Merge aosp-toolchain/gcc/gcc-4_9 changes.
[official-gcc.git] / gcc-4_9-mobile / gcc / ira-int.h
blob98476fba3f6483c5d558b7c8747f261f3ab3aa7c
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "cfgloop.h"
22 #include "ira.h"
23 #include "alloc-pool.h"
25 /* To provide consistency in naming, all IRA external variables,
26 functions, common typedefs start with prefix ira_. */
28 #ifdef ENABLE_CHECKING
29 #define ENABLE_IRA_CHECKING
30 #endif
32 #ifdef ENABLE_IRA_CHECKING
33 #define ira_assert(c) gcc_assert (c)
34 #else
35 /* Always define and include C, so that warnings for empty body in an
36 'if' statement and unused variable do not occur. */
37 #define ira_assert(c) ((void)(0 && (c)))
38 #endif
40 /* Compute register frequency from edge frequency FREQ. It is
41 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
42 profile driven feedback is available and the function is never
43 executed, frequency is always equivalent. Otherwise rescale the
44 edge frequency. */
45 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
46 (optimize_function_for_size_p (cfun) \
47 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
48 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
50 /* A modified value of flag `-fira-verbose' used internally. */
51 extern int internal_flag_ira_verbose;
53 /* Dump file of the allocator if it is not NULL. */
54 extern FILE *ira_dump_file;
56 /* Typedefs for pointers to allocno live range, allocno, and copy of
57 allocnos. */
58 typedef struct live_range *live_range_t;
59 typedef struct ira_allocno *ira_allocno_t;
60 typedef struct ira_allocno_pref *ira_pref_t;
61 typedef struct ira_allocno_copy *ira_copy_t;
62 typedef struct ira_object *ira_object_t;
64 /* Definition of vector of allocnos and copies. */
66 /* Typedef for pointer to the subsequent structure. */
67 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
69 typedef unsigned short move_table[N_REG_CLASSES];
71 /* In general case, IRA is a regional allocator. The regions are
72 nested and form a tree. Currently regions are natural loops. The
73 following structure describes loop tree node (representing basic
74 block or loop). We need such tree because the loop tree from
75 cfgloop.h is not convenient for the optimization: basic blocks are
76 not a part of the tree from cfgloop.h. We also use the nodes for
77 storing additional information about basic blocks/loops for the
78 register allocation purposes. */
79 struct ira_loop_tree_node
81 /* The node represents basic block if children == NULL. */
82 basic_block bb; /* NULL for loop. */
83 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
84 struct loop *loop;
85 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
86 SUBLOOP_NEXT is always NULL for BBs. */
87 ira_loop_tree_node_t subloop_next, next;
88 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
89 the node. They are NULL for BBs. */
90 ira_loop_tree_node_t subloops, children;
91 /* The node immediately containing given node. */
92 ira_loop_tree_node_t parent;
94 /* Loop level in range [0, ira_loop_tree_height). */
95 int level;
97 /* All the following members are defined only for nodes representing
98 loops. */
100 /* The loop number from CFG loop tree. The root number is 0. */
101 int loop_num;
103 /* True if the loop was marked for removal from the register
104 allocation. */
105 bool to_remove_p;
107 /* Allocnos in the loop corresponding to their regnos. If it is
108 NULL the loop does not form a separate register allocation region
109 (e.g. because it has abnormal enter/exit edges and we can not put
110 code for register shuffling on the edges if a different
111 allocation is used for a pseudo-register on different sides of
112 the edges). Caps are not in the map (remember we can have more
113 one cap with the same regno in a region). */
114 ira_allocno_t *regno_allocno_map;
116 /* True if there is an entry to given loop not from its parent (or
117 grandparent) basic block. For example, it is possible for two
118 adjacent loops inside another loop. */
119 bool entered_from_non_parent_p;
121 /* Maximal register pressure inside loop for given register class
122 (defined only for the pressure classes). */
123 int reg_pressure[N_REG_CLASSES];
125 /* Numbers of allocnos referred or living in the loop node (except
126 for its subloops). */
127 bitmap all_allocnos;
129 /* Numbers of allocnos living at the loop borders. */
130 bitmap border_allocnos;
132 /* Regnos of pseudos modified in the loop node (including its
133 subloops). */
134 bitmap modified_regnos;
136 /* Numbers of copies referred in the corresponding loop. */
137 bitmap local_copies;
139 /* The flag only valid for flag_shrink_wrap_frame_pointer.
140 It is true when the loop could use fp as a free register. */
141 bool fp_is_free;
144 /* The root of the loop tree corresponding to the all function. */
145 extern ira_loop_tree_node_t ira_loop_tree_root;
147 /* Height of the loop tree. */
148 extern int ira_loop_tree_height;
150 /* All nodes representing basic blocks are referred through the
151 following array. We can not use basic block member `aux' for this
152 because it is used for insertion of insns on edges. */
153 extern ira_loop_tree_node_t ira_bb_nodes;
155 /* Two access macros to the nodes representing basic blocks. */
156 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
157 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
158 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
159 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
161 fprintf (stderr, \
162 "\n%s: %d: error in %s: it is not a block node\n", \
163 __FILE__, __LINE__, __FUNCTION__); \
164 gcc_unreachable (); \
166 _node; }))
167 #else
168 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
169 #endif
171 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
173 /* All nodes representing loops are referred through the following
174 array. */
175 extern ira_loop_tree_node_t ira_loop_nodes;
177 /* Two access macros to the nodes representing loops. */
178 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
179 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
180 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
181 if (_node->children == NULL || _node->bb != NULL \
182 || (_node->loop == NULL && current_loops != NULL)) \
184 fprintf (stderr, \
185 "\n%s: %d: error in %s: it is not a loop node\n", \
186 __FILE__, __LINE__, __FUNCTION__); \
187 gcc_unreachable (); \
189 _node; }))
190 #else
191 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
192 #endif
194 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
197 /* The structure describes program points where a given allocno lives.
