1 /* Conditional Dead Call Elimination pass for the GNU compiler.
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
30 #include "tree-pass.h"
34 /* Conditional dead call elimination
36 Some builtin functions can set errno on error conditions, but they
37 are otherwise pure. If the result of a call to such a function is
38 not used, the compiler can still not eliminate the call without
39 powerful interprocedural analysis to prove that the errno is not
40 checked. However, if the conditions under which the error occurs
41 are known, the compiler can conditionally dead code eliminate the
42 calls by shrink-wrapping the semi-dead calls into the error condition:
46 if (error_cond (args))
49 An actual simple example is :
50 log (x); // Mostly dead call
54 With this change, call to log (x) is effectively eliminated, as
55 in majority of the cases, log won't be called with x out of
56 range. The branch is totally predictable, so the branch cost
59 Note that library functions are not supposed to clear errno to zero without
60 error. See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
63 The condition wrapping the builtin call is conservatively set to avoid too
64 aggressive (wrong) shrink wrapping. The optimization is called conditional
65 dead call elimination because the call is eliminated under the condition
66 that the input arguments would not lead to domain or range error (for
67 instance when x <= 0 for a log (x) call), however the chances that the error
68 condition is hit is very low (those builtin calls which are conditionally
69 dead are usually part of the C++ abstraction penalty exposed after
73 /* A structure for representing input domain of
74 a function argument in integer. If the lower
75 bound is -inf, has_lb is set to false. If the
76 upper bound is +inf, has_ub is false.
77 is_lb_inclusive and is_ub_inclusive are flags
78 to indicate if lb and ub value are inclusive
81 typedef struct input_domain
91 /* A helper function to construct and return an input
92 domain object. LB is the lower bound, HAS_LB is
93 a boolean flag indicating if the lower bound exists,
94 and LB_INCLUSIVE is a boolean flag indicating if the
95 lower bound is inclusive or not. UB, HAS_UB, and
96 UB_INCLUSIVE have the same meaning, but for upper
97 bound of the domain. */
100 get_domain (int lb
, bool has_lb
, bool lb_inclusive
,
101 int ub
, bool has_ub
, bool ub_inclusive
)
105 domain
.has_lb
= has_lb
;
106 domain
.is_lb_inclusive
= lb_inclusive
;
108 domain
.has_ub
= has_ub
;
109 domain
.is_ub_inclusive
= ub_inclusive
;
113 /* A helper function to check the target format for the
114 argument type. In this implementation, only IEEE formats
115 are supported. ARG is the call argument to be checked.
116 Returns true if the format is supported. To support other
117 target formats, function get_no_error_domain needs to be
118 enhanced to have range bounds properly computed. Since
119 the check is cheap (very small number of candidates
120 to be checked), the result is not cached for each float type. */
123 check_target_format (tree arg
)
126 enum machine_mode mode
;
127 const struct real_format
*rfmt
;
129 type
= TREE_TYPE (arg
);
130 mode
= TYPE_MODE (type
);
131 rfmt
= REAL_MODE_FORMAT (mode
);
133 && (rfmt
== &ieee_single_format
|| rfmt
== &mips_single_format
134 || rfmt
== &motorola_single_format
))
136 && (rfmt
== &ieee_double_format
|| rfmt
== &mips_double_format
137 || rfmt
== &motorola_double_format
))
138 /* For long double, we can not really check XFmode
139 which is only defined on intel platforms.
140 Candidate pre-selection using builtin function
141 code guarantees that we are checking formats
142 for long double modes: double, quad, and extended. */
143 || (mode
!= SFmode
&& mode
!= DFmode
144 && (rfmt
== &ieee_quad_format
145 || rfmt
== &mips_quad_format
146 || rfmt
== &ieee_extended_motorola_format
147 || rfmt
== &ieee_extended_intel_96_format
148 || rfmt
== &ieee_extended_intel_128_format
149 || rfmt
== &ieee_extended_intel_96_round_53_format
)))
156 /* A helper function to help select calls to pow that are suitable for
157 conditional DCE transformation. It looks for pow calls that can be
158 guided with simple conditions. Such calls either have constant base
159 values or base values converted from integers. Returns true if
160 the pow call POW_CALL is a candidate. */
162 /* The maximum integer bit size for base argument of a pow call
163 that is suitable for shrink-wrapping transformation. */
164 #define MAX_BASE_INT_BIT_SIZE 32
167 check_pow (gimple pow_call
)
170 enum tree_code bc
, ec
;
172 if (gimple_call_num_args (pow_call
) != 2)
175 base
= gimple_call_arg (pow_call
, 0);
176 expn
= gimple_call_arg (pow_call
, 1);
178 if (!check_target_format (expn
))
181 bc
= TREE_CODE (base
);
182 ec
= TREE_CODE (expn
);
184 /* Folding candidates are not interesting.
