2008-01-25 Douglas Gregor <doug.gregor@gmail.com>
[official-gcc.git] / gcc / final.c
bloba33da0cfd65c797941215e83f356cd8cfcded088
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
81 #include "cfgloop.h"
82 #include "params.h"
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
110 #endif
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_BB 1
123 #define SEEN_NOTE 2
124 #define SEEN_EMITTED 4
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
130 /* Line number of last NOTE. */
131 static int last_linenum;
133 /* Highest line number in current block. */
134 static int high_block_linenum;
136 /* Likewise for function. */
137 static int high_function_linenum;
139 /* Filename of last NOTE. */
140 static const char *last_filename;
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare = 0;
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
166 static int insn_counter = 0;
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
173 CC_STATUS cc_status;
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
178 CC_STATUS cc_prev_status;
179 #endif
181 /* Nonzero means current function must be given a frame pointer.
182 Initialized in function.c to 0. Set only in reload1.c as per
183 the needs of the function. */
185 int frame_pointer_needed;
187 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
189 static int block_depth;
191 /* Nonzero if have enabled APP processing of our assembler output. */
193 static int app_on;
195 /* If we are outputting an insn sequence, this contains the sequence rtx.
196 Zero otherwise. */
198 rtx final_sequence;
200 #ifdef ASSEMBLER_DIALECT
202 /* Number of the assembler dialect to use, starting at 0. */
203 static int dialect_number;
204 #endif
206 #ifdef HAVE_conditional_execution
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate;
209 #endif
211 #ifdef HAVE_ATTR_length
212 static int asm_insn_count (rtx);
213 #endif
214 static void profile_function (FILE *);
215 static void profile_after_prologue (FILE *);
216 static bool notice_source_line (rtx);
217 static rtx walk_alter_subreg (rtx *, bool *);
218 static void output_asm_name (void);
219 static void output_alternate_entry_point (FILE *, rtx);
220 static tree get_mem_expr_from_op (rtx, int *);
221 static void output_asm_operand_names (rtx *, int *, int);
222 static void output_operand (rtx, int);
223 #ifdef LEAF_REGISTERS
224 static void leaf_renumber_regs (rtx);
225 #endif
226 #ifdef HAVE_cc0
227 static int alter_cond (rtx);
228 #endif
229 #ifndef ADDR_VEC_ALIGN
230 static int final_addr_vec_align (rtx);
231 #endif
232 #ifdef HAVE_ATTR_length
233 static int align_fuzz (rtx, rtx, int, unsigned);
234 #endif
236 /* Initialize data in final at the beginning of a compilation. */
238 void
239 init_final (const char *filename ATTRIBUTE_UNUSED)
241 app_on = 0;
242 final_sequence = 0;
244 #ifdef ASSEMBLER_DIALECT
245 dialect_number = ASSEMBLER_DIALECT;
246 #endif
249 /* Default target function prologue and epilogue assembler output.
251 If not overridden for epilogue code, then the function body itself
252 contains return instructions wherever needed. */
253 void
254 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
255 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 /* Default target hook that outputs nothing to a stream. */
260 void
261 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 /* Enable APP processing of subsequent output.
266 Used before the output from an `asm' statement. */
268 void
269 app_enable (void)
271 if (! app_on)
273 fputs (ASM_APP_ON, asm_out_file);
274 app_on = 1;
278 /* Disable APP processing of subsequent output.
279 Called from varasm.c before most kinds of output. */
281 void
282 app_disable (void)
284 if (app_on)
286 fputs (ASM_APP_OFF, asm_out_file);
287 app_on = 0;
291 /* Return the number of slots filled in the current
292 delayed branch sequence (we don't count the insn needing the
293 delay slot). Zero if not in a delayed branch sequence. */
295 #ifdef DELAY_SLOTS
297 dbr_sequence_length (void)
299 if (final_sequence != 0)
300 return XVECLEN (final_sequence, 0) - 1;
301 else
302 return 0;
304 #endif
306 /* The next two pages contain routines used to compute the length of an insn
307 and to shorten branches. */
309 /* Arrays for insn lengths, and addresses. The latter is referenced by
310 `insn_current_length'. */
312 static int *insn_lengths;
314 VEC(int,heap) *insn_addresses_;
316 /* Max uid for which the above arrays are valid. */
317 static int insn_lengths_max_uid;
319 /* Address of insn being processed. Used by `insn_current_length'. */
320 int insn_current_address;
322 /* Address of insn being processed in previous iteration. */
323 int insn_last_address;
325 /* known invariant alignment of insn being processed. */
326 int insn_current_align;
328 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
329 gives the next following alignment insn that increases the known
330 alignment, or NULL_RTX if there is no such insn.
331 For any alignment obtained this way, we can again index uid_align with
332 its uid to obtain the next following align that in turn increases the
333 alignment, till we reach NULL_RTX; the sequence obtained this way
334 for each insn we'll call the alignment chain of this insn in the following
335 comments. */
337 struct label_alignment
339 short alignment;
340 short max_skip;
343 static rtx *uid_align;
344 static int *uid_shuid;
345 static struct label_alignment *label_align;
347 /* Indicate that branch shortening hasn't yet been done. */
349 void
350 init_insn_lengths (void)
352 if (uid_shuid)
354 free (uid_shuid);
355 uid_shuid = 0;
357 if (insn_lengths)
359 free (insn_lengths);
360 insn_lengths = 0;
361 insn_lengths_max_uid = 0;
363 #ifdef HAVE_ATTR_length
364 INSN_ADDRESSES_FREE ();
365 #endif
366 if (uid_align)
368 free (uid_align);
369 uid_align = 0;
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
375 length. */
376 static inline int
377 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
378 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
380 #ifdef HAVE_ATTR_length
381 rtx body;
382 int i;
383 int length = 0;
385 if (insn_lengths_max_uid > INSN_UID (insn))
386 return insn_lengths[INSN_UID (insn)];
387 else
388 switch (GET_CODE (insn))
390 case NOTE:
391 case BARRIER:
392 case CODE_LABEL:
393 return 0;
395 case CALL_INSN:
396 length = fallback_fn (insn);
397 break;
399 case JUMP_INSN:
400 body = PATTERN (insn);
401 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
403 /* Alignment is machine-dependent and should be handled by
404 ADDR_VEC_ALIGN. */
406 else
407 length = fallback_fn (insn);
408 break;
410 case INSN:
411 body = PATTERN (insn);
412 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
413 return 0;
415 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
416 length = asm_insn_count (body) * fallback_fn (insn);
417 else if (GET_CODE (body) == SEQUENCE)
418 for (i = 0; i < XVECLEN (body, 0); i++)
419 length += get_attr_length (XVECEXP (body, 0, i));
420 else
421 length = fallback_fn (insn);
422 break;
424 default:
425 break;
428 #ifdef ADJUST_INSN_LENGTH
429 ADJUST_INSN_LENGTH (insn, length);
430 #endif
431 return length;
432 #else /* not HAVE_ATTR_length */
433 return 0;
434 #define insn_default_length 0
435 #define insn_min_length 0
436 #endif /* not HAVE_ATTR_length */
439 /* Obtain the current length of an insn. If branch shortening has been done,
440 get its actual length. Otherwise, get its maximum length. */
442 get_attr_length (rtx insn)
444 return get_attr_length_1 (insn, insn_default_length);
447 /* Obtain the current length of an insn. If branch shortening has been done,
448 get its actual length. Otherwise, get its minimum length. */
450 get_attr_min_length (rtx insn)
452 return get_attr_length_1 (insn, insn_min_length);
455 /* Code to handle alignment inside shorten_branches. */
457 /* Here is an explanation how the algorithm in align_fuzz can give
458 proper results:
460 Call a sequence of instructions beginning with alignment point X
461 and continuing until the next alignment point `block X'. When `X'
462 is used in an expression, it means the alignment value of the
463 alignment point.
465 Call the distance between the start of the first insn of block X, and
466 the end of the last insn of block X `IX', for the `inner size of X'.
467 This is clearly the sum of the instruction lengths.
469 Likewise with the next alignment-delimited block following X, which we
470 shall call block Y.
472 Call the distance between the start of the first insn of block X, and
473 the start of the first insn of block Y `OX', for the `outer size of X'.
475 The estimated padding is then OX - IX.
477 OX can be safely estimated as
479 if (X >= Y)
480 OX = round_up(IX, Y)
481 else
482 OX = round_up(IX, X) + Y - X
484 Clearly est(IX) >= real(IX), because that only depends on the
485 instruction lengths, and those being overestimated is a given.
487 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
488 we needn't worry about that when thinking about OX.
490 When X >= Y, the alignment provided by Y adds no uncertainty factor
491 for branch ranges starting before X, so we can just round what we have.
492 But when X < Y, we don't know anything about the, so to speak,
493 `middle bits', so we have to assume the worst when aligning up from an
494 address mod X to one mod Y, which is Y - X. */
496 #ifndef LABEL_ALIGN
497 #define LABEL_ALIGN(LABEL) align_labels_log
498 #endif
500 #ifndef LABEL_ALIGN_MAX_SKIP
501 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
502 #endif
504 #ifndef LOOP_ALIGN
505 #define LOOP_ALIGN(LABEL) align_loops_log
506 #endif
508 #ifndef LOOP_ALIGN_MAX_SKIP
509 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
510 #endif
512 #ifndef LABEL_ALIGN_AFTER_BARRIER
513 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
514 #endif
516 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
517 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
518 #endif
520 #ifndef JUMP_ALIGN
521 #define JUMP_ALIGN(LABEL) align_jumps_log
522 #endif
524 #ifndef JUMP_ALIGN_MAX_SKIP
525 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
526 #endif
528 #ifndef ADDR_VEC_ALIGN
529 static int
530 final_addr_vec_align (rtx addr_vec)
532 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
534 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
535 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
536 return exact_log2 (align);
540 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
541 #endif
543 #ifndef INSN_LENGTH_ALIGNMENT
544 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
545 #endif
547 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
549 static int min_labelno, max_labelno;
551 #define LABEL_TO_ALIGNMENT(LABEL) \
552 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
554 #define LABEL_TO_MAX_SKIP(LABEL) \
555 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
557 /* For the benefit of port specific code do this also as a function. */
560 label_to_alignment (rtx label)
562 return LABEL_TO_ALIGNMENT (label);
565 #ifdef HAVE_ATTR_length
566 /* The differences in addresses
567 between a branch and its target might grow or shrink depending on
568 the alignment the start insn of the range (the branch for a forward
569 branch or the label for a backward branch) starts out on; if these
570 differences are used naively, they can even oscillate infinitely.
571 We therefore want to compute a 'worst case' address difference that
572 is independent of the alignment the start insn of the range end
573 up on, and that is at least as large as the actual difference.
574 The function align_fuzz calculates the amount we have to add to the
575 naively computed difference, by traversing the part of the alignment
576 chain of the start insn of the range that is in front of the end insn
577 of the range, and considering for each alignment the maximum amount
578 that it might contribute to a size increase.
580 For casesi tables, we also want to know worst case minimum amounts of
581 address difference, in case a machine description wants to introduce
582 some common offset that is added to all offsets in a table.
583 For this purpose, align_fuzz with a growth argument of 0 computes the
584 appropriate adjustment. */
586 /* Compute the maximum delta by which the difference of the addresses of
587 START and END might grow / shrink due to a different address for start
588 which changes the size of alignment insns between START and END.
589 KNOWN_ALIGN_LOG is the alignment known for START.
590 GROWTH should be ~0 if the objective is to compute potential code size
591 increase, and 0 if the objective is to compute potential shrink.
592 The return value is undefined for any other value of GROWTH. */
594 static int
595 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
597 int uid = INSN_UID (start);
598 rtx align_label;
599 int known_align = 1 << known_align_log;
600 int end_shuid = INSN_SHUID (end);
601 int fuzz = 0;
603 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
605 int align_addr, new_align;
607 uid = INSN_UID (align_label);
608 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
609 if (uid_shuid[uid] > end_shuid)
610 break;
611 known_align_log = LABEL_TO_ALIGNMENT (align_label);
612 new_align = 1 << known_align_log;
613 if (new_align < known_align)
614 continue;
615 fuzz += (-align_addr ^ growth) & (new_align - known_align);
616 known_align = new_align;
618 return fuzz;
621 /* Compute a worst-case reference address of a branch so that it
622 can be safely used in the presence of aligned labels. Since the
623 size of the branch itself is unknown, the size of the branch is
624 not included in the range. I.e. for a forward branch, the reference
625 address is the end address of the branch as known from the previous
626 branch shortening pass, minus a value to account for possible size
627 increase due to alignment. For a backward branch, it is the start
628 address of the branch as known from the current pass, plus a value
629 to account for possible size increase due to alignment.
630 NB.: Therefore, the maximum offset allowed for backward branches needs
631 to exclude the branch size. */
634 insn_current_reference_address (rtx branch)
636 rtx dest, seq;
637 int seq_uid;
639 if (! INSN_ADDRESSES_SET_P ())
640 return 0;
642 seq = NEXT_INSN (PREV_INSN (branch));
643 seq_uid = INSN_UID (seq);
644 if (!JUMP_P (branch))
645 /* This can happen for example on the PA; the objective is to know the
646 offset to address something in front of the start of the function.
647 Thus, we can treat it like a backward branch.
648 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
649 any alignment we'd encounter, so we skip the call to align_fuzz. */
650 return insn_current_address;
651 dest = JUMP_LABEL (branch);
653 /* BRANCH has no proper alignment chain set, so use SEQ.