198 If the live ranges of two allocnos are intersected, the allocnos
199 are in conflict. */
200 struct live_range
202 /* Object whose live range is described by given structure. */
203 ira_object_t object;
204 /* Program point range. */
205 int start, finish;
206 /* Next structure describing program points where the allocno
207 lives. */
208 live_range_t next;
209 /* Pointer to structures with the same start/finish. */
210 live_range_t start_next, finish_next;
213 /* Program points are enumerated by numbers from range
214 0..IRA_MAX_POINT-1. There are approximately two times more program
215 points than insns. Program points are places in the program where
216 liveness info can be changed. In most general case (there are more
217 complicated cases too) some program points correspond to places
218 where input operand dies and other ones correspond to places where
219 output operands are born. */
220 extern int ira_max_point;
222 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
223 live ranges with given start/finish point. */
224 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
226 /* A structure representing conflict information for an allocno
227 (or one of its subwords). */
228 struct ira_object
230 /* The allocno associated with this record. */
231 ira_allocno_t allocno;
232 /* Vector of accumulated conflicting conflict_redords with NULL end
233 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
234 otherwise. */
235 void *conflicts_array;
236 /* Pointer to structures describing at what program point the
237 object lives. We always maintain the list in such way that *the
238 ranges in the list are not intersected and ordered by decreasing
239 their program points*. */
240 live_range_t live_ranges;
241 /* The subword within ALLOCNO which is represented by this object.
242 Zero means the lowest-order subword (or the entire allocno in case
243 it is not being tracked in subwords). */
244 int subword;
245 /* Allocated size of the conflicts array. */
246 unsigned int conflicts_array_size;
247 /* A unique number for every instance of this structure, which is used
248 to represent it in conflict bit vectors. */
249 int id;
250 /* Before building conflicts, MIN and MAX are initialized to
251 correspondingly minimal and maximal points of the accumulated
252 live ranges. Afterwards, they hold the minimal and maximal ids
253 of other ira_objects that this one can conflict with. */
254 int min, max;
255 /* Initial and accumulated hard registers conflicting with this
256 object and as a consequences can not be assigned to the allocno.
257 All non-allocatable hard regs and hard regs of register classes
258 different from given allocno one are included in the sets. */
259 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
260 /* Number of accumulated conflicts in the vector of conflicting
261 objects. */
262 int num_accumulated_conflicts;
263 /* TRUE if conflicts are represented by a vector of pointers to
264 ira_object structures. Otherwise, we use a bit vector indexed
265 by conflict ID numbers. */
266 unsigned int conflict_vec_p : 1;
269 /* A structure representing an allocno (allocation entity). Allocno
270 represents a pseudo-register in an allocation region. If
271 pseudo-register does not live in a region but it lives in the
272 nested regions, it is represented in the region by special allocno
273 called *cap*. There may be more one cap representing the same
274 pseudo-register in region. It means that the corresponding
275 pseudo-register lives in more one non-intersected subregion. */
276 struct ira_allocno
278 /* The allocno order number starting with 0. Each allocno has an
279 unique number and the number is never changed for the
280 allocno. */
281 int num;
282 /* Regno for allocno or cap. */
283 int regno;
284 /* Mode of the allocno which is the mode of the corresponding
285 pseudo-register. */
286 ENUM_BITFIELD (machine_mode) mode : 8;
287 /* Register class which should be used for allocation for given
288 allocno. NO_REGS means that we should use memory. */
289 ENUM_BITFIELD (reg_class) aclass : 16;
290 /* During the reload, value TRUE means that we should not reassign a
291 hard register to the allocno got memory earlier. It is set up
292 when we removed memory-memory move insn before each iteration of
293 the reload. */
294 unsigned int dont_reassign_p : 1;
295 #ifdef STACK_REGS
296 /* Set to TRUE if allocno can't be assigned to the stack hard
297 register correspondingly in this region and area including the
298 region and all its subregions recursively. */
299 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
300 #endif
301 /* TRUE value means that there is no sense to spill the allocno
302 during coloring because the spill will result in additional
303 reloads in reload pass. */
304 unsigned int bad_spill_p : 1;
305 /* TRUE if a hard register or memory has been assigned to the
306 allocno. */
307 unsigned int assigned_p : 1;
308 /* TRUE if conflicts for given allocno are represented by vector of
309 pointers to the conflicting allocnos. Otherwise, we use a bit
310 vector where a bit with given index represents allocno with the
311 same number. */
312 unsigned int conflict_vec_p : 1;
313 /* Hard register assigned to given allocno. Negative value means
314 that memory was allocated to the allocno. During the reload,
315 spilled allocno has value equal to the corresponding stack slot
316 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
317 reload (at this point pseudo-register has only one allocno) which
318 did not get stack slot yet. */
319 short int hard_regno;
320 /* Allocnos with the same regno are linked by the following member.
321 Allocnos corresponding to inner loops are first in the list (it
322 corresponds to depth-first traverse of the loops). */
323 ira_allocno_t next_regno_allocno;
324 /* There may be different allocnos with the same regno in different
325 regions. Allocnos are bound to the corresponding loop tree node.
326 Pseudo-register may have only one regular allocno with given loop
327 tree node but more than one cap (see comments above). */
328 ira_loop_tree_node_t loop_tree_node;
329 /* Accumulated usage references of the allocno. Here and below,
330 word 'accumulated' means info for given region and all nested
331 subregions. In this case, 'accumulated' means sum of references
332 of the corresponding pseudo-register in this region and in all
333 nested subregions recursively. */
334 int nrefs;
335 /* Accumulated frequency of usage of the allocno. */
336 int freq;
337 /* Minimal accumulated and updated costs of usage register of the
338 allocno class. */
339 int class_cost, updated_class_cost;
340 /* Minimal accumulated, and updated costs of memory for the allocno.
341 At the allocation start, the original and updated costs are
342 equal. The updated cost may be changed after finishing
343 allocation in a region and starting allocation in a subregion.