185 Can actually assert that it is already folded. */
186 if (ec
== REAL_CST
&& bc
== REAL_CST
)
191 /* Only handle a fixed range of constant. */
193 REAL_VALUE_TYPE bcv
= TREE_REAL_CST (base
);
194 if (REAL_VALUES_EQUAL (bcv
, dconst1
))
196 if (REAL_VALUES_LESS (bcv
, dconst1
))
198 real_from_integer (&mv
, TYPE_MODE (TREE_TYPE (base
)), 256, 0, 1);
199 if (REAL_VALUES_LESS (mv
, bcv
))
203 else if (bc
== SSA_NAME
)
205 tree base_val0
, type
;
209 /* Only handles cases where base value is converted
210 from integer values. */
211 base_def
= SSA_NAME_DEF_STMT (base
);
212 if (gimple_code (base_def
) != GIMPLE_ASSIGN
)
215 if (gimple_assign_rhs_code (base_def
) != FLOAT_EXPR
)
217 base_val0
= gimple_assign_rhs1 (base_def
);
219 type
= TREE_TYPE (base_val0
);
220 if (TREE_CODE (type
) != INTEGER_TYPE
)
222 bit_sz
= TYPE_PRECISION (type
);
223 /* If the type of the base is too wide,
224 the resulting shrink wrapping condition
225 will be too conservative. */
226 if (bit_sz
> MAX_BASE_INT_BIT_SIZE
)
235 /* A helper function to help select candidate function calls that are
236 suitable for conditional DCE. Candidate functions must have single
237 valid input domain in this implementation except for pow (see check_pow).
238 Returns true if the function call is a candidate. */
241 check_builtin_call (gimple bcall
)
245 arg
= gimple_call_arg (bcall
, 0);
246 return check_target_format (arg
);
249 /* A helper function to determine if a builtin function call is a
250 candidate for conditional DCE. Returns true if the builtin call
254 is_call_dce_candidate (gimple call
)
257 enum built_in_function fnc
;
259 /* Only potentially dead calls are considered. */
260 if (gimple_call_lhs (call
))
263 fn
= gimple_call_fndecl (call
);
265 || !DECL_BUILT_IN (fn
)
266 || (DECL_BUILT_IN_CLASS (fn
) != BUILT_IN_NORMAL
))
269 fnc
= DECL_FUNCTION_CODE (fn
);
272 /* Trig functions. */
273 CASE_FLT_FN (BUILT_IN_ACOS
):
274 CASE_FLT_FN (BUILT_IN_ASIN
):
275 /* Hyperbolic functions. */
276 CASE_FLT_FN (BUILT_IN_ACOSH
):
277 CASE_FLT_FN (BUILT_IN_ATANH
):
278 CASE_FLT_FN (BUILT_IN_COSH
):
279 CASE_FLT_FN (BUILT_IN_SINH
):
281 CASE_FLT_FN (BUILT_IN_LOG
):
282 CASE_FLT_FN (BUILT_IN_LOG2
):
283 CASE_FLT_FN (BUILT_IN_LOG10
):
284 CASE_FLT_FN (BUILT_IN_LOG1P
):
286 CASE_FLT_FN (BUILT_IN_EXP
):
287 CASE_FLT_FN (BUILT_IN_EXP2
):
288 CASE_FLT_FN (BUILT_IN_EXP10
):
289 CASE_FLT_FN (BUILT_IN_EXPM1
):
290 CASE_FLT_FN (BUILT_IN_POW10
):
292 CASE_FLT_FN (BUILT_IN_SQRT
):
293 return check_builtin_call (call
);
294 /* Special one: two argument pow. */
296 return check_pow (call
);
305 /* A helper function to generate gimple statements for
306 one bound comparison. ARG is the call argument to
307 be compared with the bound, LBUB is the bound value
308 in integer, TCODE is the tree_code of the comparison,
309 TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
310 CONDS is a vector holding the produced GIMPLE statements,
311 and NCONDS points to the variable holding the number
312 of logical comparisons. CONDS is either empty or
313 a list ended with a null tree. */
316 gen_one_condition (tree arg
, int lbub
,
317 enum tree_code tcode
,
318 const char *temp_name1
,
319 const char *temp_name2
,
323 tree lbub_real_cst
