* config/linux/x86/futex_bits.h (sys_futex0) [__x86_64__]: Change
[official-gcc.git] / gcc / tree-parloops.c
blob080d35ea527968ef8d6154f48c774d1be88ed888
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "options.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "tm.h"
39 #include "hard-reg-set.h"
40 #include "input.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "basic-block.h"
45 #include "tree-ssa-alias.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimplify.h"
51 #include "gimple-iterator.h"
52 #include "gimplify-me.h"
53 #include "gimple-walk.h"
54 #include "stor-layout.h"
55 #include "tree-nested.h"
56 #include "gimple-ssa.h"
57 #include "tree-cfg.h"
58 #include "tree-phinodes.h"
59 #include "ssa-iterators.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "tree-ssa-loop-ivopts.h"
63 #include "tree-ssa-loop-manip.h"
64 #include "tree-ssa-loop-niter.h"
65 #include "tree-ssa-loop.h"
66 #include "tree-into-ssa.h"
67 #include "cfgloop.h"
68 #include "tree-data-ref.h"
69 #include "tree-scalar-evolution.h"
70 #include "gimple-pretty-print.h"
71 #include "tree-pass.h"
72 #include "langhooks.h"
73 #include "tree-vectorizer.h"
74 #include "tree-hasher.h"
75 #include "tree-parloops.h"
76 #include "omp-low.h"
77 #include "tree-nested.h"
78 #include "plugin-api.h"
79 #include "ipa-ref.h"
80 #include "cgraph.h"
82 /* This pass tries to distribute iterations of loops into several threads.
83 The implementation is straightforward -- for each loop we test whether its
84 iterations are independent, and if it is the case (and some additional
85 conditions regarding profitability and correctness are satisfied), we
86 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
87 machinery do its job.
89 The most of the complexity is in bringing the code into shape expected
90 by the omp expanders:
91 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
92 variable and that the exit test is at the start of the loop body
93 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
94 variables by accesses through pointers, and breaking up ssa chains
95 by storing the values incoming to the parallelized loop to a structure
96 passed to the new function as an argument (something similar is done
97 in omp gimplification, unfortunately only a small part of the code
98 can be shared).
100 TODO:
101 -- if there are several parallelizable loops in a function, it may be
102 possible to generate the threads just once (using synchronization to
103 ensure that cross-loop dependences are obeyed).
104 -- handling of common reduction patterns for outer loops.
106 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
108 Reduction handling:
109 currently we use vect_force_simple_reduction() to detect reduction patterns.
110 The code transformation will be introduced by an example.
113 parloop
115 int sum=1;
117 for (i = 0; i < N; i++)
119 x[i] = i + 3;
120 sum+=x[i];
124 gimple-like code:
125 header_bb:
127 # sum_29 = PHI <sum_11(5), 1(3)>
128 # i_28 = PHI <i_12(5), 0(3)>
129 D.1795_8 = i_28 + 3;
130 x[i_28] = D.1795_8;
131 sum_11 = D.1795_8 + sum_29;
132 i_12 = i_28 + 1;
133 if (N_6(D) > i_12)
134 goto header_bb;
137 exit_bb:
139 # sum_21 = PHI <sum_11(4)>
140 printf (&"%d"[0], sum_21);
143 after reduction transformation (only relevant parts):
145 parloop
148 ....
151 # Storing the initial value given by the user. #
153 .paral_data_store.32.sum.27 = 1;
155 #pragma omp parallel num_threads(4)
157 #pragma omp for schedule(static)
159 # The neutral element corresponding to the particular
160 reduction's operation, e.g. 0 for PLUS_EXPR,
161 1 for MULT_EXPR, etc. replaces the user's initial value. #
163 # sum.27_29 = PHI <sum.27_11, 0>
165 sum.27_11 = D.1827_8 + sum.27_29;
167 GIMPLE_OMP_CONTINUE
169 # Adding this reduction phi is done at create_phi_for_local_result() #
170 # sum.27_56 = PHI <sum.27_11, 0>
171 GIMPLE_OMP_RETURN
173 # Creating the atomic operation is done at
174 create_call_for_reduction_1() #
176 #pragma omp atomic_load
177 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
178 D.1840_60 = sum.27_56 + D.1839_59;
179 #pragma omp atomic_store (D.1840_60);
181 GIMPLE_OMP_RETURN
183 # collecting the result after the join of the threads is done at
184 create_loads_for_reductions().
185 The value computed by the threads is loaded from the
186 shared struct. #
189 .paral_data_load.33_52 = &.paral_data_store.32;
190 sum_37 = .paral_data_load.33_52->sum.27;
191 sum_43 = D.1795_41 + sum_37;
193 exit bb:
194 # sum_21 = PHI <sum_43, sum_26>
195 printf (&"%d"[0], sum_21);
203 /* Minimal number of iterations of a loop that should be executed in each
204 thread. */
205 #define MIN_PER_THREAD 100
207 /* Element of the hashtable, representing a
208 reduction in the current loop. */
209 struct reduction_info
211 gimple reduc_stmt; /* reduction statement. */
212 gimple reduc_phi; /* The phi node defining the reduction. */
213 enum tree_code reduction_code;/* code for the reduction operation. */
214 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
215 result. */
216 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
217 of the reduction variable when existing the loop. */
218 tree initial_value; /* The initial value of the reduction var before entering the loop. */
219 tree field; /* the name of the field in the parloop data structure intended for reduction. */
220 tree init; /* reduction initialization value. */
221 gphi *new_phi; /* (helper field) Newly created phi node whose result
222 will be passed to the atomic operation. Represents
223 the local result each thread computed for the reduction
224 operation. */
227 /* Reduction info hashtable helpers. */
229 struct reduction_hasher : typed_free_remove <reduction_info>
231 typedef reduction_info *value_type;
232 typedef reduction_info *compare_type;
233 static inline hashval_t hash (const reduction_info *);
234 static inline bool equal (const reduction_info *, const reduction_info *);
237 /* Equality and hash functions for hashtab code. */
239 inline bool
240 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
242 return (a->reduc_phi == b->reduc_phi);
245 inline hashval_t
246 reduction_hasher::hash (const reduction_info *a)
248 return a->reduc_version;
251 typedef hash_table<reduction_hasher> reduction_info_table_type;
254 static struct reduction_info *
255 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
257 struct reduction_info tmpred, *red;
259 if (reduction_list->elements () == 0 || phi == NULL)
260 return NULL;
262 tmpred.reduc_phi = phi;
263 tmpred.reduc_version = gimple_uid (phi);
264 red = reduction_list->find (&tmpred);
266 return red;
269 /* Element of hashtable of names to copy. */
271 struct name_to_copy_elt
273 unsigned version; /* The version of the name to copy. */
274 tree new_name; /* The new name used in the copy. */
275 tree field; /* The field of the structure used to pass the
276 value. */
279 /* Name copies hashtable helpers. */
281 struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt>
283 typedef name_to_copy_elt *value_type;
284 typedef name_to_copy_elt *compare_type;
285 static inline hashval_t hash (const name_to_copy_elt *);
286 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
289 /* Equality and hash functions for hashtab code. */
291 inline bool
292 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
294 return a->version == b->version;
297 inline hashval_t
298 name_to_copy_hasher::hash (const name_to_copy_elt *a)
300 return (hashval_t) a->version;
303 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
305 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
306 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
307 represents the denominator for every element in the matrix. */
308 typedef struct lambda_trans_matrix_s
310 lambda_matrix matrix;
311 int rowsize;
312 int colsize;
313 int denominator;
314 } *lambda_trans_matrix;
315 #define LTM_MATRIX(T) ((T)->matrix)
316 #define LTM_ROWSIZE(T) ((T)->rowsize)
317 #define LTM_COLSIZE(T) ((T)->colsize)
318 #define LTM_DENOMINATOR(T) ((T)->denominator)
320 /* Allocate a new transformation matrix. */
322 static lambda_trans_matrix
323 lambda_trans_matrix_new (int colsize, int rowsize,
324 struct obstack * lambda_obstack)
326 lambda_trans_matrix ret;
328 ret = (lambda_trans_matrix)
329 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
330 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
331 LTM_ROWSIZE (ret) = rowsize;
332 LTM_COLSIZE (ret) = colsize;
333 LTM_DENOMINATOR (ret) = 1;
334 return ret;
337 /* Multiply a vector VEC by a matrix MAT.