654 BRANCH also has no INSN_SHUID. */
655 if (INSN_SHUID (seq) < INSN_SHUID (dest))
657 /* Forward branch. */
658 return (insn_last_address + insn_lengths[seq_uid]
659 - align_fuzz (seq, dest, length_unit_log, ~0));
661 else
663 /* Backward branch. */
664 return (insn_current_address
665 + align_fuzz (dest, seq, length_unit_log, ~0));
668 #endif /* HAVE_ATTR_length */
670 /* Compute branch alignments based on frequency information in the
671 CFG. */
673 static unsigned int
674 compute_alignments (void)
676 int log, max_skip, max_log;
677 basic_block bb;
678 int freq_max = 0;
679 int freq_threshold = 0;
681 if (label_align)
683 free (label_align);
684 label_align = 0;
687 max_labelno = max_label_num ();
688 min_labelno = get_first_label_num ();
689 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
691 /* If not optimizing or optimizing for size, don't assign any alignments. */
692 if (! optimize || optimize_size)
693 return 0;
695 if (dump_file)
697 dump_flow_info (dump_file, TDF_DETAILS);
698 flow_loops_dump (dump_file, NULL, 1);
699 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
701 FOR_EACH_BB (bb)
702 if (bb->frequency > freq_max)
703 freq_max = bb->frequency;
704 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
706 if (dump_file)
707 fprintf(dump_file, "freq_max: %i\n",freq_max);
708 FOR_EACH_BB (bb)
710 rtx label = BB_HEAD (bb);
711 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
712 edge e;
713 edge_iterator ei;
715 if (!LABEL_P (label)
716 || probably_never_executed_bb_p (bb))
718 if (dump_file)
719 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
720 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
721 continue;
723 max_log = LABEL_ALIGN (label);
724 max_skip = LABEL_ALIGN_MAX_SKIP;
726 FOR_EACH_EDGE (e, ei, bb->preds)
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
730 else
731 branch_frequency += EDGE_FREQUENCY (e);
733 if (dump_file)
735 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
736 bb->index, bb->frequency, bb->loop_father->num,
737 bb->loop_depth,
738 fallthru_frequency, branch_frequency);
739 if (!bb->loop_father->inner && bb->loop_father->num)
740 fprintf (dump_file, " inner_loop");
741 if (bb->loop_father->header == bb)
742 fprintf (dump_file, " loop_header");
743 fprintf (dump_file, "\n");
746 /* There are two purposes to align block with no fallthru incoming edge:
747 1) to avoid fetch stalls when branch destination is near cache boundary
748 2) to improve cache efficiency in case the previous block is not executed
749 (so it does not need to be in the cache).
751 We to catch first case, we align frequently executed blocks.
752 To catch the second, we align blocks that are executed more frequently
753 than the predecessor and the predecessor is likely to not be executed
754 when function is called. */
756 if (!has_fallthru
757 && (branch_frequency > freq_threshold
758 || (bb->frequency > bb->prev_bb->frequency * 10
759 && (bb->prev_bb->frequency
760 <= ENTRY_BLOCK_PTR->frequency / 2))))
762 log = JUMP_ALIGN (label);
763 if (dump_file)
764 fprintf(dump_file, " jump alignment added.\n");
765 if (max_log < log)
767 max_log = log;
768 max_skip = JUMP_ALIGN_MAX_SKIP;
771 /* In case block is frequent and reached mostly by non-fallthru edge,
772 align it. It is most likely a first block of loop. */
773 if (has_fallthru
774 && maybe_hot_bb_p (bb)
775 && branch_frequency + fallthru_frequency > freq_threshold
776 && (branch_frequency
777 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
779 log = LOOP_ALIGN (label);
780 if (dump_file)
781 fprintf(dump_file, " internal loop alignment added.\n");
782 if (max_log < log)
784 max_log = log;
785 max_skip = LOOP_ALIGN_MAX_SKIP;
788 LABEL_TO_ALIGNMENT (label) = max_log;
789 LABEL_TO_MAX_SKIP (label) = max_skip;
792 if (dump_file)
793 loop_optimizer_finalize ();
794 return 0;
797 struct tree_opt_pass pass_compute_alignments =
799 "alignments", /* name */
800 NULL, /* gate */
801 compute_alignments, /* execute */
802 NULL, /* sub */
803 NULL, /* next */
804 0, /* static_pass_number */
805 0, /* tv_id */
806 0, /* properties_required */
807 0, /* properties_provided */
808 0, /* properties_destroyed */
809 0, /* todo_flags_start */
810 TODO_dump_func | TODO_verify_rtl_sharing
811 | TODO_ggc_collect, /* todo_flags_finish */
812 0 /* letter */
816 /* Make a pass over all insns and compute their actual lengths by shortening
817 any branches of variable length if possible. */
819 /* shorten_branches might be called multiple times: for example, the SH
820 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
821 In order to do this, it needs proper length information, which it obtains
822 by calling shorten_branches. This cannot be collapsed with
823 shorten_branches itself into a single pass unless we also want to integrate
824 reorg.c, since the branch splitting exposes new instructions with delay
825 slots. */
827 void
828 shorten_branches (rtx first ATTRIBUTE_UNUSED)
830 rtx insn;
831 int max_uid;
832 int i;
833 int max_log;
834 int max_skip;
835 #ifdef HAVE_ATTR_length
836 #define MAX_CODE_ALIGN 16
837 rtx seq;
838 int something_changed = 1;
839 char *varying_length;
840 rtx body;
841 int uid;
842 rtx align_tab[MAX_CODE_ALIGN];
844 #endif
846 /* Compute maximum UID and allocate label_align / uid_shuid. */
847 max_uid = get_max_uid ();
849 /* Free uid_shuid before reallocating it. */
850 free (uid_shuid);
852 uid_shuid = XNEWVEC (int, max_uid);
854 if (max_labelno != max_label_num ())
856 int old = max_labelno;
857 int n_labels;
858 int n_old_labels;
860 max_labelno = max_label_num ();
862 n_labels = max_labelno - min_labelno + 1;
863 n_old_labels = old - min_labelno + 1;
865 label_align = xrealloc (label_align,
866 n_labels * sizeof (struct label_alignment));
868 /* Range of labels grows monotonically in the function. Failing here
869 means that the initialization of array got lost. */
870 gcc_assert (n_old_labels <= n_labels);
872 memset (label_align + n_old_labels, 0,
873 (n_labels - n_old_labels) * sizeof (struct label_alignment));
876 /* Initialize label_align and set up uid_shuid to be strictly
877 monotonically rising with insn order. */
878 /* We use max_log here to keep track of the maximum alignment we want to
879 impose on the next CODE_LABEL (or the current one if we are processing
880 the CODE_LABEL itself). */
882 max_log = 0;
883 max_skip = 0;
885 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
887 int log;
889 INSN_SHUID (insn) = i++;
890 if (INSN_P (insn))
891 continue;
893 if (LABEL_P (insn))
895 rtx next;
897 /* Merge in alignments computed by compute_alignments. */
898 log = LABEL_TO_ALIGNMENT (insn);
899 if (max_log < log)
901 max_log = log;
902 max_skip = LABEL_TO_MAX_SKIP (insn);
905 log = LABEL_ALIGN (insn);
906 if (max_log < log)
908 max_log = log;
909 max_skip = LABEL_ALIGN_MAX_SKIP;
911 next = next_nonnote_insn (insn);
912 /* ADDR_VECs only take room if read-only data goes into the text
913 section. */
914 if (JUMP_TABLES_IN_TEXT_SECTION
915 || readonly_data_section == text_section)
916 if (next && JUMP_P (next))
918 rtx nextbody = PATTERN (next);
919 if (GET_CODE (nextbody) == ADDR_VEC
920 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
922 log = ADDR_VEC_ALIGN (next);
923 if (max_log < log)
925 max_log = log;
926 max_skip = LABEL_ALIGN_MAX_SKIP;
930 LABEL_TO_ALIGNMENT (insn) = max_log;
931 LABEL_TO_MAX_SKIP (insn) = max_skip;
932 max_log = 0;
933 max_skip = 0;
935 else if (BARRIER_P (insn))
937 rtx label;
939 for (label = insn; label && ! INSN_P (label);
940 label = NEXT_INSN (label))
941 if (LABEL_P (label))
943 log = LABEL_ALIGN_AFTER_BARRIER (insn);
944 if (max_log < log)
946 max_log = log;
947 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
949 break;
953 #ifdef HAVE_ATTR_length
955 /* Allocate the rest of the arrays. */
956 insn_lengths = XNEWVEC (int, max_uid);
957 insn_lengths_max_uid = max_uid;
958 /* Syntax errors can lead to labels being outside of the main insn stream.
959 Initialize insn_addresses, so that we get reproducible results. */
960 INSN_ADDRESSES_ALLOC (max_uid);
962 varying_length = XCNEWVEC (char, max_uid);
964 /* Initialize uid_align. We scan instructions
965 from end to start, and keep in align_tab[n] the last seen insn
966 that does an alignment of at least n+1, i.e. the successor
967 in the alignment chain for an insn that does / has a known
968 alignment of n. */
969 uid_align = XCNEWVEC (rtx, max_uid);
971 for (i = MAX_CODE_ALIGN; --i >= 0;)
972 align_tab[i] = NULL_RTX;
973 seq = get_last_insn ();
974 for (; seq; seq = PREV_INSN (seq))
976 int uid = INSN_UID (seq);
977 int log;
978 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
979 uid_align[uid] = align_tab[0];
980 if (log)
982 /* Found an alignment label. */
983 uid_align[uid] = align_tab[log];
984 for (i = log - 1; i >= 0; i--)
985 align_tab[i] = seq;
988 #ifdef CASE_VECTOR_SHORTEN_MODE
989 if (optimize)
991 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
992 label fields. */
994 int min_shuid = INSN_SHUID (get_insns ()) - 1;
995 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
996 int rel;
998 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1000 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1001 int len, i, min, max, insn_shuid;
1002 int min_align;
1003 addr_diff_vec_flags flags;
1005 if (!JUMP_P (insn)
1006 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1007 continue;
1008 pat = PATTERN (insn);
1009 len = XVECLEN (pat, 1);
1010 gcc_assert (len > 0);
1011 min_align = MAX_CODE_ALIGN;
1012 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1014 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1015 int shuid = INSN_SHUID (lab);
1016 if (shuid < min)
1018 min = shuid;
1019 min_lab = lab;
1021 if (shuid > max)
1023 max = shuid;
1024 max_lab = lab;
1026 if (min_align > LABEL_TO_ALIGNMENT (lab))
1027 min_align = LABEL_TO_ALIGNMENT (lab);
1029 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1030 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1031 insn_shuid = INSN_SHUID (insn);
1032 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1033 memset (&flags, 0, sizeof (flags));
1034 flags.min_align = min_align;
1035 flags.base_after_vec = rel > insn_shuid;
1036 flags.min_after_vec = min > insn_shuid;
1037 flags.max_after_vec = max > insn_shuid;
1038 flags.min_after_base = min > rel;
1039 flags.max_after_base = max > rel;
1040 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1043 #endif /* CASE_VECTOR_SHORTEN_MODE */
1045 /* Compute initial lengths, addresses, and varying flags for each insn. */
1046 for (insn_current_address = 0, insn = first;
1047 insn != 0;
1048 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1050 uid = INSN_UID (insn);
1052 insn_lengths[uid] = 0;
1054 if (LABEL_P (insn))
1056 int log = LABEL_TO_ALIGNMENT (insn);
1057 if (log)
1059 int align = 1 << log;
1060 int new_address = (insn_current_address + align - 1) & -align;
1061 insn_lengths[uid] = new_address - insn_current_address;
1065 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1067 if (NOTE_P (insn) || BARRIER_P (insn)
1068 || LABEL_P (insn))
1069 continue;
1070 if (INSN_DELETED_P (insn))
1071 continue;
1073 body = PATTERN (insn);
1074 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1076 /* This only takes room if read-only data goes into the text
1077 section. */
1078 if (JUMP_TABLES_IN_TEXT_SECTION
1079 || readonly_data_section == text_section)
1080 insn_lengths[uid] = (XVECLEN (body,
1081 GET_CODE (body) == ADDR_DIFF_VEC)
1082 * GET_MODE_SIZE (GET_MODE (body)));
1083 /* Alignment is handled by ADDR_VEC_ALIGN. */
1085 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1086 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1087 else if (GET_CODE (body) == SEQUENCE)
1089 int i;
1090 int const_delay_slots;
1091 #ifdef DELAY_SLOTS
1092 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1093 #else
1094 const_delay_slots = 0;
1095 #endif
1096 /* Inside a delay slot sequence, we do not do any branch shortening
1097 if the shortening could change the number of delay slots
1098 of the branch. */
1099 for (i = 0; i < XVECLEN (body, 0); i++)
1101 rtx inner_insn = XVECEXP (body, 0, i);
1102 int inner_uid = INSN_UID (inner_insn);
1103 int inner_length;
1105 if (GET_CODE (body) == ASM_INPUT
1106 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1107 inner_length = (asm_insn_count (PATTERN (inner_insn))
1108 * insn_default_length (inner_insn));
1109 else
1110 inner_length = insn_default_length (inner_insn);
1112 insn_lengths[inner_uid] = inner_length;
1113 if (const_delay_slots)
1115 if ((varying_length[inner_uid]
1116 = insn_variable_length_p (inner_insn)) != 0)
1117 varying_length[uid] = 1;
1118 INSN_ADDRESSES (inner_uid) = (insn_current_address
1119 + insn_lengths[uid]);
1121 else
1122 varying_length[inner_uid] = 0;
1123 insn_lengths[uid] += inner_length;
1126 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1128 insn_lengths[uid] = insn_default_length (insn);
1129 varying_length[uid] = insn_variable_length_p (insn);
1132 /* If needed, do any adjustment. */
1133 #ifdef ADJUST_INSN_LENGTH
1134 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1135 if (insn_lengths[uid] < 0)
1136 fatal_insn ("negative insn length", insn);
1137 #endif
1140 /* Now loop over all the insns finding varying length insns. For each,
1141 get the current insn length. If it has changed, reflect the change.