, lbub_cst
, float_type
;
324 tree temp
, tempn
, tempc
, tempcn
;
325 gimple stmt1
, stmt2
, stmt3
;
327 float_type
= TREE_TYPE (arg
);
328 lbub_cst
= build_int_cst (integer_type_node
, lbub
);
329 lbub_real_cst
= build_real_from_int_cst (float_type
, lbub_cst
);
331 temp
= create_tmp_var (float_type
, temp_name1
);
332 stmt1
= gimple_build_assign (temp
, arg
);
333 tempn
= make_ssa_name (temp
, stmt1
);
334 gimple_assign_set_lhs (stmt1
, tempn
);
336 tempc
= create_tmp_var (boolean_type_node
, temp_name2
);
337 stmt2
= gimple_build_assign (tempc
,
340 tempn
, lbub_real_cst
));
341 tempcn
= make_ssa_name (tempc
, stmt2
);
342 gimple_assign_set_lhs (stmt2
, tempcn
);
344 stmt3
= gimple_build_cond_from_tree (tempcn
, NULL_TREE
, NULL_TREE
);
345 conds
.quick_push (stmt1
);
346 conds
.quick_push (stmt2
);
347 conds
.quick_push (stmt3
);
351 /* A helper function to generate GIMPLE statements for
352 out of input domain check. ARG is the call argument
353 to be runtime checked, DOMAIN holds the valid domain
354 for the given function, CONDS points to the vector
355 holding the result GIMPLE statements. *NCONDS is
356 the number of logical comparisons. This function
357 produces no more than two logical comparisons, one
358 for lower bound check, one for upper bound check. */
361 gen_conditions_for_domain (tree arg
, inp_domain domain
,
366 gen_one_condition (arg
, domain
.lb
,
367 (domain
.is_lb_inclusive
368 ? LT_EXPR
: LE_EXPR
),
369 "DCE_COND_LB", "DCE_COND_LB_TEST",
374 /* Now push a separator. */
376 conds
.quick_push (NULL
);
378 gen_one_condition (arg
, domain
.ub
,
379 (domain
.is_ub_inclusive
380 ? GT_EXPR
: GE_EXPR
),
381 "DCE_COND_UB", "DCE_COND_UB_TEST",
387 /* A helper function to generate condition
388 code for the y argument in call pow (some_const, y).
389 See candidate selection in check_pow. Since the
390 candidates' base values have a limited range,
391 the guarded code generated for y are simple:
394 Note max_y can be computed separately for each
395 const base, but in this implementation, we
396 choose to compute it using the max base
397 in the allowed range for the purpose of
398 simplicity. BASE is the constant base value,
399 EXPN is the expression for the exponent argument,
400 *CONDS is the vector to hold resulting statements,
401 and *NCONDS is the number of logical conditions. */
404 gen_conditions_for_pow_cst_base (tree base
, tree expn
,
408 inp_domain exp_domain
;
409 /* Validate the range of the base constant to make
410 sure it is consistent with check_pow. */
412 REAL_VALUE_TYPE bcv
= TREE_REAL_CST (base
);
413 gcc_assert (!REAL_VALUES_EQUAL (bcv
, dconst1
)
414 && !REAL_VALUES_LESS (bcv
, dconst1
));
415 real_from_integer (&mv
, TYPE_MODE (TREE_TYPE (base
)), 256, 0, 1);
416 gcc_assert (!REAL_VALUES_LESS (mv
, bcv
));
418 exp_domain
= get_domain (0, false, false,
421 gen_conditions_for_domain (expn
, exp_domain
,
425 /* Generate error condition code for pow calls with
426 non constant base values. The candidates selected
427 have their base argument value converted from
428 integer (see check_pow) value (1, 2, 4 bytes), and
429 the max exp value is computed based on the size
430 of the integer type (i.e. max possible base value).
