholder = gen_reg_rtx (Pmode);
4266 ivs->n_regs = max_reg_before_loop;
4267 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
4269 /* Find all BIVs in loop. */
4270 loop_bivs_find (loop);
4272 /* Exit if there are no bivs. */
4273 if (! ivs->list)
4275 /* Can still unroll the loop anyways, but indicate that there is no
4276 strength reduction info available. */
4277 if (flags & LOOP_UNROLL)
4278 unroll_loop (loop, insn_count, 0);
4280 loop_ivs_free (loop);
4281 return;
4284 /* Determine how BIVS are initialised by looking through pre-header
4285 extended basic block. */
4286 loop_bivs_init_find (loop);
4288 /* Look at the each biv and see if we can say anything better about its
4289 initial value from any initializing insns set up above. */
4290 loop_bivs_check (loop);
4292 /* Search the loop for general induction variables. */
4293 loop_givs_find (loop);
4295 /* Try to calculate and save the number of loop iterations. This is
4296 set to zero if the actual number can not be calculated. This must
4297 be called after all giv's have been identified, since otherwise it may
4298 fail if the iteration variable is a giv. */
4299 loop_iterations (loop);
4301 /* Now for each giv for which we still don't know whether or not it is
4302 replaceable, check to see if it is replaceable because its final value
4303 can be calculated. This must be done after loop_iterations is called,
4304 so that final_giv_value will work correctly. */
4305 loop_givs_check (loop);
4307 /* Try to prove that the loop counter variable (if any) is always
4308 nonnegative; if so, record that fact with a REG_NONNEG note
4309 so that "decrement and branch until zero" insn can be used. */
4310 check_dbra_loop (loop, insn_count);
4312 /* Create reg_map to hold substitutions for replaceable giv regs.
4313 Some givs might have been made from biv increments, so look at
4314 ivs->reg_iv_type for a suitable size. */
4315 reg_map_size = ivs->n_regs;
4316 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
4318 /* Examine each iv class for feasibility of strength reduction/induction
4319 variable elimination. */
4321 for (bl = ivs->list; bl; bl = bl->next)
4323 struct induction *v;
4324 int benefit;
4326 /* Test whether it will be possible to eliminate this biv
4327 provided all givs are reduced. */
4328 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
4330 /* This will be true at the end, if all givs which depend on this
4331 biv have been strength reduced.
4332 We can't (currently) eliminate the biv unless this is so. */
4333 bl->all_reduced = 1;
4335 /* Check each extension dependent giv in this class to see if its
4336 root biv is safe from wrapping in the interior mode. */
4337 check_ext_dependant_givs (bl, loop_info);
4339 /* Combine all giv's for this iv_class. */
4340 combine_givs (regs, bl);
4342 for (v = bl->giv; v; v = v->next_iv)
4344 struct induction *tv;
4346 if (v->ignore || v->same)
4347 continue;
4349 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
4351 /* If an insn is not to be strength reduced, then set its ignore
4352 flag, and clear bl->all_reduced. */
4354 /* A giv that depends on a reversed biv must be reduced if it is
4355 used after the loop exit, otherwise, it would have the wrong
4356 value after the loop exit. To make it simple, just reduce all
4357 of such giv's whether or not we know they are used after the loop
4358 exit. */
4360 if (! flag_reduce_all_givs
4361 && v->lifetime * threshold * benefit < insn_count
4362 && ! bl->reversed)
4364 if (loop_dump_stream)
4365 fprintf (loop_dump_stream,
4366 "giv of insn %d not worth while, %d vs %d.\n",
4367 INSN_UID (v->insn),
4368 v->lifetime * threshold * benefit, insn_count);
4369 v->ignore = 1;
4370 bl->all_reduced = 0;
4372 else
4374 /* Check that we can increment the reduced giv without a
4375 multiply insn. If not, reject it. */
4377 for (tv = bl->biv; tv; tv = tv->next_iv)
4378 if (tv->mult_val == const1_rtx
4379 && ! product_cheap_p (tv->add_val, v->mult_val))
4381 if (loop_dump_stream)
4382 fprintf (loop_dump_stream,
4383 "giv of insn %d: would need a multiply.\n",
4384 INSN_UID (v->insn));
4385 v->ignore = 1;
4386 bl->all_reduced = 0;
4387 break;
4392 /* Check for givs whose first use is their definition and whose
4393 last use is the definition of another giv. If so, it is likely
4394 dead and should not be used to derive another giv nor to
4395 eliminate a biv. */
4396 loop_givs_dead_check (loop, bl);
4398 /* Reduce each giv that we decided to reduce. */
4399 loop_givs_reduce (loop, bl);
4401 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4402 as not reduced.
4404 For each giv register that can be reduced now: if replaceable,
4405 substitute reduced reg wherever the old giv occurs;
4406 else add new move insn "giv_reg = reduced_reg". */
4407 loop_givs_rescan (loop, bl, reg_map);
4409 /* All the givs based on the biv bl have been reduced if they
4410 merit it. */
4412 /* For each giv not marked as maybe dead that has been combined with a
4413 second giv, clear any "maybe dead" mark on that second giv.
4414 v->new_reg will either be or refer to the register of the giv it
4415 combined with.
4417 Doing this clearing avoids problems in biv elimination where
4418 a giv's new_reg is a complex value that can't be put in the
4419 insn but the giv combined with (with a reg as new_reg) is
4420 marked maybe_dead. Since the register will be used in either
4421 case, we'd prefer it be used from the simpler giv. */
4423 for (v = bl->giv; v; v = v->next_iv)
4424 if (! v->maybe_dead && v->same)
4425 v->same->maybe_dead = 0;
4427 /* Try to eliminate the biv, if it is a candidate.
4428 This won't work if ! bl->all_reduced,
4429 since the givs we planned to use might not have been reduced.
4431 We have to be careful that we didn't initially think we could
4432 eliminate this biv because of a giv that we now think may be
4433 dead and shouldn't be used as a biv replacement.
4435 Also, there is the possibility that we may have a giv that looks
4436 like it can be used to eliminate a biv, but the resulting insn
4437 isn't valid. This can happen, for example, on the 88k, where a
4438 JUMP_INSN can compare a register only with zero. Attempts to
4439 replace it with a compare with a constant will fail.
4441 Note that in cases where this call fails, we may have replaced some
4442 of the occurrences of the biv with a giv, but no harm was done in
4443 doing so in the rare cases where it can occur. */
4445 if (bl->all_reduced == 1 && bl->eliminable
4446 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
4448 /* ?? If we created a new test to bypass the loop entirely,
4449 or otherwise drop straight in, based on this test, then
4450 we might want to rewrite it also. This way some later
4451 pass has more hope of removing the initialization of this
4452 biv entirely. */
4454 /* If final_value != 0, then the biv may be used after loop end
4455 and we must emit an insn to set it just in case.
4457 Reversed bivs already have an insn after the loop setting their
4458 value, so we don't need another one. We can't calculate the
4459 proper final value for such a biv here anyways. */
4460 if (bl->final_value && ! bl->reversed)
4461 loop_insn_sink_or_swim (loop, gen_move_insn
4462 (bl->biv->dest_reg, bl->final_value));
4464 if (loop_dump_stream)
4465 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4466 bl->regno);
4470 /* Go through all the instructions in the loop, making all the
4471 register substitutions scheduled in REG_MAP. */
4473 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
4474 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4475 || GET_CODE (p) == CALL_INSN)
4477 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
4478 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
4479 INSN_CODE (p) = -1;
4482 if (loop_info->n_iterations > 0)
4484 /* When we completely unroll a loop we will likely not need the increment
4485 of the loop BIV and we will not need the conditional branch at the
4486 end of the loop. */
4487 unrolled_insn_copies = insn_count - 2;
4489 #ifdef HAVE_cc0
4490 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
4491 need the comparison before the conditional branch at the end of the
4492 loop. */
4493 unrolled_insn_copies -= 1;
4494 #endif
4496 /* We'll need one copy for each loop iteration. */
4497 unrolled_insn_copies *= loop_info->n_iterations;
4499 /* A little slop to account for the ability to remove initialization
4500 code, better CSE, and other secondary benefits of completely
4501 unrolling some loops. */
4502 unrolled_insn_copies -= 1;
4504 /* Clamp the value. */
4505 if (unrolled_insn_copies < 0)
4506 unrolled_insn_copies = 0;
4509 /* Unroll loops from within strength reduction so that we can use the
4510 induction variable information that strength_reduce has already
4511 collected. Always unroll loops that would be as small or smaller
4512 unrolled than when rolled. */
4513 if ((flags & LOOP_UNROLL)
4514 || (loop_info->n_iterations > 0
4515 && unrolled_insn_copies <= insn_count))
4516 unroll_loop (loop, insn_count, 1);
4518 #ifdef HAVE_doloop_end
4519 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
4520 doloop_optimize (loop);
4521 #endif /* HAVE_doloop_end */
4523 /* In case number of iterations is known, drop branch prediction note
4524 in the branch. Do that only in second loop pass, as loop unrolling
4525 may change the number of iterations performed. */
4526 if ((flags & LOOP_BCT)
4527 && loop_info->n_iterations / loop_info->unroll_number > 1)
4529 int n = loop_info->n_iterations / loop_info->unroll_number;
4530 predict_insn (PREV_INSN (loop->end),
4531 PRED_LOOP_ITERATIONS,
4532 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
4535 if (loop_dump_stream)
4536 fprintf (loop_dump_stream, "\n");
4538 loop_ivs_free (loop);
4539 if (reg_map)
4540 free (reg_map);
4543 /*Record all basic induction variables calculated in the insn. */
4544 static rtx
4545 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
4546 struct loop *loop;
4547 rtx p;
4548 int not_every_iteration;
4549 int maybe_multiple;
4551 struct loop_ivs *ivs = LOOP_IVS (loop);
4552 rtx set;
4553 rtx dest_reg;
4554 rtx inc_val;
4555 rtx mult_val;
4556 rtx *location;
4558 if (GET_CODE (p) == INSN
4559 && (set = single_set (p))
4560 && GET_CODE (SET_DEST (set)) == REG)
4562 dest_reg = SET_DEST (set);
4563 if (REGNO (dest_reg) < max_reg_before_loop
4564 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
4565 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
4567 if (basic_induction_var (loop, SET_SRC (set),
4568 GET_MODE (SET_SRC (set)),
4569 dest_reg, p, &inc_val, &mult_val,
4570 &location))
4572 /* It is a possible basic induction variable.
4573 Create and initialize an induction structure for it. */
4575 struct induction *v
4576 = (struct induction *) xmalloc (sizeof (struct induction));
4578 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
4579 not_every_iteration, maybe_multiple);
4580 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
4582 else if (REGNO (dest_reg) < ivs->n_regs)
4583 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
4586 return p;
4589 /* Record all givs calculated in the insn.
4590 A register is a giv if: it is only set once, it is a function of a
4591 biv and a constant (or invariant), and it is not a biv. */
4592 static rtx
4593 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
4594 struct loop *loop;
4595 rtx p;
4596 int not_every_iteration;
4597 int maybe_multiple;
4599 struct loop_regs *regs = LOOP_REGS (loop);
4601 rtx set;
4602 /* Look for a general induction variable in a register. */
4603 if (GET_CODE (p) == INSN
4604 && (set = single_set (p))
4605 && GET_CODE (SET_DEST (set)) == REG
4606 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
4608 rtx src_reg;
4609 rtx dest_reg;
4610 rtx add_val;
4611 rtx mult_val;
4612 rtx ext_val;
4613 int benefit;
4614 rtx regnote = 0;
4615 rtx last_consec_insn;
4617 dest_reg = SET_DEST (set);
4618 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
4619 return p;
4621 if (/* SET_SRC is a giv. */
4622 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
4623 &mult_val, &ext_val, 0, &benefit, VOIDmode)
4624 /* Equivalent expression is a giv. */
4625 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
4626 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
4627 &add_val, &mult_val, &ext_val, 0,
4628 &benefit, VOIDmode)))
4629 /* Don't try to handle any regs made by loop optimization.
4630 We have nothing on them in regno_first_uid, etc. */
4631 && REGNO (dest_reg) < max_reg_before_loop
4632 /* Don't recognize a BASIC_INDUCT_VAR here. */
4633 && dest_reg != src_reg
4634 /* This must be the only place where the register is set. */
4635 && (regs->array[REGNO (dest_reg)].n_times_set == 1
4636 /* or all sets must be consecutive and make a giv. */
4637 || (benefit = consec_sets_giv (loop, benefit, p,
4638 src_reg, dest_reg,
4639 &add_val, &mult_val, &ext_val,
4640 &last_consec_insn))))
4642 struct induction *v
4643 = (struct induction *) xmalloc (sizeof (struct induction));
4645 /* If this is a library call, increase benefit. */
4646 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
4647 benefit += libcall_benefit (p);
4649 /* Skip the consecutive insns, if there are any. */
4650 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
4651 p = last_consec_insn;
4653 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
4654 ext_val, benefit, DEST_REG, not_every_iteration,
4655 maybe_multiple, (rtx*)0);
4660 #ifndef DONT_REDUCE_ADDR
4661 /* Look for givs which are memory addresses. */
4662 /* This resulted in worse code on a VAX 8600. I wonder if it
4663 still does. */
4664 if (GET_CODE (p) == INSN)
4665 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
4666 maybe_multiple);
4667 #endif
4669 /* Update the status of whether giv can derive other givs. This can
4670 change when we pass a label or an insn that updates a biv. */
4671 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4672 || GET_CODE (p) == CODE_LABEL)
4673 update_giv_derive (loop, p);
4674 return p;
4677 /* Return 1 if X is a valid source for an initial value (or as value being
4678 compared against in an initial test).
4680 X must be either a register or constant and must not be clobbered between
4681 the current insn and the start of the loop.
4683 INSN is the insn containing X. */
4685 static int
4686 valid_initial_value_p (x, insn, call_seen, loop_start)
4687 rtx x;
4688 rtx insn;
4689 int call_seen;
4690 rtx loop_start;
4692 if (CONSTANT_P (x))
4693 return 1;
4695 /* Only consider pseudos we know about initialized in insns whose luids
4696 we know. */
4697 if (GET_CODE (x) != REG
4698 || REGNO (x) >= max_reg_before_loop)
4699 return 0;
4701 /* Don't use call-clobbered registers across a call which clobbers it. On
4702 some machines, don't use any hard registers at all. */
4703 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4704 && (SMALL_REGISTER_CLASSES
4705 || (call_used_regs[REGNO (x)] && call_seen)))
4706 return 0;
4708 /* Don't use registers that have been clobbered before the start of the
4709 loop. */
4710 if (reg_set_between_p (x, insn, loop_start))
4711 return 0;
4713 return 1;
4716 /* Scan X for memory refs and check each memory address
4717 as a possible giv. INSN is the insn whose pattern X comes from.
4718 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4719 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
4720 more thanonce in each loop iteration. */
4722 static void
4723 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
4724 const struct loop *loop;
4725 rtx x;
4726 rtx insn;
4727 int not_every_iteration, maybe_multiple;
4729 register int i, j;
4730 register enum rtx_code code;
4731 register const char *fmt;
4733 if (x == 0)
4734 return;
4736 code = GET_CODE (x);
4737 switch (code)
4739 case REG:
4740 case CONST_INT:
4741 case CONST:
4742 case CONST_DOUBLE:
4743 case SYMBOL_REF:
4744 case LABEL_REF:
4745 case PC:
4746 case CC0:
4747 case ADDR_VEC:
4748 case ADDR_DIFF_VEC:
4749 case USE:
4750 case CLOBBER:
4751 return;
4753 case MEM:
4755 rtx src_reg;
4756 rtx add_val;
4757 rtx mult_val;
4758 rtx ext_val;
4759 int benefit;
4761 /* This code used to disable creating GIVs with mult_val == 1 and
4762 add_val == 0. However, this leads to lost optimizations when
4763 it comes time to combine a set of related DEST_ADDR GIVs, since
4764 this one would not be seen. */
4766 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
4767 &mult_val, &ext_val, 1, &benefit,
4768 GET_MODE (x)))
4770 /* Found one; record it. */
4771 struct induction *v
4772 = (struct induction *) xmalloc (sizeof (struct induction));
4774 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
4775 add_val, ext_val, benefit, DEST_ADDR,
4776 not_every_iteration, maybe_multiple, &XEXP (x, 0));
4778 v->mem = x;
4781 return;
4783 default:
4784 break;
4787 /* Recursively scan the subexpressions for other mem refs. */
4789 fmt = GET_RTX_FORMAT (code);
4790 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4791 if (fmt[i] == 'e')
4792 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
4793 maybe_multiple);
4794 else if (fmt[i] == 'E')
4795 for (j = 0; j < XVECLEN (x, i); j++)
4796 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
4797 maybe_multiple);
4800 /* Fill in the data about one biv update.
4801 V is the `struct induction' in which we record the biv. (It is
4802 allocated by the caller, with alloca.)
4803 INSN is the insn that sets it.
4804 DEST_REG is the biv's reg.
4806 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4807 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4808 being set to INC_VAL.
4810 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4811 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4812 can be executed more than once per iteration. If MAYBE_MULTIPLE
4813 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4814 executed exactly once per iteration. */
4816 static void
4817 record_biv (loop, v, insn, dest_reg, inc_val, mult_val, location,
4818 not_every_iteration, maybe_multiple)
4819 struct loop *loop;
4820 struct induction *v;
4821 rtx insn;
4822 rtx dest_reg;
4823 rtx inc_val;
4824 rtx mult_val;
4825 rtx *location;
4826 int not_every_iteration;
4827 int maybe_multiple;
4829 struct loop_ivs *ivs = LOOP_IVS (loop);
4830 struct iv_class *bl;
4832 v->insn = insn;
4833 v->src_reg = dest_reg;
4834 v->dest_reg = dest_reg;
4835 v->mult_val = mult_val;
4836 v->add_val = inc_val;
4837 v->ext_dependant = NULL_RTX;
4838 v->location = location;
4839 v->mode = GET_MODE (dest_reg);
4840 v->always_computable = ! not_every_iteration;
4841 v->always_executed = ! not_every_iteration;
4842 v->maybe_multiple = maybe_multiple;
4844 /* Add this to the reg's iv_class, creating a class
4845 if this is the first incrementation of the reg. */
4847 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
4848 if (bl == 0)
4850 /* Create and initialize new iv_class. */
4852 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
4854 bl->regno = REGNO (dest_reg);
4855 bl->biv = 0;
4856 bl->giv = 0;
4857 bl->biv_count = 0;
4858 bl->giv_count = 0;
4860 /* Set initial value to the reg itself. */
4861 bl->initial_value = dest_reg;
4862 bl->final_value = 0;
4863 /* We haven't seen the initializing insn yet */
4864 bl->init_insn = 0;
4865 bl->init_set = 0;
4866 bl->initial_test = 0;
4867 bl->incremented = 0;
4868 bl->eliminable = 0;
4869 bl->nonneg = 0;
4870 bl->reversed = 0;
4871 bl->total_benefit = 0;
4873 /* Add this class to ivs->list. */
4874 bl->next = ivs->list;
4875 ivs->list = bl;
4877 /* Put it in the array of biv register classes. */
4878 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
4881 /* Update IV_CLASS entry for this biv. */
4882 v->next_iv = bl->biv;
4883 bl->biv = v;
4884 bl->biv_count++;
4885 if (mult_val == const1_rtx)
4886 bl->incremented = 1;
4888 if (loop_dump_stream)
4889 loop_biv_dump (v, loop_dump_stream, 0);
4892 /* Fill in the data about one giv.
4893 V is the `struct induction' in which we record the giv. (It is
4894 allocated by the caller, with alloca.)
4895 INSN is the insn that sets it.
4896 BENEFIT estimates the savings from deleting this insn.
4897 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4898 into a register or is used as a memory address.
4900 SRC_REG is the biv reg which the giv is computed from.
4901 DEST_REG is the giv's reg (if the giv is stored in a reg).
4902 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4903 LOCATION points to the place where this giv's value appears in INSN. */
4905 static void
4906 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, ext_val,
4907 benefit, type, not_every_iteration, maybe_multiple, location)
4908 const struct loop *loop;
4909 struct induction *v;
4910 rtx insn;
4911 rtx src_reg;
4912 rtx dest_reg;
4913 rtx mult_val, add_val, ext_val;
4914 int benefit;
4915 enum g_types type;
4916 int not_every_iteration, maybe_multiple;
4917 rtx *location;
4919 struct loop_ivs *ivs = LOOP_IVS (loop);
4920 struct induction *b;
4921 struct iv_class *bl;
4922 rtx set = single_set (insn);
4923 rtx temp;
4925 /* Attempt to prove constantness of the values. Don't let simplity_rtx
4926 undo the MULT canonicalization that we performed earlier. */
4927 temp = simplify_rtx (add_val);
4928 if (temp
4929 && ! (GET_CODE (add_val) == MULT
4930 && GET_CODE (temp) == ASHIFT))
4931 add_val = temp;
4933 v->insn = insn;
4934 v->src_reg = src_reg;
4935 v->giv_type = type;
4936 v->dest_reg = dest_reg;
4937 v->mult_val = mult_val;
4938 v->add_val = add_val;
4939 v->ext_dependant = ext_val;
4940 v->benefit = benefit;
4941 v->location = location;
4942 v->cant_derive = 0;
4943 v->combined_with = 0;
4944 v->maybe_multiple = maybe_multiple;
4945 v->maybe_dead = 0;
4946 v->derive_adjustment = 0;
4947 v->same = 0;
4948 v->ignore = 0;
4949 v->new_reg = 0;
4950 v->final_value = 0;
4951 v->same_insn = 0;
4952 v->auto_inc_opt = 0;
4953 v->unrolled = 0;
4954 v->shared = 0;
4956 /* The v->always_computable field is used in update_giv_derive, to
4957 determine whether a giv can be used to derive another giv. For a
4958 DEST_REG giv, INSN computes a new value for the giv, so its value
4959 isn't computable if INSN insn't executed every iteration.