344 The change reflects the cost of spill/restore code on the
345 subregion border if we assign memory to the pseudo in the
346 subregion. */
347 int memory_cost, updated_memory_cost;
348 /* Accumulated number of points where the allocno lives and there is
349 excess pressure for its class. Excess pressure for a register
350 class at some point means that there are more allocnos of given
351 register class living at the point than number of hard-registers
352 of the class available for the allocation. */
353 int excess_pressure_points_num;
354 /* Allocno hard reg preferences. */
355 ira_pref_t allocno_prefs;
356 /* Copies to other non-conflicting allocnos. The copies can
357 represent move insn or potential move insn usually because of two
358 operand insn constraints. */
359 ira_copy_t allocno_copies;
360 /* It is a allocno (cap) representing given allocno on upper loop tree
361 level. */
362 ira_allocno_t cap;
363 /* It is a link to allocno (cap) on lower loop level represented by
364 given cap. Null if given allocno is not a cap. */
365 ira_allocno_t cap_member;
366 /* The number of objects tracked in the following array. */
367 int num_objects;
368 /* An array of structures describing conflict information and live
369 ranges for each object associated with the allocno. There may be
370 more than one such object in cases where the allocno represents a
371 multi-word register. */
372 ira_object_t objects[2];
373 /* Accumulated frequency of calls which given allocno
374 intersects. */
375 int call_freq;
376 /* Accumulated number of the intersected calls. */
377 int calls_crossed_num;
378 /* The number of calls across which it is live, but which should not
379 affect register preferences. */
380 int cheap_calls_crossed_num;
381 /* Array of usage costs (accumulated and the one updated during
382 coloring) for each hard register of the allocno class. The
383 member value can be NULL if all costs are the same and equal to
384 CLASS_COST. For example, the costs of two different hard
385 registers can be different if one hard register is callee-saved
386 and another one is callee-used and the allocno lives through
387 calls. Another example can be case when for some insn the
388 corresponding pseudo-register value should be put in specific
389 register class (e.g. AREG for x86) which is a strict subset of
390 the allocno class (GENERAL_REGS for x86). We have updated costs
391 to reflect the situation when the usage cost of a hard register
392 is decreased because the allocno is connected to another allocno
393 by a copy and the another allocno has been assigned to the hard
394 register. */
395 int *hard_reg_costs, *updated_hard_reg_costs;
396 /* Array of decreasing costs (accumulated and the one updated during
397 coloring) for allocnos conflicting with given allocno for hard
398 regno of the allocno class. The member value can be NULL if all
399 costs are the same. These costs are used to reflect preferences
400 of other allocnos not assigned yet during assigning to given
401 allocno. */
402 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
403 /* Different additional data. It is used to decrease size of
404 allocno data footprint. */
405 void *add_data;
409 /* All members of the allocno structures should be accessed only
410 through the following macros. */
411 #define ALLOCNO_NUM(A) ((A)->num)
412 #define ALLOCNO_REGNO(A) ((A)->regno)
413 #define ALLOCNO_REG(A) ((A)->reg)
414 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
415 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
416 #define ALLOCNO_CAP(A) ((A)->cap)
417 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
418 #define ALLOCNO_NREFS(A) ((A)->nrefs)
419 #define ALLOCNO_FREQ(A) ((A)->freq)
420 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
421 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
422 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
423 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
424 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
425 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
426 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
427 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
428 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
429 #ifdef STACK_REGS
430 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
431 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
432 #endif
433 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
434 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
435 #define ALLOCNO_MODE(A) ((A)->mode)
436 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
437 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
438 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
439 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
440 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
441 ((A)->conflict_hard_reg_costs)
442 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
443 ((A)->updated_conflict_hard_reg_costs)
444 #define ALLOCNO_CLASS(A) ((A)->aclass)
445 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
446 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
447 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
448 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
449 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
450 ((A)->excess_pressure_points_num)
451 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
452 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
453 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
455 /* Typedef for pointer to the subsequent structure. */
456 typedef struct ira_emit_data *ira_emit_data_t;
458 /* Allocno bound data used for emit pseudo live range split insns and
459 to flattening IR. */
460 struct ira_emit_data
462 /* TRUE if the allocno assigned to memory was a destination of
463 removed move (see ira-emit.c) at loop exit because the value of
464 the corresponding pseudo-register is not changed inside the
465 loop. */
466 unsigned int mem_optimized_dest_p : 1;
467 /* TRUE if the corresponding pseudo-register has disjoint live
468 ranges and the other allocnos of the pseudo-register except this
469 one changed REG. */
470 unsigned int somewhere_renamed_p : 1;
471 /* TRUE if allocno with the same REGNO in a subregion has been
472 renamed, in other words, got a new pseudo-register. */
473 unsigned int child_renamed_p : 1;
474 /* Final rtx representation of the allocno. */
475 rtx reg;
476 /* Non NULL if we remove restoring value from given allocno to
477 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
478 allocno value is not changed inside the loop. */
479 ira_allocno_t mem_optimized_dest;
482 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
484 /* Data used to emit live range split insns and to flattening IR. */
485 extern ira_emit_data_t ira_allocno_emit_data;
487 /* Abbreviation for frequent emit data access. */
