2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
25 #include "stor-layout.h"
32 #include "hard-reg-set.h"
35 #include "dominance.h"
37 #include "basic-block.h"
38 #include "tree-pretty-print.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-expr.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-ssa.h"
48 #include "tree-ssa-loop-ivopts.h"
49 #include "tree-ssa-loop-manip.h"
50 #include "tree-ssa-loop-niter.h"
51 #include "tree-ssa-loop.h"
52 #include "tree-into-ssa.h"
54 #include "tree-pass.h"
55 #include "insn-config.h"
56 #include "tree-chrec.h"
57 #include "tree-scalar-evolution.h"
58 #include "diagnostic-core.h"
60 #include "langhooks.h"
61 #include "tree-inline.h"
62 #include "tree-data-ref.h"
65 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
66 between the GIMPLE and RTL worlds. */
68 #include "insn-codes.h"
72 /* This pass inserts prefetch instructions to optimize cache usage during
73 accesses to arrays in loops. It processes loops sequentially and:
75 1) Gathers all memory references in the single loop.
76 2) For each of the references it decides when it is profitable to prefetch
77 it. To do it, we evaluate the reuse among the accesses, and determines
78 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
79 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
80 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
81 iterations of the loop that are zero modulo PREFETCH_MOD). For example
82 (assuming cache line size is 64 bytes, char has size 1 byte and there
83 is no hardware sequential prefetch):
86 for (i = 0; i < max; i++)
93 a[187*i + 50] = ...; (5)
96 (0) obviously has PREFETCH_BEFORE 1
97 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
98 location 64 iterations before it, and PREFETCH_MOD 64 (since
99 it hits the same cache line otherwise).
100 (2) has PREFETCH_MOD 64
101 (3) has PREFETCH_MOD 4
102 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
103 the cache line accessed by (5) is the same with probability only
105 (5) has PREFETCH_MOD 1 as well.
107 Additionally, we use data dependence analysis to determine for each
108 reference the distance till the first reuse; this information is used
109 to determine the temporality of the issued prefetch instruction.
111 3) We determine how much ahead we need to prefetch. The number of
112 iterations needed is time to fetch / time spent in one iteration of
113 the loop. The problem is that we do not know either of these values,
114 so we just make a heuristic guess based on a magic (possibly)
115 target-specific constant and size of the loop.
117 4) Determine which of the references we prefetch. We take into account
118 that there is a maximum number of simultaneous prefetches (provided
119 by machine description). We prefetch as many prefetches as possible
120 while still within this bound (starting with those with lowest
121 prefetch_mod, since they are responsible for most of the cache
124 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
125 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
126 prefetching nonaccessed memory.
127 TODO -- actually implement peeling.
129 6) We actually emit the prefetch instructions. ??? Perhaps emit the
130 prefetch instructions with guards in cases where 5) was not sufficient
131 to satisfy the constraints?
133 A cost model is implemented to determine whether or not prefetching is
134 profitable for a given loop. The cost model has three heuristics:
136 1. Function trip_count_to_ahead_ratio_too_small_p implements a
137 heuristic that determines whether or not the loop has too few
138 iterations (compared to ahead). Prefetching is not likely to be
139 beneficial if the trip count to ahead ratio is below a certain
142 2. Function mem_ref_count_reasonable_p implements a heuristic that
143 determines whether the given loop has enough CPU ops that can be
144 overlapped with cache missing memory ops. If not, the loop
145 won't benefit from prefetching. In the implementation,
146 prefetching is not considered beneficial if the ratio between
147 the instruction count and the mem ref count is below a certain
150 3. Function insn_to_prefetch_ratio_too_small_p implements a
151 heuristic that disables prefetching in a loop if the prefetching
152 cost is above a certain limit. The relative prefetching cost is
153 estimated by taking the ratio between the prefetch count and the
154 total intruction count (this models the I-cache cost).
156 The limits used in these heuristics are defined as parameters with
157 reasonable default values. Machine-specific default values will be
161 -- write and use more general reuse analysis (that could be also used
162 in other cache aimed loop optimizations)
163 -- make it behave sanely together with the prefetches given by user
164 (now we just ignore them; at the very least we should avoid
165 optimizing loops in that user put his own prefetches)
166 -- we assume cache line size alignment of arrays; this could be
169 /* Magic constants follow. These should be replaced by machine specific
172 /* True if write can be prefetched by a read prefetch. */
174 #ifndef WRITE_CAN_USE_READ_PREFETCH
175 #define WRITE_CAN_USE_READ_PREFETCH 1
178 /* True if read can be prefetched by a write prefetch. */
180 #ifndef READ_CAN_USE_WRITE_PREFETCH
181 #define READ_CAN_USE_WRITE_PREFETCH 0
184 /* The size of the block loaded by a single prefetch. Usually, this is
185 the same as cache line size (at the moment, we only consider one level
186 of cache hierarchy). */
188 #ifndef PREFETCH_BLOCK
189 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
192 /* Do we have a forward hardware sequential prefetching? */
194 #ifndef HAVE_FORWARD_PREFETCH
195 #define HAVE_FORWARD_PREFETCH 0
198 /* Do we have a backward hardware sequential prefetching? */
200 #ifndef HAVE_BACKWARD_PREFETCH
201 #define HAVE_BACKWARD_PREFETCH 0
204 /* In some cases we are only able to determine that there is a certain
205 probability that the two accesses hit the same cache line. In this
206 case, we issue the prefetches for both of them if this probability
207 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
209 #ifndef ACCEPTABLE_MISS_RATE
210 #define ACCEPTABLE_MISS_RATE 50
213 #ifndef HAVE_prefetch
214 #define HAVE_prefetch 0
217 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
218 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
220 /* We consider a memory access nontemporal if it is not reused sooner than
221 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
222 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
223 so that we use nontemporal prefetches e.g. if single memory location
224 is accessed several times in a single iteration of the loop. */
225 #define NONTEMPORAL_FRACTION 16
227 /* In case we have to emit a memory fence instruction after the loop that
228 uses nontemporal stores, this defines the builtin to use. */
230 #ifndef FENCE_FOLLOWING_MOVNT
231 #define FENCE_FOLLOWING_MOVNT NULL_TREE
234 /* It is not profitable to prefetch when the trip count is not at
235 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
236 For example, in a loop with a prefetch ahead distance of 10,
237 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
238 profitable to prefetch when the trip count is greater or equal to
239 40. In that case, 30 out of the 40 iterations will benefit from