4960 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4961 it does not compute a new value. Hence the value is always computable
4962 regardless of whether INSN is executed each iteration. */
4964 if (type == DEST_ADDR)
4965 v->always_computable = 1;
4966 else
4967 v->always_computable = ! not_every_iteration;
4969 v->always_executed = ! not_every_iteration;
4971 if (type == DEST_ADDR)
4973 v->mode = GET_MODE (*location);
4974 v->lifetime = 1;
4976 else /* type == DEST_REG */
4978 v->mode = GET_MODE (SET_DEST (set));
4980 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
4982 /* If the lifetime is zero, it means that this register is
4983 really a dead store. So mark this as a giv that can be
4984 ignored. This will not prevent the biv from being eliminated. */
4985 if (v->lifetime == 0)
4986 v->ignore = 1;
4988 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
4989 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
4992 /* Add the giv to the class of givs computed from one biv. */
4994 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
4995 if (bl)
4997 v->next_iv = bl->giv;
4998 bl->giv = v;
4999 /* Don't count DEST_ADDR. This is supposed to count the number of
5000 insns that calculate givs. */
5001 if (type == DEST_REG)
5002 bl->giv_count++;
5003 bl->total_benefit += benefit;
5005 else
5006 /* Fatal error, biv missing for this giv? */
5007 abort ();
5009 if (type == DEST_ADDR)
5010 v->replaceable = 1;
5011 else
5013 /* The giv can be replaced outright by the reduced register only if all
5014 of the following conditions are true:
5015 - the insn that sets the giv is always executed on any iteration
5016 on which the giv is used at all
5017 (there are two ways to deduce this:
5018 either the insn is executed on every iteration,
5019 or all uses follow that insn in the same basic block),
5020 - the giv is not used outside the loop
5021 - no assignments to the biv occur during the giv's lifetime. */
5023 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5024 /* Previous line always fails if INSN was moved by loop opt. */
5025 && REGNO_LAST_LUID (REGNO (dest_reg))
5026 < INSN_LUID (loop->end)
5027 && (! not_every_iteration
5028 || last_use_this_basic_block (dest_reg, insn)))
5030 /* Now check that there are no assignments to the biv within the
5031 giv's lifetime. This requires two separate checks. */
5033 /* Check each biv update, and fail if any are between the first
5034 and last use of the giv.
5036 If this loop contains an inner loop that was unrolled, then
5037 the insn modifying the biv may have been emitted by the loop
5038 unrolling code, and hence does not have a valid luid. Just
5039 mark the biv as not replaceable in this case. It is not very
5040 useful as a biv, because it is used in two different loops.
5041 It is very unlikely that we would be able to optimize the giv
5042 using this biv anyways. */
5044 v->replaceable = 1;
5045 for (b = bl->biv; b; b = b->next_iv)
5047 if (INSN_UID (b->insn) >= max_uid_for_loop
5048 || ((INSN_LUID (b->insn)
5049 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5050 && (INSN_LUID (b->insn)
5051 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5053 v->replaceable = 0;
5054 v->not_replaceable = 1;
5055 break;
5059 /* If there are any backwards branches that go from after the
5060 biv update to before it, then this giv is not replaceable. */
5061 if (v->replaceable)
5062 for (b = bl->biv; b; b = b->next_iv)
5063 if (back_branch_in_range_p (loop, b->insn))
5065 v->replaceable = 0;
5066 v->not_replaceable = 1;
5067 break;
5070 else
5072 /* May still be replaceable, we don't have enough info here to
5073 decide. */
5074 v->replaceable = 0;
5075 v->not_replaceable = 0;
5079 /* Record whether the add_val contains a const_int, for later use by
5080 combine_givs. */
5082 rtx tem = add_val;
5084 v->no_const_addval = 1;
5085 if (tem == const0_rtx)
5087 else if (CONSTANT_P (add_val))
5088 v->no_const_addval = 0;
5089 if (GET_CODE (tem) == PLUS)
5091 while (1)
5093 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5094 tem = XEXP (tem, 0);
5095 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5096 tem = XEXP (tem, 1);
5097 else
5098 break;
5100 if (CONSTANT_P (XEXP (tem, 1)))
5101 v->no_const_addval = 0;
5105 if (loop_dump_stream)
5106 loop_giv_dump (v, loop_dump_stream, 0);
5109 /* All this does is determine whether a giv can be made replaceable because
5110 its final value can be calculated. This code can not be part of record_giv
5111 above, because final_giv_value requires that the number of loop iterations
5112 be known, and that can not be accurately calculated until after all givs
5113 have been identified. */
5115 static void
5116 check_final_value (loop, v)
5117 const struct loop *loop;
5118 struct induction *v;
5120 struct loop_ivs *ivs = LOOP_IVS (loop);
5121 struct iv_class *bl;
5122 rtx final_value = 0;
5124 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5126 /* DEST_ADDR givs will never reach here, because they are always marked
5127 replaceable above in record_giv. */
5129 /* The giv can be replaced outright by the reduced register only if all
5130 of the following conditions are true:
5131 - the insn that sets the giv is always executed on any iteration
5132 on which the giv is used at all
5133 (there are two ways to deduce this:
5134 either the insn is executed on every iteration,
5135 or all uses follow that insn in the same basic block),
5136 - its final value can be calculated (this condition is different
5137 than the one above in record_giv)
5138 - it's not used before the it's set
5139 - no assignments to the biv occur during the giv's lifetime. */
5141 #if 0
5142 /* This is only called now when replaceable is known to be false. */
5143 /* Clear replaceable, so that it won't confuse final_giv_value. */
5144 v->replaceable = 0;
5145 #endif
5147 if ((final_value = final_giv_value (loop, v))
5148 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5150 int biv_increment_seen = 0, before_giv_insn = 0;
5151 rtx p = v->insn;
5152 rtx last_giv_use;
5154 v->replaceable = 1;
5156 /* When trying to determine whether or not a biv increment occurs
5157 during the lifetime of the giv, we can ignore uses of the variable
5158 outside the loop because final_value is true. Hence we can not
5159 use regno_last_uid and regno_first_uid as above in record_giv. */
5161 /* Search the loop to determine whether any assignments to the
5162 biv occur during the giv's lifetime. Start with the insn
5163 that sets the giv, and search around the loop until we come
5164 back to that insn again.
5166 Also fail if there is a jump within the giv's lifetime that jumps
5167 to somewhere outside the lifetime but still within the loop. This
5168 catches spaghetti code where the execution order is not linear, and
5169 hence the above test fails. Here we assume that the giv lifetime
5170 does not extend from one iteration of the loop to the next, so as
5171 to make the test easier. Since the lifetime isn't known yet,
5172 this requires two loops. See also record_giv above. */
5174 last_giv_use = v->insn;
5176 while (1)
5178 p = NEXT_INSN (p);
5179 if (p == loop->end)
5181 before_giv_insn = 1;
5182 p = NEXT_INSN (loop->start);
5184 if (p == v->insn)
5185 break;
5187 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5188 || GET_CODE (p) == CALL_INSN)
5190 /* It is possible for the BIV increment to use the GIV if we
5191 have a cycle. Thus we must be sure to check each insn for
5192 both BIV and GIV uses, and we must check for BIV uses
5193 first. */
5195 if (! biv_increment_seen
5196 && reg_set_p (v->src_reg, PATTERN (p)))
5197 biv_increment_seen = 1;
5199 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5201 if (biv_increment_seen || before_giv_insn)
5203 v->replaceable = 0;
5204 v->not_replaceable = 1;
5205 break;
5207 last_giv_use = p;
5212 /* Now that the lifetime of the giv is known, check for branches
5213 from within the lifetime to outside the lifetime if it is still
5214 replaceable. */
5216 if (v->replaceable)
5218 p = v->insn;
5219 while (1)
5221 p = NEXT_INSN (p);
5222 if (p == loop->end)
5223 p = NEXT_INSN (loop->start);
5224 if (p == last_giv_use)
5225 break;
5227 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5228 && LABEL_NAME (JUMP_LABEL (p))
5229 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5230 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5231 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5232 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5234 v->replaceable = 0;
5235 v->not_replaceable = 1;
5237 if (loop_dump_stream)
5238 fprintf (loop_dump_stream,
5239 "Found branch outside giv lifetime.\n");
5241 break;
5246 /* If it is replaceable, then save the final value. */
5247 if (v->replaceable)
5248 v->final_value = final_value;
5251 if (loop_dump_stream && v->replaceable)
5252 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5253 INSN_UID (v->insn), REGNO (v->dest_reg));
5256 /* Update the status of whether a giv can derive other givs.
5258 We need to do something special if there is or may be an update to the biv
5259 between the time the giv is defined and the time it is used to derive
5260 another giv.
5262 In addition, a giv that is only conditionally set is not allowed to
5263 derive another giv once a label has been passed.
5265 The cases we look at are when a label or an update to a biv is passed. */
5267 static void
5268 update_giv_derive (loop, p)
5269 const struct loop *loop;
5270 rtx p;
5272 struct loop_ivs *ivs = LOOP_IVS (loop);
5273 struct iv_class *bl;
5274 struct induction *biv, *giv;
5275 rtx tem;
5276 int dummy;
5278 /* Search all IV classes, then all bivs, and finally all givs.
5280 There are three cases we are concerned with. First we have the situation
5281 of a giv that is only updated conditionally. In that case, it may not
5282 derive any givs after a label is passed.
5284 The second case is when a biv update occurs, or may occur, after the
5285 definition of a giv. For certain biv updates (see below) that are
5286 known to occur between the giv definition and use, we can adjust the
5287 giv definition. For others, or when the biv update is conditional,
5288 we must prevent the giv from deriving any other givs. There are two
5289 sub-cases within this case.
5291 If this is a label, we are concerned with any biv update that is done
5292 conditionally, since it may be done after the giv is defined followed by
5293 a branch here (actually, we need to pass both a jump and a label, but
5294 this extra tracking doesn't seem worth it).
5296 If this is a jump, we are concerned about any biv update that may be
5297 executed multiple times. We are actually only concerned about
5298 backward jumps, but it is probably not worth performing the test
5299 on the jump again here.
5301 If this is a biv update, we must adjust the giv status to show that a
5302 subsequent biv update was performed. If this adjustment cannot be done,
5303 the giv cannot derive further givs. */
5305 for (bl = ivs->list; bl; bl = bl->next)
5306 for (biv = bl->biv; biv; biv = biv->next_iv)
5307 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5308 || biv->insn == p)
5310 for (giv = bl->giv; giv; giv = giv->next_iv)
5312 /* If cant_derive is already true, there is no point in
5313 checking all of these conditions again. */
5314 if (giv->cant_derive)
5315 continue;
5317 /* If this giv is conditionally set and we have passed a label,
5318 it cannot derive anything. */
5319 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5320 giv->cant_derive = 1;
5322 /* Skip givs that have mult_val == 0, since
5323 they are really invariants. Also skip those that are
5324 replaceable, since we know their lifetime doesn't contain
5325 any biv update. */
5326 else if (giv->mult_val == const0_rtx || giv->replaceable)
5327 continue;
5329 /* The only way we can allow this giv to derive another
5330 is if this is a biv increment and we can form the product
5331 of biv->add_val and giv->mult_val. In this case, we will
5332 be able to compute a compensation. */
5333 else if (biv->insn == p)
5335 rtx ext_val_dummy;
5337 tem = 0;
5338 if (biv->mult_val == const1_rtx)
5339 tem = simplify_giv_expr (loop,
5340 gen_rtx_MULT (giv->mode,
5341 biv->add_val,
5342 giv->mult_val),
5343 &ext_val_dummy, &dummy);
5345 if (tem && giv->derive_adjustment)
5346 tem = simplify_giv_expr
5347 (loop,
5348 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5349 &ext_val_dummy, &dummy);
5351 if (tem)
5352 giv->derive_adjustment = tem;
5353 else
5354 giv->cant_derive = 1;
5356 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5357 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5358 giv->cant_derive = 1;
5363 /* Check whether an insn is an increment legitimate for a basic induction var.
5364 X is the source of insn P, or a part of it.
5365 MODE is the mode in which X should be interpreted.
5367 DEST_REG is the putative biv, also the destination of the insn.
5368 We accept patterns of these forms:
5369 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5370 REG = INVARIANT + REG
5372 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5373 store the additive term into *INC_VAL, and store the place where
5374 we found the additive term into *LOCATION.
5376 If X is an assignment of an invariant into DEST_REG, we set
5377 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5379 We also want to detect a BIV when it corresponds to a variable
5380 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5381 of the variable may be a PLUS that adds a SUBREG of that variable to
5382 an invariant and then sign- or zero-extends the result of the PLUS
5383 into the variable.
5385 Most GIVs in such cases will be in the promoted mode, since that is the
5386 probably the natural computation mode (and almost certainly the mode
5387 used for addresses) on the machine. So we view the pseudo-reg containing
5388 the variable as the BIV, as if it were simply incremented.
5390 Note that treating the entire pseudo as a BIV will result in making
5391 simple increments to any GIVs based on it. However, if the variable
5392 overflows in its declared mode but not its promoted mode, the result will
5393 be incorrect. This is acceptable if the variable is signed, since
5394 overflows in such cases are undefined, but not if it is unsigned, since
5395 those overflows are defined. So we only check for SIGN_EXTEND and
5396 not ZERO_EXTEND.
5398 If we cannot find a biv, we return 0. */
5400 static int
5401 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
5402 const struct loop *loop;
5403 register rtx x;
5404 enum machine_mode mode;
5405 rtx dest_reg;
5406 rtx p;
5407 rtx *inc_val;
5408 rtx *mult_val;
5409 rtx **location;
5411 register enum rtx_code code;
5412 rtx *argp, arg;
5413 rtx insn, set = 0;
5415 code = GET_CODE (x);
5416 *location = NULL;
5417 switch (code)
5419 case PLUS:
5420 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5421 || (GET_CODE (XEXP (x, 0)) == SUBREG
5422 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5423 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5425 argp = &XEXP (x, 1);
5427 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5428 || (GET_CODE (XEXP (x, 1)) == SUBREG
5429 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5430 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5432 argp = &XEXP (x, 0);
5434 else
5435 return 0;
5437 arg = *argp;
5438 if (loop_invariant_p (loop, arg) != 1)
5439 return 0;
5441 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5442 *mult_val = const1_rtx;
5443 *location = argp;
5444 return 1;
5446 case SUBREG:
5447 /* If this is a SUBREG for a promoted variable, check the inner
5448 value. */
5449 if (SUBREG_PROMOTED_VAR_P (x))
5450 return basic_induction_var (loop, SUBREG_REG (x),
5451 GET_MODE (SUBREG_REG (x)),
5452 dest_reg, p, inc_val, mult_val, location);
5453 return 0;
5455 case REG:
5456 /* If this register is assigned in a previous insn, look at its
5457 source, but don't go outside the loop or past a label. */
5459 /* If this sets a register to itself, we would repeat any previous
5460 biv increment if we applied this strategy blindly. */
5461 if (rtx_equal_p (dest_reg, x))
5462 return 0;
5464 insn = p;
5465 while (1)
5467 rtx dest;
5470 insn = PREV_INSN (insn);
5472 while (insn && GET_CODE (insn) == NOTE
5473 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5475 if (!insn)
5476 break;
5477 set = single_set (insn);
5478 if (set == 0)
5479 break;
5480 dest = SET_DEST (set);
5481 if (dest == x
5482 || (GET_CODE (dest) == SUBREG
5483 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
5484 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
5485 && SUBREG_REG (dest) == x))
5486 return basic_induction_var (loop, SET_SRC (set),
5487 (GET_MODE (SET_SRC (set)) == VOIDmode
5488 ? GET_MODE (x)
5489 : GET_MODE (SET_SRC (set))),
5490 dest_reg, insn,
5491 inc_val, mult_val, location);
5493 while (GET_CODE (dest) == SIGN_EXTRACT
5494 || GET_CODE (dest) == ZERO_EXTRACT
5495 || GET_CODE (dest) == SUBREG
5496 || GET_CODE (dest) == STRICT_LOW_PART)
5497 dest = XEXP (dest, 0);
5498 if (dest == x)
5499 break;
5501 /* Fall through. */
5503 /* Can accept constant setting of biv only when inside inner most loop.
5504 Otherwise, a biv of an inner loop may be incorrectly recognized
5505 as a biv of the outer loop,
5506 causing code to be moved INTO the inner loop. */
5507 case MEM:
5508 if (loop_invariant_p (loop, x) != 1)
5509 return 0;
5510 case CONST_INT:
5511 case SYMBOL_REF:
5512 case CONST:
5513 /* convert_modes aborts if we try to convert to or from CCmode, so just
5514 exclude that case. It is very unlikely that a condition code value
5515 would be a useful iterator anyways. */
5516 if (loop->level == 1
5517 && GET_MODE_CLASS (mode) != MODE_CC
5518 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
5520 /* Possible bug here? Perhaps we don't know the mode of X. */
5521 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
5522 *mult_val = const0_rtx;
5523 return 1;
5525 else
5526 return 0;
5528 case SIGN_EXTEND:
5529 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5530 dest_reg, p, inc_val, mult_val, location);
5532 case ASHIFTRT:
5533 /* Similar, since this can be a sign extension. */
5534 for (insn = PREV_INSN (p);
5535 (insn && GET_CODE (insn) == NOTE
5536 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
5537 insn = PREV_INSN (insn))
5540 if (insn)
5541 set = single_set (insn);
5543 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
5544 && set && SET_DEST (set) == XEXP (x, 0)
5545 && GET_CODE (XEXP (x, 1)) == CONST_INT
5546 && INTVAL (XEXP (x, 1)) >= 0
5547 && GET_CODE (SET_SRC (set)) == ASHIFT
5548 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
5549 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
5550 GET_MODE (XEXP (x, 0)),
5551 dest_reg, insn, inc_val, mult_val,
5552 location);
5553 return 0;
5555 default:
5556 return 0;
5560 /* A general induction variable (giv) is any quantity that is a linear
5561 function of a basic induction variable,
5562 i.e. giv = biv * mult_val + add_val.
5563 The coefficients can be any loop invariant quantity.
5564 A giv need not be computed directly from the biv;
5565 it can be computed by way of other givs. */
5567 /* Determine whether X computes a giv.
5568 If it does, return a nonzero value
5569 which is the benefit from eliminating the computation of X;
5570 set *SRC_REG to the register of the biv that it is computed from;
5571 set *ADD_VAL and *MULT_VAL to the coefficients,
5572 such that the value of X is biv * mult + add; */
5574 static int
5575 general_induction_var (loop, x, src_reg, add_val, mult_val, ext_val,
5576 is_addr, pbenefit, addr_mode)
5577 const struct loop *loop;
5578 rtx x;
5579 rtx *src_reg;
5580 rtx *add_val;
5581 rtx *mult_val;
5582 rtx *ext_val;
5583 int is_addr;
5584 int *pbenefit;
5585 enum machine_mode addr_mode;
5587 struct loop_ivs *ivs = LOOP_IVS (loop);
5588 rtx orig_x = x;
5590 /* If this is an invariant, forget it, it isn't a giv. */
5591 if (loop_invariant_p (loop, x) == 1)
5592 return 0;
5594 *pbenefit = 0;
5595 *ext_val = NULL_RTX;
5596 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
5597 if (x == 0)
5598 return 0;
5600 switch (GET_CODE (x))
5602 case USE:
5603 case CONST_INT:
5604 /* Since this is now an invariant and wasn't before, it must be a giv
5605 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5606 with. */
5607 *src_reg = ivs->list->biv->dest_reg;
5608 *mult_val = const0_rtx;
5609 *add_val = x;
5610 break;
5612 case REG:
5613 /* This is equivalent to a BIV. */
5614 *src_reg = x;
5615 *mult_val = const1_rtx;
5616 *add_val = const0_rtx;
5617 break;
5619 case PLUS:
5620 /* Either (plus (biv) (invar)) or
5621 (plus (mult (biv) (invar_1)) (invar_2)). */
5622 if (GET_CODE (XEXP (x, 0)) == MULT)
5624 *src_reg = XEXP (XEXP (x, 0), 0);
5625 *mult_val = XEXP (XEXP (x, 0), 1);
5627 else
5629 *src_reg = XEXP (x, 0);
5630 *mult_val = const1_rtx;
5632 *add_val = XEXP (x, 1);
5633 break;
5635 case MULT:
5636 /* ADD_VAL is zero. */
5637 *src_reg = XEXP (x, 0);
5638 *mult_val = XEXP (x, 1);
5639 *add_val = const0_rtx;
5640 break;
5642 default:
5643 abort ();
5646 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5647 unless they are CONST_INT). */
5648 if (GET_CODE (*add_val) == USE)
5649 *add_val = XEXP (*add_val, 0);
5650 if (GET_CODE (*mult_val) == USE)
5651 *mult_val = XEXP (*mult_val, 0);
5653 if (is_addr)
5654 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
5655 else
5656 *pbenefit += rtx_cost (orig_x, SET);
5658 /* Always return true if this is a giv so it will be detected as such,
5659 even if the benefit is zero or negative. This allows elimination
5660 of bivs that might otherwise not be eliminated. */
5661 return 1;
5664 /* Given an expression, X, try to form it as a linear function of a biv.