488 static inline rtx
489 allocno_emit_reg (ira_allocno_t a)
491 return ALLOCNO_EMIT_DATA (a)->reg;
494 #define OBJECT_ALLOCNO(O) ((O)->allocno)
495 #define OBJECT_SUBWORD(O) ((O)->subword)
496 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
497 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
498 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
499 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
500 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
501 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
502 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
503 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
504 #define OBJECT_MIN(O) ((O)->min)
505 #define OBJECT_MAX(O) ((O)->max)
506 #define OBJECT_CONFLICT_ID(O) ((O)->id)
507 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
509 /* Map regno -> allocnos with given regno (see comments for
510 allocno member `next_regno_allocno'). */
511 extern ira_allocno_t *ira_regno_allocno_map;
513 /* Array of references to all allocnos. The order number of the
514 allocno corresponds to the index in the array. Removed allocnos
515 have NULL element value. */
516 extern ira_allocno_t *ira_allocnos;
518 /* The size of the previous array. */
519 extern int ira_allocnos_num;
521 /* Map a conflict id to its corresponding ira_object structure. */
522 extern ira_object_t *ira_object_id_map;
524 /* The size of the previous array. */
525 extern int ira_objects_num;
527 /* The following structure represents a hard register prefererence of
528 allocno. The preference represent move insns or potential move
529 insns usually because of two operand insn constraints. One move
530 operand is a hard register. */
531 struct ira_allocno_pref
533 /* The unique order number of the preference node starting with 0. */
534 int num;
535 /* Preferred hard register. */
536 int hard_regno;
537 /* Accumulated execution frequency of insns from which the
538 preference created. */
539 int freq;
540 /* Given allocno. */
541 ira_allocno_t allocno;
542 /* All prefernces with the same allocno are linked by the following
543 member. */
544 ira_pref_t next_pref;
547 /* Array of references to all allocno preferences. The order number
548 of the preference corresponds to the index in the array. */
549 extern ira_pref_t *ira_prefs;
551 /* Size of the previous array. */
552 extern int ira_prefs_num;
554 /* The following structure represents a copy of two allocnos. The
555 copies represent move insns or potential move insns usually because
556 of two operand insn constraints. To remove register shuffle, we
557 also create copies between allocno which is output of an insn and
558 allocno becoming dead in the insn. */
559 struct ira_allocno_copy
561 /* The unique order number of the copy node starting with 0. */
562 int num;
563 /* Allocnos connected by the copy. The first allocno should have
564 smaller order number than the second one. */
565 ira_allocno_t first, second;
566 /* Execution frequency of the copy. */
567 int freq;
568 bool constraint_p;
569 /* It is a move insn which is an origin of the copy. The member
570 value for the copy representing two operand insn constraints or
571 for the copy created to remove register shuffle is NULL. In last
572 case the copy frequency is smaller than the corresponding insn
573 execution frequency. */
574 rtx insn;
575 /* list of copies generated from the same insn. */
576 ira_copy_t copy_list;
577 /* All copies with the same allocno as FIRST are linked by the two
578 following members. */
579 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
580 /* All copies with the same allocno as SECOND are linked by the two
581 following members. */
582 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
583 /* Region from which given copy is originated. */
584 ira_loop_tree_node_t loop_tree_node;
587 /* Array of references to all copies. The order number of the copy
588 corresponds to the index in the array. Removed copies have NULL
589 element value. */
590 extern ira_copy_t *ira_copies;
592 /* Size of the previous array. */
593 extern int ira_copies_num;
595 /* The following structure describes a stack slot used for spilled
596 pseudo-registers. */
597 struct ira_spilled_reg_stack_slot
599 /* pseudo-registers assigned to the stack slot. */
600 bitmap_head spilled_regs;
601 /* RTL representation of the stack slot. */
602 rtx mem;
603 /* Size of the stack slot. */
604 unsigned int width;
607 /* The number of elements in the following array. */
608 extern int ira_spilled_reg_stack_slots_num;
610 /* The following array contains info about spilled pseudo-registers
611 stack slots used in current function so far. */
612 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
614 /* Correspondingly overall cost of the allocation, cost of the
615 allocnos assigned to hard-registers, cost of the allocnos assigned
616 to memory, cost of loads, stores and register move insns generated
617 for pseudo-register live range splitting (see ira-emit.c). */
618 extern int ira_overall_cost;
619 extern int ira_reg_cost, ira_mem_cost;
620 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
621 extern int ira_move_loops_num, ira_additional_jumps_num;
624 /* This page contains a bitset implementation called 'min/max sets' used to
625 record conflicts in IRA.
626 They are named min/maxs set since we keep track of a minimum and a maximum
627 bit number for each set representing the bounds of valid elements. Otherwise,
628 the implementation resembles sbitmaps in that we store an array of integers
629 whose bits directly represent the members of the set. */
631 /* The type used as elements in the array, and the number of bits in
632 this type. */
634 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
635 #define IRA_INT_TYPE HOST_WIDE_INT
637 /* Set, clear or test bit number I in R, a bit vector of elements with
638 minimal index and maximal index equal correspondingly to MIN and
639 MAX. */
640 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
642 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
643 (({ int _min = (MIN), _max = (MAX), _i = (I); \
644 if (_i < _min || _i > _max) \
646 fprintf (stderr, \
647 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
648 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
649 gcc_unreachable (); \
651 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
652 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
655 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
656 (({ int _min = (MIN), _max = (MAX), _i = (I); \
657 if (_i < _min || _i > _max) \
659 fprintf (stderr, \
660 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
661 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
662 gcc_unreachable (); \
664 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
665 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
