Merge aosp-toolchain/gcc/gcc-4_9 changes.
[official-gcc.git] / gcc-4_9 / gcc / var-tracking.c
blob555344144a2073211244a82fae703cc9c8ddf699
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
909 free (stack);
910 return false;
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
922 free (stack);
923 return true;
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
944 /* Data for adjust_mems callback. */
946 struct adjust_mem_data
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
963 rtx subreg = (rtx) data;
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1017 /* Helper function for adjusting used MEMs. */
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1124 tem = loc;
1125 goto finish_subreg;
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1166 return NULL_RTX;
1169 /* Helper function for replacement of uses. */
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1179 /* Helper function for replacement of stores. */
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1184 if (MEM_P (loc))
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1200 static void
1201 adjust_insn (basic_block bb, rtx insn)
1203 struct adjust_mem_data amd;
1204 rtx set;
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1230 #endif
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1244 rtx body, set0;
1245 int i;
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1294 rtx note = find_reg_equal_equiv_note (insn);
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1300 if (amd.side_effects)
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1331 tree decl;
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1336 decl = dv_as_decl (dv);
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1348 tree decl;
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1356 decl = dv_as_decl (dv);
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1364 return NOT_ONEPART;
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1371 return onepart ? valvar_pool : var_pool;
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 pool_free (onepart_pool (var->onepart), var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list;
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1527 attrs n;
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1546 for (; src; src = src->next)
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1565 for (src = src2; src; src = src->next)
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573 /* Shared hashtable support. */
1575 /* Return true if VARS is shared. */
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1580 return vars->refcount > 1;
1583 /* Return the hash table for VARS. */
1585 static inline variable_table_type
1586 shared_hash_htab (shared_hash vars)
1588 return vars->htab;
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1601 /* Copy variables into a new hash table. */
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab.create (vars->htab.elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1615 /* Increment reference counter on VARS and return it. */
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1620 vars->refcount++;
1621 return vars;
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1633 vars->htab.dispose ();
1634 pool_free (shared_hash_pool, vars);
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1664 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1675 /* Return slot for DV only if it is already present in the hash table. */
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1681 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1696 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1721 static bool dst_can_be_shared;
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1729 variable new_var;
1730 int i;
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1743 for (i = 0; i < var->n_var_parts; i++)
1745 location_chain node;
1746 location_chain *nextp;
1748 if (i == 0 && var->onepart)
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1763 location_chain new_lc;
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1792 variable_def **cslot
1793 = changed_variables.find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv), NO_INSERT);
1795 gcc_assert (*cslot == (void *) var);
1796 var->in_changed_variables = false;
1797 variable_htab_free (var);
1798 *cslot = new_var;
1799 new_var->in_changed_variables = true;
1801 return slot;
1804 /* Copy all variables from hash table SRC to hash table DST. */
1806 static void
1807 vars_copy (variable_table_type dst, variable_table_type src)
1809 variable_iterator_type hi;
1810 variable var;
1812 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1814 variable_def **dstp;
1815 var->refcount++;
1816 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1817 *dstp = var;
1821 /* Map a decl to its main debug decl. */
1823 static inline tree
1824 var_debug_decl (tree decl)
1826 if (decl && TREE_CODE (decl) == VAR_DECL
1827 && DECL_HAS_DEBUG_EXPR_P (decl))
1829 tree debugdecl = DECL_DEBUG_EXPR (decl);
1830 if (DECL_P (debugdecl))
1831 decl = debugdecl;
1834 return decl;
1837 /* Set the register LOC to contain DV, OFFSET. */
1839 static void
1840 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1841 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1842 enum insert_option iopt)
1844 attrs node;
1845 bool decl_p = dv_is_decl_p (dv);
1847 if (decl_p)
1848 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1850 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1851 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1852 && node->offset == offset)
1853 break;
1854 if (!node)
1855 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1856 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1859 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1861 static void
1862 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1863 rtx set_src)
1865 tree decl = REG_EXPR (loc);
1866 HOST_WIDE_INT offset = REG_OFFSET (loc);
1868 var_reg_decl_set (set, loc, initialized,
1869 dv_from_decl (decl), offset, set_src, INSERT);
1872 static enum var_init_status
1873 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1875 variable var;
1876 int i;
1877 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1879 if (! flag_var_tracking_uninit)
1880 return VAR_INIT_STATUS_INITIALIZED;
1882 var = shared_hash_find (set->vars, dv);
1883 if (var)
1885 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1887 location_chain nextp;
1888 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1889 if (rtx_equal_p (nextp->loc, loc))
1891 ret_val = nextp->init;
1892 break;
1897 return ret_val;
1900 /* Delete current content of register LOC in dataflow set SET and set
1901 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1902 MODIFY is true, any other live copies of the same variable part are
1903 also deleted from the dataflow set, otherwise the variable part is
1904 assumed to be copied from another location holding the same
1905 part. */
1907 static void
1908 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1909 enum var_init_status initialized, rtx set_src)
1911 tree decl = REG_EXPR (loc);
1912 HOST_WIDE_INT offset = REG_OFFSET (loc);
1913 attrs node, next;
1914 attrs *nextp;
1916 decl = var_debug_decl (decl);
1918 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1919 initialized = get_init_value (set, loc, dv_from_decl (decl));
1921 nextp = &set->regs[REGNO (loc)];
1922 for (node = *nextp; node; node = next)
1924 next = node->next;
1925 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1927 delete_variable_part (set, node->loc, node->dv, node->offset);
1928 pool_free (attrs_pool, node);
1929 *nextp = next;
1931 else
1933 node->loc = loc;
1934 nextp = &node->next;
1937 if (modify)
1938 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1939 var_reg_set (set, loc, initialized, set_src);
1942 /* Delete the association of register LOC in dataflow set SET with any
1943 variables that aren't onepart. If CLOBBER is true, also delete any
1944 other live copies of the same variable part, and delete the
1945 association with onepart dvs too. */
1947 static void
1948 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1950 attrs *nextp = &set->regs[REGNO (loc)];
1951 attrs node, next;
1953 if (clobber)
1955 tree decl = REG_EXPR (loc);
1956 HOST_WIDE_INT offset = REG_OFFSET (loc);
1958 decl = var_debug_decl (decl);
1960 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1963 for (node = *nextp; node; node = next)
1965 next = node->next;
1966 if (clobber || !dv_onepart_p (node->dv))
1968 delete_variable_part (set, node->loc, node->dv, node->offset);
1969 pool_free (attrs_pool, node);
1970 *nextp = next;
1972 else
1973 nextp = &node->next;
1977 /* Delete content of register with number REGNO in dataflow set SET. */
1979 static void
1980 var_regno_delete (dataflow_set *set, int regno)
1982 attrs *reg = &set->regs[regno];
1983 attrs node, next;
1985 for (node = *reg; node; node = next)
1987 next = node->next;
1988 delete_variable_part (set, node->loc, node->dv, node->offset);
1989 pool_free (attrs_pool, node);
1991 *reg = NULL;
1994 /* Return true if I is the negated value of a power of two. */
1995 static bool
1996 negative_power_of_two_p (HOST_WIDE_INT i)
1998 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1999 return x == (x & -x);
2002 /* Strip constant offsets and alignments off of LOC. Return the base
2003 expression. */
2005 static rtx
2006 vt_get_canonicalize_base (rtx loc)
2008 while ((GET_CODE (loc) == PLUS
2009 || GET_CODE (loc) == AND)
2010 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2011 && (GET_CODE (loc) != AND
2012 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2013 loc = XEXP (loc, 0);
2015 return loc;
2018 /* This caches canonicalized addresses for VALUEs, computed using
2019 information in the global cselib table. */
2020 static struct pointer_map_t *global_get_addr_cache;
2022 /* This caches canonicalized addresses for VALUEs, computed using
2023 information from the global cache and information pertaining to a
2024 basic block being analyzed. */
2025 static struct pointer_map_t *local_get_addr_cache;
2027 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2029 /* Return the canonical address for LOC, that must be a VALUE, using a
2030 cached global equivalence or computing it and storing it in the
2031 global cache. */
2033 static rtx
2034 get_addr_from_global_cache (rtx const loc)
2036 rtx x;
2037 void **slot;
2039 gcc_checking_assert (GET_CODE (loc) == VALUE);
2041 slot = pointer_map_insert (global_get_addr_cache, loc);
2042 if (*slot)
2043 return (rtx)*slot;
2045 x = canon_rtx (get_addr (loc));
2047 /* Tentative, avoiding infinite recursion. */
2048 *slot = x;
2050 if (x != loc)
2052 rtx nx = vt_canonicalize_addr (NULL, x);
2053 if (nx != x)
2055 /* The table may have moved during recursion, recompute
2056 SLOT. */
2057 slot = pointer_map_contains (global_get_addr_cache, loc);
2058 *slot = x = nx;
2062 return x;
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066 cached local equivalence or computing it and storing it in the
2067 local cache. */
2069 static rtx
2070 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2072 rtx x;
2073 void **slot;
2074 decl_or_value dv;
2075 variable var;
2076 location_chain l;
2078 gcc_checking_assert (GET_CODE (loc) == VALUE);
2080 slot = pointer_map_insert (local_get_addr_cache, loc);
2081 if (*slot)
2082 return (rtx)*slot;
2084 x = get_addr_from_global_cache (loc);
2086 /* Tentative, avoiding infinite recursion. */
2087 *slot = x;
2089 /* Recurse to cache local expansion of X, or if we need to search
2090 for a VALUE in the expansion. */
2091 if (x != loc)
2093 rtx nx = vt_canonicalize_addr (set, x);
2094 if (nx != x)
2096 slot = pointer_map_contains (local_get_addr_cache, loc);
2097 *slot = x = nx;
2099 return x;
2102 dv = dv_from_rtx (x);
2103 var = shared_hash_find (set->vars, dv);
2104 if (!var)
2105 return x;
2107 /* Look for an improved equivalent expression. */
2108 for (l = var->var_part[0].loc_chain; l; l = l->next)
2110 rtx base = vt_get_canonicalize_base (l->loc);
2111 if (GET_CODE (base) == VALUE
2112 && canon_value_cmp (base, loc))
2114 rtx nx = vt_canonicalize_addr (set, l->loc);
2115 if (x != nx)
2117 slot = pointer_map_contains (local_get_addr_cache, loc);
2118 *slot = x = nx;
2120 break;
2124 return x;
2127 /* Canonicalize LOC using equivalences from SET in addition to those
2128 in the cselib static table. It expects a VALUE-based expression,
2129 and it will only substitute VALUEs with other VALUEs or
2130 function-global equivalences, so that, if two addresses have base
2131 VALUEs that are locally or globally related in ways that
2132 memrefs_conflict_p cares about, they will both canonicalize to
2133 expressions that have the same base VALUE.
2135 The use of VALUEs as canonical base addresses enables the canonical
2136 RTXs to remain unchanged globally, if they resolve to a constant,
2137 or throughout a basic block otherwise, so that they can be cached
2138 and the cache needs not be invalidated when REGs, MEMs or such
2139 change. */
2141 static rtx
2142 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2144 HOST_WIDE_INT ofst = 0;
2145 enum machine_mode mode = GET_MODE (oloc);
2146 rtx loc = oloc;
2147 rtx x;
2148 bool retry = true;
2150 while (retry)
2152 while (GET_CODE (loc) == PLUS
2153 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2155 ofst += INTVAL (XEXP (loc, 1));
2156 loc = XEXP (loc, 0);
2159 /* Alignment operations can't normally be combined, so just
2160 canonicalize the base and we're done. We'll normally have
2161 only one stack alignment anyway. */
2162 if (GET_CODE (loc) == AND
2163 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2164 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2166 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2167 if (x != XEXP (loc, 0))
2168 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2169 retry = false;
2172 if (GET_CODE (loc) == VALUE)
2174 if (set)
2175 loc = get_addr_from_local_cache (set, loc);
2176 else
2177 loc = get_addr_from_global_cache (loc);
2179 /* Consolidate plus_constants. */
2180 while (ofst && GET_CODE (loc) == PLUS
2181 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2183 ofst += INTVAL (XEXP (loc, 1));
2184 loc = XEXP (loc, 0);
2187 retry = false;
2189 else
2191 x = canon_rtx (loc);
2192 if (retry)
2193 retry = (x != loc);
2194 loc = x;
2198 /* Add OFST back in. */
2199 if (ofst)
2201 /* Don't build new RTL if we can help it. */
2202 if (GET_CODE (oloc) == PLUS
2203 && XEXP (oloc, 0) == loc
2204 && INTVAL (XEXP (oloc, 1)) == ofst)
2205 return oloc;
2207 loc = plus_constant (mode, loc, ofst);
2210 return loc;
2213 /* Return true iff there's a true dependence between MLOC and LOC.
2214 MADDR must be a canonicalized version of MLOC's address. */
2216 static inline bool
2217 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2219 if (GET_CODE (loc) != MEM)
2220 return false;
2222 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2223 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2224 return false;
2226 return true;
2229 /* Hold parameters for the hashtab traversal function
2230 drop_overlapping_mem_locs, see below. */
2232 struct overlapping_mems
2234 dataflow_set *set;
2235 rtx loc, addr;
2238 /* Remove all MEMs that overlap with COMS->LOC from the location list
2239 of a hash table entry for a value. COMS->ADDR must be a
2240 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2241 canonicalized itself. */
2244 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2246 dataflow_set *set = coms->set;
2247 rtx mloc = coms->loc, addr = coms->addr;
2248 variable var = *slot;
2250 if (var->onepart == ONEPART_VALUE)
2252 location_chain loc, *locp;
2253 bool changed = false;
2254 rtx cur_loc;
2256 gcc_assert (var->n_var_parts == 1);
2258 if (shared_var_p (var, set->vars))
2260 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2261 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2262 break;
2264 if (!loc)
2265 return 1;
2267 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2268 var = *slot;
2269 gcc_assert (var->n_var_parts == 1);
2272 if (VAR_LOC_1PAUX (var))
2273 cur_loc = VAR_LOC_FROM (var);
2274 else
2275 cur_loc = var->var_part[0].cur_loc;
2277 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2278 loc; loc = *locp)
2280 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2282 locp = &loc->next;
2283 continue;
2286 *locp = loc->next;
2287 /* If we have deleted the location which was last emitted
2288 we have to emit new location so add the variable to set
2289 of changed variables. */
2290 if (cur_loc == loc->loc)
2292 changed = true;
2293 var->var_part[0].cur_loc = NULL;
2294 if (VAR_LOC_1PAUX (var))
2295 VAR_LOC_FROM (var) = NULL;
2297 pool_free (loc_chain_pool, loc);
2300 if (!var->var_part[0].loc_chain)
2302 var->n_var_parts--;
2303 changed = true;
2305 if (changed)
2306 variable_was_changed (var, set);
2309 return 1;
2312 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2314 static void
2315 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2317 struct overlapping_mems coms;
2319 gcc_checking_assert (GET_CODE (loc) == MEM);
2321 coms.set = set;
2322 coms.loc = canon_rtx (loc);
2323 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2325 set->traversed_vars = set->vars;
2326 shared_hash_htab (set->vars)
2327 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2328 set->traversed_vars = NULL;
2331 /* Set the location of DV, OFFSET as the MEM LOC. */
2333 static void
2334 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2335 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2336 enum insert_option iopt)
2338 if (dv_is_decl_p (dv))
2339 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2341 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2344 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2345 SET to LOC.
2346 Adjust the address first if it is stack pointer based. */
2348 static void
2349 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2350 rtx set_src)
2352 tree decl = MEM_EXPR (loc);
2353 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2355 var_mem_decl_set (set, loc, initialized,
2356 dv_from_decl (decl), offset, set_src, INSERT);
2359 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2360 dataflow set SET to LOC. If MODIFY is true, any other live copies
2361 of the same variable part are also deleted from the dataflow set,
2362 otherwise the variable part is assumed to be copied from another
2363 location holding the same part.
2364 Adjust the address first if it is stack pointer based. */
2366 static void
2367 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2368 enum var_init_status initialized, rtx set_src)
2370 tree decl = MEM_EXPR (loc);
2371 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2373 clobber_overlapping_mems (set, loc);
2374 decl = var_debug_decl (decl);
2376 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2377 initialized = get_init_value (set, loc, dv_from_decl (decl));
2379 if (modify)
2380 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2381 var_mem_set (set, loc, initialized, set_src);
2384 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2385 true, also delete any other live copies of the same variable part.
2386 Adjust the address first if it is stack pointer based. */
2388 static void
2389 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2391 tree decl = MEM_EXPR (loc);
2392 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2394 clobber_overlapping_mems (set, loc);
2395 decl = var_debug_decl (decl);
2396 if (clobber)
2397 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2398 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2401 /* Return true if LOC should not be expanded for location expressions,
2402 or used in them. */
2404 static inline bool
2405 unsuitable_loc (rtx loc)
2407 switch (GET_CODE (loc))
2409 case PC:
2410 case SCRATCH:
2411 case CC0:
2412 case ASM_INPUT:
2413 case ASM_OPERANDS:
2414 return true;
2416 default:
2417 return false;
2421 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2422 bound to it. */
2424 static inline void
2425 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2427 if (REG_P (loc))
2429 if (modified)
2430 var_regno_delete (set, REGNO (loc));
2431 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2432 dv_from_value (val), 0, NULL_RTX, INSERT);
2434 else if (MEM_P (loc))
2436 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2438 if (modified)
2439 clobber_overlapping_mems (set, loc);
2441 if (l && GET_CODE (l->loc) == VALUE)
2442 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2444 /* If this MEM is a global constant, we don't need it in the
2445 dynamic tables. ??? We should test this before emitting the
2446 micro-op in the first place. */
2447 while (l)
2448 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2449 break;
2450 else
2451 l = l->next;
2453 if (!l)
2454 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2455 dv_from_value (val), 0, NULL_RTX, INSERT);
2457 else
2459 /* Other kinds of equivalences are necessarily static, at least
2460 so long as we do not perform substitutions while merging
2461 expressions. */
2462 gcc_unreachable ();
2463 set_variable_part (set, loc, dv_from_value (val), 0,
2464 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2468 /* Bind a value to a location it was just stored in. If MODIFIED
2469 holds, assume the location was modified, detaching it from any
2470 values bound to it. */
2472 static void
2473 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2475 cselib_val *v = CSELIB_VAL_PTR (val);
2477 gcc_assert (cselib_preserved_value_p (v));
2479 if (dump_file)
2481 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2482 print_inline_rtx (dump_file, loc, 0);
2483 fprintf (dump_file, " evaluates to ");
2484 print_inline_rtx (dump_file, val, 0);
2485 if (v->locs)
2487 struct elt_loc_list *l;
2488 for (l = v->locs; l; l = l->next)
2490 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2491 print_inline_rtx (dump_file, l->loc, 0);
2494 fprintf (dump_file, "\n");
2497 gcc_checking_assert (!unsuitable_loc (loc));
2499 val_bind (set, val, loc, modified);
2502 /* Clear (canonical address) slots that reference X. */
2504 static bool
2505 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2506 void **slot, void *x)
2508 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2509 *slot = NULL;
2510 return true;
2513 /* Reset this node, detaching all its equivalences. Return the slot
2514 in the variable hash table that holds dv, if there is one. */
2516 static void
2517 val_reset (dataflow_set *set, decl_or_value dv)
2519 variable var = shared_hash_find (set->vars, dv) ;
2520 location_chain node;
2521 rtx cval;
2523 if (!var || !var->n_var_parts)
2524 return;
2526 gcc_assert (var->n_var_parts == 1);
2528 if (var->onepart == ONEPART_VALUE)
2530 rtx x = dv_as_value (dv);
2531 void **slot;
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 slot = pointer_map_contains (local_get_addr_cache, x);
2536 if (slot)
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2543 if (*slot == x)
2544 pointer_map_traverse (local_get_addr_cache,
2545 local_get_addr_clear_given_value, x);
2546 *slot = NULL;
2550 cval = NULL;
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE
2553 && canon_value_cmp (node->loc, cval))
2554 cval = node->loc;
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2561 itself. */
2562 if (cval)
2563 set_variable_part (set, cval, dv_from_value (node->loc),
2564 0, node->init, node->set_src, NO_INSERT);
2565 delete_variable_part (set, dv_as_value (dv),
2566 dv_from_value (node->loc), 0);
2569 if (cval)
2571 decl_or_value cdv = dv_from_value (cval);
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node = var->var_part[0].loc_chain; node; node = node->next)
2577 if (node->loc == cval)
2578 continue;
2579 else if (GET_CODE (node->loc) == REG)
2580 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2581 node->set_src, NO_INSERT);
2582 else if (GET_CODE (node->loc) == MEM)
2583 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2584 node->set_src, NO_INSERT);
2585 else
2586 set_variable_part (set, node->loc, cdv, 0,
2587 node->init, node->set_src, NO_INSERT);
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2593 if (cval)
2594 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2596 clobber_variable_part (set, NULL, dv, 0, NULL);
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2601 value. */
2603 static void
2604 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2606 decl_or_value dv = dv_from_value (val);
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2610 if (insn)
2611 fprintf (dump_file, "%i: ", INSN_UID (insn));
2612 else
2613 fprintf (dump_file, "head: ");
2614 print_inline_rtx (dump_file, val, 0);
2615 fputs (" is at ", dump_file);
2616 print_inline_rtx (dump_file, loc, 0);
2617 fputc ('\n', dump_file);
2620 val_reset (set, dv);
2622 gcc_checking_assert (!unsuitable_loc (loc));
2624 if (REG_P (loc))
2626 attrs node, found = NULL;
2628 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2629 if (dv_is_value_p (node->dv)
2630 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2632 found = node;
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2637 such. */
2638 set_variable_part (set, dv_as_value (node->dv),
2639 dv_from_value (val), node->offset,
2640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 set_variable_part (set, val, node->dv, node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2647 if (found)
2648 return;
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2651 expressions too. */
2653 val_bind (set, val, loc, false);
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2659 static void
2660 dataflow_set_init (dataflow_set *set)
2662 init_attrs_list_set (set->regs);
2663 set->vars = shared_hash_copy (empty_shared_hash);
2664 set->stack_adjust = 0;
2665 set->traversed_vars = NULL;
2668 /* Delete the contents of dataflow set SET. */
2670 static void
2671 dataflow_set_clear (dataflow_set *set)
2673 int i;
2675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2676 attrs_list_clear (&set->regs[i]);
2678 shared_hash_destroy (set->vars);
2679 set->vars = shared_hash_copy (empty_shared_hash);
2682 /* Copy the contents of dataflow set SRC to DST. */
2684 static void
2685 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2687 int i;
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_copy (&dst->regs[i], src->regs[i]);
2692 shared_hash_destroy (dst->vars);
2693 dst->vars = shared_hash_copy (src->vars);
2694 dst->stack_adjust = src->stack_adjust;
2697 /* Information for merging lists of locations for a given offset of variable.