338 MAT is an M*N matrix, and VEC is a vector with length N. The result
339 is stored in DEST which must be a vector of length M. */
341 static void
342 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
343 lambda_vector vec, lambda_vector dest)
345 int i, j;
347 lambda_vector_clear (dest, m);
348 for (i = 0; i < m; i++)
349 for (j = 0; j < n; j++)
350 dest[i] += matrix[i][j] * vec[j];
353 /* Return true if TRANS is a legal transformation matrix that respects
354 the dependence vectors in DISTS and DIRS. The conservative answer
355 is false.
357 "Wolfe proves that a unimodular transformation represented by the
358 matrix T is legal when applied to a loop nest with a set of
359 lexicographically non-negative distance vectors RDG if and only if
360 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
361 i.e.: if and only if it transforms the lexicographically positive
362 distance vectors to lexicographically positive vectors. Note that
363 a unimodular matrix must transform the zero vector (and only it) to
364 the zero vector." S.Muchnick. */
366 static bool
367 lambda_transform_legal_p (lambda_trans_matrix trans,
368 int nb_loops,
369 vec<ddr_p> dependence_relations)
371 unsigned int i, j;
372 lambda_vector distres;
373 struct data_dependence_relation *ddr;
375 gcc_assert (LTM_COLSIZE (trans) == nb_loops
376 && LTM_ROWSIZE (trans) == nb_loops);
378 /* When there are no dependences, the transformation is correct. */
379 if (dependence_relations.length () == 0)
380 return true;
382 ddr = dependence_relations[0];
383 if (ddr == NULL)
384 return true;
386 /* When there is an unknown relation in the dependence_relations, we
387 know that it is no worth looking at this loop nest: give up. */
388 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
389 return false;
391 distres = lambda_vector_new (nb_loops);
393 /* For each distance vector in the dependence graph. */
394 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
396 /* Don't care about relations for which we know that there is no
397 dependence, nor about read-read (aka. output-dependences):
398 these data accesses can happen in any order. */
399 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
400 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
401 continue;
403 /* Conservatively answer: "this transformation is not valid". */
404 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
405 return false;
407 /* If the dependence could not be captured by a distance vector,
408 conservatively answer that the transform is not valid. */
409 if (DDR_NUM_DIST_VECTS (ddr) == 0)
410 return false;
412 /* Compute trans.dist_vect */
413 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
415 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
416 DDR_DIST_VECT (ddr, j), distres);
418 if (!lambda_vector_lexico_pos (distres, nb_loops))
419 return false;
422 return true;
425 /* Data dependency analysis. Returns true if the iterations of LOOP
426 are independent on each other (that is, if we can execute them
427 in parallel). */
429 static bool
430 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
432 vec<ddr_p> dependence_relations;
433 vec<data_reference_p> datarefs;
434 lambda_trans_matrix trans;
435 bool ret = false;
437 if (dump_file && (dump_flags & TDF_DETAILS))
439 fprintf (dump_file, "Considering loop %d\n", loop->num);
440 if (!loop->inner)
441 fprintf (dump_file, "loop is innermost\n");
442 else
443 fprintf (dump_file, "loop NOT innermost\n");
446 /* Check for problems with dependences. If the loop can be reversed,
447 the iterations are independent. */
448 auto_vec<loop_p, 3> loop_nest;
449 datarefs.create (10);
450 dependence_relations.create (100);
451 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
452 &dependence_relations))
454 if (dump_file && (dump_flags & TDF_DETAILS))
455 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
456 ret = false;
457 goto end;
459 if (dump_file && (dump_flags & TDF_DETAILS))
460 dump_data_dependence_relations (dump_file, dependence_relations);
462 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
463 LTM_MATRIX (trans)[0][0] = -1;
465 if (lambda_transform_legal_p (trans, 1, dependence_relations))
467 ret = true;
468 if (dump_file && (dump_flags & TDF_DETAILS))
469 fprintf (dump_file, " SUCCESS: may be parallelized\n");
471 else if (dump_file && (dump_flags & TDF_DETAILS))
472 fprintf (dump_file,
473 " FAILED: data dependencies exist across iterations\n");
475 end:
476 free_dependence_relations (dependence_relations);
477 free_data_refs (datarefs);
479 return ret;
482 /* Return true when LOOP contains basic blocks marked with the
483 BB_IRREDUCIBLE_LOOP flag. */
485 static inline bool
486 loop_has_blocks_with_irreducible_flag (struct loop *loop)
488 unsigned i;
489 basic_block *bbs = get_loop_body_in_dom_order (loop);
490 bool res = true;
492 for (i = 0; i < loop->num_nodes; i++)
493 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
494 goto end;
496 res = false;
497 end:
498 free (bbs);
499 return res;
502 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
503 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
504 to their addresses that can be reused. The address of OBJ is known to
505 be invariant in the whole function. Other needed statements are placed
506 right before GSI. */
508 static tree
509 take_address_of (tree obj, tree type, edge entry,
510 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
512 int uid;
513 tree *var_p, name, addr;
514 gassign *stmt;
515 gimple_seq stmts;
517 /* Since the address of OBJ is invariant, the trees may be shared.
518 Avoid rewriting unrelated parts of the code. */
519 obj = unshare_expr (obj);
520 for (var_p = &obj;
521 handled_component_p (*var_p);
522 var_p = &TREE_OPERAND (*var_p, 0))
523 continue;
525 /* Canonicalize the access to base on a MEM_REF. */
526 if (DECL_P (*var_p))
527 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
529 /* Assign a canonical SSA name to the address of the base decl used
530 in the address and share it for all accesses and addresses based
531 on it. */
532 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
533 int_tree_map elt;
534 elt.uid = uid;
535 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
536 if (!slot->to)
538 if (gsi == NULL)
539 return NULL;
540 addr = TREE_OPERAND (*var_p, 0);
541 const char *obj_name
542 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
543 if (obj_name)
544 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
545 else
546 name = make_ssa_name (TREE_TYPE (addr));
547 stmt = gimple_build_assign (name, addr);
548 gsi_insert_on_edge_immediate (entry, stmt);
550 slot->uid = uid;
551 slot->to = name;
553 else
554 name = slot->to;
556 /* Express the address in terms of the canonical SSA name. */
557 TREE_OPERAND (*var_p, 0) = name;
558 if (gsi == NULL)
559 return build_fold_addr_expr_with_type (obj, type);
561 name = force_gimple_operand (build_addr (obj, current_function_decl),
562 &stmts, true, NULL_TREE);
563 if (!gimple_seq_empty_p (stmts))
564 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
566 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
568 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
569 NULL_TREE);
570 if (!gimple_seq_empty_p (stmts))
571 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
574 return name;
577 /* Callback for htab_traverse. Create the initialization statement
578 for reduction described in SLOT, and place it at the preheader of
579 the loop described in DATA. */
582 initialize_reductions (reduction_info **slot, struct loop *loop)
584 tree init, c;
585 tree bvar, type, arg;
586 edge e;
588 struct reduction_info *const reduc = *slot;
590 /* Create initialization in preheader:
591 reduction_variable = initialization value of reduction. */
593 /* In the phi node at the header, replace the argument coming
594 from the preheader with the reduction initialization value. */
596 /* Create a new variable to initialize the reduction. */
597 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
598 bvar = create_tmp_var (type, "reduction");
600 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
601 OMP_CLAUSE_REDUCTION);
602 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
603 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
605 init = omp_reduction_init (c, TREE_TYPE (bvar));
606 reduc->init = init;
608 /* Replace the argument representing the initialization value
609 with the initialization value for the reduction (neutral
610 element for the particular operation, e.g. 0 for PLUS_EXPR,
611 1 for MULT_EXPR, etc).