1142 When nothing changes for a full pass, we are done. */
1144 while (something_changed)
1146 something_changed = 0;
1147 insn_current_align = MAX_CODE_ALIGN - 1;
1148 for (insn_current_address = 0, insn = first;
1149 insn != 0;
1150 insn = NEXT_INSN (insn))
1152 int new_length;
1153 #ifdef ADJUST_INSN_LENGTH
1154 int tmp_length;
1155 #endif
1156 int length_align;
1158 uid = INSN_UID (insn);
1160 if (LABEL_P (insn))
1162 int log = LABEL_TO_ALIGNMENT (insn);
1163 if (log > insn_current_align)
1165 int align = 1 << log;
1166 int new_address= (insn_current_address + align - 1) & -align;
1167 insn_lengths[uid] = new_address - insn_current_address;
1168 insn_current_align = log;
1169 insn_current_address = new_address;
1171 else
1172 insn_lengths[uid] = 0;
1173 INSN_ADDRESSES (uid) = insn_current_address;
1174 continue;
1177 length_align = INSN_LENGTH_ALIGNMENT (insn);
1178 if (length_align < insn_current_align)
1179 insn_current_align = length_align;
1181 insn_last_address = INSN_ADDRESSES (uid);
1182 INSN_ADDRESSES (uid) = insn_current_address;
1184 #ifdef CASE_VECTOR_SHORTEN_MODE
1185 if (optimize && JUMP_P (insn)
1186 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1188 rtx body = PATTERN (insn);
1189 int old_length = insn_lengths[uid];
1190 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1191 rtx min_lab = XEXP (XEXP (body, 2), 0);
1192 rtx max_lab = XEXP (XEXP (body, 3), 0);
1193 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1194 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1195 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1196 rtx prev;
1197 int rel_align = 0;
1198 addr_diff_vec_flags flags;
1200 /* Avoid automatic aggregate initialization. */
1201 flags = ADDR_DIFF_VEC_FLAGS (body);
1203 /* Try to find a known alignment for rel_lab. */
1204 for (prev = rel_lab;
1205 prev
1206 && ! insn_lengths[INSN_UID (prev)]
1207 && ! (varying_length[INSN_UID (prev)] & 1);
1208 prev = PREV_INSN (prev))
1209 if (varying_length[INSN_UID (prev)] & 2)
1211 rel_align = LABEL_TO_ALIGNMENT (prev);
1212 break;
1215 /* See the comment on addr_diff_vec_flags in rtl.h for the
1216 meaning of the flags values. base: REL_LAB vec: INSN */
1217 /* Anything after INSN has still addresses from the last
1218 pass; adjust these so that they reflect our current
1219 estimate for this pass. */
1220 if (flags.base_after_vec)
1221 rel_addr += insn_current_address - insn_last_address;
1222 if (flags.min_after_vec)
1223 min_addr += insn_current_address - insn_last_address;
1224 if (flags.max_after_vec)
1225 max_addr += insn_current_address - insn_last_address;
1226 /* We want to know the worst case, i.e. lowest possible value
1227 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1228 its offset is positive, and we have to be wary of code shrink;
1229 otherwise, it is negative, and we have to be vary of code
1230 size increase. */
1231 if (flags.min_after_base)
1233 /* If INSN is between REL_LAB and MIN_LAB, the size
1234 changes we are about to make can change the alignment
1235 within the observed offset, therefore we have to break
1236 it up into two parts that are independent. */
1237 if (! flags.base_after_vec && flags.min_after_vec)
1239 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1240 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1242 else
1243 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1245 else
1247 if (flags.base_after_vec && ! flags.min_after_vec)
1249 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1250 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1252 else
1253 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1255 /* Likewise, determine the highest lowest possible value
1256 for the offset of MAX_LAB. */
1257 if (flags.max_after_base)
1259 if (! flags.base_after_vec && flags.max_after_vec)
1261 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1262 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1264 else
1265 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1267 else
1269 if (flags.base_after_vec && ! flags.max_after_vec)
1271 max_addr += align_fuzz (max_lab, insn, 0, 0);
1272 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1274 else
1275 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1277 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1278 max_addr - rel_addr,
1279 body));
1280 if (JUMP_TABLES_IN_TEXT_SECTION
1281 || readonly_data_section == text_section)
1283 insn_lengths[uid]
1284 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1285 insn_current_address += insn_lengths[uid];
1286 if (insn_lengths[uid] != old_length)
1287 something_changed = 1;
1290 continue;
1292 #endif /* CASE_VECTOR_SHORTEN_MODE */
1294 if (! (varying_length[uid]))
1296 if (NONJUMP_INSN_P (insn)
1297 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1299 int i;
1301 body = PATTERN (insn);
1302 for (i = 0; i < XVECLEN (body, 0); i++)
1304 rtx inner_insn = XVECEXP (body, 0, i);
1305 int inner_uid = INSN_UID (inner_insn);
1307 INSN_ADDRESSES (inner_uid) = insn_current_address;
1309 insn_current_address += insn_lengths[inner_uid];
1312 else
1313 insn_current_address += insn_lengths[uid];
1315 continue;
1318 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1320 int i;
1322 body = PATTERN (insn);
1323 new_length = 0;
1324 for (i = 0; i < XVECLEN (body, 0); i++)
1326 rtx inner_insn = XVECEXP (body, 0, i);
1327 int inner_uid = INSN_UID (inner_insn);
1328 int inner_length;
1330 INSN_ADDRESSES (inner_uid) = insn_current_address;
1332 /* insn_current_length returns 0 for insns with a
1333 non-varying length. */
1334 if (! varying_length[inner_uid])
1335 inner_length = insn_lengths[inner_uid];
1336 else
1337 inner_length = insn_current_length (inner_insn);
1339 if (inner_length != insn_lengths[inner_uid])
1341 insn_lengths[inner_uid] = inner_length;
1342 something_changed = 1;
1344 insn_current_address += insn_lengths[inner_uid];
1345 new_length += inner_length;
1348 else
1350 new_length = insn_current_length (insn);
1351 insn_current_address += new_length;
1354 #ifdef ADJUST_INSN_LENGTH
1355 /* If needed, do any adjustment. */
1356 tmp_length = new_length;
1357 ADJUST_INSN_LENGTH (insn, new_length);
1358 insn_current_address += (new_length - tmp_length);
1359 #endif
1361 if (new_length != insn_lengths[uid])
1363 insn_lengths[uid] = new_length;
1364 something_changed = 1;
1367 /* For a non-optimizing compile, do only a single pass. */
1368 if (!optimize)
1369 break;
1372 free (varying_length);
1374 #endif /* HAVE_ATTR_length */
1377 #ifdef HAVE_ATTR_length
1378 /* Given the body of an INSN known to be generated by an ASM statement, return
1379 the number of machine instructions likely to be generated for this insn.
1380 This is used to compute its length. */
1382 static int
1383 asm_insn_count (rtx body)
1385 const char *template;
1386 int count = 1;
1388 if (GET_CODE (body) == ASM_INPUT)
1389 template = XSTR (body, 0);
1390 else
1391 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1393 for (; *template; template++)
1394 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template, template)
1395 || *template == '\n')
1396 count++;
1398 return count;
1400 #endif
1402 /* ??? This is probably the wrong place for these. */
1403 /* Structure recording the mapping from source file and directory
1404 names at compile time to those to be embedded in debug
1405 information. */
1406 typedef struct debug_prefix_map
1408 const char *old_prefix;
1409 const char *new_prefix;
1410 size_t old_len;
1411 size_t new_len;
1412 struct debug_prefix_map *next;
1413 } debug_prefix_map;
1415 /* Linked list of such structures. */
1416 debug_prefix_map *debug_prefix_maps;
1419 /* Record a debug file prefix mapping. ARG is the argument to
1420 -fdebug-prefix-map and must be of the form OLD=NEW. */
1422 void
1423 add_debug_prefix_map (const char *arg)
1425 debug_prefix_map *map;
1426 const char *p;
1428 p = strchr (arg, '=');
1429 if (!p)
1431 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1432 return;
1434 map = XNEW (debug_prefix_map);
1435 map->old_prefix = ggc_alloc_string (arg, p - arg);
1436 map->old_len = p - arg;
1437 p++;
1438 map->new_prefix = ggc_strdup (p);
1439 map->new_len = strlen (p);
1440 map->next = debug_prefix_maps;
1441 debug_prefix_maps = map;
1444 /* Perform user-specified mapping of debug filename prefixes. Return
1445 the new name corresponding to FILENAME. */
1447 const char *
1448 remap_debug_filename (const char *filename)
1450 debug_prefix_map *map;
1451 char *s;
1452 const char *name;
1453 size_t name_len;
1455 for (map = debug_prefix_maps; map; map = map->next)
1456 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1457 break;
1458 if (!map)
1459 return filename;
1460 name = filename + map->old_len;
1461 name_len = strlen (name) + 1;
1462 s = (char *) alloca (name_len + map->new_len);
1463 memcpy (s, map->new_prefix, map->new_len);
1464 memcpy (s + map->new_len, name, name_len);
1465 return ggc_strdup (s);
1468 /* Output assembler code for the start of a function,
1469 and initialize some of the variables in this file
1470 for the new function. The label for the function and associated
1471 assembler pseudo-ops have already been output in `assemble_start_function'.
1473 FIRST is the first insn of the rtl for the function being compiled.
1474 FILE is the file to write assembler code to.
1475 OPTIMIZE is nonzero if we should eliminate redundant
1476 test and compare insns. */
1478 void
1479 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1480 int optimize ATTRIBUTE_UNUSED)
1482 block_depth = 0;
1484 this_is_asm_operands = 0;
1486 last_filename = locator_file (prologue_locator);
1487 last_linenum = locator_line (prologue_locator);
1489 high_block_linenum = high_function_linenum = last_linenum;
1491 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1493 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1494 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1495 dwarf2out_begin_prologue (0, NULL);
1496 #endif
1498 #ifdef LEAF_REG_REMAP
1499 if (current_function_uses_only_leaf_regs)
1500 leaf_renumber_regs (first);
1501 #endif
1503 /* The Sun386i and perhaps other machines don't work right
1504 if the profiling code comes after the prologue. */
1505 #ifdef PROFILE_BEFORE_PROLOGUE
1506 if (current_function_profile)
1507 profile_function (file);
1508 #endif /* PROFILE_BEFORE_PROLOGUE */
1510 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1511 if (dwarf2out_do_frame ())
1512 dwarf2out_frame_debug (NULL_RTX, false);
1513 #endif
1515 /* If debugging, assign block numbers to all of the blocks in this
1516 function. */
1517 if (write_symbols)
1519 reemit_insn_block_notes ();
1520 number_blocks (current_function_decl);
1521 /* We never actually put out begin/end notes for the top-level
1522 block in the function. But, conceptually, that block is
1523 always needed. */
1524 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1527 /* First output the function prologue: code to set up the stack frame. */
1528 targetm.asm_out.function_prologue (file, get_frame_size ());
1530 /* If the machine represents the prologue as RTL, the profiling code must
1531 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1532 #ifdef HAVE_prologue
1533 if (! HAVE_prologue)
1534 #endif
1535 profile_after_prologue (file);
1538 static void
1539 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1541 #ifndef PROFILE_BEFORE_PROLOGUE
1542 if (current_function_profile)
1543 profile_function (file);
1544 #endif /* not PROFILE_BEFORE_PROLOGUE */
1547 static void
1548 profile_function (FILE *file ATTRIBUTE_UNUSED)
1550 #ifndef NO_PROFILE_COUNTERS
1551 # define NO_PROFILE_COUNTERS 0
1552 #endif
1553 #if defined(ASM_OUTPUT_REG_PUSH)
1554 int sval = current_function_returns_struct;
1555 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1556 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1557 int cxt = cfun->static_chain_decl != NULL;
1558 #endif
1559 #endif /* ASM_OUTPUT_REG_PUSH */
1561 if (! NO_PROFILE_COUNTERS)
1563 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1564 switch_to_section (data_section);
1565 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1566 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1567 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1570 switch_to_section (current_function_section ());
1572 #if defined(ASM_OUTPUT_REG_PUSH)
1573 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1575 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1577 #endif
1579 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1580 if (cxt)
1581 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1582 #else
1583 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1584 if (cxt)
1586 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1588 #endif
1589 #endif
1591 FUNCTION_PROFILER (file, current_function_funcdef_no);
1593 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1594 if (cxt)
1595 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1596 #else
1597 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1598 if (cxt)
1600 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1602 #endif
1603 #endif
1605 #if defined(ASM_OUTPUT_REG_PUSH)
1606 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1608 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1610 #endif
1613 /* Output assembler code for the end of a function.
1614 For clarity, args are same as those of `final_start_function'
1615 even though not all of them are needed. */
1617 void
1618 final_end_function (void)
1620 app_disable ();
1622 (*debug_hooks->end_function) (high_function_linenum);
1624 /* Finally, output the function epilogue:
1625 code to restore the stack frame and return to the caller. */
1626 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1628 /* And debug output. */
1629 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1631 #if defined (DWARF2_UNWIND_INFO)
1632 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1633 && dwarf2out_do_frame ())
1634 dwarf2out_end_epilogue (last_linenum, last_filename);
1635 #endif
1638 /* Output assembler code for some insns: all or part of a function.
1639 For description of args, see `final_start_function', above. */
1641 void
1642 final (rtx first, FILE *file, int optimize)
1644 rtx insn;
1645 int max_uid = 0;
1646 int seen = 0;
1648 last_ignored_compare = 0;
1650 for (insn = first; insn; insn = NEXT_INSN (insn))
1652 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1653 max_uid = INSN_UID (insn);
1654 #ifdef HAVE_cc0
1655 /* If CC tracking across branches is enabled, record the insn which
1656 jumps to each branch only reached from one place. */
1657 if (optimize && JUMP_P (insn))
1659 rtx lab = JUMP_LABEL (insn);
1660 if (lab && LABEL_NUSES (lab) == 1)
1662 LABEL_REFS (lab) = insn;
1665 #endif
1668 init_recog ();
1670 CC_STATUS_INIT;
1672 /* Output the insns. */
1673 for (insn = first; insn;)
1675 #ifdef HAVE_ATTR_length
1676 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1678 /* This can be triggered by bugs elsewhere in the compiler if
1679 new insns are created after init_insn_lengths is called. */
1680 gcc_assert (NOTE_P (insn));
1681 insn_current_address = -1;
1683 else
1684 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1685 #endif /* HAVE_ATTR_length */
1687 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1691 const char *
1692 get_insn_template (int code, rtx insn)
1694 switch (insn_data[code].output_format)
1696 case INSN_OUTPUT_FORMAT_SINGLE:
1697 return insn_data[code].output.single;
1698 case INSN_OUTPUT_FORMAT_MULTI:
1699 return insn_data[code].output.multi[which_alternative];
1700 case INSN_OUTPUT_FORMAT_FUNCTION:
1701 gcc_assert (insn);
1702 return (*insn_data[code].output.function) (recog_data.operand, insn);
1704 default:
1705 gcc_unreachable ();
1709 /* Emit the appropriate declaration for an alternate-entry-point
1710 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1711 LABEL_KIND != LABEL_NORMAL.