5665 We will canonicalize it to be of the form
5666 (plus (mult (BIV) (invar_1))
5667 (invar_2))
5668 with possible degeneracies.
5670 The invariant expressions must each be of a form that can be used as a
5671 machine operand. We surround then with a USE rtx (a hack, but localized
5672 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5673 routine; it is the caller's responsibility to strip them.
5675 If no such canonicalization is possible (i.e., two biv's are used or an
5676 expression that is neither invariant nor a biv or giv), this routine
5677 returns 0.
5679 For a non-zero return, the result will have a code of CONST_INT, USE,
5680 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5682 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5684 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
5685 static rtx sge_plus_constant PARAMS ((rtx, rtx));
5687 static rtx
5688 simplify_giv_expr (loop, x, ext_val, benefit)
5689 const struct loop *loop;
5690 rtx x;
5691 rtx *ext_val;
5692 int *benefit;
5694 struct loop_ivs *ivs = LOOP_IVS (loop);
5695 struct loop_regs *regs = LOOP_REGS (loop);
5696 enum machine_mode mode = GET_MODE (x);
5697 rtx arg0, arg1;
5698 rtx tem;
5700 /* If this is not an integer mode, or if we cannot do arithmetic in this
5701 mode, this can't be a giv. */
5702 if (mode != VOIDmode
5703 && (GET_MODE_CLASS (mode) != MODE_INT
5704 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
5705 return NULL_RTX;
5707 switch (GET_CODE (x))
5709 case PLUS:
5710 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5711 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
5712 if (arg0 == 0 || arg1 == 0)
5713 return NULL_RTX;
5715 /* Put constant last, CONST_INT last if both constant. */
5716 if ((GET_CODE (arg0) == USE
5717 || GET_CODE (arg0) == CONST_INT)
5718 && ! ((GET_CODE (arg0) == USE
5719 && GET_CODE (arg1) == USE)
5720 || GET_CODE (arg1) == CONST_INT))
5721 tem = arg0, arg0 = arg1, arg1 = tem;
5723 /* Handle addition of zero, then addition of an invariant. */
5724 if (arg1 == const0_rtx)
5725 return arg0;
5726 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5727 switch (GET_CODE (arg0))
5729 case CONST_INT:
5730 case USE:
5731 /* Adding two invariants must result in an invariant, so enclose
5732 addition operation inside a USE and return it. */
5733 if (GET_CODE (arg0) == USE)
5734 arg0 = XEXP (arg0, 0);
5735 if (GET_CODE (arg1) == USE)
5736 arg1 = XEXP (arg1, 0);
5738 if (GET_CODE (arg0) == CONST_INT)
5739 tem = arg0, arg0 = arg1, arg1 = tem;
5740 if (GET_CODE (arg1) == CONST_INT)
5741 tem = sge_plus_constant (arg0, arg1);
5742 else
5743 tem = sge_plus (mode, arg0, arg1);
5745 if (GET_CODE (tem) != CONST_INT)
5746 tem = gen_rtx_USE (mode, tem);
5747 return tem;
5749 case REG:
5750 case MULT:
5751 /* biv + invar or mult + invar. Return sum. */
5752 return gen_rtx_PLUS (mode, arg0, arg1);
5754 case PLUS:
5755 /* (a + invar_1) + invar_2. Associate. */
5756 return
5757 simplify_giv_expr (loop,
5758 gen_rtx_PLUS (mode,
5759 XEXP (arg0, 0),
5760 gen_rtx_PLUS (mode,
5761 XEXP (arg0, 1),
5762 arg1)),
5763 ext_val, benefit);
5765 default:
5766 abort ();
5769 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5770 MULT to reduce cases. */
5771 if (GET_CODE (arg0) == REG)
5772 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
5773 if (GET_CODE (arg1) == REG)
5774 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
5776 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5777 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5778 Recurse to associate the second PLUS. */
5779 if (GET_CODE (arg1) == MULT)
5780 tem = arg0, arg0 = arg1, arg1 = tem;
5782 if (GET_CODE (arg1) == PLUS)
5783 return
5784 simplify_giv_expr (loop,
5785 gen_rtx_PLUS (mode,
5786 gen_rtx_PLUS (mode, arg0,
5787 XEXP (arg1, 0)),
5788 XEXP (arg1, 1)),
5789 ext_val, benefit);
5791 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5792 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5793 return NULL_RTX;
5795 if (!rtx_equal_p (arg0, arg1))
5796 return NULL_RTX;
5798 return simplify_giv_expr (loop,
5799 gen_rtx_MULT (mode,
5800 XEXP (arg0, 0),
5801 gen_rtx_PLUS (mode,
5802 XEXP (arg0, 1),
5803 XEXP (arg1, 1))),
5804 ext_val, benefit);
5806 case MINUS:
5807 /* Handle "a - b" as "a + b * (-1)". */
5808 return simplify_giv_expr (loop,
5809 gen_rtx_PLUS (mode,
5810 XEXP (x, 0),
5811 gen_rtx_MULT (mode,
5812 XEXP (x, 1),
5813 constm1_rtx)),
5814 ext_val, benefit);
5816 case MULT:
5817 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5818 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
5819 if (arg0 == 0 || arg1 == 0)
5820 return NULL_RTX;
5822 /* Put constant last, CONST_INT last if both constant. */
5823 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5824 && GET_CODE (arg1) != CONST_INT)
5825 tem = arg0, arg0 = arg1, arg1 = tem;
5827 /* If second argument is not now constant, not giv. */
5828 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5829 return NULL_RTX;
5831 /* Handle multiply by 0 or 1. */
5832 if (arg1 == const0_rtx)
5833 return const0_rtx;
5835 else if (arg1 == const1_rtx)
5836 return arg0;
5838 switch (GET_CODE (arg0))
5840 case REG:
5841 /* biv * invar. Done. */
5842 return gen_rtx_MULT (mode, arg0, arg1);
5844 case CONST_INT:
5845 /* Product of two constants. */
5846 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5848 case USE:
5849 /* invar * invar is a giv, but attempt to simplify it somehow. */
5850 if (GET_CODE (arg1) != CONST_INT)
5851 return NULL_RTX;
5853 arg0 = XEXP (arg0, 0);
5854 if (GET_CODE (arg0) == MULT)
5856 /* (invar_0 * invar_1) * invar_2. Associate. */
5857 return simplify_giv_expr (loop,
5858 gen_rtx_MULT (mode,
5859 XEXP (arg0, 0),
5860 gen_rtx_MULT (mode,
5861 XEXP (arg0,
5863 arg1)),
5864 ext_val, benefit);
5866 /* Porpagate the MULT expressions to the intermost nodes. */
5867 else if (GET_CODE (arg0) == PLUS)
5869 /* (invar_0 + invar_1) * invar_2. Distribute. */
5870 return simplify_giv_expr (loop,
5871 gen_rtx_PLUS (mode,
5872 gen_rtx_MULT (mode,
5873 XEXP (arg0,
5875 arg1),
5876 gen_rtx_MULT (mode,
5877 XEXP (arg0,
5879 arg1)),
5880 ext_val, benefit);
5882 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
5884 case MULT:
5885 /* (a * invar_1) * invar_2. Associate. */
5886 return simplify_giv_expr (loop,
5887 gen_rtx_MULT (mode,
5888 XEXP (arg0, 0),
5889 gen_rtx_MULT (mode,
5890 XEXP (arg0, 1),
5891 arg1)),
5892 ext_val, benefit);
5894 case PLUS:
5895 /* (a + invar_1) * invar_2. Distribute. */
5896 return simplify_giv_expr (loop,
5897 gen_rtx_PLUS (mode,
5898 gen_rtx_MULT (mode,
5899 XEXP (arg0, 0),
5900 arg1),
5901 gen_rtx_MULT (mode,
5902 XEXP (arg0, 1),
5903 arg1)),
5904 ext_val, benefit);
5906 default:
5907 abort ();
5910 case ASHIFT:
5911 /* Shift by constant is multiply by power of two. */
5912 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5913 return 0;
5915 return
5916 simplify_giv_expr (loop,
5917 gen_rtx_MULT (mode,
5918 XEXP (x, 0),
5919 GEN_INT ((HOST_WIDE_INT) 1
5920 << INTVAL (XEXP (x, 1)))),
5921 ext_val, benefit);
5923 case NEG:
5924 /* "-a" is "a * (-1)" */
5925 return simplify_giv_expr (loop,
5926 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
5927 ext_val, benefit);
5929 case NOT:
5930 /* "~a" is "-a - 1". Silly, but easy. */
5931 return simplify_giv_expr (loop,
5932 gen_rtx_MINUS (mode,
5933 gen_rtx_NEG (mode, XEXP (x, 0)),
5934 const1_rtx),
5935 ext_val, benefit);
5937 case USE:
5938 /* Already in proper form for invariant. */
5939 return x;
5941 case SIGN_EXTEND:
5942 case ZERO_EXTEND:
5943 case TRUNCATE:
5944 /* Conditionally recognize extensions of simple IVs. After we've
5945 computed loop traversal counts and verified the range of the
5946 source IV, we'll reevaluate this as a GIV. */
5947 if (*ext_val == NULL_RTX)
5949 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
5950 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
5952 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
5953 return arg0;
5956 goto do_default;
5958 case REG:
5959 /* If this is a new register, we can't deal with it. */
5960 if (REGNO (x) >= max_reg_before_loop)
5961 return 0;
5963 /* Check for biv or giv. */
5964 switch (REG_IV_TYPE (ivs, REGNO (x)))
5966 case BASIC_INDUCT:
5967 return x;
5968 case GENERAL_INDUCT:
5970 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
5972 /* Form expression from giv and add benefit. Ensure this giv
5973 can derive another and subtract any needed adjustment if so. */
5975 /* Increasing the benefit here is risky. The only case in which it
5976 is arguably correct is if this is the only use of V. In other
5977 cases, this will artificially inflate the benefit of the current
5978 giv, and lead to suboptimal code. Thus, it is disabled, since
5979 potentially not reducing an only marginally beneficial giv is
5980 less harmful than reducing many givs that are not really
5981 beneficial. */
5983 rtx single_use = regs->array[REGNO (x)].single_usage;
5984 if (single_use && single_use != const0_rtx)
5985 *benefit += v->benefit;
5988 if (v->cant_derive)
5989 return 0;
5991 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
5992 v->src_reg, v->mult_val),
5993 v->add_val);
5995 if (v->derive_adjustment)
5996 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
5997 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
5998 if (*ext_val)
6000 if (!v->ext_dependant)
6001 return arg0;
6003 else
6005 *ext_val = v->ext_dependant;
6006 return arg0;
6008 return 0;
6011 default:
6012 do_default:
6013 /* If it isn't an induction variable, and it is invariant, we
6014 may be able to simplify things further by looking through
6015 the bits we just moved outside the loop. */
6016 if (loop_invariant_p (loop, x) == 1)
6018 struct movable *m;
6019 struct loop_movables *movables = LOOP_MOVABLES (loop);
6021 for (m = movables->head; m; m = m->next)
6022 if (rtx_equal_p (x, m->set_dest))
6024 /* Ok, we found a match. Substitute and simplify. */
6026 /* If we match another movable, we must use that, as
6027 this one is going away. */
6028 if (m->match)
6029 return simplify_giv_expr (loop, m->match->set_dest,
6030 ext_val, benefit);
6032 /* If consec is non-zero, this is a member of a group of
6033 instructions that were moved together. We handle this
6034 case only to the point of seeking to the last insn and
6035 looking for a REG_EQUAL. Fail if we don't find one. */
6036 if (m->consec != 0)
6038 int i = m->consec;
6039 tem = m->insn;
6042 tem = NEXT_INSN (tem);
6044 while (--i > 0);
6046 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6047 if (tem)
6048 tem = XEXP (tem, 0);
6050 else
6052 tem = single_set (m->insn);
6053 if (tem)
6054 tem = SET_SRC (tem);
6057 if (tem)
6059 /* What we are most interested in is pointer
6060 arithmetic on invariants -- only take
6061 patterns we may be able to do something with. */
6062 if (GET_CODE (tem) == PLUS
6063 || GET_CODE (tem) == MULT
6064 || GET_CODE (tem) == ASHIFT
6065 || GET_CODE (tem) == CONST_INT
6066 || GET_CODE (tem) == SYMBOL_REF)
6068 tem = simplify_giv_expr (loop, tem, ext_val,
6069 benefit);
6070 if (tem)
6071 return tem;
6073 else if (GET_CODE (tem) == CONST
6074 && GET_CODE (XEXP (tem, 0)) == PLUS
6075 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6076 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6078 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6079 ext_val, benefit);
6080 if (tem)
6081 return tem;
6084 break;
6087 break;
6090 /* Fall through to general case. */
6091 default:
6092 /* If invariant, return as USE (unless CONST_INT).
6093 Otherwise, not giv. */
6094 if (GET_CODE (x) == USE)
6095 x = XEXP (x, 0);
6097 if (loop_invariant_p (loop, x) == 1)
6099 if (GET_CODE (x) == CONST_INT)
6100 return x;
6101 if (GET_CODE (x) == CONST
6102 && GET_CODE (XEXP (x, 0)) == PLUS
6103 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6104 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6105 x = XEXP (x, 0);
6106 return gen_rtx_USE (mode, x);
6108 else
6109 return 0;
6113 /* This routine folds invariants such that there is only ever one
6114 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6116 static rtx
6117 sge_plus_constant (x, c)
6118 rtx x, c;
6120 if (GET_CODE (x) == CONST_INT)
6121 return GEN_INT (INTVAL (x) + INTVAL (c));
6122 else if (GET_CODE (x) != PLUS)
6123 return gen_rtx_PLUS (GET_MODE (x), x, c);
6124 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6126 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6127 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6129 else if (GET_CODE (XEXP (x, 0)) == PLUS
6130 || GET_CODE (XEXP (x, 1)) != PLUS)
6132 return gen_rtx_PLUS (GET_MODE (x),
6133 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6135 else
6137 return gen_rtx_PLUS (GET_MODE (x),
6138 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6142 static rtx
6143 sge_plus (mode, x, y)
6144 enum machine_mode mode;
6145 rtx x, y;
6147 while (GET_CODE (y) == PLUS)
6149 rtx a = XEXP (y, 0);
6150 if (GET_CODE (a) == CONST_INT)
6151 x = sge_plus_constant (x, a);
6152 else
6153 x = gen_rtx_PLUS (mode, x, a);
6154 y = XEXP (y, 1);
6156 if (GET_CODE (y) == CONST_INT)
6157 x = sge_plus_constant (x, y);
6158 else
6159 x = gen_rtx_PLUS (mode, x, y);
6160 return x;
6163 /* Help detect a giv that is calculated by several consecutive insns;
6164 for example,
6165 giv = biv * M
6166 giv = giv + A
6167 The caller has already identified the first insn P as having a giv as dest;
6168 we check that all other insns that set the same register follow
6169 immediately after P, that they alter nothing else,
6170 and that the result of the last is still a giv.
6172 The value is 0 if the reg set in P is not really a giv.
6173 Otherwise, the value is the amount gained by eliminating
6174 all the consecutive insns that compute the value.
6176 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6177 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6179 The coefficients of the ultimate giv value are stored in
6180 *MULT_VAL and *ADD_VAL. */
6182 static int
6183 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6184 add_val, mult_val, ext_val, last_consec_insn)
6185 const struct loop *loop;
6186 int first_benefit;
6187 rtx p;
6188 rtx src_reg;
6189 rtx dest_reg;
6190 rtx *add_val;
6191 rtx *mult_val;
6192 rtx *ext_val;
6193 rtx *last_consec_insn;
6195 struct loop_ivs *ivs = LOOP_IVS (loop);
6196 struct loop_regs *regs = LOOP_REGS (loop);
6197 int count;
6198 enum rtx_code code;
6199 int benefit;
6200 rtx temp;
6201 rtx set;
6203 /* Indicate that this is a giv so that we can update the value produced in
6204 each insn of the multi-insn sequence.
6206 This induction structure will be used only by the call to
6207 general_induction_var below, so we can allocate it on our stack.
6208 If this is a giv, our caller will replace the induct var entry with
6209 a new induction structure. */
6210 struct induction *v;
6212 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
6213 return 0;
6215 v = (struct induction *) alloca (sizeof (struct induction));
6216 v->src_reg = src_reg;
6217 v->mult_val = *mult_val;
6218 v->add_val = *add_val;
6219 v->benefit = first_benefit;
6220 v->cant_derive = 0;
6221 v->derive_adjustment = 0;
6222 v->ext_dependant = NULL_RTX;
6224 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
6225 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
6227 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
6229 while (count > 0)
6231 p = NEXT_INSN (p);
6232 code = GET_CODE (p);
6234 /* If libcall, skip to end of call sequence. */
6235 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6236 p = XEXP (temp, 0);
6238 if (code == INSN
6239 && (set = single_set (p))
6240 && GET_CODE (SET_DEST (set)) == REG
6241 && SET_DEST (set) == dest_reg
6242 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6243 add_val, mult_val, ext_val, 0,
6244 &benefit, VOIDmode)
6245 /* Giv created by equivalent expression. */
6246 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6247 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6248 add_val, mult_val, ext_val, 0,
6249 &benefit, VOIDmode)))
6250 && src_reg == v->src_reg)
6252 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6253 benefit += libcall_benefit (p);
6255 count--;
6256 v->mult_val = *mult_val;
6257 v->add_val = *add_val;
6258 v->benefit += benefit;
6260 else if (code != NOTE)
6262 /* Allow insns that set something other than this giv to a
6263 constant. Such insns are needed on machines which cannot
6264 include long constants and should not disqualify a giv. */
6265 if (code == INSN
6266 && (set = single_set (p))
6267 && SET_DEST (set) != dest_reg
6268 && CONSTANT_P (SET_SRC (set)))
6269 continue;
6271 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6272 return 0;
6276 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
6277 *last_consec_insn = p;
6278 return v->benefit;
6281 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6282 represented by G1. If no such expression can be found, or it is clear that
6283 it cannot possibly be a valid address, 0 is returned.
6285 To perform the computation, we note that
6286 G1 = x * v + a and
6287 G2 = y * v + b
6288 where `v' is the biv.
6290 So G2 = (y/b) * G1 + (b - a*y/x).
6292 Note that MULT = y/x.
6294 Update: A and B are now allowed to be additive expressions such that
6295 B contains all variables in A. That is, computing B-A will not require
6296 subtracting variables. */
6298 static rtx
6299 express_from_1 (a, b, mult)
6300 rtx a, b, mult;
6302 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6304 if (mult == const0_rtx)
6305 return b;
6307 /* If MULT is not 1, we cannot handle A with non-constants, since we
6308 would then be required to subtract multiples of the registers in A.
6309 This is theoretically possible, and may even apply to some Fortran
6310 constructs, but it is a lot of work and we do not attempt it here. */
6312 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6313 return NULL_RTX;
6315 /* In general these structures are sorted top to bottom (down the PLUS
6316 chain), but not left to right across the PLUS. If B is a higher
6317 order giv than A, we can strip one level and recurse. If A is higher
6318 order, we'll eventually bail out, but won't know that until the end.