242 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
243 #define TRIP_COUNT_TO_AHEAD_RATIO 4
246 /* The group of references between that reuse may occur. */
250 tree base
; /* Base of the reference. */
251 tree step
; /* Step of the reference. */
252 struct mem_ref
*refs
; /* References in the group. */
253 struct mem_ref_group
*next
; /* Next group of references. */
256 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
258 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
260 /* Do not generate a prefetch if the unroll factor is significantly less
261 than what is required by the prefetch. This is to avoid redundant
262 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
263 2, prefetching requires unrolling the loop 16 times, but
264 the loop is actually unrolled twice. In this case (ratio = 8),
265 prefetching is not likely to be beneficial. */
267 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
268 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
271 /* Some of the prefetch computations have quadratic complexity. We want to
272 avoid huge compile times and, therefore, want to limit the amount of
273 memory references per loop where we consider prefetching. */
275 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
276 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
279 /* The memory reference. */
283 gimple stmt
; /* Statement in that the reference appears. */
284 tree mem
; /* The reference. */
285 HOST_WIDE_INT delta
; /* Constant offset of the reference. */
286 struct mem_ref_group
*group
; /* The group of references it belongs to. */
287 unsigned HOST_WIDE_INT prefetch_mod
;
288 /* Prefetch only each PREFETCH_MOD-th
290 unsigned HOST_WIDE_INT prefetch_before
;
291 /* Prefetch only first PREFETCH_BEFORE
293 unsigned reuse_distance
; /* The amount of data accessed before the first
294 reuse of this value. */
295 struct mem_ref
*next
; /* The next reference in the group. */
296 unsigned write_p
: 1; /* Is it a write? */
297 unsigned independent_p
: 1; /* True if the reference is independent on
298 all other references inside the loop. */
299 unsigned issue_prefetch_p
: 1; /* Should we really issue the prefetch? */
300 unsigned storent_p
: 1; /* True if we changed the store to a
304 /* Dumps information about memory reference */
306 dump_mem_details (FILE *file
, tree base
, tree step
,
307 HOST_WIDE_INT delta
, bool write_p
)
309 fprintf (file
, "(base ");
310 print_generic_expr (file
, base
, TDF_SLIM
);
311 fprintf (file
, ", step ");
312 if (cst_and_fits_in_hwi (step
))
313 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, int_cst_value (step
));
315 print_generic_expr (file
, step
, TDF_TREE
);
316 fprintf (file
, ")\n");
317 fprintf (file
, " delta ");
318 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, delta
);
319 fprintf (file
, "\n");
320 fprintf (file
, " %s\n", write_p
? "write" : "read");
321 fprintf (file
, "\n");
324 /* Dumps information about reference REF to FILE. */
327 dump_mem_ref (FILE *file
, struct mem_ref
*ref
)
329 fprintf (file
, "Reference %p:\n", (void *) ref
);
331 fprintf (file
, " group %p ", (void *) ref
->group
);
333 dump_mem_details (file
, ref
->group
->base
, ref
->group
->step
, ref
->delta
,
337 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
340 static struct mem_ref_group
*
341 find_or_create_group (struct mem_ref_group
**groups
, tree base
, tree step
)
343 struct mem_ref_group
*group
;
345 for (; *groups
; groups
= &(*groups
)->next
)
347 if (operand_equal_p ((*groups
)->step
, step
, 0)
348 && operand_equal_p ((*groups
)->base
, base
, 0))
351 /* If step is an integer constant, keep the list of groups sorted
352 by decreasing step. */
353 if (cst_and_fits_in_hwi ((*groups
)->step
) && cst_and_fits_in_hwi (step
)
354 && int_cst_value ((*groups
)->step
) < int_cst_value (step
))
358 group
= XNEW (struct mem_ref_group
);
362 group
->next
= *groups
;
368 /* Records a memory reference MEM in GROUP with offset DELTA and write status
369 WRITE_P. The reference occurs in statement STMT. */
372 record_ref (struct mem_ref_group
*group
, gimple stmt
, tree mem
,
373 HOST_WIDE_INT delta
, bool write_p
)
375 struct mem_ref
**aref
;
377 /* Do not record the same address twice. */
378 for (aref
= &group
->refs
; *aref
; aref
= &(*aref
)->next
)
380 /* It does not have to be possible for write reference to reuse the read
381 prefetch, or vice versa. */
382 if (!WRITE_CAN_USE_READ_PREFETCH
384 && !(*aref
)->write_p
)
386 if (!READ_CAN_USE_WRITE_PREFETCH
391 if ((*aref
)->delta
== delta
)
395 (*aref
) = XNEW (struct mem_ref
);
396 (*aref
)->stmt
= stmt
;
398 (*aref
)->delta
= delta
;
399 (*aref
)->write_p
= write_p
;
400 (*aref
)->prefetch_before
= PREFETCH_ALL
;
401 (*aref
)->prefetch_mod
= 1;
402 (*aref
)->reuse_distance
= 0;
403 (*aref
)->issue_prefetch_p
= false;
404 (*aref
)->group
= group
;
405 (*aref
)->next
= NULL
;
406 (*aref
)->independent_p
= false;
407 (*aref
)->storent_p
= false;
409 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
410 dump_mem_ref (dump_file
, *aref
);
413 /* Release memory references in GROUPS. */
416 release_mem_refs (struct mem_ref_group
*groups
)
418 struct mem_ref_group
*next_g
;
419 struct mem_ref
*ref
, *next_r
;
421 for (; groups
; groups
= next_g
)
423 next_g
= groups
->next
;
424 for (ref
= groups
->refs
; ref
; ref
= next_r
)
433 /* A structure used to pass arguments to idx_analyze_ref. */
437 struct loop
*loop
; /* Loop of the reference. */
438 gimple stmt
; /* Statement of the reference. */
439 tree
*step
; /* Step of the memory reference. */
440 HOST_WIDE_INT
*delta
; /* Offset of the memory reference. */
443 /* Analyzes a single INDEX of a memory reference to obtain information
444 described at analyze_ref. Callback for for_each_index. */
447 idx_analyze_ref (tree base
, tree
*index
, void *data
)
449 struct ar_data
*ar_data
= (struct ar_data
*) data
;
450 tree ibase
, step
, stepsize
;
451 HOST_WIDE_INT idelta
= 0, imult
= 1;
454 if (!simple_iv (ar_data
->loop
, loop_containing_stmt (ar_data
->stmt
),
460 if (TREE_CODE (ibase
) == POINTER_PLUS_EXPR
461 && cst_and_fits_in_hwi (TREE_OPERAND (ibase
, 1)))
463 idelta
= int_cst_value (TREE_OPERAND (ibase
, 1));
464 ibase
= TREE_OPERAND (ibase
, 0);
466 if (cst_and_fits_in_hwi (ibase
))
468 idelta
+= int_cst_value (ibase
);
469 ibase
= build_int_cst (TREE_TYPE (ibase
), 0);
472 if (TREE_CODE (base
) == ARRAY_REF
)
474 stepsize
= array_ref_element_size (base
);
475 if (!cst_and_fits_in_hwi (stepsize
))
477 imult
= int_cst_value (stepsize
);
478 step
= fold_build2 (MULT_EXPR
, sizetype
,
479 fold_convert (sizetype
, step
),
480 fold_convert (sizetype
, stepsize
));
484 if (*ar_data
->step
== NULL_TREE
)
485 *ar_data
->step
= step
;
487 *ar_data
->step
= fold_build2 (PLUS_EXPR
, sizetype
,
488 fold_convert (sizetype
, *ar_data
->step
),
489 fold_convert (sizetype
, step
));
490 *ar_data
->delta
+= idelta
;
496 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
497 STEP are integer constants and iter is number of iterations of LOOP. The
498 reference occurs in statement STMT. Strips nonaddressable component
499 references from REF_P. */
502 analyze_ref (struct loop
*loop
, tree
*ref_p
, tree
*base
,
503 tree
*step
, HOST_WIDE_INT
*delta
,
506 struct ar_data ar_data
;
508 HOST_WIDE_INT bit_offset
;
514 /* First strip off the component references. Ignore bitfields.