1713 The case fall-through in this function is intentional. */
1714 static void
1715 output_alternate_entry_point (FILE *file, rtx insn)
1717 const char *name = LABEL_NAME (insn);
1719 switch (LABEL_KIND (insn))
1721 case LABEL_WEAK_ENTRY:
1722 #ifdef ASM_WEAKEN_LABEL
1723 ASM_WEAKEN_LABEL (file, name);
1724 #endif
1725 case LABEL_GLOBAL_ENTRY:
1726 targetm.asm_out.globalize_label (file, name);
1727 case LABEL_STATIC_ENTRY:
1728 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1729 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1730 #endif
1731 ASM_OUTPUT_LABEL (file, name);
1732 break;
1734 case LABEL_NORMAL:
1735 default:
1736 gcc_unreachable ();
1740 /* The final scan for one insn, INSN.
1741 Args are same as in `final', except that INSN
1742 is the insn being scanned.
1743 Value returned is the next insn to be scanned.
1745 NOPEEPHOLES is the flag to disallow peephole processing (currently
1746 used for within delayed branch sequence output).
1748 SEEN is used to track the end of the prologue, for emitting
1749 debug information. We force the emission of a line note after
1750 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1751 at the beginning of the second basic block, whichever comes
1752 first. */
1755 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1756 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1758 #ifdef HAVE_cc0
1759 rtx set;
1760 #endif
1761 rtx next;
1763 insn_counter++;
1765 /* Ignore deleted insns. These can occur when we split insns (due to a
1766 template of "#") while not optimizing. */
1767 if (INSN_DELETED_P (insn))
1768 return NEXT_INSN (insn);
1770 switch (GET_CODE (insn))
1772 case NOTE:
1773 switch (NOTE_KIND (insn))
1775 case NOTE_INSN_DELETED:
1776 break;
1778 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1779 in_cold_section_p = !in_cold_section_p;
1780 #ifdef DWARF2_UNWIND_INFO
1781 if (dwarf2out_do_frame ())
1782 dwarf2out_switch_text_section ();
1783 else
1784 #endif
1785 (*debug_hooks->switch_text_section) ();
1787 switch_to_section (current_function_section ());
1788 break;
1790 case NOTE_INSN_BASIC_BLOCK:
1791 #ifdef TARGET_UNWIND_INFO
1792 targetm.asm_out.unwind_emit (asm_out_file, insn);
1793 #endif
1795 if (flag_debug_asm)
1796 fprintf (asm_out_file, "\t%s basic block %d\n",
1797 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1799 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1801 *seen |= SEEN_EMITTED;
1802 force_source_line = true;
1804 else
1805 *seen |= SEEN_BB;
1807 break;
1809 case NOTE_INSN_EH_REGION_BEG:
1810 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1811 NOTE_EH_HANDLER (insn));
1812 break;
1814 case NOTE_INSN_EH_REGION_END:
1815 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1816 NOTE_EH_HANDLER (insn));
1817 break;
1819 case NOTE_INSN_PROLOGUE_END:
1820 targetm.asm_out.function_end_prologue (file);
1821 profile_after_prologue (file);
1823 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1825 *seen |= SEEN_EMITTED;
1826 force_source_line = true;
1828 else
1829 *seen |= SEEN_NOTE;
1831 break;
1833 case NOTE_INSN_EPILOGUE_BEG:
1834 targetm.asm_out.function_begin_epilogue (file);
1835 break;
1837 case NOTE_INSN_FUNCTION_BEG:
1838 app_disable ();
1839 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1841 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1843 *seen |= SEEN_EMITTED;
1844 force_source_line = true;
1846 else
1847 *seen |= SEEN_NOTE;
1849 break;
1851 case NOTE_INSN_BLOCK_BEG:
1852 if (debug_info_level == DINFO_LEVEL_NORMAL
1853 || debug_info_level == DINFO_LEVEL_VERBOSE
1854 || write_symbols == DWARF2_DEBUG
1855 || write_symbols == VMS_AND_DWARF2_DEBUG
1856 || write_symbols == VMS_DEBUG)
1858 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1860 app_disable ();
1861 ++block_depth;
1862 high_block_linenum = last_linenum;
1864 /* Output debugging info about the symbol-block beginning. */
1865 (*debug_hooks->begin_block) (last_linenum, n);
1867 /* Mark this block as output. */
1868 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1870 if (write_symbols == DBX_DEBUG
1871 || write_symbols == SDB_DEBUG)
1873 location_t *locus_ptr
1874 = block_nonartificial_location (NOTE_BLOCK (insn));
1876 if (locus_ptr != NULL)
1878 override_filename = LOCATION_FILE (*locus_ptr);
1879 override_linenum = LOCATION_LINE (*locus_ptr);
1882 break;
1884 case NOTE_INSN_BLOCK_END:
1885 if (debug_info_level == DINFO_LEVEL_NORMAL
1886 || debug_info_level == DINFO_LEVEL_VERBOSE
1887 || write_symbols == DWARF2_DEBUG
1888 || write_symbols == VMS_AND_DWARF2_DEBUG
1889 || write_symbols == VMS_DEBUG)
1891 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1893 app_disable ();
1895 /* End of a symbol-block. */
1896 --block_depth;
1897 gcc_assert (block_depth >= 0);
1899 (*debug_hooks->end_block) (high_block_linenum, n);
1901 if (write_symbols == DBX_DEBUG
1902 || write_symbols == SDB_DEBUG)
1904 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1905 location_t *locus_ptr
1906 = block_nonartificial_location (outer_block);
1908 if (locus_ptr != NULL)
1910 override_filename = LOCATION_FILE (*locus_ptr);
1911 override_linenum = LOCATION_LINE (*locus_ptr);
1913 else
1915 override_filename = NULL;
1916 override_linenum = 0;
1919 break;
1921 case NOTE_INSN_DELETED_LABEL:
1922 /* Emit the label. We may have deleted the CODE_LABEL because
1923 the label could be proved to be unreachable, though still
1924 referenced (in the form of having its address taken. */
1925 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1926 break;
1928 case NOTE_INSN_VAR_LOCATION:
1929 (*debug_hooks->var_location) (insn);
1930 break;
1932 default:
1933 gcc_unreachable ();
1934 break;
1936 break;
1938 case BARRIER:
1939 #if defined (DWARF2_UNWIND_INFO)
1940 if (dwarf2out_do_frame ())
1941 dwarf2out_frame_debug (insn, false);
1942 #endif
1943 break;
1945 case CODE_LABEL:
1946 /* The target port might emit labels in the output function for
1947 some insn, e.g. sh.c output_branchy_insn. */
1948 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1950 int align = LABEL_TO_ALIGNMENT (insn);
1951 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1952 int max_skip = LABEL_TO_MAX_SKIP (insn);
1953 #endif
1955 if (align && NEXT_INSN (insn))
1957 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1958 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1959 #else
1960 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1961 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1962 #else
1963 ASM_OUTPUT_ALIGN (file, align);
1964 #endif
1965 #endif
1968 #ifdef HAVE_cc0
1969 CC_STATUS_INIT;
1970 /* If this label is reached from only one place, set the condition
1971 codes from the instruction just before the branch. */
1973 /* Disabled because some insns set cc_status in the C output code
1974 and NOTICE_UPDATE_CC alone can set incorrect status. */
1975 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1977 rtx jump = LABEL_REFS (insn);
1978 rtx barrier = prev_nonnote_insn (insn);
1979 rtx prev;
1980 /* If the LABEL_REFS field of this label has been set to point
1981 at a branch, the predecessor of the branch is a regular
1982 insn, and that branch is the only way to reach this label,
1983 set the condition codes based on the branch and its
1984 predecessor. */
1985 if (barrier && BARRIER_P (barrier)
1986 && jump && JUMP_P (jump)
1987 && (prev = prev_nonnote_insn (jump))
1988 && NONJUMP_INSN_P (prev))
1990 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1991 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1994 #endif
1996 if (LABEL_NAME (insn))
1997 (*debug_hooks->label) (insn);
1999 if (app_on)
2001 fputs (ASM_APP_OFF, file);
2002 app_on = 0;
2005 next = next_nonnote_insn (insn);
2006 if (next != 0 && JUMP_P (next))
2008 rtx nextbody = PATTERN (next);
2010 /* If this label is followed by a jump-table,
2011 make sure we put the label in the read-only section. Also
2012 possibly write the label and jump table together. */
2014 if (GET_CODE (nextbody) == ADDR_VEC
2015 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2017 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2018 /* In this case, the case vector is being moved by the
2019 target, so don't output the label at all. Leave that
2020 to the back end macros. */
2021 #else
2022 if (! JUMP_TABLES_IN_TEXT_SECTION)
2024 int log_align;
2026 switch_to_section (targetm.asm_out.function_rodata_section
2027 (current_function_decl));
2029 #ifdef ADDR_VEC_ALIGN
2030 log_align = ADDR_VEC_ALIGN (next);
2031 #else
2032 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2033 #endif
2034 ASM_OUTPUT_ALIGN (file, log_align);
2036 else
2037 switch_to_section (current_function_section ());
2039 #ifdef ASM_OUTPUT_CASE_LABEL
2040 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2041 next);
2042 #else
2043 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2044 #endif
2045 #endif
2046 break;
2049 if (LABEL_ALT_ENTRY_P (insn))
2050 output_alternate_entry_point (file, insn);
2051 else
2052 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2053 break;
2055 default:
2057 rtx body = PATTERN (insn);
2058 int insn_code_number;
2059 const char *template;
2061 #ifdef HAVE_conditional_execution
2062 /* Reset this early so it is correct for ASM statements. */
2063 current_insn_predicate = NULL_RTX;
2064 #endif
2065 /* An INSN, JUMP_INSN or CALL_INSN.
2066 First check for special kinds that recog doesn't recognize. */
2068 if (GET_CODE (body) == USE /* These are just declarations. */
2069 || GET_CODE (body) == CLOBBER)
2070 break;
2072 #ifdef HAVE_cc0
2074 /* If there is a REG_CC_SETTER note on this insn, it means that
2075 the setting of the condition code was done in the delay slot
2076 of the insn that branched here. So recover the cc status
2077 from the insn that set it. */
2079 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2080 if (note)
2082 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2083 cc_prev_status = cc_status;
2086 #endif
2088 /* Detect insns that are really jump-tables
2089 and output them as such. */
2091 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2093 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2094 int vlen, idx;
2095 #endif
2097 if (! JUMP_TABLES_IN_TEXT_SECTION)
2098 switch_to_section (targetm.asm_out.function_rodata_section
2099 (current_function_decl));
2100 else
2101 switch_to_section (current_function_section ());
2103 if (app_on)
2105 fputs (ASM_APP_OFF, file);
2106 app_on = 0;
2109 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2110 if (GET_CODE (body) == ADDR_VEC)
2112 #ifdef ASM_OUTPUT_ADDR_VEC
2113 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2114 #else
2115 gcc_unreachable ();
2116 #endif
2118 else
2120 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2121 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2122 #else
2123 gcc_unreachable ();
2124 #endif
2126 #else
2127 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2128 for (idx = 0; idx < vlen; idx++)
2130 if (GET_CODE (body) == ADDR_VEC)
2132 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2133 ASM_OUTPUT_ADDR_VEC_ELT
2134 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2135 #else
2136 gcc_unreachable ();
2137 #endif
2139 else
2141 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2142 ASM_OUTPUT_ADDR_DIFF_ELT
2143 (file,
2144 body,
2145 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2146 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2147 #else
2148 gcc_unreachable ();
2149 #endif
2152 #ifdef ASM_OUTPUT_CASE_END
2153 ASM_OUTPUT_CASE_END (file,
2154 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2155 insn);
2156 #endif
2157 #endif
2159 switch_to_section (current_function_section ());
2161 break;
2163 /* Output this line note if it is the first or the last line
2164 note in a row. */
2165 if (notice_source_line (insn))
2167 (*debug_hooks->source_line) (last_linenum, last_filename);
2170 if (GET_CODE (body) == ASM_INPUT)
2172 const char *string = XSTR (body, 0);
2174 /* There's no telling what that did to the condition codes. */
2175 CC_STATUS_INIT;
2177 if (string[0])
2179 expanded_location loc;
2181 if (! app_on)
2183 fputs (ASM_APP_ON, file);
2184 app_on = 1;
2186 #ifdef USE_MAPPED_LOCATION
2187 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2188 #else
2189 loc.file = ASM_INPUT_SOURCE_FILE (body);
2190 loc.line = ASM_INPUT_SOURCE_LINE (body);
2191 #endif
2192 if (*loc.file && loc.line)
2193 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2194 ASM_COMMENT_START, loc.line, loc.file);
2195 fprintf (asm_out_file, "\t%s\n", string);
2196 #if HAVE_AS_LINE_ZERO
2197 if (*loc.file && loc.line)
2198 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2199 #endif
2201 break;
2204 /* Detect `asm' construct with operands. */
2205 if (asm_noperands (body) >= 0)
2207 unsigned int noperands = asm_noperands (body);
2208 rtx *ops = alloca (noperands * sizeof (rtx));
2209 const char *string;
2210 location_t loc;
2211 expanded_location expanded;
2213 /* There's no telling what that did to the condition codes. */
2214 CC_STATUS_INIT;
2216 /* Get out the operand values. */
2217 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2218 /* Inhibit dieing on what would otherwise be compiler bugs. */
2219 insn_noperands = noperands;
2220 this_is_asm_operands = insn;
2221 expanded = expand_location (loc);
2223 #ifdef FINAL_PRESCAN_INSN
2224 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2225 #endif
2227 /* Output the insn using them. */
2228 if (string[0])
2230 if (! app_on)
2232 fputs (ASM_APP_ON, file);
2233 app_on = 1;
2235 if (expanded.file && expanded.line)
2236 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2237 ASM_COMMENT_START, expanded.line, expanded.file);
2238 output_asm_insn (string, ops);
2239 #if HAVE_AS_LINE_ZERO
2240 if (expanded.file && expanded.line)
2241 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2242 #endif
2245 this_is_asm_operands = 0;
2246 break;
2249 if (app_on)
2251 fputs (ASM_APP_OFF, file);
2252 app_on = 0;
2255 if (GET_CODE (body) == SEQUENCE)
2257 /* A delayed-branch sequence */
2258 int i;
2260 final_sequence = body;
2262 /* Record the delay slots' frame information before the branch.