6319 If they are the same, we'll strip one level around this loop. */
6321 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6323 rtx ra, rb, oa, ob, tmp;
6325 ra = XEXP (a, 0), oa = XEXP (a, 1);
6326 if (GET_CODE (ra) == PLUS)
6327 tmp = ra, ra = oa, oa = tmp;
6329 rb = XEXP (b, 0), ob = XEXP (b, 1);
6330 if (GET_CODE (rb) == PLUS)
6331 tmp = rb, rb = ob, ob = tmp;
6333 if (rtx_equal_p (ra, rb))
6334 /* We matched: remove one reg completely. */
6335 a = oa, b = ob;
6336 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6337 /* An alternate match. */
6338 a = oa, b = rb;
6339 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6340 /* An alternate match. */
6341 a = ra, b = ob;
6342 else
6344 /* Indicates an extra register in B. Strip one level from B and
6345 recurse, hoping B was the higher order expression. */
6346 ob = express_from_1 (a, ob, mult);
6347 if (ob == NULL_RTX)
6348 return NULL_RTX;
6349 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6353 /* Here we are at the last level of A, go through the cases hoping to
6354 get rid of everything but a constant. */
6356 if (GET_CODE (a) == PLUS)
6358 rtx ra, oa;
6360 ra = XEXP (a, 0), oa = XEXP (a, 1);
6361 if (rtx_equal_p (oa, b))
6362 oa = ra;
6363 else if (!rtx_equal_p (ra, b))
6364 return NULL_RTX;
6366 if (GET_CODE (oa) != CONST_INT)
6367 return NULL_RTX;
6369 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6371 else if (GET_CODE (a) == CONST_INT)
6373 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6375 else if (CONSTANT_P (a))
6377 enum machine_mode mode_a = GET_MODE (a);
6378 enum machine_mode mode_b = GET_MODE (b);
6379 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
6380 return simplify_gen_binary (MINUS, mode, b, a);
6382 else if (GET_CODE (b) == PLUS)
6384 if (rtx_equal_p (a, XEXP (b, 0)))
6385 return XEXP (b, 1);
6386 else if (rtx_equal_p (a, XEXP (b, 1)))
6387 return XEXP (b, 0);
6388 else
6389 return NULL_RTX;
6391 else if (rtx_equal_p (a, b))
6392 return const0_rtx;
6394 return NULL_RTX;
6398 express_from (g1, g2)
6399 struct induction *g1, *g2;
6401 rtx mult, add;
6403 /* The value that G1 will be multiplied by must be a constant integer. Also,
6404 the only chance we have of getting a valid address is if b*c/a (see above
6405 for notation) is also an integer. */
6406 if (GET_CODE (g1->mult_val) == CONST_INT
6407 && GET_CODE (g2->mult_val) == CONST_INT)
6409 if (g1->mult_val == const0_rtx
6410 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6411 return NULL_RTX;
6412 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6414 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6415 mult = const1_rtx;
6416 else
6418 /* ??? Find out if the one is a multiple of the other? */
6419 return NULL_RTX;
6422 add = express_from_1 (g1->add_val, g2->add_val, mult);
6423 if (add == NULL_RTX)
6425 /* Failed. If we've got a multiplication factor between G1 and G2,
6426 scale G1's addend and try again. */
6427 if (INTVAL (mult) > 1)
6429 rtx g1_add_val = g1->add_val;
6430 if (GET_CODE (g1_add_val) == MULT
6431 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
6433 HOST_WIDE_INT m;
6434 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
6435 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
6436 XEXP (g1_add_val, 0), GEN_INT (m));
6438 else
6440 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
6441 mult);
6444 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
6447 if (add == NULL_RTX)
6448 return NULL_RTX;
6450 /* Form simplified final result. */
6451 if (mult == const0_rtx)
6452 return add;
6453 else if (mult == const1_rtx)
6454 mult = g1->dest_reg;
6455 else
6456 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6458 if (add == const0_rtx)
6459 return mult;
6460 else
6462 if (GET_CODE (add) == PLUS
6463 && CONSTANT_P (XEXP (add, 1)))
6465 rtx tem = XEXP (add, 1);
6466 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6467 add = tem;
6470 return gen_rtx_PLUS (g2->mode, mult, add);
6474 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6475 represented by G1. This indicates that G2 should be combined with G1 and
6476 that G2 can use (either directly or via an address expression) a register
6477 used to represent G1. */
6479 static rtx
6480 combine_givs_p (g1, g2)
6481 struct induction *g1, *g2;
6483 rtx comb, ret;
6485 /* With the introduction of ext dependant givs, we must care for modes.
6486 G2 must not use a wider mode than G1. */
6487 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
6488 return NULL_RTX;
6490 ret = comb = express_from (g1, g2);
6491 if (comb == NULL_RTX)
6492 return NULL_RTX;
6493 if (g1->mode != g2->mode)
6494 ret = gen_lowpart (g2->mode, comb);
6496 /* If these givs are identical, they can be combined. We use the results
6497 of express_from because the addends are not in a canonical form, so
6498 rtx_equal_p is a weaker test. */
6499 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6500 combination to be the other way round. */
6501 if (comb == g1->dest_reg
6502 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6504 return ret;
6507 /* If G2 can be expressed as a function of G1 and that function is valid
6508 as an address and no more expensive than using a register for G2,
6509 the expression of G2 in terms of G1 can be used. */
6510 if (ret != NULL_RTX
6511 && g2->giv_type == DEST_ADDR
6512 && memory_address_p (GET_MODE (g2->mem), ret)
6513 /* ??? Looses, especially with -fforce-addr, where *g2->location
6514 will always be a register, and so anything more complicated
6515 gets discarded. */
6516 #if 0
6517 #ifdef ADDRESS_COST
6518 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
6519 #else
6520 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
6521 #endif
6522 #endif
6525 return ret;
6528 return NULL_RTX;
6531 /* Check each extension dependant giv in this class to see if its
6532 root biv is safe from wrapping in the interior mode, which would
6533 make the giv illegal. */
6535 static void
6536 check_ext_dependant_givs (bl, loop_info)
6537 struct iv_class *bl;
6538 struct loop_info *loop_info;
6540 int ze_ok = 0, se_ok = 0, info_ok = 0;
6541 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
6542 HOST_WIDE_INT start_val;
6543 unsigned HOST_WIDE_INT u_end_val = 0;
6544 unsigned HOST_WIDE_INT u_start_val = 0;
6545 rtx incr = pc_rtx;
6546 struct induction *v;
6548 /* Make sure the iteration data is available. We must have
6549 constants in order to be certain of no overflow. */
6550 /* ??? An unknown iteration count with an increment of +-1
6551 combined with friendly exit tests of against an invariant
6552 value is also ameanable to optimization. Not implemented. */
6553 if (loop_info->n_iterations > 0
6554 && bl->initial_value
6555 && GET_CODE (bl->initial_value) == CONST_INT
6556 && (incr = biv_total_increment (bl))
6557 && GET_CODE (incr) == CONST_INT
6558 /* Make sure the host can represent the arithmetic. */
6559 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
6561 unsigned HOST_WIDE_INT abs_incr, total_incr;
6562 HOST_WIDE_INT s_end_val;
6563 int neg_incr;
6565 info_ok = 1;
6566 start_val = INTVAL (bl->initial_value);
6567 u_start_val = start_val;
6569 neg_incr = 0, abs_incr = INTVAL (incr);
6570 if (INTVAL (incr) < 0)
6571 neg_incr = 1, abs_incr = -abs_incr;
6572 total_incr = abs_incr * loop_info->n_iterations;
6574 /* Check for host arithmatic overflow. */
6575 if (total_incr / loop_info->n_iterations == abs_incr)
6577 unsigned HOST_WIDE_INT u_max;
6578 HOST_WIDE_INT s_max;
6580 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
6581 s_end_val = u_end_val;
6582 u_max = GET_MODE_MASK (biv_mode);
6583 s_max = u_max >> 1;
6585 /* Check zero extension of biv ok. */
6586 if (start_val >= 0
6587 /* Check for host arithmatic overflow. */
6588 && (neg_incr
6589 ? u_end_val < u_start_val
6590 : u_end_val > u_start_val)
6591 /* Check for target arithmetic overflow. */
6592 && (neg_incr
6593 ? 1 /* taken care of with host overflow */
6594 : u_end_val <= u_max))
6596 ze_ok = 1;
6599 /* Check sign extension of biv ok. */
6600 /* ??? While it is true that overflow with signed and pointer
6601 arithmetic is undefined, I fear too many programmers don't
6602 keep this fact in mind -- myself included on occasion.
6603 So leave alone with the signed overflow optimizations. */
6604 if (start_val >= -s_max - 1
6605 /* Check for host arithmatic overflow. */
6606 && (neg_incr
6607 ? s_end_val < start_val
6608 : s_end_val > start_val)
6609 /* Check for target arithmetic overflow. */
6610 && (neg_incr
6611 ? s_end_val >= -s_max - 1
6612 : s_end_val <= s_max))
6614 se_ok = 1;
6619 /* Invalidate givs that fail the tests. */
6620 for (v = bl->giv; v; v = v->next_iv)
6621 if (v->ext_dependant)
6623 enum rtx_code code = GET_CODE (v->ext_dependant);
6624 int ok = 0;
6626 switch (code)
6628 case SIGN_EXTEND:
6629 ok = se_ok;
6630 break;
6631 case ZERO_EXTEND:
6632 ok = ze_ok;
6633 break;
6635 case TRUNCATE:
6636 /* We don't know whether this value is being used as either
6637 signed or unsigned, so to safely truncate we must satisfy
6638 both. The initial check here verifies the BIV itself;
6639 once that is successful we may check its range wrt the
6640 derived GIV. */
6641 if (se_ok && ze_ok)
6643 enum machine_mode outer_mode = GET_MODE (v->ext_dependant);
6644 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
6646 /* We know from the above that both endpoints are nonnegative,
6647 and that there is no wrapping. Verify that both endpoints
6648 are within the (signed) range of the outer mode. */
6649 if (u_start_val <= max && u_end_val <= max)
6650 ok = 1;
6652 break;
6654 default:
6655 abort ();
6658 if (ok)
6660 if (loop_dump_stream)
6662 fprintf (loop_dump_stream,
6663 "Verified ext dependant giv at %d of reg %d\n",
6664 INSN_UID (v->insn), bl->regno);
6667 else
6669 if (loop_dump_stream)
6671 const char *why;
6673 if (info_ok)
6674 why = "biv iteration values overflowed";
6675 else
6677 if (incr == pc_rtx)
6678 incr = biv_total_increment (bl);
6679 if (incr == const1_rtx)
6680 why = "biv iteration info incomplete; incr by 1";
6681 else
6682 why = "biv iteration info incomplete";
6685 fprintf (loop_dump_stream,
6686 "Failed ext dependant giv at %d, %s\n",
6687 INSN_UID (v->insn), why);
6689 v->ignore = 1;
6690 bl->all_reduced = 0;
6695 /* Generate a version of VALUE in a mode appropriate for initializing V. */
6698 extend_value_for_giv (v, value)
6699 struct induction *v;
6700 rtx value;
6702 rtx ext_dep = v->ext_dependant;
6704 if (! ext_dep)
6705 return value;
6707 /* Recall that check_ext_dependant_givs verified that the known bounds
6708 of a biv did not overflow or wrap with respect to the extension for
6709 the giv. Therefore, constants need no additional adjustment. */
6710 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
6711 return value;
6713 /* Otherwise, we must adjust the value to compensate for the
6714 differing modes of the biv and the giv. */
6715 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
6718 struct combine_givs_stats
6720 int giv_number;
6721 int total_benefit;
6724 static int
6725 cmp_combine_givs_stats (xp, yp)
6726 const PTR xp;
6727 const PTR yp;
6729 const struct combine_givs_stats * const x =
6730 (const struct combine_givs_stats *) xp;
6731 const struct combine_givs_stats * const y =
6732 (const struct combine_givs_stats *) yp;
6733 int d;
6734 d = y->total_benefit - x->total_benefit;
6735 /* Stabilize the sort. */
6736 if (!d)
6737 d = x->giv_number - y->giv_number;
6738 return d;
6741 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6742 any other. If so, point SAME to the giv combined with and set NEW_REG to
6743 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6744 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6746 static void
6747 combine_givs (regs, bl)
6748 struct loop_regs *regs;
6749 struct iv_class *bl;
6751 /* Additional benefit to add for being combined multiple times. */
6752 const int extra_benefit = 3;
6754 struct induction *g1, *g2, **giv_array;
6755 int i, j, k, giv_count;
6756 struct combine_givs_stats *stats;
6757 rtx *can_combine;
6759 /* Count givs, because bl->giv_count is incorrect here. */
6760 giv_count = 0;
6761 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6762 if (!g1->ignore)
6763 giv_count++;
6765 giv_array
6766 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
6767 i = 0;
6768 for (g1 = bl->giv; g1; g1 = g1->next_iv)
6769 if (!g1->ignore)
6770 giv_array[i++] = g1;
6772 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
6773 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
6775 for (i = 0; i < giv_count; i++)
6777 int this_benefit;
6778 rtx single_use;
6780 g1 = giv_array[i];
6781 stats[i].giv_number = i;
6783 /* If a DEST_REG GIV is used only once, do not allow it to combine
6784 with anything, for in doing so we will gain nothing that cannot
6785 be had by simply letting the GIV with which we would have combined
6786 to be reduced on its own. The losage shows up in particular with
6787 DEST_ADDR targets on hosts with reg+reg addressing, though it can
6788 be seen elsewhere as well. */
6789 if (g1->giv_type == DEST_REG
6790 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
6791 && single_use != const0_rtx)
6792 continue;
6794 this_benefit = g1->benefit;
6795 /* Add an additional weight for zero addends. */
6796 if (g1->no_const_addval)
6797 this_benefit += 1;
6799 for (j = 0; j < giv_count; j++)
6801 rtx this_combine;
6803 g2 = giv_array[j];
6804 if (g1 != g2
6805 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
6807 can_combine[i * giv_count + j] = this_combine;
6808 this_benefit += g2->benefit + extra_benefit;
6811 stats[i].total_benefit = this_benefit;
6814 /* Iterate, combining until we can't. */
6815 restart:
6816 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
6818 if (loop_dump_stream)
6820 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
6821 for (k = 0; k < giv_count; k++)
6823 g1 = giv_array[stats[k].giv_number];
6824 if (!g1->combined_with && !g1->same)
6825 fprintf (loop_dump_stream, " {%d, %d}",
6826 INSN_UID (giv_array[stats[k].giv_number]->insn),
6827 stats[k].total_benefit);
6829 putc ('\n', loop_dump_stream);
6832 for (k = 0; k < giv_count; k++)
6834 int g1_add_benefit = 0;
6836 i = stats[k].giv_number;
6837 g1 = giv_array[i];
6839 /* If it has already been combined, skip. */
6840 if (g1->combined_with || g1->same)
6841 continue;
6843 for (j = 0; j < giv_count; j++)
6845 g2 = giv_array[j];
6846 if (g1 != g2 && can_combine[i * giv_count + j]
6847 /* If it has already been combined, skip. */
6848 && ! g2->same && ! g2->combined_with)
6850 int l;
6852 g2->new_reg = can_combine[i * giv_count + j];
6853 g2->same = g1;
6854 /* For destination, we now may replace by mem expression instead
6855 of register. This changes the costs considerably, so add the
6856 compensation. */
6857 if (g2->giv_type == DEST_ADDR)
6858 g2->benefit = (g2->benefit + reg_address_cost
6859 - address_cost (g2->new_reg,
6860 GET_MODE (g2->mem)));
6861 g1->combined_with++;
6862 g1->lifetime += g2->lifetime;
6864 g1_add_benefit += g2->benefit;
6866 /* ??? The new final_[bg]iv_value code does a much better job
6867 of finding replaceable giv's, and hence this code may no
6868 longer be necessary. */
6869 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
6870 g1_add_benefit -= copy_cost;
6872 /* To help optimize the next set of combinations, remove
6873 this giv from the benefits of other potential mates. */
6874 for (l = 0; l < giv_count; ++l)
6876 int m = stats[l].giv_number;
6877 if (can_combine[m * giv_count + j])
6878 stats[l].total_benefit -= g2->benefit + extra_benefit;
6881 if (loop_dump_stream)
6882 fprintf (loop_dump_stream,
6883 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
6884 INSN_UID (g2->insn), INSN_UID (g1->insn),
6885 g1->benefit, g1_add_benefit, g1->lifetime);
6889 /* To help optimize the next set of combinations, remove
6890 this giv from the benefits of other potential mates. */
6891 if (g1->combined_with)
6893 for (j = 0; j < giv_count; ++j)
6895 int m = stats[j].giv_number;
6896 if (can_combine[m * giv_count + i])
6897 stats[j].total_benefit -= g1->benefit + extra_benefit;
6900 g1->benefit += g1_add_benefit;
6902 /* We've finished with this giv, and everything it touched.
6903 Restart the combination so that proper weights for the
6904 rest of the givs are properly taken into account. */
6905 /* ??? Ideally we would compact the arrays at this point, so
6906 as to not cover old ground. But sanely compacting
6907 can_combine is tricky. */
6908 goto restart;
6912 /* Clean up. */
6913 free (stats);
6914 free (can_combine);
6917 /* Generate sequence for REG = B * M + A. */
6919 static rtx
6920 gen_add_mult (b, m, a, reg)
6921 rtx b; /* initial value of basic induction variable */
6922 rtx m; /* multiplicative constant */
6923 rtx a; /* additive constant */
6924 rtx reg; /* destination register */
6926 rtx seq;
6927 rtx result;
6929 start_sequence ();
6930 /* Use unsigned arithmetic. */
6931 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
6932 if (reg != result)
6933 emit_move_insn (reg, result);
6934 seq = gen_sequence ();
6935 end_sequence ();
6937 return seq;
6941 /* Update registers created in insn sequence SEQ. */
6943 static void
6944 loop_regs_update (loop, seq)
6945 const struct loop *loop ATTRIBUTE_UNUSED;
6946 rtx seq;
6948 /* Update register info for alias analysis. */
6950 if (GET_CODE (seq) == SEQUENCE)
6952 int i;
6953 for (i = 0; i < XVECLEN (seq, 0); ++i)
6955 rtx set = single_set (XVECEXP (seq, 0, i));
6956 if (set && GET_CODE (SET_DEST (set)) == REG)
6957 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6960 else
6962 rtx set = single_set (seq);
6963 if (set && GET_CODE (SET_DEST (set)) == REG)
6964 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
6969 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. */
6971 void
6972 loop_iv_add_mult_emit_before (loop, b, m, a, reg, before_bb, before_insn)
6973 const struct loop *loop;
6974 rtx b; /* initial value of basic induction variable */
6975 rtx m; /* multiplicative constant */
6976 rtx a; /* additive constant */
6977 rtx reg; /* destination register */
6978 basic_block before_bb;
6979 rtx before_insn;
6981 rtx seq;
6983 if (! before_insn)
6985 loop_iv_add_mult_hoist (loop, b, m, a, reg);
6986 return;
6989 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
6990 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
6992 /* Increase the lifetime of any invariants moved further in code. */
6993 update_reg_last_use (a, before_insn);
6994 update_reg_last_use (b, before_insn);
6995 update_reg_last_use (m, before_insn);
6997 loop_insn_emit_before (loop, before_bb, before_insn, seq);
6999 /* It is possible that the expansion created lots of new registers.
7000 Iterate over the sequence we just created and record them all. */
7001 loop_regs_update (loop, seq);
7005 /* Emit insns in loop pre-header to set REG = B * M + A. */
7007 void
7008 loop_iv_add_mult_sink (loop, b, m, a, reg)
7009 const struct loop *loop;
7010 rtx b; /* initial value of basic induction variable */
7011 rtx m; /* multiplicative constant */
7012 rtx a; /* additive constant */
7013 rtx reg; /* destination register */
7015 rtx seq;
7017 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7018 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
7020 /* Increase the lifetime of any invariants moved further in code.
7021 ???? Is this really necessary? */
7022 update_reg_last_use (a, loop->sink);
7023 update_reg_last_use (b, loop->sink);
7024 update_reg_last_use (m, loop->sink);
7026 loop_insn_sink (loop, seq);
7028 /* It is possible that the expansion created lots of new registers.
7029 Iterate over the sequence we just created and record them all. */
7030 loop_regs_update (loop, seq);
7034 /* Emit insns after loop to set REG = B * M + A. */
7036 void
7037 loop_iv_add_mult_hoist (loop, b, m, a, reg)
7038 const struct loop *loop;
7039 rtx b; /* initial value of basic induction variable */
7040 rtx m; /* multiplicative constant */
7041 rtx a; /* additive constant */
7042 rtx reg; /* destination register */
7044 rtx seq;
7046 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7047 seq = gen_add_mult (copy_rtx (b), m, copy_rtx (a), reg);
7049 loop_insn_hoist (loop, seq);
7051 /* It is possible that the expansion created lots of new registers.