612 Keep the old value in a new variable "reduction_initial",
613 that will be taken in consideration after the parallel
614 computing is done. */
616 e = loop_preheader_edge (loop);
617 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
618 /* Create new variable to hold the initial value. */
620 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
621 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
622 reduc->initial_value = arg;
623 return 1;
626 struct elv_data
628 struct walk_stmt_info info;
629 edge entry;
630 int_tree_htab_type *decl_address;
631 gimple_stmt_iterator *gsi;
632 bool changed;
633 bool reset;
636 /* Eliminates references to local variables in *TP out of the single
637 entry single exit region starting at DTA->ENTRY.
638 DECL_ADDRESS contains addresses of the references that had their
639 address taken already. If the expression is changed, CHANGED is
640 set to true. Callback for walk_tree. */
642 static tree
643 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
645 struct elv_data *const dta = (struct elv_data *) data;
646 tree t = *tp, var, addr, addr_type, type, obj;
648 if (DECL_P (t))
650 *walk_subtrees = 0;
652 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
653 return NULL_TREE;
655 type = TREE_TYPE (t);
656 addr_type = build_pointer_type (type);
657 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
658 dta->gsi);
659 if (dta->gsi == NULL && addr == NULL_TREE)
661 dta->reset = true;
662 return NULL_TREE;
665 *tp = build_simple_mem_ref (addr);
667 dta->changed = true;
668 return NULL_TREE;
671 if (TREE_CODE (t) == ADDR_EXPR)
673 /* ADDR_EXPR may appear in two contexts:
674 -- as a gimple operand, when the address taken is a function invariant
675 -- as gimple rhs, when the resulting address in not a function
676 invariant
677 We do not need to do anything special in the latter case (the base of
678 the memory reference whose address is taken may be replaced in the
679 DECL_P case). The former case is more complicated, as we need to
680 ensure that the new address is still a gimple operand. Thus, it
681 is not sufficient to replace just the base of the memory reference --
682 we need to move the whole computation of the address out of the
683 loop. */
684 if (!is_gimple_val (t))
685 return NULL_TREE;
687 *walk_subtrees = 0;
688 obj = TREE_OPERAND (t, 0);
689 var = get_base_address (obj);
690 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
691 return NULL_TREE;
693 addr_type = TREE_TYPE (t);
694 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
695 dta->gsi);
696 if (dta->gsi == NULL && addr == NULL_TREE)
698 dta->reset = true;
699 return NULL_TREE;
701 *tp = addr;
703 dta->changed = true;
704 return NULL_TREE;
707 if (!EXPR_P (t))
708 *walk_subtrees = 0;
710 return NULL_TREE;
713 /* Moves the references to local variables in STMT at *GSI out of the single
714 entry single exit region starting at ENTRY. DECL_ADDRESS contains
715 addresses of the references that had their address taken
716 already. */
718 static void
719 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
720 int_tree_htab_type *decl_address)
722 struct elv_data dta;
723 gimple stmt = gsi_stmt (*gsi);
725 memset (&dta.info, '\0', sizeof (dta.info));
726 dta.entry = entry;
727 dta.decl_address = decl_address;
728 dta.changed = false;
729 dta.reset = false;
731 if (gimple_debug_bind_p (stmt))
733 dta.gsi = NULL;
734 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
735 eliminate_local_variables_1, &dta.info, NULL);
736 if (dta.reset)
738 gimple_debug_bind_reset_value (stmt);
739 dta.changed = true;
742 else if (gimple_clobber_p (stmt))
744 stmt = gimple_build_nop ();
745 gsi_replace (gsi, stmt, false);
746 dta.changed = true;
748 else
750 dta.gsi = gsi;
751 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
754 if (dta.changed)
755 update_stmt (stmt);
758 /* Eliminates the references to local variables from the single entry
759 single exit region between the ENTRY and EXIT edges.
761 This includes:
762 1) Taking address of a local variable -- these are moved out of the
763 region (and temporary variable is created to hold the address if
764 necessary).
766 2) Dereferencing a local variable -- these are replaced with indirect
767 references. */
769 static void
770 eliminate_local_variables (edge entry, edge exit)
772 basic_block bb;
773 auto_vec<basic_block, 3> body;
774 unsigned i;
775 gimple_stmt_iterator gsi;
776 bool has_debug_stmt = false;
777 int_tree_htab_type decl_address (10);
778 basic_block entry_bb = entry->src;
779 basic_block exit_bb = exit->dest;
781 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
783 FOR_EACH_VEC_ELT (body, i, bb)
784 if (bb != entry_bb && bb != exit_bb)
785 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
786 if (is_gimple_debug (gsi_stmt (gsi)))
788 if (gimple_debug_bind_p (gsi_stmt (gsi)))
789 has_debug_stmt = true;
791 else
792 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
794 if (has_debug_stmt)
795 FOR_EACH_VEC_ELT (body, i, bb)
796 if (bb != entry_bb && bb != exit_bb)
797 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
798 if (gimple_debug_bind_p (gsi_stmt (gsi)))
799 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
802 /* Returns true if expression EXPR is not defined between ENTRY and
803 EXIT, i.e. if all its operands are defined outside of the region. */
805 static bool
806 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
808 basic_block entry_bb = entry->src;
809 basic_block exit_bb = exit->dest;
810 basic_block def_bb;
812 if (is_gimple_min_invariant (expr))
813 return true;
815 if (TREE_CODE (expr) == SSA_NAME)
817 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
818 if (def_bb
819 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
820 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
821 return false;
823 return true;
826 return false;
829 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
830 The copies are stored to NAME_COPIES, if NAME was already duplicated,
831 its duplicate stored in NAME_COPIES is returned.