2263 This is needed for delayed calls: see execute_cfa_program(). */
2264 #if defined (DWARF2_UNWIND_INFO)
2265 if (dwarf2out_do_frame ())
2266 for (i = 1; i < XVECLEN (body, 0); i++)
2267 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2268 #endif
2270 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2271 force the restoration of a comparison that was previously
2272 thought unnecessary. If that happens, cancel this sequence
2273 and cause that insn to be restored. */
2275 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2276 if (next != XVECEXP (body, 0, 1))
2278 final_sequence = 0;
2279 return next;
2282 for (i = 1; i < XVECLEN (body, 0); i++)
2284 rtx insn = XVECEXP (body, 0, i);
2285 rtx next = NEXT_INSN (insn);
2286 /* We loop in case any instruction in a delay slot gets
2287 split. */
2289 insn = final_scan_insn (insn, file, 0, 1, seen);
2290 while (insn != next);
2292 #ifdef DBR_OUTPUT_SEQEND
2293 DBR_OUTPUT_SEQEND (file);
2294 #endif
2295 final_sequence = 0;
2297 /* If the insn requiring the delay slot was a CALL_INSN, the
2298 insns in the delay slot are actually executed before the
2299 called function. Hence we don't preserve any CC-setting
2300 actions in these insns and the CC must be marked as being
2301 clobbered by the function. */
2302 if (CALL_P (XVECEXP (body, 0, 0)))
2304 CC_STATUS_INIT;
2306 break;
2309 /* We have a real machine instruction as rtl. */
2311 body = PATTERN (insn);
2313 #ifdef HAVE_cc0
2314 set = single_set (insn);
2316 /* Check for redundant test and compare instructions
2317 (when the condition codes are already set up as desired).
2318 This is done only when optimizing; if not optimizing,
2319 it should be possible for the user to alter a variable
2320 with the debugger in between statements
2321 and the next statement should reexamine the variable
2322 to compute the condition codes. */
2324 if (optimize)
2326 if (set
2327 && GET_CODE (SET_DEST (set)) == CC0
2328 && insn != last_ignored_compare)
2330 if (GET_CODE (SET_SRC (set)) == SUBREG)
2331 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2332 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2334 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2335 XEXP (SET_SRC (set), 0)
2336 = alter_subreg (&XEXP (SET_SRC (set), 0));
2337 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2338 XEXP (SET_SRC (set), 1)
2339 = alter_subreg (&XEXP (SET_SRC (set), 1));
2341 if ((cc_status.value1 != 0
2342 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2343 || (cc_status.value2 != 0
2344 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2346 /* Don't delete insn if it has an addressing side-effect. */
2347 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2348 /* or if anything in it is volatile. */
2349 && ! volatile_refs_p (PATTERN (insn)))
2351 /* We don't really delete the insn; just ignore it. */
2352 last_ignored_compare = insn;
2353 break;
2358 #endif
2360 #ifdef HAVE_cc0
2361 /* If this is a conditional branch, maybe modify it
2362 if the cc's are in a nonstandard state
2363 so that it accomplishes the same thing that it would
2364 do straightforwardly if the cc's were set up normally. */
2366 if (cc_status.flags != 0
2367 && JUMP_P (insn)
2368 && GET_CODE (body) == SET
2369 && SET_DEST (body) == pc_rtx
2370 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2371 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2372 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2374 /* This function may alter the contents of its argument
2375 and clear some of the cc_status.flags bits.
2376 It may also return 1 meaning condition now always true
2377 or -1 meaning condition now always false
2378 or 2 meaning condition nontrivial but altered. */
2379 int result = alter_cond (XEXP (SET_SRC (body), 0));
2380 /* If condition now has fixed value, replace the IF_THEN_ELSE
2381 with its then-operand or its else-operand. */
2382 if (result == 1)
2383 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2384 if (result == -1)
2385 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2387 /* The jump is now either unconditional or a no-op.
2388 If it has become a no-op, don't try to output it.
2389 (It would not be recognized.) */
2390 if (SET_SRC (body) == pc_rtx)
2392 delete_insn (insn);
2393 break;
2395 else if (GET_CODE (SET_SRC (body)) == RETURN)
2396 /* Replace (set (pc) (return)) with (return). */
2397 PATTERN (insn) = body = SET_SRC (body);
2399 /* Rerecognize the instruction if it has changed. */
2400 if (result != 0)
2401 INSN_CODE (insn) = -1;
2404 /* If this is a conditional trap, maybe modify it if the cc's
2405 are in a nonstandard state so that it accomplishes the same
2406 thing that it would do straightforwardly if the cc's were
2407 set up normally. */
2408 if (cc_status.flags != 0
2409 && NONJUMP_INSN_P (insn)
2410 && GET_CODE (body) == TRAP_IF
2411 && COMPARISON_P (TRAP_CONDITION (body))
2412 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2414 /* This function may alter the contents of its argument
2415 and clear some of the cc_status.flags bits.
2416 It may also return 1 meaning condition now always true
2417 or -1 meaning condition now always false
2418 or 2 meaning condition nontrivial but altered. */
2419 int result = alter_cond (TRAP_CONDITION (body));
2421 /* If TRAP_CONDITION has become always false, delete the
2422 instruction. */
2423 if (result == -1)
2425 delete_insn (insn);
2426 break;
2429 /* If TRAP_CONDITION has become always true, replace
2430 TRAP_CONDITION with const_true_rtx. */
2431 if (result == 1)
2432 TRAP_CONDITION (body) = const_true_rtx;
2434 /* Rerecognize the instruction if it has changed. */
2435 if (result != 0)
2436 INSN_CODE (insn) = -1;
2439 /* Make same adjustments to instructions that examine the
2440 condition codes without jumping and instructions that
2441 handle conditional moves (if this machine has either one). */
2443 if (cc_status.flags != 0
2444 && set != 0)
2446 rtx cond_rtx, then_rtx, else_rtx;
2448 if (!JUMP_P (insn)
2449 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2451 cond_rtx = XEXP (SET_SRC (set), 0);
2452 then_rtx = XEXP (SET_SRC (set), 1);
2453 else_rtx = XEXP (SET_SRC (set), 2);
2455 else
2457 cond_rtx = SET_SRC (set);
2458 then_rtx = const_true_rtx;
2459 else_rtx = const0_rtx;
2462 switch (GET_CODE (cond_rtx))
2464 case GTU:
2465 case GT:
2466 case LTU:
2467 case LT:
2468 case GEU:
2469 case GE:
2470 case LEU:
2471 case LE:
2472 case EQ:
2473 case NE:
2475 int result;
2476 if (XEXP (cond_rtx, 0) != cc0_rtx)
2477 break;
2478 result = alter_cond (cond_rtx);
2479 if (result == 1)
2480 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2481 else if (result == -1)
2482 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2483 else if (result == 2)
2484 INSN_CODE (insn) = -1;
2485 if (SET_DEST (set) == SET_SRC (set))
2486 delete_insn (insn);
2488 break;
2490 default:
2491 break;
2495 #endif
2497 #ifdef HAVE_peephole
2498 /* Do machine-specific peephole optimizations if desired. */
2500 if (optimize && !flag_no_peephole && !nopeepholes)
2502 rtx next = peephole (insn);
2503 /* When peepholing, if there were notes within the peephole,
2504 emit them before the peephole. */
2505 if (next != 0 && next != NEXT_INSN (insn))
2507 rtx note, prev = PREV_INSN (insn);
2509 for (note = NEXT_INSN (insn); note != next;
2510 note = NEXT_INSN (note))
2511 final_scan_insn (note, file, optimize, nopeepholes, seen);
2513 /* Put the notes in the proper position for a later
2514 rescan. For example, the SH target can do this
2515 when generating a far jump in a delayed branch
2516 sequence. */
2517 note = NEXT_INSN (insn);
2518 PREV_INSN (note) = prev;
2519 NEXT_INSN (prev) = note;
2520 NEXT_INSN (PREV_INSN (next)) = insn;
2521 PREV_INSN (insn) = PREV_INSN (next);
2522 NEXT_INSN (insn) = next;
2523 PREV_INSN (next) = insn;
2526 /* PEEPHOLE might have changed this. */
2527 body = PATTERN (insn);
2529 #endif
2531 /* Try to recognize the instruction.
2532 If successful, verify that the operands satisfy the
2533 constraints for the instruction. Crash if they don't,
2534 since `reload' should have changed them so that they do. */
2536 insn_code_number = recog_memoized (insn);
2537 cleanup_subreg_operands (insn);
2539 /* Dump the insn in the assembly for debugging. */
2540 if (flag_dump_rtl_in_asm)
2542 print_rtx_head = ASM_COMMENT_START;
2543 print_rtl_single (asm_out_file, insn);
2544 print_rtx_head = "";
2547 if (! constrain_operands_cached (1))
2548 fatal_insn_not_found (insn);
2550 /* Some target machines need to prescan each insn before
2551 it is output. */
2553 #ifdef FINAL_PRESCAN_INSN
2554 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2555 #endif
2557 #ifdef HAVE_conditional_execution
2558 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2559 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2560 #endif
2562 #ifdef HAVE_cc0
2563 cc_prev_status = cc_status;
2565 /* Update `cc_status' for this instruction.
2566 The instruction's output routine may change it further.
2567 If the output routine for a jump insn needs to depend
2568 on the cc status, it should look at cc_prev_status. */
2570 NOTICE_UPDATE_CC (body, insn);
2571 #endif
2573 current_output_insn = debug_insn = insn;
2575 #if defined (DWARF2_UNWIND_INFO)
2576 if (CALL_P (insn) && dwarf2out_do_frame ())
2577 dwarf2out_frame_debug (insn, false);
2578 #endif
2580 /* Find the proper template for this insn. */
2581 template = get_insn_template (insn_code_number, insn);
2583 /* If the C code returns 0, it means that it is a jump insn
2584 which follows a deleted test insn, and that test insn
2585 needs to be reinserted. */
2586 if (template == 0)
2588 rtx prev;
2590 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2592 /* We have already processed the notes between the setter and
2593 the user. Make sure we don't process them again, this is
2594 particularly important if one of the notes is a block
2595 scope note or an EH note. */
2596 for (prev = insn;
2597 prev != last_ignored_compare;
2598 prev = PREV_INSN (prev))
2600 if (NOTE_P (prev))
2601 delete_insn (prev); /* Use delete_note. */
2604 return prev;
2607 /* If the template is the string "#", it means that this insn must
2608 be split. */
2609 if (template[0] == '#' && template[1] == '\0')
2611 rtx new = try_split (body, insn, 0);
2613 /* If we didn't split the insn, go away. */
2614 if (new == insn && PATTERN (new) == body)
2615 fatal_insn ("could not split insn", insn);
2617 #ifdef HAVE_ATTR_length
2618 /* This instruction should have been split in shorten_branches,
2619 to ensure that we would have valid length info for the
2620 splitees. */
2621 gcc_unreachable ();
2622 #endif
2624 return new;
2627 #ifdef TARGET_UNWIND_INFO
2628 /* ??? This will put the directives in the wrong place if
2629 get_insn_template outputs assembly directly. However calling it
2630 before get_insn_template breaks if the insns is split. */
2631 targetm.asm_out.unwind_emit (asm_out_file, insn);
2632 #endif
2634 /* Output assembler code from the template. */
2635 output_asm_insn (template, recog_data.operand);
2637 /* If necessary, report the effect that the instruction has on
2638 the unwind info. We've already done this for delay slots
2639 and call instructions. */
2640 #if defined (DWARF2_UNWIND_INFO)
2641 if (final_sequence == 0
2642 #if !defined (HAVE_prologue)
2643 && !ACCUMULATE_OUTGOING_ARGS
2644 #endif
2645 && dwarf2out_do_frame ())
2646 dwarf2out_frame_debug (insn, true);
2647 #endif
2649 current_output_insn = debug_insn = 0;
2652 return NEXT_INSN (insn);
2655 /* Return whether a source line note needs to be emitted before INSN. */
2657 static bool
2658 notice_source_line (rtx insn)
2660 const char *filename;
2661 int linenum;
2663 if (override_filename)
2665 filename = override_filename;
2666 linenum = override_linenum;
2668 else
2670 filename = insn_file (insn);
2671 linenum = insn_line (insn);
2674 if (filename
2675 && (force_source_line
2676 || filename != last_filename
2677 || last_linenum != linenum))
2679 force_source_line = false;
2680 last_filename = filename;
2681 last_linenum = linenum;
2682 high_block_linenum = MAX (last_linenum, high_block_linenum);
2683 high_function_linenum = MAX (last_linenum, high_function_linenum);
2684 return true;
2686 return false;
2689 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2690 directly to the desired hard register. */
2692 void
2693 cleanup_subreg_operands (rtx insn)
2695 int i;
2696 bool changed = false;
2697 extract_insn_cached (insn);
2698 for (i = 0; i < recog_data.n_operands; i++)
2700 /* The following test cannot use recog_data.operand when testing
2701 for a SUBREG: the underlying object might have been changed
2702 already if we are inside a match_operator expression that
2703 matches the else clause. Instead we test the underlying
2704 expression directly. */
2705 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2707 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2708 changed = true;
2710 else if (GET_CODE (recog_data.operand[i]) == PLUS
2711 || GET_CODE (recog_data.operand[i]) == MULT
2712 || MEM_P (recog_data.operand[i]))
2713 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2716 for (i = 0; i < recog_data.n_dups; i++)
2718 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2720 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2721 changed = true;
2723 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2724 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2725 || MEM_P (*recog_data.dup_loc[i]))
2726 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2728 if (changed)
2729 df_insn_rescan (insn);
2732 /* If X is a SUBREG, replace it with a REG or a MEM,
2733 based on the thing it is a subreg of. */
2736 alter_subreg (rtx *xp)
2738 rtx x = *xp;
2739 rtx y = SUBREG_REG (x);
2741 /* simplify_subreg does not remove subreg from volatile references.