7052 Iterate over the sequence we just created and record them all. */
7053 loop_regs_update (loop, seq);
7058 /* Similar to gen_add_mult, but compute cost rather than generating
7059 sequence. */
7061 static int
7062 iv_add_mult_cost (b, m, a, reg)
7063 rtx b; /* initial value of basic induction variable */
7064 rtx m; /* multiplicative constant */
7065 rtx a; /* additive constant */
7066 rtx reg; /* destination register */
7068 int cost = 0;
7069 rtx last, result;
7071 start_sequence ();
7072 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7073 if (reg != result)
7074 emit_move_insn (reg, result);
7075 last = get_last_insn ();
7076 while (last)
7078 rtx t = single_set (last);
7079 if (t)
7080 cost += rtx_cost (SET_SRC (t), SET);
7081 last = PREV_INSN (last);
7083 end_sequence ();
7084 return cost;
7087 /* Test whether A * B can be computed without
7088 an actual multiply insn. Value is 1 if so. */
7090 static int
7091 product_cheap_p (a, b)
7092 rtx a;
7093 rtx b;
7095 int i;
7096 rtx tmp;
7097 int win = 1;
7099 /* If only one is constant, make it B. */
7100 if (GET_CODE (a) == CONST_INT)
7101 tmp = a, a = b, b = tmp;
7103 /* If first constant, both constant, so don't need multiply. */
7104 if (GET_CODE (a) == CONST_INT)
7105 return 1;
7107 /* If second not constant, neither is constant, so would need multiply. */
7108 if (GET_CODE (b) != CONST_INT)
7109 return 0;
7111 /* One operand is constant, so might not need multiply insn. Generate the
7112 code for the multiply and see if a call or multiply, or long sequence
7113 of insns is generated. */
7115 start_sequence ();
7116 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7117 tmp = gen_sequence ();
7118 end_sequence ();
7120 if (GET_CODE (tmp) == SEQUENCE)
7122 if (XVEC (tmp, 0) == 0)
7123 win = 1;
7124 else if (XVECLEN (tmp, 0) > 3)
7125 win = 0;
7126 else
7127 for (i = 0; i < XVECLEN (tmp, 0); i++)
7129 rtx insn = XVECEXP (tmp, 0, i);
7131 if (GET_CODE (insn) != INSN
7132 || (GET_CODE (PATTERN (insn)) == SET
7133 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7134 || (GET_CODE (PATTERN (insn)) == PARALLEL
7135 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7136 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7138 win = 0;
7139 break;
7143 else if (GET_CODE (tmp) == SET
7144 && GET_CODE (SET_SRC (tmp)) == MULT)
7145 win = 0;
7146 else if (GET_CODE (tmp) == PARALLEL
7147 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7148 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7149 win = 0;
7151 return win;
7154 /* Check to see if loop can be terminated by a "decrement and branch until
7155 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7156 Also try reversing an increment loop to a decrement loop
7157 to see if the optimization can be performed.
7158 Value is nonzero if optimization was performed. */
7160 /* This is useful even if the architecture doesn't have such an insn,
7161 because it might change a loops which increments from 0 to n to a loop
7162 which decrements from n to 0. A loop that decrements to zero is usually
7163 faster than one that increments from zero. */
7165 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7166 such as approx_final_value, biv_total_increment, loop_iterations, and
7167 final_[bg]iv_value. */
7169 static int
7170 check_dbra_loop (loop, insn_count)
7171 struct loop *loop;
7172 int insn_count;
7174 struct loop_info *loop_info = LOOP_INFO (loop);
7175 struct loop_regs *regs = LOOP_REGS (loop);
7176 struct loop_ivs *ivs = LOOP_IVS (loop);
7177 struct iv_class *bl;
7178 rtx reg;
7179 rtx jump_label;
7180 rtx final_value;
7181 rtx start_value;
7182 rtx new_add_val;
7183 rtx comparison;
7184 rtx before_comparison;
7185 rtx p;
7186 rtx jump;
7187 rtx first_compare;
7188 int compare_and_branch;
7189 rtx loop_start = loop->start;
7190 rtx loop_end = loop->end;
7192 /* If last insn is a conditional branch, and the insn before tests a
7193 register value, try to optimize it. Otherwise, we can't do anything. */
7195 jump = PREV_INSN (loop_end);
7196 comparison = get_condition_for_loop (loop, jump);
7197 if (comparison == 0)
7198 return 0;
7199 if (!onlyjump_p (jump))
7200 return 0;
7202 /* Try to compute whether the compare/branch at the loop end is one or
7203 two instructions. */
7204 get_condition (jump, &first_compare);
7205 if (first_compare == jump)
7206 compare_and_branch = 1;
7207 else if (first_compare == prev_nonnote_insn (jump))
7208 compare_and_branch = 2;
7209 else
7210 return 0;
7213 /* If more than one condition is present to control the loop, then
7214 do not proceed, as this function does not know how to rewrite
7215 loop tests with more than one condition.
7217 Look backwards from the first insn in the last comparison
7218 sequence and see if we've got another comparison sequence. */
7220 rtx jump1;
7221 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
7222 if (GET_CODE (jump1) == JUMP_INSN)
7223 return 0;
7226 /* Check all of the bivs to see if the compare uses one of them.
7227 Skip biv's set more than once because we can't guarantee that
7228 it will be zero on the last iteration. Also skip if the biv is
7229 used between its update and the test insn. */
7231 for (bl = ivs->list; bl; bl = bl->next)
7233 if (bl->biv_count == 1
7234 && ! bl->biv->maybe_multiple
7235 && bl->biv->dest_reg == XEXP (comparison, 0)
7236 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7237 first_compare))
7238 break;
7241 if (! bl)
7242 return 0;
7244 /* Look for the case where the basic induction variable is always
7245 nonnegative, and equals zero on the last iteration.
7246 In this case, add a reg_note REG_NONNEG, which allows the
7247 m68k DBRA instruction to be used. */
7249 if (((GET_CODE (comparison) == GT
7250 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7251 && INTVAL (XEXP (comparison, 1)) == -1)
7252 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7253 && GET_CODE (bl->biv->add_val) == CONST_INT
7254 && INTVAL (bl->biv->add_val) < 0)
7256 /* Initial value must be greater than 0,
7257 init_val % -dec_value == 0 to ensure that it equals zero on
7258 the last iteration */
7260 if (GET_CODE (bl->initial_value) == CONST_INT
7261 && INTVAL (bl->initial_value) > 0
7262 && (INTVAL (bl->initial_value)
7263 % (-INTVAL (bl->biv->add_val))) == 0)
7265 /* register always nonnegative, add REG_NOTE to branch */
7266 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
7267 REG_NOTES (jump)
7268 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
7269 REG_NOTES (jump));
7270 bl->nonneg = 1;
7272 return 1;
7275 /* If the decrement is 1 and the value was tested as >= 0 before
7276 the loop, then we can safely optimize. */
7277 for (p = loop_start; p; p = PREV_INSN (p))
7279 if (GET_CODE (p) == CODE_LABEL)
7280 break;
7281 if (GET_CODE (p) != JUMP_INSN)
7282 continue;
7284 before_comparison = get_condition_for_loop (loop, p);
7285 if (before_comparison
7286 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7287 && GET_CODE (before_comparison) == LT
7288 && XEXP (before_comparison, 1) == const0_rtx
7289 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7290 && INTVAL (bl->biv->add_val) == -1)
7292 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
7293 REG_NOTES (jump)
7294 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
7295 REG_NOTES (jump));
7296 bl->nonneg = 1;
7298 return 1;
7302 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7303 && INTVAL (bl->biv->add_val) > 0)
7305 /* Try to change inc to dec, so can apply above optimization. */
7306 /* Can do this if:
7307 all registers modified are induction variables or invariant,
7308 all memory references have non-overlapping addresses
7309 (obviously true if only one write)
7310 allow 2 insns for the compare/jump at the end of the loop. */
7311 /* Also, we must avoid any instructions which use both the reversed
7312 biv and another biv. Such instructions will fail if the loop is
7313 reversed. We meet this condition by requiring that either
7314 no_use_except_counting is true, or else that there is only
7315 one biv. */
7316 int num_nonfixed_reads = 0;
7317 /* 1 if the iteration var is used only to count iterations. */
7318 int no_use_except_counting = 0;
7319 /* 1 if the loop has no memory store, or it has a single memory store
7320 which is reversible. */
7321 int reversible_mem_store = 1;
7323 if (bl->giv_count == 0 && ! loop->exit_count)
7325 rtx bivreg = regno_reg_rtx[bl->regno];
7326 struct iv_class *blt;
7328 /* If there are no givs for this biv, and the only exit is the
7329 fall through at the end of the loop, then
7330 see if perhaps there are no uses except to count. */
7331 no_use_except_counting = 1;
7332 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7333 if (INSN_P (p))
7335 rtx set = single_set (p);
7337 if (set && GET_CODE (SET_DEST (set)) == REG
7338 && REGNO (SET_DEST (set)) == bl->regno)
7339 /* An insn that sets the biv is okay. */
7341 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7342 || p == prev_nonnote_insn (loop_end))
7343 && reg_mentioned_p (bivreg, PATTERN (p)))
7345 /* If either of these insns uses the biv and sets a pseudo
7346 that has more than one usage, then the biv has uses
7347 other than counting since it's used to derive a value
7348 that is used more than one time. */
7349 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
7350 regs);
7351 if (regs->multiple_uses)
7353 no_use_except_counting = 0;
7354 break;
7357 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7359 no_use_except_counting = 0;
7360 break;
7364 /* A biv has uses besides counting if it is used to set another biv. */
7365 for (blt = ivs->list; blt; blt = blt->next)
7366 if (blt->init_set && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
7368 no_use_except_counting = 0;
7369 break;
7373 if (no_use_except_counting)
7374 /* No need to worry about MEMs. */
7376 else if (loop_info->num_mem_sets <= 1)
7378 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7379 if (INSN_P (p))
7380 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
7382 /* If the loop has a single store, and the destination address is
7383 invariant, then we can't reverse the loop, because this address
7384 might then have the wrong value at loop exit.
7385 This would work if the source was invariant also, however, in that
7386 case, the insn should have been moved out of the loop. */
7388 if (loop_info->num_mem_sets == 1)
7390 struct induction *v;
7392 /* If we could prove that each of the memory locations
7393 written to was different, then we could reverse the
7394 store -- but we don't presently have any way of
7395 knowing that. */
7396 reversible_mem_store = 0;
7398 /* If the store depends on a register that is set after the
7399 store, it depends on the initial value, and is thus not
7400 reversible. */
7401 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7403 if (v->giv_type == DEST_REG
7404 && reg_mentioned_p (v->dest_reg,
7405 PATTERN (loop_info->first_loop_store_insn))
7406 && loop_insn_first_p (loop_info->first_loop_store_insn,
7407 v->insn))
7408 reversible_mem_store = 0;
7412 else
7413 return 0;
7415 /* This code only acts for innermost loops. Also it simplifies
7416 the memory address check by only reversing loops with
7417 zero or one memory access.
7418 Two memory accesses could involve parts of the same array,
7419 and that can't be reversed.
7420 If the biv is used only for counting, than we don't need to worry
7421 about all these things. */
7423 if ((num_nonfixed_reads <= 1
7424 && ! loop_info->has_nonconst_call
7425 && ! loop_info->has_volatile
7426 && reversible_mem_store
7427 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
7428 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
7429 && (bl == ivs->list && bl->next == 0))
7430 || no_use_except_counting)
7432 rtx tem;
7434 /* Loop can be reversed. */
7435 if (loop_dump_stream)
7436 fprintf (loop_dump_stream, "Can reverse loop\n");
7438 /* Now check other conditions:
7440 The increment must be a constant, as must the initial value,
7441 and the comparison code must be LT.
7443 This test can probably be improved since +/- 1 in the constant
7444 can be obtained by changing LT to LE and vice versa; this is
7445 confusing. */
7447 if (comparison
7448 /* for constants, LE gets turned into LT */
7449 && (GET_CODE (comparison) == LT
7450 || (GET_CODE (comparison) == LE
7451 && no_use_except_counting)))
7453 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
7454 rtx initial_value, comparison_value;
7455 int nonneg = 0;
7456 enum rtx_code cmp_code;
7457 int comparison_const_width;
7458 unsigned HOST_WIDE_INT comparison_sign_mask;
7460 add_val = INTVAL (bl->biv->add_val);
7461 comparison_value = XEXP (comparison, 1);
7462 if (GET_MODE (comparison_value) == VOIDmode)
7463 comparison_const_width
7464 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
7465 else
7466 comparison_const_width
7467 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
7468 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
7469 comparison_const_width = HOST_BITS_PER_WIDE_INT;
7470 comparison_sign_mask
7471 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
7473 /* If the comparison value is not a loop invariant, then we
7474 can not reverse this loop.
7476 ??? If the insns which initialize the comparison value as
7477 a whole compute an invariant result, then we could move
7478 them out of the loop and proceed with loop reversal. */
7479 if (! loop_invariant_p (loop, comparison_value))
7480 return 0;
7482 if (GET_CODE (comparison_value) == CONST_INT)
7483 comparison_val = INTVAL (comparison_value);
7484 initial_value = bl->initial_value;
7486 /* Normalize the initial value if it is an integer and
7487 has no other use except as a counter. This will allow
7488 a few more loops to be reversed. */
7489 if (no_use_except_counting
7490 && GET_CODE (comparison_value) == CONST_INT
7491 && GET_CODE (initial_value) == CONST_INT)
7493 comparison_val = comparison_val - INTVAL (bl->initial_value);
7494 /* The code below requires comparison_val to be a multiple
7495 of add_val in order to do the loop reversal, so
7496 round up comparison_val to a multiple of add_val.
7497 Since comparison_value is constant, we know that the
7498 current comparison code is LT. */
7499 comparison_val = comparison_val + add_val - 1;
7500 comparison_val
7501 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
7502 /* We postpone overflow checks for COMPARISON_VAL here;
7503 even if there is an overflow, we might still be able to
7504 reverse the loop, if converting the loop exit test to
7505 NE is possible. */
7506 initial_value = const0_rtx;
7509 /* First check if we can do a vanilla loop reversal. */
7510 if (initial_value == const0_rtx
7511 /* If we have a decrement_and_branch_on_count,
7512 prefer the NE test, since this will allow that
7513 instruction to be generated. Note that we must
7514 use a vanilla loop reversal if the biv is used to
7515 calculate a giv or has a non-counting use. */
7516 #if ! defined (HAVE_decrement_and_branch_until_zero) \
7517 && defined (HAVE_decrement_and_branch_on_count)
7518 && (! (add_val == 1 && loop->vtop
7519 && (bl->biv_count == 0
7520 || no_use_except_counting)))
7521 #endif
7522 && GET_CODE (comparison_value) == CONST_INT
7523 /* Now do postponed overflow checks on COMPARISON_VAL. */
7524 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
7525 & comparison_sign_mask))
7527 /* Register will always be nonnegative, with value
7528 0 on last iteration */
7529 add_adjust = add_val;
7530 nonneg = 1;
7531 cmp_code = GE;
7533 else if (add_val == 1 && loop->vtop
7534 && (bl->biv_count == 0
7535 || no_use_except_counting))
7537 add_adjust = 0;
7538 cmp_code = NE;
7540 else
7541 return 0;
7543 if (GET_CODE (comparison) == LE)
7544 add_adjust -= add_val;
7546 /* If the initial value is not zero, or if the comparison
7547 value is not an exact multiple of the increment, then we
7548 can not reverse this loop. */
7549 if (initial_value == const0_rtx
7550 && GET_CODE (comparison_value) == CONST_INT)
7552 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
7553 return 0;
7555 else
7557 if (! no_use_except_counting || add_val != 1)
7558 return 0;
7561 final_value = comparison_value;
7563 /* Reset these in case we normalized the initial value
7564 and comparison value above. */
7565 if (GET_CODE (comparison_value) == CONST_INT
7566 && GET_CODE (initial_value) == CONST_INT)
7568 comparison_value = GEN_INT (comparison_val);
7569 final_value
7570 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
7572 bl->initial_value = initial_value;
7574 /* Save some info needed to produce the new insns. */
7575 reg = bl->biv->dest_reg;
7576 jump_label = condjump_label (PREV_INSN (loop_end));
7577 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
7579 /* Set start_value; if this is not a CONST_INT, we need
7580 to generate a SUB.
7581 Initialize biv to start_value before loop start.
7582 The old initializing insn will be deleted as a
7583 dead store by flow.c. */
7584 if (initial_value == const0_rtx
7585 && GET_CODE (comparison_value) == CONST_INT)
7587 start_value = GEN_INT (comparison_val - add_adjust);
7588 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
7590 else if (GET_CODE (initial_value) == CONST_INT)
7592 enum machine_mode mode = GET_MODE (reg);
7593 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
7594 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
7596 if (add_insn == 0)
7597 return 0;
7599 start_value
7600 = gen_rtx_PLUS (mode, comparison_value, offset);
7601 loop_insn_hoist (loop, add_insn);
7602 if (GET_CODE (comparison) == LE)
7603 final_value = gen_rtx_PLUS (mode, comparison_value,
7604 GEN_INT (add_val));
7606 else if (! add_adjust)
7608 enum machine_mode mode = GET_MODE (reg);
7609 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
7610 initial_value);
7612 if (sub_insn == 0)
7613 return 0;
7614 start_value
7615 = gen_rtx_MINUS (mode, comparison_value, initial_value);
7616 loop_insn_hoist (loop, sub_insn);
7618 else
7619 /* We could handle the other cases too, but it'll be
7620 better to have a testcase first. */
7621 return 0;
7623 /* We may not have a single insn which can increment a reg, so
7624 create a sequence to hold all the insns from expand_inc. */
7625 start_sequence ();
7626 expand_inc (reg, new_add_val);
7627 tem = gen_sequence ();
7628 end_sequence ();
7630 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
7631 delete_insn (bl->biv->insn);
7633 /* Update biv info to reflect its new status. */
7634 bl->biv->insn = p;
7635 bl->initial_value = start_value;
7636 bl->biv->add_val = new_add_val;
7638 /* Update loop info. */
7639 loop_info->initial_value = reg;
7640 loop_info->initial_equiv_value = reg;
7641 loop_info->final_value = const0_rtx;
7642 loop_info->final_equiv_value = const0_rtx;
7643 loop_info->comparison_value = const0_rtx;
7644 loop_info->comparison_code = cmp_code;
7645 loop_info->increment = new_add_val;
7647 /* Inc LABEL_NUSES so that delete_insn will
7648 not delete the label. */
7649 LABEL_NUSES (XEXP (jump_label, 0))++;
7651 /* Emit an insn after the end of the loop to set the biv's
7652 proper exit value if it is used anywhere outside the loop. */
7653 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
7654 || ! bl->init_insn
7655 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
7656 loop_insn_sink (loop, gen_move_insn (reg, final_value));
7658 /* Delete compare/branch at end of loop. */
7659 delete_insn (PREV_INSN (loop_end));
7660 if (compare_and_branch == 2)
7661 delete_insn (first_compare);
7663 /* Add new compare/branch insn at end of loop. */
7664 start_sequence ();
7665 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
7666 GET_MODE (reg), 0, 0,
7667 XEXP (jump_label, 0));
7668 tem = gen_sequence ();
7669 end_sequence ();
7670 emit_jump_insn_before (tem, loop_end);
7672 for (tem = PREV_INSN (loop_end);
7673 tem && GET_CODE (tem) != JUMP_INSN;
7674 tem = PREV_INSN (tem))
7677 if (tem)
7678 JUMP_LABEL (tem) = XEXP (jump_label, 0);
7680 if (nonneg)
7682 if (tem)
7684 /* Increment of LABEL_NUSES done above. */
7685 /* Register is now always nonnegative,
7686 so add REG_NONNEG note to the branch. */
7687 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
7688 REG_NOTES (tem));
7690 bl->nonneg = 1;
7693 /* No insn may reference both the reversed and another biv or it
7694 will fail (see comment near the top of the loop reversal
7695 code).
7696 Earlier on, we have verified that the biv has no use except
7697 counting, or it is the only biv in this function.
7698 However, the code that computes no_use_except_counting does
7699 not verify reg notes. It's possible to have an insn that
7700 references another biv, and has a REG_EQUAL note with an
7701 expression based on the reversed biv. To avoid this case,
7702 remove all REG_EQUAL notes based on the reversed biv
7703 here. */
7704 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7705 if (INSN_P (p))
7707 rtx *pnote;
7708 rtx set = single_set (p);
7709 /* If this is a set of a GIV based on the reversed biv, any
7710 REG_EQUAL notes should still be correct. */
7711 if (! set
7712 || GET_CODE (SET_DEST (set)) != REG
7713 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
7714 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
7715 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
7716 for (pnote = &REG_NOTES (p); *pnote;)
7718 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
7719 && reg_mentioned_p (regno_reg_rtx[bl->regno],
7720 XEXP (*pnote, 0)))
7721 *pnote = XEXP (*pnote, 1);
7722 else
7723 pnote = &XEXP (*pnote, 1);
7727 /* Mark that this biv has been reversed. Each giv which depends
7728 on this biv, and which is also live past the end of the loop
7729 will have to be fixed up. */
7731 bl->reversed = 1;
7733 if (loop_dump_stream)
7735 fprintf (loop_dump_stream, "Reversed loop");
7736 if (bl->nonneg)
7737 fprintf (loop_dump_stream, " and added reg_nonneg\n");
7738 else
7739 fprintf (loop_dump_stream, "\n");
7742 return 1;
7747 return 0;
7750 /* Verify whether the biv BL appears to be eliminable,
7751 based on the insns in the loop that refer to it.