2699 struct variable_union_info
2701 /* Node of the location chain. */
2702 location_chain lc;
2704 /* The sum of positions in the input chains. */
2705 int pos;
2707 /* The position in the chain of DST dataflow set. */
2708 int pos_dst;
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info *vui_vec;
2713 static int vui_allocated;
2715 /* Compare function for qsort, order the structures by POS element. */
2717 static int
2718 variable_union_info_cmp_pos (const void *n1, const void *n2)
2720 const struct variable_union_info *const i1 =
2721 (const struct variable_union_info *) n1;
2722 const struct variable_union_info *const i2 =
2723 ( const struct variable_union_info *) n2;
2725 if (i1->pos != i2->pos)
2726 return i1->pos - i2->pos;
2728 return (i1->pos_dst - i2->pos_dst);
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2741 static int
2742 variable_union (variable src, dataflow_set *set)
2744 variable dst;
2745 variable_def **dstp;
2746 int i, j, k;
2748 dstp = shared_hash_find_slot (set->vars, src->dv);
2749 if (!dstp || !*dstp)
2751 src->refcount++;
2753 dst_can_be_shared = false;
2754 if (!dstp)
2755 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2757 *dstp = src;
2759 /* Continue traversing the hash table. */
2760 return 1;
2762 else
2763 dst = *dstp;
2765 gcc_assert (src->n_var_parts);
2766 gcc_checking_assert (src->onepart == dst->onepart);
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2770 if (src->onepart)
2772 location_chain *nodep, dnode, snode;
2774 gcc_assert (src->n_var_parts == 1
2775 && dst->n_var_parts == 1);
2777 snode = src->var_part[0].loc_chain;
2778 gcc_assert (snode);
2780 restart_onepart_unshared:
2781 nodep = &dst->var_part[0].loc_chain;
2782 dnode = *nodep;
2783 gcc_assert (dnode);
2785 while (snode)
2787 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2789 if (r > 0)
2791 location_chain nnode;
2793 if (shared_var_p (dst, set->vars))
2795 dstp = unshare_variable (set, dstp, dst,
2796 VAR_INIT_STATUS_INITIALIZED);
2797 dst = *dstp;
2798 goto restart_onepart_unshared;
2801 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2802 nnode->loc = snode->loc;
2803 nnode->init = snode->init;
2804 if (!snode->set_src || MEM_P (snode->set_src))
2805 nnode->set_src = NULL;
2806 else
2807 nnode->set_src = snode->set_src;
2808 nnode->next = dnode;
2809 dnode = nnode;
2811 else if (r == 0)
2812 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2814 if (r >= 0)
2815 snode = snode->next;
2817 nodep = &dnode->next;
2818 dnode = *nodep;
2821 return 1;
2824 gcc_checking_assert (!src->onepart);
2826 /* Count the number of location parts, result is K. */
2827 for (i = 0, j = 0, k = 0;
2828 i < src->n_var_parts && j < dst->n_var_parts; k++)
2830 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2832 i++;
2833 j++;
2835 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2836 i++;
2837 else
2838 j++;
2840 k += src->n_var_parts - i;
2841 k += dst->n_var_parts - j;
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2847 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2849 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2850 dst = *dstp;
2853 i = src->n_var_parts - 1;
2854 j = dst->n_var_parts - 1;
2855 dst->n_var_parts = k;
2857 for (k--; k >= 0; k--)
2859 location_chain node, node2;
2861 if (i >= 0 && j >= 0
2862 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2867 int dst_l, src_l;
2868 int ii, jj, n;
2869 struct variable_union_info *vui;
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst, set->vars))
2876 for (node = src->var_part[i].loc_chain,
2877 node2 = dst->var_part[j].loc_chain; node && node2;
2878 node = node->next, node2 = node2->next)
2880 if (!((REG_P (node2->loc)
2881 && REG_P (node->loc)
2882 && REGNO (node2->loc) == REGNO (node->loc))
2883 || rtx_equal_p (node2->loc, node->loc)))
2885 if (node2->init < node->init)
2886 node2->init = node->init;
2887 break;
2890 if (node || node2)
2892 dstp = unshare_variable (set, dstp, dst,
2893 VAR_INIT_STATUS_UNKNOWN);
2894 dst = (variable)*dstp;
2898 src_l = 0;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 src_l++;
2901 dst_l = 0;
2902 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2903 dst_l++;
2905 if (dst_l == 1)
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode = dst->var_part[j].loc_chain;
2909 dst->var_part[k].loc_chain = dstnode;
2910 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2911 node2 = dstnode;
2912 for (node = src->var_part[i].loc_chain; node; node = node->next)
2913 if (!((REG_P (dstnode->loc)
2914 && REG_P (node->loc)
2915 && REGNO (dstnode->loc) == REGNO (node->loc))
2916 || rtx_equal_p (dstnode->loc, node->loc)))
2918 location_chain new_node;
2920 /* Copy the location from SRC. */
2921 new_node = (location_chain) pool_alloc (loc_chain_pool);
2922 new_node->loc = node->loc;
2923 new_node->init = node->init;
2924 if (!node->set_src || MEM_P (node->set_src))
2925 new_node->set_src = NULL;
2926 else
2927 new_node->set_src = node->set_src;
2928 node2->next = new_node;
2929 node2 = new_node;
2931 node2->next = NULL;
2933 else
2935 if (src_l + dst_l > vui_allocated)
2937 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2938 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2939 vui_allocated);
2941 vui = vui_vec;
2943 /* Fill in the locations from DST. */
2944 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2945 node = node->next, jj++)
2947 vui[jj].lc = node;
2948 vui[jj].pos_dst = jj;
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui[jj].pos = jj + src_l + dst_l;
2954 /* Fill in the locations from SRC. */
2955 n = dst_l;
2956 for (node = src->var_part[i].loc_chain, ii = 0; node;
2957 node = node->next, ii++)
2959 /* Find location from NODE. */
2960 for (jj = 0; jj < dst_l; jj++)
2962 if ((REG_P (vui[jj].lc->loc)
2963 && REG_P (node->loc)
2964 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2965 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2967 vui[jj].pos = jj + ii;
2968 break;
2971 if (jj >= dst_l) /* The location has not been found. */
2973 location_chain new_node;
2975 /* Copy the location from SRC. */
2976 new_node = (location_chain) pool_alloc (loc_chain_pool);
2977 new_node->loc = node->loc;
2978 new_node->init = node->init;
2979 if (!node->set_src || MEM_P (node->set_src))
2980 new_node->set_src = NULL;
2981 else
2982 new_node->set_src = node->set_src;
2983 vui[n].lc = new_node;
2984 vui[n].pos_dst = src_l + dst_l;
2985 vui[n].pos = ii + src_l + dst_l;
2986 n++;
2990 if (dst_l == 2)
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui[0].pos > vui[1].pos)
2997 /* Order should be 1, 0, 2... */
2998 dst->var_part[k].loc_chain = vui[1].lc;
2999 vui[1].lc->next = vui[0].lc;
3000 if (n >= 3)
3002 vui[0].lc->next = vui[2].lc;
3003 vui[n - 1].lc->next = NULL;
3005 else
3006 vui[0].lc->next = NULL;
3007 ii = 3;
3009 else
3011 dst->var_part[k].loc_chain = vui[0].lc;
3012 if (n >= 3 && vui[2].pos < vui[1].pos)
3014 /* Order should be 0, 2, 1, 3... */
3015 vui[0].lc->next = vui[2].lc;
3016 vui[2].lc->next = vui[1].lc;
3017 if (n >= 4)
3019 vui[1].lc->next = vui[3].lc;
3020 vui[n - 1].lc->next = NULL;
3022 else
3023 vui[1].lc->next = NULL;
3024 ii = 4;
3026 else
3028 /* Order should be 0, 1, 2... */
3029 ii = 1;
3030 vui[n - 1].lc->next = NULL;
3033 for (; ii < n; ii++)
3034 vui[ii - 1].lc->next = vui[ii].lc;
3036 else
3038 qsort (vui, n, sizeof (struct variable_union_info),
3039 variable_union_info_cmp_pos);
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii = 1; ii < n; ii++)
3043 vui[ii - 1].lc->next = vui[ii].lc;
3044 vui[n - 1].lc->next = NULL;
3045 dst->var_part[k].loc_chain = vui[0].lc;
3048 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3050 i--;
3051 j--;
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3055 || i < 0)
3057 dst->var_part[k] = dst->var_part[j];
3058 j--;
3060 else if ((i >= 0 && j >= 0
3061 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3062 || j < 0)
3064 location_chain *nextp;
3066 /* Copy the chain from SRC. */
3067 nextp = &dst->var_part[k].loc_chain;
3068 for (node = src->var_part[i].loc_chain; node; node = node->next)
3070 location_chain new_lc;
3072 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3073 new_lc->next = NULL;
3074 new_lc->init = node->init;
3075 if (!node->set_src || MEM_P (node->set_src))
3076 new_lc->set_src = NULL;
3077 else
3078 new_lc->set_src = node->set_src;
3079 new_lc->loc = node->loc;
3081 *nextp = new_lc;
3082 nextp = &new_lc->next;
3085 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3086 i--;
3088 dst->var_part[k].cur_loc = NULL;
3091 if (flag_var_tracking_uninit)
3092 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3094 location_chain node, node2;
3095 for (node = src->var_part[i].loc_chain; node; node = node->next)
3096 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3097 if (rtx_equal_p (node->loc, node2->loc))
3099 if (node->init > node2->init)
3100 node2->init = node->init;
3104 /* Continue traversing the hash table. */
3105 return 1;
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3110 static void
3111 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3113 int i;
3115 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3116 attrs_list_union (&dst->regs[i], src->regs[i]);
3118 if (dst->vars == empty_shared_hash)
3120 shared_hash_destroy (dst->vars);
3121 dst->vars = shared_hash_copy (src->vars);
3123 else
3125 variable_iterator_type hi;
3126 variable var;
3128 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3129 var, variable, hi)
3130 variable_union (var, dst);
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3154 static inline void
3155 set_dv_changed (decl_or_value dv, bool newv)
3157 switch (dv_onepart_p (dv))
3159 case ONEPART_VALUE:
3160 if (newv)
3161 NO_LOC_P (dv_as_value (dv)) = false;
3162 VALUE_CHANGED (dv_as_value (dv)) = newv;
3163 break;
3165 case ONEPART_DEXPR:
3166 if (newv)
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3168 /* Fall through... */
3170 default:
3171 DECL_CHANGED (dv_as_decl (dv)) = newv;
3172 break;
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3178 static inline bool
3179 dv_changed_p (decl_or_value dv)
3181 return (dv_is_value_p (dv)
3182 ? VALUE_CHANGED (dv_as_value (dv))
3183 : DECL_CHANGED (dv_as_decl (dv)));
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3194 location_chain node;
3195 enum rtx_code loc_code;
3197 if (!var)
3198 return NULL;
3200 gcc_checking_assert (var->onepart);
3202 if (!var->n_var_parts)
3203 return NULL;
3205 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3207 loc_code = GET_CODE (loc);
3208 for (node = var->var_part[0].loc_chain; node; node = node->next)
3210 decl_or_value dv;
3211 variable rvar;
3213 if (GET_CODE (node->loc) != loc_code)
3215 if (GET_CODE (node->loc) != VALUE)
3216 continue;
3218 else if (loc == node->loc)
3219 return node;
3220 else if (loc_code != VALUE)
3222 if (rtx_equal_p (loc, node->loc))
3223 return node;
3224 continue;
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var->dv)
3231 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3233 /* Skip all subsequent VALUEs. */
3234 while (node->next && GET_CODE (node->next->loc) == VALUE)
3236 node = node->next;
3237 gcc_checking_assert (!canon_value_cmp (node->loc,
3238 dv_as_value (var->dv)));
3239 if (loc == node->loc)
3240 return node;
3242 continue;
3245 gcc_checking_assert (node == var->var_part[0].loc_chain);
3246 gcc_checking_assert (!node->next);
3248 dv = dv_from_value (node->loc);
3249 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3250 return find_loc_in_1pdv (loc, rvar, vars);
3253 /* ??? Gotta look in cselib_val locations too. */
3255 return NULL;
3258 /* Hash table iteration argument passed to variable_merge. */
3259 struct dfset_merge
3261 /* The set in which the merge is to be inserted. */
3262 dataflow_set *dst;
3263 /* The set that we're iterating in. */
3264 dataflow_set *cur;
3265 /* The set that may contain the other dv we are to merge with. */
3266 dataflow_set *src;
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt;
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3274 static void
3275 insert_into_intersection (location_chain *nodep, rtx loc,
3276 enum var_init_status status)
3278 location_chain node;
3279 int r;
3281 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3282 if ((r = loc_cmp (node->loc, loc)) == 0)
3284 node->init = MIN (node->init, status);
3285 return;
3287 else if (r > 0)
3288 break;
3290 node = (location_chain) pool_alloc (loc_chain_pool);
3292 node->loc = loc;
3293 node->set_src = NULL;
3294 node->init = status;
3295 node->next = *nodep;
3296 *nodep = node;
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3302 DSM->dst. */
3304 static void
3305 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3306 location_chain s1node, variable s2var)
3308 dataflow_set *s1set = dsm->cur;
3309 dataflow_set *s2set = dsm->src;
3310 location_chain found;
3312 if (s2var)
3314 location_chain s2node;
3316 gcc_checking_assert (s2var->onepart);
3318 if (s2var->n_var_parts)
3320 s2node = s2var->var_part[0].loc_chain;
3322 for (; s1node && s2node;
3323 s1node = s1node->next, s2node = s2node->next)
3324 if (s1node->loc != s2node->loc)
3325 break;
3326 else if (s1node->loc == val)
3327 continue;
3328 else
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, s2node->init));
3334 for (; s1node; s1node = s1node->next)
3336 if (s1node->loc == val)
3337 continue;
3339 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3340 shared_hash_htab (s2set->vars))))
3342 insert_into_intersection (dest, s1node->loc,
3343 MIN (s1node->init, found->init));
3344 continue;
3347 if (GET_CODE (s1node->loc) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node->loc))
3350 decl_or_value dv = dv_from_value (s1node->loc);
3351 variable svar = shared_hash_find (s1set->vars, dv);
3352 if (svar)
3354 if (svar->n_var_parts == 1)
3356 VALUE_RECURSED_INTO (s1node->loc) = true;
3357 intersect_loc_chains (val, dest, dsm,
3358 svar->var_part[0].loc_chain,
3359 s2var);
3360 VALUE_RECURSED_INTO (s1node->loc) = false;
3365 /* ??? gotta look in cselib_val locations too. */
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3370 add to dst the values needed to represent the equivalence
3372 telling whether locations S is equivalent to another dv's
3373 location list:
3375 for each location D in the list
3377 if S and D satisfy rtx_equal_p, then it is present
3379 else if D is a value, recurse without cycles
3381 else if S and D have the same CODE and MODE
3383 for each operand oS and the corresponding oD
3385 if oS and oD are not equivalent, then S an D are not equivalent
3387 else if they are RTX vectors
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3402 static int
3403 loc_cmp (rtx x, rtx y)
3405 int i, j, r;
3406 RTX_CODE code = GET_CODE (x);
3407 const char *fmt;
3409 if (x == y)
3410 return 0;
3412 if (REG_P (x))
3414 if (!REG_P (y))
3415 return -1;
3416 gcc_assert (GET_MODE (x) == GET_MODE (y));
3417 if (REGNO (x) == REGNO (y))
3418 return 0;
3419 else if (REGNO (x) < REGNO (y))
3420 return -1;
3421 else
3422 return 1;
3425 if (REG_P (y))
3426 return 1;
3428 if (MEM_P (x))
3430 if (!MEM_P (y))
3431 return -1;
3432 gcc_assert (GET_MODE (x) == GET_MODE (y));
3433 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3436 if (MEM_P (y))
3437 return 1;
3439 if (GET_CODE (x) == VALUE)
3441 if (GET_CODE (y) != VALUE)
3442 return -1;
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x, y))
3448 return -1;
3449 else
3450 return 1;
3453 if (GET_CODE (y) == VALUE)
3454 return 1;
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x) == ENTRY_VALUE)
3459 if (GET_CODE (y) != ENTRY_VALUE)
3460 return 1;
3461 gcc_assert (GET_MODE (x) == GET_MODE (y));
3462 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3465 if (GET_CODE (y) == ENTRY_VALUE)
3466 return -1;
3468 if (GET_CODE (x) == GET_CODE (y))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x) < GET_CODE (y))
3471 return -1;
3472 else
3473 return 1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3477 if (GET_CODE (x) == DEBUG_EXPR)
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3481 return -1;
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3484 return 1;
3487 fmt = GET_RTX_FORMAT (code);
3488 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3489 switch (fmt[i])
3491 case 'w':
3492 if (XWINT (x, i) == XWINT (y, i))
3493 break;
3494 else if (XWINT (x, i) < XWINT (y, i))
3495 return -1;
3496 else
3497 return 1;
3499 case 'n':
3500 case 'i':
3501 if (XINT (x, i) == XINT (y, i))
3502 break;
3503 else if (XINT (x, i) < XINT (y, i))
3504 return -1;
3505 else
3506 return 1;
3508 case 'V':
3509 case 'E':
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x, i) == XVECLEN (y, i))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x, i) < XVECLEN (y, i))
3514 return -1;
3515 else
3516 return 1;
3518 for (j = 0; j < XVECLEN (x, i); j++)
3519 if ((r = loc_cmp (XVECEXP (x, i, j),
3520 XVECEXP (y, i, j))))
3521 return r;
3522 break;
3524 case 'e':
3525 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3526 return r;
3527 break;
3529 case 'S':
3530 case 's':
3531 if (XSTR (x, i) == XSTR (y, i))
3532 break;
3533 if (!XSTR (x, i))
3534 return -1;
3535 if (!XSTR (y, i))
3536 return 1;
3537 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3538 break;
3539 else if (r < 0)
3540 return -1;
3541 else
3542 return 1;
3544 case 'u':
3545 /* These are just backpointers, so they don't matter. */
3546 break;
3548 case '0':
3549 case 't':
3550 break;
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3555 default:
3556 gcc_unreachable ();
3559 return 0;
3562 #if ENABLE_CHECKING
3563 /* Check the order of entries in one-part variables. */
3566 canonicalize_loc_order_check (variable_def **slot,
3567 dataflow_set *data ATTRIBUTE_UNUSED)
3569 variable var = *slot;
3570 location_chain node, next;
3572 #ifdef ENABLE_RTL_CHECKING
3573 int i;
3574 for (i = 0; i < var->n_var_parts; i++)
3575 gcc_assert (var->var_part[0].cur_loc == NULL);
3576 gcc_assert (!var->in_changed_variables);
3577 #endif
3579 if (!var->onepart)
3580 return 1;
3582 gcc_assert (var->n_var_parts == 1);
3583 node = var->var_part[0].loc_chain;
3584 gcc_assert (node);
3586 while ((next = node->next))
3588 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3589 node = next;
3592 return 1;
3594 #endif
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3602 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3604 variable var = *slot;
3605 decl_or_value dv = var->dv;
3606 rtx val;
3607 location_chain node;
3609 if (!dv_is_value_p (dv))
3610 return 1;
3612 gcc_checking_assert (var->n_var_parts == 1);
3614 val = dv_as_value (dv);
3616 for (node = var->var_part[0].loc_chain; node; node = node->next)
3617 if (GET_CODE (node->loc) == VALUE)
3619 if (canon_value_cmp (node->loc, val))
3620 VALUE_RECURSED_INTO (val) = true;
3621 else
3623 decl_or_value odv = dv_from_value (node->loc);
3624 variable_def **oslot;
3625 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3627 set_slot_part (set, val, oslot, odv, 0,
3628 node->init, NULL_RTX);
3630 VALUE_RECURSED_INTO (node->loc) = true;
3634 return 1;
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3641 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3643 variable var = *slot;
3644 decl_or_value dv = var->dv;
3645 location_chain node;
3646 decl_or_value cdv;
3647 rtx val, cval;
3648 variable_def **cslot;
3649 bool has_value;
3650 bool has_marks;
3652 if (!var->onepart)
3653 return 1;
3655 gcc_checking_assert (var->n_var_parts == 1);
3657 if (dv_is_value_p (dv))
3659 cval = dv_as_value (dv);
3660 if (!VALUE_RECURSED_INTO (cval))
3661 return 1;
3662 VALUE_RECURSED_INTO (cval) = false;
3664 else
3665 cval = NULL_RTX;
3667 restart:
3668 val = cval;
3669 has_value = false;
3670 has_marks = false;
3672 gcc_assert (var->n_var_parts == 1);
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE)
3677 has_value = true;
3678 if (VALUE_RECURSED_INTO (node->loc))
3679 has_marks = true;
3680 if (canon_value_cmp (node->loc, cval))
3681 cval = node->loc;
3684 if (!has_value)
3685 return 1;
3687 if (cval == val)
3689 if (!has_marks || dv_is_decl_p (dv))
3690 return 1;
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3694 found out. */
3695 VALUE_RECURSED_INTO (val) = true;
3697 for (node = var->var_part[0].loc_chain; node; node = node->next)
3698 if (GET_CODE (node->loc) == VALUE
3699 && VALUE_RECURSED_INTO (node->loc))
3701 cval = node->loc;
3702 restart_with_cval:
3703 VALUE_RECURSED_INTO (cval) = false;
3704 dv = dv_from_value (cval);
3705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3706 if (!slot)
3708 gcc_assert (dv_is_decl_p (var->dv));
3709 /* The canonical value was reset and dropped.
3710 Remove it. */
3711 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3712 return 1;
3714 var = *slot;
3715 gcc_assert (dv_is_value_p (var->dv));
3716 if (var->n_var_parts == 0)
3717 return 1;
3718 gcc_assert (var->n_var_parts == 1);
3719 goto restart;
3722 VALUE_RECURSED_INTO (val) = false;
3724 return 1;
3727 /* Push values to the canonical one. */
3728 cdv = dv_from_value (cval);
3729 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3731 for (node = var->var_part[0].loc_chain; node; node = node->next)
3732 if (node->loc != cval)
3734 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3735 node->init, NULL_RTX);
3736 if (GET_CODE (node->loc) == VALUE)
3738 decl_or_value ndv = dv_from_value (node->loc);
3740 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3741 NO_INSERT);
3743 if (canon_value_cmp (node->loc, val))
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3751 have to. */
3752 VALUE_RECURSED_INTO (node->loc) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3754 visited too. */
3755 VALUE_RECURSED_INTO (cval) = true;
3757 else if (!VALUE_RECURSED_INTO (node->loc))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3760 parent. */
3761 clobber_variable_part (set, cval, ndv, 0, NULL);
3763 else if (GET_CODE (node->loc) == REG)
3765 attrs list = set->regs[REGNO (node->loc)], *listp;
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3772 while (list)
3774 if (list->offset == 0
3775 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3776 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3777 break;
3779 list = list->next;
3782 gcc_assert (list);
3783 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3785 list->dv = cdv;
3786 for (listp = &list->next; (list = *listp); listp = &list->next)
3788 if (list->offset)
3789 continue;
3791 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3793 *listp = list->next;
3794 pool_free (attrs_pool, list);
3795 list = *listp;
3796 break;
3799 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3802 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3804 for (listp = &list->next; (list = *listp); listp = &list->next)
3806 if (list->offset)
3807 continue;
3809 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3811 *listp = list->next;
3812 pool_free (attrs_pool, list);
3813 list = *listp;
3814 break;
3817 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3820 else
3821 gcc_unreachable ();
3823 #if ENABLE_CHECKING
3824 while (list)
3826 if (list->offset == 0
3827 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3828 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3829 gcc_unreachable ();
3831 list = list->next;
3833 #endif
3837 if (val)
3838 set_slot_part (set, val, cslot, cdv, 0,
3839 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3841 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3843 /* Variable may have been unshared. */
3844 var = *slot;
3845 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3846 && var->var_part[0].loc_chain->next == NULL);
3848 if (VALUE_RECURSED_INTO (cval))
3849 goto restart_with_cval;
3851 return 1;
3854 /* Bind one-part variables to the canonical value in an equivalence
3855 set. Not doing this causes dataflow convergence failure in rare
3856 circumstances, see PR42873. Unfortunately we can't do this
3857 efficiently as part of canonicalize_values_star, since we may not
3858 have determined or even seen the canonical value of a set when we
3859 get to a variable that references another member of the set. */
3862 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3864 variable var = *slot;
3865 decl_or_value dv = var->dv;
3866 location_chain node;
3867 rtx cval;
3868 decl_or_value cdv;
3869 variable_def **cslot;
3870 variable cvar;
3871 location_chain cnode;
3873 if (!var->onepart || var->onepart == ONEPART_VALUE)
3874 return 1;
3876 gcc_assert (var->n_var_parts == 1);
3878 node = var->var_part[0].loc_chain;
3880 if (GET_CODE (node->loc) != VALUE)
3881 return 1;
3883 gcc_assert (!node->next);
3884 cval = node->loc;
3886 /* Push values to the canonical one. */
3887 cdv = dv_from_value (cval);
3888 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3889 if (!cslot)
3890 return 1;
3891 cvar = *cslot;
3892 gcc_assert (cvar->n_var_parts == 1);
3894 cnode = cvar->var_part[0].loc_chain;
3896 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3897 that are not “more canonical” than it. */
3898 if (GET_CODE (cnode->loc) != VALUE
3899 || !canon_value_cmp (cnode->loc, cval))
3900 return 1;
3902 /* CVAL was found to be non-canonical. Change the variable to point
3903 to the canonical VALUE. */
3904 gcc_assert (!cnode->next);
3905 cval = cnode->loc;
3907 slot = set_slot_part (set, cval, slot, dv, 0,
3908 node->init, node->set_src);
3909 clobber_slot_part (set, cval, slot, 0, node->set_src);
3911 return 1;
3914 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3915 corresponding entry in DSM->src. Multi-part variables are combined
3916 with variable_union, whereas onepart dvs are combined with
3917 intersection. */
3919 static int
3920 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3922 dataflow_set *dst = dsm->dst;
3923 variable_def **dstslot;
3924 variable s2var, dvar = NULL;
3925 decl_or_value dv = s1var->dv;
3926 onepart_enum_t onepart = s1var->onepart;
3927 rtx val;
3928 hashval_t dvhash;
3929 location_chain node, *nodep;
3931 /* If the incoming onepart variable has an empty location list, then
3932 the intersection will be just as empty. For other variables,
3933 it's always union. */
3934 gcc_checking_assert (s1var->n_var_parts
3935 && s1var->var_part[0].loc_chain);
3937 if (!onepart)
3938 return variable_union (s1var, dst);
3940 gcc_checking_assert (s1var->n_var_parts == 1);
3942 dvhash = dv_htab_hash (dv);
3943 if (dv_is_value_p (dv))
3944 val = dv_as_value (dv);
3945 else
3946 val = NULL;
3948 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3949 if (!s2var)
3951 dst_can_be_shared = false;
3952 return 1;
3955 dsm->src_onepart_cnt--;
3956 gcc_assert (s2var->var_part[0].loc_chain
3957 && s2var->onepart == onepart
3958 && s2var->n_var_parts == 1);
3960 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3961 if (dstslot)
3963 dvar = *dstslot;
3964 gcc_assert (dvar->refcount == 1
3965 && dvar->onepart == onepart
3966 && dvar->n_var_parts == 1);
3967 nodep = &dvar->var_part[0].loc_chain;
3969 else
3971 nodep = &node;
3972 node = NULL;
3975 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3977 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3978 dvhash, INSERT);
3979 *dstslot = dvar = s2var;
3980 dvar->refcount++;
3982 else
3984 dst_can_be_shared = false;
3986 intersect_loc_chains (val, nodep, dsm,
3987 s1var->var_part[0].loc_chain, s2var);
3989 if (!dstslot)
3991 if (node)
3993 dvar = (variable) pool_alloc (onepart_pool (onepart));
3994 dvar->dv = dv;
3995 dvar->refcount = 1;
3996 dvar->n_var_parts = 1;
3997 dvar->onepart = onepart;
3998 dvar->in_changed_variables = false;
3999 dvar->var_part[0].loc_chain = node;
4000 dvar->var_part[0].cur_loc = NULL;
4001 if (onepart)
4002 VAR_LOC_1PAUX (dvar) = NULL;
4003 else
4004 VAR_PART_OFFSET (dvar, 0) = 0;
4006 dstslot
4007 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4008 INSERT);
4009 gcc_assert (!*dstslot);
4010 *dstslot = dvar;
4012 else
4013 return 1;
4017 nodep = &dvar->var_part[0].loc_chain;
4018 while ((node = *nodep))
4020 location_chain *nextp = &node->next;
4022 if (GET_CODE (node->loc) == REG)
4024 attrs list;
4026 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4027 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4028 && dv_is_value_p (list->dv))
4029 break;
4031 if (!list)
4032 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4033 dv, 0, node->loc);
4034 /* If this value became canonical for another value that had
4035 this register, we want to leave it alone. */
4036 else if (dv_as_value (list->dv) != val)
4038 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4039 dstslot, dv, 0,
4040 node->init, NULL_RTX);
4041 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4043 /* Since nextp points into the removed node, we can't
4044 use it. The pointer to the next node moved to nodep.