2742 We are required to. */
2743 if (MEM_P (y))
2745 int offset = SUBREG_BYTE (x);
2747 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2748 contains 0 instead of the proper offset. See simplify_subreg. */
2749 if (offset == 0
2750 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2752 int difference = GET_MODE_SIZE (GET_MODE (y))
2753 - GET_MODE_SIZE (GET_MODE (x));
2754 if (WORDS_BIG_ENDIAN)
2755 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2756 if (BYTES_BIG_ENDIAN)
2757 offset += difference % UNITS_PER_WORD;
2760 *xp = adjust_address (y, GET_MODE (x), offset);
2762 else
2764 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2765 SUBREG_BYTE (x));
2767 if (new != 0)
2768 *xp = new;
2769 else if (REG_P (y))
2771 /* Simplify_subreg can't handle some REG cases, but we have to. */
2772 unsigned int regno;
2773 HOST_WIDE_INT offset;
2775 regno = subreg_regno (x);
2776 if (subreg_lowpart_p (x))
2777 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2778 else
2779 offset = SUBREG_BYTE (x);
2780 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2784 return *xp;
2787 /* Do alter_subreg on all the SUBREGs contained in X. */
2789 static rtx
2790 walk_alter_subreg (rtx *xp, bool *changed)
2792 rtx x = *xp;
2793 switch (GET_CODE (x))
2795 case PLUS:
2796 case MULT:
2797 case AND:
2798 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2799 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2800 break;
2802 case MEM:
2803 case ZERO_EXTEND:
2804 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2805 break;
2807 case SUBREG:
2808 *changed = true;
2809 return alter_subreg (xp);
2811 default:
2812 break;
2815 return *xp;
2818 #ifdef HAVE_cc0
2820 /* Given BODY, the body of a jump instruction, alter the jump condition
2821 as required by the bits that are set in cc_status.flags.
2822 Not all of the bits there can be handled at this level in all cases.
2824 The value is normally 0.
2825 1 means that the condition has become always true.
2826 -1 means that the condition has become always false.
2827 2 means that COND has been altered. */
2829 static int
2830 alter_cond (rtx cond)
2832 int value = 0;
2834 if (cc_status.flags & CC_REVERSED)
2836 value = 2;
2837 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2840 if (cc_status.flags & CC_INVERTED)
2842 value = 2;
2843 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2846 if (cc_status.flags & CC_NOT_POSITIVE)
2847 switch (GET_CODE (cond))
2849 case LE:
2850 case LEU:
2851 case GEU:
2852 /* Jump becomes unconditional. */
2853 return 1;
2855 case GT:
2856 case GTU:
2857 case LTU:
2858 /* Jump becomes no-op. */
2859 return -1;
2861 case GE:
2862 PUT_CODE (cond, EQ);
2863 value = 2;
2864 break;
2866 case LT:
2867 PUT_CODE (cond, NE);
2868 value = 2;
2869 break;
2871 default:
2872 break;
2875 if (cc_status.flags & CC_NOT_NEGATIVE)
2876 switch (GET_CODE (cond))
2878 case GE:
2879 case GEU:
2880 /* Jump becomes unconditional. */
2881 return 1;
2883 case LT:
2884 case LTU:
2885 /* Jump becomes no-op. */
2886 return -1;
2888 case LE:
2889 case LEU:
2890 PUT_CODE (cond, EQ);
2891 value = 2;
2892 break;
2894 case GT:
2895 case GTU:
2896 PUT_CODE (cond, NE);
2897 value = 2;
2898 break;
2900 default:
2901 break;
2904 if (cc_status.flags & CC_NO_OVERFLOW)
2905 switch (GET_CODE (cond))
2907 case GEU:
2908 /* Jump becomes unconditional. */
2909 return 1;
2911 case LEU:
2912 PUT_CODE (cond, EQ);
2913 value = 2;
2914 break;
2916 case GTU:
2917 PUT_CODE (cond, NE);
2918 value = 2;
2919 break;
2921 case LTU:
2922 /* Jump becomes no-op. */
2923 return -1;
2925 default:
2926 break;
2929 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2930 switch (GET_CODE (cond))
2932 default:
2933 gcc_unreachable ();
2935 case NE:
2936 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2937 value = 2;
2938 break;
2940 case EQ:
2941 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2942 value = 2;
2943 break;
2946 if (cc_status.flags & CC_NOT_SIGNED)
2947 /* The flags are valid if signed condition operators are converted
2948 to unsigned. */
2949 switch (GET_CODE (cond))
2951 case LE:
2952 PUT_CODE (cond, LEU);
2953 value = 2;
2954 break;
2956 case LT:
2957 PUT_CODE (cond, LTU);
2958 value = 2;
2959 break;
2961 case GT:
2962 PUT_CODE (cond, GTU);
2963 value = 2;
2964 break;
2966 case GE:
2967 PUT_CODE (cond, GEU);
2968 value = 2;
2969 break;
2971 default:
2972 break;
2975 return value;
2977 #endif
2979 /* Report inconsistency between the assembler template and the operands.
2980 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2982 void
2983 output_operand_lossage (const char *cmsgid, ...)
2985 char *fmt_string;
2986 char *new_message;
2987 const char *pfx_str;
2988 va_list ap;
2990 va_start (ap, cmsgid);
2992 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2993 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2994 vasprintf (&new_message, fmt_string, ap);
2996 if (this_is_asm_operands)
2997 error_for_asm (this_is_asm_operands, "%s", new_message);
2998 else
2999 internal_error ("%s", new_message);
3001 free (fmt_string);
3002 free (new_message);
3003 va_end (ap);
3006 /* Output of assembler code from a template, and its subroutines. */
3008 /* Annotate the assembly with a comment describing the pattern and
3009 alternative used. */
3011 static void
3012 output_asm_name (void)
3014 if (debug_insn)
3016 int num = INSN_CODE (debug_insn);
3017 fprintf (asm_out_file, "\t%s %d\t%s",
3018 ASM_COMMENT_START, INSN_UID (debug_insn),
3019 insn_data[num].name);
3020 if (insn_data[num].n_alternatives > 1)
3021 fprintf (asm_out_file, "/%d", which_alternative + 1);
3022 #ifdef HAVE_ATTR_length
3023 fprintf (asm_out_file, "\t[length = %d]",
3024 get_attr_length (debug_insn));
3025 #endif
3026 /* Clear this so only the first assembler insn
3027 of any rtl insn will get the special comment for -dp. */
3028 debug_insn = 0;
3032 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3033 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3034 corresponds to the address of the object and 0 if to the object. */
3036 static tree
3037 get_mem_expr_from_op (rtx op, int *paddressp)
3039 tree expr;
3040 int inner_addressp;
3042 *paddressp = 0;
3044 if (REG_P (op))
3045 return REG_EXPR (op);
3046 else if (!MEM_P (op))
3047 return 0;
3049 if (MEM_EXPR (op) != 0)
3050 return MEM_EXPR (op);
3052 /* Otherwise we have an address, so indicate it and look at the address. */
3053 *paddressp = 1;
3054 op = XEXP (op, 0);
3056 /* First check if we have a decl for the address, then look at the right side
3057 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3058 But don't allow the address to itself be indirect. */
3059 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3060 return expr;
3061 else if (GET_CODE (op) == PLUS
3062 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3063 return expr;
3065 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3066 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3067 op = XEXP (op, 0);
3069 expr = get_mem_expr_from_op (op, &inner_addressp);
3070 return inner_addressp ? 0 : expr;
3073 /* Output operand names for assembler instructions. OPERANDS is the
3074 operand vector, OPORDER is the order to write the operands, and NOPS
3075 is the number of operands to write. */
3077 static void
3078 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3080 int wrote = 0;
3081 int i;
3083 for (i = 0; i < nops; i++)
3085 int addressp;
3086 rtx op = operands[oporder[i]];
3087 tree expr = get_mem_expr_from_op (op, &addressp);
3089 fprintf (asm_out_file, "%c%s",
3090 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3091 wrote = 1;
3092 if (expr)
3094 fprintf (asm_out_file, "%s",
3095 addressp ? "*" : "");
3096 print_mem_expr (asm_out_file, expr);
3097 wrote = 1;
3099 else if (REG_P (op) && ORIGINAL_REGNO (op)
3100 && ORIGINAL_REGNO (op) != REGNO (op))
3101 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3105 /* Output text from TEMPLATE to the assembler output file,
3106 obeying %-directions to substitute operands taken from
3107 the vector OPERANDS.
3109 %N (for N a digit) means print operand N in usual manner.
3110 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3111 and print the label name with no punctuation.
3112 %cN means require operand N to be a constant
3113 and print the constant expression with no punctuation.
3114 %aN means expect operand N to be a memory address
3115 (not a memory reference!) and print a reference
3116 to that address.
3117 %nN means expect operand N to be a constant
3118 and print a constant expression for minus the value
3119 of the operand, with no other punctuation. */
3121 void
3122 output_asm_insn (const char *template, rtx *operands)
3124 const char *p;
3125 int c;
3126 #ifdef ASSEMBLER_DIALECT
3127 int dialect = 0;
3128 #endif
3129 int oporder[MAX_RECOG_OPERANDS];
3130 char opoutput[MAX_RECOG_OPERANDS];
3131 int ops = 0;
3133 /* An insn may return a null string template
3134 in a case where no assembler code is needed. */
3135 if (*template == 0)
3136 return;
3138 memset (opoutput, 0, sizeof opoutput);
3139 p = template;
3140 putc ('\t', asm_out_file);
3142 #ifdef ASM_OUTPUT_OPCODE
3143 ASM_OUTPUT_OPCODE (asm_out_file, p);
3144 #endif
3146 while ((c = *p++))
3147 switch (c)
3149 case '\n':
3150 if (flag_verbose_asm)
3151 output_asm_operand_names (operands, oporder, ops);
3152 if (flag_print_asm_name)
3153 output_asm_name ();
3155 ops = 0;
3156 memset (opoutput, 0, sizeof opoutput);
3158 putc (c, asm_out_file);
3159 #ifdef ASM_OUTPUT_OPCODE
3160 while ((c = *p) == '\t')
3162 putc (c, asm_out_file);
3163 p++;
3165 ASM_OUTPUT_OPCODE (asm_out_file, p);
3166 #endif
3167 break;
3169 #ifdef ASSEMBLER_DIALECT
3170 case '{':
3172 int i;
3174 if (dialect)
3175 output_operand_lossage ("nested assembly dialect alternatives");
3176 else
3177 dialect = 1;
3179 /* If we want the first dialect, do nothing. Otherwise, skip
3180 DIALECT_NUMBER of strings ending with '|'. */
3181 for (i = 0; i < dialect_number; i++)
3183 while (*p && *p != '}' && *p++ != '|')
3185 if (*p == '}')
3186 break;
3187 if (*p == '|')
3188 p++;
3191 if (*p == '\0')
3192 output_operand_lossage ("unterminated assembly dialect alternative");
3194 break;
3196 case '|':
3197 if (dialect)
3199 /* Skip to close brace. */
3202 if (*p == '\0')
3204 output_operand_lossage ("unterminated assembly dialect alternative");
3205 break;
3208 while (*p++ != '}');
3209 dialect = 0;
3211 else
3212 putc (c, asm_out_file);
3213 break;
3215 case '}':
3216 if (! dialect)
3217 putc (c, asm_out_file);
3218 dialect = 0;
3219 break;
3220 #endif
3222 case '%':
3223 /* %% outputs a single %. */
3224 if (*p == '%')
3226 p++;
3227 putc (c, asm_out_file);
3229 /* %= outputs a number which is unique to each insn in the entire
3230 compilation. This is useful for making local labels that are
3231 referred to more than once in a given insn. */
3232 else if (*p == '=')
3234 p++;
3235 fprintf (asm_out_file, "%d", insn_counter);
3237 /* % followed by a letter and some digits
3238 outputs an operand in a special way depending on the letter.