833 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
834 duplicated, storing the copies in DECL_COPIES. */
836 static tree
837 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
838 int_tree_htab_type *decl_copies,
839 bool copy_name_p)
841 tree copy, var, var_copy;
842 unsigned idx, uid, nuid;
843 struct int_tree_map ielt;
844 struct name_to_copy_elt elt, *nelt;
845 name_to_copy_elt **slot;
846 int_tree_map *dslot;
848 if (TREE_CODE (name) != SSA_NAME)
849 return name;
851 idx = SSA_NAME_VERSION (name);
852 elt.version = idx;
853 slot = name_copies->find_slot_with_hash (&elt, idx,
854 copy_name_p ? INSERT : NO_INSERT);
855 if (slot && *slot)
856 return (*slot)->new_name;
858 if (copy_name_p)
860 copy = duplicate_ssa_name (name, NULL);
861 nelt = XNEW (struct name_to_copy_elt);
862 nelt->version = idx;
863 nelt->new_name = copy;
864 nelt->field = NULL_TREE;
865 *slot = nelt;
867 else
869 gcc_assert (!slot);
870 copy = name;
873 var = SSA_NAME_VAR (name);
874 if (!var)
875 return copy;
877 uid = DECL_UID (var);
878 ielt.uid = uid;
879 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
880 if (!dslot->to)
882 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
883 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
884 dslot->uid = uid;
885 dslot->to = var_copy;
887 /* Ensure that when we meet this decl next time, we won't duplicate
888 it again. */
889 nuid = DECL_UID (var_copy);
890 ielt.uid = nuid;
891 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
892 gcc_assert (!dslot->to);
893 dslot->uid = nuid;
894 dslot->to = var_copy;
896 else
897 var_copy = dslot->to;
899 replace_ssa_name_symbol (copy, var_copy);
900 return copy;
903 /* Finds the ssa names used in STMT that are defined outside the
904 region between ENTRY and EXIT and replaces such ssa names with
905 their duplicates. The duplicates are stored to NAME_COPIES. Base
906 decls of all ssa names used in STMT (including those defined in
907 LOOP) are replaced with the new temporary variables; the
908 replacement decls are stored in DECL_COPIES. */
910 static void
911 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
912 name_to_copy_table_type *name_copies,
913 int_tree_htab_type *decl_copies)
915 use_operand_p use;
916 def_operand_p def;
917 ssa_op_iter oi;
918 tree name, copy;
919 bool copy_name_p;
921 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
923 name = DEF_FROM_PTR (def);
924 gcc_assert (TREE_CODE (name) == SSA_NAME);
925 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
926 false);
927 gcc_assert (copy == name);
930 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
932 name = USE_FROM_PTR (use);
933 if (TREE_CODE (name) != SSA_NAME)
934 continue;
936 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
937 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
938 copy_name_p);
939 SET_USE (use, copy);
943 /* Finds the ssa names used in STMT that are defined outside the
944 region between ENTRY and EXIT and replaces such ssa names with
945 their duplicates. The duplicates are stored to NAME_COPIES. Base
946 decls of all ssa names used in STMT (including those defined in
947 LOOP) are replaced with the new temporary variables; the
948 replacement decls are stored in DECL_COPIES. */
950 static bool
951 separate_decls_in_region_debug (gimple stmt,
952 name_to_copy_table_type *name_copies,
953 int_tree_htab_type *decl_copies)
955 use_operand_p use;
956 ssa_op_iter oi;
957 tree var, name;
958 struct int_tree_map ielt;
959 struct name_to_copy_elt elt;
960 name_to_copy_elt **slot;
961 int_tree_map *dslot;
963 if (gimple_debug_bind_p (stmt))
964 var = gimple_debug_bind_get_var (stmt);
965 else if (gimple_debug_source_bind_p (stmt))
966 var = gimple_debug_source_bind_get_var (stmt);
967 else
968 return true;
969 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
970 return true;
971 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
972 ielt.uid = DECL_UID (var);
973 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
974 if (!dslot)
975 return true;
976 if (gimple_debug_bind_p (stmt))
977 gimple_debug_bind_set_var (stmt, dslot->to);
978 else if (gimple_debug_source_bind_p (stmt))
979 gimple_debug_source_bind_set_var (stmt, dslot->to);
981 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
983 name = USE_FROM_PTR (use);
984 if (TREE_CODE (name) != SSA_NAME)
985 continue;
987 elt.version = SSA_NAME_VERSION (name);
988 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
989 if (!slot)
991 gimple_debug_bind_reset_value (stmt);
992 update_stmt (stmt);
993 break;
996 SET_USE (use, (*slot)->new_name);
999 return false;
1002 /* Callback for htab_traverse. Adds a field corresponding to the reduction
1003 specified in SLOT. The type is passed in DATA. */
1006 add_field_for_reduction (reduction_info **slot, tree type)
1009 struct reduction_info *const red = *slot;
1010 tree var = gimple_assign_lhs (red->reduc_stmt);
1011 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1012 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1014 insert_field_into_struct (type, field);
1016 red->field = field;
1018 return 1;
1021 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1022 described in SLOT. The type is passed in DATA. */
1025 add_field_for_name (name_to_copy_elt **slot, tree type)
1027 struct name_to_copy_elt *const elt = *slot;
1028 tree name = ssa_name (elt->version);
1029 tree field = build_decl (UNKNOWN_LOCATION,
1030 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1031 TREE_TYPE (name));
1033 insert_field_into_struct (type, field);
1034 elt->field = field;
1036 return 1;
1039 /* Callback for htab_traverse. A local result is the intermediate result
1040 computed by a single
1041 thread, or the initial value in case no iteration was executed.
1042 This function creates a phi node reflecting these values.
1043 The phi's result will be stored in NEW_PHI field of the
1044 reduction's data structure. */
1047 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1049 struct reduction_info *const reduc = *slot;
1050 edge e;
1051 gphi *new_phi;
1052 basic_block store_bb;
1053 tree local_res;
1054 source_location locus;
1056 /* STORE_BB is the block where the phi
1057 should be stored. It is the destination of the loop exit.
1058 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1059 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1061 /* STORE_BB has two predecessors. One coming from the loop
1062 (the reduction's result is computed at the loop),
1063 and another coming from a block preceding the loop,
1064 when no iterations
1065 are executed (the initial value should be taken). */
1066 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1067 e = EDGE_PRED (store_bb, 1);
1068 else
1069 e = EDGE_PRED (store_bb, 0);
1070 local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt));
1071 locus = gimple_location (reduc->reduc_stmt);
1072 new_phi = create_phi_node (local_res, store_bb);
1073 add_phi_arg (new_phi, reduc->init, e, locus);
1074 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1075 FALLTHRU_EDGE (loop->latch), locus);
1076 reduc->new_phi = new_phi;
1078 return 1;
1081 struct clsn_data
1083 tree store;
1084 tree load;
1086 basic_block store_bb;
1087 basic_block load_bb;
1090 /* Callback for htab_traverse. Create an atomic instruction for the
1091 reduction described in SLOT.
1092 DATA annotates the place in memory the atomic operation relates to,
1093 and the basic block it needs to be generated in. */
1096 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1098 struct reduction_info *const reduc = *slot;
1099 gimple_stmt_iterator gsi;
1100 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1101 tree load_struct;
1102 basic_block bb;
1103 basic_block new_bb;
1104 edge e;
1105 tree t, addr, ref, x;
1106 tree tmp_load, name;
1107 gimple load;
1109 load_struct = build_simple_mem_ref (clsn_data->load);
1110 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1112 addr = build_addr (t, current_function_decl);
1114 /* Create phi node. */
1115 bb = clsn_data->load_bb;
1117 gsi = gsi_last_bb (bb);
1118 e = split_block (bb, gsi_stmt (gsi));
1119 new_bb = e->dest;
1121 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1122 tmp_load = make_ssa_name (tmp_load);
1123 load = gimple_build_omp_atomic_load (tmp_load, addr);
1124 SSA_NAME_DEF_STMT (tmp_load) = load;
1125 gsi = gsi_start_bb (new_bb);
1126 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1128 e = split_block (new_bb, load);
1129 new_bb = e->dest;
1130 gsi = gsi_start_bb (new_bb);
1131 ref = tmp_load;
1132 x = fold_build2 (reduc->reduction_code,
1133 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1134 PHI_RESULT (reduc->new_phi));
1136 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1137 GSI_CONTINUE_LINKING);
1139 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1140 return 1;
1143 /* Create the atomic operation at the join point of the threads.
1144 REDUCTION_LIST describes the reductions in the LOOP.
1145 LD_ST_DATA describes the shared data structure where
1146 shared data is stored in and loaded from. */
1147 static void
1148 create_call_for_reduction (struct loop *loop,
1149 reduction_info_table_type *reduction_list,
1150 struct clsn_data *ld_st_data)
1152 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1153 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1154 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1155 reduction_list
1156 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1159 /* Callback for htab_traverse. Loads the final reduction value at the
1160 join point of all threads, and inserts it in the right place. */
1163 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1165 struct reduction_info *const red = *slot;
1166 gimple stmt;
1167 gimple_stmt_iterator gsi;
1168 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1169 tree load_struct;
1170 tree name;
1171 tree x;
1173 gsi = gsi_after_labels (clsn_data->load_bb);
1174 load_struct = build_simple_mem_ref (clsn_data->load);
1175 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1176 NULL_TREE);
1178 x = load_struct;
1179 name = PHI_RESULT (red->keep_res);
1180 stmt = gimple_build_assign (name, x);
1182 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1184 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1185 !gsi_end_p (gsi); gsi_next (&gsi))
1186 if (gsi_stmt (gsi) == red->keep_res)
1188 remove_phi_node (&gsi, false);
1189 return 1;
1191 gcc_unreachable ();
1194 /* Load the reduction result that was stored in LD_ST_DATA.