4045 However, if the variable we're walking is unshared
4046 during our walk, we'll keep walking the location list
4047 of the previously-shared variable, in which case the
4048 node won't have been removed, and we'll want to skip
4049 it. That's why we test *nodep here. */
4050 if (*nodep != node)
4051 nextp = nodep;
4054 else
4055 /* Canonicalization puts registers first, so we don't have to
4056 walk it all. */
4057 break;
4058 nodep = nextp;
4061 if (dvar != *dstslot)
4062 dvar = *dstslot;
4063 nodep = &dvar->var_part[0].loc_chain;
4065 if (val)
4067 /* Mark all referenced nodes for canonicalization, and make sure
4068 we have mutual equivalence links. */
4069 VALUE_RECURSED_INTO (val) = true;
4070 for (node = *nodep; node; node = node->next)
4071 if (GET_CODE (node->loc) == VALUE)
4073 VALUE_RECURSED_INTO (node->loc) = true;
4074 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4075 node->init, NULL, INSERT);
4078 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4079 gcc_assert (*dstslot == dvar);
4080 canonicalize_values_star (dstslot, dst);
4081 gcc_checking_assert (dstslot
4082 == shared_hash_find_slot_noinsert_1 (dst->vars,
4083 dv, dvhash));
4084 dvar = *dstslot;
4086 else
4088 bool has_value = false, has_other = false;
4090 /* If we have one value and anything else, we're going to
4091 canonicalize this, so make sure all values have an entry in
4092 the table and are marked for canonicalization. */
4093 for (node = *nodep; node; node = node->next)
4095 if (GET_CODE (node->loc) == VALUE)
4097 /* If this was marked during register canonicalization,
4098 we know we have to canonicalize values. */
4099 if (has_value)
4100 has_other = true;
4101 has_value = true;
4102 if (has_other)
4103 break;
4105 else
4107 has_other = true;
4108 if (has_value)
4109 break;
4113 if (has_value && has_other)
4115 for (node = *nodep; node; node = node->next)
4117 if (GET_CODE (node->loc) == VALUE)
4119 decl_or_value dv = dv_from_value (node->loc);
4120 variable_def **slot = NULL;
4122 if (shared_hash_shared (dst->vars))
4123 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4124 if (!slot)
4125 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4126 INSERT);
4127 if (!*slot)
4129 variable var = (variable) pool_alloc (onepart_pool
4130 (ONEPART_VALUE));
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4142 VALUE_RECURSED_INTO (node->loc) = true;
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4156 if (!onepart_variable_different_p (dvar, s2var))
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4169 else
4170 dst_can_be_shared = false;
4172 return 1;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4180 static int
4181 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4186 if (!s2var->onepart)
4188 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4194 dsm->src_onepart_cnt++;
4195 return 1;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable var;
4212 src1_elems = shared_hash_htab (src1->vars).elements ();
4213 src2_elems = shared_hash_htab (src2->vars).elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4218 dst->vars->refcount = 1;
4219 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4239 dataflow_set_destroy (src1);
4242 /* Mark register equivalences. */
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4247 int i;
4248 attrs list, *listp;
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 rtx canon[NUM_MACHINE_MODES];
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4259 memset (canon, 0, sizeof (canon));
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4277 if (!cval)
4278 continue;
4280 if (dv_is_value_p (list->dv))
4282 rtx val = dv_as_value (list->dv);
4284 if (val == cval)
4285 continue;
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable_def **slot;
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4326 static void
4327 remove_duplicate_values (variable var)
4329 location_chain node, *nodep;
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4337 if (GET_CODE (node->loc) == VALUE)
4339 if (VALUE_RECURSED_INTO (node->loc))
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 pool_free (loc_chain_pool, node);
4344 continue;
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4349 nodep = &node->next;
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4377 dataflow_set *set = dfpm->set;
4378 variable var = *slot;
4379 location_chain node;
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4384 gcc_assert (var->n_var_parts == 1);
4386 if (dv_is_decl_p (var->dv))
4388 bool check_dupes = false;
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4397 attrs att, *attp, *curp = NULL;
4399 if (var->refcount != 1)
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4412 if (dv_is_value_p (att->dv))
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4423 if (!curp)
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4436 if (!att)
4438 decl_or_value cdv;
4439 rtx cval;
4441 if (!*dfpm->permp)
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4457 if (att)
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4462 else
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4487 node->loc = cval;
4488 check_dupes = true;
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 pool_free (attrs_pool, att);
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4504 return 1;
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4513 dataflow_set *set = dfpm->set;
4514 variable pvar = *pslot, var;
4515 location_chain pnode;
4516 decl_or_value dv;
4517 attrs att;
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4526 dv = pvar->dv;
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4557 else if (!att)
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4564 return 1;
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4573 struct dfset_post_merge dfpm;
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4578 shared_hash_htab (set->vars)
4579 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 .traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4596 location_chain node;
4597 decl_or_value dv;
4598 variable var;
4599 location_chain where = NULL;
4601 if (!val)
4602 return NULL;
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4607 dv = dv_from_value (val);
4608 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4610 if (!var)
4611 return NULL;
4613 gcc_assert (var->onepart);
4615 if (!var->n_var_parts)
4616 return NULL;
4618 VALUE_RECURSED_INTO (val) = true;
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4625 where = node;
4626 break;
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4633 VALUE_RECURSED_INTO (val) = false;
4635 return where;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4640 static bool
4641 mem_dies_at_call (rtx mem)
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4646 if (!expr)
4647 return true;
4649 decl = get_base_address (expr);
4651 if (!decl)
4652 return true;
4654 if (!DECL_P (decl))
4655 return true;
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4668 variable var = *slot;
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain loc, *locp;
4674 bool changed = false;
4676 if (!var->n_var_parts)
4677 return 1;
4679 gcc_assert (var->n_var_parts == 1);
4681 if (shared_var_p (var, set->vars))
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && !mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4698 if (!loc)
4699 return 1;
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4712 location_chain mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4735 if (old_loc != loc->loc && emit_notes)
4737 if (old_loc == var->var_part[0].cur_loc)
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4743 locp = &loc->next;
4744 continue;
4747 if (emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 *locp = loc->next;
4756 pool_free (loc_chain_pool, loc);
4759 if (!var->var_part[0].loc_chain)
4761 var->n_var_parts--;
4762 changed = true;
4764 if (changed)
4765 variable_was_changed (var, set);
4768 return 1;
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 value. */
4775 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4777 variable var = *slot;
4779 if (var->onepart == ONEPART_VALUE)
4781 location_chain loc, *locp;
4782 bool changed = false;
4783 rtx cur_loc;
4785 gcc_assert (var->n_var_parts == 1);
4787 if (shared_var_p (var, set->vars))
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4794 if (!loc)
4795 return 1;
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4813 locp = &loc->next;
4814 continue;
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4828 pool_free (loc_chain_pool, loc);
4831 if (!var->var_part[0].loc_chain)
4833 var->n_var_parts--;
4834 changed = true;
4836 if (changed)
4837 variable_was_changed (var, set);
4840 return 1;
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set)
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4852 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4853 var_regno_delete (set, r);
4855 if (MAY_HAVE_DEBUG_INSNS)
4857 set->traversed_vars = set->vars;
4858 shared_hash_htab (set->vars)
4859 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4860 set->traversed_vars = set->vars;
4861 shared_hash_htab (set->vars)
4862 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4863 set->traversed_vars = NULL;
4867 static bool
4868 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4870 location_chain lc1, lc2;
4872 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4874 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4876 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4878 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4879 break;
4881 if (rtx_equal_p (lc1->loc, lc2->loc))
4882 break;
4884 if (!lc2)
4885 return true;
4887 return false;
4890 /* Return true if one-part variables VAR1 and VAR2 are different.
4891 They must be in canonical order. */
4893 static bool
4894 onepart_variable_different_p (variable var1, variable var2)
4896 location_chain lc1, lc2;
4898 if (var1 == var2)
4899 return false;
4901 gcc_assert (var1->n_var_parts == 1
4902 && var2->n_var_parts == 1);
4904 lc1 = var1->var_part[0].loc_chain;
4905 lc2 = var2->var_part[0].loc_chain;
4907 gcc_assert (lc1 && lc2);
4909 while (lc1 && lc2)
4911 if (loc_cmp (lc1->loc, lc2->loc))
4912 return true;
4913 lc1 = lc1->next;
4914 lc2 = lc2->next;
4917 return lc1 != lc2;
4920 /* Return true if variables VAR1 and VAR2 are different. */
4922 static bool
4923 variable_different_p (variable var1, variable var2)
4925 int i;
4927 if (var1 == var2)
4928 return false;
4930 if (var1->onepart != var2->onepart)
4931 return true;
4933 if (var1->n_var_parts != var2->n_var_parts)
4934 return true;
4936 if (var1->onepart && var1->n_var_parts)
4938 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4939 && var1->n_var_parts == 1);
4940 /* One-part values have locations in a canonical order. */
4941 return onepart_variable_different_p (var1, var2);
4944 for (i = 0; i < var1->n_var_parts; i++)
4946 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4947 return true;
4948 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4949 return true;
4950 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4951 return true;
4953 return false;
4956 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4958 static bool
4959 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4961 variable_iterator_type hi;
4962 variable var1;
4964 if (old_set->vars == new_set->vars)
4965 return false;
4967 if (shared_hash_htab (old_set->vars).elements ()
4968 != shared_hash_htab (new_set->vars).elements ())
4969 return true;
4971 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4972 var1, variable, hi)
4974 variable_table_type htab = shared_hash_htab (new_set->vars);
4975 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4976 if (!var2)
4978 if (dump_file && (dump_flags & TDF_DETAILS))
4980 fprintf (dump_file, "dataflow difference found: removal of:\n");
4981 dump_var (var1);
4983 return true;
4986 if (variable_different_p (var1, var2))
4988 if (dump_file && (dump_flags & TDF_DETAILS))
4990 fprintf (dump_file, "dataflow difference found: "
4991 "old and new follow:\n");
4992 dump_var (var1);
4993 dump_var (var2);
4995 return true;
4999 /* No need to traverse the second hashtab, if both have the same number
5000 of elements and the second one had all entries found in the first one,
5001 then it can't have any extra entries. */
5002 return false;
5005 /* Free the contents of dataflow set SET. */
5007 static void
5008 dataflow_set_destroy (dataflow_set *set)
5010 int i;
5012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5013 attrs_list_clear (&set->regs[i]);
5015 shared_hash_destroy (set->vars);
5016 set->vars = NULL;
5019 /* Return true if RTL X contains a SYMBOL_REF. */
5021 static bool
5022 contains_symbol_ref (rtx x)
5024 const char *fmt;
5025 RTX_CODE code;
5026 int i;
5028 if (!x)
5029 return false;
5031 code = GET_CODE (x);
5032 if (code == SYMBOL_REF)
5033 return true;
5035 fmt = GET_RTX_FORMAT (code);
5036 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5038 if (fmt[i] == 'e')
5040 if (contains_symbol_ref (XEXP (x, i)))
5041 return true;
5043 else if (fmt[i] == 'E')
5045 int j;
5046 for (j = 0; j < XVECLEN (x, i); j++)
5047 if (contains_symbol_ref (XVECEXP (x, i, j)))
5048 return true;
5052 return false;
5055 /* Shall EXPR be tracked? */
5057 static bool
5058 track_expr_p (tree expr, bool need_rtl)
5060 rtx decl_rtl;
5061 tree realdecl;
5063 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5064 return DECL_RTL_SET_P (expr);
5066 /* If EXPR is not a parameter or a variable do not track it. */
5067 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5068 return 0;
5070 /* It also must have a name... */
5071 if (!DECL_NAME (expr) && need_rtl)
5072 return 0;
5074 /* ... and a RTL assigned to it. */
5075 decl_rtl = DECL_RTL_IF_SET (expr);
5076 if (!decl_rtl && need_rtl)
5077 return 0;
5079 /* If this expression is really a debug alias of some other declaration, we
5080 don't need to track this expression if the ultimate declaration is
5081 ignored. */
5082 realdecl = expr;
5083 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5085 realdecl = DECL_DEBUG_EXPR (realdecl);
5086 if (!DECL_P (realdecl))
5088 if (handled_component_p (realdecl)
5089 || (TREE_CODE (realdecl) == MEM_REF
5090 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5092 HOST_WIDE_INT bitsize, bitpos, maxsize;
5093 tree innerdecl
5094 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5095 &maxsize);
5096 if (!DECL_P (innerdecl)
5097 || DECL_IGNORED_P (innerdecl)
5098 /* Do not track declarations for parts of tracked parameters
5099 since we want to track them as a whole instead. */
5100 || (TREE_CODE (innerdecl) == PARM_DECL
5101 && DECL_MODE (innerdecl) != BLKmode
5102 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5103 || TREE_STATIC (innerdecl)
5104 || bitsize <= 0
5105 || bitpos + bitsize > 256
5106 || bitsize != maxsize)
5107 return 0;
5108 else
5109 realdecl = expr;
5111 else
5112 return 0;
5116 /* Do not track EXPR if REALDECL it should be ignored for debugging
5117 purposes. */
5118 if (DECL_IGNORED_P (realdecl))
5119 return 0;
5121 /* Do not track global variables until we are able to emit correct location
5122 list for them. */
5123 if (TREE_STATIC (realdecl))
5124 return 0;
5126 /* When the EXPR is a DECL for alias of some variable (see example)
5127 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5128 DECL_RTL contains SYMBOL_REF.
5130 Example:
5131 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5132 char **_dl_argv;
5134 if (decl_rtl && MEM_P (decl_rtl)
5135 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5136 return 0;
5138 /* If RTX is a memory it should not be very large (because it would be
5139 an array or struct). */
5140 if (decl_rtl && MEM_P (decl_rtl))
5142 /* Do not track structures and arrays. */
5143 if (GET_MODE (decl_rtl) == BLKmode
5144 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5145 return 0;
5146 if (MEM_SIZE_KNOWN_P (decl_rtl)
5147 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5148 return 0;
5151 DECL_CHANGED (expr) = 0;
5152 DECL_CHANGED (realdecl) = 0;
5153 return 1;
5156 /* Determine whether a given LOC refers to the same variable part as
5157 EXPR+OFFSET. */
5159 static bool
5160 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5162 tree expr2;
5163 HOST_WIDE_INT offset2;
5165 if (! DECL_P (expr))
5166 return false;
5168 if (REG_P (loc))
5170 expr2 = REG_EXPR (loc);
5171 offset2 = REG_OFFSET (loc);
5173 else if (MEM_P (loc))
5175 expr2 = MEM_EXPR (loc);
5176 offset2 = INT_MEM_OFFSET (loc);
5178 else
5179 return false;
5181 if (! expr2 || ! DECL_P (expr2))
5182 return false;
5184 expr = var_debug_decl (expr);
5185 expr2 = var_debug_decl (expr2);
5187 return (expr == expr2 && offset == offset2);
5190 /* LOC is a REG or MEM that we would like to track if possible.
5191 If EXPR is null, we don't know what expression LOC refers to,
5192 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5193 LOC is an lvalue register.
5195 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5196 is something we can track. When returning true, store the mode of
5197 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5198 from EXPR in *OFFSET_OUT (if nonnull). */
5200 static bool
5201 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5202 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5204 enum machine_mode mode;
5206 if (expr == NULL || !track_expr_p (expr, true))
5207 return false;
5209 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5210 whole subreg, but only the old inner part is really relevant. */
5211 mode = GET_MODE (loc);
5212 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5214 enum machine_mode pseudo_mode;
5216 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5217 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5219 offset += byte_lowpart_offset (pseudo_mode, mode);
5220 mode = pseudo_mode;
5224 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5225 Do the same if we are storing to a register and EXPR occupies
5226 the whole of register LOC; in that case, the whole of EXPR is
5227 being changed. We exclude complex modes from the second case
5228 because the real and imaginary parts are represented as separate
5229 pseudo registers, even if the whole complex value fits into one
5230 hard register. */
5231 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5232 || (store_reg_p
5233 && !COMPLEX_MODE_P (DECL_MODE (expr))
5234 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5235 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5237 mode = DECL_MODE (expr);
5238 offset = 0;
5241 if (offset < 0 || offset >= MAX_VAR_PARTS)
5242 return false;
5244 if (mode_out)
5245 *mode_out = mode;
5246 if (offset_out)
5247 *offset_out = offset;
5248 return true;
5251 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5252 want to track. When returning nonnull, make sure that the attributes
5253 on the returned value are updated. */
5255 static rtx
5256 var_lowpart (enum machine_mode mode, rtx loc)
5258 unsigned int offset, reg_offset, regno;
5260 if (GET_MODE (loc) == mode)
5261 return loc;
5263 if (!REG_P (loc) && !MEM_P (loc))
5264 return NULL;
5266 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5268 if (MEM_P (loc))
5269 return adjust_address_nv (loc, mode, offset);
5271 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5272 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5273 reg_offset, mode);
5274 return gen_rtx_REG_offset (loc, mode, regno, offset);
5277 /* Carry information about uses and stores while walking rtx. */
5279 struct count_use_info
5281 /* The insn where the RTX is. */
5282 rtx insn;
5284 /* The basic block where insn is. */
5285 basic_block bb;
5287 /* The array of n_sets sets in the insn, as determined by cselib. */
5288 struct cselib_set *sets;
5289 int n_sets;
5291 /* True if we're counting stores, false otherwise. */
5292 bool store_p;
5295 /* Find a VALUE corresponding to X. */
5297 static inline cselib_val *
5298 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5300 int i;
5302 if (cui->sets)
5304 /* This is called after uses are set up and before stores are
5305 processed by cselib, so it's safe to look up srcs, but not
5306 dsts. So we look up expressions that appear in srcs or in
5307 dest expressions, but we search the sets array for dests of
5308 stores. */
5309 if (cui->store_p)
5311 /* Some targets represent memset and memcpy patterns
5312 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5313 (set (mem:BLK ...) (const_int ...)) or
5314 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5315 in that case, otherwise we end up with mode mismatches. */
5316 if (mode == BLKmode && MEM_P (x))
5317 return NULL;
5318 for (i = 0; i < cui->n_sets; i++)
5319 if (cui->sets[i].dest == x)
5320 return cui->sets[i].src_elt;
5322 else
5323 return cselib_lookup (x, mode, 0, VOIDmode);
5326 return NULL;
5329 /* Replace all registers and addresses in an expression with VALUE
5330 expressions that map back to them, unless the expression is a
5331 register. If no mapping is or can be performed, returns NULL. */
5333 static rtx
5334 replace_expr_with_values (rtx loc)
5336 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5337 return NULL;
5338 else if (MEM_P (loc))
5340 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5341 get_address_mode (loc), 0,
5342 GET_MODE (loc));
5343 if (addr)
5344 return replace_equiv_address_nv (loc, addr->val_rtx);
5345 else
5346 return NULL;
5348 else
5349 return cselib_subst_to_values (loc, VOIDmode);
5352 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5353 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5354 RTX. */
5356 static int
5357 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5359 rtx loc = *x;
5361 return GET_CODE (loc) == DEBUG_EXPR;
5364 /* Determine what kind of micro operation to choose for a USE. Return
5365 MO_CLOBBER if no micro operation is to be generated. */
5367 static enum micro_operation_type
5368 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5370 tree expr;
5372 if (cui && cui->sets)
5374 if (GET_CODE (loc) == VAR_LOCATION)
5376 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5378 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5379 if (! VAR_LOC_UNKNOWN_P (ploc))
5381 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5382 VOIDmode);
5384 /* ??? flag_float_store and volatile mems are never
5385 given values, but we could in theory use them for
5386 locations. */
5387 gcc_assert (val || 1);
5389 return MO_VAL_LOC;
5391 else
5392 return MO_CLOBBER;
5395 if (REG_P (loc) || MEM_P (loc))
5397 if (modep)
5398 *modep = GET_MODE (loc);
5399 if (cui->store_p)
5401 if (REG_P (loc)
5402 || (find_use_val (loc, GET_MODE (loc), cui)
5403 && cselib_lookup (XEXP (loc, 0),
5404 get_address_mode (loc), 0,
5405 GET_MODE (loc))))
5406 return MO_VAL_SET;
5408 else
5410 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5412 if (val && !cselib_preserved_value_p (val))
5413 return MO_VAL_USE;
5418 if (REG_P (loc))
5420 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5422 if (loc == cfa_base_rtx)
5423 return MO_CLOBBER;
5424 expr = REG_EXPR (loc);
5426 if (!expr)
5427 return MO_USE_NO_VAR;
5428 else if (target_for_debug_bind (var_debug_decl (expr)))
5429 return MO_CLOBBER;
5430 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5431 false, modep, NULL))
5432 return MO_USE;
5433 else
5434 return MO_USE_NO_VAR;
5436 else if (MEM_P (loc))
5438 expr = MEM_EXPR (loc);
5440 if (!expr)
5441 return MO_CLOBBER;
5442 else if (target_for_debug_bind (var_debug_decl (expr)))
5443 return MO_CLOBBER;
5444 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5445 false, modep, NULL)
5446 /* Multi-part variables shouldn't refer to one-part
5447 variable names such as VALUEs (never happens) or
5448 DEBUG_EXPRs (only happens in the presence of debug
5449 insns). */
5450 && (!MAY_HAVE_DEBUG_INSNS
5451 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5452 return MO_USE;
5453 else
5454 return MO_CLOBBER;
5457 return MO_CLOBBER;
5460 /* Log to OUT information about micro-operation MOPT involving X in
5461 INSN of BB. */
5463 static inline void
5464 log_op_type (rtx x, basic_block bb, rtx insn,
5465 enum micro_operation_type mopt, FILE *out)
5467 fprintf (out, "bb %i op %i insn %i %s ",
5468 bb->index, VTI (bb)->mos.length (),
5469 INSN_UID (insn), micro_operation_type_name[mopt]);
5470 print_inline_rtx (out, x, 2);
5471 fputc ('\n', out);
5474 /* Tell whether the CONCAT used to holds a VALUE and its location
5475 needs value resolution, i.e., an attempt of mapping the location
5476 back to other incoming values. */
5477 #define VAL_NEEDS_RESOLUTION(x) \
5478 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5479 /* Whether the location in the CONCAT is a tracked expression, that
5480 should also be handled like a MO_USE. */
5481 #define VAL_HOLDS_TRACK_EXPR(x) \
5482 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5483 /* Whether the location in the CONCAT should be handled like a MO_COPY
5484 as well. */
5485 #define VAL_EXPR_IS_COPIED(x) \
5486 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5487 /* Whether the location in the CONCAT should be handled like a
5488 MO_CLOBBER as well. */
5489 #define VAL_EXPR_IS_CLOBBERED(x) \
5490 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5492 /* All preserved VALUEs. */
5493 static vec<rtx> preserved_values;
5495 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5497 static void
5498 preserve_value (cselib_val *val)
5500 cselib_preserve_value (val);
5501 preserved_values.safe_push (val->val_rtx);
5504 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5505 any rtxes not suitable for CONST use not replaced by VALUEs
5506 are discovered. */
5508 static int
5509 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5511 if (*x == NULL_RTX)
5512 return 0;
5514 switch (GET_CODE (*x))
5516 case REG:
5517 case DEBUG_EXPR:
5518 case PC:
5519 case SCRATCH:
5520 case CC0:
5521 case ASM_INPUT:
5522 case ASM_OPERANDS:
5523 return 1;
5524 case MEM:
5525 return !MEM_READONLY_P (*x);
5526 default:
5527 return 0;
5531 /* Add uses (register and memory references) LOC which will be tracked
5532 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5534 static int
5535 add_uses (rtx *ploc, void *data)
5537 rtx loc = *ploc;
5538 enum machine_mode mode = VOIDmode;
5539 struct count_use_info *cui = (struct count_use_info *)data;
5540 enum micro_operation_type type = use_type (loc, cui, &mode);
5542 if (type != MO_CLOBBER)
5544 basic_block bb = cui->bb;
5545 micro_operation mo;
5547 mo.type = type;
5548 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5549 mo.insn = cui->insn;
5551 if (type == MO_VAL_LOC)
5553 rtx oloc = loc;
5554 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5555 cselib_val *val;
5557 gcc_assert (cui->sets);
5559 if (MEM_P (vloc)
5560 && !REG_P (XEXP (vloc, 0))
5561 && !MEM_P (XEXP (vloc, 0)))
5563 rtx mloc = vloc;
5564 enum machine_mode address_mode = get_address_mode (mloc);
5565 cselib_val *val
5566 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5567 GET_MODE (mloc));
5569 if (val && !cselib_preserved_value_p (val))
5570 preserve_value (val);
5573 if (CONSTANT_P (vloc)
5574 && (GET_CODE (vloc) != CONST
5575 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5576 /* For constants don't look up any value. */;
5577 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5578 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5580 enum machine_mode mode2;
5581 enum micro_operation_type type2;
5582 rtx nloc = NULL;
5583 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5585 if (resolvable)
5586 nloc = replace_expr_with_values (vloc);
5588 if (nloc)
5590 oloc = shallow_copy_rtx (oloc);
5591 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5594 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5596 type2 = use_type (vloc, 0, &mode2);
5598 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5599 || type2 == MO_CLOBBER);
5601 if (type2 == MO_CLOBBER
5602 && !cselib_preserved_value_p (val))
5604 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5605 preserve_value (val);
5608 else if (!VAR_LOC_UNKNOWN_P (vloc))
5610 oloc = shallow_copy_rtx (oloc);
5611 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5614 mo.u.loc = oloc;
5616 else if (type == MO_VAL_USE)
5618 enum machine_mode mode2 = VOIDmode;
5619 enum micro_operation_type type2;
5620 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5621 rtx vloc, oloc = loc, nloc;
5623 gcc_assert (cui->sets);
5625 if (MEM_P (oloc)
5626 && !REG_P (XEXP (oloc, 0))
5627 && !MEM_P (XEXP (oloc, 0)))
5629 rtx mloc = oloc;
5630 enum machine_mode address_mode = get_address_mode (mloc);
5631 cselib_val *val
5632 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5633 GET_MODE (mloc));
5635 if (val && !cselib_preserved_value_p (val))
5636 preserve_value (val);
5639 type2 = use_type (loc, 0, &mode2);
5641 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5642 || type2 == MO_CLOBBER);
5644 if (type2 == MO_USE)
5645 vloc = var_lowpart (mode2, loc);
5646 else
5647 vloc = oloc;
5649 /* The loc of a MO_VAL_USE may have two forms:
5651 (concat val src): val is at src, a value-based
5652 representation.