7753 If ELIMINATE_P is non-zero, actually do the elimination.
7755 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
7756 determine whether invariant insns should be placed inside or at the
7757 start of the loop. */
7759 static int
7760 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
7761 const struct loop *loop;
7762 struct iv_class *bl;
7763 int eliminate_p;
7764 int threshold, insn_count;
7766 struct loop_ivs *ivs = LOOP_IVS (loop);
7767 rtx reg = bl->biv->dest_reg;
7768 rtx p;
7770 /* Scan all insns in the loop, stopping if we find one that uses the
7771 biv in a way that we cannot eliminate. */
7773 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
7775 enum rtx_code code = GET_CODE (p);
7776 basic_block where_bb = 0;
7777 rtx where_insn = threshold >= insn_count ? 0 : p;
7779 /* If this is a libcall that sets a giv, skip ahead to its end. */
7780 if (GET_RTX_CLASS (code) == 'i')
7782 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
7784 if (note)
7786 rtx last = XEXP (note, 0);
7787 rtx set = single_set (last);
7789 if (set && GET_CODE (SET_DEST (set)) == REG)
7791 unsigned int regno = REGNO (SET_DEST (set));
7793 if (regno < ivs->n_regs
7794 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
7795 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
7796 p = last;
7800 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
7801 && reg_mentioned_p (reg, PATTERN (p))
7802 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
7803 eliminate_p, where_bb, where_insn))
7805 if (loop_dump_stream)
7806 fprintf (loop_dump_stream,
7807 "Cannot eliminate biv %d: biv used in insn %d.\n",
7808 bl->regno, INSN_UID (p));
7809 break;
7813 if (p == loop->end)
7815 if (loop_dump_stream)
7816 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
7817 bl->regno, eliminate_p ? "was" : "can be");
7818 return 1;
7821 return 0;
7824 /* INSN and REFERENCE are instructions in the same insn chain.
7825 Return non-zero if INSN is first. */
7828 loop_insn_first_p (insn, reference)
7829 rtx insn, reference;
7831 rtx p, q;
7833 for (p = insn, q = reference;;)
7835 /* Start with test for not first so that INSN == REFERENCE yields not
7836 first. */
7837 if (q == insn || ! p)
7838 return 0;
7839 if (p == reference || ! q)
7840 return 1;
7842 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
7843 previous insn, hence the <= comparison below does not work if
7844 P is a note. */
7845 if (INSN_UID (p) < max_uid_for_loop
7846 && INSN_UID (q) < max_uid_for_loop
7847 && GET_CODE (p) != NOTE)
7848 return INSN_LUID (p) <= INSN_LUID (q);
7850 if (INSN_UID (p) >= max_uid_for_loop
7851 || GET_CODE (p) == NOTE)
7852 p = NEXT_INSN (p);
7853 if (INSN_UID (q) >= max_uid_for_loop)
7854 q = NEXT_INSN (q);
7858 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
7859 the offset that we have to take into account due to auto-increment /
7860 div derivation is zero. */
7861 static int
7862 biv_elimination_giv_has_0_offset (biv, giv, insn)
7863 struct induction *biv, *giv;
7864 rtx insn;
7866 /* If the giv V had the auto-inc address optimization applied
7867 to it, and INSN occurs between the giv insn and the biv
7868 insn, then we'd have to adjust the value used here.
7869 This is rare, so we don't bother to make this possible. */
7870 if (giv->auto_inc_opt
7871 && ((loop_insn_first_p (giv->insn, insn)
7872 && loop_insn_first_p (insn, biv->insn))
7873 || (loop_insn_first_p (biv->insn, insn)
7874 && loop_insn_first_p (insn, giv->insn))))
7875 return 0;
7877 return 1;
7880 /* If BL appears in X (part of the pattern of INSN), see if we can
7881 eliminate its use. If so, return 1. If not, return 0.
7883 If BIV does not appear in X, return 1.
7885 If ELIMINATE_P is non-zero, actually do the elimination.
7886 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
7887 Depending on how many items have been moved out of the loop, it
7888 will either be before INSN (when WHERE_INSN is non-zero) or at the
7889 start of the loop (when WHERE_INSN is zero). */
7891 static int
7892 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where_bb, where_insn)
7893 const struct loop *loop;
7894 rtx x, insn;
7895 struct iv_class *bl;
7896 int eliminate_p;
7897 basic_block where_bb;
7898 rtx where_insn;
7900 enum rtx_code code = GET_CODE (x);
7901 rtx reg = bl->biv->dest_reg;
7902 enum machine_mode mode = GET_MODE (reg);
7903 struct induction *v;
7904 rtx arg, tem;
7905 #ifdef HAVE_cc0
7906 rtx new;
7907 #endif
7908 int arg_operand;
7909 const char *fmt;
7910 int i, j;
7912 switch (code)
7914 case REG:
7915 /* If we haven't already been able to do something with this BIV,
7916 we can't eliminate it. */
7917 if (x == reg)
7918 return 0;
7919 return 1;
7921 case SET:
7922 /* If this sets the BIV, it is not a problem. */
7923 if (SET_DEST (x) == reg)
7924 return 1;
7926 /* If this is an insn that defines a giv, it is also ok because
7927 it will go away when the giv is reduced. */
7928 for (v = bl->giv; v; v = v->next_iv)
7929 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
7930 return 1;
7932 #ifdef HAVE_cc0
7933 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
7935 /* Can replace with any giv that was reduced and
7936 that has (MULT_VAL != 0) and (ADD_VAL == 0).
7937 Require a constant for MULT_VAL, so we know it's nonzero.
7938 ??? We disable this optimization to avoid potential
7939 overflows. */
7941 for (v = bl->giv; v; v = v->next_iv)
7942 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
7943 && v->add_val == const0_rtx
7944 && ! v->ignore && ! v->maybe_dead && v->always_computable
7945 && v->mode == mode
7946 && 0)
7948 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
7949 continue;
7951 if (! eliminate_p)
7952 return 1;
7954 /* If the giv has the opposite direction of change,
7955 then reverse the comparison. */
7956 if (INTVAL (v->mult_val) < 0)
7957 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
7958 const0_rtx, v->new_reg);
7959 else
7960 new = v->new_reg;
7962 /* We can probably test that giv's reduced reg. */
7963 if (validate_change (insn, &SET_SRC (x), new, 0))
7964 return 1;
7967 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
7968 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
7969 Require a constant for MULT_VAL, so we know it's nonzero.
7970 ??? Do this only if ADD_VAL is a pointer to avoid a potential
7971 overflow problem. */
7973 for (v = bl->giv; v; v = v->next_iv)
7974 if (GET_CODE (v->mult_val) == CONST_INT
7975 && v->mult_val != const0_rtx
7976 && ! v->ignore && ! v->maybe_dead && v->always_computable
7977 && v->mode == mode
7978 && (GET_CODE (v->add_val) == SYMBOL_REF
7979 || GET_CODE (v->add_val) == LABEL_REF
7980 || GET_CODE (v->add_val) == CONST
7981 || (GET_CODE (v->add_val) == REG
7982 && REG_POINTER (v->add_val))))
7984 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
7985 continue;
7987 if (! eliminate_p)
7988 return 1;
7990 /* If the giv has the opposite direction of change,
7991 then reverse the comparison. */
7992 if (INTVAL (v->mult_val) < 0)
7993 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
7994 v->new_reg);
7995 else
7996 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
7997 copy_rtx (v->add_val));
7999 /* Replace biv with the giv's reduced register. */
8000 update_reg_last_use (v->add_val, insn);
8001 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8002 return 1;
8004 /* Insn doesn't support that constant or invariant. Copy it
8005 into a register (it will be a loop invariant.) */
8006 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8008 loop_insn_emit_before (loop, 0, where_insn,
8009 gen_move_insn (tem,
8010 copy_rtx (v->add_val)));
8012 /* Substitute the new register for its invariant value in
8013 the compare expression. */
8014 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8015 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8016 return 1;
8019 #endif
8020 break;
8022 case COMPARE:
8023 case EQ: case NE:
8024 case GT: case GE: case GTU: case GEU:
8025 case LT: case LE: case LTU: case LEU:
8026 /* See if either argument is the biv. */
8027 if (XEXP (x, 0) == reg)
8028 arg = XEXP (x, 1), arg_operand = 1;
8029 else if (XEXP (x, 1) == reg)
8030 arg = XEXP (x, 0), arg_operand = 0;
8031 else
8032 break;
8034 if (CONSTANT_P (arg))
8036 /* First try to replace with any giv that has constant positive
8037 mult_val and constant add_val. We might be able to support
8038 negative mult_val, but it seems complex to do it in general. */
8040 for (v = bl->giv; v; v = v->next_iv)
8041 if (GET_CODE (v->mult_val) == CONST_INT
8042 && INTVAL (v->mult_val) > 0
8043 && (GET_CODE (v->add_val) == SYMBOL_REF
8044 || GET_CODE (v->add_val) == LABEL_REF
8045 || GET_CODE (v->add_val) == CONST
8046 || (GET_CODE (v->add_val) == REG
8047 && REG_POINTER (v->add_val)))
8048 && ! v->ignore && ! v->maybe_dead && v->always_computable
8049 && v->mode == mode)
8051 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8052 continue;
8054 if (! eliminate_p)
8055 return 1;
8057 /* Replace biv with the giv's reduced reg. */
8058 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8060 /* If all constants are actually constant integers and
8061 the derived constant can be directly placed in the COMPARE,
8062 do so. */
8063 if (GET_CODE (arg) == CONST_INT
8064 && GET_CODE (v->mult_val) == CONST_INT
8065 && GET_CODE (v->add_val) == CONST_INT)
8067 validate_change (insn, &XEXP (x, arg_operand),
8068 GEN_INT (INTVAL (arg)
8069 * INTVAL (v->mult_val)
8070 + INTVAL (v->add_val)), 1);
8072 else
8074 /* Otherwise, load it into a register. */
8075 tem = gen_reg_rtx (mode);
8076 loop_iv_add_mult_emit_before (loop, arg,
8077 v->mult_val, v->add_val,
8078 tem, where_bb, where_insn);
8079 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8081 if (apply_change_group ())
8082 return 1;
8085 /* Look for giv with positive constant mult_val and nonconst add_val.
8086 Insert insns to calculate new compare value.
8087 ??? Turn this off due to possible overflow. */
8089 for (v = bl->giv; v; v = v->next_iv)
8090 if (GET_CODE (v->mult_val) == CONST_INT
8091 && INTVAL (v->mult_val) > 0
8092 && ! v->ignore && ! v->maybe_dead && v->always_computable
8093 && v->mode == mode
8094 && 0)
8096 rtx tem;
8098 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8099 continue;
8101 if (! eliminate_p)
8102 return 1;
8104 tem = gen_reg_rtx (mode);
8106 /* Replace biv with giv's reduced register. */
8107 validate_change (insn, &XEXP (x, 1 - arg_operand),
8108 v->new_reg, 1);
8110 /* Compute value to compare against. */
8111 loop_iv_add_mult_emit_before (loop, arg,
8112 v->mult_val, v->add_val,
8113 tem, where_bb, where_insn);
8114 /* Use it in this insn. */
8115 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8116 if (apply_change_group ())
8117 return 1;
8120 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8122 if (loop_invariant_p (loop, arg) == 1)
8124 /* Look for giv with constant positive mult_val and nonconst
8125 add_val. Insert insns to compute new compare value.
8126 ??? Turn this off due to possible overflow. */
8128 for (v = bl->giv; v; v = v->next_iv)
8129 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8130 && ! v->ignore && ! v->maybe_dead && v->always_computable
8131 && v->mode == mode
8132 && 0)
8134 rtx tem;
8136 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8137 continue;
8139 if (! eliminate_p)
8140 return 1;
8142 tem = gen_reg_rtx (mode);
8144 /* Replace biv with giv's reduced register. */
8145 validate_change (insn, &XEXP (x, 1 - arg_operand),
8146 v->new_reg, 1);
8148 /* Compute value to compare against. */
8149 loop_iv_add_mult_emit_before (loop, arg,
8150 v->mult_val, v->add_val,
8151 tem, where_bb, where_insn);
8152 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8153 if (apply_change_group ())
8154 return 1;
8158 /* This code has problems. Basically, you can't know when
8159 seeing if we will eliminate BL, whether a particular giv
8160 of ARG will be reduced. If it isn't going to be reduced,
8161 we can't eliminate BL. We can try forcing it to be reduced,
8162 but that can generate poor code.
8164 The problem is that the benefit of reducing TV, below should
8165 be increased if BL can actually be eliminated, but this means
8166 we might have to do a topological sort of the order in which
8167 we try to process biv. It doesn't seem worthwhile to do
8168 this sort of thing now. */
8170 #if 0
8171 /* Otherwise the reg compared with had better be a biv. */
8172 if (GET_CODE (arg) != REG
8173 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
8174 return 0;
8176 /* Look for a pair of givs, one for each biv,
8177 with identical coefficients. */
8178 for (v = bl->giv; v; v = v->next_iv)
8180 struct induction *tv;
8182 if (v->ignore || v->maybe_dead || v->mode != mode)
8183 continue;
8185 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
8186 tv = tv->next_iv)
8187 if (! tv->ignore && ! tv->maybe_dead
8188 && rtx_equal_p (tv->mult_val, v->mult_val)
8189 && rtx_equal_p (tv->add_val, v->add_val)
8190 && tv->mode == mode)
8192 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8193 continue;
8195 if (! eliminate_p)
8196 return 1;
8198 /* Replace biv with its giv's reduced reg. */
8199 XEXP (x, 1 - arg_operand) = v->new_reg;
8200 /* Replace other operand with the other giv's
8201 reduced reg. */
8202 XEXP (x, arg_operand) = tv->new_reg;
8203 return 1;
8206 #endif
8209 /* If we get here, the biv can't be eliminated. */
8210 return 0;
8212 case MEM:
8213 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8214 biv is used in it, since it will be replaced. */
8215 for (v = bl->giv; v; v = v->next_iv)
8216 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8217 return 1;
8218 break;
8220 default:
8221 break;
8224 /* See if any subexpression fails elimination. */
8225 fmt = GET_RTX_FORMAT (code);
8226 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8228 switch (fmt[i])
8230 case 'e':
8231 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8232 eliminate_p, where_bb, where_insn))
8233 return 0;
8234 break;
8236 case 'E':
8237 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8238 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8239 eliminate_p, where_bb, where_insn))
8240 return 0;
8241 break;
8245 return 1;
8248 /* Return nonzero if the last use of REG
8249 is in an insn following INSN in the same basic block. */
8251 static int
8252 last_use_this_basic_block (reg, insn)
8253 rtx reg;
8254 rtx insn;
8256 rtx n;
8257 for (n = insn;
8258 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8259 n = NEXT_INSN (n))
8261 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8262 return 1;
8264 return 0;
8267 /* Called via `note_stores' to record the initial value of a biv. Here we
8268 just record the location of the set and process it later. */
8270 static void
8271 record_initial (dest, set, data)
8272 rtx dest;
8273 rtx set;
8274 void *data ATTRIBUTE_UNUSED;
8276 struct loop_ivs *ivs = (struct loop_ivs *) data;
8277 struct iv_class *bl;
8279 if (GET_CODE (dest) != REG
8280 || REGNO (dest) >= ivs->n_regs
8281 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
8282 return;
8284 bl = REG_IV_CLASS (ivs, REGNO (dest));
8286 /* If this is the first set found, record it. */
8287 if (bl->init_insn == 0)
8289 bl->init_insn = note_insn;
8290 bl->init_set = set;
8294 /* If any of the registers in X are "old" and currently have a last use earlier
8295 than INSN, update them to have a last use of INSN. Their actual last use
8296 will be the previous insn but it will not have a valid uid_luid so we can't
8297 use it. X must be a source expression only. */
8299 static void
8300 update_reg_last_use (x, insn)
8301 rtx x;
8302 rtx insn;
8304 /* Check for the case where INSN does not have a valid luid. In this case,
8305 there is no need to modify the regno_last_uid, as this can only happen
8306 when code is inserted after the loop_end to set a pseudo's final value,
8307 and hence this insn will never be the last use of x.
8308 ???? This comment is not correct. See for example loop_givs_reduce.
8309 This may insert an insn before another new insn. */
8310 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8311 && INSN_UID (insn) < max_uid_for_loop
8312 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
8314 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8316 else
8318 register int i, j;
8319 register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8320 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8322 if (fmt[i] == 'e')
8323 update_reg_last_use (XEXP (x, i), insn);
8324 else if (fmt[i] == 'E')
8325 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8326 update_reg_last_use (XVECEXP (x, i, j), insn);
8331 /* Given an insn INSN and condition COND, return the condition in a
8332 canonical form to simplify testing by callers. Specifically:
8334 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8335 (2) Both operands will be machine operands; (cc0) will have been replaced.
8336 (3) If an operand is a constant, it will be the second operand.
8337 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8338 for GE, GEU, and LEU.
8340 If the condition cannot be understood, or is an inequality floating-point
8341 comparison which needs to be reversed, 0 will be returned.
8343 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
8345 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8346 insn used in locating the condition was found. If a replacement test
8347 of the condition is desired, it should be placed in front of that
8348 insn and we will be sure that the inputs are still valid.
8350 If WANT_REG is non-zero, we wish the condition to be relative to that
8351 register, if possible. Therefore, do not canonicalize the condition
8352 further. */
8355 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
8356 rtx insn;
8357 rtx cond;
8358 int reverse;
8359 rtx *earliest;
8360 rtx want_reg;
8362 enum rtx_code code;
8363 rtx prev = insn;
8364 rtx set;
8365 rtx tem;
8366 rtx op0, op1;
8367 int reverse_code = 0;
8368 enum machine_mode mode;
8370 code = GET_CODE (cond);
8371 mode = GET_MODE (cond);
8372 op0 = XEXP (cond, 0);
8373 op1 = XEXP (cond, 1);
8375 if (reverse)
8376 code = reversed_comparison_code (cond, insn);
8377 if (code == UNKNOWN)
8378 return 0;
8380 if (earliest)
8381 *earliest = insn;
8383 /* If we are comparing a register with zero, see if the register is set
8384 in the previous insn to a COMPARE or a comparison operation. Perform
8385 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8386 in cse.c */
8388 while (GET_RTX_CLASS (code) == '<'
8389 && op1 == CONST0_RTX (GET_MODE (op0))
8390 && op0 != want_reg)
8392 /* Set non-zero when we find something of interest. */
8393 rtx x = 0;
8395 #ifdef HAVE_cc0
8396 /* If comparison with cc0, import actual comparison from compare
8397 insn. */
8398 if (op0 == cc0_rtx)
8400 if ((prev = prev_nonnote_insn (prev)) == 0
8401 || GET_CODE (prev) != INSN
8402 || (set = single_set (prev)) == 0
8403 || SET_DEST (set) != cc0_rtx)
8404 return 0;
8406 op0 = SET_SRC (set);
8407 op1 = CONST0_RTX (GET_MODE (op0));
8408 if (earliest)
8409 *earliest = prev;
8411 #endif
8413 /* If this is a COMPARE, pick up the two things being compared. */
8414 if (GET_CODE (op0) == COMPARE)
8416 op1 = XEXP (op0, 1);
8417 op0 = XEXP (op0, 0);
8418 continue;
8420 else if (GET_CODE (op0) != REG)
8421 break;
8423 /* Go back to the previous insn. Stop if it is not an INSN. We also
8424 stop if it isn't a single set or if it has a REG_INC note because
8425 we don't want to bother dealing with it. */
8427 if ((prev = prev_nonnote_insn (prev)) == 0
8428 || GET_CODE (prev) != INSN
8429 || FIND_REG_INC_NOTE (prev, 0))
8430 break;
8432 set = set_of (op0, prev);
8434 if (set
8435 && (GET_CODE (set) != SET
8436 || !rtx_equal_p (SET_DEST (set), op0)))
8437 break;
8439 /* If this is setting OP0, get what it sets it to if it looks
8440 relevant. */
8441 if (set)
8443 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
8445 /* ??? We may not combine comparisons done in a CCmode with
8446 comparisons not done in a CCmode. This is to aid targets
8447 like Alpha that have an IEEE compliant EQ instruction, and
8448 a non-IEEE compliant BEQ instruction. The use of CCmode is
8449 actually artificial, simply to prevent the combination, but
8450 should not affect other platforms.
8452 However, we must allow VOIDmode comparisons to match either
8453 CCmode or non-CCmode comparison, because some ports have
8454 modeless comparisons inside branch patterns.