1195 REDUCTION_LIST describes the list of reductions that the
1196 loads should be generated for. */
1197 static void
1198 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1199 struct clsn_data *ld_st_data)
1201 gimple_stmt_iterator gsi;
1202 tree t;
1203 gimple stmt;
1205 gsi = gsi_after_labels (ld_st_data->load_bb);
1206 t = build_fold_addr_expr (ld_st_data->store);
1207 stmt = gimple_build_assign (ld_st_data->load, t);
1209 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1211 reduction_list
1212 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1216 /* Callback for htab_traverse. Store the neutral value for the
1217 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1218 1 for MULT_EXPR, etc. into the reduction field.
1219 The reduction is specified in SLOT. The store information is
1220 passed in DATA. */
1223 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1225 struct reduction_info *const red = *slot;
1226 tree t;
1227 gimple stmt;
1228 gimple_stmt_iterator gsi;
1229 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1231 gsi = gsi_last_bb (clsn_data->store_bb);
1232 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1233 stmt = gimple_build_assign (t, red->initial_value);
1234 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1236 return 1;
1239 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1240 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1241 specified in SLOT. */
1244 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1245 struct clsn_data *clsn_data)
1247 struct name_to_copy_elt *const elt = *slot;
1248 tree t;
1249 gimple stmt;
1250 gimple_stmt_iterator gsi;
1251 tree type = TREE_TYPE (elt->new_name);
1252 tree load_struct;
1254 gsi = gsi_last_bb (clsn_data->store_bb);
1255 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1256 stmt = gimple_build_assign (t, ssa_name (elt->version));
1257 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1259 gsi = gsi_last_bb (clsn_data->load_bb);
1260 load_struct = build_simple_mem_ref (clsn_data->load);
1261 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1262 stmt = gimple_build_assign (elt->new_name, t);
1263 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1265 return 1;
1268 /* Moves all the variables used in LOOP and defined outside of it (including
1269 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1270 name) to a structure created for this purpose. The code
1272 while (1)
1274 use (a);
1275 use (b);
1278 is transformed this way:
1280 bb0:
1281 old.a = a;
1282 old.b = b;
1284 bb1:
1285 a' = new->a;
1286 b' = new->b;
1287 while (1)
1289 use (a');
1290 use (b');
1293 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1294 pointer `new' is intentionally not initialized (the loop will be split to a
1295 separate function later, and `new' will be initialized from its arguments).
1296 LD_ST_DATA holds information about the shared data structure used to pass
1297 information among the threads. It is initialized here, and
1298 gen_parallel_loop will pass it to create_call_for_reduction that
1299 needs this information. REDUCTION_LIST describes the reductions
1300 in LOOP. */
1302 static void
1303 separate_decls_in_region (edge entry, edge exit,
1304 reduction_info_table_type *reduction_list,
1305 tree *arg_struct, tree *new_arg_struct,
1306 struct clsn_data *ld_st_data)
1309 basic_block bb1 = split_edge (entry);
1310 basic_block bb0 = single_pred (bb1);
1311 name_to_copy_table_type name_copies (10);
1312 int_tree_htab_type decl_copies (10);
1313 unsigned i;
1314 tree type, type_name, nvar;
1315 gimple_stmt_iterator gsi;
1316 struct clsn_data clsn_data;
1317 auto_vec<basic_block, 3> body;
1318 basic_block bb;
1319 basic_block entry_bb = bb1;
1320 basic_block exit_bb = exit->dest;
1321 bool has_debug_stmt = false;
1323 entry = single_succ_edge (entry_bb);
1324 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1326 FOR_EACH_VEC_ELT (body, i, bb)
1328 if (bb != entry_bb && bb != exit_bb)
1330 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1331 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1332 &name_copies, &decl_copies);
1334 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1336 gimple stmt = gsi_stmt (gsi);
1338 if (is_gimple_debug (stmt))
1339 has_debug_stmt = true;
1340 else
1341 separate_decls_in_region_stmt (entry, exit, stmt,
1342 &name_copies, &decl_copies);
1347 /* Now process debug bind stmts. We must not create decls while
1348 processing debug stmts, so we defer their processing so as to
1349 make sure we will have debug info for as many variables as
1350 possible (all of those that were dealt with in the loop above),
1351 and discard those for which we know there's nothing we can
1352 do. */
1353 if (has_debug_stmt)
1354 FOR_EACH_VEC_ELT (body, i, bb)
1355 if (bb != entry_bb && bb != exit_bb)
1357 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1359 gimple stmt = gsi_stmt (gsi);
1361 if (is_gimple_debug (stmt))
1363 if (separate_decls_in_region_debug (stmt, &name_copies,
1364 &decl_copies))
1366 gsi_remove (&gsi, true);
1367 continue;
1371 gsi_next (&gsi);
1375 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1377 /* It may happen that there is nothing to copy (if there are only
1378 loop carried and external variables in the loop). */
1379 *arg_struct = NULL;
1380 *new_arg_struct = NULL;
1382 else
1384 /* Create the type for the structure to store the ssa names to. */
1385 type = lang_hooks.types.make_type (RECORD_TYPE);
1386 type_name = build_decl (UNKNOWN_LOCATION,
1387 TYPE_DECL, create_tmp_var_name (".paral_data"),
1388 type);
1389 TYPE_NAME (type) = type_name;
1391 name_copies.traverse <tree, add_field_for_name> (type);
1392 if (reduction_list && reduction_list->elements () > 0)
1394 /* Create the fields for reductions. */
1395 reduction_list->traverse <tree, add_field_for_reduction> (type);
1397 layout_type (type);
1399 /* Create the loads and stores. */
1400 *arg_struct = create_tmp_var (type, ".paral_data_store");
1401 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1402 *new_arg_struct = make_ssa_name (nvar);
1404 ld_st_data->store = *arg_struct;
1405 ld_st_data->load = *new_arg_struct;
1406 ld_st_data->store_bb = bb0;
1407 ld_st_data->load_bb = bb1;
1409 name_copies
1410 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1411 (ld_st_data);
1413 /* Load the calculation from memory (after the join of the threads). */
1415 if (reduction_list && reduction_list->elements () > 0)
1417 reduction_list
1418 ->traverse <struct clsn_data *, create_stores_for_reduction>
1419 (ld_st_data);
1420 clsn_data.load = make_ssa_name (nvar);
1421 clsn_data.load_bb = exit->dest;
1422 clsn_data.store = ld_st_data->store;
1423 create_final_loads_for_reduction (reduction_list, &clsn_data);
1428 /* Returns true if FN was created to run in parallel. */
1430 bool
1431 parallelized_function_p (tree fndecl)
1433 cgraph_node *node = cgraph_node::get (fndecl);
1434 gcc_assert (node != NULL);
1435 return node->parallelized_function;
1438 /* Creates and returns an empty function that will receive the body of
1439 a parallelized loop. */
1441 static tree
1442 create_loop_fn (location_t loc)
1444 char buf[100];
1445 char *tname;
1446 tree decl, type, name, t;
1447 struct function *act_cfun = cfun;
1448 static unsigned loopfn_num;
1450 loc = LOCATION_LOCUS (loc);
1451 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1452 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1453 clean_symbol_name (tname);
1454 name = get_identifier (tname);
1455 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1457 decl = build_decl (loc, FUNCTION_DECL, name, type);
1458 TREE_STATIC (decl) = 1;
1459 TREE_USED (decl) = 1;
1460 DECL_ARTIFICIAL (decl) = 1;
1461 DECL_IGNORED_P (decl) = 0;
1462 TREE_PUBLIC (decl) = 0;
1463 DECL_UNINLINABLE (decl) = 1;
1464 DECL_EXTERNAL (decl) = 0;
1465 DECL_CONTEXT (decl) = NULL_TREE;
1466 DECL_INITIAL (decl) = make_node (BLOCK);
1468 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1469 DECL_ARTIFICIAL (t) = 1;
1470 DECL_IGNORED_P (t) = 1;
1471 DECL_RESULT (decl) = t;
1473 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1474 ptr_type_node);
1475 DECL_ARTIFICIAL (t) = 1;
1476 DECL_ARG_TYPE (t) = ptr_type_node;
1477 DECL_CONTEXT (t) = decl;
1478 TREE_USED (t) = 1;
1479 DECL_ARGUMENTS (decl) = t;
1481 allocate_struct_function (decl, false);
1483 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1484 it. */
1485 set_cfun (act_cfun);
1487 return decl;
1490 /* Moves the exit condition of LOOP to the beginning of its header, and
1491 duplicates the part of the last iteration that gets disabled to the
1492 exit of the loop. NIT is the number of iterations of the loop
1493 (used to initialize the variables in the duplicated part).