5654 (concat (concat val use) src): same as above, with use as
5655 the MO_USE tracked value, if it differs from src.
5659 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5660 nloc = replace_expr_with_values (loc);
5661 if (!nloc)
5662 nloc = oloc;
5664 if (vloc != nloc)
5665 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5666 else
5667 oloc = val->val_rtx;
5669 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5671 if (type2 == MO_USE)
5672 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5673 if (!cselib_preserved_value_p (val))
5675 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5676 preserve_value (val);
5679 else
5680 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5682 if (dump_file && (dump_flags & TDF_DETAILS))
5683 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5684 VTI (bb)->mos.safe_push (mo);
5687 return 0;
5690 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5692 static void
5693 add_uses_1 (rtx *x, void *cui)
5695 for_each_rtx (x, add_uses, cui);
5698 /* This is the value used during expansion of locations. We want it
5699 to be unbounded, so that variables expanded deep in a recursion
5700 nest are fully evaluated, so that their values are cached
5701 correctly. We avoid recursion cycles through other means, and we
5702 don't unshare RTL, so excess complexity is not a problem. */
5703 #define EXPR_DEPTH (INT_MAX)
5704 /* We use this to keep too-complex expressions from being emitted as
5705 location notes, and then to debug information. Users can trade
5706 compile time for ridiculously complex expressions, although they're
5707 seldom useful, and they may often have to be discarded as not
5708 representable anyway. */
5709 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5711 /* Attempt to reverse the EXPR operation in the debug info and record
5712 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5713 no longer live we can express its value as VAL - 6. */
5715 static void
5716 reverse_op (rtx val, const_rtx expr, rtx insn)
5718 rtx src, arg, ret;
5719 cselib_val *v;
5720 struct elt_loc_list *l;
5721 enum rtx_code code;
5722 int count;
5724 if (GET_CODE (expr) != SET)
5725 return;
5727 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5728 return;
5730 src = SET_SRC (expr);
5731 switch (GET_CODE (src))
5733 case PLUS:
5734 case MINUS:
5735 case XOR:
5736 case NOT:
5737 case NEG:
5738 if (!REG_P (XEXP (src, 0)))
5739 return;
5740 break;
5741 case SIGN_EXTEND:
5742 case ZERO_EXTEND:
5743 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5744 return;
5745 break;
5746 default:
5747 return;
5750 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5751 return;
5753 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5754 if (!v || !cselib_preserved_value_p (v))
5755 return;
5757 /* Use canonical V to avoid creating multiple redundant expressions
5758 for different VALUES equivalent to V. */
5759 v = canonical_cselib_val (v);
5761 /* Adding a reverse op isn't useful if V already has an always valid
5762 location. Ignore ENTRY_VALUE, while it is always constant, we should
5763 prefer non-ENTRY_VALUE locations whenever possible. */
5764 for (l = v->locs, count = 0; l; l = l->next, count++)
5765 if (CONSTANT_P (l->loc)
5766 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5767 return;
5768 /* Avoid creating too large locs lists. */
5769 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5770 return;
5772 switch (GET_CODE (src))
5774 case NOT:
5775 case NEG:
5776 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5777 return;
5778 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5779 break;
5780 case SIGN_EXTEND:
5781 case ZERO_EXTEND:
5782 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5783 break;
5784 case XOR:
5785 code = XOR;
5786 goto binary;
5787 case PLUS:
5788 code = MINUS;
5789 goto binary;
5790 case MINUS:
5791 code = PLUS;
5792 goto binary;
5793 binary:
5794 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5795 return;
5796 arg = XEXP (src, 1);
5797 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5799 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5800 if (arg == NULL_RTX)
5801 return;
5802 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5803 return;
5805 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5806 if (ret == val)
5807 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5808 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5809 breaks a lot of routines during var-tracking. */
5810 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5811 break;
5812 default:
5813 gcc_unreachable ();
5816 cselib_add_permanent_equiv (v, ret, insn);
5819 /* Add stores (register and memory references) LOC which will be tracked
5820 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5821 CUIP->insn is instruction which the LOC is part of. */
5823 static void
5824 add_stores (rtx loc, const_rtx expr, void *cuip)
5826 enum machine_mode mode = VOIDmode, mode2;
5827 struct count_use_info *cui = (struct count_use_info *)cuip;
5828 basic_block bb = cui->bb;
5829 micro_operation mo;
5830 rtx oloc = loc, nloc, src = NULL;
5831 enum micro_operation_type type = use_type (loc, cui, &mode);
5832 bool track_p = false;
5833 cselib_val *v;
5834 bool resolve, preserve;
5836 if (type == MO_CLOBBER)
5837 return;
5839 mode2 = mode;
5841 if (REG_P (loc))
5843 gcc_assert (loc != cfa_base_rtx);
5844 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5845 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5846 || GET_CODE (expr) == CLOBBER)
5848 mo.type = MO_CLOBBER;
5849 mo.u.loc = loc;
5850 if (GET_CODE (expr) == SET
5851 && SET_DEST (expr) == loc
5852 && !unsuitable_loc (SET_SRC (expr))
5853 && find_use_val (loc, mode, cui))
5855 gcc_checking_assert (type == MO_VAL_SET);
5856 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5859 else
5861 if (GET_CODE (expr) == SET
5862 && SET_DEST (expr) == loc
5863 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5864 src = var_lowpart (mode2, SET_SRC (expr));
5865 loc = var_lowpart (mode2, loc);
5867 if (src == NULL)
5869 mo.type = MO_SET;
5870 mo.u.loc = loc;
5872 else
5874 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5875 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5877 /* If this is an instruction copying (part of) a parameter
5878 passed by invisible reference to its register location,
5879 pretend it's a SET so that the initial memory location
5880 is discarded, as the parameter register can be reused
5881 for other purposes and we do not track locations based
5882 on generic registers. */
5883 if (MEM_P (src)
5884 && REG_EXPR (loc)
5885 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5886 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5887 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5888 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5889 != arg_pointer_rtx)
5890 mo.type = MO_SET;
5891 else
5892 mo.type = MO_COPY;
5894 else
5895 mo.type = MO_SET;
5896 mo.u.loc = xexpr;
5899 mo.insn = cui->insn;
5901 else if (MEM_P (loc)
5902 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5903 || cui->sets))
5905 if (MEM_P (loc) && type == MO_VAL_SET
5906 && !REG_P (XEXP (loc, 0))
5907 && !MEM_P (XEXP (loc, 0)))
5909 rtx mloc = loc;
5910 enum machine_mode address_mode = get_address_mode (mloc);
5911 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5912 address_mode, 0,
5913 GET_MODE (mloc));
5915 if (val && !cselib_preserved_value_p (val))
5916 preserve_value (val);
5919 if (GET_CODE (expr) == CLOBBER || !track_p)
5921 mo.type = MO_CLOBBER;
5922 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5924 else
5926 if (GET_CODE (expr) == SET
5927 && SET_DEST (expr) == loc
5928 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5929 src = var_lowpart (mode2, SET_SRC (expr));
5930 loc = var_lowpart (mode2, loc);
5932 if (src == NULL)
5934 mo.type = MO_SET;
5935 mo.u.loc = loc;
5937 else
5939 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5940 if (same_variable_part_p (SET_SRC (xexpr),
5941 MEM_EXPR (loc),
5942 INT_MEM_OFFSET (loc)))
5943 mo.type = MO_COPY;
5944 else
5945 mo.type = MO_SET;
5946 mo.u.loc = xexpr;
5949 mo.insn = cui->insn;
5951 else
5952 return;
5954 if (type != MO_VAL_SET)
5955 goto log_and_return;
5957 v = find_use_val (oloc, mode, cui);
5959 if (!v)
5960 goto log_and_return;
5962 resolve = preserve = !cselib_preserved_value_p (v);
5964 /* We cannot track values for multiple-part variables, so we track only
5965 locations for tracked parameters passed either by invisible reference
5966 or directly in multiple locations. */
5967 if (track_p
5968 && REG_P (loc)
5969 && REG_EXPR (loc)
5970 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5971 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5972 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5973 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5974 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5975 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5976 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5978 /* Although we don't use the value here, it could be used later by the
5979 mere virtue of its existence as the operand of the reverse operation
5980 that gave rise to it (typically extension/truncation). Make sure it
5981 is preserved as required by vt_expand_var_loc_chain. */
5982 if (preserve)
5983 preserve_value (v);
5984 goto log_and_return;
5987 if (loc == stack_pointer_rtx
5988 && hard_frame_pointer_adjustment != -1
5989 && preserve)
5990 cselib_set_value_sp_based (v);
5992 nloc = replace_expr_with_values (oloc);
5993 if (nloc)
5994 oloc = nloc;
5996 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5998 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6000 if (oval == v)
6001 return;
6002 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6004 if (oval && !cselib_preserved_value_p (oval))
6006 micro_operation moa;
6008 preserve_value (oval);
6010 moa.type = MO_VAL_USE;
6011 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6012 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6013 moa.insn = cui->insn;
6015 if (dump_file && (dump_flags & TDF_DETAILS))
6016 log_op_type (moa.u.loc, cui->bb, cui->insn,
6017 moa.type, dump_file);
6018 VTI (bb)->mos.safe_push (moa);
6021 resolve = false;
6023 else if (resolve && GET_CODE (mo.u.loc) == SET)
6025 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6026 nloc = replace_expr_with_values (SET_SRC (expr));
6027 else
6028 nloc = NULL_RTX;
6030 /* Avoid the mode mismatch between oexpr and expr. */
6031 if (!nloc && mode != mode2)
6033 nloc = SET_SRC (expr);
6034 gcc_assert (oloc == SET_DEST (expr));
6037 if (nloc && nloc != SET_SRC (mo.u.loc))
6038 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6039 else
6041 if (oloc == SET_DEST (mo.u.loc))
6042 /* No point in duplicating. */
6043 oloc = mo.u.loc;
6044 if (!REG_P (SET_SRC (mo.u.loc)))
6045 resolve = false;
6048 else if (!resolve)
6050 if (GET_CODE (mo.u.loc) == SET
6051 && oloc == SET_DEST (mo.u.loc))
6052 /* No point in duplicating. */
6053 oloc = mo.u.loc;
6055 else
6056 resolve = false;
6058 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6060 if (mo.u.loc != oloc)
6061 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6063 /* The loc of a MO_VAL_SET may have various forms:
6065 (concat val dst): dst now holds val
6067 (concat val (set dst src)): dst now holds val, copied from src
6069 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6070 after replacing mems and non-top-level regs with values.
6072 (concat (concat val dstv) (set dst src)): dst now holds val,
6073 copied from src. dstv is a value-based representation of dst, if
6074 it differs from dst. If resolution is needed, src is a REG, and
6075 its mode is the same as that of val.
6077 (concat (concat val (set dstv srcv)) (set dst src)): src
6078 copied to dst, holding val. dstv and srcv are value-based
6079 representations of dst and src, respectively.
6083 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6084 reverse_op (v->val_rtx, expr, cui->insn);
6086 mo.u.loc = loc;
6088 if (track_p)
6089 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6090 if (preserve)
6092 VAL_NEEDS_RESOLUTION (loc) = resolve;
6093 preserve_value (v);
6095 if (mo.type == MO_CLOBBER)
6096 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6097 if (mo.type == MO_COPY)
6098 VAL_EXPR_IS_COPIED (loc) = 1;
6100 mo.type = MO_VAL_SET;
6102 log_and_return:
6103 if (dump_file && (dump_flags & TDF_DETAILS))
6104 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6105 VTI (bb)->mos.safe_push (mo);
6108 /* Arguments to the call. */
6109 static rtx call_arguments;
6111 /* Compute call_arguments. */
6113 static void
6114 prepare_call_arguments (basic_block bb, rtx insn)
6116 rtx link, x, call;
6117 rtx prev, cur, next;
6118 rtx this_arg = NULL_RTX;
6119 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6120 tree obj_type_ref = NULL_TREE;
6121 CUMULATIVE_ARGS args_so_far_v;
6122 cumulative_args_t args_so_far;
6124 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6125 args_so_far = pack_cumulative_args (&args_so_far_v);
6126 call = get_call_rtx_from (insn);
6127 if (call)
6129 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6131 rtx symbol = XEXP (XEXP (call, 0), 0);
6132 if (SYMBOL_REF_DECL (symbol))
6133 fndecl = SYMBOL_REF_DECL (symbol);
6135 if (fndecl == NULL_TREE)
6136 fndecl = MEM_EXPR (XEXP (call, 0));
6137 if (fndecl
6138 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6139 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6140 fndecl = NULL_TREE;
6141 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6142 type = TREE_TYPE (fndecl);
6143 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6145 if (TREE_CODE (fndecl) == INDIRECT_REF
6146 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6147 obj_type_ref = TREE_OPERAND (fndecl, 0);
6148 fndecl = NULL_TREE;
6150 if (type)
6152 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6153 t = TREE_CHAIN (t))
6154 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6155 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6156 break;
6157 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6158 type = NULL;
6159 else
6161 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6162 link = CALL_INSN_FUNCTION_USAGE (insn);
6163 #ifndef PCC_STATIC_STRUCT_RETURN
6164 if (aggregate_value_p (TREE_TYPE (type), type)
6165 && targetm.calls.struct_value_rtx (type, 0) == 0)
6167 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6168 enum machine_mode mode = TYPE_MODE (struct_addr);
6169 rtx reg;
6170 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6171 nargs + 1);
6172 reg = targetm.calls.function_arg (args_so_far, mode,
6173 struct_addr, true);
6174 targetm.calls.function_arg_advance (args_so_far, mode,
6175 struct_addr, true);
6176 if (reg == NULL_RTX)
6178 for (; link; link = XEXP (link, 1))
6179 if (GET_CODE (XEXP (link, 0)) == USE
6180 && MEM_P (XEXP (XEXP (link, 0), 0)))
6182 link = XEXP (link, 1);
6183 break;
6187 else
6188 #endif
6189 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6190 nargs);
6191 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6193 enum machine_mode mode;
6194 t = TYPE_ARG_TYPES (type);
6195 mode = TYPE_MODE (TREE_VALUE (t));
6196 this_arg = targetm.calls.function_arg (args_so_far, mode,
6197 TREE_VALUE (t), true);
6198 if (this_arg && !REG_P (this_arg))
6199 this_arg = NULL_RTX;
6200 else if (this_arg == NULL_RTX)
6202 for (; link; link = XEXP (link, 1))
6203 if (GET_CODE (XEXP (link, 0)) == USE
6204 && MEM_P (XEXP (XEXP (link, 0), 0)))
6206 this_arg = XEXP (XEXP (link, 0), 0);
6207 break;
6214 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6216 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6217 if (GET_CODE (XEXP (link, 0)) == USE)
6219 rtx item = NULL_RTX;
6220 x = XEXP (XEXP (link, 0), 0);
6221 if (GET_MODE (link) == VOIDmode
6222 || GET_MODE (link) == BLKmode
6223 || (GET_MODE (link) != GET_MODE (x)
6224 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6225 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6226 /* Can't do anything for these, if the original type mode
6227 isn't known or can't be converted. */;
6228 else if (REG_P (x))
6230 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6231 if (val && cselib_preserved_value_p (val))
6232 item = val->val_rtx;
6233 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6235 enum machine_mode mode = GET_MODE (x);
6237 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6238 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6240 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6242 if (reg == NULL_RTX || !REG_P (reg))
6243 continue;
6244 val = cselib_lookup (reg, mode, 0, VOIDmode);
6245 if (val && cselib_preserved_value_p (val))
6247 item = val->val_rtx;
6248 break;
6253 else if (MEM_P (x))
6255 rtx mem = x;
6256 cselib_val *val;
6258 if (!frame_pointer_needed)
6260 struct adjust_mem_data amd;
6261 amd.mem_mode = VOIDmode;
6262 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6263 amd.side_effects = NULL_RTX;
6264 amd.store = true;
6265 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6266 &amd);
6267 gcc_assert (amd.side_effects == NULL_RTX);
6269 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6270 if (val && cselib_preserved_value_p (val))
6271 item = val->val_rtx;
6272 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6274 /* For non-integer stack argument see also if they weren't
6275 initialized by integers. */
6276 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6277 if (imode != GET_MODE (mem) && imode != BLKmode)
6279 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6280 imode, 0, VOIDmode);
6281 if (val && cselib_preserved_value_p (val))
6282 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6283 imode);
6287 if (item)
6289 rtx x2 = x;
6290 if (GET_MODE (item) != GET_MODE (link))
6291 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6292 if (GET_MODE (x2) != GET_MODE (link))
6293 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6294 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6295 call_arguments
6296 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6298 if (t && t != void_list_node)
6300 tree argtype = TREE_VALUE (t);
6301 enum machine_mode mode = TYPE_MODE (argtype);
6302 rtx reg;
6303 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6305 argtype = build_pointer_type (argtype);
6306 mode = TYPE_MODE (argtype);
6308 reg = targetm.calls.function_arg (args_so_far, mode,
6309 argtype, true);
6310 if (TREE_CODE (argtype) == REFERENCE_TYPE
6311 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6312 && reg
6313 && REG_P (reg)
6314 && GET_MODE (reg) == mode
6315 && GET_MODE_CLASS (mode) == MODE_INT
6316 && REG_P (x)
6317 && REGNO (x) == REGNO (reg)
6318 && GET_MODE (x) == mode
6319 && item)
6321 enum machine_mode indmode
6322 = TYPE_MODE (TREE_TYPE (argtype));
6323 rtx mem = gen_rtx_MEM (indmode, x);
6324 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6325 if (val && cselib_preserved_value_p (val))
6327 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6328 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6329 call_arguments);
6331 else
6333 struct elt_loc_list *l;
6334 tree initial;
6336 /* Try harder, when passing address of a constant
6337 pool integer it can be easily read back. */
6338 item = XEXP (item, 1);
6339 if (GET_CODE (item) == SUBREG)
6340 item = SUBREG_REG (item);
6341 gcc_assert (GET_CODE (item) == VALUE);
6342 val = CSELIB_VAL_PTR (item);
6343 for (l = val->locs; l; l = l->next)
6344 if (GET_CODE (l->loc) == SYMBOL_REF
6345 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6346 && SYMBOL_REF_DECL (l->loc)
6347 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6349 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6350 if (tree_fits_shwi_p (initial))
6352 item = GEN_INT (tree_to_shwi (initial));
6353 item = gen_rtx_CONCAT (indmode, mem, item);
6354 call_arguments
6355 = gen_rtx_EXPR_LIST (VOIDmode, item,
6356 call_arguments);
6358 break;
6362 targetm.calls.function_arg_advance (args_so_far, mode,
6363 argtype, true);
6364 t = TREE_CHAIN (t);
6368 /* Add debug arguments. */
6369 if (fndecl
6370 && TREE_CODE (fndecl) == FUNCTION_DECL
6371 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6373 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6374 if (debug_args)
6376 unsigned int ix;
6377 tree param;
6378 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6380 rtx item;
6381 tree dtemp = (**debug_args)[ix + 1];
6382 enum machine_mode mode = DECL_MODE (dtemp);
6383 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6384 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6385 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6386 call_arguments);
6391 /* Reverse call_arguments chain. */
6392 prev = NULL_RTX;
6393 for (cur = call_arguments; cur; cur = next)
6395 next = XEXP (cur, 1);
6396 XEXP (cur, 1) = prev;
6397 prev = cur;
6399 call_arguments = prev;
6401 x = get_call_rtx_from (insn);
6402 if (x)
6404 x = XEXP (XEXP (x, 0), 0);
6405 if (GET_CODE (x) == SYMBOL_REF)
6406 /* Don't record anything. */;
6407 else if (CONSTANT_P (x))
6409 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6410 pc_rtx, x);
6411 call_arguments
6412 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6414 else
6416 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6417 if (val && cselib_preserved_value_p (val))
6419 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6420 call_arguments
6421 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6425 if (this_arg)
6427 enum machine_mode mode
6428 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6429 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6430 HOST_WIDE_INT token
6431 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6432 if (token)
6433 clobbered = plus_constant (mode, clobbered,
6434 token * GET_MODE_SIZE (mode));
6435 clobbered = gen_rtx_MEM (mode, clobbered);
6436 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6437 call_arguments
6438 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6442 /* Callback for cselib_record_sets_hook, that records as micro
6443 operations uses and stores in an insn after cselib_record_sets has
6444 analyzed the sets in an insn, but before it modifies the stored
6445 values in the internal tables, unless cselib_record_sets doesn't
6446 call it directly (perhaps because we're not doing cselib in the
6447 first place, in which case sets and n_sets will be 0). */
6449 static void
6450 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6452 basic_block bb = BLOCK_FOR_INSN (insn);
6453 int n1, n2;
6454 struct count_use_info cui;
6455 micro_operation *mos;
6457 cselib_hook_called = true;
6459 cui.insn = insn;
6460 cui.bb = bb;
6461 cui.sets = sets;
6462 cui.n_sets = n_sets;
6464 n1 = VTI (bb)->mos.length ();
6465 cui.store_p = false;