8456 ??? This mode check should perhaps look more like the mode check
8457 in simplify_comparison in combine. */
8459 if ((GET_CODE (SET_SRC (set)) == COMPARE
8460 || (((code == NE
8461 || (code == LT
8462 && GET_MODE_CLASS (inner_mode) == MODE_INT
8463 && (GET_MODE_BITSIZE (inner_mode)
8464 <= HOST_BITS_PER_WIDE_INT)
8465 && (STORE_FLAG_VALUE
8466 & ((HOST_WIDE_INT) 1
8467 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8468 #ifdef FLOAT_STORE_FLAG_VALUE
8469 || (code == LT
8470 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8471 && (REAL_VALUE_NEGATIVE
8472 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
8473 #endif
8475 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
8476 && (((GET_MODE_CLASS (mode) == MODE_CC)
8477 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8478 || mode == VOIDmode || inner_mode == VOIDmode))
8479 x = SET_SRC (set);
8480 else if (((code == EQ
8481 || (code == GE
8482 && (GET_MODE_BITSIZE (inner_mode)
8483 <= HOST_BITS_PER_WIDE_INT)
8484 && GET_MODE_CLASS (inner_mode) == MODE_INT
8485 && (STORE_FLAG_VALUE
8486 & ((HOST_WIDE_INT) 1
8487 << (GET_MODE_BITSIZE (inner_mode) - 1))))
8488 #ifdef FLOAT_STORE_FLAG_VALUE
8489 || (code == GE
8490 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
8491 && (REAL_VALUE_NEGATIVE
8492 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
8493 #endif
8495 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
8496 && (((GET_MODE_CLASS (mode) == MODE_CC)
8497 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
8498 || mode == VOIDmode || inner_mode == VOIDmode))
8501 reverse_code = 1;
8502 x = SET_SRC (set);
8504 else
8505 break;
8508 else if (reg_set_p (op0, prev))
8509 /* If this sets OP0, but not directly, we have to give up. */
8510 break;
8512 if (x)
8514 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
8515 code = GET_CODE (x);
8516 if (reverse_code)
8518 code = reversed_comparison_code (x, prev);
8519 if (code == UNKNOWN)
8520 return 0;
8521 reverse_code = 0;
8524 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
8525 if (earliest)
8526 *earliest = prev;
8530 /* If constant is first, put it last. */
8531 if (CONSTANT_P (op0))
8532 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
8534 /* If OP0 is the result of a comparison, we weren't able to find what
8535 was really being compared, so fail. */
8536 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
8537 return 0;
8539 /* Canonicalize any ordered comparison with integers involving equality
8540 if we can do computations in the relevant mode and we do not
8541 overflow. */
8543 if (GET_CODE (op1) == CONST_INT
8544 && GET_MODE (op0) != VOIDmode
8545 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
8547 HOST_WIDE_INT const_val = INTVAL (op1);
8548 unsigned HOST_WIDE_INT uconst_val = const_val;
8549 unsigned HOST_WIDE_INT max_val
8550 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
8552 switch (code)
8554 case LE:
8555 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
8556 code = LT, op1 = GEN_INT (const_val + 1);
8557 break;
8559 /* When cross-compiling, const_val might be sign-extended from
8560 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
8561 case GE:
8562 if ((HOST_WIDE_INT) (const_val & max_val)
8563 != (((HOST_WIDE_INT) 1
8564 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
8565 code = GT, op1 = GEN_INT (const_val - 1);
8566 break;
8568 case LEU:
8569 if (uconst_val < max_val)
8570 code = LTU, op1 = GEN_INT (uconst_val + 1);
8571 break;
8573 case GEU:
8574 if (uconst_val != 0)
8575 code = GTU, op1 = GEN_INT (uconst_val - 1);
8576 break;
8578 default:
8579 break;
8583 #ifdef HAVE_cc0
8584 /* Never return CC0; return zero instead. */
8585 if (op0 == cc0_rtx)
8586 return 0;
8587 #endif
8589 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
8592 /* Given a jump insn JUMP, return the condition that will cause it to branch
8593 to its JUMP_LABEL. If the condition cannot be understood, or is an
8594 inequality floating-point comparison which needs to be reversed, 0 will
8595 be returned.
8597 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8598 insn used in locating the condition was found. If a replacement test
8599 of the condition is desired, it should be placed in front of that
8600 insn and we will be sure that the inputs are still valid. */
8603 get_condition (jump, earliest)
8604 rtx jump;
8605 rtx *earliest;
8607 rtx cond;
8608 int reverse;
8609 rtx set;
8611 /* If this is not a standard conditional jump, we can't parse it. */
8612 if (GET_CODE (jump) != JUMP_INSN
8613 || ! any_condjump_p (jump))
8614 return 0;
8615 set = pc_set (jump);
8617 cond = XEXP (SET_SRC (set), 0);
8619 /* If this branches to JUMP_LABEL when the condition is false, reverse
8620 the condition. */
8621 reverse
8622 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
8623 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
8625 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
8628 /* Similar to above routine, except that we also put an invariant last
8629 unless both operands are invariants. */
8632 get_condition_for_loop (loop, x)
8633 const struct loop *loop;
8634 rtx x;
8636 rtx comparison = get_condition (x, (rtx*)0);
8638 if (comparison == 0
8639 || ! loop_invariant_p (loop, XEXP (comparison, 0))
8640 || loop_invariant_p (loop, XEXP (comparison, 1)))
8641 return comparison;
8643 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
8644 XEXP (comparison, 1), XEXP (comparison, 0));
8647 /* Scan the function and determine whether it has indirect (computed) jumps.
8649 This is taken mostly from flow.c; similar code exists elsewhere
8650 in the compiler. It may be useful to put this into rtlanal.c. */
8651 static int
8652 indirect_jump_in_function_p (start)
8653 rtx start;
8655 rtx insn;
8657 for (insn = start; insn; insn = NEXT_INSN (insn))
8658 if (computed_jump_p (insn))
8659 return 1;
8661 return 0;
8664 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
8665 documentation for LOOP_MEMS for the definition of `appropriate'.
8666 This function is called from prescan_loop via for_each_rtx. */
8668 static int
8669 insert_loop_mem (mem, data)
8670 rtx *mem;
8671 void *data ATTRIBUTE_UNUSED;
8673 struct loop_info *loop_info = data;
8674 int i;
8675 rtx m = *mem;
8677 if (m == NULL_RTX)
8678 return 0;
8680 switch (GET_CODE (m))
8682 case MEM:
8683 break;
8685 case CLOBBER:
8686 /* We're not interested in MEMs that are only clobbered. */
8687 return -1;
8689 case CONST_DOUBLE:
8690 /* We're not interested in the MEM associated with a
8691 CONST_DOUBLE, so there's no need to traverse into this. */
8692 return -1;
8694 case EXPR_LIST:
8695 /* We're not interested in any MEMs that only appear in notes. */
8696 return -1;
8698 default:
8699 /* This is not a MEM. */
8700 return 0;
8703 /* See if we've already seen this MEM. */
8704 for (i = 0; i < loop_info->mems_idx; ++i)
8705 if (rtx_equal_p (m, loop_info->mems[i].mem))
8707 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
8708 /* The modes of the two memory accesses are different. If
8709 this happens, something tricky is going on, and we just
8710 don't optimize accesses to this MEM. */
8711 loop_info->mems[i].optimize = 0;
8713 return 0;
8716 /* Resize the array, if necessary. */
8717 if (loop_info->mems_idx == loop_info->mems_allocated)
8719 if (loop_info->mems_allocated != 0)
8720 loop_info->mems_allocated *= 2;
8721 else
8722 loop_info->mems_allocated = 32;
8724 loop_info->mems = (loop_mem_info *)
8725 xrealloc (loop_info->mems,
8726 loop_info->mems_allocated * sizeof (loop_mem_info));
8729 /* Actually insert the MEM. */
8730 loop_info->mems[loop_info->mems_idx].mem = m;
8731 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
8732 because we can't put it in a register. We still store it in the
8733 table, though, so that if we see the same address later, but in a
8734 non-BLK mode, we'll not think we can optimize it at that point. */
8735 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
8736 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
8737 ++loop_info->mems_idx;
8739 return 0;
8743 /* Allocate REGS->ARRAY or reallocate it if it is too small.
8745 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
8746 register that is modified by an insn between FROM and TO. If the
8747 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
8748 more, stop incrementing it, to avoid overflow.
8750 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
8751 register I is used, if it is only used once. Otherwise, it is set
8752 to 0 (for no uses) or const0_rtx for more than one use. This
8753 parameter may be zero, in which case this processing is not done.
8755 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
8756 optimize register I. */
8758 static void
8759 loop_regs_scan (loop, extra_size)
8760 const struct loop *loop;
8761 int extra_size;
8763 struct loop_regs *regs = LOOP_REGS (loop);
8764 int old_nregs;
8765 /* last_set[n] is nonzero iff reg n has been set in the current
8766 basic block. In that case, it is the insn that last set reg n. */
8767 rtx *last_set;
8768 rtx insn;
8769 int i;
8771 old_nregs = regs->num;
8772 regs->num = max_reg_num ();
8774 /* Grow the regs array if not allocated or too small. */
8775 if (regs->num >= regs->size)
8777 regs->size = regs->num + extra_size;
8779 regs->array = (struct loop_reg *)
8780 xrealloc (regs->array, regs->size * sizeof (*regs->array));
8782 /* Zero the new elements. */
8783 memset (regs->array + old_nregs, 0,
8784 (regs->size - old_nregs) * sizeof (*regs->array));
8787 /* Clear previously scanned fields but do not clear n_times_set. */
8788 for (i = 0; i < old_nregs; i++)
8790 regs->array[i].set_in_loop = 0;
8791 regs->array[i].may_not_optimize = 0;
8792 regs->array[i].single_usage = NULL_RTX;
8795 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
8797 /* Scan the loop, recording register usage. */
8798 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
8799 insn = NEXT_INSN (insn))
8801 if (INSN_P (insn))
8803 /* Record registers that have exactly one use. */
8804 find_single_use_in_loop (regs, insn, PATTERN (insn));
8806 /* Include uses in REG_EQUAL notes. */
8807 if (REG_NOTES (insn))
8808 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
8810 if (GET_CODE (PATTERN (insn)) == SET
8811 || GET_CODE (PATTERN (insn)) == CLOBBER)
8812 count_one_set (regs, insn, PATTERN (insn), last_set);
8813 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
8815 register int i;
8816 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
8817 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
8818 last_set);
8822 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
8823 memset (last_set, 0, regs->num * sizeof (rtx));
8826 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8828 regs->array[i].may_not_optimize = 1;
8829 regs->array[i].set_in_loop = 1;
8832 #ifdef AVOID_CCMODE_COPIES
8833 /* Don't try to move insns which set CC registers if we should not
8834 create CCmode register copies. */
8835 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
8836 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
8837 regs->array[i].may_not_optimize = 1;
8838 #endif
8840 /* Set regs->array[I].n_times_set for the new registers. */
8841 for (i = old_nregs; i < regs->num; i++)
8842 regs->array[i].n_times_set = regs->array[i].set_in_loop;
8844 free (last_set);
8847 /* Returns the number of real INSNs in the LOOP. */
8849 static int
8850 count_insns_in_loop (loop)
8851 const struct loop *loop;
8853 int count = 0;
8854 rtx insn;
8856 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
8857 insn = NEXT_INSN (insn))
8858 if (INSN_P (insn))
8859 ++count;
8861 return count;
8864 /* Move MEMs into registers for the duration of the loop. */
8866 static void
8867 load_mems (loop)
8868 const struct loop *loop;
8870 struct loop_info *loop_info = LOOP_INFO (loop);
8871 struct loop_regs *regs = LOOP_REGS (loop);
8872 int maybe_never = 0;
8873 int i;
8874 rtx p, prev_ebb_head;
8875 rtx label = NULL_RTX;
8876 rtx end_label;
8877 /* Nonzero if the next instruction may never be executed. */
8878 int next_maybe_never = 0;
8879 unsigned int last_max_reg = max_reg_num ();
8881 if (loop_info->mems_idx == 0)
8882 return;
8884 /* We cannot use next_label here because it skips over normal insns. */
8885 end_label = next_nonnote_insn (loop->end);
8886 if (end_label && GET_CODE (end_label) != CODE_LABEL)
8887 end_label = NULL_RTX;
8889 /* Check to see if it's possible that some instructions in the loop are
8890 never executed. Also check if there is a goto out of the loop other
8891 than right after the end of the loop. */
8892 for (p = next_insn_in_loop (loop, loop->scan_start);
8893 p != NULL_RTX;
8894 p = next_insn_in_loop (loop, p))
8896 if (GET_CODE (p) == CODE_LABEL)
8897 maybe_never = 1;
8898 else if (GET_CODE (p) == JUMP_INSN
8899 /* If we enter the loop in the middle, and scan
8900 around to the beginning, don't set maybe_never
8901 for that. This must be an unconditional jump,
8902 otherwise the code at the top of the loop might
8903 never be executed. Unconditional jumps are
8904 followed a by barrier then loop end. */
8905 && ! (GET_CODE (p) == JUMP_INSN
8906 && JUMP_LABEL (p) == loop->top
8907 && NEXT_INSN (NEXT_INSN (p)) == loop->end
8908 && any_uncondjump_p (p)))
8910 /* If this is a jump outside of the loop but not right
8911 after the end of the loop, we would have to emit new fixup
8912 sequences for each such label. */
8913 if (/* If we can't tell where control might go when this
8914 JUMP_INSN is executed, we must be conservative. */
8915 !JUMP_LABEL (p)
8916 || (JUMP_LABEL (p) != end_label
8917 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
8918 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
8919 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
8920 return;
8922 if (!any_condjump_p (p))
8923 /* Something complicated. */
8924 maybe_never = 1;
8925 else
8926 /* If there are any more instructions in the loop, they
8927 might not be reached. */
8928 next_maybe_never = 1;
8930 else if (next_maybe_never)
8931 maybe_never = 1;
8934 /* Find start of the extended basic block that enters the loop. */
8935 for (p = loop->start;
8936 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
8937 p = PREV_INSN (p))
8939 prev_ebb_head = p;
8941 cselib_init ();
8943 /* Build table of mems that get set to constant values before the
8944 loop. */
8945 for (; p != loop->start; p = NEXT_INSN (p))
8946 cselib_process_insn (p);
8948 /* Actually move the MEMs. */
8949 for (i = 0; i < loop_info->mems_idx; ++i)
8951 regset_head load_copies;
8952 regset_head store_copies;
8953 int written = 0;
8954 rtx reg;
8955 rtx mem = loop_info->mems[i].mem;
8956 rtx mem_list_entry;
8958 if (MEM_VOLATILE_P (mem)
8959 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
8960 /* There's no telling whether or not MEM is modified. */
8961 loop_info->mems[i].optimize = 0;
8963 /* Go through the MEMs written to in the loop to see if this
8964 one is aliased by one of them. */
8965 mem_list_entry = loop_info->store_mems;
8966 while (mem_list_entry)
8968 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
8969 written = 1;
8970 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
8971 mem, rtx_varies_p))
8973 /* MEM is indeed aliased by this store. */
8974 loop_info->mems[i].optimize = 0;
8975 break;
8977 mem_list_entry = XEXP (mem_list_entry, 1);
8980 if (flag_float_store && written
8981 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
8982 loop_info->mems[i].optimize = 0;
8984 /* If this MEM is written to, we must be sure that there
8985 are no reads from another MEM that aliases this one. */
8986 if (loop_info->mems[i].optimize && written)
8988 int j;
8990 for (j = 0; j < loop_info->mems_idx; ++j)
8992 if (j == i)
8993 continue;
8994 else if (true_dependence (mem,
8995 VOIDmode,
8996 loop_info->mems[j].mem,
8997 rtx_varies_p))
8999 /* It's not safe to hoist loop_info->mems[i] out of
9000 the loop because writes to it might not be
9001 seen by reads from loop_info->mems[j]. */
9002 loop_info->mems[i].optimize = 0;
9003 break;
9008 if (maybe_never && may_trap_p (mem))
9009 /* We can't access the MEM outside the loop; it might
9010 cause a trap that wouldn't have happened otherwise. */
9011 loop_info->mems[i].optimize = 0;
9013 if (!loop_info->mems[i].optimize)
9014 /* We thought we were going to lift this MEM out of the
9015 loop, but later discovered that we could not. */
9016 continue;
9018 INIT_REG_SET (&load_copies);
9019 INIT_REG_SET (&store_copies);
9021 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9022 order to keep scan_loop from moving stores to this MEM
9023 out of the loop just because this REG is neither a
9024 user-variable nor used in the loop test. */
9025 reg = gen_reg_rtx (GET_MODE (mem));
9026 REG_USERVAR_P (reg) = 1;
9027 loop_info->mems[i].reg = reg;
9029 /* Now, replace all references to the MEM with the
9030 corresponding pseudos. */
9031 maybe_never = 0;
9032 for (p = next_insn_in_loop (loop, loop->scan_start);
9033 p != NULL_RTX;
9034 p = next_insn_in_loop (loop, p))
9036 if (INSN_P (p))
9038 rtx set;
9040 set = single_set (p);
9042 /* See if this copies the mem into a register that isn't
9043 modified afterwards. We'll try to do copy propagation
9044 a little further on. */
9045 if (set
9046 /* @@@ This test is _way_ too conservative. */
9047 && ! maybe_never
9048 && GET_CODE (SET_DEST (set)) == REG
9049 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9050 && REGNO (SET_DEST (set)) < last_max_reg
9051 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9052 && rtx_equal_p (SET_SRC (set), mem))
9053 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9055 /* See if this copies the mem from a register that isn't
9056 modified afterwards. We'll try to remove the
9057 redundant copy later on by doing a little register
9058 renaming and copy propagation. This will help
9059 to untangle things for the BIV detection code. */
9060 if (set
9061 && ! maybe_never
9062 && GET_CODE (SET_SRC (set)) == REG
9063 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9064 && REGNO (SET_SRC (set)) < last_max_reg
9065 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9066 && rtx_equal_p (SET_DEST (set), mem))
9067 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9069 /* Replace the memory reference with the shadow register. */
9070 replace_loop_mems (p, loop_info->mems[i].mem,
9071 loop_info->mems[i].reg);
9074 if (GET_CODE (p) == CODE_LABEL
9075 || GET_CODE (p) == JUMP_INSN)
9076 maybe_never = 1;
9079 if (! apply_change_group ())
9080 /* We couldn't replace all occurrences of the MEM. */
9081 loop_info->mems[i].optimize = 0;
9082 else
9084 /* Load the memory immediately before LOOP->START, which is
9085 the NOTE_LOOP_BEG. */
9086 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9087 rtx set;
9088 rtx best = mem;
9089 int j;
9090 struct elt_loc_list *const_equiv = 0;
9092 if (e)
9094 struct elt_loc_list *equiv;
9095 struct elt_loc_list *best_equiv = 0;
9096 for (equiv = e->locs; equiv; equiv = equiv->next)
9098 if (CONSTANT_P (equiv->loc))
9099 const_equiv = equiv;
9100 else if (GET_CODE (equiv->loc) == REG
9101 /* Extending hard register lifetimes causes crash
9102 on SRC targets. Doing so on non-SRC is
9103 probably also not good idea, since we most
9104 probably have pseudoregister equivalence as
9105 well. */
9106 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9107 best_equiv = equiv;
9109 /* Use the constant equivalence if that is cheap enough. */
9110 if (! best_equiv)
9111 best_equiv = const_equiv;
9112 else if (const_equiv
9113 && (rtx_cost (const_equiv->loc, SET)
9114 <= rtx_cost (best_equiv->loc, SET)))
9116 best_equiv = const_equiv;
9117 const_equiv = 0;
9120 /* If best_equiv is nonzero, we know that MEM is set to a
9121 constant or register before the loop. We will use this
9122 knowledge to initialize the shadow register with that
9123 constant or reg rather than by loading from MEM. */
9124 if (best_equiv)
9125 best = copy_rtx (best_equiv->loc);
9128 set = gen_move_insn (reg, best);
9129 set = loop_insn_hoist (loop, set);
9130 if (REG_P (best))
9132 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
9133 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
9135 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
9136 break;
9140 if (const_equiv)
9141 REG_NOTES (set) = gen_rtx_EXPR_LIST (REG_EQUAL,
9142 copy_rtx (const_equiv->loc),
9143 REG_NOTES (set));
9145 if (written)
9147 if (label == NULL_RTX)
9149 label = gen_label_rtx ();
9150 emit_label_after (label, loop->end);
9153 /* Store the memory immediately after END, which is
9154 the NOTE_LOOP_END. */
9155 set = gen_move_insn (copy_rtx (mem), reg);
9156 loop_insn_emit_after (loop, 0, label, set);
9159 if (loop_dump_stream)
9161 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9162 REGNO (reg), (written ? "r/w" : "r/o"));
9163 print_rtl (loop_dump_stream, mem);
9164 fputc ('\n', loop_dump_stream);
9167 /* Attempt a bit of copy propagation. This helps untangle the
9168 data flow, and enables {basic,general}_induction_var to find
9169 more bivs/givs. */
9170 EXECUTE_IF_SET_IN_REG_SET
9171 (&load_copies, FIRST_PSEUDO_REGISTER, j,
9173 try_copy_prop (loop, reg, j);
9175 CLEAR_REG_SET (&load_copies);
9177 EXECUTE_IF_SET_IN_REG_SET
9178 (&store_copies, FIRST_PSEUDO_REGISTER, j,
9180 try_swap_copy_prop (loop, reg, j);
9182 CLEAR_REG_SET (&store_copies);
9186 if (label != NULL_RTX && end_label != NULL_RTX)
9188 /* Now, we need to replace all references to the previous exit
9189 label with the new one. */
9190 rtx_pair rr;
9191 rr.r1 = end_label;
9192 rr.r2 = label;
9194 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9196 for_each_rtx (&p, replace_label, &rr);
9198 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9199 field. This is not handled by for_each_rtx because it doesn't
9200 handle unprinted ('0') fields. We need to update JUMP_LABEL
9201 because the immediately following unroll pass will use it.