667 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
668 (({ int _min = (MIN), _max = (MAX), _i = (I); \
669 if (_i < _min || _i > _max) \
671 fprintf (stderr, \
672 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
673 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
674 gcc_unreachable (); \
676 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
677 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
679 #else
681 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
682 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
683 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
685 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
686 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
687 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
689 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
690 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
691 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
693 #endif
695 /* The iterator for min/max sets. */
696 struct minmax_set_iterator {
698 /* Array containing the bit vector. */
699 IRA_INT_TYPE *vec;
701 /* The number of the current element in the vector. */
702 unsigned int word_num;
704 /* The number of bits in the bit vector. */
705 unsigned int nel;
707 /* The current bit index of the bit vector. */
708 unsigned int bit_num;
710 /* Index corresponding to the 1st bit of the bit vector. */
711 int start_val;
713 /* The word of the bit vector currently visited. */
714 unsigned IRA_INT_TYPE word;
717 /* Initialize the iterator I for bit vector VEC containing minimal and
718 maximal values MIN and MAX. */
719 static inline void
720 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min,
721 int max)
723 i->vec = vec;
724 i->word_num = 0;
725 i->nel = max < min ? 0 : max - min + 1;
726 i->start_val = min;
727 i->bit_num = 0;
728 i->word = i->nel == 0 ? 0 : vec[0];
731 /* Return TRUE if we have more allocnos to visit, in which case *N is
732 set to the number of the element to be visited. Otherwise, return
733 FALSE. */
734 static inline bool
735 minmax_set_iter_cond (minmax_set_iterator *i, int *n)
737 /* Skip words that are zeros. */
738 for (; i->word == 0; i->word = i->vec[i->word_num])
740 i->word_num++;
741 i->bit_num = i->word_num * IRA_INT_BITS;
743 /* If we have reached the end, break. */
744 if (i->bit_num >= i->nel)
745 return false;
748 /* Skip bits that are zero. */
749 for (; (i->word & 1) == 0; i->word >>= 1)
750 i->bit_num++;
752 *n = (int) i->bit_num + i->start_val;
754 return true;
757 /* Advance to the next element in the set. */
758 static inline void
759 minmax_set_iter_next (minmax_set_iterator *i)
761 i->word >>= 1;
762 i->bit_num++;
765 /* Loop over all elements of a min/max set given by bit vector VEC and
766 their minimal and maximal values MIN and MAX. In each iteration, N
767 is set to the number of next allocno. ITER is an instance of
768 minmax_set_iterator used to iterate over the set. */
769 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
770 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
771 minmax_set_iter_cond (&(ITER), &(N)); \
772 minmax_set_iter_next (&(ITER)))
774 struct target_ira_int {
775 /* Initialized once. It is a maximal possible size of the allocated
776 struct costs. */
777 int x_max_struct_costs_size;
779 /* Allocated and initialized once, and used to initialize cost values
780 for each insn. */
781 struct costs *x_init_cost;
783 /* Allocated once, and used for temporary purposes. */
784 struct costs *x_temp_costs;
786 /* Allocated once, and used for the cost calculation. */
787 struct costs *x_op_costs[MAX_RECOG_OPERANDS];
788 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS];
790 /* Hard registers that can not be used for the register allocator for
791 all functions of the current compilation unit. */
792 HARD_REG_SET x_no_unit_alloc_regs;
794 /* Map: hard regs X modes -> set of hard registers for storing value
795 of given mode starting with given hard register. */
796 HARD_REG_SET (x_ira_reg_mode_hard_regset
797 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]);
799 /* Maximum cost of moving from a register in one class to a register
800 in another class. Based on TARGET_REGISTER_MOVE_COST. */
801 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE];
803 /* Similar, but here we don't have to move if the first index is a
804 subset of the second so in that case the cost is zero. */
805 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE];
807 /* Similar, but here we don't have to move if the first index is a
808 superset of the second so in that case the cost is zero. */
809 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE];
811 /* Keep track of the last mode we initialized move costs for. */
812 int x_last_mode_for_init_move_cost;
814 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
815 cost not minimal. */
816 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
818 /* Map class->true if class is a possible allocno class, false
819 otherwise. */
820 bool x_ira_reg_allocno_class_p[N_REG_CLASSES];
822 /* Map class->true if class is a pressure class, false otherwise. */
823 bool x_ira_reg_pressure_class_p[N_REG_CLASSES];
825 /* Array of the number of hard registers of given class which are
826 available for allocation. The order is defined by the hard
827 register numbers. */
828 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
830 /* Index (in ira_class_hard_regs; for given register class and hard
831 register (in general case a hard register can belong to several
832 register classes;. The index is negative for hard registers
833 unavailable for the allocation. */
834 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
836 /* Array whose values are hard regset of hard registers available for
837 the allocation of given register class whose HARD_REGNO_MODE_OK
838 values for given mode are zero. */
839 HARD_REG_SET x_ira_prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
841 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
843 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
845 For example, if:
847 - (reg:M 2) is valid and occupies two registers;
848 - register 2 belongs to CL; and
849 - register 3 belongs to the same pressure class as CL
851 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
852 in the set. */
853 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
855 /* The value is number of elements in the subsequent array. */
856 int x_ira_important_classes_num;
858 /* The array containing all non-empty classes. Such classes is
859 important for calculation of the hard register usage costs. */
860 enum reg_class x_ira_important_classes[N_REG_CLASSES];
862 /* The array containing indexes of important classes in the previous
863 array. The array elements are defined only for important
864 classes. */
865 int x_ira_important_class_nums[N_REG_CLASSES];