515 Also strip off the real and imagine parts of a complex, so that
516 they can have the same base. */
517 if (TREE_CODE (ref
) == REALPART_EXPR
518 || TREE_CODE (ref
) == IMAGPART_EXPR
519 || (TREE_CODE (ref
) == COMPONENT_REF
520 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref
, 1))))
522 if (TREE_CODE (ref
) == IMAGPART_EXPR
)
523 *delta
+= int_size_in_bytes (TREE_TYPE (ref
));
524 ref
= TREE_OPERAND (ref
, 0);
529 for (; TREE_CODE (ref
) == COMPONENT_REF
; ref
= TREE_OPERAND (ref
, 0))
531 off
= DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1));
532 bit_offset
= TREE_INT_CST_LOW (off
);
533 gcc_assert (bit_offset
% BITS_PER_UNIT
== 0);
535 *delta
+= bit_offset
/ BITS_PER_UNIT
;
538 *base
= unshare_expr (ref
);
542 ar_data
.delta
= delta
;
543 return for_each_index (base
, idx_analyze_ref
, &ar_data
);
546 /* Record a memory reference REF to the list REFS. The reference occurs in
547 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
548 reference was recorded, false otherwise. */
551 gather_memory_references_ref (struct loop
*loop
, struct mem_ref_group
**refs
,
552 tree ref
, bool write_p
, gimple stmt
)
556 struct mem_ref_group
*agrp
;
558 if (get_base_address (ref
) == NULL
)
561 if (!analyze_ref (loop
, &ref
, &base
, &step
, &delta
, stmt
))
563 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
564 if (step
== NULL_TREE
)
567 /* Stop if the address of BASE could not be taken. */
568 if (may_be_nonaddressable_p (base
))
571 /* Limit non-constant step prefetching only to the innermost loops and
572 only when the step is loop invariant in the entire loop nest. */
573 if (!cst_and_fits_in_hwi (step
))
575 if (loop
->inner
!= NULL
)
577 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
579 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
580 print_generic_expr (dump_file
, ref
, TDF_TREE
);
581 fprintf (dump_file
,":");
582 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
584 "Ignoring %p, non-constant step prefetching is "
585 "limited to inner most loops \n",
592 if (!expr_invariant_in_loop_p (loop_outermost (loop
), step
))
594 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
596 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
597 print_generic_expr (dump_file
, ref
, TDF_TREE
);
598 fprintf (dump_file
,":");
599 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
601 "Not prefetching, ignoring %p due to "
602 "loop variant step\n",
610 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
611 are integer constants. */
612 agrp
= find_or_create_group (refs
, base
, step
);
613 record_ref (agrp
, stmt
, ref
, delta
, write_p
);
618 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
619 true if there are no other memory references inside the loop. */
621 static struct mem_ref_group
*
622 gather_memory_references (struct loop
*loop
, bool *no_other_refs
, unsigned *ref_count
)
624 basic_block
*body
= get_loop_body_in_dom_order (loop
);
627 gimple_stmt_iterator bsi
;
630 struct mem_ref_group
*refs
= NULL
;
632 *no_other_refs
= true;
635 /* Scan the loop body in order, so that the former references precede the
637 for (i
= 0; i
< loop
->num_nodes
; i
++)
640 if (bb
->loop_father
!= loop
)
643 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
645 stmt
= gsi_stmt (bsi
);
647 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
649 if (gimple_vuse (stmt
)
650 || (is_gimple_call (stmt
)
651 && !(gimple_call_flags (stmt
) & ECF_CONST
)))
652 *no_other_refs
= false;
656 lhs
= gimple_assign_lhs (stmt
);
657 rhs
= gimple_assign_rhs1 (stmt
);
659 if (REFERENCE_CLASS_P (rhs
))
661 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
665 if (REFERENCE_CLASS_P (lhs
))
667 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
678 /* Prune the prefetch candidate REF using the self-reuse. */
681 prune_ref_by_self_reuse (struct mem_ref
*ref
)
686 /* If the step size is non constant, we cannot calculate prefetch_mod. */
687 if (!cst_and_fits_in_hwi (ref
->group
->step
))
690 step
= int_cst_value (ref
->group
->step
);
696 /* Prefetch references to invariant address just once. */
697 ref
->prefetch_before
= 1;
704 if (step
> PREFETCH_BLOCK
)
707 if ((backward
&& HAVE_BACKWARD_PREFETCH
)
708 || (!backward
&& HAVE_FORWARD_PREFETCH
))
710 ref
->prefetch_before
= 1;
714 ref
->prefetch_mod
= PREFETCH_BLOCK
/ step
;
717 /* Divides X by BY, rounding down. */
720 ddown (HOST_WIDE_INT x
, unsigned HOST_WIDE_INT by
)
727 return (x
+ by
- 1) / by
;
730 /* Given a CACHE_LINE_SIZE and two inductive memory references
731 with a common STEP greater than CACHE_LINE_SIZE and an address
732 difference DELTA, compute the probability that they will fall
733 in different cache lines. Return true if the computed miss rate
734 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
735 number of distinct iterations after which the pattern repeats itself.
736 ALIGN_UNIT is the unit of alignment in bytes. */
739 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size
,
740 HOST_WIDE_INT step
, HOST_WIDE_INT delta
,
741 unsigned HOST_WIDE_INT distinct_iters
,
744 unsigned align
, iter
;
745 int total_positions
, miss_positions
, max_allowed_miss_positions
;
746 int address1
, address2
, cache_line1
, cache_line2
;
748 /* It always misses if delta is greater than or equal to the cache
750 if (delta
>= (HOST_WIDE_INT
) cache_line_size
)
754 total_positions
= (cache_line_size
/ align_unit
) * distinct_iters
;
755 max_allowed_miss_positions
= (ACCEPTABLE_MISS_RATE
* total_positions
) / 1000;
757 /* Iterate through all possible alignments of the first
758 memory reference within its cache line. */
759 for (align
= 0; align
< cache_line_size
; align
+= align_unit
)
761 /* Iterate through all distinct iterations. */
762 for (iter
= 0; iter
< distinct_iters
; iter
++)
764 address1
= align
+ step
* iter
;
765 address2
= address1
+ delta
;
766 cache_line1
= address1
/ cache_line_size
;
767 cache_line2
= address2
/ cache_line_size
;
768 if (cache_line1
!= cache_line2
)
771 if (miss_positions
> max_allowed_miss_positions
)
778 /* Prune the prefetch candidate REF using the reuse with BY.