1495 TODO: the common case is that latch of the loop is empty and immediately
1496 follows the loop exit. In this case, it would be better not to copy the
1497 body of the loop, but only move the entry of the loop directly before the
1498 exit check and increase the number of iterations of the loop by one.
1499 This may need some additional preconditioning in case NIT = ~0.
1500 REDUCTION_LIST describes the reductions in LOOP. */
1502 static void
1503 transform_to_exit_first_loop (struct loop *loop,
1504 reduction_info_table_type *reduction_list,
1505 tree nit)
1507 basic_block *bbs, *nbbs, ex_bb, orig_header;
1508 unsigned n;
1509 bool ok;
1510 edge exit = single_dom_exit (loop), hpred;
1511 tree control, control_name, res, t;
1512 gphi *phi, *nphi;
1513 gassign *stmt;
1514 gcond *cond_stmt, *cond_nit;
1515 tree nit_1;
1517 split_block_after_labels (loop->header);
1518 orig_header = single_succ (loop->header);
1519 hpred = single_succ_edge (loop->header);
1521 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1522 control = gimple_cond_lhs (cond_stmt);
1523 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1525 /* Make sure that we have phi nodes on exit for all loop header phis
1526 (create_parallel_loop requires that). */
1527 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1528 !gsi_end_p (gsi);
1529 gsi_next (&gsi))
1531 phi = gsi.phi ();
1532 res = PHI_RESULT (phi);
1533 t = copy_ssa_name (res, phi);
1534 SET_PHI_RESULT (phi, t);
1535 nphi = create_phi_node (res, orig_header);
1536 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1538 if (res == control)
1540 gimple_cond_set_lhs (cond_stmt, t);
1541 update_stmt (cond_stmt);
1542 control = t;
1546 bbs = get_loop_body_in_dom_order (loop);
1548 for (n = 0; bbs[n] != exit->src; n++)
1549 continue;
1550 nbbs = XNEWVEC (basic_block, n);
1551 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1552 bbs + 1, n, nbbs);
1553 gcc_assert (ok);
1554 free (bbs);
1555 ex_bb = nbbs[0];
1556 free (nbbs);
1558 /* Other than reductions, the only gimple reg that should be copied
1559 out of the loop is the control variable. */
1560 exit = single_dom_exit (loop);
1561 control_name = NULL_TREE;
1562 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1563 !gsi_end_p (gsi); )
1565 phi = gsi.phi ();
1566 res = PHI_RESULT (phi);
1567 if (virtual_operand_p (res))
1569 gsi_next (&gsi);
1570 continue;
1573 /* Check if it is a part of reduction. If it is,
1574 keep the phi at the reduction's keep_res field. The
1575 PHI_RESULT of this phi is the resulting value of the reduction
1576 variable when exiting the loop. */
1578 if (reduction_list->elements () > 0)
1580 struct reduction_info *red;
1582 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1583 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1584 if (red)
1586 red->keep_res = phi;
1587 gsi_next (&gsi);
1588 continue;
1591 gcc_assert (control_name == NULL_TREE
1592 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1593 control_name = res;
1594 remove_phi_node (&gsi, false);
1596 gcc_assert (control_name != NULL_TREE);
1598 /* Initialize the control variable to number of iterations
1599 according to the rhs of the exit condition. */
1600 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1601 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1602 nit_1 = gimple_cond_rhs (cond_nit);
1603 nit_1 = force_gimple_operand_gsi (&gsi,
1604 fold_convert (TREE_TYPE (control_name), nit_1),
1605 false, NULL_TREE, false, GSI_SAME_STMT);
1606 stmt = gimple_build_assign (control_name, nit_1);
1607 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1610 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1611 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1612 NEW_DATA is the variable that should be initialized from the argument
1613 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1614 basic block containing GIMPLE_OMP_PARALLEL tree. */
1616 static basic_block
1617 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1618 tree new_data, unsigned n_threads, location_t loc)
1620 gimple_stmt_iterator gsi;
1621 basic_block bb, paral_bb, for_bb, ex_bb;
1622 tree t, param;
1623 gomp_parallel *omp_par_stmt;
1624 gimple omp_return_stmt1, omp_return_stmt2;
1625 gimple phi;
1626 gcond *cond_stmt;
1627 gomp_for *for_stmt;
1628 gomp_continue *omp_cont_stmt;
1629 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1630 edge exit, nexit, guard, end, e;
1632 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1633 bb = loop_preheader_edge (loop)->src;
1634 paral_bb = single_pred (bb);
1635 gsi = gsi_last_bb (paral_bb);
1637 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1638 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1639 = build_int_cst (integer_type_node, n_threads);
1640 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1641 gimple_set_location (omp_par_stmt, loc);
1643 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
1645 /* Initialize NEW_DATA. */
1646 if (data)
1648 gassign *assign_stmt;
1650 gsi = gsi_after_labels (bb);
1652 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
1653 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1654 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1656 assign_stmt = gimple_build_assign (new_data,
1657 fold_convert (TREE_TYPE (new_data), param));
1658 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1661 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1662 bb = split_loop_exit_edge (single_dom_exit (loop));
1663 gsi = gsi_last_bb (bb);
1664 omp_return_stmt1 = gimple_build_omp_return (false);
1665 gimple_set_location (omp_return_stmt1, loc);
1666 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
1668 /* Extract data for GIMPLE_OMP_FOR. */
1669 gcc_assert (loop->header == single_dom_exit (loop)->src);
1670 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
1672 cvar = gimple_cond_lhs (cond_stmt);
1673 cvar_base = SSA_NAME_VAR (cvar);
1674 phi = SSA_NAME_DEF_STMT (cvar);
1675 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1676 initvar = copy_ssa_name (cvar);
1677 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1678 initvar);
1679 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1681 gsi = gsi_last_nondebug_bb (loop->latch);
1682 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1683 gsi_remove (&gsi, true);
1685 /* Prepare cfg. */
1686 for_bb = split_edge (loop_preheader_edge (loop));
1687 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1688 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1689 gcc_assert (exit == single_dom_exit (loop));
1691 guard = make_edge (for_bb, ex_bb, 0);
1692 single_succ_edge (loop->latch)->flags = 0;
1693 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1694 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
1695 !gsi_end_p (gpi); gsi_next (&gpi))
1697 source_location locus;
1698 tree def;
1699 gphi *phi = gpi.phi ();
1700 gphi *stmt;
1702 stmt = as_a <gphi *> (
1703 SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit)));
1705 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1706 locus = gimple_phi_arg_location_from_edge (stmt,
1707 loop_preheader_edge (loop));
1708 add_phi_arg (phi, def, guard, locus);
1710 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1711 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1712 add_phi_arg (phi, def, end, locus);
1714 e = redirect_edge_and_branch (exit, nexit->dest);
1715 PENDING_STMT (e) = NULL;
1717 /* Emit GIMPLE_OMP_FOR. */
1718 gimple_cond_set_lhs (cond_stmt, cvar_base);
1719 type = TREE_TYPE (cvar);
1720 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1721 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1723 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
1724 gimple_set_location (for_stmt, loc);
1725 gimple_omp_for_set_index (for_stmt, 0, initvar);
1726 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1727 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1728 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1729 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1730 cvar_base,
1731 build_int_cst (type, 1)));
1733 gsi = gsi_last_bb (for_bb);
1734 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1735 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1737 /* Emit GIMPLE_OMP_CONTINUE. */
1738 gsi = gsi_last_bb (loop->latch);
1739 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
1740 gimple_set_location (omp_cont_stmt, loc);
1741 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
1742 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
1744 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1745 gsi = gsi_last_bb (ex_bb);
1746 omp_return_stmt2 = gimple_build_omp_return (true);
1747 gimple_set_location (omp_return_stmt2, loc);
1748 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
1750 /* After the above dom info is hosed. Re-compute it. */
1751 free_dominance_info (CDI_DOMINATORS);
1752 calculate_dominance_info (CDI_DOMINATORS);
1754 return paral_bb;
1757 /* Generates code to execute the iterations of LOOP in N_THREADS
1758 threads in parallel.
