1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 /* High-level class interface. */
28 #include "coretypes.h"
39 #include "tree-dump.h"
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
44 int current_class_depth
;
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
50 typedef struct class_stack_node
{
51 /* The name of the class. */
54 /* The _TYPE node for the class. */
57 /* The access specifier pending for new declarations in the scope of
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used
;
64 /* Nonzero if this class is no longer open, because of a call to
67 }* class_stack_node_t
;
69 typedef struct vtbl_init_data_s
71 /* The base for which we're building initializers. */
73 /* The type of the most-derived type. */
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
81 /* The last (i.e., most negative) entry in INITS. */
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
86 /* The functions in vbase for which we have already provided vcall
89 /* The vtable index of the next vcall or vbase offset. */
91 /* Nonzero if we are building the initializer for the primary
94 /* Nonzero if we are building the initializer for a construction
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries
;
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn
) (tree
, tree
, splay_tree
);
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size
;
108 static class_stack_node_t current_class_stack
;
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class
;
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree
,gc
) *local_classes
;
117 static tree
get_vfield_name (tree
);
118 static void finish_struct_anon (tree
);
119 static tree
get_vtable_name (tree
);
120 static tree
get_basefndecls (tree
, tree
);
121 static int build_primary_vtable (tree
, tree
);
122 static int build_secondary_vtable (tree
);
123 static void finish_vtbls (tree
);
124 static void modify_vtable_entry (tree
, tree
, tree
, tree
, tree
*);
125 static void finish_struct_bits (tree
);
126 static int alter_access (tree
, tree
, tree
);
127 static void handle_using_decl (tree
, tree
);
128 static tree
dfs_modify_vtables (tree
, void *);
129 static tree
modify_all_vtables (tree
, tree
);
130 static void determine_primary_bases (tree
);
131 static void finish_struct_methods (tree
);
132 static void maybe_warn_about_overly_private_class (tree
);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree
, int, int);
136 static tree
fixed_type_or_null (tree
, int *, int *);
137 static tree
build_simple_base_path (tree expr
, tree binfo
);
138 static tree
build_vtbl_ref_1 (tree
, tree
);
139 static tree
build_vtbl_initializer (tree
, tree
, tree
, tree
, int *);
140 static int count_fields (tree
);
141 static int add_fields_to_record_type (tree
, struct sorted_fields_type
*, int);
142 static void check_bitfield_decl (tree
);
143 static void check_field_decl (tree
, tree
, int *, int *, int *);
144 static void check_field_decls (tree
, tree
*, int *, int *);
145 static tree
*build_base_field (record_layout_info
, tree
, splay_tree
, tree
*);
146 static void build_base_fields (record_layout_info
, splay_tree
, tree
*);
147 static void check_methods (tree
);
148 static void remove_zero_width_bit_fields (tree
);
149 static void check_bases (tree
, int *, int *);
150 static void check_bases_and_members (tree
);
151 static tree
create_vtable_ptr (tree
, tree
*);
152 static void include_empty_classes (record_layout_info
);
153 static void layout_class_type (tree
, tree
*);
154 static void fixup_pending_inline (tree
);
155 static void fixup_inline_methods (tree
);
156 static void propagate_binfo_offsets (tree
, tree
);
157 static void layout_virtual_bases (record_layout_info
, splay_tree
);
158 static void build_vbase_offset_vtbl_entries (tree
, vtbl_init_data
*);
159 static void add_vcall_offset_vtbl_entries_r (tree
, vtbl_init_data
*);
160 static void add_vcall_offset_vtbl_entries_1 (tree
, vtbl_init_data
*);
161 static void build_vcall_offset_vtbl_entries (tree
, vtbl_init_data
*);
162 static void add_vcall_offset (tree
, tree
, vtbl_init_data
*);
163 static void layout_vtable_decl (tree
, int);
164 static tree
dfs_find_final_overrider_pre (tree
, void *);
165 static tree
dfs_find_final_overrider_post (tree
, void *);
166 static tree
find_final_overrider (tree
, tree
, tree
);