867 /* Map class->true if class is an uniform class, false otherwise. */
868 bool x_ira_uniform_class_p[N_REG_CLASSES];
870 /* The biggest important class inside of intersection of the two
871 classes (that is calculated taking only hard registers available
872 for allocation into account;. If the both classes contain no hard
873 registers available for allocation, the value is calculated with
874 taking all hard-registers including fixed ones into account. */
875 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
877 /* Classes with end marker LIM_REG_CLASSES which are intersected with
878 given class (the first index). That includes given class itself.
879 This is calculated taking only hard registers available for
880 allocation into account. */
881 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
883 /* The biggest (smallest) important class inside of (covering) union
884 of the two classes (that is calculated taking only hard registers
885 available for allocation into account). If the both classes
886 contain no hard registers available for allocation, the value is
887 calculated with taking all hard-registers including fixed ones
888 into account. In other words, the value is the corresponding
889 reg_class_subunion (reg_class_superunion) value. */
890 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
891 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
893 /* For each reg class, table listing all the classes contained in it
894 (excluding the class itself. Non-allocatable registers are
895 excluded from the consideration). */
896 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
898 /* Array whose values are hard regset of hard registers for which
899 move of the hard register in given mode into itself is
900 prohibited. */
901 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
903 /* Flag of that the above array has been initialized. */
904 bool x_ira_prohibited_mode_move_regs_initialized_p;
907 extern struct target_ira_int default_target_ira_int;
908 #if SWITCHABLE_TARGET
909 extern struct target_ira_int *this_target_ira_int;
910 #else
911 #define this_target_ira_int (&default_target_ira_int)
912 #endif
914 #define ira_reg_mode_hard_regset \
915 (this_target_ira_int->x_ira_reg_mode_hard_regset)
916 #define ira_register_move_cost \
917 (this_target_ira_int->x_ira_register_move_cost)
918 #define ira_max_memory_move_cost \
919 (this_target_ira_int->x_ira_max_memory_move_cost)
920 #define ira_may_move_in_cost \
921 (this_target_ira_int->x_ira_may_move_in_cost)
922 #define ira_may_move_out_cost \
923 (this_target_ira_int->x_ira_may_move_out_cost)
924 #define ira_reg_allocno_class_p \
925 (this_target_ira_int->x_ira_reg_allocno_class_p)
926 #define ira_reg_pressure_class_p \
927 (this_target_ira_int->x_ira_reg_pressure_class_p)
928 #define ira_non_ordered_class_hard_regs \
929 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
930 #define ira_class_hard_reg_index \
931 (this_target_ira_int->x_ira_class_hard_reg_index)
932 #define ira_prohibited_class_mode_regs \
933 (this_target_ira_int->x_ira_prohibited_class_mode_regs)
934 #define ira_useful_class_mode_regs \
935 (this_target_ira_int->x_ira_useful_class_mode_regs)
936 #define ira_important_classes_num \
937 (this_target_ira_int->x_ira_important_classes_num)
938 #define ira_important_classes \
939 (this_target_ira_int->x_ira_important_classes)
940 #define ira_important_class_nums \
941 (this_target_ira_int->x_ira_important_class_nums)
942 #define ira_uniform_class_p \
943 (this_target_ira_int->x_ira_uniform_class_p)
944 #define ira_reg_class_intersect \
945 (this_target_ira_int->x_ira_reg_class_intersect)
946 #define ira_reg_class_super_classes \
947 (this_target_ira_int->x_ira_reg_class_super_classes)
948 #define ira_reg_class_subunion \
949 (this_target_ira_int->x_ira_reg_class_subunion)
950 #define ira_reg_class_superunion \
951 (this_target_ira_int->x_ira_reg_class_superunion)
952 #define ira_prohibited_mode_move_regs \
953 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
955 /* ira.c: */
957 extern void *ira_allocate (size_t);
958 extern void ira_free (void *addr);
959 extern bitmap ira_allocate_bitmap (void);
960 extern void ira_free_bitmap (bitmap);
961 extern void ira_print_disposition (FILE *);
962 extern void ira_debug_disposition (void);
963 extern void ira_debug_allocno_classes (void);
964 extern void ira_init_register_move_cost (enum machine_mode);
965 extern void ira_setup_alts (rtx insn, HARD_REG_SET &alts);
966 extern int ira_get_dup_out_num (int op_num, HARD_REG_SET &alts);
968 /* ira-build.c */
970 /* The current loop tree node and its regno allocno map. */
971 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
972 extern ira_allocno_t *ira_curr_regno_allocno_map;
974 extern void ira_debug_pref (ira_pref_t);
975 extern void ira_debug_prefs (void);
976 extern void ira_debug_allocno_prefs (ira_allocno_t);
978 extern void ira_debug_copy (ira_copy_t);
979 extern void debug (ira_allocno_copy &ref);
980 extern void debug (ira_allocno_copy *ptr);
982 extern void ira_debug_copies (void);
983 extern void ira_debug_allocno_copies (ira_allocno_t);
984 extern void debug (ira_allocno &ref);
985 extern void debug (ira_allocno *ptr);
987 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
988 void (*) (ira_loop_tree_node_t),
989 void (*) (ira_loop_tree_node_t));
990 extern ira_allocno_t ira_parent_allocno (ira_allocno_t);
991 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t);
992 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
993 extern void ira_create_allocno_objects (ira_allocno_t);
994 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class);
995 extern bool ira_conflict_vector_profitable_p (ira_object_t, int);
996 extern void ira_allocate_conflict_vec (ira_object_t, int);
997 extern void ira_allocate_object_conflicts (ira_object_t, int);
998 extern void ior_hard_reg_conflicts (ira_allocno_t, HARD_REG_SET *);
999 extern void ira_print_expanded_allocno (ira_allocno_t);
1000 extern void ira_add_live_range_to_object (ira_object_t, int, int);
1001 extern live_range_t ira_create_live_range (ira_object_t, int, int,
1002 live_range_t);
1003 extern live_range_t ira_copy_live_range_list (live_range_t);
1004 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t);
1005 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t);
1006 extern void ira_finish_live_range (live_range_t);
1007 extern void ira_finish_live_range_list (live_range_t);
1008 extern void ira_free_allocno_updated_costs (ira_allocno_t);
1009 extern ira_pref_t ira_create_pref (ira_allocno_t, int, int);
1010 extern void ira_add_allocno_pref (ira_allocno_t, int, int);
1011 extern void ira_remove_pref (ira_pref_t);
1012 extern void ira_remove_allocno_prefs (ira_allocno_t);
1013 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
1014 int, bool, rtx, ira_loop_tree_node_t);
1015 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int,