3239 Letters `acln' are implemented directly.
3240 Other letters are passed to `output_operand' so that
3241 the PRINT_OPERAND macro can define them. */
3242 else if (ISALPHA (*p))
3244 int letter = *p++;
3245 unsigned long opnum;
3246 char *endptr;
3248 opnum = strtoul (p, &endptr, 10);
3250 if (endptr == p)
3251 output_operand_lossage ("operand number missing "
3252 "after %%-letter");
3253 else if (this_is_asm_operands && opnum >= insn_noperands)
3254 output_operand_lossage ("operand number out of range");
3255 else if (letter == 'l')
3256 output_asm_label (operands[opnum]);
3257 else if (letter == 'a')
3258 output_address (operands[opnum]);
3259 else if (letter == 'c')
3261 if (CONSTANT_ADDRESS_P (operands[opnum]))
3262 output_addr_const (asm_out_file, operands[opnum]);
3263 else
3264 output_operand (operands[opnum], 'c');
3266 else if (letter == 'n')
3268 if (GET_CODE (operands[opnum]) == CONST_INT)
3269 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3270 - INTVAL (operands[opnum]));
3271 else
3273 putc ('-', asm_out_file);
3274 output_addr_const (asm_out_file, operands[opnum]);
3277 else
3278 output_operand (operands[opnum], letter);
3280 if (!opoutput[opnum])
3281 oporder[ops++] = opnum;
3282 opoutput[opnum] = 1;
3284 p = endptr;
3285 c = *p;
3287 /* % followed by a digit outputs an operand the default way. */
3288 else if (ISDIGIT (*p))
3290 unsigned long opnum;
3291 char *endptr;
3293 opnum = strtoul (p, &endptr, 10);
3294 if (this_is_asm_operands && opnum >= insn_noperands)
3295 output_operand_lossage ("operand number out of range");
3296 else
3297 output_operand (operands[opnum], 0);
3299 if (!opoutput[opnum])
3300 oporder[ops++] = opnum;
3301 opoutput[opnum] = 1;
3303 p = endptr;
3304 c = *p;
3306 /* % followed by punctuation: output something for that
3307 punctuation character alone, with no operand.
3308 The PRINT_OPERAND macro decides what is actually done. */
3309 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3310 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3311 output_operand (NULL_RTX, *p++);
3312 #endif
3313 else
3314 output_operand_lossage ("invalid %%-code");
3315 break;
3317 default:
3318 putc (c, asm_out_file);
3321 /* Write out the variable names for operands, if we know them. */
3322 if (flag_verbose_asm)
3323 output_asm_operand_names (operands, oporder, ops);
3324 if (flag_print_asm_name)
3325 output_asm_name ();
3327 putc ('\n', asm_out_file);
3330 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3332 void
3333 output_asm_label (rtx x)
3335 char buf[256];
3337 if (GET_CODE (x) == LABEL_REF)
3338 x = XEXP (x, 0);
3339 if (LABEL_P (x)
3340 || (NOTE_P (x)
3341 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3342 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3343 else
3344 output_operand_lossage ("'%%l' operand isn't a label");
3346 assemble_name (asm_out_file, buf);
3349 /* Print operand X using machine-dependent assembler syntax.
3350 The macro PRINT_OPERAND is defined just to control this function.
3351 CODE is a non-digit that preceded the operand-number in the % spec,
3352 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3353 between the % and the digits.
3354 When CODE is a non-letter, X is 0.
3356 The meanings of the letters are machine-dependent and controlled
3357 by PRINT_OPERAND. */
3359 static void
3360 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3362 if (x && GET_CODE (x) == SUBREG)
3363 x = alter_subreg (&x);
3365 /* X must not be a pseudo reg. */
3366 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3368 PRINT_OPERAND (asm_out_file, x, code);
3371 /* Print a memory reference operand for address X
3372 using machine-dependent assembler syntax.
3373 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3375 void
3376 output_address (rtx x)
3378 bool changed = false;
3379 walk_alter_subreg (&x, &changed);
3380 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3383 /* Print an integer constant expression in assembler syntax.
3384 Addition and subtraction are the only arithmetic
3385 that may appear in these expressions. */
3387 void
3388 output_addr_const (FILE *file, rtx x)
3390 char buf[256];
3392 restart:
3393 switch (GET_CODE (x))
3395 case PC:
3396 putc ('.', file);
3397 break;
3399 case SYMBOL_REF:
3400 if (SYMBOL_REF_DECL (x))
3401 mark_decl_referenced (SYMBOL_REF_DECL (x));
3402 #ifdef ASM_OUTPUT_SYMBOL_REF
3403 ASM_OUTPUT_SYMBOL_REF (file, x);
3404 #else
3405 assemble_name (file, XSTR (x, 0));
3406 #endif
3407 break;
3409 case LABEL_REF:
3410 x = XEXP (x, 0);
3411 /* Fall through. */
3412 case CODE_LABEL:
3413 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3414 #ifdef ASM_OUTPUT_LABEL_REF
3415 ASM_OUTPUT_LABEL_REF (file, buf);
3416 #else
3417 assemble_name (file, buf);
3418 #endif
3419 break;
3421 case CONST_INT:
3422 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3423 break;
3425 case CONST:
3426 /* This used to output parentheses around the expression,
3427 but that does not work on the 386 (either ATT or BSD assembler). */
3428 output_addr_const (file, XEXP (x, 0));
3429 break;
3431 case CONST_DOUBLE:
3432 if (GET_MODE (x) == VOIDmode)
3434 /* We can use %d if the number is one word and positive. */
3435 if (CONST_DOUBLE_HIGH (x))
3436 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3437 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3438 else if (CONST_DOUBLE_LOW (x) < 0)
3439 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3440 else
3441 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3443 else
3444 /* We can't handle floating point constants;
3445 PRINT_OPERAND must handle them. */
3446 output_operand_lossage ("floating constant misused");
3447 break;
3449 case CONST_FIXED:
3450 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_FIXED_VALUE_LOW (x));
3451 break;
3453 case PLUS:
3454 /* Some assemblers need integer constants to appear last (eg masm). */
3455 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3457 output_addr_const (file, XEXP (x, 1));
3458 if (INTVAL (XEXP (x, 0)) >= 0)
3459 fprintf (file, "+");
3460 output_addr_const (file, XEXP (x, 0));
3462 else
3464 output_addr_const (file, XEXP (x, 0));
3465 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3466 || INTVAL (XEXP (x, 1)) >= 0)
3467 fprintf (file, "+");
3468 output_addr_const (file, XEXP (x, 1));
3470 break;
3472 case MINUS:
3473 /* Avoid outputting things like x-x or x+5-x,
3474 since some assemblers can't handle that. */
3475 x = simplify_subtraction (x);
3476 if (GET_CODE (x) != MINUS)
3477 goto restart;
3479 output_addr_const (file, XEXP (x, 0));
3480 fprintf (file, "-");
3481 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3482 || GET_CODE (XEXP (x, 1)) == PC
3483 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3484 output_addr_const (file, XEXP (x, 1));
3485 else
3487 fputs (targetm.asm_out.open_paren, file);
3488 output_addr_const (file, XEXP (x, 1));
3489 fputs (targetm.asm_out.close_paren, file);
3491 break;
3493 case ZERO_EXTEND:
3494 case SIGN_EXTEND:
3495 case SUBREG:
3496 output_addr_const (file, XEXP (x, 0));
3497 break;
3499 default:
3500 #ifdef OUTPUT_ADDR_CONST_EXTRA
3501 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3502 break;
3504 fail:
3505 #endif
3506 output_operand_lossage ("invalid expression as operand");
3510 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3511 %R prints the value of REGISTER_PREFIX.
3512 %L prints the value of LOCAL_LABEL_PREFIX.
3513 %U prints the value of USER_LABEL_PREFIX.
3514 %I prints the value of IMMEDIATE_PREFIX.
3515 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3516 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3518 We handle alternate assembler dialects here, just like output_asm_insn. */
3520 void
3521 asm_fprintf (FILE *file, const char *p, ...)
3523 char buf[10];
3524 char *q, c;
3525 va_list argptr;
3527 va_start (argptr, p);
3529 buf[0] = '%';
3531 while ((c = *p++))
3532 switch (c)
3534 #ifdef ASSEMBLER_DIALECT
3535 case '{':
3537 int i;
3539 /* If we want the first dialect, do nothing. Otherwise, skip
3540 DIALECT_NUMBER of strings ending with '|'. */
3541 for (i = 0; i < dialect_number; i++)
3543 while (*p && *p++ != '|')
3546 if (*p == '|')
3547 p++;
3550 break;
3552 case '|':
3553 /* Skip to close brace. */
3554 while (*p && *p++ != '}')
3556 break;
3558 case '}':
3559 break;
3560 #endif
3562 case '%':
3563 c = *p++;
3564 q = &buf[1];
3565 while (strchr ("-+ #0", c))
3567 *q++ = c;
3568 c = *p++;
3570 while (ISDIGIT (c) || c == '.')
3572 *q++ = c;
3573 c = *p++;
3575 switch (c)
3577 case '%':
3578 putc ('%', file);
3579 break;
3581 case 'd': case 'i': case 'u':
3582 case 'x': case 'X': case 'o':
3583 case 'c':
3584 *q++ = c;
3585 *q = 0;
3586 fprintf (file, buf, va_arg (argptr, int));
3587 break;
3589 case 'w':
3590 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3591 'o' cases, but we do not check for those cases. It
3592 means that the value is a HOST_WIDE_INT, which may be
3593 either `long' or `long long'. */
3594 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3595 q += strlen (HOST_WIDE_INT_PRINT);
3596 *q++ = *p++;
3597 *q = 0;
3598 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3599 break;
3601 case 'l':
3602 *q++ = c;
3603 #ifdef HAVE_LONG_LONG
3604 if (*p == 'l')
3606 *q++ = *p++;
3607 *q++ = *p++;
3608 *q = 0;
3609 fprintf (file, buf, va_arg (argptr, long long));
3611 else
3612 #endif
3614 *q++ = *p++;
3615 *q = 0;
3616 fprintf (file, buf, va_arg (argptr, long));
3619 break;
3621 case 's':
3622 *q++ = c;
3623 *q = 0;
3624 fprintf (file, buf, va_arg (argptr, char *));
3625 break;
3627 case 'O':
3628 #ifdef ASM_OUTPUT_OPCODE
3629 ASM_OUTPUT_OPCODE (asm_out_file, p);
3630 #endif
3631 break;
3633 case 'R':
3634 #ifdef REGISTER_PREFIX
3635 fprintf (file, "%s", REGISTER_PREFIX);
3636 #endif
3637 break;
3639 case 'I':
3640 #ifdef IMMEDIATE_PREFIX
3641 fprintf (file, "%s", IMMEDIATE_PREFIX);
3642 #endif
3643 break;
3645 case 'L':
3646 #ifdef LOCAL_LABEL_PREFIX
3647 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3648 #endif
3649 break;
3651 case 'U':
3652 fputs (user_label_prefix, file);
3653 break;
3655 #ifdef ASM_FPRINTF_EXTENSIONS
3656 /* Uppercase letters are reserved for general use by asm_fprintf
3657 and so are not available to target specific code. In order to
3658 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3659 they are defined here. As they get turned into real extensions
3660 to asm_fprintf they should be removed from this list. */
3661 case 'A': case 'B': case 'C': case 'D': case 'E':
3662 case 'F': case 'G': case 'H': case 'J': case 'K':
3663 case 'M': case 'N': case 'P': case 'Q': case 'S':
3664 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3665 break;
3667 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3668 #endif
3669 default:
3670 gcc_unreachable ();
3672 break;
3674 default:
3675 putc (c, file);
3677 va_end (argptr);
3680 /* Split up a CONST_DOUBLE or integer constant rtx
3681 into two rtx's for single words,
3682 storing in *FIRST the word that comes first in memory in the target
3683 and in *SECOND the other. */
3685 void
3686 split_double (rtx value, rtx *first, rtx *second)
3688 if (GET_CODE (value) == CONST_INT)
3690 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3692 /* In this case the CONST_INT holds both target words.
3693 Extract the bits from it into two word-sized pieces.
3694 Sign extend each half to HOST_WIDE_INT. */
3695 unsigned HOST_WIDE_INT low, high;
3696 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3698 /* Set sign_bit to the most significant bit of a word. */
3699 sign_bit = 1;
3700 sign_bit <<= BITS_PER_WORD - 1;
3702 /* Set mask so that all bits of the word are set. We could
3703 have used 1 << BITS_PER_WORD instead of basing the
3704 calculation on sign_bit. However, on machines where
3705 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3706 compiler warning, even though the code would never be
3707 executed. */
3708 mask = sign_bit << 1;
3709 mask--;
3711 /* Set sign_extend as any remaining bits. */
3712 sign_extend = ~mask;
3714 /* Pick the lower word and sign-extend it. */
3715 low = INTVAL (value);
3716 low &= mask;
3717 if (low & sign_bit)
3718 low |= sign_extend;
3720 /* Pick the higher word, shifted to the least significant
3721 bits, and sign-extend it. */
3722 high = INTVAL (value);
3723 high >>= BITS_PER_WORD - 1;
3724 high >>= 1;
3725 high &= mask;
3726 if (high & sign_bit)
3727 high |= sign_extend;
3729 /* Store the words in the target machine order. */
3730 if (WORDS_BIG_ENDIAN)
3732 *first = GEN_INT (high);
3733 *second = GEN_INT (low);
3735 else
3737 *first = GEN_INT (low);
3738 *second = GEN_INT (high);
3741 else
3743 /* The rule for using CONST_INT for a wider mode
3744 is that we regard the value as signed.
3745 So sign-extend it. */
3746 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3747 if (WORDS_BIG_ENDIAN)
3749 *first = high;
3750 *second = value;
3752 else
3754 *first = value;
3755 *second = high;
3759 else if (GET_CODE (value) != CONST_DOUBLE)
3761 if (WORDS_BIG_ENDIAN)
3763 *first = const0_rtx;
3764 *second = value;
3766 else
3768 *first = value;
3769 *second = const0_rtx;
3772 else if (GET_MODE (value) == VOIDmode
3773 /* This is the old way we did CONST_DOUBLE integers. */
3774 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3776 /* In an integer, the words are defined as most and least significant.