167 static int make_new_vtable (tree
, tree
);
168 static tree
get_primary_binfo (tree
);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree
dump_class_hierarchy_r (FILE *, int, tree
, tree
, int);
171 static void dump_class_hierarchy (tree
);
172 static void dump_class_hierarchy_1 (FILE *, int, tree
);
173 static void dump_array (FILE *, tree
);
174 static void dump_vtable (tree
, tree
, tree
);
175 static void dump_vtt (tree
, tree
);
176 static void dump_thunk (FILE *, int, tree
);
177 static tree
build_vtable (tree
, tree
, tree
);
178 static void initialize_vtable (tree
, tree
);
179 static void layout_nonempty_base_or_field (record_layout_info
,
180 tree
, tree
, splay_tree
);
181 static tree
end_of_class (tree
, int);
182 static bool layout_empty_base (tree
, tree
, splay_tree
);
183 static void accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
);
184 static tree
dfs_accumulate_vtbl_inits (tree
, tree
, tree
, tree
,
186 static void build_rtti_vtbl_entries (tree
, vtbl_init_data
*);
187 static void build_vcall_and_vbase_vtbl_entries (tree
, vtbl_init_data
*);
188 static void clone_constructors_and_destructors (tree
);
189 static tree
build_clone (tree
, tree
);
190 static void update_vtable_entry_for_fn (tree
, tree
, tree
, tree
*, unsigned);
191 static void build_ctor_vtbl_group (tree
, tree
);
192 static void build_vtt (tree
);
193 static tree
binfo_ctor_vtable (tree
);
194 static tree
*build_vtt_inits (tree
, tree
, tree
*, tree
*);
195 static tree
dfs_build_secondary_vptr_vtt_inits (tree
, void *);
196 static tree
dfs_fixup_binfo_vtbls (tree
, void *);
197 static int record_subobject_offset (tree
, tree
, splay_tree
);
198 static int check_subobject_offset (tree
, tree
, splay_tree
);
199 static int walk_subobject_offsets (tree
, subobject_offset_fn
,
200 tree
, splay_tree
, tree
, int);
201 static void record_subobject_offsets (tree
, tree
, splay_tree
, bool);
202 static int layout_conflict_p (tree
, tree
, splay_tree
, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1
,
205 static void warn_about_ambiguous_bases (tree
);
206 static bool type_requires_array_cookie (tree
);
207 static bool contains_empty_class_p (tree
);
208 static bool base_derived_from (tree
, tree
);
209 static int empty_base_at_nonzero_offset_p (tree
, tree
, splay_tree
);
210 static tree
end_of_base (tree
);
211 static tree
get_vcall_index (tree
, tree
);
213 /* Variables shared between class.c and call.c. */
215 #ifdef GATHER_STATISTICS
217 int n_vtable_entries
= 0;
218 int n_vtable_searches
= 0;
219 int n_vtable_elems
= 0;
220 int n_convert_harshness
= 0;
221 int n_compute_conversion_costs
= 0;
222 int n_inner_fields_searched
= 0;
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
236 build_base_path (enum tree_code code
,
241 tree v_binfo
= NULL_TREE
;
242 tree d_binfo
= NULL_TREE
;
246 tree null_test
= NULL
;
247 tree ptr_target_type
;
249 int want_pointer
= TREE_CODE (TREE_TYPE (expr
)) == POINTER_TYPE
;
250 bool has_empty
= false;
253 if (expr
== error_mark_node
|| binfo
== error_mark_node
|| !binfo
)
254 return error_mark_node
;
256 for (probe
= binfo
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
259 if (is_empty_class (BINFO_TYPE (probe
)))
261 if (!v_binfo
&& BINFO_VIRTUAL_P (probe
))
265 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (expr
));
267 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (probe
));
269 gcc_assert ((code
== MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), probe
))
271 || (code
== PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo
), probe
)));
274 if (binfo
== d_binfo
)
278 if (code
== MINUS_EXPR
&& v_binfo
)
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
), BINFO_TYPE (v_binfo
));
282 return error_mark_node
;
286 /* This must happen before the call to save_expr. */
287 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
289 offset
= BINFO_OFFSET (binfo
);
290 fixed_type_p
= resolves_to_fixed_type_p (expr
, &nonnull
);
291 target_type
= code
== PLUS_EXPR
? BINFO_TYPE (binfo
) : BINFO_TYPE (d_binfo
);
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access
= (v_binfo
&& fixed_type_p
<= 0);
296 /* Do we need to check for a null pointer? */
297 if (want_pointer
&& !nonnull
)
299 /* If we know the conversion will not actually change the value
300 of EXPR, then we can avoid testing the expression for NULL.