431 The resulting input domain for exp argument is thus
432 conservative (smaller than the max value allowed by
433 the runtime value of the base). BASE is the integer
434 base value, EXPN is the expression for the exponent
435 argument, *CONDS is the vector to hold resulting
436 statements, and *NCONDS is the number of logical
440 gen_conditions_for_pow_int_base (tree base
, tree expn
,
451 inp_domain exp_domain
;
453 base_def
= SSA_NAME_DEF_STMT (base
);
454 base_val0
= gimple_assign_rhs1 (base_def
);
455 int_type
= TREE_TYPE (base_val0
);
456 bit_sz
= TYPE_PRECISION (int_type
);
457 gcc_assert (bit_sz
> 0
458 && bit_sz
<= MAX_BASE_INT_BIT_SIZE
);
460 /* Determine the max exp argument value according to
461 the size of the base integer. The max exp value
462 is conservatively estimated assuming IEEE754 double
466 else if (bit_sz
== 16)
470 gcc_assert (bit_sz
== MAX_BASE_INT_BIT_SIZE
);
474 /* For pow ((double)x, y), generate the following conditions:
481 if (temp2 > max_exp_real_cst) */
483 /* Generate condition in reverse order -- first
484 the condition for the exp argument. */
486 exp_domain
= get_domain (0, false, false,
487 max_exp
, true, true);
489 gen_conditions_for_domain (expn
, exp_domain
,
492 /* Now generate condition for the base argument.
493 Note it does not use the helper function
494 gen_conditions_for_domain because the base
497 /* Push a separator. */
498 conds
.quick_push (NULL
);
500 temp
= create_tmp_var (int_type
, "DCE_COND1");
501 cst0
= build_int_cst (int_type
, 0);
502 stmt1
= gimple_build_assign (temp
, base_val0
);
503 tempn
= make_ssa_name (temp
, stmt1
);
504 gimple_assign_set_lhs (stmt1
, tempn
);
505 stmt2
= gimple_build_cond (LE_EXPR
, tempn
, cst0
, NULL_TREE
, NULL_TREE
);
507 conds
.quick_push (stmt1
);
508 conds
.quick_push (stmt2
);
512 /* Method to generate conditional statements for guarding conditionally
513 dead calls to pow. One or more statements can be generated for
514 each logical condition. Statement groups of different conditions
515 are separated by a NULL tree and they are stored in the vec
516 conds. The number of logical conditions are stored in *nconds.
518 See C99 standard, 7.12.7.4:2, for description of pow (x, y).
519 The precise condition for domain errors are complex. In this
520 implementation, a simplified (but conservative) valid domain
521 for x and y are used: x is positive to avoid dom errors, while
522 y is smaller than a upper bound (depending on x) to avoid range
523 errors. Runtime code is generated to check x (if not constant)
524 and y against the valid domain. If it is out, jump to the call,
525 otherwise the call is bypassed. POW_CALL is the call statement,
526 *CONDS is a vector holding the resulting condition statements,
527 and *NCONDS is the number of logical conditions. */
530 gen_conditions_for_pow (gimple pow_call
, vec
<gimple
> conds
,
536 gcc_checking_assert (check_pow (pow_call
));
540 base
= gimple_call_arg (pow_call
, 0);
541 expn
= gimple_call_arg (pow_call
, 1);
543 bc
= TREE_CODE (base
);
546 gen_conditions_for_pow_cst_base (base
, expn
, conds
, nconds
);
547 else if (bc
== SSA_NAME
)
548 gen_conditions_for_pow_int_base (base
, expn
, conds
, nconds
);
553 /* A helper routine to help computing the valid input domain
554 for a builtin function. See C99 7.12.7 for details. In this
555 implementation, we only handle single region domain. The
556 resulting region can be conservative (smaller) than the actual
557 one and rounded to integers. Some of the bounds are documented
558 in the standard, while other limit constants are computed
559 assuming IEEE floating point format (for SF and DF modes).