3777 So order them by the target's convention. */
3778 if (WORDS_BIG_ENDIAN)
3780 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3781 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3783 else
3785 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3786 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3789 else
3791 REAL_VALUE_TYPE r;
3792 long l[2];
3793 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3795 /* Note, this converts the REAL_VALUE_TYPE to the target's
3796 format, splits up the floating point double and outputs
3797 exactly 32 bits of it into each of l[0] and l[1] --
3798 not necessarily BITS_PER_WORD bits. */
3799 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3801 /* If 32 bits is an entire word for the target, but not for the host,
3802 then sign-extend on the host so that the number will look the same
3803 way on the host that it would on the target. See for instance
3804 simplify_unary_operation. The #if is needed to avoid compiler
3805 warnings. */
3807 #if HOST_BITS_PER_LONG > 32
3808 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3810 if (l[0] & ((long) 1 << 31))
3811 l[0] |= ((long) (-1) << 32);
3812 if (l[1] & ((long) 1 << 31))
3813 l[1] |= ((long) (-1) << 32);
3815 #endif
3817 *first = GEN_INT (l[0]);
3818 *second = GEN_INT (l[1]);
3822 /* Return nonzero if this function has no function calls. */
3825 leaf_function_p (void)
3827 rtx insn;
3828 rtx link;
3830 if (current_function_profile || profile_arc_flag)
3831 return 0;
3833 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3835 if (CALL_P (insn)
3836 && ! SIBLING_CALL_P (insn))
3837 return 0;
3838 if (NONJUMP_INSN_P (insn)
3839 && GET_CODE (PATTERN (insn)) == SEQUENCE
3840 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3841 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3842 return 0;
3844 for (link = current_function_epilogue_delay_list;
3845 link;
3846 link = XEXP (link, 1))
3848 insn = XEXP (link, 0);
3850 if (CALL_P (insn)
3851 && ! SIBLING_CALL_P (insn))
3852 return 0;
3853 if (NONJUMP_INSN_P (insn)
3854 && GET_CODE (PATTERN (insn)) == SEQUENCE
3855 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3856 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3857 return 0;
3860 return 1;
3863 /* Return 1 if branch is a forward branch.
3864 Uses insn_shuid array, so it works only in the final pass. May be used by
3865 output templates to customary add branch prediction hints.
3868 final_forward_branch_p (rtx insn)
3870 int insn_id, label_id;
3872 gcc_assert (uid_shuid);
3873 insn_id = INSN_SHUID (insn);
3874 label_id = INSN_SHUID (JUMP_LABEL (insn));
3875 /* We've hit some insns that does not have id information available. */
3876 gcc_assert (insn_id && label_id);
3877 return insn_id < label_id;
3880 /* On some machines, a function with no call insns
3881 can run faster if it doesn't create its own register window.
3882 When output, the leaf function should use only the "output"
3883 registers. Ordinarily, the function would be compiled to use
3884 the "input" registers to find its arguments; it is a candidate
3885 for leaf treatment if it uses only the "input" registers.
3886 Leaf function treatment means renumbering so the function
3887 uses the "output" registers instead. */
3889 #ifdef LEAF_REGISTERS
3891 /* Return 1 if this function uses only the registers that can be
3892 safely renumbered. */
3895 only_leaf_regs_used (void)
3897 int i;
3898 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3900 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3901 if ((df_regs_ever_live_p (i) || global_regs[i])
3902 && ! permitted_reg_in_leaf_functions[i])
3903 return 0;
3905 if (current_function_uses_pic_offset_table
3906 && pic_offset_table_rtx != 0
3907 && REG_P (pic_offset_table_rtx)
3908 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3909 return 0;
3911 return 1;
3914 /* Scan all instructions and renumber all registers into those
3915 available in leaf functions. */
3917 static void
3918 leaf_renumber_regs (rtx first)
3920 rtx insn;
3922 /* Renumber only the actual patterns.
3923 The reg-notes can contain frame pointer refs,
3924 and renumbering them could crash, and should not be needed. */
3925 for (insn = first; insn; insn = NEXT_INSN (insn))
3926 if (INSN_P (insn))
3927 leaf_renumber_regs_insn (PATTERN (insn));
3928 for (insn = current_function_epilogue_delay_list;
3929 insn;
3930 insn = XEXP (insn, 1))
3931 if (INSN_P (XEXP (insn, 0)))
3932 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3935 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3936 available in leaf functions. */
3938 void
3939 leaf_renumber_regs_insn (rtx in_rtx)
3941 int i, j;
3942 const char *format_ptr;
3944 if (in_rtx == 0)
3945 return;
3947 /* Renumber all input-registers into output-registers.
3948 renumbered_regs would be 1 for an output-register;
3949 they */
3951 if (REG_P (in_rtx))
3953 int newreg;
3955 /* Don't renumber the same reg twice. */
3956 if (in_rtx->used)
3957 return;
3959 newreg = REGNO (in_rtx);
3960 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3961 to reach here as part of a REG_NOTE. */
3962 if (newreg >= FIRST_PSEUDO_REGISTER)
3964 in_rtx->used = 1;
3965 return;
3967 newreg = LEAF_REG_REMAP (newreg);
3968 gcc_assert (newreg >= 0);
3969 df_set_regs_ever_live (REGNO (in_rtx), false);
3970 df_set_regs_ever_live (newreg, true);
3971 SET_REGNO (in_rtx, newreg);
3972 in_rtx->used = 1;
3975 if (INSN_P (in_rtx))
3977 /* Inside a SEQUENCE, we find insns.
3978 Renumber just the patterns of these insns,
3979 just as we do for the top-level insns. */
3980 leaf_renumber_regs_insn (PATTERN (in_rtx));
3981 return;
3984 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3986 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3987 switch (*format_ptr++)
3989 case 'e':
3990 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3991 break;
3993 case 'E':
3994 if (NULL != XVEC (in_rtx, i))
3996 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3997 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3999 break;
4001 case 'S':
4002 case 's':
4003 case '0':
4004 case 'i':
4005 case 'w':
4006 case 'n':
4007 case 'u':
4008 break;
4010 default:
4011 gcc_unreachable ();
4014 #endif
4017 /* When -gused is used, emit debug info for only used symbols. But in
4018 addition to the standard intercepted debug_hooks there are some direct
4019 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4020 Those routines may also be called from a higher level intercepted routine. So
4021 to prevent recording data for an inner call to one of these for an intercept,
4022 we maintain an intercept nesting counter (debug_nesting). We only save the
4023 intercepted arguments if the nesting is 1. */
4024 int debug_nesting = 0;
4026 static tree *symbol_queue;
4027 int symbol_queue_index = 0;
4028 static int symbol_queue_size = 0;
4030 /* Generate the symbols for any queued up type symbols we encountered
4031 while generating the type info for some originally used symbol.
4032 This might generate additional entries in the queue. Only when
4033 the nesting depth goes to 0 is this routine called. */
4035 void
4036 debug_flush_symbol_queue (void)
4038 int i;
4040 /* Make sure that additionally queued items are not flushed
4041 prematurely. */
4043 ++debug_nesting;
4045 for (i = 0; i < symbol_queue_index; ++i)
4047 /* If we pushed queued symbols then such symbols must be
4048 output no matter what anyone else says. Specifically,
4049 we need to make sure dbxout_symbol() thinks the symbol was
4050 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4051 which may be set for outside reasons. */
4052 int saved_tree_used = TREE_USED (symbol_queue[i]);
4053 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4054 TREE_USED (symbol_queue[i]) = 1;
4055 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4057 #ifdef DBX_DEBUGGING_INFO
4058 dbxout_symbol (symbol_queue[i], 0);
4059 #endif
4061 TREE_USED (symbol_queue[i]) = saved_tree_used;
4062 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4065 symbol_queue_index = 0;
4066 --debug_nesting;
4069 /* Queue a type symbol needed as part of the definition of a decl
4070 symbol. These symbols are generated when debug_flush_symbol_queue()
4071 is called. */
4073 void
4074 debug_queue_symbol (tree decl)
4076 if (symbol_queue_index >= symbol_queue_size)
4078 symbol_queue_size += 10;
4079 symbol_queue = xrealloc (symbol_queue,
4080 symbol_queue_size * sizeof (tree));
4083 symbol_queue[symbol_queue_index++] = decl;
4086 /* Free symbol queue. */
4087 void
4088 debug_free_queue (void)
4090 if (symbol_queue)
4092 free (symbol_queue);
4093 symbol_queue = NULL;
4094 symbol_queue_size = 0;
4098 /* Turn the RTL into assembly. */
4099 static unsigned int
4100 rest_of_handle_final (void)
4102 rtx x;
4103 const char *fnname;
4105 /* Get the function's name, as described by its RTL. This may be
4106 different from the DECL_NAME name used in the source file. */
4108 x = DECL_RTL (current_function_decl);
4109 gcc_assert (MEM_P (x));
4110 x = XEXP (x, 0);
4111 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4112 fnname = XSTR (x, 0);
4114 assemble_start_function (current_function_decl, fnname);
4115 final_start_function (get_insns (), asm_out_file, optimize);
4116 final (get_insns (), asm_out_file, optimize);
4117 final_end_function ();
4119 #ifdef TARGET_UNWIND_INFO
4120 /* ??? The IA-64 ".handlerdata" directive must be issued before
4121 the ".endp" directive that closes the procedure descriptor. */
4122 output_function_exception_table (fnname);
4123 #endif
4125 assemble_end_function (current_function_decl, fnname);
4127 #ifndef TARGET_UNWIND_INFO
4128 /* Otherwise, it feels unclean to switch sections in the middle. */
4129 output_function_exception_table (fnname);
4130 #endif
4132 user_defined_section_attribute = false;
4134 /* Free up reg info memory. */
4135 free_reg_info ();
4137 if (! quiet_flag)
4138 fflush (asm_out_file);
4140 /* Write DBX symbols if requested. */
4142 /* Note that for those inline functions where we don't initially
4143 know for certain that we will be generating an out-of-line copy,
4144 the first invocation of this routine (rest_of_compilation) will
4145 skip over this code by doing a `goto exit_rest_of_compilation;'.
4146 Later on, wrapup_global_declarations will (indirectly) call
4147 rest_of_compilation again for those inline functions that need
4148 to have out-of-line copies generated. During that call, we
4149 *will* be routed past here. */
4151 timevar_push (TV_SYMOUT);
4152 (*debug_hooks->function_decl) (current_function_decl);
4153 timevar_pop (TV_SYMOUT);
4154 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4155 && targetm.have_ctors_dtors)
4156 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4157 decl_init_priority_lookup
4158 (current_function_decl));
4159 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4160 && targetm.have_ctors_dtors)
4161 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4162 decl_fini_priority_lookup
4163 (current_function_decl));
4164 return 0;
4167 struct tree_opt_pass pass_final =
4169 NULL, /* name */
4170 NULL, /* gate */
4171 rest_of_handle_final, /* execute */
4172 NULL, /* sub */
4173 NULL, /* next */
4174 0, /* static_pass_number */
4175 TV_FINAL, /* tv_id */
4176 0, /* properties_required */
4177 0, /* properties_provided */
4178 0, /* properties_destroyed */
4179 0, /* todo_flags_start */
4180 TODO_ggc_collect, /* todo_flags_finish */
4181 0 /* letter */
4185 static unsigned int
4186 rest_of_handle_shorten_branches (void)
4188 /* Shorten branches. */
4189 shorten_branches (get_insns ());
4190 return 0;
4193 struct tree_opt_pass pass_shorten_branches =
4195 "shorten", /* name */
4196 NULL, /* gate */
4197 rest_of_handle_shorten_branches, /* execute */
4198 NULL, /* sub */
4199 NULL, /* next */
4200 0, /* static_pass_number */
4201 TV_FINAL, /* tv_id */
4202 0, /* properties_required */
4203 0, /* properties_provided */
4204 0, /* properties_destroyed */
4205 0, /* todo_flags_start */
4206 TODO_dump_func, /* todo_flags_finish */
4207 0 /* letter */
4211 static unsigned int
4212 rest_of_clean_state (void)
4214 rtx insn, next;
4216 /* It is very important to decompose the RTL instruction chain here:
4217 debug information keeps pointing into CODE_LABEL insns inside the function
4218 body. If these remain pointing to the other insns, we end up preserving
4219 whole RTL chain and attached detailed debug info in memory. */
4220 for (insn = get_insns (); insn; insn = next)
4222 next = NEXT_INSN (insn);
4223 NEXT_INSN (insn) = NULL;
4224 PREV_INSN (insn) = NULL;
4227 /* In case the function was not output,
4228 don't leave any temporary anonymous types
4229 queued up for sdb output. */
4230 #ifdef SDB_DEBUGGING_INFO
4231 if (write_symbols == SDB_DEBUG)
4232 sdbout_types (NULL_TREE);
4233 #endif
4235 reload_completed = 0;
4236 epilogue_completed = 0;
4237 #ifdef STACK_REGS
4238 regstack_completed = 0;
4239 #endif
4241 /* Clear out the insn_length contents now that they are no
4242 longer valid. */
4243 init_insn_lengths ();
4245 /* Show no temporary slots allocated. */
4246 init_temp_slots ();
4248 free_bb_for_insn ();
4250 if (targetm.binds_local_p (current_function_decl))
4252 int pref = cfun->preferred_stack_boundary;
4253 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4254 pref = cfun->stack_alignment_needed;
4255 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4256 = pref;
4259 /* Make sure volatile mem refs aren't considered valid operands for
4260 arithmetic insns. We must call this here if this is a nested inline
4261 function, since the above code leaves us in the init_recog state,
4262 and the function context push/pop code does not save/restore volatile_ok.
4264 ??? Maybe it isn't necessary for expand_start_function to call this
4265 anymore if we do it here? */
4267 init_recog_no_volatile ();
4269 /* We're done with this function. Free up memory if we can. */
4270 free_after_parsing (cfun);
4271 free_after_compilation (cfun);
4272 return 0;
4275 struct tree_opt_pass pass_clean_state =
4277 NULL, /* name */
4278 NULL, /* gate */
4279 rest_of_clean_state, /* execute */
4280 NULL, /* sub */
4281 NULL, /* next */
4282 0, /* static_pass_number */
4283 TV_FINAL, /* tv_id */
4284 0, /* properties_required */
4285 0, /* properties_provided */
4286 PROP_rtl, /* properties_destroyed */
4287 0, /* todo_flags_start */
4288 0, /* todo_flags_finish */
4289 0 /* letter */