6466 note_uses (&PATTERN (insn), add_uses_1, &cui);
6467 n2 = VTI (bb)->mos.length () - 1;
6468 mos = VTI (bb)->mos.address ();
6470 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6471 MO_VAL_LOC last. */
6472 while (n1 < n2)
6474 while (n1 < n2 && mos[n1].type == MO_USE)
6475 n1++;
6476 while (n1 < n2 && mos[n2].type != MO_USE)
6477 n2--;
6478 if (n1 < n2)
6480 micro_operation sw;
6482 sw = mos[n1];
6483 mos[n1] = mos[n2];
6484 mos[n2] = sw;
6488 n2 = VTI (bb)->mos.length () - 1;
6489 while (n1 < n2)
6491 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6492 n1++;
6493 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6494 n2--;
6495 if (n1 < n2)
6497 micro_operation sw;
6499 sw = mos[n1];
6500 mos[n1] = mos[n2];
6501 mos[n2] = sw;
6505 if (CALL_P (insn))
6507 micro_operation mo;
6509 mo.type = MO_CALL;
6510 mo.insn = insn;
6511 mo.u.loc = call_arguments;
6512 call_arguments = NULL_RTX;
6514 if (dump_file && (dump_flags & TDF_DETAILS))
6515 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6516 VTI (bb)->mos.safe_push (mo);
6519 n1 = VTI (bb)->mos.length ();
6520 /* This will record NEXT_INSN (insn), such that we can
6521 insert notes before it without worrying about any
6522 notes that MO_USEs might emit after the insn. */
6523 cui.store_p = true;
6524 note_stores (PATTERN (insn), add_stores, &cui);
6525 n2 = VTI (bb)->mos.length () - 1;
6526 mos = VTI (bb)->mos.address ();
6528 /* Order the MO_VAL_USEs first (note_stores does nothing
6529 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6530 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6531 while (n1 < n2)
6533 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6534 n1++;
6535 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6536 n2--;
6537 if (n1 < n2)
6539 micro_operation sw;
6541 sw = mos[n1];
6542 mos[n1] = mos[n2];
6543 mos[n2] = sw;
6547 n2 = VTI (bb)->mos.length () - 1;
6548 while (n1 < n2)
6550 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6551 n1++;
6552 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6553 n2--;
6554 if (n1 < n2)
6556 micro_operation sw;
6558 sw = mos[n1];
6559 mos[n1] = mos[n2];
6560 mos[n2] = sw;
6565 static enum var_init_status
6566 find_src_status (dataflow_set *in, rtx src)
6568 tree decl = NULL_TREE;
6569 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6571 if (! flag_var_tracking_uninit)
6572 status = VAR_INIT_STATUS_INITIALIZED;
6574 if (src && REG_P (src))
6575 decl = var_debug_decl (REG_EXPR (src));
6576 else if (src && MEM_P (src))
6577 decl = var_debug_decl (MEM_EXPR (src));
6579 if (src && decl)
6580 status = get_init_value (in, src, dv_from_decl (decl));
6582 return status;
6585 /* SRC is the source of an assignment. Use SET to try to find what
6586 was ultimately assigned to SRC. Return that value if known,
6587 otherwise return SRC itself. */
6589 static rtx
6590 find_src_set_src (dataflow_set *set, rtx src)
6592 tree decl = NULL_TREE; /* The variable being copied around. */
6593 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6594 variable var;
6595 location_chain nextp;
6596 int i;
6597 bool found;
6599 if (src && REG_P (src))
6600 decl = var_debug_decl (REG_EXPR (src));
6601 else if (src && MEM_P (src))
6602 decl = var_debug_decl (MEM_EXPR (src));
6604 if (src && decl)
6606 decl_or_value dv = dv_from_decl (decl);
6608 var = shared_hash_find (set->vars, dv);
6609 if (var)
6611 found = false;
6612 for (i = 0; i < var->n_var_parts && !found; i++)
6613 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6614 nextp = nextp->next)
6615 if (rtx_equal_p (nextp->loc, src))
6617 set_src = nextp->set_src;
6618 found = true;
6624 return set_src;
6627 /* Compute the changes of variable locations in the basic block BB. */
6629 static bool
6630 compute_bb_dataflow (basic_block bb)
6632 unsigned int i;
6633 micro_operation *mo;
6634 bool changed;
6635 dataflow_set old_out;
6636 dataflow_set *in = &VTI (bb)->in;
6637 dataflow_set *out = &VTI (bb)->out;
6639 dataflow_set_init (&old_out);
6640 dataflow_set_copy (&old_out, out);
6641 dataflow_set_copy (out, in);
6643 if (MAY_HAVE_DEBUG_INSNS)
6644 local_get_addr_cache = pointer_map_create ();
6646 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6648 rtx insn = mo->insn;
6650 switch (mo->type)
6652 case MO_CALL:
6653 dataflow_set_clear_at_call (out);
6654 break;
6656 case MO_USE:
6658 rtx loc = mo->u.loc;
6660 if (REG_P (loc))
6661 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6662 else if (MEM_P (loc))
6663 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6665 break;
6667 case MO_VAL_LOC:
6669 rtx loc = mo->u.loc;
6670 rtx val, vloc;
6671 tree var;
6673 if (GET_CODE (loc) == CONCAT)
6675 val = XEXP (loc, 0);
6676 vloc = XEXP (loc, 1);
6678 else
6680 val = NULL_RTX;
6681 vloc = loc;
6684 var = PAT_VAR_LOCATION_DECL (vloc);
6686 clobber_variable_part (out, NULL_RTX,
6687 dv_from_decl (var), 0, NULL_RTX);
6688 if (val)
6690 if (VAL_NEEDS_RESOLUTION (loc))
6691 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6692 set_variable_part (out, val, dv_from_decl (var), 0,
6693 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6694 INSERT);
6696 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6697 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6698 dv_from_decl (var), 0,
6699 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6700 INSERT);
6702 break;
6704 case MO_VAL_USE:
6706 rtx loc = mo->u.loc;
6707 rtx val, vloc, uloc;
6709 vloc = uloc = XEXP (loc, 1);
6710 val = XEXP (loc, 0);
6712 if (GET_CODE (val) == CONCAT)
6714 uloc = XEXP (val, 1);
6715 val = XEXP (val, 0);
6718 if (VAL_NEEDS_RESOLUTION (loc))
6719 val_resolve (out, val, vloc, insn);
6720 else
6721 val_store (out, val, uloc, insn, false);
6723 if (VAL_HOLDS_TRACK_EXPR (loc))
6725 if (GET_CODE (uloc) == REG)
6726 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6727 NULL);
6728 else if (GET_CODE (uloc) == MEM)
6729 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6730 NULL);
6733 break;
6735 case MO_VAL_SET:
6737 rtx loc = mo->u.loc;
6738 rtx val, vloc, uloc;
6739 rtx dstv, srcv;
6741 vloc = loc;
6742 uloc = XEXP (vloc, 1);
6743 val = XEXP (vloc, 0);
6744 vloc = uloc;
6746 if (GET_CODE (uloc) == SET)
6748 dstv = SET_DEST (uloc);
6749 srcv = SET_SRC (uloc);
6751 else
6753 dstv = uloc;
6754 srcv = NULL;
6757 if (GET_CODE (val) == CONCAT)
6759 dstv = vloc = XEXP (val, 1);
6760 val = XEXP (val, 0);
6763 if (GET_CODE (vloc) == SET)
6765 srcv = SET_SRC (vloc);
6767 gcc_assert (val != srcv);
6768 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6770 dstv = vloc = SET_DEST (vloc);
6772 if (VAL_NEEDS_RESOLUTION (loc))
6773 val_resolve (out, val, srcv, insn);
6775 else if (VAL_NEEDS_RESOLUTION (loc))
6777 gcc_assert (GET_CODE (uloc) == SET
6778 && GET_CODE (SET_SRC (uloc)) == REG);
6779 val_resolve (out, val, SET_SRC (uloc), insn);
6782 if (VAL_HOLDS_TRACK_EXPR (loc))
6784 if (VAL_EXPR_IS_CLOBBERED (loc))
6786 if (REG_P (uloc))
6787 var_reg_delete (out, uloc, true);
6788 else if (MEM_P (uloc))
6790 gcc_assert (MEM_P (dstv));
6791 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6792 var_mem_delete (out, dstv, true);
6795 else
6797 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6798 rtx src = NULL, dst = uloc;
6799 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6801 if (GET_CODE (uloc) == SET)
6803 src = SET_SRC (uloc);
6804 dst = SET_DEST (uloc);
6807 if (copied_p)
6809 if (flag_var_tracking_uninit)
6811 status = find_src_status (in, src);
6813 if (status == VAR_INIT_STATUS_UNKNOWN)
6814 status = find_src_status (out, src);
6817 src = find_src_set_src (in, src);
6820 if (REG_P (dst))
6821 var_reg_delete_and_set (out, dst, !copied_p,
6822 status, srcv);
6823 else if (MEM_P (dst))
6825 gcc_assert (MEM_P (dstv));
6826 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6827 var_mem_delete_and_set (out, dstv, !copied_p,
6828 status, srcv);
6832 else if (REG_P (uloc))
6833 var_regno_delete (out, REGNO (uloc));
6834 else if (MEM_P (uloc))
6836 gcc_checking_assert (GET_CODE (vloc) == MEM);
6837 gcc_checking_assert (dstv == vloc);
6838 if (dstv != vloc)
6839 clobber_overlapping_mems (out, vloc);
6842 val_store (out, val, dstv, insn, true);
6844 break;
6846 case MO_SET:
6848 rtx loc = mo->u.loc;
6849 rtx set_src = NULL;
6851 if (GET_CODE (loc) == SET)
6853 set_src = SET_SRC (loc);
6854 loc = SET_DEST (loc);
6857 if (REG_P (loc))
6858 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6859 set_src);
6860 else if (MEM_P (loc))
6861 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6862 set_src);
6864 break;
6866 case MO_COPY:
6868 rtx loc = mo->u.loc;
6869 enum var_init_status src_status;
6870 rtx set_src = NULL;
6872 if (GET_CODE (loc) == SET)
6874 set_src = SET_SRC (loc);
6875 loc = SET_DEST (loc);
6878 if (! flag_var_tracking_uninit)
6879 src_status = VAR_INIT_STATUS_INITIALIZED;
6880 else
6882 src_status = find_src_status (in, set_src);
6884 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6885 src_status = find_src_status (out, set_src);
6888 set_src = find_src_set_src (in, set_src);
6890 if (REG_P (loc))
6891 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6892 else if (MEM_P (loc))
6893 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6895 break;
6897 case MO_USE_NO_VAR:
6899 rtx loc = mo->u.loc;
6901 if (REG_P (loc))
6902 var_reg_delete (out, loc, false);
6903 else if (MEM_P (loc))
6904 var_mem_delete (out, loc, false);
6906 break;
6908 case MO_CLOBBER:
6910 rtx loc = mo->u.loc;
6912 if (REG_P (loc))
6913 var_reg_delete (out, loc, true);
6914 else if (MEM_P (loc))
6915 var_mem_delete (out, loc, true);
6917 break;
6919 case MO_ADJUST:
6920 out->stack_adjust += mo->u.adjust;
6921 break;
6925 if (MAY_HAVE_DEBUG_INSNS)
6927 pointer_map_destroy (local_get_addr_cache);
6928 local_get_addr_cache = NULL;
6930 dataflow_set_equiv_regs (out);
6931 shared_hash_htab (out->vars)
6932 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6933 shared_hash_htab (out->vars)
6934 .traverse <dataflow_set *, canonicalize_values_star> (out);
6935 #if ENABLE_CHECKING
6936 shared_hash_htab (out->vars)
6937 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6938 #endif
6940 changed = dataflow_set_different (&old_out, out);
6941 dataflow_set_destroy (&old_out);
6942 return changed;
6945 /* Find the locations of variables in the whole function. */
6947 static bool
6948 vt_find_locations (void)
6950 fibheap_t worklist, pending, fibheap_swap;
6951 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6952 basic_block bb;
6953 edge e;
6954 int *bb_order;
6955 int *rc_order;
6956 int i;
6957 int htabsz = 0;
6958 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6959 bool success = true;
6961 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6962 /* Compute reverse completion order of depth first search of the CFG
6963 so that the data-flow runs faster. */
6964 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6965 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6966 pre_and_rev_post_order_compute (NULL, rc_order, false);
6967 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6968 bb_order[rc_order[i]] = i;
6969 free (rc_order);
6971 worklist = fibheap_new ();
6972 pending = fibheap_new ();
6973 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6974 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6975 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6976 bitmap_clear (in_worklist);
6978 FOR_EACH_BB_FN (bb, cfun)
6979 fibheap_insert (pending, bb_order[bb->index], bb);
6980 bitmap_ones (in_pending);
6982 while (success && !fibheap_empty (pending))
6984 fibheap_swap = pending;
6985 pending = worklist;
6986 worklist = fibheap_swap;
6987 sbitmap_swap = in_pending;
6988 in_pending = in_worklist;
6989 in_worklist = sbitmap_swap;
6991 bitmap_clear (visited);
6993 while (!fibheap_empty (worklist))
6995 bb = (basic_block) fibheap_extract_min (worklist);
6996 bitmap_clear_bit (in_worklist, bb->index);
6997 gcc_assert (!bitmap_bit_p (visited, bb->index));
6998 if (!bitmap_bit_p (visited, bb->index))
7000 bool changed;
7001 edge_iterator ei;
7002 int oldinsz, oldoutsz;
7004 bitmap_set_bit (visited, bb->index);
7006 if (VTI (bb)->in.vars)
7008 htabsz
7009 -= shared_hash_htab (VTI (bb)->in.vars).size ()
7010 + shared_hash_htab (VTI (bb)->out.vars).size ();
7011 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
7012 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
7014 else
7015 oldinsz = oldoutsz = 0;
7017 if (MAY_HAVE_DEBUG_INSNS)
7019 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7020 bool first = true, adjust = false;
7022 /* Calculate the IN set as the intersection of
7023 predecessor OUT sets. */
7025 dataflow_set_clear (in);
7026 dst_can_be_shared = true;
7028 FOR_EACH_EDGE (e, ei, bb->preds)
7029 if (!VTI (e->src)->flooded)
7030 gcc_assert (bb_order[bb->index]
7031 <= bb_order[e->src->index]);
7032 else if (first)
7034 dataflow_set_copy (in, &VTI (e->src)->out);
7035 first_out = &VTI (e->src)->out;
7036 first = false;
7038 else
7040 dataflow_set_merge (in, &VTI (e->src)->out);
7041 adjust = true;
7044 if (adjust)
7046 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7047 #if ENABLE_CHECKING
7048 /* Merge and merge_adjust should keep entries in
7049 canonical order. */
7050 shared_hash_htab (in->vars)
7051 .traverse <dataflow_set *,
7052 canonicalize_loc_order_check> (in);
7053 #endif
7054 if (dst_can_be_shared)
7056 shared_hash_destroy (in->vars);
7057 in->vars = shared_hash_copy (first_out->vars);
7061 VTI (bb)->flooded = true;
7063 else
7065 /* Calculate the IN set as union of predecessor OUT sets. */
7066 dataflow_set_clear (&VTI (bb)->in);
7067 FOR_EACH_EDGE (e, ei, bb->preds)
7068 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7071 changed = compute_bb_dataflow (bb);
7072 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7073 + shared_hash_htab (VTI (bb)->out.vars).size ();
7075 if (htabmax && htabsz > htabmax)
7077 if (MAY_HAVE_DEBUG_INSNS)
7078 inform (DECL_SOURCE_LOCATION (cfun->decl),
7079 "variable tracking size limit exceeded with "
7080 "-fvar-tracking-assignments, retrying without");
7081 else
7082 inform (DECL_SOURCE_LOCATION (cfun->decl),
7083 "variable tracking size limit exceeded");
7084 success = false;
7085 break;
7088 if (changed)
7090 FOR_EACH_EDGE (e, ei, bb->succs)
7092 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7093 continue;
7095 if (bitmap_bit_p (visited, e->dest->index))
7097 if (!bitmap_bit_p (in_pending, e->dest->index))
7099 /* Send E->DEST to next round. */
7100 bitmap_set_bit (in_pending, e->dest->index);
7101 fibheap_insert (pending,
7102 bb_order[e->dest->index],
7103 e->dest);
7106 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7108 /* Add E->DEST to current round. */
7109 bitmap_set_bit (in_worklist, e->dest->index);
7110 fibheap_insert (worklist, bb_order[e->dest->index],
7111 e->dest);
7116 if (dump_file)
7117 fprintf (dump_file,
7118 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7119 bb->index,
7120 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7121 oldinsz,
7122 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7123 oldoutsz,
7124 (int)worklist->nodes, (int)pending->nodes, htabsz);
7126 if (dump_file && (dump_flags & TDF_DETAILS))
7128 fprintf (dump_file, "BB %i IN:\n", bb->index);
7129 dump_dataflow_set (&VTI (bb)->in);
7130 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7131 dump_dataflow_set (&VTI (bb)->out);
7137 if (success && MAY_HAVE_DEBUG_INSNS)
7138 FOR_EACH_BB_FN (bb, cfun)
7139 gcc_assert (VTI (bb)->flooded);
7141 free (bb_order);
7142 fibheap_delete (worklist);
7143 fibheap_delete (pending);
7144 sbitmap_free (visited);
7145 sbitmap_free (in_worklist);
7146 sbitmap_free (in_pending);
7148 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7149 return success;
7152 /* Print the content of the LIST to dump file. */
7154 static void
7155 dump_attrs_list (attrs list)
7157 for (; list; list = list->next)
7159 if (dv_is_decl_p (list->dv))
7160 print_mem_expr (dump_file, dv_as_decl (list->dv));
7161 else
7162 print_rtl_single (dump_file, dv_as_value (list->dv));
7163 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7165 fprintf (dump_file, "\n");
7168 /* Print the information about variable *SLOT to dump file. */
7171 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7173 variable var = *slot;
7175 dump_var (var);
7177 /* Continue traversing the hash table. */
7178 return 1;
7181 /* Print the information about variable VAR to dump file. */
7183 static void
7184 dump_var (variable var)
7186 int i;
7187 location_chain node;
7189 if (dv_is_decl_p (var->dv))
7191 const_tree decl = dv_as_decl (var->dv);
7193 if (DECL_NAME (decl))
7195 fprintf (dump_file, " name: %s",
7196 IDENTIFIER_POINTER (DECL_NAME (decl)));
7197 if (dump_flags & TDF_UID)
7198 fprintf (dump_file, "D.%u", DECL_UID (decl));
7200 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7201 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7202 else
7203 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7204 fprintf (dump_file, "\n");
7206 else
7208 fputc (' ', dump_file);
7209 print_rtl_single (dump_file, dv_as_value (var->dv));
7212 for (i = 0; i < var->n_var_parts; i++)
7214 fprintf (dump_file, " offset %ld\n",
7215 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7216 for (node = var->var_part[i].loc_chain; node; node = node->next)
7218 fprintf (dump_file, " ");
7219 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7220 fprintf (dump_file, "[uninit]");
7221 print_rtl_single (dump_file, node->loc);
7226 /* Print the information about variables from hash table VARS to dump file. */
7228 static void
7229 dump_vars (variable_table_type vars)
7231 if (vars.elements () > 0)
7233 fprintf (dump_file, "Variables:\n");
7234 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7238 /* Print the dataflow set SET to dump file. */
7240 static void
7241 dump_dataflow_set (dataflow_set *set)
7243 int i;
7245 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7246 set->stack_adjust);
7247 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7249 if (set->regs[i])
7251 fprintf (dump_file, "Reg %d:", i);
7252 dump_attrs_list (set->regs[i]);
7255 dump_vars (shared_hash_htab (set->vars));
7256 fprintf (dump_file, "\n");
7259 /* Print the IN and OUT sets for each basic block to dump file. */
7261 static void
7262 dump_dataflow_sets (void)
7264 basic_block bb;
7266 FOR_EACH_BB_FN (bb, cfun)
7268 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7269 fprintf (dump_file, "IN:\n");
7270 dump_dataflow_set (&VTI (bb)->in);
7271 fprintf (dump_file, "OUT:\n");
7272 dump_dataflow_set (&VTI (bb)->out);
7276 /* Return the variable for DV in dropped_values, inserting one if
7277 requested with INSERT. */
7279 static inline variable
7280 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7282 variable_def **slot;
7283 variable empty_var;
7284 onepart_enum_t onepart;
7286 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7288 if (!slot)
7289 return NULL;
7291 if (*slot)
7292 return *slot;
7294 gcc_checking_assert (insert == INSERT);
7296 onepart = dv_onepart_p (dv);
7298 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7300 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7301 empty_var->dv = dv;
7302 empty_var->refcount = 1;
7303 empty_var->n_var_parts = 0;
7304 empty_var->onepart = onepart;
7305 empty_var->in_changed_variables = false;
7306 empty_var->var_part[0].loc_chain = NULL;
7307 empty_var->var_part[0].cur_loc = NULL;
7308 VAR_LOC_1PAUX (empty_var) = NULL;
7309 set_dv_changed (dv, true);
7311 *slot = empty_var;
7313 return empty_var;
7316 /* Recover the one-part aux from dropped_values. */
7318 static struct onepart_aux *
7319 recover_dropped_1paux (variable var)
7321 variable dvar;
7323 gcc_checking_assert (var->onepart);
7325 if (VAR_LOC_1PAUX (var))
7326 return VAR_LOC_1PAUX (var);
7328 if (var->onepart == ONEPART_VDECL)
7329 return NULL;
7331 dvar = variable_from_dropped (var->dv, NO_INSERT);
7333 if (!dvar)
7334 return NULL;
7336 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7337 VAR_LOC_1PAUX (dvar) = NULL;
7339 return VAR_LOC_1PAUX (var);
7342 /* Add variable VAR to the hash table of changed variables and
7343 if it has no locations delete it from SET's hash table. */
7345 static void
7346 variable_was_changed (variable var, dataflow_set *set)
7348 hashval_t hash = dv_htab_hash (var->dv);
7350 if (emit_notes)
7352 variable_def **slot;
7354 /* Remember this decl or VALUE has been added to changed_variables. */
7355 set_dv_changed (var->dv, true);
7357 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7359 if (*slot)
7361 variable old_var = *slot;
7362 gcc_assert (old_var->in_changed_variables);
7363 old_var->in_changed_variables = false;
7364 if (var != old_var && var->onepart)
7366 /* Restore the auxiliary info from an empty variable
7367 previously created for changed_variables, so it is
7368 not lost. */
7369 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7370 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7371 VAR_LOC_1PAUX (old_var) = NULL;
7373 variable_htab_free (*slot);
7376 if (set && var->n_var_parts == 0)
7378 onepart_enum_t onepart = var->onepart;
7379 variable empty_var = NULL;
7380 variable_def **dslot = NULL;
7382 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7384 dslot = dropped_values.find_slot_with_hash (var->dv,
7385 dv_htab_hash (var->dv),
7386 INSERT);
7387 empty_var = *dslot;
7389 if (empty_var)
7391 gcc_checking_assert (!empty_var->in_changed_variables);
7392 if (!VAR_LOC_1PAUX (var))
7394 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7395 VAR_LOC_1PAUX (empty_var) = NULL;
7397 else
7398 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7402 if (!empty_var)
7404 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7405 empty_var->dv = var->dv;
7406 empty_var->refcount = 1;
7407 empty_var->n_var_parts = 0;
7408 empty_var->onepart = onepart;
7409 if (dslot)
7411 empty_var->refcount++;
7412 *dslot = empty_var;
7415 else
7416 empty_var->refcount++;
7417 empty_var->in_changed_variables = true;
7418 *slot = empty_var;
7419 if (onepart)
7421 empty_var->var_part[0].loc_chain = NULL;
7422 empty_var->var_part[0].cur_loc = NULL;
7423 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7424 VAR_LOC_1PAUX (var) = NULL;
7426 goto drop_var;
7428 else
7430 if (var->onepart && !VAR_LOC_1PAUX (var))
7431 recover_dropped_1paux (var);
7432 var->refcount++;
7433 var->in_changed_variables = true;
7434 *slot = var;
7437 else
7439 gcc_assert (set);
7440 if (var->n_var_parts == 0)
7442 variable_def **slot;
7444 drop_var:
7445 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7446 if (slot)
7448 if (shared_hash_shared (set->vars))
7449 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7450 NO_INSERT);
7451 shared_hash_htab (set->vars).clear_slot (slot);
7457 /* Look for the index in VAR->var_part corresponding to OFFSET.