779 If BY_IS_BEFORE is true, BY is before REF in the loop. */
782 prune_ref_by_group_reuse (struct mem_ref
*ref
, struct mem_ref
*by
,
787 HOST_WIDE_INT delta_r
= ref
->delta
, delta_b
= by
->delta
;
788 HOST_WIDE_INT delta
= delta_b
- delta_r
;
789 HOST_WIDE_INT hit_from
;
790 unsigned HOST_WIDE_INT prefetch_before
, prefetch_block
;
791 HOST_WIDE_INT reduced_step
;
792 unsigned HOST_WIDE_INT reduced_prefetch_block
;
796 /* If the step is non constant we cannot calculate prefetch_before. */
797 if (!cst_and_fits_in_hwi (ref
->group
->step
)) {
801 step
= int_cst_value (ref
->group
->step
);
808 /* If the references has the same address, only prefetch the
811 ref
->prefetch_before
= 0;
818 /* If the reference addresses are invariant and fall into the
819 same cache line, prefetch just the first one. */
823 if (ddown (ref
->delta
, PREFETCH_BLOCK
)
824 != ddown (by
->delta
, PREFETCH_BLOCK
))
827 ref
->prefetch_before
= 0;
831 /* Only prune the reference that is behind in the array. */
837 /* Transform the data so that we may assume that the accesses
841 delta_r
= PREFETCH_BLOCK
- 1 - delta_r
;
842 delta_b
= PREFETCH_BLOCK
- 1 - delta_b
;
850 /* Check whether the two references are likely to hit the same cache
851 line, and how distant the iterations in that it occurs are from
854 if (step
<= PREFETCH_BLOCK
)
856 /* The accesses are sure to meet. Let us check when. */
857 hit_from
= ddown (delta_b
, PREFETCH_BLOCK
) * PREFETCH_BLOCK
;
858 prefetch_before
= (hit_from
- delta_r
+ step
- 1) / step
;
860 /* Do not reduce prefetch_before if we meet beyond cache size. */
861 if (prefetch_before
> absu_hwi (L2_CACHE_SIZE_BYTES
/ step
))
862 prefetch_before
= PREFETCH_ALL
;
863 if (prefetch_before
< ref
->prefetch_before
)
864 ref
->prefetch_before
= prefetch_before
;
869 /* A more complicated case with step > prefetch_block. First reduce
870 the ratio between the step and the cache line size to its simplest
871 terms. The resulting denominator will then represent the number of
872 distinct iterations after which each address will go back to its
873 initial location within the cache line. This computation assumes
874 that PREFETCH_BLOCK is a power of two. */
875 prefetch_block
= PREFETCH_BLOCK
;
876 reduced_prefetch_block
= prefetch_block
;
878 while ((reduced_step
& 1) == 0
879 && reduced_prefetch_block
> 1)
882 reduced_prefetch_block
>>= 1;
885 prefetch_before
= delta
/ step
;
887 ref_type
= TREE_TYPE (ref
->mem
);
888 align_unit
= TYPE_ALIGN (ref_type
) / 8;
889 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
890 reduced_prefetch_block
, align_unit
))
892 /* Do not reduce prefetch_before if we meet beyond cache size. */
893 if (prefetch_before
> L2_CACHE_SIZE_BYTES
/ PREFETCH_BLOCK
)
894 prefetch_before
= PREFETCH_ALL
;
895 if (prefetch_before
< ref
->prefetch_before
)
896 ref
->prefetch_before
= prefetch_before
;
901 /* Try also the following iteration. */
903 delta
= step
- delta
;
904 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
905 reduced_prefetch_block
, align_unit
))
907 if (prefetch_before
< ref
->prefetch_before
)
908 ref
->prefetch_before
= prefetch_before
;
913 /* The ref probably does not reuse by. */
917 /* Prune the prefetch candidate REF using the reuses with other references
921 prune_ref_by_reuse (struct mem_ref
*ref
, struct mem_ref
*refs
)
923 struct mem_ref
*prune_by
;
926 prune_ref_by_self_reuse (ref
);
928 for (prune_by
= refs
; prune_by
; prune_by
= prune_by
->next
)
936 if (!WRITE_CAN_USE_READ_PREFETCH
938 && !prune_by
->write_p
)
940 if (!READ_CAN_USE_WRITE_PREFETCH
942 && prune_by
->write_p
)
945 prune_ref_by_group_reuse (ref
, prune_by
, before
);
949 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
952 prune_group_by_reuse (struct mem_ref_group
*group
)
954 struct mem_ref
*ref_pruned
;
956 for (ref_pruned
= group
->refs
; ref_pruned
; ref_pruned
= ref_pruned
->next
)
958 prune_ref_by_reuse (ref_pruned
, group
->refs
);
960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
962 fprintf (dump_file
, "Reference %p:", (void *) ref_pruned
);
964 if (ref_pruned
->prefetch_before
== PREFETCH_ALL
965 && ref_pruned
->prefetch_mod
== 1)
966 fprintf (dump_file
, " no restrictions");
967 else if (ref_pruned
->prefetch_before
== 0)
968 fprintf (dump_file
, " do not prefetch");
969 else if (ref_pruned
->prefetch_before
<= ref_pruned
->prefetch_mod
)
970 fprintf (dump_file
, " prefetch once");
973 if (ref_pruned
->prefetch_before
!= PREFETCH_ALL
)
975 fprintf (dump_file
, " prefetch before ");
976 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
977 ref_pruned
->prefetch_before
);
979 if (ref_pruned
->prefetch_mod
!= 1)
981 fprintf (dump_file
, " prefetch mod ");
982 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
983 ref_pruned
->prefetch_mod
);
986 fprintf (dump_file
, "\n");
991 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
994 prune_by_reuse (struct mem_ref_group
*groups
)
996 for (; groups
; groups
= groups
->next
)
997 prune_group_by_reuse (groups
);
1000 /* Returns true if we should issue prefetch for REF. */
1003 should_issue_prefetch_p (struct mem_ref
*ref
)
1005 /* For now do not issue prefetches for only first few of the
1007 if (ref
->prefetch_before
!= PREFETCH_ALL
)
1009 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1010 fprintf (dump_file
, "Ignoring %p due to prefetch_before\n",
1015 /* Do not prefetch nontemporal stores. */
1018 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1019 fprintf (dump_file
, "Ignoring nontemporal store %p\n", (void *) ref
);
1026 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1027 AHEAD is the number of iterations to prefetch ahead (which corresponds
1028 to the number of simultaneous instances of one prefetch running at a
1029 time). UNROLL_FACTOR is the factor by that the loop is going to be
1030 unrolled. Returns true if there is anything to prefetch. */
1033 schedule_prefetches (struct mem_ref_group
*groups
, unsigned unroll_factor
,
1036 unsigned remaining_prefetch_slots
, n_prefetches
, prefetch_slots
;
1037 unsigned slots_per_prefetch
;
1038 struct mem_ref
*ref
;
1041 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1042 remaining_prefetch_slots
= SIMULTANEOUS_PREFETCHES
;
1044 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1045 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1046 it will need a prefetch slot. */
1047 slots_per_prefetch
= (ahead
+ unroll_factor
/ 2) / unroll_factor
;
1048 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1049 fprintf (dump_file
, "Each prefetch instruction takes %u prefetch slots.\n",
1050 slots_per_prefetch
);
1052 /* For now we just take memory references one by one and issue
1053 prefetches for as many as possible. The groups are sorted
1054 starting with the largest step, since the references with
1055 large step are more likely to cause many cache misses. */
1057 for (; groups
; groups
= groups
->next
)
1058 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1060 if (!should_issue_prefetch_p (ref
))
1063 /* The loop is far from being sufficiently unrolled for this
1064 prefetch. Do not generate prefetch to avoid many redudant
1066 if (ref
->prefetch_mod
/ unroll_factor
> PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
)
1069 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1070 and we unroll the loop UNROLL_FACTOR times, we need to insert
1071 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1073 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1074 / ref
->prefetch_mod
);
1075 prefetch_slots
= n_prefetches
* slots_per_prefetch
;
1077 /* If more than half of the prefetches would be lost anyway, do not
1078 issue the prefetch. */
1079 if (2 * remaining_prefetch_slots
< prefetch_slots
)
1082 ref
->issue_prefetch_p
= true;
1084 if (remaining_prefetch_slots
<= prefetch_slots
)
1086 remaining_prefetch_slots
-= prefetch_slots
;
1093 /* Return TRUE if no prefetch is going to be generated in the given
1097 nothing_to_prefetch_p (struct mem_ref_group
*groups
)
1099 struct mem_ref
*ref
;
1101 for (; groups
; groups
= groups
->next
)
1102 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1103 if (should_issue_prefetch_p (ref
))
1109 /* Estimate the number of prefetches in the given GROUPS.