1016 bool, rtx, ira_loop_tree_node_t);
1017 extern ira_copy_t find_alternate_copy (ira_copy_t cp, ira_allocno_t connect);
1019 extern int *ira_allocate_cost_vector (reg_class_t);
1020 extern void ira_free_cost_vector (int *, reg_class_t);
1022 extern void ira_flattening (int, int);
1023 extern bool ira_build (void);
1024 extern void ira_destroy (void);
1026 /* ira-costs.c */
1027 extern void ira_init_costs_once (void);
1028 extern void ira_init_costs (void);
1029 extern void ira_finish_costs_once (void);
1030 extern void ira_costs (void);
1031 extern void ira_tune_allocno_costs (void);
1033 /* ira-lives.c */
1035 extern void ira_rebuild_start_finish_chains (void);
1036 extern void ira_print_live_range_list (FILE *, live_range_t);
1037 extern void debug (live_range &ref);
1038 extern void debug (live_range *ptr);
1039 extern void ira_debug_live_range_list (live_range_t);
1040 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
1041 extern void ira_debug_live_ranges (void);
1042 extern void ira_create_allocno_live_ranges (void);
1043 extern void ira_compress_allocno_live_ranges (void);
1044 extern void ira_finish_allocno_live_ranges (void);
1046 /* ira-conflicts.c */
1047 extern void ira_debug_conflicts (bool);
1048 extern void ira_build_conflicts (void);
1050 /* ira-color.c */
1051 extern void ira_debug_hard_regs_forest (void);
1052 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
1053 extern void ira_reassign_conflict_allocnos (int);
1054 extern void ira_initiate_assign (void);
1055 extern void ira_finish_assign (void);
1056 extern void ira_color (void);
1058 /* ira-emit.c */
1059 extern void ira_initiate_emit_data (void);
1060 extern void ira_finish_emit_data (void);
1061 extern void ira_emit (bool);
1065 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1066 static inline bool
1067 ira_equiv_no_lvalue_p (int regno)
1069 if (regno >= ira_reg_equiv_len)
1070 return false;
1071 return (ira_reg_equiv[regno].constant != NULL_RTX
1072 || ira_reg_equiv[regno].invariant != NULL_RTX
1073 || (ira_reg_equiv[regno].memory != NULL_RTX
1074 && MEM_READONLY_P (ira_reg_equiv[regno].memory)));
1079 /* Initialize register costs for MODE if necessary. */
1080 static inline void
1081 ira_init_register_move_cost_if_necessary (enum machine_mode mode)
1083 if (ira_register_move_cost[mode] == NULL)
1084 ira_init_register_move_cost (mode);
1089 /* The iterator for all allocnos. */
1090 struct ira_allocno_iterator {
1091 /* The number of the current element in IRA_ALLOCNOS. */
1092 int n;
1095 /* Initialize the iterator I. */
1096 static inline void
1097 ira_allocno_iter_init (ira_allocno_iterator *i)
1099 i->n = 0;
1102 /* Return TRUE if we have more allocnos to visit, in which case *A is
1103 set to the allocno to be visited. Otherwise, return FALSE. */
1104 static inline bool
1105 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
1107 int n;
1109 for (n = i->n; n < ira_allocnos_num; n++)
1110 if (ira_allocnos[n] != NULL)
1112 *a = ira_allocnos[n];
1113 i->n = n + 1;
1114 return true;
1116 return false;
1119 /* Loop over all allocnos. In each iteration, A is set to the next
1120 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1121 the allocnos. */
1122 #define FOR_EACH_ALLOCNO(A, ITER) \
1123 for (ira_allocno_iter_init (&(ITER)); \
1124 ira_allocno_iter_cond (&(ITER), &(A));)
1126 /* The iterator for all objects. */
1127 struct ira_object_iterator {
1128 /* The number of the current element in ira_object_id_map. */
1129 int n;
1132 /* Initialize the iterator I. */
1133 static inline void
1134 ira_object_iter_init (ira_object_iterator *i)
1136 i->n = 0;
1139 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1140 set to the object to be visited. Otherwise, return FALSE. */
1141 static inline bool
1142 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj)
1144 int n;
1146 for (n = i->n; n < ira_objects_num; n++)
1147 if (ira_object_id_map[n] != NULL)
1149 *obj = ira_object_id_map[n];
1150 i->n = n + 1;
1151 return true;
1153 return false;
1156 /* Loop over all objects. In each iteration, OBJ is set to the next
1157 object. ITER is an instance of ira_object_iterator used to iterate
1158 the objects. */
1159 #define FOR_EACH_OBJECT(OBJ, ITER) \
1160 for (ira_object_iter_init (&(ITER)); \
1161 ira_object_iter_cond (&(ITER), &(OBJ));)
1163 /* The iterator for objects associated with an allocno. */
1164 struct ira_allocno_object_iterator {
1165 /* The number of the element the allocno's object array. */
1166 int n;
1169 /* Initialize the iterator I. */
1170 static inline void
1171 ira_allocno_object_iter_init (ira_allocno_object_iterator *i)
1173 i->n = 0;
1176 /* Return TRUE if we have more objects to visit in allocno A, in which
1177 case *O is set to the object to be visited. Otherwise, return
1178 FALSE. */
1179 static inline bool
1180 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a,
1181 ira_object_t *o)
1183 int n = i->n++;
1184 if (n < ALLOCNO_NUM_OBJECTS (a))
1186 *o = ALLOCNO_OBJECT (a, n);
1187 return true;
1189 return false;
1192 /* Loop over all objects associated with allocno A. In each
1193 iteration, O is set to the next object. ITER is an instance of
1194 ira_allocno_object_iterator used to iterate the conflicts. */
1195 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1196 for (ira_allocno_object_iter_init (&(ITER)); \
1197 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1200 /* The iterator for prefs. */
1201 struct ira_pref_iterator {
1202 /* The number of the current element in IRA_PREFS. */
1203 int n;
1206 /* Initialize the iterator I. */
1207 static inline void
1208 ira_pref_iter_init (ira_pref_iterator *i)
1210 i->n = 0;
1213 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1214 set to the pref to be visited. Otherwise, return FALSE. */
1215 static inline bool
1216 ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref)
1218 int n;
1220 for (n = i->n; n < ira_prefs_num; n++)
1221 if (ira_prefs[n] != NULL)
1223 *pref = ira_prefs[n];
1224 i->n = n + 1;
1225 return true;
1227 return false;
1230 /* Loop over all prefs. In each iteration, P is set to the next
1231 pref. ITER is an instance of ira_pref_iterator used to iterate
1232 the prefs. */
1233 #define FOR_EACH_PREF(P, ITER) \
1234 for (ira_pref_iter_init (&(ITER)); \
1235 ira_pref_iter_cond (&(ITER), &(P));)
1238 /* The iterator for copies. */
1239 struct ira_copy_iterator {
1240 /* The number of the current element in IRA_COPIES. */
1241 int n;
1244 /* Initialize the iterator I. */
1245 static inline void
1246 ira_copy_iter_init (ira_copy_iterator *i)
1248 i->n = 0;
1251 /* Return TRUE if we have more copies to visit, in which case *CP is
1252 set to the copy to be visited. Otherwise, return FALSE. */
1253 static inline bool
1254 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
1256 int n;
1258 for (n = i->n; n < ira_copies_num; n++)
1259 if (ira_copies[n] != NULL)