1760 NITER describes number of iterations of LOOP.
1761 REDUCTION_LIST describes the reductions existent in the LOOP. */
1763 static void
1764 gen_parallel_loop (struct loop *loop,
1765 reduction_info_table_type *reduction_list,
1766 unsigned n_threads, struct tree_niter_desc *niter)
1768 tree many_iterations_cond, type, nit;
1769 tree arg_struct, new_arg_struct;
1770 gimple_seq stmts;
1771 edge entry, exit;
1772 struct clsn_data clsn_data;
1773 unsigned prob;
1774 location_t loc;
1775 gimple cond_stmt;
1776 unsigned int m_p_thread=2;
1778 /* From
1780 ---------------------------------------------------------------------
1781 loop
1783 IV = phi (INIT, IV + STEP)
1784 BODY1;
1785 if (COND)
1786 break;
1787 BODY2;
1789 ---------------------------------------------------------------------
1791 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1792 we generate the following code:
1794 ---------------------------------------------------------------------
1796 if (MAY_BE_ZERO
1797 || NITER < MIN_PER_THREAD * N_THREADS)
1798 goto original;
1800 BODY1;
1801 store all local loop-invariant variables used in body of the loop to DATA.
1802 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1803 load the variables from DATA.
1804 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1805 BODY2;
1806 BODY1;
1807 GIMPLE_OMP_CONTINUE;
1808 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1809 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1810 goto end;
1812 original:
1813 loop
1815 IV = phi (INIT, IV + STEP)
1816 BODY1;
1817 if (COND)
1818 break;
1819 BODY2;
1822 end:
1826 /* Create two versions of the loop -- in the old one, we know that the
1827 number of iterations is large enough, and we will transform it into the
1828 loop that will be split to loop_fn, the new one will be used for the
1829 remaining iterations. */
1831 /* We should compute a better number-of-iterations value for outer loops.
1832 That is, if we have
1834 for (i = 0; i < n; ++i)
1835 for (j = 0; j < m; ++j)
1838 we should compute nit = n * m, not nit = n.
1839 Also may_be_zero handling would need to be adjusted. */
1841 type = TREE_TYPE (niter->niter);
1842 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1843 NULL_TREE);
1844 if (stmts)
1845 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1847 if (loop->inner)
1848 m_p_thread=2;
1849 else
1850 m_p_thread=MIN_PER_THREAD;
1852 many_iterations_cond =
1853 fold_build2 (GE_EXPR, boolean_type_node,
1854 nit, build_int_cst (type, m_p_thread * n_threads));
1856 many_iterations_cond
1857 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1858 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1859 many_iterations_cond);
1860 many_iterations_cond
1861 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1862 if (stmts)
1863 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1864 if (!is_gimple_condexpr (many_iterations_cond))
1866 many_iterations_cond
1867 = force_gimple_operand (many_iterations_cond, &stmts,
1868 true, NULL_TREE);
1869 if (stmts)
1870 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1873 initialize_original_copy_tables ();
1875 /* We assume that the loop usually iterates a lot. */
1876 prob = 4 * REG_BR_PROB_BASE / 5;
1877 loop_version (loop, many_iterations_cond, NULL,
1878 prob, prob, REG_BR_PROB_BASE - prob, true);
1879 update_ssa (TODO_update_ssa);
1880 free_original_copy_tables ();
1882 /* Base all the induction variables in LOOP on a single control one. */
1883 canonicalize_loop_ivs (loop, &nit, true);
1885 /* Ensure that the exit condition is the first statement in the loop. */
1886 transform_to_exit_first_loop (loop, reduction_list, nit);
1888 /* Generate initializations for reductions. */
1889 if (reduction_list->elements () > 0)
1890 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
1892 /* Eliminate the references to local variables from the loop. */
1893 gcc_assert (single_exit (loop));
1894 entry = loop_preheader_edge (loop);
1895 exit = single_dom_exit (loop);
1897 eliminate_local_variables (entry, exit);
1898 /* In the old loop, move all variables non-local to the loop to a structure
1899 and back, and create separate decls for the variables used in loop. */
1900 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1901 &new_arg_struct, &clsn_data);
1903 /* Create the parallel constructs. */
1904 loc = UNKNOWN_LOCATION;
1905 cond_stmt = last_stmt (loop->header);
1906 if (cond_stmt)
1907 loc = gimple_location (cond_stmt);
1908 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1909 new_arg_struct, n_threads, loc);
1910 if (reduction_list->elements () > 0)
1911 create_call_for_reduction (loop, reduction_list, &clsn_data);
1913 scev_reset ();
1915 /* Cancel the loop (it is simpler to do it here rather than to teach the
1916 expander to do it). */
1917 cancel_loop_tree (loop);
1919 /* Free loop bound estimations that could contain references to
1920 removed statements. */
1921 FOR_EACH_LOOP (loop, 0)
1922 free_numbers_of_iterations_estimates_loop (loop);
1925 /* Returns true when LOOP contains vector phi nodes. */
1927 static bool
1928 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1930 unsigned i;
1931 basic_block *bbs = get_loop_body_in_dom_order (loop);
1932 gphi_iterator gsi;
1933 bool res = true;
1935 for (i = 0; i < loop->num_nodes; i++)
1936 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1937 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
1938 goto end;
1940 res = false;
1941 end:
1942 free (bbs);
1943 return res;
1946 /* Create a reduction_info struct, initialize it with REDUC_STMT
1947 and PHI, insert it to the REDUCTION_LIST. */
1949 static void
1950 build_new_reduction (reduction_info_table_type *reduction_list,
1951 gimple reduc_stmt, gphi *phi)
1953 reduction_info **slot;
1954 struct reduction_info *new_reduction;
1956 gcc_assert (reduc_stmt);
1958 if (dump_file && (dump_flags & TDF_DETAILS))
1960 fprintf (dump_file,
1961 "Detected reduction. reduction stmt is: \n");
1962 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1963 fprintf (dump_file, "\n");
1966 new_reduction = XCNEW (struct reduction_info);
1968 new_reduction->reduc_stmt = reduc_stmt;
1969 new_reduction->reduc_phi = phi;
1970 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1971 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1972 slot = reduction_list->find_slot (new_reduction, INSERT);
1973 *slot = new_reduction;
1976 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1979 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
1981 struct reduction_info *const red = *slot;
1982 gimple_set_uid (red->reduc_phi, red->reduc_version);
1983 return 1;
1986 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1988 static void
1989 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
1991 gphi_iterator gsi;
1992 loop_vec_info simple_loop_info;
1994 simple_loop_info = vect_analyze_loop_form (loop);
1996 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1998 gphi *phi = gsi.phi ();
1999 affine_iv iv;
2000 tree res = PHI_RESULT (phi);
2001 bool double_reduc;
2003 if (virtual_operand_p (res))
2004 continue;
2006 if (!simple_iv (loop, loop, res, &iv, true)
2007 && simple_loop_info)
2009 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
2010 phi, true,
2011 &double_reduc);
2012 if (reduc_stmt && !double_reduc)
2013 build_new_reduction (reduction_list, reduc_stmt, phi);
2016 destroy_loop_vec_info (simple_loop_info, true);
2018 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2019 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2020 only now. */
2021 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2024 /* Try to initialize NITER for code generation part. */
2026 static bool
2027 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2029 edge exit = single_dom_exit (loop);
2031 gcc_assert (exit);
2033 /* We need to know # of iterations, and there should be no uses of values
2034 defined inside loop outside of it, unless the values are invariants of
2035 the loop. */
2036 if (!number_of_iterations_exit (loop, exit, niter, false))
2038 if (dump_file && (dump_flags & TDF_DETAILS))
2039 fprintf (dump_file, " FAILED: number of iterations not known\n");
2040 return false;
2043 return true;
2046 /* Try to initialize REDUCTION_LIST for code generation part.