9202 replace_label would not work anyways, because that only handles
9203 LABEL_REFs. */
9204 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9205 JUMP_LABEL (p) = label;
9209 cselib_finish ();
9212 /* For communication between note_reg_stored and its caller. */
9213 struct note_reg_stored_arg
9215 int set_seen;
9216 rtx reg;
9219 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9220 is equal to ARG. */
9221 static void
9222 note_reg_stored (x, setter, arg)
9223 rtx x, setter ATTRIBUTE_UNUSED;
9224 void *arg;
9226 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
9227 if (t->reg == x)
9228 t->set_seen = 1;
9231 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9232 There must be exactly one insn that sets this pseudo; it will be
9233 deleted if all replacements succeed and we can prove that the register
9234 is not used after the loop. */
9236 static void
9237 try_copy_prop (loop, replacement, regno)
9238 const struct loop *loop;
9239 rtx replacement;
9240 unsigned int regno;
9242 /* This is the reg that we are copying from. */
9243 rtx reg_rtx = regno_reg_rtx[regno];
9244 rtx init_insn = 0;
9245 rtx insn;
9246 /* These help keep track of whether we replaced all uses of the reg. */
9247 int replaced_last = 0;
9248 int store_is_first = 0;
9250 for (insn = next_insn_in_loop (loop, loop->scan_start);
9251 insn != NULL_RTX;
9252 insn = next_insn_in_loop (loop, insn))
9254 rtx set;
9256 /* Only substitute within one extended basic block from the initializing
9257 insn. */
9258 if (GET_CODE (insn) == CODE_LABEL && init_insn)
9259 break;
9261 if (! INSN_P (insn))
9262 continue;
9264 /* Is this the initializing insn? */
9265 set = single_set (insn);
9266 if (set
9267 && GET_CODE (SET_DEST (set)) == REG
9268 && REGNO (SET_DEST (set)) == regno)
9270 if (init_insn)
9271 abort ();
9273 init_insn = insn;
9274 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
9275 store_is_first = 1;
9278 /* Only substitute after seeing the initializing insn. */
9279 if (init_insn && insn != init_insn)
9281 struct note_reg_stored_arg arg;
9283 replace_loop_regs (insn, reg_rtx, replacement);
9284 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
9285 replaced_last = 1;
9287 /* Stop replacing when REPLACEMENT is modified. */
9288 arg.reg = replacement;
9289 arg.set_seen = 0;
9290 note_stores (PATTERN (insn), note_reg_stored, &arg);
9291 if (arg.set_seen)
9293 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
9295 /* It is possible that we've turned previously valid REG_EQUAL to
9296 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
9297 REPLACEMENT is modified, we get different meaning. */
9298 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
9299 remove_note (insn, note);
9300 break;
9304 if (! init_insn)
9305 abort ();
9306 if (apply_change_group ())
9308 if (loop_dump_stream)
9309 fprintf (loop_dump_stream, " Replaced reg %d", regno);
9310 if (store_is_first && replaced_last)
9312 rtx first;
9313 rtx retval_note;
9315 /* Assume we're just deleting INIT_INSN. */
9316 first = init_insn;
9317 /* Look for REG_RETVAL note. If we're deleting the end of
9318 the libcall sequence, the whole sequence can go. */
9319 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
9320 /* If we found a REG_RETVAL note, find the first instruction
9321 in the sequence. */
9322 if (retval_note)
9323 first = XEXP (retval_note, 0);
9325 /* Delete the instructions. */
9326 loop_delete_insns (first, init_insn);
9328 if (loop_dump_stream)
9329 fprintf (loop_dump_stream, ".\n");
9333 /* Replace all the instructions from FIRST up to and including LAST
9334 with NOTE_INSN_DELETED notes. */
9336 static void
9337 loop_delete_insns (first, last)
9338 rtx first;
9339 rtx last;
9341 while (1)
9343 PUT_CODE (first, NOTE);
9344 NOTE_LINE_NUMBER (first) = NOTE_INSN_DELETED;
9345 if (loop_dump_stream)
9346 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
9347 INSN_UID (first));
9349 /* If this was the LAST instructions we're supposed to delete,
9350 we're done. */
9351 if (first == last)
9352 break;
9354 first = NEXT_INSN (first);
9358 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
9359 loop LOOP if the order of the sets of these registers can be
9360 swapped. There must be exactly one insn within the loop that sets
9361 this pseudo followed immediately by a move insn that sets
9362 REPLACEMENT with REGNO. */
9363 static void
9364 try_swap_copy_prop (loop, replacement, regno)
9365 const struct loop *loop;
9366 rtx replacement;
9367 unsigned int regno;
9369 rtx insn;
9370 rtx set = NULL_RTX;
9371 unsigned int new_regno;
9373 new_regno = REGNO (replacement);
9375 for (insn = next_insn_in_loop (loop, loop->scan_start);
9376 insn != NULL_RTX;
9377 insn = next_insn_in_loop (loop, insn))
9379 /* Search for the insn that copies REGNO to NEW_REGNO? */
9380 if (INSN_P (insn)
9381 && (set = single_set (insn))
9382 && GET_CODE (SET_DEST (set)) == REG
9383 && REGNO (SET_DEST (set)) == new_regno
9384 && GET_CODE (SET_SRC (set)) == REG
9385 && REGNO (SET_SRC (set)) == regno)
9386 break;
9389 if (insn != NULL_RTX)
9391 rtx prev_insn;
9392 rtx prev_set;
9394 /* Some DEF-USE info would come in handy here to make this
9395 function more general. For now, just check the previous insn
9396 which is the most likely candidate for setting REGNO. */
9398 prev_insn = PREV_INSN (insn);
9400 if (INSN_P (insn)
9401 && (prev_set = single_set (prev_insn))
9402 && GET_CODE (SET_DEST (prev_set)) == REG
9403 && REGNO (SET_DEST (prev_set)) == regno)
9405 /* We have:
9406 (set (reg regno) (expr))
9407 (set (reg new_regno) (reg regno))
9409 so try converting this to:
9410 (set (reg new_regno) (expr))
9411 (set (reg regno) (reg new_regno))
9413 The former construct is often generated when a global
9414 variable used for an induction variable is shadowed by a
9415 register (NEW_REGNO). The latter construct improves the
9416 chances of GIV replacement and BIV elimination. */
9418 validate_change (prev_insn, &SET_DEST (prev_set),
9419 replacement, 1);
9420 validate_change (insn, &SET_DEST (set),
9421 SET_SRC (set), 1);
9422 validate_change (insn, &SET_SRC (set),
9423 replacement, 1);
9425 if (apply_change_group ())
9427 if (loop_dump_stream)
9428 fprintf (loop_dump_stream,
9429 " Swapped set of reg %d at %d with reg %d at %d.\n",
9430 regno, INSN_UID (insn),
9431 new_regno, INSN_UID (prev_insn));
9433 /* Update first use of REGNO. */
9434 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
9435 REGNO_FIRST_UID (regno) = INSN_UID (insn);
9437 /* Now perform copy propagation to hopefully
9438 remove all uses of REGNO within the loop. */
9439 try_copy_prop (loop, replacement, regno);
9445 /* Replace MEM with its associated pseudo register. This function is
9446 called from load_mems via for_each_rtx. DATA is actually a pointer
9447 to a structure describing the instruction currently being scanned
9448 and the MEM we are currently replacing. */
9450 static int
9451 replace_loop_mem (mem, data)
9452 rtx *mem;
9453 void *data;
9455 loop_replace_args *args = (loop_replace_args *) data;
9456 rtx m = *mem;
9458 if (m == NULL_RTX)
9459 return 0;
9461 switch (GET_CODE (m))
9463 case MEM:
9464 break;
9466 case CONST_DOUBLE:
9467 /* We're not interested in the MEM associated with a
9468 CONST_DOUBLE, so there's no need to traverse into one. */
9469 return -1;
9471 default:
9472 /* This is not a MEM. */
9473 return 0;
9476 if (!rtx_equal_p (args->match, m))
9477 /* This is not the MEM we are currently replacing. */
9478 return 0;
9480 /* Actually replace the MEM. */
9481 validate_change (args->insn, mem, args->replacement, 1);
9483 return 0;
9486 static void
9487 replace_loop_mems (insn, mem, reg)
9488 rtx insn;
9489 rtx mem;
9490 rtx reg;
9492 loop_replace_args args;
9494 args.insn = insn;
9495 args.match = mem;
9496 args.replacement = reg;
9498 for_each_rtx (&insn, replace_loop_mem, &args);
9501 /* Replace one register with another. Called through for_each_rtx; PX points
9502 to the rtx being scanned. DATA is actually a pointer to
9503 a structure of arguments. */
9505 static int
9506 replace_loop_reg (px, data)
9507 rtx *px;
9508 void *data;
9510 rtx x = *px;
9511 loop_replace_args *args = (loop_replace_args *) data;
9513 if (x == NULL_RTX)
9514 return 0;
9516 if (x == args->match)
9517 validate_change (args->insn, px, args->replacement, 1);
9519 return 0;
9522 static void
9523 replace_loop_regs (insn, reg, replacement)
9524 rtx insn;
9525 rtx reg;
9526 rtx replacement;
9528 loop_replace_args args;
9530 args.insn = insn;
9531 args.match = reg;
9532 args.replacement = replacement;
9534 for_each_rtx (&insn, replace_loop_reg, &args);
9537 /* Replace occurrences of the old exit label for the loop with the new
9538 one. DATA is an rtx_pair containing the old and new labels,
9539 respectively. */
9541 static int
9542 replace_label (x, data)
9543 rtx *x;
9544 void *data;
9546 rtx l = *x;
9547 rtx old_label = ((rtx_pair *) data)->r1;
9548 rtx new_label = ((rtx_pair *) data)->r2;
9550 if (l == NULL_RTX)
9551 return 0;
9553 if (GET_CODE (l) != LABEL_REF)
9554 return 0;
9556 if (XEXP (l, 0) != old_label)
9557 return 0;
9559 XEXP (l, 0) = new_label;
9560 ++LABEL_NUSES (new_label);
9561 --LABEL_NUSES (old_label);
9563 return 0;
9566 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
9567 (ignored in the interim). */
9569 static rtx
9570 loop_insn_emit_after (loop, where_bb, where_insn, pattern)
9571 const struct loop *loop ATTRIBUTE_UNUSED;
9572 basic_block where_bb ATTRIBUTE_UNUSED;
9573 rtx where_insn;
9574 rtx pattern;
9576 return emit_insn_after (pattern, where_insn);
9580 /* If WHERE_INSN is non-zero emit insn for PATTERN before WHERE_INSN
9581 in basic block WHERE_BB (ignored in the interim) within the loop
9582 otherwise hoist PATTERN into the loop pre-header. */
9585 loop_insn_emit_before (loop, where_bb, where_insn, pattern)
9586 const struct loop *loop;
9587 basic_block where_bb ATTRIBUTE_UNUSED;
9588 rtx where_insn;
9589 rtx pattern;
9591 if (! where_insn)
9592 return loop_insn_hoist (loop, pattern);
9593 return emit_insn_before (pattern, where_insn);
9597 /* Emit call insn for PATTERN before WHERE_INSN in basic block
9598 WHERE_BB (ignored in the interim) within the loop. */
9600 static rtx
9601 loop_call_insn_emit_before (loop, where_bb, where_insn, pattern)
9602 const struct loop *loop ATTRIBUTE_UNUSED;
9603 basic_block where_bb ATTRIBUTE_UNUSED;
9604 rtx where_insn;
9605 rtx pattern;
9607 return emit_call_insn_before (pattern, where_insn);
9611 /* Hoist insn for PATTERN into the loop pre-header. */
9614 loop_insn_hoist (loop, pattern)
9615 const struct loop *loop;
9616 rtx pattern;
9618 return loop_insn_emit_before (loop, 0, loop->start, pattern);
9622 /* Hoist call insn for PATTERN into the loop pre-header. */
9624 static rtx
9625 loop_call_insn_hoist (loop, pattern)
9626 const struct loop *loop;
9627 rtx pattern;
9629 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
9633 /* Sink insn for PATTERN after the loop end. */
9636 loop_insn_sink (loop, pattern)
9637 const struct loop *loop;
9638 rtx pattern;
9640 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
9644 /* If the loop has multiple exits, emit insn for PATTERN before the
9645 loop to ensure that it will always be executed no matter how the
9646 loop exits. Otherwise, emit the insn for PATTERN after the loop,
9647 since this is slightly more efficient. */
9649 static rtx
9650 loop_insn_sink_or_swim (loop, pattern)
9651 const struct loop *loop;
9652 rtx pattern;
9654 if (loop->exit_count)
9655 return loop_insn_hoist (loop, pattern);
9656 else
9657 return loop_insn_sink (loop, pattern);
9660 static void
9661 loop_ivs_dump (loop, file, verbose)
9662 const struct loop *loop;
9663 FILE *file;
9664 int verbose;
9666 struct iv_class *bl;
9667 int iv_num = 0;
9669 if (! loop || ! file)
9670 return;
9672 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
9673 iv_num++;
9675 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
9677 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
9679 loop_iv_class_dump (bl, file, verbose);
9680 fputc ('\n', file);
9685 static void
9686 loop_iv_class_dump (bl, file, verbose)
9687 const struct iv_class *bl;
9688 FILE *file;
9689 int verbose ATTRIBUTE_UNUSED;
9691 struct induction *v;
9692 rtx incr;
9693 int i;
9695 if (! bl || ! file)
9696 return;
9698 fprintf (file, "IV class for reg %d, benefit %d\n",
9699 bl->regno, bl->total_benefit);
9701 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
9702 if (bl->initial_value)
9704 fprintf (file, ", init val: ");
9705 print_simple_rtl (file, bl->initial_value);
9707 if (bl->initial_test)
9709 fprintf (file, ", init test: ");
9710 print_simple_rtl (file, bl->initial_test);
9712 fputc ('\n', file);
9714 if (bl->final_value)
9716 fprintf (file, " Final val: ");
9717 print_simple_rtl (file, bl->final_value);
9718 fputc ('\n', file);
9721 if ((incr = biv_total_increment (bl)))
9723 fprintf (file, " Total increment: ");
9724 print_simple_rtl (file, incr);
9725 fputc ('\n', file);
9728 /* List the increments. */
9729 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
9731 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
9732 print_simple_rtl (file, v->add_val);
9733 fputc ('\n', file);
9736 /* List the givs. */
9737 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
9739 fprintf (file, " Giv%d: insn %d, benefit %d, ",
9740 i, INSN_UID (v->insn), v->benefit);
9741 if (v->giv_type == DEST_ADDR)
9742 print_simple_rtl (file, v->mem);
9743 else
9744 print_simple_rtl (file, single_set (v->insn));
9745 fputc ('\n', file);
9750 static void
9751 loop_biv_dump (v, file, verbose)
9752 const struct induction *v;
9753 FILE *file;
9754 int verbose;
9756 if (! v || ! file)
9757 return;
9759 fprintf (file,
9760 "Biv %d: insn %d",
9761 REGNO (v->dest_reg), INSN_UID (v->insn));
9762 fprintf (file, " const ");
9763 print_simple_rtl (file, v->add_val);
9765 if (verbose && v->final_value)
9767 fputc ('\n', file);
9768 fprintf (file, " final ");
9769 print_simple_rtl (file, v->final_value);
9772 fputc ('\n', file);
9776 static void
9777 loop_giv_dump (v, file, verbose)
9778 const struct induction *v;
9779 FILE *file;
9780 int verbose;
9782 if (! v || ! file)
9783 return;
9785 if (v->giv_type == DEST_REG)
9786 fprintf (file, "Giv %d: insn %d",
9787 REGNO (v->dest_reg), INSN_UID (v->insn));
9788 else
9789 fprintf (file, "Dest address: insn %d",
9790 INSN_UID (v->insn));
9792 fprintf (file, " src reg %d benefit %d",
9793 REGNO (v->src_reg), v->benefit);
9794 fprintf (file, " lifetime %d",
9795 v->lifetime);
9797 if (v->replaceable)
9798 fprintf (file, " replaceable");
9800 if (v->no_const_addval)
9801 fprintf (file, " ncav");
9803 if (v->ext_dependant)
9805 switch (GET_CODE (v->ext_dependant))
9807 case SIGN_EXTEND:
9808 fprintf (file, " ext se");
9809 break;
9810 case ZERO_EXTEND:
9811 fprintf (file, " ext ze");
9812 break;
9813 case TRUNCATE:
9814 fprintf (file, " ext tr");
9815 break;
9816 default:
9817 abort ();
9821 fputc ('\n', file);
9822 fprintf (file, " mult ");
9823 print_simple_rtl (file, v->mult_val);
9825 fputc ('\n', file);
9826 fprintf (file, " add ");
9827 print_simple_rtl (file, v->add_val);
9829 if (verbose && v->final_value)
9831 fputc ('\n', file);
9832 fprintf (file, " final ");
9833 print_simple_rtl (file, v->final_value);
9836 fputc ('\n', file);
9840 void
9841 debug_ivs (loop)
9842 const struct loop *loop;
9844 loop_ivs_dump (loop, stderr, 1);
9848 void
9849 debug_iv_class (bl)
9850 const struct iv_class *bl;
9852 loop_iv_class_dump (bl, stderr, 1);
9856 void
9857 debug_biv (v)
9858 const struct induction *v;
9860 loop_biv_dump (v, stderr, 1);
9864 void
9865 debug_giv (v)
9866 const struct induction *v;
9868 loop_giv_dump (v, stderr, 1);
9872 #define LOOP_BLOCK_NUM_1(INSN) \
9873 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
9875 /* The notes do not have an assigned block, so look at the next insn. */
9876 #define LOOP_BLOCK_NUM(INSN) \
9877 ((INSN) ? (GET_CODE (INSN) == NOTE \
9878 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
9879 : LOOP_BLOCK_NUM_1 (INSN)) \
9880 : -1)
9882 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
9884 static void
9885 loop_dump_aux (loop, file, verbose)
9886 const struct loop *loop;
9887 FILE *file;
9888 int verbose ATTRIBUTE_UNUSED;
9890 rtx label;
9892 if (! loop || ! file)
9893 return;
9895 /* Print diagnostics to compare our concept of a loop with
9896 what the loop notes say. */
9897 if (! PREV_INSN (loop->first->head)
9898 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
9899 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
9900 != NOTE_INSN_LOOP_BEG)
9901 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
9902 INSN_UID (PREV_INSN (loop->first->head)));
9903 if (! NEXT_INSN (loop->last->end)
9904 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
9905 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
9906 != NOTE_INSN_LOOP_END)
9907 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
9908 INSN_UID (NEXT_INSN (loop->last->end)));
9910 if (loop->start)
9912 fprintf (file,
9913 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
9914 LOOP_BLOCK_NUM (loop->start),
9915 LOOP_INSN_UID (loop->start),
9916 LOOP_BLOCK_NUM (loop->cont),
9917 LOOP_INSN_UID (loop->cont),
9918 LOOP_BLOCK_NUM (loop->cont),
9919 LOOP_INSN_UID (loop->cont),
9920 LOOP_BLOCK_NUM (loop->vtop),
9921 LOOP_INSN_UID (loop->vtop),
9922 LOOP_BLOCK_NUM (loop->end),
9923 LOOP_INSN_UID (loop->end));
9924 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
9925 LOOP_BLOCK_NUM (loop->top),
9926 LOOP_INSN_UID (loop->top),
9927 LOOP_BLOCK_NUM (loop->scan_start),
9928 LOOP_INSN_UID (loop->scan_start));
9929 fprintf (file, ";; exit_count %d", loop->exit_count);
9930 if (loop->exit_count)
9932 fputs (", labels:", file);
9933 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
9935 fprintf (file, " %d ",
9936 LOOP_INSN_UID (XEXP (label, 0)));
9939 fputs ("\n", file);
9941 /* This can happen when a marked loop appears as two nested loops,
9942 say from while (a || b) {}. The inner loop won't match
9943 the loop markers but the outer one will. */
9944 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
9945 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
9949 /* Call this function from the debugger to dump LOOP. */
9951 void
9952 debug_loop (loop)
9953 const struct loop *loop;
9955 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
9958 /* Call this function from the debugger to dump LOOPS. */
9960 void
9961 debug_loops (loops)
9962 const struct loops *loops;
9964 flow_loops_dump (loops, stderr, loop_dump_aux, 1);