7458 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7459 referenced int will be set to the index that the part has or should
7460 have, if it should be inserted. */
7462 static inline int
7463 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7464 int *insertion_point)
7466 int pos, low, high;
7468 if (var->onepart)
7470 if (offset != 0)
7471 return -1;
7473 if (insertion_point)
7474 *insertion_point = 0;
7476 return var->n_var_parts - 1;
7479 /* Find the location part. */
7480 low = 0;
7481 high = var->n_var_parts;
7482 while (low != high)
7484 pos = (low + high) / 2;
7485 if (VAR_PART_OFFSET (var, pos) < offset)
7486 low = pos + 1;
7487 else
7488 high = pos;
7490 pos = low;
7492 if (insertion_point)
7493 *insertion_point = pos;
7495 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7496 return pos;
7498 return -1;
7501 static variable_def **
7502 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7503 decl_or_value dv, HOST_WIDE_INT offset,
7504 enum var_init_status initialized, rtx set_src)
7506 int pos;
7507 location_chain node, next;
7508 location_chain *nextp;
7509 variable var;
7510 onepart_enum_t onepart;
7512 var = *slot;
7514 if (var)
7515 onepart = var->onepart;
7516 else
7517 onepart = dv_onepart_p (dv);
7519 gcc_checking_assert (offset == 0 || !onepart);
7520 gcc_checking_assert (loc != dv_as_opaque (dv));
7522 if (! flag_var_tracking_uninit)
7523 initialized = VAR_INIT_STATUS_INITIALIZED;
7525 if (!var)
7527 /* Create new variable information. */
7528 var = (variable) pool_alloc (onepart_pool (onepart));
7529 var->dv = dv;
7530 var->refcount = 1;
7531 var->n_var_parts = 1;
7532 var->onepart = onepart;
7533 var->in_changed_variables = false;
7534 if (var->onepart)
7535 VAR_LOC_1PAUX (var) = NULL;
7536 else
7537 VAR_PART_OFFSET (var, 0) = offset;
7538 var->var_part[0].loc_chain = NULL;
7539 var->var_part[0].cur_loc = NULL;
7540 *slot = var;
7541 pos = 0;
7542 nextp = &var->var_part[0].loc_chain;
7544 else if (onepart)
7546 int r = -1, c = 0;
7548 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7550 pos = 0;
7552 if (GET_CODE (loc) == VALUE)
7554 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7555 nextp = &node->next)
7556 if (GET_CODE (node->loc) == VALUE)
7558 if (node->loc == loc)
7560 r = 0;
7561 break;
7563 if (canon_value_cmp (node->loc, loc))
7564 c++;
7565 else
7567 r = 1;
7568 break;
7571 else if (REG_P (node->loc) || MEM_P (node->loc))
7572 c++;
7573 else
7575 r = 1;
7576 break;
7579 else if (REG_P (loc))
7581 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7582 nextp = &node->next)
7583 if (REG_P (node->loc))
7585 if (REGNO (node->loc) < REGNO (loc))
7586 c++;
7587 else
7589 if (REGNO (node->loc) == REGNO (loc))
7590 r = 0;
7591 else
7592 r = 1;
7593 break;
7596 else
7598 r = 1;
7599 break;
7602 else if (MEM_P (loc))
7604 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7605 nextp = &node->next)
7606 if (REG_P (node->loc))
7607 c++;
7608 else if (MEM_P (node->loc))
7610 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7611 break;
7612 else
7613 c++;
7615 else
7617 r = 1;
7618 break;
7621 else
7622 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7623 nextp = &node->next)
7624 if ((r = loc_cmp (node->loc, loc)) >= 0)
7625 break;
7626 else
7627 c++;
7629 if (r == 0)
7630 return slot;
7632 if (shared_var_p (var, set->vars))
7634 slot = unshare_variable (set, slot, var, initialized);
7635 var = *slot;
7636 for (nextp = &var->var_part[0].loc_chain; c;
7637 nextp = &(*nextp)->next)
7638 c--;
7639 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7642 else
7644 int inspos = 0;
7646 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7648 pos = find_variable_location_part (var, offset, &inspos);
7650 if (pos >= 0)
7652 node = var->var_part[pos].loc_chain;
7654 if (node
7655 && ((REG_P (node->loc) && REG_P (loc)
7656 && REGNO (node->loc) == REGNO (loc))
7657 || rtx_equal_p (node->loc, loc)))
7659 /* LOC is in the beginning of the chain so we have nothing
7660 to do. */
7661 if (node->init < initialized)
7662 node->init = initialized;
7663 if (set_src != NULL)
7664 node->set_src = set_src;
7666 return slot;
7668 else
7670 /* We have to make a copy of a shared variable. */
7671 if (shared_var_p (var, set->vars))
7673 slot = unshare_variable (set, slot, var, initialized);
7674 var = *slot;
7678 else
7680 /* We have not found the location part, new one will be created. */
7682 /* We have to make a copy of the shared variable. */
7683 if (shared_var_p (var, set->vars))
7685 slot = unshare_variable (set, slot, var, initialized);
7686 var = *slot;
7689 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7690 thus there are at most MAX_VAR_PARTS different offsets. */
7691 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7692 && (!var->n_var_parts || !onepart));
7694 /* We have to move the elements of array starting at index
7695 inspos to the next position. */
7696 for (pos = var->n_var_parts; pos > inspos; pos--)
7697 var->var_part[pos] = var->var_part[pos - 1];
7699 var->n_var_parts++;
7700 gcc_checking_assert (!onepart);
7701 VAR_PART_OFFSET (var, pos) = offset;
7702 var->var_part[pos].loc_chain = NULL;
7703 var->var_part[pos].cur_loc = NULL;
7706 /* Delete the location from the list. */
7707 nextp = &var->var_part[pos].loc_chain;
7708 for (node = var->var_part[pos].loc_chain; node; node = next)
7710 next = node->next;
7711 if ((REG_P (node->loc) && REG_P (loc)
7712 && REGNO (node->loc) == REGNO (loc))
7713 || rtx_equal_p (node->loc, loc))
7715 /* Save these values, to assign to the new node, before
7716 deleting this one. */
7717 if (node->init > initialized)
7718 initialized = node->init;
7719 if (node->set_src != NULL && set_src == NULL)
7720 set_src = node->set_src;
7721 if (var->var_part[pos].cur_loc == node->loc)
7722 var->var_part[pos].cur_loc = NULL;
7723 pool_free (loc_chain_pool, node);
7724 *nextp = next;
7725 break;
7727 else
7728 nextp = &node->next;
7731 nextp = &var->var_part[pos].loc_chain;
7734 /* Add the location to the beginning. */
7735 node = (location_chain) pool_alloc (loc_chain_pool);
7736 node->loc = loc;
7737 node->init = initialized;
7738 node->set_src = set_src;
7739 node->next = *nextp;
7740 *nextp = node;
7742 /* If no location was emitted do so. */
7743 if (var->var_part[pos].cur_loc == NULL)
7744 variable_was_changed (var, set);
7746 return slot;
7749 /* Set the part of variable's location in the dataflow set SET. The
7750 variable part is specified by variable's declaration in DV and
7751 offset OFFSET and the part's location by LOC. IOPT should be
7752 NO_INSERT if the variable is known to be in SET already and the
7753 variable hash table must not be resized, and INSERT otherwise. */
7755 static void
7756 set_variable_part (dataflow_set *set, rtx loc,
7757 decl_or_value dv, HOST_WIDE_INT offset,
7758 enum var_init_status initialized, rtx set_src,
7759 enum insert_option iopt)
7761 variable_def **slot;
7763 if (iopt == NO_INSERT)
7764 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7765 else
7767 slot = shared_hash_find_slot (set->vars, dv);
7768 if (!slot)
7769 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7771 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7774 /* Remove all recorded register locations for the given variable part
7775 from dataflow set SET, except for those that are identical to loc.
7776 The variable part is specified by variable's declaration or value
7777 DV and offset OFFSET. */
7779 static variable_def **
7780 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7781 HOST_WIDE_INT offset, rtx set_src)
7783 variable var = *slot;
7784 int pos = find_variable_location_part (var, offset, NULL);
7786 if (pos >= 0)
7788 location_chain node, next;
7790 /* Remove the register locations from the dataflow set. */
7791 next = var->var_part[pos].loc_chain;
7792 for (node = next; node; node = next)
7794 next = node->next;
7795 if (node->loc != loc
7796 && (!flag_var_tracking_uninit
7797 || !set_src
7798 || MEM_P (set_src)
7799 || !rtx_equal_p (set_src, node->set_src)))
7801 if (REG_P (node->loc))
7803 attrs anode, anext;
7804 attrs *anextp;
7806 /* Remove the variable part from the register's
7807 list, but preserve any other variable parts
7808 that might be regarded as live in that same
7809 register. */
7810 anextp = &set->regs[REGNO (node->loc)];
7811 for (anode = *anextp; anode; anode = anext)
7813 anext = anode->next;
7814 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7815 && anode->offset == offset)
7817 pool_free (attrs_pool, anode);
7818 *anextp = anext;
7820 else
7821 anextp = &anode->next;
7825 slot = delete_slot_part (set, node->loc, slot, offset);
7830 return slot;
7833 /* Remove all recorded register locations for the given variable part
7834 from dataflow set SET, except for those that are identical to loc.
7835 The variable part is specified by variable's declaration or value
7836 DV and offset OFFSET. */
7838 static void
7839 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7840 HOST_WIDE_INT offset, rtx set_src)
7842 variable_def **slot;
7844 if (!dv_as_opaque (dv)
7845 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7846 return;
7848 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7849 if (!slot)
7850 return;
7852 clobber_slot_part (set, loc, slot, offset, set_src);
7855 /* Delete the part of variable's location from dataflow set SET. The
7856 variable part is specified by its SET->vars slot SLOT and offset
7857 OFFSET and the part's location by LOC. */
7859 static variable_def **
7860 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7861 HOST_WIDE_INT offset)
7863 variable var = *slot;
7864 int pos = find_variable_location_part (var, offset, NULL);
7866 if (pos >= 0)
7868 location_chain node, next;
7869 location_chain *nextp;
7870 bool changed;
7871 rtx cur_loc;
7873 if (shared_var_p (var, set->vars))
7875 /* If the variable contains the location part we have to
7876 make a copy of the variable. */
7877 for (node = var->var_part[pos].loc_chain; node;
7878 node = node->next)
7880 if ((REG_P (node->loc) && REG_P (loc)
7881 && REGNO (node->loc) == REGNO (loc))
7882 || rtx_equal_p (node->loc, loc))
7884 slot = unshare_variable (set, slot, var,
7885 VAR_INIT_STATUS_UNKNOWN);
7886 var = *slot;
7887 break;
7892 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7893 cur_loc = VAR_LOC_FROM (var);
7894 else
7895 cur_loc = var->var_part[pos].cur_loc;
7897 /* Delete the location part. */
7898 changed = false;
7899 nextp = &var->var_part[pos].loc_chain;
7900 for (node = *nextp; node; node = next)
7902 next = node->next;
7903 if ((REG_P (node->loc) && REG_P (loc)
7904 && REGNO (node->loc) == REGNO (loc))
7905 || rtx_equal_p (node->loc, loc))
7907 /* If we have deleted the location which was last emitted
7908 we have to emit new location so add the variable to set
7909 of changed variables. */
7910 if (cur_loc == node->loc)
7912 changed = true;
7913 var->var_part[pos].cur_loc = NULL;
7914 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7915 VAR_LOC_FROM (var) = NULL;
7917 pool_free (loc_chain_pool, node);
7918 *nextp = next;
7919 break;
7921 else
7922 nextp = &node->next;
7925 if (var->var_part[pos].loc_chain == NULL)
7927 changed = true;
7928 var->n_var_parts--;
7929 while (pos < var->n_var_parts)
7931 var->var_part[pos] = var->var_part[pos + 1];
7932 pos++;
7935 if (changed)
7936 variable_was_changed (var, set);
7939 return slot;
7942 /* Delete the part of variable's location from dataflow set SET. The
7943 variable part is specified by variable's declaration or value DV
7944 and offset OFFSET and the part's location by LOC. */
7946 static void
7947 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7948 HOST_WIDE_INT offset)
7950 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7951 if (!slot)
7952 return;
7954 delete_slot_part (set, loc, slot, offset);
7958 /* Structure for passing some other parameters to function
7959 vt_expand_loc_callback. */
7960 struct expand_loc_callback_data
7962 /* The variables and values active at this point. */
7963 variable_table_type vars;
7965 /* Stack of values and debug_exprs under expansion, and their
7966 children. */
7967 auto_vec<rtx, 4> expanding;
7969 /* Stack of values and debug_exprs whose expansion hit recursion
7970 cycles. They will have VALUE_RECURSED_INTO marked when added to
7971 this list. This flag will be cleared if any of its dependencies
7972 resolves to a valid location. So, if the flag remains set at the
7973 end of the search, we know no valid location for this one can
7974 possibly exist. */
7975 auto_vec<rtx, 4> pending;
7977 /* The maximum depth among the sub-expressions under expansion.
7978 Zero indicates no expansion so far. */
7979 expand_depth depth;
7982 /* Allocate the one-part auxiliary data structure for VAR, with enough
7983 room for COUNT dependencies. */
7985 static void
7986 loc_exp_dep_alloc (variable var, int count)
7988 size_t allocsize;
7990 gcc_checking_assert (var->onepart);
7992 /* We can be called with COUNT == 0 to allocate the data structure
7993 without any dependencies, e.g. for the backlinks only. However,
7994 if we are specifying a COUNT, then the dependency list must have
7995 been emptied before. It would be possible to adjust pointers or
7996 force it empty here, but this is better done at an earlier point
7997 in the algorithm, so we instead leave an assertion to catch
7998 errors. */
7999 gcc_checking_assert (!count
8000 || VAR_LOC_DEP_VEC (var) == NULL
8001 || VAR_LOC_DEP_VEC (var)->is_empty ());
8003 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8004 return;
8006 allocsize = offsetof (struct onepart_aux, deps)
8007 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8009 if (VAR_LOC_1PAUX (var))
8011 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8012 VAR_LOC_1PAUX (var), allocsize);
8013 /* If the reallocation moves the onepaux structure, the
8014 back-pointer to BACKLINKS in the first list member will still
8015 point to its old location. Adjust it. */
8016 if (VAR_LOC_DEP_LST (var))
8017 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8019 else
8021 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8022 *VAR_LOC_DEP_LSTP (var) = NULL;
8023 VAR_LOC_FROM (var) = NULL;
8024 VAR_LOC_DEPTH (var).complexity = 0;
8025 VAR_LOC_DEPTH (var).entryvals = 0;
8027 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8030 /* Remove all entries from the vector of active dependencies of VAR,
8031 removing them from the back-links lists too. */
8033 static void
8034 loc_exp_dep_clear (variable var)
8036 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8038 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8039 if (led->next)
8040 led->next->pprev = led->pprev;
8041 if (led->pprev)
8042 *led->pprev = led->next;
8043 VAR_LOC_DEP_VEC (var)->pop ();
8047 /* Insert an active dependency from VAR on X to the vector of
8048 dependencies, and add the corresponding back-link to X's list of
8049 back-links in VARS. */
8051 static void
8052 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8054 decl_or_value dv;
8055 variable xvar;
8056 loc_exp_dep *led;
8058 dv = dv_from_rtx (x);
8060 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8061 an additional look up? */
8062 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8064 if (!xvar)
8066 xvar = variable_from_dropped (dv, NO_INSERT);
8067 gcc_checking_assert (xvar);
8070 /* No point in adding the same backlink more than once. This may
8071 arise if say the same value appears in two complex expressions in
8072 the same loc_list, or even more than once in a single
8073 expression. */
8074 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8075 return;
8077 if (var->onepart == NOT_ONEPART)
8078 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8079 else
8081 loc_exp_dep empty;
8082 memset (&empty, 0, sizeof (empty));
8083 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8084 led = &VAR_LOC_DEP_VEC (var)->last ();
8086 led->dv = var->dv;
8087 led->value = x;
8089 loc_exp_dep_alloc (xvar, 0);
8090 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8091 led->next = *led->pprev;
8092 if (led->next)
8093 led->next->pprev = &led->next;
8094 *led->pprev = led;
8097 /* Create active dependencies of VAR on COUNT values starting at
8098 VALUE, and corresponding back-links to the entries in VARS. Return
8099 true if we found any pending-recursion results. */
8101 static bool
8102 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8103 variable_table_type vars)
8105 bool pending_recursion = false;
8107 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8108 || VAR_LOC_DEP_VEC (var)->is_empty ());
8110 /* Set up all dependencies from last_child (as set up at the end of
8111 the loop above) to the end. */
8112 loc_exp_dep_alloc (var, count);
8114 while (count--)
8116 rtx x = *value++;
8118 if (!pending_recursion)
8119 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8121 loc_exp_insert_dep (var, x, vars);
8124 return pending_recursion;
8127 /* Notify the back-links of IVAR that are pending recursion that we
8128 have found a non-NIL value for it, so they are cleared for another
8129 attempt to compute a current location. */
8131 static void
8132 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8134 loc_exp_dep *led, *next;
8136 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8138 decl_or_value dv = led->dv;
8139 variable var;
8141 next = led->next;
8143 if (dv_is_value_p (dv))
8145 rtx value = dv_as_value (dv);
8147 /* If we have already resolved it, leave it alone. */
8148 if (!VALUE_RECURSED_INTO (value))
8149 continue;
8151 /* Check that VALUE_RECURSED_INTO, true from the test above,
8152 implies NO_LOC_P. */
8153 gcc_checking_assert (NO_LOC_P (value));
8155 /* We won't notify variables that are being expanded,
8156 because their dependency list is cleared before
8157 recursing. */
8158 NO_LOC_P (value) = false;
8159 VALUE_RECURSED_INTO (value) = false;
8161 gcc_checking_assert (dv_changed_p (dv));
8163 else
8165 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8166 if (!dv_changed_p (dv))
8167 continue;
8170 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8172 if (!var)
8173 var = variable_from_dropped (dv, NO_INSERT);
8175 if (var)
8176 notify_dependents_of_resolved_value (var, vars);
8178 if (next)
8179 next->pprev = led->pprev;
8180 if (led->pprev)
8181 *led->pprev = next;
8182 led->next = NULL;
8183 led->pprev = NULL;
8187 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8188 int max_depth, void *data);
8190 /* Return the combined depth, when one sub-expression evaluated to
8191 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8193 static inline expand_depth
8194 update_depth (expand_depth saved_depth, expand_depth best_depth)
8196 /* If we didn't find anything, stick with what we had. */
8197 if (!best_depth.complexity)
8198 return saved_depth;
8200 /* If we found hadn't found anything, use the depth of the current
8201 expression. Do NOT add one extra level, we want to compute the
8202 maximum depth among sub-expressions. We'll increment it later,
8203 if appropriate. */
8204 if (!saved_depth.complexity)
8205 return best_depth;
8207 /* Combine the entryval count so that regardless of which one we
8208 return, the entryval count is accurate. */
8209 best_depth.entryvals = saved_depth.entryvals
8210 = best_depth.entryvals + saved_depth.entryvals;
8212 if (saved_depth.complexity < best_depth.complexity)
8213 return best_depth;
8214 else
8215 return saved_depth;
8218 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8219 DATA for cselib expand callback. If PENDRECP is given, indicate in
8220 it whether any sub-expression couldn't be fully evaluated because
8221 it is pending recursion resolution. */
8223 static inline rtx
8224 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8226 struct expand_loc_callback_data *elcd
8227 = (struct expand_loc_callback_data *) data;
8228 location_chain loc, next;
8229 rtx result = NULL;
8230 int first_child, result_first_child, last_child;
8231 bool pending_recursion;
8232 rtx loc_from = NULL;
8233 struct elt_loc_list *cloc = NULL;
8234 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8235 int wanted_entryvals, found_entryvals = 0;
8237 /* Clear all backlinks pointing at this, so that we're not notified
8238 while we're active. */
8239 loc_exp_dep_clear (var);
8241 retry:
8242 if (var->onepart == ONEPART_VALUE)
8244 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8246 gcc_checking_assert (cselib_preserved_value_p (val));
8248 cloc = val->locs;
8251 first_child = result_first_child = last_child
8252 = elcd->expanding.length ();
8254 wanted_entryvals = found_entryvals;
8256 /* Attempt to expand each available location in turn. */
8257 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8258 loc || cloc; loc = next)
8260 result_first_child = last_child;
8262 if (!loc)
8264 loc_from = cloc->loc;
8265 next = loc;
8266 cloc = cloc->next;
8267 if (unsuitable_loc (loc_from))
8268 continue;
8270 else
8272 loc_from = loc->loc;
8273 next = loc->next;
8276 gcc_checking_assert (!unsuitable_loc (loc_from));
8278 elcd->depth.complexity = elcd->depth.entryvals = 0;
8279 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8280 vt_expand_loc_callback, data);
8281 last_child = elcd->expanding.length ();
8283 if (result)
8285 depth = elcd->depth;
8287 gcc_checking_assert (depth.complexity
8288 || result_first_child == last_child);
8290 if (last_child - result_first_child != 1)
8292 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8293 depth.entryvals++;
8294 depth.complexity++;
8297 if (depth.complexity <= EXPR_USE_DEPTH)
8299 if (depth.entryvals <= wanted_entryvals)
8300 break;
8301 else if (!found_entryvals || depth.entryvals < found_entryvals)
8302 found_entryvals = depth.entryvals;
8305 result = NULL;
8308 /* Set it up in case we leave the loop. */
8309 depth.complexity = depth.entryvals = 0;
8310 loc_from = NULL;
8311 result_first_child = first_child;
8314 if (!loc_from && wanted_entryvals < found_entryvals)
8316 /* We found entries with ENTRY_VALUEs and skipped them. Since
8317 we could not find any expansions without ENTRY_VALUEs, but we
8318 found at least one with them, go back and get an entry with
8319 the minimum number ENTRY_VALUE count that we found. We could
8320 avoid looping, but since each sub-loc is already resolved,
8321 the re-expansion should be trivial. ??? Should we record all
8322 attempted locs as dependencies, so that we retry the
8323 expansion should any of them change, in the hope it can give
8324 us a new entry without an ENTRY_VALUE? */
8325 elcd->expanding.truncate (first_child);
8326 goto retry;
8329 /* Register all encountered dependencies as active. */
8330 pending_recursion = loc_exp_dep_set
8331 (var, result, elcd->expanding.address () + result_first_child,
8332 last_child - result_first_child, elcd->vars);
8334 elcd->expanding.truncate (first_child);
8336 /* Record where the expansion came from. */
8337 gcc_checking_assert (!result || !pending_recursion);
8338 VAR_LOC_FROM (var) = loc_from;
8339 VAR_LOC_DEPTH (var) = depth;
8341 gcc_checking_assert (!depth.complexity == !result);
8343 elcd->depth = update_depth (saved_depth, depth);
8345 /* Indicate whether any of the dependencies are pending recursion
8346 resolution. */
8347 if (pendrecp)
8348 *pendrecp = pending_recursion;
8350 if (!pendrecp || !pending_recursion)
8351 var->var_part[0].cur_loc = result;
8353 return result;
8356 /* Callback for cselib_expand_value, that looks for expressions
8357 holding the value in the var-tracking hash tables. Return X for
8358 standard processing, anything else is to be used as-is. */
8360 static rtx
8361 vt_expand_loc_callback (rtx x, bitmap regs,
8362 int max_depth ATTRIBUTE_UNUSED,
8363 void *data)
8365 struct expand_loc_callback_data *elcd
8366 = (struct expand_loc_callback_data *) data;
8367 decl_or_value dv;
8368 variable var;
8369 rtx result, subreg;
8370 bool pending_recursion = false;
8371 bool from_empty = false;
8373 switch (GET_CODE (x))
8375 case SUBREG:
8376 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8377 EXPR_DEPTH,
8378 vt_expand_loc_callback, data);
8380 if (!subreg)
8381 return NULL;
8383 result = simplify_gen_subreg (GET_MODE (x), subreg,
8384 GET_MODE (SUBREG_REG (x)),
8385 SUBREG_BYTE (x));
8387 /* Invalid SUBREGs are ok in debug info. ??? We could try
8388 alternate expansions for the VALUE as well. */
8389 if (!result)
8390 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8392 return result;
8394 case DEBUG_EXPR:
8395 case VALUE:
8396 dv = dv_from_rtx (x);
8397 break;
8399 default:
8400 return x;
8403 elcd->expanding.safe_push (x);
8405 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8406 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8408 if (NO_LOC_P (x))
8410 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8411 return NULL;
8414 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8416 if (!var)
8418 from_empty = true;
8419 var = variable_from_dropped (dv, INSERT);
8422 gcc_checking_assert (var);
8424 if (!dv_changed_p (dv))
8426 gcc_checking_assert (!NO_LOC_P (x));
8427 gcc_checking_assert (var->var_part[0].cur_loc);
8428 gcc_checking_assert (VAR_LOC_1PAUX (var));
8429 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8431 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8433 return var->var_part[0].cur_loc;
8436 VALUE_RECURSED_INTO (x) = true;
8437 /* This is tentative, but it makes some tests simpler. */
8438 NO_LOC_P (x) = true;
8440 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8442 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8444 if (pending_recursion)
8446 gcc_checking_assert (!result);
8447 elcd->pending.safe_push (x);
8449 else
8451 NO_LOC_P (x) = !result;
8452 VALUE_RECURSED_INTO (x) = false;
8453 set_dv_changed (dv, false);
8455 if (result)
8456 notify_dependents_of_resolved_value (var, elcd->vars);
8459 return result;
8462 /* While expanding variables, we may encounter recursion cycles
8463 because of mutual (possibly indirect) dependencies between two
8464 particular variables (or values), say A and B. If we're trying to
8465 expand A when we get to B, which in turn attempts to expand A, if
8466 we can't find any other expansion for B, we'll add B to this
8467 pending-recursion stack, and tentatively return NULL for its
8468 location. This tentative value will be used for any other
8469 occurrences of B, unless A gets some other location, in which case
8470 it will notify B that it is worth another try at computing a
8471 location for it, and it will use the location computed for A then.