1110 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1113 estimate_prefetch_count (struct mem_ref_group
*groups
, unsigned unroll_factor
)
1115 struct mem_ref
*ref
;
1116 unsigned n_prefetches
;
1117 int prefetch_count
= 0;
1119 for (; groups
; groups
= groups
->next
)
1120 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1121 if (should_issue_prefetch_p (ref
))
1123 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1124 / ref
->prefetch_mod
);
1125 prefetch_count
+= n_prefetches
;
1128 return prefetch_count
;
1131 /* Issue prefetches for the reference REF into loop as decided before.
1132 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1133 is the factor by which LOOP was unrolled. */
1136 issue_prefetch_ref (struct mem_ref
*ref
, unsigned unroll_factor
, unsigned ahead
)
1138 HOST_WIDE_INT delta
;
1139 tree addr
, addr_base
, write_p
, local
, forward
;
1141 gimple_stmt_iterator bsi
;
1142 unsigned n_prefetches
, ap
;
1143 bool nontemporal
= ref
->reuse_distance
>= L2_CACHE_SIZE_BYTES
;
1145 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1146 fprintf (dump_file
, "Issued%s prefetch for %p.\n",
1147 nontemporal
? " nontemporal" : "",
1150 bsi
= gsi_for_stmt (ref
->stmt
);
1152 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1153 / ref
->prefetch_mod
);
1154 addr_base
= build_fold_addr_expr_with_type (ref
->mem
, ptr_type_node
);
1155 addr_base
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr_base
),
1156 true, NULL
, true, GSI_SAME_STMT
);
1157 write_p
= ref
->write_p
? integer_one_node
: integer_zero_node
;
1158 local
= nontemporal
? integer_zero_node
: integer_three_node
;
1160 for (ap
= 0; ap
< n_prefetches
; ap
++)
1162 if (cst_and_fits_in_hwi (ref
->group
->step
))
1164 /* Determine the address to prefetch. */
1165 delta
= (ahead
+ ap
* ref
->prefetch_mod
) *
1166 int_cst_value (ref
->group
->step
);
1167 addr
= fold_build_pointer_plus_hwi (addr_base
, delta
);
1168 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true, NULL
,
1169 true, GSI_SAME_STMT
);
1173 /* The step size is non-constant but loop-invariant. We use the
1174 heuristic to simply prefetch ahead iterations ahead. */
1175 forward
= fold_build2 (MULT_EXPR
, sizetype
,
1176 fold_convert (sizetype
, ref
->group
->step
),
1177 fold_convert (sizetype
, size_int (ahead
)));
1178 addr
= fold_build_pointer_plus (addr_base
, forward
);
1179 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true,
1180 NULL
, true, GSI_SAME_STMT
);
1182 /* Create the prefetch instruction. */
1183 prefetch
= gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH
),
1184 3, addr
, write_p
, local
);
1185 gsi_insert_before (&bsi
, prefetch
, GSI_SAME_STMT
);
1189 /* Issue prefetches for the references in GROUPS into loop as decided before.
1190 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1191 factor by that LOOP was unrolled. */
1194 issue_prefetches (struct mem_ref_group
*groups
,
1195 unsigned unroll_factor
, unsigned ahead
)
1197 struct mem_ref
*ref
;
1199 for (; groups
; groups
= groups
->next
)
1200 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1201 if (ref
->issue_prefetch_p
)
1202 issue_prefetch_ref (ref
, unroll_factor
, ahead
);
1205 /* Returns true if REF is a memory write for that a nontemporal store insn
1209 nontemporal_store_p (struct mem_ref
*ref
)
1212 enum insn_code code
;
1214 /* REF must be a write that is not reused. We require it to be independent
1215 on all other memory references in the loop, as the nontemporal stores may
1216 be reordered with respect to other memory references. */
1218 || !ref
->independent_p
1219 || ref
->reuse_distance
< L2_CACHE_SIZE_BYTES
)
1222 /* Check that we have the storent instruction for the mode. */
1223 mode
= TYPE_MODE (TREE_TYPE (ref
->mem
));
1224 if (mode
== BLKmode
)
1227 code
= optab_handler (storent_optab
, mode
);
1228 return code
!= CODE_FOR_nothing
;
1231 /* If REF is a nontemporal store, we mark the corresponding modify statement
1232 and return true. Otherwise, we return false. */
1235 mark_nontemporal_store (struct mem_ref
*ref
)
1237 if (!nontemporal_store_p (ref
))
1240 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1241 fprintf (dump_file
, "Marked reference %p as a nontemporal store.\n",
1244 gimple_assign_set_nontemporal_move (ref
->stmt
, true);
1245 ref
->storent_p
= true;
1250 /* Issue a memory fence instruction after LOOP. */
1253 emit_mfence_after_loop (struct loop
*loop
)
1255 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1258 gimple_stmt_iterator bsi
;
1261 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1263 call
= gimple_build_call (FENCE_FOLLOWING_MOVNT
, 0);
1265 if (!single_pred_p (exit
->dest
)
1266 /* If possible, we prefer not to insert the fence on other paths
1268 && !(exit
->flags
& EDGE_ABNORMAL
))
1269 split_loop_exit_edge (exit
);
1270 bsi
= gsi_after_labels (exit
->dest
);
1272 gsi_insert_before (&bsi
, call
, GSI_NEW_STMT
);
1276 update_ssa (TODO_update_ssa_only_virtuals
);
1279 /* Returns true if we can use storent in loop, false otherwise. */
1282 may_use_storent_in_loop_p (struct loop
*loop
)
1286 if (loop
->inner
!= NULL
)
1289 /* If we must issue a mfence insn after using storent, check that there
1290 is a suitable place for it at each of the loop exits. */
1291 if (FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1293 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1297 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1298 if ((exit
->flags
& EDGE_ABNORMAL
)
1299 && exit
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1308 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1309 references in the loop. */
1312 mark_nontemporal_stores (struct loop
*loop
, struct mem_ref_group
*groups
)
1314 struct mem_ref
*ref
;
1317 if (!may_use_storent_in_loop_p (loop
))
1320 for (; groups
; groups
= groups
->next
)
1321 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1322 any
|= mark_nontemporal_store (ref
);
1324 if (any
&& FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1325 emit_mfence_after_loop (loop
);
1328 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1329 this is the case, fill in DESC by the description of number of
1333 should_unroll_loop_p (struct loop
*loop
, struct tree_niter_desc
*desc
,
1336 if (!can_unroll_loop_p (loop
, factor
, desc
))
1339 /* We only consider loops without control flow for unrolling. This is not
1340 a hard restriction -- tree_unroll_loop works with arbitrary loops
1341 as well; but the unrolling/prefetching is usually more profitable for
1342 loops consisting of a single basic block, and we want to limit the
1344 if (loop
->num_nodes
> 2)
1350 /* Determine the coefficient by that unroll LOOP, from the information
1351 contained in the list of memory references REFS. Description of