2047 REDUCTION_LIST describes the reductions. */
2049 static bool
2050 try_create_reduction_list (loop_p loop,
2051 reduction_info_table_type *reduction_list)
2053 edge exit = single_dom_exit (loop);
2054 gphi_iterator gsi;
2056 gcc_assert (exit);
2058 gather_scalar_reductions (loop, reduction_list);
2061 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2063 gphi *phi = gsi.phi ();
2064 struct reduction_info *red;
2065 imm_use_iterator imm_iter;
2066 use_operand_p use_p;
2067 gimple reduc_phi;
2068 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2070 if (!virtual_operand_p (val))
2072 if (dump_file && (dump_flags & TDF_DETAILS))
2074 fprintf (dump_file, "phi is ");
2075 print_gimple_stmt (dump_file, phi, 0, 0);
2076 fprintf (dump_file, "arg of phi to exit: value ");
2077 print_generic_expr (dump_file, val, 0);
2078 fprintf (dump_file, " used outside loop\n");
2079 fprintf (dump_file,
2080 " checking if it a part of reduction pattern: \n");
2082 if (reduction_list->elements () == 0)
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file,
2086 " FAILED: it is not a part of reduction.\n");
2087 return false;
2089 reduc_phi = NULL;
2090 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2092 if (!gimple_debug_bind_p (USE_STMT (use_p))
2093 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2095 reduc_phi = USE_STMT (use_p);
2096 break;
2099 red = reduction_phi (reduction_list, reduc_phi);
2100 if (red == NULL)
2102 if (dump_file && (dump_flags & TDF_DETAILS))
2103 fprintf (dump_file,
2104 " FAILED: it is not a part of reduction.\n");
2105 return false;
2107 if (dump_file && (dump_flags & TDF_DETAILS))
2109 fprintf (dump_file, "reduction phi is ");
2110 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2111 fprintf (dump_file, "reduction stmt is ");
2112 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2117 /* The iterations of the loop may communicate only through bivs whose
2118 iteration space can be distributed efficiently. */
2119 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2121 gphi *phi = gsi.phi ();
2122 tree def = PHI_RESULT (phi);
2123 affine_iv iv;
2125 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2127 struct reduction_info *red;
2129 red = reduction_phi (reduction_list, phi);
2130 if (red == NULL)
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2133 fprintf (dump_file,
2134 " FAILED: scalar dependency between iterations\n");
2135 return false;
2141 return true;
2144 /* Detect parallel loops and generate parallel code using libgomp
2145 primitives. Returns true if some loop was parallelized, false
2146 otherwise. */
2148 static bool
2149 parallelize_loops (void)
2151 unsigned n_threads = flag_tree_parallelize_loops;
2152 bool changed = false;
2153 struct loop *loop;
2154 struct tree_niter_desc niter_desc;
2155 struct obstack parloop_obstack;
2156 HOST_WIDE_INT estimated;
2157 source_location loop_loc;
2159 /* Do not parallelize loops in the functions created by parallelization. */
2160 if (parallelized_function_p (cfun->decl))
2161 return false;
2162 if (cfun->has_nonlocal_label)
2163 return false;
2165 gcc_obstack_init (&parloop_obstack);
2166 reduction_info_table_type reduction_list (10);
2167 init_stmt_vec_info_vec ();
2169 FOR_EACH_LOOP (loop, 0)
2171 reduction_list.empty ();
2172 if (dump_file && (dump_flags & TDF_DETAILS))
2174 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2175 if (loop->inner)
2176 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2177 else
2178 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2181 /* If we use autopar in graphite pass, we use its marked dependency
2182 checking results. */
2183 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2185 if (dump_file && (dump_flags & TDF_DETAILS))
2186 fprintf (dump_file, "loop is not parallel according to graphite\n");
2187 continue;
2190 if (!single_dom_exit (loop))
2193 if (dump_file && (dump_flags & TDF_DETAILS))
2194 fprintf (dump_file, "loop is !single_dom_exit\n");
2196 continue;
2199 if (/* And of course, the loop must be parallelizable. */
2200 !can_duplicate_loop_p (loop)
2201 || loop_has_blocks_with_irreducible_flag (loop)
2202 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2203 /* FIXME: the check for vector phi nodes could be removed. */
2204 || loop_has_vector_phi_nodes (loop))
2205 continue;
2207 estimated = estimated_stmt_executions_int (loop);
2208 if (estimated == -1)
2209 estimated = max_stmt_executions_int (loop);
2210 /* FIXME: Bypass this check as graphite doesn't update the
2211 count and frequency correctly now. */
2212 if (!flag_loop_parallelize_all
2213 && ((estimated != -1
2214 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2215 /* Do not bother with loops in cold areas. */
2216 || optimize_loop_nest_for_size_p (loop)))
2217 continue;
2219 if (!try_get_loop_niter (loop, &niter_desc))
2220 continue;
2222 if (!try_create_reduction_list (loop, &reduction_list))
2223 continue;
2225 if (!flag_loop_parallelize_all
2226 && !loop_parallel_p (loop, &parloop_obstack))
2227 continue;
2229 changed = true;
2230 if (dump_file && (dump_flags & TDF_DETAILS))
2232 if (loop->inner)
2233 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2234 else
2235 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2236 loop_loc = find_loop_location (loop);
2237 if (loop_loc != UNKNOWN_LOCATION)
2238 fprintf (dump_file, "\nloop at %s:%d: ",
2239 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2241 gen_parallel_loop (loop, &reduction_list,
2242 n_threads, &niter_desc);
2245 free_stmt_vec_info_vec ();
2246 obstack_free (&parloop_obstack, NULL);
2248 /* Parallelization will cause new function calls to be inserted through
2249 which local variables will escape. Reset the points-to solution
2250 for ESCAPED. */
2251 if (changed)
2252 pt_solution_reset (&cfun->gimple_df->escaped);
2254 return changed;
2257 /* Parallelization. */
2259 namespace {
2261 const pass_data pass_data_parallelize_loops =
2263 GIMPLE_PASS, /* type */
2264 "parloops", /* name */
2265 OPTGROUP_LOOP, /* optinfo_flags */
2266 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2267 ( PROP_cfg | PROP_ssa ), /* properties_required */
2268 0, /* properties_provided */
2269 0, /* properties_destroyed */
2270 0, /* todo_flags_start */
2271 0, /* todo_flags_finish */
2274 class pass_parallelize_loops : public gimple_opt_pass
2276 public:
2277 pass_parallelize_loops (gcc::context *ctxt)
2278 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2281 /* opt_pass methods: */
2282 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2283 virtual unsigned int execute (function *);
2285 }; // class pass_parallelize_loops
2287 unsigned
2288 pass_parallelize_loops::execute (function *fun)
2290 if (number_of_loops (fun) <= 1)
2291 return 0;
2293 if (parallelize_loops ())
2295 fun->curr_properties &= ~(PROP_gimple_eomp);
2296 return TODO_update_ssa;
2299 return 0;
2302 } // anon namespace
2304 gimple_opt_pass *
2305 make_pass_parallelize_loops (gcc::context *ctxt)
2307 return new pass_parallelize_loops (ctxt);