560 Since IEEE only sets minimum requirements for long double format,
561 different long double formats exist under different implementations
562 (e.g, 64 bit double precision (DF), 80 bit double-extended
563 precision (XF), and 128 bit quad precision (QF) ). For simplicity,
564 in this implementation, the computed bounds for long double assume
565 64 bit format (DF), and are therefore conservative. Another
566 assumption is that single precision float type is always SF mode,
567 and double type is DF mode. This function is quite
568 implementation specific, so it may not be suitable to be part of
569 builtins.c. This needs to be revisited later to see if it can
570 be leveraged in x87 assembly expansion. */
573 get_no_error_domain (enum built_in_function fnc
)
577 /* Trig functions: return [-1, +1] */
578 CASE_FLT_FN (BUILT_IN_ACOS
):
579 CASE_FLT_FN (BUILT_IN_ASIN
):
580 return get_domain (-1, true, true,
582 /* Hyperbolic functions. */
583 CASE_FLT_FN (BUILT_IN_ACOSH
):
584 /* acosh: [1, +inf) */
585 return get_domain (1, true, true,
587 CASE_FLT_FN (BUILT_IN_ATANH
):
588 /* atanh: (-1, +1) */
589 return get_domain (-1, true, false,
593 /* coshf: (-89, +89) */
594 return get_domain (-89, true, false,
600 /* cosh: (-710, +710) */
601 return get_domain (-710, true, false,
603 /* Log functions: (0, +inf) */
604 CASE_FLT_FN (BUILT_IN_LOG
):
605 CASE_FLT_FN (BUILT_IN_LOG2
):
606 CASE_FLT_FN (BUILT_IN_LOG10
):
607 return get_domain (0, true, false,
609 CASE_FLT_FN (BUILT_IN_LOG1P
):
610 return get_domain (-1, true, false,
614 case BUILT_IN_EXPM1F
:
615 /* expf: (-inf, 88) */
616 return get_domain (-1, false, false,
621 case BUILT_IN_EXPM1L
:
622 /* exp: (-inf, 709) */
623 return get_domain (-1, false, false,
626 /* exp2f: (-inf, 128) */
627 return get_domain (-1, false, false,
631 /* exp2: (-inf, 1024) */
632 return get_domain (-1, false, false,
634 case BUILT_IN_EXP10F
:
635 case BUILT_IN_POW10F
:
636 /* exp10f: (-inf, 38) */
637 return get_domain (-1, false, false,
641 case BUILT_IN_EXP10L
:
642 case BUILT_IN_POW10L
:
643 /* exp10: (-inf, 308) */
644 return get_domain (-1, false, false,
646 /* sqrt: [0, +inf) */
647 CASE_FLT_FN (BUILT_IN_SQRT
):
648 return get_domain (0, true, true,
657 /* The function to generate shrink wrap conditions for a partially
658 dead builtin call whose return value is not used anywhere,
659 but has to be kept live due to potential error condition.