1352 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1353 insns of the LOOP. EST_NITER is the estimated number of iterations of
1354 the loop, or -1 if no estimate is available. */
1357 determine_unroll_factor (struct loop
*loop
, struct mem_ref_group
*refs
,
1358 unsigned ninsns
, struct tree_niter_desc
*desc
,
1359 HOST_WIDE_INT est_niter
)
1361 unsigned upper_bound
;
1362 unsigned nfactor
, factor
, mod_constraint
;
1363 struct mem_ref_group
*agp
;
1364 struct mem_ref
*ref
;
1366 /* First check whether the loop is not too large to unroll. We ignore
1367 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1368 from unrolling them enough to make exactly one cache line covered by each
1369 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1370 us from unrolling the loops too many times in cases where we only expect
1371 gains from better scheduling and decreasing loop overhead, which is not
1373 upper_bound
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / ninsns
;
1375 /* If we unrolled the loop more times than it iterates, the unrolled version
1376 of the loop would be never entered. */
1377 if (est_niter
>= 0 && est_niter
< (HOST_WIDE_INT
) upper_bound
)
1378 upper_bound
= est_niter
;
1380 if (upper_bound
<= 1)
1383 /* Choose the factor so that we may prefetch each cache just once,
1384 but bound the unrolling by UPPER_BOUND. */
1386 for (agp
= refs
; agp
; agp
= agp
->next
)
1387 for (ref
= agp
->refs
; ref
; ref
= ref
->next
)
1388 if (should_issue_prefetch_p (ref
))
1390 mod_constraint
= ref
->prefetch_mod
;
1391 nfactor
= least_common_multiple (mod_constraint
, factor
);
1392 if (nfactor
<= upper_bound
)
1396 if (!should_unroll_loop_p (loop
, desc
, factor
))
1402 /* Returns the total volume of the memory references REFS, taking into account
1403 reuses in the innermost loop and cache line size. TODO -- we should also
1404 take into account reuses across the iterations of the loops in the loop
1408 volume_of_references (struct mem_ref_group
*refs
)
1410 unsigned volume
= 0;
1411 struct mem_ref_group
*gr
;
1412 struct mem_ref
*ref
;
1414 for (gr
= refs
; gr
; gr
= gr
->next
)
1415 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1417 /* Almost always reuses another value? */
1418 if (ref
->prefetch_before
!= PREFETCH_ALL
)
1421 /* If several iterations access the same cache line, use the size of
1422 the line divided by this number. Otherwise, a cache line is
1423 accessed in each iteration. TODO -- in the latter case, we should
1424 take the size of the reference into account, rounding it up on cache
1425 line size multiple. */
1426 volume
+= L1_CACHE_LINE_SIZE
/ ref
->prefetch_mod
;
1431 /* Returns the volume of memory references accessed across VEC iterations of
1432 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1433 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1436 volume_of_dist_vector (lambda_vector vec
, unsigned *loop_sizes
, unsigned n
)
1440 for (i
= 0; i
< n
; i
++)
1447 gcc_assert (vec
[i
] > 0);
1449 /* We ignore the parts of the distance vector in subloops, since usually
1450 the numbers of iterations are much smaller. */
1451 return loop_sizes
[i
] * vec
[i
];
1454 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1455 at the position corresponding to the loop of the step. N is the depth
1456 of the considered loop nest, and, LOOP is its innermost loop. */
1459 add_subscript_strides (tree access_fn
, unsigned stride
,
1460 HOST_WIDE_INT
*strides
, unsigned n
, struct loop
*loop
)
1464 HOST_WIDE_INT astep
;
1465 unsigned min_depth
= loop_depth (loop
) - n
;
1467 while (TREE_CODE (access_fn
) == POLYNOMIAL_CHREC
)
1469 aloop
= get_chrec_loop (access_fn
);
1470 step
= CHREC_RIGHT (access_fn
);
1471 access_fn
= CHREC_LEFT (access_fn
);
1473 if ((unsigned) loop_depth (aloop
) <= min_depth
)
1476 if (tree_fits_shwi_p (step
))
1477 astep
= tree_to_shwi (step
);
1479 astep
= L1_CACHE_LINE_SIZE
;
1481 strides
[n
- 1 - loop_depth (loop
) + loop_depth (aloop
)] += astep
* stride
;
1486 /* Returns the volume of memory references accessed between two consecutive
1487 self-reuses of the reference DR. We consider the subscripts of DR in N
1488 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1489 loops. LOOP is the innermost loop of the current loop nest. */
1492 self_reuse_distance (data_reference_p dr
, unsigned *loop_sizes
, unsigned n
,
1495 tree stride
, access_fn
;
1496 HOST_WIDE_INT
*strides
, astride
;
1497 vec
<tree
> access_fns
;
1498 tree ref
= DR_REF (dr
);
1499 unsigned i
, ret
= ~0u;
1501 /* In the following example:
1503 for (i = 0; i < N; i++)
1504 for (j = 0; j < N; j++)
1506 the same cache line is accessed each N steps (except if the change from
1507 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1508 we cannot rely purely on the results of the data dependence analysis.
1510 Instead, we compute the stride of the reference in each loop, and consider
1511 the innermost loop in that the stride is less than cache size. */
1513 strides
= XCNEWVEC (HOST_WIDE_INT
, n
);
1514 access_fns
= DR_ACCESS_FNS (dr
);
1516 FOR_EACH_VEC_ELT (access_fns
, i
, access_fn
)
1518 /* Keep track of the reference corresponding to the subscript, so that we
1520 while (handled_component_p (ref
) && TREE_CODE (ref
) != ARRAY_REF
)
1521 ref
= TREE_OPERAND (ref
, 0);
1523 if (TREE_CODE (ref
) == ARRAY_REF
)
1525 stride
= TYPE_SIZE_UNIT (TREE_TYPE (ref
));
1526 if (tree_fits_uhwi_p (stride
))
1527 astride
= tree_to_uhwi (stride
);
1529 astride
= L1_CACHE_LINE_SIZE
;
1531 ref
= TREE_OPERAND (ref
, 0);
1536 add_subscript_strides (access_fn
, astride
, strides
, n
, loop
);
1539 for (i
= n
; i
-- > 0; )
1541 unsigned HOST_WIDE_INT s
;
1543 s
= strides
[i
] < 0 ? -strides
[i
] : strides
[i
];
1545 if (s
< (unsigned) L1_CACHE_LINE_SIZE
1547 > (unsigned) (L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)))
1549 ret
= loop_sizes
[i
];
1558 /* Determines the distance till the first reuse of each reference in REFS
1559 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1560 memory references in the loop. Return false if the analysis fails. */
1563 determine_loop_nest_reuse (struct loop
*loop
, struct mem_ref_group
*refs
,
1566 struct loop
*nest
, *aloop
;
1567 vec
<data_reference_p
> datarefs
= vNULL
;
1568 vec
<ddr_p
> dependences
= vNULL
;
1569 struct mem_ref_group
*gr
;
1570 struct mem_ref
*ref
, *refb
;
1571 vec
<loop_p
> vloops
= vNULL
;
1572 unsigned *loop_data_size
;
1574 unsigned volume
, dist
, adist
;
1576 data_reference_p dr
;
1582 /* Find the outermost loop of the loop nest of loop (we require that
1583 there are no sibling loops inside the nest). */
1587 aloop
= loop_outer (nest
);
1589 if (aloop
== current_loops
->tree_root
1590 || aloop
->inner
->next
)
1596 /* For each loop, determine the amount of data accessed in each iteration.