8472 At the end of the expansion, the tentative NULL locations become
8473 final for all members of PENDING that didn't get a notification.
8474 This function performs this finalization of NULL locations. */
8476 static void
8477 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8479 while (!pending->is_empty ())
8481 rtx x = pending->pop ();
8482 decl_or_value dv;
8484 if (!VALUE_RECURSED_INTO (x))
8485 continue;
8487 gcc_checking_assert (NO_LOC_P (x));
8488 VALUE_RECURSED_INTO (x) = false;
8489 dv = dv_from_rtx (x);
8490 gcc_checking_assert (dv_changed_p (dv));
8491 set_dv_changed (dv, false);
8495 /* Initialize expand_loc_callback_data D with variable hash table V.
8496 It must be a macro because of alloca (vec stack). */
8497 #define INIT_ELCD(d, v) \
8498 do \
8500 (d).vars = (v); \
8501 (d).depth.complexity = (d).depth.entryvals = 0; \
8503 while (0)
8504 /* Finalize expand_loc_callback_data D, resolved to location L. */
8505 #define FINI_ELCD(d, l) \
8506 do \
8508 resolve_expansions_pending_recursion (&(d).pending); \
8509 (d).pending.release (); \
8510 (d).expanding.release (); \
8512 if ((l) && MEM_P (l)) \
8513 (l) = targetm.delegitimize_address (l); \
8515 while (0)
8517 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8518 equivalences in VARS, updating their CUR_LOCs in the process. */
8520 static rtx
8521 vt_expand_loc (rtx loc, variable_table_type vars)
8523 struct expand_loc_callback_data data;
8524 rtx result;
8526 if (!MAY_HAVE_DEBUG_INSNS)
8527 return loc;
8529 INIT_ELCD (data, vars);
8531 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8532 vt_expand_loc_callback, &data);
8534 FINI_ELCD (data, result);
8536 return result;
8539 /* Expand the one-part VARiable to a location, using the equivalences
8540 in VARS, updating their CUR_LOCs in the process. */
8542 static rtx
8543 vt_expand_1pvar (variable var, variable_table_type vars)
8545 struct expand_loc_callback_data data;
8546 rtx loc;
8548 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8550 if (!dv_changed_p (var->dv))
8551 return var->var_part[0].cur_loc;
8553 INIT_ELCD (data, vars);
8555 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8557 gcc_checking_assert (data.expanding.is_empty ());
8559 FINI_ELCD (data, loc);
8561 return loc;
8564 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8565 additional parameters: WHERE specifies whether the note shall be emitted
8566 before or after instruction INSN. */
8569 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8571 variable var = *varp;
8572 rtx insn = data->insn;
8573 enum emit_note_where where = data->where;
8574 variable_table_type vars = data->vars;
8575 rtx note, note_vl;
8576 int i, j, n_var_parts;
8577 bool complete;
8578 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8579 HOST_WIDE_INT last_limit;
8580 tree type_size_unit;
8581 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8582 rtx loc[MAX_VAR_PARTS];
8583 tree decl;
8584 location_chain lc;
8586 gcc_checking_assert (var->onepart == NOT_ONEPART
8587 || var->onepart == ONEPART_VDECL);
8589 decl = dv_as_decl (var->dv);
8591 complete = true;
8592 last_limit = 0;
8593 n_var_parts = 0;
8594 if (!var->onepart)
8595 for (i = 0; i < var->n_var_parts; i++)
8596 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8597 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8598 for (i = 0; i < var->n_var_parts; i++)
8600 enum machine_mode mode, wider_mode;
8601 rtx loc2;
8602 HOST_WIDE_INT offset;
8604 if (i == 0 && var->onepart)
8606 gcc_checking_assert (var->n_var_parts == 1);
8607 offset = 0;
8608 initialized = VAR_INIT_STATUS_INITIALIZED;
8609 loc2 = vt_expand_1pvar (var, vars);
8611 else
8613 if (last_limit < VAR_PART_OFFSET (var, i))
8615 complete = false;
8616 break;
8618 else if (last_limit > VAR_PART_OFFSET (var, i))
8619 continue;
8620 offset = VAR_PART_OFFSET (var, i);
8621 loc2 = var->var_part[i].cur_loc;
8622 if (loc2 && GET_CODE (loc2) == MEM
8623 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8625 rtx depval = XEXP (loc2, 0);
8627 loc2 = vt_expand_loc (loc2, vars);
8629 if (loc2)
8630 loc_exp_insert_dep (var, depval, vars);
8632 if (!loc2)
8634 complete = false;
8635 continue;
8637 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8638 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8639 if (var->var_part[i].cur_loc == lc->loc)
8641 initialized = lc->init;
8642 break;
8644 gcc_assert (lc);
8647 offsets[n_var_parts] = offset;
8648 if (!loc2)
8650 complete = false;
8651 continue;
8653 loc[n_var_parts] = loc2;
8654 mode = GET_MODE (var->var_part[i].cur_loc);
8655 if (mode == VOIDmode && var->onepart)
8656 mode = DECL_MODE (decl);
8657 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8659 /* Attempt to merge adjacent registers or memory. */
8660 wider_mode = GET_MODE_WIDER_MODE (mode);
8661 for (j = i + 1; j < var->n_var_parts; j++)
8662 if (last_limit <= VAR_PART_OFFSET (var, j))
8663 break;
8664 if (j < var->n_var_parts
8665 && wider_mode != VOIDmode
8666 && var->var_part[j].cur_loc
8667 && mode == GET_MODE (var->var_part[j].cur_loc)
8668 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8669 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8670 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8671 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8673 rtx new_loc = NULL;
8675 if (REG_P (loc[n_var_parts])
8676 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8677 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8678 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8679 == REGNO (loc2))
8681 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8682 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8683 mode, 0);
8684 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8685 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8686 if (new_loc)
8688 if (!REG_P (new_loc)
8689 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8690 new_loc = NULL;
8691 else
8692 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8695 else if (MEM_P (loc[n_var_parts])
8696 && GET_CODE (XEXP (loc2, 0)) == PLUS
8697 && REG_P (XEXP (XEXP (loc2, 0), 0))
8698 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8700 if ((REG_P (XEXP (loc[n_var_parts], 0))
8701 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8702 XEXP (XEXP (loc2, 0), 0))
8703 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8704 == GET_MODE_SIZE (mode))
8705 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8706 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8707 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8708 XEXP (XEXP (loc2, 0), 0))
8709 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8710 + GET_MODE_SIZE (mode)
8711 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8712 new_loc = adjust_address_nv (loc[n_var_parts],
8713 wider_mode, 0);
8716 if (new_loc)
8718 loc[n_var_parts] = new_loc;
8719 mode = wider_mode;
8720 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8721 i = j;
8724 ++n_var_parts;
8726 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8727 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8728 complete = false;
8730 if (! flag_var_tracking_uninit)
8731 initialized = VAR_INIT_STATUS_INITIALIZED;
8733 note_vl = NULL_RTX;
8734 if (!complete)
8735 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8736 (int) initialized);
8737 else if (n_var_parts == 1)
8739 rtx expr_list;
8741 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8742 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8743 else
8744 expr_list = loc[0];
8746 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8747 (int) initialized);
8749 else if (n_var_parts)
8751 rtx parallel;
8753 for (i = 0; i < n_var_parts; i++)
8754 loc[i]
8755 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8757 parallel = gen_rtx_PARALLEL (VOIDmode,
8758 gen_rtvec_v (n_var_parts, loc));
8759 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8760 parallel, (int) initialized);
8763 if (where != EMIT_NOTE_BEFORE_INSN)
8765 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8766 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8767 NOTE_DURING_CALL_P (note) = true;
8769 else
8771 /* Make sure that the call related notes come first. */
8772 while (NEXT_INSN (insn)
8773 && NOTE_P (insn)
8774 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8775 && NOTE_DURING_CALL_P (insn))
8776 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8777 insn = NEXT_INSN (insn);
8778 if (NOTE_P (insn)
8779 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8780 && NOTE_DURING_CALL_P (insn))
8781 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8782 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8783 else
8784 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8786 NOTE_VAR_LOCATION (note) = note_vl;
8788 set_dv_changed (var->dv, false);
8789 gcc_assert (var->in_changed_variables);
8790 var->in_changed_variables = false;
8791 changed_variables.clear_slot (varp);
8793 /* Continue traversing the hash table. */
8794 return 1;
8797 /* While traversing changed_variables, push onto DATA (a stack of RTX
8798 values) entries that aren't user variables. */
8801 var_track_values_to_stack (variable_def **slot,
8802 vec<rtx, va_heap> *changed_values_stack)
8804 variable var = *slot;
8806 if (var->onepart == ONEPART_VALUE)
8807 changed_values_stack->safe_push (dv_as_value (var->dv));
8808 else if (var->onepart == ONEPART_DEXPR)
8809 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8811 return 1;
8814 /* Remove from changed_variables the entry whose DV corresponds to
8815 value or debug_expr VAL. */
8816 static void
8817 remove_value_from_changed_variables (rtx val)
8819 decl_or_value dv = dv_from_rtx (val);
8820 variable_def **slot;
8821 variable var;
8823 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8824 NO_INSERT);
8825 var = *slot;
8826 var->in_changed_variables = false;
8827 changed_variables.clear_slot (slot);
8830 /* If VAL (a value or debug_expr) has backlinks to variables actively
8831 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8832 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8833 have dependencies of their own to notify. */
8835 static void
8836 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8837 vec<rtx, va_heap> *changed_values_stack)
8839 variable_def **slot;
8840 variable var;
8841 loc_exp_dep *led;
8842 decl_or_value dv = dv_from_rtx (val);
8844 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8845 NO_INSERT);
8846 if (!slot)
8847 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8848 if (!slot)
8849 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8850 NO_INSERT);
8851 var = *slot;
8853 while ((led = VAR_LOC_DEP_LST (var)))
8855 decl_or_value ldv = led->dv;
8856 variable ivar;
8858 /* Deactivate and remove the backlink, as it was “used up”. It
8859 makes no sense to attempt to notify the same entity again:
8860 either it will be recomputed and re-register an active
8861 dependency, or it will still have the changed mark. */
8862 if (led->next)
8863 led->next->pprev = led->pprev;
8864 if (led->pprev)
8865 *led->pprev = led->next;
8866 led->next = NULL;
8867 led->pprev = NULL;
8869 if (dv_changed_p (ldv))
8870 continue;
8872 switch (dv_onepart_p (ldv))
8874 case ONEPART_VALUE:
8875 case ONEPART_DEXPR:
8876 set_dv_changed (ldv, true);
8877 changed_values_stack->safe_push (dv_as_rtx (ldv));
8878 break;
8880 case ONEPART_VDECL:
8881 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8882 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8883 variable_was_changed (ivar, NULL);
8884 break;
8886 case NOT_ONEPART:
8887 pool_free (loc_exp_dep_pool, led);
8888 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8889 if (ivar)
8891 int i = ivar->n_var_parts;
8892 while (i--)
8894 rtx loc = ivar->var_part[i].cur_loc;
8896 if (loc && GET_CODE (loc) == MEM
8897 && XEXP (loc, 0) == val)
8899 variable_was_changed (ivar, NULL);
8900 break;
8904 break;
8906 default:
8907 gcc_unreachable ();
8912 /* Take out of changed_variables any entries that don't refer to use
8913 variables. Back-propagate change notifications from values and
8914 debug_exprs to their active dependencies in HTAB or in
8915 CHANGED_VARIABLES. */
8917 static void
8918 process_changed_values (variable_table_type htab)
8920 int i, n;
8921 rtx val;
8922 auto_vec<rtx, 20> changed_values_stack;
8924 /* Move values from changed_variables to changed_values_stack. */
8925 changed_variables
8926 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8927 (&changed_values_stack);
8929 /* Back-propagate change notifications in values while popping
8930 them from the stack. */
8931 for (n = i = changed_values_stack.length ();
8932 i > 0; i = changed_values_stack.length ())
8934 val = changed_values_stack.pop ();
8935 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8937 /* This condition will hold when visiting each of the entries
8938 originally in changed_variables. We can't remove them
8939 earlier because this could drop the backlinks before we got a
8940 chance to use them. */
8941 if (i == n)
8943 remove_value_from_changed_variables (val);
8944 n--;
8949 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8950 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8951 the notes shall be emitted before of after instruction INSN. */
8953 static void
8954 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8955 shared_hash vars)
8957 emit_note_data data;
8958 variable_table_type htab = shared_hash_htab (vars);
8960 if (!changed_variables.elements ())
8961 return;
8963 if (MAY_HAVE_DEBUG_INSNS)
8964 process_changed_values (htab);
8966 data.insn = insn;
8967 data.where = where;
8968 data.vars = htab;
8970 changed_variables
8971 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8974 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8975 same variable in hash table DATA or is not there at all. */
8978 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8980 variable old_var, new_var;
8982 old_var = *slot;
8983 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8985 if (!new_var)
8987 /* Variable has disappeared. */
8988 variable empty_var = NULL;
8990 if (old_var->onepart == ONEPART_VALUE
8991 || old_var->onepart == ONEPART_DEXPR)
8993 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8994 if (empty_var)
8996 gcc_checking_assert (!empty_var->in_changed_variables);
8997 if (!VAR_LOC_1PAUX (old_var))
8999 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9000 VAR_LOC_1PAUX (empty_var) = NULL;
9002 else
9003 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9007 if (!empty_var)
9009 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9010 empty_var->dv = old_var->dv;
9011 empty_var->refcount = 0;
9012 empty_var->n_var_parts = 0;
9013 empty_var->onepart = old_var->onepart;
9014 empty_var->in_changed_variables = false;
9017 if (empty_var->onepart)
9019 /* Propagate the auxiliary data to (ultimately)
9020 changed_variables. */
9021 empty_var->var_part[0].loc_chain = NULL;
9022 empty_var->var_part[0].cur_loc = NULL;
9023 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9024 VAR_LOC_1PAUX (old_var) = NULL;
9026 variable_was_changed (empty_var, NULL);
9027 /* Continue traversing the hash table. */
9028 return 1;
9030 /* Update cur_loc and one-part auxiliary data, before new_var goes
9031 through variable_was_changed. */
9032 if (old_var != new_var && new_var->onepart)
9034 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9035 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9036 VAR_LOC_1PAUX (old_var) = NULL;
9037 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9039 if (variable_different_p (old_var, new_var))
9040 variable_was_changed (new_var, NULL);
9042 /* Continue traversing the hash table. */
9043 return 1;
9046 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9047 table DATA. */
9050 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9052 variable old_var, new_var;
9054 new_var = *slot;
9055 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9056 if (!old_var)
9058 int i;
9059 for (i = 0; i < new_var->n_var_parts; i++)
9060 new_var->var_part[i].cur_loc = NULL;
9061 variable_was_changed (new_var, NULL);
9064 /* Continue traversing the hash table. */
9065 return 1;
9068 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9069 NEW_SET. */
9071 static void
9072 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9073 dataflow_set *new_set)
9075 shared_hash_htab (old_set->vars)
9076 .traverse <variable_table_type, emit_notes_for_differences_1>
9077 (shared_hash_htab (new_set->vars));
9078 shared_hash_htab (new_set->vars)
9079 .traverse <variable_table_type, emit_notes_for_differences_2>
9080 (shared_hash_htab (old_set->vars));
9081 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9084 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9086 static rtx
9087 next_non_note_insn_var_location (rtx insn)
9089 while (insn)
9091 insn = NEXT_INSN (insn);
9092 if (insn == 0
9093 || !NOTE_P (insn)
9094 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9095 break;
9098 return insn;
9101 /* Emit the notes for changes of location parts in the basic block BB. */
9103 static void
9104 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9106 unsigned int i;
9107 micro_operation *mo;
9109 dataflow_set_clear (set);
9110 dataflow_set_copy (set, &VTI (bb)->in);
9112 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9114 rtx insn = mo->insn;
9115 rtx next_insn = next_non_note_insn_var_location (insn);
9117 switch (mo->type)
9119 case MO_CALL:
9120 dataflow_set_clear_at_call (set);
9121 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9123 rtx arguments = mo->u.loc, *p = &arguments, note;
9124 while (*p)
9126 XEXP (XEXP (*p, 0), 1)
9127 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9128 shared_hash_htab (set->vars));
9129 /* If expansion is successful, keep it in the list. */
9130 if (XEXP (XEXP (*p, 0), 1))
9131 p = &XEXP (*p, 1);
9132 /* Otherwise, if the following item is data_value for it,
9133 drop it too too. */
9134 else if (XEXP (*p, 1)
9135 && REG_P (XEXP (XEXP (*p, 0), 0))
9136 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9137 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9139 && REGNO (XEXP (XEXP (*p, 0), 0))
9140 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9141 0), 0)))
9142 *p = XEXP (XEXP (*p, 1), 1);
9143 /* Just drop this item. */
9144 else
9145 *p = XEXP (*p, 1);
9147 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9148 NOTE_VAR_LOCATION (note) = arguments;
9150 break;
9152 case MO_USE:
9154 rtx loc = mo->u.loc;
9156 if (REG_P (loc))
9157 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9158 else
9159 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9161 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9163 break;
9165 case MO_VAL_LOC:
9167 rtx loc = mo->u.loc;
9168 rtx val, vloc;
9169 tree var;
9171 if (GET_CODE (loc) == CONCAT)
9173 val = XEXP (loc, 0);
9174 vloc = XEXP (loc, 1);
9176 else
9178 val = NULL_RTX;
9179 vloc = loc;
9182 var = PAT_VAR_LOCATION_DECL (vloc);
9184 clobber_variable_part (set, NULL_RTX,
9185 dv_from_decl (var), 0, NULL_RTX);
9186 if (val)
9188 if (VAL_NEEDS_RESOLUTION (loc))
9189 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9190 set_variable_part (set, val, dv_from_decl (var), 0,
9191 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9192 INSERT);
9194 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9195 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9196 dv_from_decl (var), 0,
9197 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9198 INSERT);
9200 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9202 break;
9204 case MO_VAL_USE:
9206 rtx loc = mo->u.loc;
9207 rtx val, vloc, uloc;
9209 vloc = uloc = XEXP (loc, 1);
9210 val = XEXP (loc, 0);
9212 if (GET_CODE (val) == CONCAT)
9214 uloc = XEXP (val, 1);
9215 val = XEXP (val, 0);
9218 if (VAL_NEEDS_RESOLUTION (loc))
9219 val_resolve (set, val, vloc, insn);
9220 else
9221 val_store (set, val, uloc, insn, false);
9223 if (VAL_HOLDS_TRACK_EXPR (loc))
9225 if (GET_CODE (uloc) == REG)
9226 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9227 NULL);
9228 else if (GET_CODE (uloc) == MEM)
9229 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9230 NULL);
9233 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9235 break;
9237 case MO_VAL_SET:
9239 rtx loc = mo->u.loc;
9240 rtx val, vloc, uloc;
9241 rtx dstv, srcv;
9243 vloc = loc;
9244 uloc = XEXP (vloc, 1);
9245 val = XEXP (vloc, 0);
9246 vloc = uloc;
9248 if (GET_CODE (uloc) == SET)
9250 dstv = SET_DEST (uloc);
9251 srcv = SET_SRC (uloc);
9253 else
9255 dstv = uloc;
9256 srcv = NULL;
9259 if (GET_CODE (val) == CONCAT)
9261 dstv = vloc = XEXP (val, 1);
9262 val = XEXP (val, 0);
9265 if (GET_CODE (vloc) == SET)
9267 srcv = SET_SRC (vloc);
9269 gcc_assert (val != srcv);
9270 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9272 dstv = vloc = SET_DEST (vloc);
9274 if (VAL_NEEDS_RESOLUTION (loc))
9275 val_resolve (set, val, srcv, insn);
9277 else if (VAL_NEEDS_RESOLUTION (loc))
9279 gcc_assert (GET_CODE (uloc) == SET
9280 && GET_CODE (SET_SRC (uloc)) == REG);
9281 val_resolve (set, val, SET_SRC (uloc), insn);
9284 if (VAL_HOLDS_TRACK_EXPR (loc))
9286 if (VAL_EXPR_IS_CLOBBERED (loc))
9288 if (REG_P (uloc))
9289 var_reg_delete (set, uloc, true);
9290 else if (MEM_P (uloc))
9292 gcc_assert (MEM_P (dstv));
9293 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9294 var_mem_delete (set, dstv, true);
9297 else
9299 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9300 rtx src = NULL, dst = uloc;
9301 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9303 if (GET_CODE (uloc) == SET)
9305 src = SET_SRC (uloc);
9306 dst = SET_DEST (uloc);
9309 if (copied_p)
9311 status = find_src_status (set, src);
9313 src = find_src_set_src (set, src);
9316 if (REG_P (dst))
9317 var_reg_delete_and_set (set, dst, !copied_p,
9318 status, srcv);
9319 else if (MEM_P (dst))
9321 gcc_assert (MEM_P (dstv));
9322 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9323 var_mem_delete_and_set (set, dstv, !copied_p,
9324 status, srcv);
9328 else if (REG_P (uloc))
9329 var_regno_delete (set, REGNO (uloc));
9330 else if (MEM_P (uloc))
9332 gcc_checking_assert (GET_CODE (vloc) == MEM);
9333 gcc_checking_assert (vloc == dstv);
9334 if (vloc != dstv)
9335 clobber_overlapping_mems (set, vloc);
9338 val_store (set, val, dstv, insn, true);
9340 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9341 set->vars);
9343 break;
9345 case MO_SET:
9347 rtx loc = mo->u.loc;
9348 rtx set_src = NULL;
9350 if (GET_CODE (loc) == SET)
9352 set_src = SET_SRC (loc);
9353 loc = SET_DEST (loc);
9356 if (REG_P (loc))
9357 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9358 set_src);
9359 else
9360 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9361 set_src);
9363 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9364 set->vars);
9366 break;
9368 case MO_COPY:
9370 rtx loc = mo->u.loc;
9371 enum var_init_status src_status;
9372 rtx set_src = NULL;
9374 if (GET_CODE (loc) == SET)
9376 set_src = SET_SRC (loc);
9377 loc = SET_DEST (loc);
9380 src_status = find_src_status (set, set_src);
9381 set_src = find_src_set_src (set, set_src);
9383 if (REG_P (loc))
9384 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9385 else
9386 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9388 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9389 set->vars);
9391 break;
9393 case MO_USE_NO_VAR:
9395 rtx loc = mo->u.loc;
9397 if (REG_P (loc))
9398 var_reg_delete (set, loc, false);
9399 else
9400 var_mem_delete (set, loc, false);
9402 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9404 break;
9406 case MO_CLOBBER:
9408 rtx loc = mo->u.loc;
9410 if (REG_P (loc))
9411 var_reg_delete (set, loc, true);
9412 else
9413 var_mem_delete (set, loc, true);
9415 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9416 set->vars);
9418 break;
9420 case MO_ADJUST:
9421 set->stack_adjust += mo->u.adjust;
9422 break;
9427 /* Emit notes for the whole function. */
9429 static void
9430 vt_emit_notes (void)
9432 basic_block bb;
9433 dataflow_set cur;
9435 gcc_assert (!changed_variables.elements ());
9437 /* Free memory occupied by the out hash tables, as they aren't used
9438 anymore. */
9439 FOR_EACH_BB_FN (bb, cfun)
9440 dataflow_set_clear (&VTI (bb)->out);
9442 /* Enable emitting notes by functions (mainly by set_variable_part and
9443 delete_variable_part). */
9444 emit_notes = true;
9446 if (MAY_HAVE_DEBUG_INSNS)
9448 dropped_values.create (cselib_get_next_uid () * 2);