660 BI_CALL is the builtin call, CONDS is the vector of statements
661 for condition code, NCODES is the pointer to the number of
662 logical conditions. Statements belonging to different logical
663 condition are separated by NULL tree in the vector. */
666 gen_shrink_wrap_conditions (gimple bi_call
, vec
<gimple
> conds
,
667 unsigned int *nconds
)
671 enum built_in_function fnc
;
673 gcc_assert (nconds
&& conds
.exists ());
674 gcc_assert (conds
.length () == 0);
675 gcc_assert (is_gimple_call (bi_call
));
678 fn
= gimple_call_fndecl (call
);
679 gcc_assert (fn
&& DECL_BUILT_IN (fn
));
680 fnc
= DECL_FUNCTION_CODE (fn
);
683 if (fnc
== BUILT_IN_POW
)
684 gen_conditions_for_pow (call
, conds
, nconds
);
688 inp_domain domain
= get_no_error_domain (fnc
);
690 arg
= gimple_call_arg (bi_call
, 0);
691 gen_conditions_for_domain (arg
, domain
, conds
, nconds
);
698 /* Probability of the branch (to the call) is taken. */
699 #define ERR_PROB 0.01
701 /* The function to shrink wrap a partially dead builtin call
702 whose return value is not used anywhere, but has to be kept
703 live due to potential error condition. Returns true if the
704 transformation actually happens. */
707 shrink_wrap_one_built_in_call (gimple bi_call
)
709 gimple_stmt_iterator bi_call_bsi
;
710 basic_block bi_call_bb
, join_tgt_bb
, guard_bb
, guard_bb0
;
711 edge join_tgt_in_edge_from_call
, join_tgt_in_edge_fall_thru
;
712 edge bi_call_in_edge0
, guard_bb_in_edge
;
714 unsigned tn_cond_stmts
, nconds
;
716 gimple cond_expr
= NULL
;
717 gimple cond_expr_start
;
718 tree bi_call_label_decl
;
719 gimple bi_call_label
;
722 gen_shrink_wrap_conditions (bi_call
, conds
, &nconds
);
724 /* This can happen if the condition generator decides
725 it is not beneficial to do the transformation. Just
726 return false and do not do any transformation for
734 bi_call_bb
= gimple_bb (bi_call
);
736 /* Now find the join target bb -- split bi_call_bb if needed. */
737 if (stmt_ends_bb_p (bi_call
))
739 /* If the call must be the last in the bb, don't split the block,
740 it could e.g. have EH edges. */
741 join_tgt_in_edge_from_call
= find_fallthru_edge (bi_call_bb
->succs
);
742 if (join_tgt_in_edge_from_call
== NULL
)
749 join_tgt_in_edge_from_call
= split_block (bi_call_bb
, bi_call
);
751 bi_call_bsi
= gsi_for_stmt (bi_call
);
753 join_tgt_bb
= join_tgt_in_edge_from_call
->dest
;
755 /* Now it is time to insert the first conditional expression
756 into bi_call_bb and split this bb so that bi_call is
758 tn_cond_stmts
= conds
.length ();
760 cond_expr_start
= conds
[0];
761 for (ci
= 0; ci
< tn_cond_stmts
; ci
++)
763 gimple c
= conds
[ci
];
764 gcc_assert (c
|| ci
!= 0);
767 gsi_insert_before (&bi_call_bsi
, c
, GSI_SAME_STMT
);
772 gcc_assert (cond_expr
&& gimple_code (cond_expr
) == GIMPLE_COND
);
775 bi_call_label_decl
= create_artificial_label (gimple_location (bi_call
));
776 bi_call_label
= gimple_build_label (bi_call_label_decl
);
777 gsi_insert_before (&bi_call_bsi
, bi_call_label
, GSI_SAME_STMT
);
779 bi_call_in_edge0
= split_block (bi_call_bb
, cond_expr
);
780 bi_call_in_edge0
->flags
&= ~EDGE_FALLTHRU
;
781 bi_call_in_edge0
->flags
|= EDGE_TRUE_VALUE
;
782 guard_bb0
= bi_call_bb
;
783 bi_call_bb
= bi_call_in_edge0
->dest
;
784 join_tgt_in_edge_fall_thru
= make_edge (guard_bb0
, join_tgt_bb
,
787 bi_call_in_edge0
->probability
= REG_BR_PROB_BASE
* ERR_PROB
;
788 bi_call_in_edge0
->count
=
789 apply_probability (guard_bb0
->count
,
790 bi_call_in_edge0
->probability
);
791 join_tgt_in_edge_fall_thru
->probability
=
792 inverse_probability (bi_call_in_edge0
->probability
);
793 join_tgt_in_edge_fall_thru
->count
=
794 guard_bb0
->count
- bi_call_in_edge0
->count
;
796 /* Code generation for the rest of the conditions */