1597 We use this to estimate whether the reference is evicted from the
1598 cache before its reuse. */
1599 find_loop_nest (nest
, &vloops
);
1600 n
= vloops
.length ();
1601 loop_data_size
= XNEWVEC (unsigned, n
);
1602 volume
= volume_of_references (refs
);
1606 loop_data_size
[i
] = volume
;
1607 /* Bound the volume by the L2 cache size, since above this bound,
1608 all dependence distances are equivalent. */
1609 if (volume
> L2_CACHE_SIZE_BYTES
)
1613 vol
= estimated_stmt_executions_int (aloop
);
1615 vol
= expected_loop_iterations (aloop
);
1619 /* Prepare the references in the form suitable for data dependence
1620 analysis. We ignore unanalyzable data references (the results
1621 are used just as a heuristics to estimate temporality of the
1622 references, hence we do not need to worry about correctness). */
1623 for (gr
= refs
; gr
; gr
= gr
->next
)
1624 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1626 dr
= create_data_ref (nest
, loop_containing_stmt (ref
->stmt
),
1627 ref
->mem
, ref
->stmt
, !ref
->write_p
);
1631 ref
->reuse_distance
= volume
;
1633 datarefs
.safe_push (dr
);
1636 no_other_refs
= false;
1639 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1641 dist
= self_reuse_distance (dr
, loop_data_size
, n
, loop
);
1642 ref
= (struct mem_ref
*) dr
->aux
;
1643 if (ref
->reuse_distance
> dist
)
1644 ref
->reuse_distance
= dist
;
1647 ref
->independent_p
= true;
1650 if (!compute_all_dependences (datarefs
, &dependences
, vloops
, true))
1653 FOR_EACH_VEC_ELT (dependences
, i
, dep
)
1655 if (DDR_ARE_DEPENDENT (dep
) == chrec_known
)
1658 ref
= (struct mem_ref
*) DDR_A (dep
)->aux
;
1659 refb
= (struct mem_ref
*) DDR_B (dep
)->aux
;
1661 if (DDR_ARE_DEPENDENT (dep
) == chrec_dont_know
1662 || DDR_NUM_DIST_VECTS (dep
) == 0)
1664 /* If the dependence cannot be analyzed, assume that there might be
1668 ref
->independent_p
= false;
1669 refb
->independent_p
= false;
1673 /* The distance vectors are normalized to be always lexicographically
1674 positive, hence we cannot tell just from them whether DDR_A comes
1675 before DDR_B or vice versa. However, it is not important,
1676 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1677 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1678 in cache (and marking it as nontemporal would not affect
1682 for (j
= 0; j
< DDR_NUM_DIST_VECTS (dep
); j
++)
1684 adist
= volume_of_dist_vector (DDR_DIST_VECT (dep
, j
),
1687 /* If this is a dependence in the innermost loop (i.e., the
1688 distances in all superloops are zero) and it is not
1689 the trivial self-dependence with distance zero, record that
1690 the references are not completely independent. */
1691 if (lambda_vector_zerop (DDR_DIST_VECT (dep
, j
), n
- 1)
1693 || DDR_DIST_VECT (dep
, j
)[n
-1] != 0))
1695 ref
->independent_p
= false;
1696 refb
->independent_p
= false;
1699 /* Ignore accesses closer than
1700 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1701 so that we use nontemporal prefetches e.g. if single memory
1702 location is accessed several times in a single iteration of
1704 if (adist
< L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)
1712 if (ref
->reuse_distance
> dist
)
1713 ref
->reuse_distance
= dist
;
1714 if (refb
->reuse_distance
> dist
)
1715 refb
->reuse_distance
= dist
;
1718 free_dependence_relations (dependences
);
1719 free_data_refs (datarefs
);
1720 free (loop_data_size
);
1722 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1724 fprintf (dump_file
, "Reuse distances:\n");
1725 for (gr
= refs
; gr
; gr
= gr
->next
)
1726 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1727 fprintf (dump_file
, " ref %p distance %u\n",
1728 (void *) ref
, ref
->reuse_distance
);
1734 /* Determine whether or not the trip count to ahead ratio is too small based
1735 on prefitablility consideration.
1736 AHEAD: the iteration ahead distance,
1737 EST_NITER: the estimated trip count. */
1740 trip_count_to_ahead_ratio_too_small_p (unsigned ahead
, HOST_WIDE_INT est_niter
)
1742 /* Assume trip count to ahead ratio is big enough if the trip count could not
1743 be estimated at compile time. */
1747 if (est_niter
< (HOST_WIDE_INT
) (TRIP_COUNT_TO_AHEAD_RATIO
* ahead
))
1749 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1751 "Not prefetching -- loop estimated to roll only %d times\n",
1759 /* Determine whether or not the number of memory references in the loop is
1760 reasonable based on the profitablity and compilation time considerations.
1761 NINSNS: estimated number of instructions in the loop,
1762 MEM_REF_COUNT: total number of memory references in the loop. */
1765 mem_ref_count_reasonable_p (unsigned ninsns
, unsigned mem_ref_count
)
1767 int insn_to_mem_ratio
;
1769 if (mem_ref_count
== 0)
1772 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1773 (compute_all_dependences) have high costs based on quadratic complexity.
1774 To avoid huge compilation time, we give up prefetching if mem_ref_count
1776 if (mem_ref_count
> PREFETCH_MAX_MEM_REFS_PER_LOOP
)
1779 /* Prefetching improves performance by overlapping cache missing
1780 memory accesses with CPU operations. If the loop does not have
1781 enough CPU operations to overlap with memory operations, prefetching
1782 won't give a significant benefit. One approximate way of checking
1783 this is to require the ratio of instructions to memory references to
1784 be above a certain limit. This approximation works well in practice.
1785 TODO: Implement a more precise computation by estimating the time
1786 for each CPU or memory op in the loop. Time estimates for memory ops
1787 should account for cache misses. */
1788 insn_to_mem_ratio
= ninsns
/ mem_ref_count
;
1790 if (insn_to_mem_ratio
< PREFETCH_MIN_INSN_TO_MEM_RATIO
)
1792 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1794 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1802 /* Determine whether or not the instruction to prefetch ratio in the loop is
1803 too small based on the profitablity consideration.
1804 NINSNS: estimated number of instructions in the loop,
1805 PREFETCH_COUNT: an estimate of the number of prefetches,
1806 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1809 insn_to_prefetch_ratio_too_small_p (unsigned ninsns
, unsigned prefetch_count
,
1810 unsigned unroll_factor
)
1812 int insn_to_prefetch_ratio
;
1814 /* Prefetching most likely causes performance degradation when the instruction
1815 to prefetch ratio is too small. Too many prefetch instructions in a loop
1816 may reduce the I-cache performance.