1261 *cp = ira_copies[n];
1262 i->n = n + 1;
1263 return true;
1265 return false;
1268 /* Loop over all copies. In each iteration, C is set to the next
1269 copy. ITER is an instance of ira_copy_iterator used to iterate
1270 the copies. */
1271 #define FOR_EACH_COPY(C, ITER) \
1272 for (ira_copy_iter_init (&(ITER)); \
1273 ira_copy_iter_cond (&(ITER), &(C));)
1275 /* The iterator for object conflicts. */
1276 struct ira_object_conflict_iterator {
1278 /* TRUE if the conflicts are represented by vector of allocnos. */
1279 bool conflict_vec_p;
1281 /* The conflict vector or conflict bit vector. */
1282 void *vec;
1284 /* The number of the current element in the vector (of type
1285 ira_object_t or IRA_INT_TYPE). */
1286 unsigned int word_num;
1288 /* The bit vector size. It is defined only if
1289 OBJECT_CONFLICT_VEC_P is FALSE. */
1290 unsigned int size;
1292 /* The current bit index of bit vector. It is defined only if
1293 OBJECT_CONFLICT_VEC_P is FALSE. */
1294 unsigned int bit_num;
1296 /* The object id corresponding to the 1st bit of the bit vector. It
1297 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1298 int base_conflict_id;
1300 /* The word of bit vector currently visited. It is defined only if
1301 OBJECT_CONFLICT_VEC_P is FALSE. */
1302 unsigned IRA_INT_TYPE word;
1305 /* Initialize the iterator I with ALLOCNO conflicts. */
1306 static inline void
1307 ira_object_conflict_iter_init (ira_object_conflict_iterator *i,
1308 ira_object_t obj)
1310 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj);
1311 i->vec = OBJECT_CONFLICT_ARRAY (obj);
1312 i->word_num = 0;
1313 if (i->conflict_vec_p)
1314 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1315 else
1317 if (OBJECT_MIN (obj) > OBJECT_MAX (obj))
1318 i->size = 0;
1319 else
1320 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj)
1321 + IRA_INT_BITS)
1322 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1323 i->bit_num = 0;
1324 i->base_conflict_id = OBJECT_MIN (obj);
1325 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1329 /* Return TRUE if we have more conflicting allocnos to visit, in which
1330 case *A is set to the allocno to be visited. Otherwise, return
1331 FALSE. */
1332 static inline bool
1333 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i,
1334 ira_object_t *pobj)
1336 ira_object_t obj;
1338 if (i->conflict_vec_p)
1340 obj = ((ira_object_t *) i->vec)[i->word_num++];
1341 if (obj == NULL)
1342 return false;
1344 else
1346 unsigned IRA_INT_TYPE word = i->word;
1347 unsigned int bit_num = i->bit_num;
1349 /* Skip words that are zeros. */
1350 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1352 i->word_num++;
1354 /* If we have reached the end, break. */
1355 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1356 return false;
1358 bit_num = i->word_num * IRA_INT_BITS;
1361 /* Skip bits that are zero. */
1362 for (; (word & 1) == 0; word >>= 1)
1363 bit_num++;
1365 obj = ira_object_id_map[bit_num + i->base_conflict_id];
1366 i->bit_num = bit_num + 1;
1367 i->word = word >> 1;
1370 *pobj = obj;
1371 return true;
1374 /* Loop over all objects conflicting with OBJ. In each iteration,
1375 CONF is set to the next conflicting object. ITER is an instance
1376 of ira_object_conflict_iterator used to iterate the conflicts. */
1377 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1378 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1379 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1383 /* The function returns TRUE if at least one hard register from ones
1384 starting with HARD_REGNO and containing value of MODE are in set
1385 HARD_REGSET. */
1386 static inline bool
1387 ira_hard_reg_set_intersection_p (int hard_regno, enum machine_mode mode,
1388 HARD_REG_SET hard_regset)
1390 int i;
1392 gcc_assert (hard_regno >= 0);
1393 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1394 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1395 return true;
1396 return false;
1399 /* Return number of hard registers in hard register SET. */
1400 static inline int
1401 hard_reg_set_size (HARD_REG_SET set)
1403 int i, size;
1405 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1406 if (TEST_HARD_REG_BIT (set, i))
1407 size++;
1408 return size;
1411 /* The function returns TRUE if hard registers starting with
1412 HARD_REGNO and containing value of MODE are fully in set
1413 HARD_REGSET. */
1414 static inline bool
1415 ira_hard_reg_in_set_p (int hard_regno, enum machine_mode mode,
1416 HARD_REG_SET hard_regset)
1418 int i;
1420 ira_assert (hard_regno >= 0);
1421 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1422 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1423 return false;
1424 return true;
1429 /* To save memory we use a lazy approach for allocation and
1430 initialization of the cost vectors. We do this only when it is
1431 really necessary. */
1433 /* Allocate cost vector *VEC for hard registers of ACLASS and
1434 initialize the elements by VAL if it is necessary */
1435 static inline void
1436 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val)
1438 int i, *reg_costs;
1439 int len;
1441 if (*vec != NULL)
1442 return;
1443 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1444 len = ira_class_hard_regs_num[(int) aclass];
1445 for (i = 0; i < len; i++)
1446 reg_costs[i] = val;
1449 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1450 values of vector SRC into the vector if it is necessary */
1451 static inline void
1452 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src)
1454 int len;
1456 if (*vec != NULL || src == NULL)
1457 return;
1458 *vec = ira_allocate_cost_vector (aclass);
1459 len = ira_class_hard_regs_num[aclass];
1460 memcpy (*vec, src, sizeof (int) * len);
1463 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1464 values of vector SRC into the vector if it is necessary */
1465 static inline void
1466 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src)
1468 int i, len;
1470 if (src == NULL)
1471 return;
1472 len = ira_class_hard_regs_num[aclass];
1473 if (*vec == NULL)
1475 *vec = ira_allocate_cost_vector (aclass);
1476 memset (*vec, 0, sizeof (int) * len);
1478 for (i = 0; i < len; i++)
1479 (*vec)[i] += src[i];
1482 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1483 values of vector SRC into the vector or initialize it by VAL (if
1484 SRC is null). */
1485 static inline void
1486 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass,
1487 int val, int *src)
1489 int i, *reg_costs;
1490 int len;
1492 if (*vec != NULL)
1493 return;
1494 *vec = reg_costs = ira_allocate_cost_vector (aclass);
1495 len = ira_class_hard_regs_num[aclass];
1496 if (src != NULL)
1497 memcpy (reg_costs, src, sizeof (int) * len);
1498 else
1500 for (i = 0; i < len; i++)
1501 reg_costs[i] = val;
1505 extern rtx ira_create_new_reg (rtx);
1506 extern int first_moveable_pseudo, last_moveable_pseudo;