9449 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9450 sizeof (loc_exp_dep), 64);
9453 dataflow_set_init (&cur);
9455 FOR_EACH_BB_FN (bb, cfun)
9457 /* Emit the notes for changes of variable locations between two
9458 subsequent basic blocks. */
9459 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9461 if (MAY_HAVE_DEBUG_INSNS)
9462 local_get_addr_cache = pointer_map_create ();
9464 /* Emit the notes for the changes in the basic block itself. */
9465 emit_notes_in_bb (bb, &cur);
9467 if (MAY_HAVE_DEBUG_INSNS)
9468 pointer_map_destroy (local_get_addr_cache);
9469 local_get_addr_cache = NULL;
9471 /* Free memory occupied by the in hash table, we won't need it
9472 again. */
9473 dataflow_set_clear (&VTI (bb)->in);
9475 #ifdef ENABLE_CHECKING
9476 shared_hash_htab (cur.vars)
9477 .traverse <variable_table_type, emit_notes_for_differences_1>
9478 (shared_hash_htab (empty_shared_hash));
9479 #endif
9480 dataflow_set_destroy (&cur);
9482 if (MAY_HAVE_DEBUG_INSNS)
9483 dropped_values.dispose ();
9485 emit_notes = false;
9488 /* If there is a declaration and offset associated with register/memory RTL
9489 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9491 static bool
9492 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9494 if (REG_P (rtl))
9496 if (REG_ATTRS (rtl))
9498 *declp = REG_EXPR (rtl);
9499 *offsetp = REG_OFFSET (rtl);
9500 return true;
9503 else if (GET_CODE (rtl) == PARALLEL)
9505 tree decl = NULL_TREE;
9506 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9507 int len = XVECLEN (rtl, 0), i;
9509 for (i = 0; i < len; i++)
9511 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9512 if (!REG_P (reg) || !REG_ATTRS (reg))
9513 break;
9514 if (!decl)
9515 decl = REG_EXPR (reg);
9516 if (REG_EXPR (reg) != decl)
9517 break;
9518 if (REG_OFFSET (reg) < offset)
9519 offset = REG_OFFSET (reg);
9522 if (i == len)
9524 *declp = decl;
9525 *offsetp = offset;
9526 return true;
9529 else if (MEM_P (rtl))
9531 if (MEM_ATTRS (rtl))
9533 *declp = MEM_EXPR (rtl);
9534 *offsetp = INT_MEM_OFFSET (rtl);
9535 return true;
9538 return false;
9541 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9542 of VAL. */
9544 static void
9545 record_entry_value (cselib_val *val, rtx rtl)
9547 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9549 ENTRY_VALUE_EXP (ev) = rtl;
9551 cselib_add_permanent_equiv (val, ev, get_insns ());
9554 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9556 static void
9557 vt_add_function_parameter (tree parm)
9559 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9560 rtx incoming = DECL_INCOMING_RTL (parm);
9561 tree decl;
9562 enum machine_mode mode;
9563 HOST_WIDE_INT offset;
9564 dataflow_set *out;
9565 decl_or_value dv;
9567 if (TREE_CODE (parm) != PARM_DECL)
9568 return;
9570 if (!decl_rtl || !incoming)
9571 return;
9573 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9574 return;
9576 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9577 rewrite the incoming location of parameters passed on the stack
9578 into MEMs based on the argument pointer, so that incoming doesn't
9579 depend on a pseudo. */
9580 if (MEM_P (incoming)
9581 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9582 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9583 && XEXP (XEXP (incoming, 0), 0)
9584 == crtl->args.internal_arg_pointer
9585 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9587 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9588 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9589 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9590 incoming
9591 = replace_equiv_address_nv (incoming,
9592 plus_constant (Pmode,
9593 arg_pointer_rtx, off));
9596 #ifdef HAVE_window_save
9597 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9598 If the target machine has an explicit window save instruction, the
9599 actual entry value is the corresponding OUTGOING_REGNO instead. */
9600 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9602 if (REG_P (incoming)
9603 && HARD_REGISTER_P (incoming)
9604 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9606 parm_reg_t p;
9607 p.incoming = incoming;
9608 incoming
9609 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9610 OUTGOING_REGNO (REGNO (incoming)), 0);
9611 p.outgoing = incoming;
9612 vec_safe_push (windowed_parm_regs, p);
9614 else if (GET_CODE (incoming) == PARALLEL)
9616 rtx outgoing
9617 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9618 int i;
9620 for (i = 0; i < XVECLEN (incoming, 0); i++)
9622 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9623 parm_reg_t p;
9624 p.incoming = reg;
9625 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9626 OUTGOING_REGNO (REGNO (reg)), 0);
9627 p.outgoing = reg;
9628 XVECEXP (outgoing, 0, i)
9629 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9630 XEXP (XVECEXP (incoming, 0, i), 1));
9631 vec_safe_push (windowed_parm_regs, p);
9634 incoming = outgoing;
9636 else if (MEM_P (incoming)
9637 && REG_P (XEXP (incoming, 0))
9638 && HARD_REGISTER_P (XEXP (incoming, 0)))
9640 rtx reg = XEXP (incoming, 0);
9641 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9643 parm_reg_t p;
9644 p.incoming = reg;
9645 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9646 p.outgoing = reg;
9647 vec_safe_push (windowed_parm_regs, p);
9648 incoming = replace_equiv_address_nv (incoming, reg);
9652 #endif
9654 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9656 if (MEM_P (incoming))
9658 /* This means argument is passed by invisible reference. */
9659 offset = 0;
9660 decl = parm;
9662 else
9664 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9665 return;
9666 offset += byte_lowpart_offset (GET_MODE (incoming),
9667 GET_MODE (decl_rtl));
9671 if (!decl)
9672 return;
9674 if (parm != decl)
9676 /* If that DECL_RTL wasn't a pseudo that got spilled to
9677 memory, bail out. Otherwise, the spill slot sharing code
9678 will force the memory to reference spill_slot_decl (%sfp),
9679 so we don't match above. That's ok, the pseudo must have
9680 referenced the entire parameter, so just reset OFFSET. */
9681 if (decl != get_spill_slot_decl (false))
9682 return;
9683 offset = 0;
9686 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9687 return;
9689 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9691 dv = dv_from_decl (parm);
9693 if (target_for_debug_bind (parm)
9694 /* We can't deal with these right now, because this kind of
9695 variable is single-part. ??? We could handle parallels
9696 that describe multiple locations for the same single
9697 value, but ATM we don't. */
9698 && GET_CODE (incoming) != PARALLEL)
9700 cselib_val *val;
9701 rtx lowpart;
9703 /* ??? We shouldn't ever hit this, but it may happen because
9704 arguments passed by invisible reference aren't dealt with
9705 above: incoming-rtl will have Pmode rather than the
9706 expected mode for the type. */
9707 if (offset)
9708 return;
9710 lowpart = var_lowpart (mode, incoming);
9711 if (!lowpart)
9712 return;
9714 val = cselib_lookup_from_insn (lowpart, mode, true,
9715 VOIDmode, get_insns ());
9717 /* ??? Float-typed values in memory are not handled by
9718 cselib. */
9719 if (val)
9721 preserve_value (val);
9722 set_variable_part (out, val->val_rtx, dv, offset,
9723 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9724 dv = dv_from_value (val->val_rtx);
9727 if (MEM_P (incoming))
9729 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9730 VOIDmode, get_insns ());
9731 if (val)
9733 preserve_value (val);
9734 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9739 if (REG_P (incoming))
9741 incoming = var_lowpart (mode, incoming);
9742 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9743 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9744 incoming);
9745 set_variable_part (out, incoming, dv, offset,
9746 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9747 if (dv_is_value_p (dv))
9749 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9750 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9751 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9753 enum machine_mode indmode
9754 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9755 rtx mem = gen_rtx_MEM (indmode, incoming);
9756 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9757 VOIDmode,
9758 get_insns ());
9759 if (val)
9761 preserve_value (val);
9762 record_entry_value (val, mem);
9763 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9764 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9769 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9771 int i;
9773 for (i = 0; i < XVECLEN (incoming, 0); i++)
9775 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9776 offset = REG_OFFSET (reg);
9777 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9778 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9779 set_variable_part (out, reg, dv, offset,
9780 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9783 else if (MEM_P (incoming))
9785 incoming = var_lowpart (mode, incoming);
9786 set_variable_part (out, incoming, dv, offset,
9787 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9791 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9793 static void
9794 vt_add_function_parameters (void)
9796 tree parm;
9798 for (parm = DECL_ARGUMENTS (current_function_decl);
9799 parm; parm = DECL_CHAIN (parm))
9800 vt_add_function_parameter (parm);
9802 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9804 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9806 if (TREE_CODE (vexpr) == INDIRECT_REF)
9807 vexpr = TREE_OPERAND (vexpr, 0);
9809 if (TREE_CODE (vexpr) == PARM_DECL
9810 && DECL_ARTIFICIAL (vexpr)
9811 && !DECL_IGNORED_P (vexpr)
9812 && DECL_NAMELESS (vexpr))
9813 vt_add_function_parameter (vexpr);
9817 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9818 ensure it isn't flushed during cselib_reset_table.
9819 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9820 has been eliminated. */
9822 static void
9823 vt_init_cfa_base (void)
9825 cselib_val *val;
9827 #ifdef FRAME_POINTER_CFA_OFFSET
9828 cfa_base_rtx = frame_pointer_rtx;
9829 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9830 #else
9831 cfa_base_rtx = arg_pointer_rtx;
9832 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9833 #endif
9834 if (cfa_base_rtx == hard_frame_pointer_rtx
9835 || !fixed_regs[REGNO (cfa_base_rtx)])
9837 cfa_base_rtx = NULL_RTX;
9838 return;
9840 if (!MAY_HAVE_DEBUG_INSNS)
9841 return;
9843 /* Tell alias analysis that cfa_base_rtx should share
9844 find_base_term value with stack pointer or hard frame pointer. */
9845 if (!frame_pointer_needed)
9846 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9847 else if (!crtl->stack_realign_tried)
9848 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9850 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9851 VOIDmode, get_insns ());
9852 preserve_value (val);
9853 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9856 /* Allocate and initialize the data structures for variable tracking
9857 and parse the RTL to get the micro operations. */
9859 static bool
9860 vt_initialize (void)
9862 basic_block bb;
9863 HOST_WIDE_INT fp_cfa_offset = -1;
9865 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9867 attrs_pool = create_alloc_pool ("attrs_def pool",
9868 sizeof (struct attrs_def), 1024);
9869 var_pool = create_alloc_pool ("variable_def pool",
9870 sizeof (struct variable_def)
9871 + (MAX_VAR_PARTS - 1)
9872 * sizeof (((variable)NULL)->var_part[0]), 64);
9873 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9874 sizeof (struct location_chain_def),
9875 1024);
9876 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9877 sizeof (struct shared_hash_def), 256);
9878 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9879 empty_shared_hash->refcount = 1;
9880 empty_shared_hash->htab.create (1);
9881 changed_variables.create (10);
9883 /* Init the IN and OUT sets. */
9884 FOR_ALL_BB_FN (bb, cfun)
9886 VTI (bb)->visited = false;
9887 VTI (bb)->flooded = false;
9888 dataflow_set_init (&VTI (bb)->in);
9889 dataflow_set_init (&VTI (bb)->out);
9890 VTI (bb)->permp = NULL;
9893 if (MAY_HAVE_DEBUG_INSNS)
9895 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9896 scratch_regs = BITMAP_ALLOC (NULL);
9897 valvar_pool = create_alloc_pool ("small variable_def pool",
9898 sizeof (struct variable_def), 256);
9899 preserved_values.create (256);
9900 global_get_addr_cache = pointer_map_create ();
9902 else
9904 scratch_regs = NULL;
9905 valvar_pool = NULL;
9906 global_get_addr_cache = NULL;
9909 if (MAY_HAVE_DEBUG_INSNS)
9911 rtx reg, expr;
9912 int ofst;
9913 cselib_val *val;
9915 #ifdef FRAME_POINTER_CFA_OFFSET
9916 reg = frame_pointer_rtx;
9917 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9918 #else
9919 reg = arg_pointer_rtx;
9920 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9921 #endif
9923 ofst -= INCOMING_FRAME_SP_OFFSET;
9925 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9926 VOIDmode, get_insns ());
9927 preserve_value (val);
9928 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9929 cselib_preserve_cfa_base_value (val, REGNO (reg));
9930 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9931 stack_pointer_rtx, -ofst);
9932 cselib_add_permanent_equiv (val, expr, get_insns ());
9934 if (ofst)
9936 val = cselib_lookup_from_insn (stack_pointer_rtx,
9937 GET_MODE (stack_pointer_rtx), 1,
9938 VOIDmode, get_insns ());
9939 preserve_value (val);
9940 expr = plus_constant (GET_MODE (reg), reg, ofst);
9941 cselib_add_permanent_equiv (val, expr, get_insns ());
9945 /* In order to factor out the adjustments made to the stack pointer or to
9946 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9947 instead of individual location lists, we're going to rewrite MEMs based
9948 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9949 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9950 resp. arg_pointer_rtx. We can do this either when there is no frame
9951 pointer in the function and stack adjustments are consistent for all
9952 basic blocks or when there is a frame pointer and no stack realignment.
9953 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9954 has been eliminated. */
9955 if (!frame_pointer_needed)
9957 rtx reg, elim;
9959 if (!vt_stack_adjustments ())
9960 return false;
9962 #ifdef FRAME_POINTER_CFA_OFFSET
9963 reg = frame_pointer_rtx;
9964 #else
9965 reg = arg_pointer_rtx;
9966 #endif
9967 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9968 if (elim != reg)
9970 if (GET_CODE (elim) == PLUS)
9971 elim = XEXP (elim, 0);
9972 if (elim == stack_pointer_rtx)
9973 vt_init_cfa_base ();
9976 else if (!crtl->stack_realign_tried)
9978 rtx reg, elim;
9980 #ifdef FRAME_POINTER_CFA_OFFSET
9981 reg = frame_pointer_rtx;
9982 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9983 #else
9984 reg = arg_pointer_rtx;
9985 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9986 #endif
9987 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9988 if (elim != reg)
9990 if (GET_CODE (elim) == PLUS)
9992 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9993 elim = XEXP (elim, 0);
9995 if (elim != hard_frame_pointer_rtx)
9996 fp_cfa_offset = -1;
9998 else
9999 fp_cfa_offset = -1;
10002 /* If the stack is realigned and a DRAP register is used, we're going to
10003 rewrite MEMs based on it representing incoming locations of parameters
10004 passed on the stack into MEMs based on the argument pointer. Although
10005 we aren't going to rewrite other MEMs, we still need to initialize the
10006 virtual CFA pointer in order to ensure that the argument pointer will
10007 be seen as a constant throughout the function.
10009 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10010 else if (stack_realign_drap)
10012 rtx reg, elim;
10014 #ifdef FRAME_POINTER_CFA_OFFSET
10015 reg = frame_pointer_rtx;
10016 #else
10017 reg = arg_pointer_rtx;
10018 #endif
10019 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10020 if (elim != reg)
10022 if (GET_CODE (elim) == PLUS)
10023 elim = XEXP (elim, 0);
10024 if (elim == hard_frame_pointer_rtx)
10025 vt_init_cfa_base ();
10029 hard_frame_pointer_adjustment = -1;
10031 vt_add_function_parameters ();
10033 FOR_EACH_BB_FN (bb, cfun)
10035 rtx insn;
10036 HOST_WIDE_INT pre, post = 0;
10037 basic_block first_bb, last_bb;
10039 if (MAY_HAVE_DEBUG_INSNS)
10041 cselib_record_sets_hook = add_with_sets;
10042 if (dump_file && (dump_flags & TDF_DETAILS))
10043 fprintf (dump_file, "first value: %i\n",
10044 cselib_get_next_uid ());
10047 first_bb = bb;
10048 for (;;)
10050 edge e;
10051 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10052 || ! single_pred_p (bb->next_bb))
10053 break;
10054 e = find_edge (bb, bb->next_bb);
10055 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10056 break;
10057 bb = bb->next_bb;
10059 last_bb = bb;
10061 /* Add the micro-operations to the vector. */
10062 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10064 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10065 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10066 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10067 insn = NEXT_INSN (insn))
10069 if (INSN_P (insn))
10071 if (!frame_pointer_needed)
10073 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10074 if (pre)
10076 micro_operation mo;
10077 mo.type = MO_ADJUST;
10078 mo.u.adjust = pre;
10079 mo.insn = insn;
10080 if (dump_file && (dump_flags & TDF_DETAILS))
10081 log_op_type (PATTERN (insn), bb, insn,
10082 MO_ADJUST, dump_file);
10083 VTI (bb)->mos.safe_push (mo);
10084 VTI (bb)->out.stack_adjust += pre;
10088 cselib_hook_called = false;
10089 adjust_insn (bb, insn);
10090 if (MAY_HAVE_DEBUG_INSNS)
10092 if (CALL_P (insn))
10093 prepare_call_arguments (bb, insn);
10094 cselib_process_insn (insn);
10095 if (dump_file && (dump_flags & TDF_DETAILS))
10097 print_rtl_single (dump_file, insn);
10098 dump_cselib_table (dump_file);
10101 if (!cselib_hook_called)
10102 add_with_sets (insn, 0, 0);
10103 cancel_changes (0);
10105 if (!frame_pointer_needed && post)
10107 micro_operation mo;
10108 mo.type = MO_ADJUST;
10109 mo.u.adjust = post;
10110 mo.insn = insn;
10111 if (dump_file && (dump_flags & TDF_DETAILS))
10112 log_op_type (PATTERN (insn), bb, insn,
10113 MO_ADJUST, dump_file);
10114 VTI (bb)->mos.safe_push (mo);
10115 VTI (bb)->out.stack_adjust += post;
10118 if (fp_cfa_offset != -1
10119 && hard_frame_pointer_adjustment == -1
10120 && fp_setter_insn (insn))
10122 vt_init_cfa_base ();
10123 hard_frame_pointer_adjustment = fp_cfa_offset;
10124 /* Disassociate sp from fp now. */
10125 if (MAY_HAVE_DEBUG_INSNS)
10127 cselib_val *v;
10128 cselib_invalidate_rtx (stack_pointer_rtx);
10129 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10130 VOIDmode);
10131 if (v && !cselib_preserved_value_p (v))
10133 cselib_set_value_sp_based (v);
10134 preserve_value (v);
10140 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10143 bb = last_bb;
10145 if (MAY_HAVE_DEBUG_INSNS)
10147 cselib_preserve_only_values ();
10148 cselib_reset_table (cselib_get_next_uid ());
10149 cselib_record_sets_hook = NULL;
10153 hard_frame_pointer_adjustment = -1;
10154 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10155 cfa_base_rtx = NULL_RTX;
10156 return true;
10159 /* This is *not* reset after each function. It gives each
10160 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10161 a unique label number. */
10163 static int debug_label_num = 1;
10165 /* Get rid of all debug insns from the insn stream. */
10167 static void
10168 delete_debug_insns (void)
10170 basic_block bb;
10171 rtx insn, next;
10173 if (!MAY_HAVE_DEBUG_INSNS)
10174 return;
10176 FOR_EACH_BB_FN (bb, cfun)
10178 FOR_BB_INSNS_SAFE (bb, insn, next)
10179 if (DEBUG_INSN_P (insn))
10181 tree decl = INSN_VAR_LOCATION_DECL (insn);
10182 if (TREE_CODE (decl) == LABEL_DECL
10183 && DECL_NAME (decl)
10184 && !DECL_RTL_SET_P (decl))
10186 PUT_CODE (insn, NOTE);
10187 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10188 NOTE_DELETED_LABEL_NAME (insn)
10189 = IDENTIFIER_POINTER (DECL_NAME (decl));
10190 SET_DECL_RTL (decl, insn);
10191 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10193 else
10194 delete_insn (insn);
10199 /* Run a fast, BB-local only version of var tracking, to take care of
10200 information that we don't do global analysis on, such that not all
10201 information is lost. If SKIPPED holds, we're skipping the global
10202 pass entirely, so we should try to use information it would have
10203 handled as well.. */
10205 static void
10206 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10208 /* ??? Just skip it all for now. */
10209 delete_debug_insns ();
10212 /* Free the data structures needed for variable tracking. */
10214 static void
10215 vt_finalize (void)
10217 basic_block bb;
10219 FOR_EACH_BB_FN (bb, cfun)
10221 VTI (bb)->mos.release ();
10224 FOR_ALL_BB_FN (bb, cfun)
10226 dataflow_set_destroy (&VTI (bb)->in);
10227 dataflow_set_destroy (&VTI (bb)->out);
10228 if (VTI (bb)->permp)
10230 dataflow_set_destroy (VTI (bb)->permp);
10231 XDELETE (VTI (bb)->permp);
10234 free_aux_for_blocks ();
10235 empty_shared_hash->htab.dispose ();
10236 changed_variables.dispose ();
10237 free_alloc_pool (attrs_pool);
10238 free_alloc_pool (var_pool);
10239 free_alloc_pool (loc_chain_pool);
10240 free_alloc_pool (shared_hash_pool);
10242 if (MAY_HAVE_DEBUG_INSNS)
10244 if (global_get_addr_cache)
10245 pointer_map_destroy (global_get_addr_cache);
10246 global_get_addr_cache = NULL;
10247 if (loc_exp_dep_pool)
10248 free_alloc_pool (loc_exp_dep_pool);
10249 loc_exp_dep_pool = NULL;
10250 free_alloc_pool (valvar_pool);
10251 preserved_values.release ();
10252 cselib_finish ();
10253 BITMAP_FREE (scratch_regs);
10254 scratch_regs = NULL;
10257 #ifdef HAVE_window_save
10258 vec_free (windowed_parm_regs);
10259 #endif
10261 if (vui_vec)
10262 XDELETEVEC (vui_vec);
10263 vui_vec = NULL;
10264 vui_allocated = 0;
10267 /* The entry point to variable tracking pass. */
10269 static inline unsigned int
10270 variable_tracking_main_1 (void)
10272 bool success;
10274 if (flag_var_tracking_assignments < 0)
10276 delete_debug_insns ();
10277 return 0;
10280 if (n_basic_blocks_for_fn (cfun) > 500 &&
10281 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10283 vt_debug_insns_local (true);
10284 return 0;
10287 mark_dfs_back_edges ();
10288 if (!vt_initialize ())
10290 vt_finalize ();
10291 vt_debug_insns_local (true);
10292 return 0;
10295 success = vt_find_locations ();
10297 if (!success && flag_var_tracking_assignments > 0)
10299 vt_finalize ();
10301 delete_debug_insns ();
10303 /* This is later restored by our caller. */
10304 flag_var_tracking_assignments = 0;
10306 success = vt_initialize ();
10307 gcc_assert (success);
10309 success = vt_find_locations ();
10312 if (!success)
10314 vt_finalize ();
10315 vt_debug_insns_local (false);
10316 return 0;
10319 if (dump_file && (dump_flags & TDF_DETAILS))
10321 dump_dataflow_sets ();
10322 dump_reg_info (dump_file);
10323 dump_flow_info (dump_file, dump_flags);
10326 timevar_push (TV_VAR_TRACKING_EMIT);
10327 vt_emit_notes ();
10328 timevar_pop (TV_VAR_TRACKING_EMIT);
10330 vt_finalize ();
10331 vt_debug_insns_local (false);
10332 return 0;
10335 unsigned int
10336 variable_tracking_main (void)
10338 unsigned int ret;
10339 int save = flag_var_tracking_assignments;
10341 ret = variable_tracking_main_1 ();
10343 flag_var_tracking_assignments = save;
10345 return ret;
10348 static bool
10349 gate_handle_var_tracking (void)
10351 return (flag_var_tracking && !targetm.delay_vartrack);
10356 namespace {
10358 const pass_data pass_data_variable_tracking =
10360 RTL_PASS, /* type */
10361 "vartrack", /* name */
10362 OPTGROUP_NONE, /* optinfo_flags */
10363 true, /* has_gate */
10364 true, /* has_execute */
10365 TV_VAR_TRACKING, /* tv_id */
10366 0, /* properties_required */
10367 0, /* properties_provided */
10368 0, /* properties_destroyed */
10369 0, /* todo_flags_start */
10370 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10373 class pass_variable_tracking : public rtl_opt_pass
10375 public:
10376 pass_variable_tracking (gcc::context *ctxt)
10377 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10380 /* opt_pass methods: */
10381 bool gate () { return gate_handle_var_tracking (); }
10382 unsigned int execute () { return variable_tracking_main (); }
10384 }; // class pass_variable_tracking
10386 } // anon namespace
10388 rtl_opt_pass *
10389 make_pass_variable_tracking (gcc::context *ctxt)
10391 return new pass_variable_tracking (ctxt);