797 guard_bb
= guard_bb0
;
801 edge bi_call_in_edge
;
802 gimple_stmt_iterator guard_bsi
= gsi_for_stmt (cond_expr_start
);
804 cond_expr_start
= conds
[ci0
];
805 for (; ci
< tn_cond_stmts
; ci
++)
807 gimple c
= conds
[ci
];
808 gcc_assert (c
|| ci
!= ci0
);
811 gsi_insert_before (&guard_bsi
, c
, GSI_SAME_STMT
);
816 gcc_assert (cond_expr
&& gimple_code (cond_expr
) == GIMPLE_COND
);
817 guard_bb_in_edge
= split_block (guard_bb
, cond_expr
);
818 guard_bb_in_edge
->flags
&= ~EDGE_FALLTHRU
;
819 guard_bb_in_edge
->flags
|= EDGE_FALSE_VALUE
;
821 bi_call_in_edge
= make_edge (guard_bb
, bi_call_bb
, EDGE_TRUE_VALUE
);
823 bi_call_in_edge
->probability
= REG_BR_PROB_BASE
* ERR_PROB
;
824 bi_call_in_edge
->count
=
825 apply_probability (guard_bb
->count
,
826 bi_call_in_edge
->probability
);
827 guard_bb_in_edge
->probability
=
828 inverse_probability (bi_call_in_edge
->probability
);
829 guard_bb_in_edge
->count
= guard_bb
->count
- bi_call_in_edge
->count
;
833 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
836 loc
= gimple_location (bi_call
);
838 "%s:%d: note: function call is shrink-wrapped"
839 " into error conditions.\n",
840 LOCATION_FILE (loc
), LOCATION_LINE (loc
));
846 /* The top level function for conditional dead code shrink
847 wrapping transformation. */
850 shrink_wrap_conditional_dead_built_in_calls (vec
<gimple
> calls
)
852 bool changed
= false;
855 unsigned n
= calls
.length ();
861 gimple bi_call
= calls
[i
];
862 changed
|= shrink_wrap_one_built_in_call (bi_call
);
868 /* Pass entry points. */
871 tree_call_cdce (void)
874 gimple_stmt_iterator i
;
875 bool something_changed
= false;
876 vec
<gimple
> cond_dead_built_in_calls
= vNULL
;
879 /* Collect dead call candidates. */
880 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
882 gimple stmt
= gsi_stmt (i
);
883 if (is_gimple_call (stmt
)
884 && is_call_dce_candidate (stmt
))
886 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
888 fprintf (dump_file
, "Found conditional dead call: ");
889 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
890 fprintf (dump_file
, "\n");
892 if (!cond_dead_built_in_calls
.exists ())
893 cond_dead_built_in_calls
.create (64);
894 cond_dead_built_in_calls
.safe_push (stmt
);
899 if (!cond_dead_built_in_calls
.exists ())
903 = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls
);
905 cond_dead_built_in_calls
.release ();
907 if (something_changed
)
909 free_dominance_info (CDI_DOMINATORS
);
910 free_dominance_info (CDI_POST_DOMINATORS
);
911 /* As we introduced new control-flow we need to insert PHI-nodes
912 for the call-clobbers of the remaining call. */
913 mark_virtual_operands_for_renaming (cfun
);
914 return TODO_update_ssa
;
921 gate_call_cdce (void)
923 /* The limit constants used in the implementation
924 assume IEEE floating point format. Other formats
925 can be supported in the future if needed. */
926 return flag_tree_builtin_call_dce
!= 0 && optimize_function_for_speed_p (cfun
);
931 const pass_data pass_data_call_cdce
=
933 GIMPLE_PASS
, /* type */
935 OPTGROUP_NONE
, /* optinfo_flags */
937 true, /* has_execute */
938 TV_TREE_CALL_CDCE
, /* tv_id */
939 ( PROP_cfg
| PROP_ssa
), /* properties_required */
940 0, /* properties_provided */
941 0, /* properties_destroyed */
942 0, /* todo_flags_start */
943 TODO_verify_ssa
, /* todo_flags_finish */
946 class pass_call_cdce
: public gimple_opt_pass
949 pass_call_cdce (gcc::context
*ctxt
)
950 : gimple_opt_pass (pass_data_call_cdce
, ctxt
)
953 /* opt_pass methods: */
954 bool gate () { return gate_call_cdce (); }
955 unsigned int execute () { return tree_call_cdce (); }
957 }; // class pass_call_cdce
962 make_pass_call_cdce (gcc::context
*ctxt
)
964 return new pass_call_cdce (ctxt
);