1817 (unroll_factor * ninsns) is used to estimate the number of instructions in
1818 the unrolled loop. This implementation is a bit simplistic -- the number
1819 of issued prefetch instructions is also affected by unrolling. So,
1820 prefetch_mod and the unroll factor should be taken into account when
1821 determining prefetch_count. Also, the number of insns of the unrolled
1822 loop will usually be significantly smaller than the number of insns of the
1823 original loop * unroll_factor (at least the induction variable increases
1824 and the exit branches will get eliminated), so it might be better to use
1825 tree_estimate_loop_size + estimated_unrolled_size. */
1826 insn_to_prefetch_ratio
= (unroll_factor
* ninsns
) / prefetch_count
;
1827 if (insn_to_prefetch_ratio
< MIN_INSN_TO_PREFETCH_RATIO
)
1829 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1831 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1832 insn_to_prefetch_ratio
);
1840 /* Issue prefetch instructions for array references in LOOP. Returns
1841 true if the LOOP was unrolled. */
1844 loop_prefetch_arrays (struct loop
*loop
)
1846 struct mem_ref_group
*refs
;
1847 unsigned ahead
, ninsns
, time
, unroll_factor
;
1848 HOST_WIDE_INT est_niter
;
1849 struct tree_niter_desc desc
;
1850 bool unrolled
= false, no_other_refs
;
1851 unsigned prefetch_count
;
1852 unsigned mem_ref_count
;
1854 if (optimize_loop_nest_for_size_p (loop
))
1856 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1857 fprintf (dump_file
, " ignored (cold area)\n");
1861 /* FIXME: the time should be weighted by the probabilities of the blocks in
1863 time
= tree_num_loop_insns (loop
, &eni_time_weights
);
1867 ahead
= (PREFETCH_LATENCY
+ time
- 1) / time
;
1868 est_niter
= estimated_stmt_executions_int (loop
);
1869 if (est_niter
== -1)
1870 est_niter
= max_stmt_executions_int (loop
);
1872 /* Prefetching is not likely to be profitable if the trip count to ahead
1873 ratio is too small. */
1874 if (trip_count_to_ahead_ratio_too_small_p (ahead
, est_niter
))
1877 ninsns
= tree_num_loop_insns (loop
, &eni_size_weights
);
1879 /* Step 1: gather the memory references. */
1880 refs
= gather_memory_references (loop
, &no_other_refs
, &mem_ref_count
);
1882 /* Give up prefetching if the number of memory references in the
1883 loop is not reasonable based on profitablity and compilation time
1885 if (!mem_ref_count_reasonable_p (ninsns
, mem_ref_count
))
1888 /* Step 2: estimate the reuse effects. */
1889 prune_by_reuse (refs
);
1891 if (nothing_to_prefetch_p (refs
))
1894 if (!determine_loop_nest_reuse (loop
, refs
, no_other_refs
))
1897 /* Step 3: determine unroll factor. */
1898 unroll_factor
= determine_unroll_factor (loop
, refs
, ninsns
, &desc
,
1901 /* Estimate prefetch count for the unrolled loop. */
1902 prefetch_count
= estimate_prefetch_count (refs
, unroll_factor
);
1903 if (prefetch_count
== 0)
1906 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1907 fprintf (dump_file
, "Ahead %d, unroll factor %d, trip count "
1908 HOST_WIDE_INT_PRINT_DEC
"\n"
1909 "insn count %d, mem ref count %d, prefetch count %d\n",
1910 ahead
, unroll_factor
, est_niter
,
1911 ninsns
, mem_ref_count
, prefetch_count
);
1913 /* Prefetching is not likely to be profitable if the instruction to prefetch
1914 ratio is too small. */
1915 if (insn_to_prefetch_ratio_too_small_p (ninsns
, prefetch_count
,
1919 mark_nontemporal_stores (loop
, refs
);
1921 /* Step 4: what to prefetch? */
1922 if (!schedule_prefetches (refs
, unroll_factor
, ahead
))
1925 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1926 iterations so that we do not issue superfluous prefetches. */
1927 if (unroll_factor
!= 1)
1929 tree_unroll_loop (loop
, unroll_factor
,
1930 single_dom_exit (loop
), &desc
);
1934 /* Step 6: issue the prefetches. */
1935 issue_prefetches (refs
, unroll_factor
, ahead
);
1938 release_mem_refs (refs
);
1942 /* Issue prefetch instructions for array references in loops. */
1945 tree_ssa_prefetch_arrays (void)
1948 bool unrolled
= false;
1952 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1953 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1954 of processor costs and i486 does not have prefetch, but
1955 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1956 || PREFETCH_BLOCK
== 0)
1959 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1961 fprintf (dump_file
, "Prefetching parameters:\n");
1962 fprintf (dump_file
, " simultaneous prefetches: %d\n",
1963 SIMULTANEOUS_PREFETCHES
);
1964 fprintf (dump_file
, " prefetch latency: %d\n", PREFETCH_LATENCY
);
1965 fprintf (dump_file
, " prefetch block size: %d\n", PREFETCH_BLOCK
);
1966 fprintf (dump_file
, " L1 cache size: %d lines, %d kB\n",
1967 L1_CACHE_SIZE_BYTES
/ L1_CACHE_LINE_SIZE
, L1_CACHE_SIZE
);
1968 fprintf (dump_file
, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE
);
1969 fprintf (dump_file
, " L2 cache size: %d kB\n", L2_CACHE_SIZE
);
1970 fprintf (dump_file
, " min insn-to-prefetch ratio: %d \n",
1971 MIN_INSN_TO_PREFETCH_RATIO
);
1972 fprintf (dump_file
, " min insn-to-mem ratio: %d \n",
1973 PREFETCH_MIN_INSN_TO_MEM_RATIO
);
1974 fprintf (dump_file
, "\n");
1977 initialize_original_copy_tables ();
1979 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH
))
1981 tree type
= build_function_type_list (void_type_node
,
1982 const_ptr_type_node
, NULL_TREE
);
1983 tree decl
= add_builtin_function ("__builtin_prefetch", type
,
1984 BUILT_IN_PREFETCH
, BUILT_IN_NORMAL
,
1986 DECL_IS_NOVOPS (decl
) = true;
1987 set_builtin_decl (BUILT_IN_PREFETCH
, decl
, false);
1990 /* We assume that size of cache line is a power of two, so verify this
1992 gcc_assert ((PREFETCH_BLOCK
& (PREFETCH_BLOCK
- 1)) == 0);
1994 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1996 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1997 fprintf (dump_file
, "Processing loop %d:\n", loop
->num
);
1999 unrolled
|= loop_prefetch_arrays (loop
);
2001 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2002 fprintf (dump_file
, "\n\n");
2008 todo_flags
|= TODO_cleanup_cfg
;
2011 free_original_copy_tables ();
2019 const pass_data pass_data_loop_prefetch
=
2021 GIMPLE_PASS
, /* type */
2022 "aprefetch", /* name */
2023 OPTGROUP_LOOP
, /* optinfo_flags */
2024 TV_TREE_PREFETCH
, /* tv_id */
2025 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2026 0, /* properties_provided */
2027 0, /* properties_destroyed */
2028 0, /* todo_flags_start */
2029 0, /* todo_flags_finish */
2032 class pass_loop_prefetch
: public gimple_opt_pass
2035 pass_loop_prefetch (gcc::context
*ctxt
)
2036 : gimple_opt_pass (pass_data_loop_prefetch
, ctxt
)
2039 /* opt_pass methods: */
2040 virtual bool gate (function
*) { return flag_prefetch_loop_arrays
> 0; }
2041 virtual unsigned int execute (function
*);
2043 }; // class pass_loop_prefetch
2046 pass_loop_prefetch::execute (function
*fun
)
2048 if (number_of_loops (fun
) <= 1)
2051 return tree_ssa_prefetch_arrays ();
2057 make_pass_loop_prefetch (gcc::context
*ctxt
)
2059 return new pass_loop_prefetch (ctxt
);