301 We have to avoid generating a COMPONENT_REF for a base class
302 field, because other parts of the compiler know that such
303 expressions are always non-NULL. */
304 if (!virtual_access
&& integer_zerop (offset
))
305 return build_nop (build_pointer_type (target_type
), expr
);
306 null_test
= error_mark_node
;
309 /* Protect against multiple evaluation if necessary. */
310 if (TREE_SIDE_EFFECTS (expr
) && (null_test
|| virtual_access
))
311 expr
= save_expr (expr
);
313 /* Now that we've saved expr, build the real null test. */
316 tree zero
= cp_convert (TREE_TYPE (expr
), integer_zero_node
);
317 null_test
= fold_build2 (NE_EXPR
, boolean_type_node
,
321 /* If this is a simple base reference, express it as a COMPONENT_REF. */
322 if (code
== PLUS_EXPR
&& !virtual_access
323 /* We don't build base fields for empty bases, and they aren't very
324 interesting to the optimizers anyway. */
327 expr
= build_indirect_ref (expr
, NULL
);
328 expr
= build_simple_base_path (expr
, binfo
);
330 expr
= build_address (expr
);
331 target_type
= TREE_TYPE (expr
);
337 /* Going via virtual base V_BINFO. We need the static offset
338 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
339 V_BINFO. That offset is an entry in D_BINFO's vtable. */
342 if (fixed_type_p
< 0 && in_base_initializer
)
344 /* In a base member initializer, we cannot rely on the
345 vtable being set up. We have to indirect via the
349 t
= TREE_TYPE (TYPE_VFIELD (current_class_type
));
350 t
= build_pointer_type (t
);
351 v_offset
= convert (t
, current_vtt_parm
);
352 v_offset
= build_indirect_ref (v_offset
, NULL
);
355 v_offset
= build_vfield_ref (build_indirect_ref (expr
, NULL
),
356 TREE_TYPE (TREE_TYPE (expr
)));
358 v_offset
= build2 (PLUS_EXPR
, TREE_TYPE (v_offset
),
359 v_offset
, BINFO_VPTR_FIELD (v_binfo
));
360 v_offset
= build1 (NOP_EXPR
,
361 build_pointer_type (ptrdiff_type_node
),
363 v_offset
= build_indirect_ref (v_offset
, NULL
);
364 TREE_CONSTANT (v_offset
) = 1;
365 TREE_INVARIANT (v_offset
) = 1;
367 offset
= convert_to_integer (ptrdiff_type_node
,
369 BINFO_OFFSET (v_binfo
)));
371 if (!integer_zerop (offset
))
372 v_offset
= build2 (code
, ptrdiff_type_node
, v_offset
, offset
);
374 if (fixed_type_p
< 0)
375 /* Negative fixed_type_p means this is a constructor or destructor;
376 virtual base layout is fixed in in-charge [cd]tors, but not in
378 offset
= build3 (COND_EXPR
, ptrdiff_type_node
,
379 build2 (EQ_EXPR
, boolean_type_node
,
380 current_in_charge_parm
, integer_zero_node
),
382 convert_to_integer (ptrdiff_type_node
,
383 BINFO_OFFSET (binfo
)));
388 target_type
= cp_build_qualified_type
389 (target_type
, cp_type_quals (TREE_TYPE (TREE_TYPE (expr
))));
390 ptr_target_type
= build_pointer_type (target_type
);
392 target_type
= ptr_target_type
;
394 expr
= build1 (NOP_EXPR
, ptr_target_type
, expr
);
396 if (!integer_zerop (offset
))
397 expr
= build2 (code
, ptr_target_type
, expr
, offset
);
402 expr
= build_indirect_ref (expr
, NULL
);
406 expr
= fold_build3 (COND_EXPR
, target_type
, null_test
, expr
,
407 fold_build1 (NOP_EXPR
, target_type
,
413 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
414 Perform a derived-to-base conversion by recursively building up a
415 sequence of COMPONENT_REFs to the appropriate base fields. */
418 build_simple_base_path (tree expr
, tree binfo
)
420 tree type
= BINFO_TYPE (binfo
);
421 tree d_binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
424 if (d_binfo
== NULL_TREE
)
428 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr
)) == type
);
430 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
431 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
432 an lvalue in the frontend; only _DECLs and _REFs are lvalues
434 temp
= unary_complex_lvalue (ADDR_EXPR
, expr
);
436 expr
= build_indirect_ref (temp
, NULL
);
442 expr
= build_simple_base_path (expr
, d_binfo
);
444 for (field
= TYPE_FIELDS (BINFO_TYPE (d_binfo
));
445 field
; field
= TREE_CHAIN (field
))
446 /* Is this the base field created by build_base_field? */
447 if (TREE_CODE (field
) == FIELD_DECL
448 && DECL_FIELD_IS_BASE (field
)
449 && TREE_TYPE (field
) == type
)
451 /* We don't use build_class_member_access_expr here, as that
452 has unnecessary checks, and more importantly results in
453 recursive calls to dfs_walk_once. */
454 int type_quals
= cp_type_quals (TREE_TYPE (expr
));
456 expr
= build3 (COMPONENT_REF
,
457 cp_build_qualified_type (type
, type_quals
),
458 expr
, field
, NULL_TREE
);
459 expr
= fold_if_not_in_template (expr
);
461 /* Mark the expression const or volatile, as appropriate.
462 Even though we've dealt with the type above, we still have
463 to mark the expression itself. */
464 if (type_quals
& TYPE_QUAL_CONST
)
465 TREE_READONLY (expr
) = 1;
466 if (type_quals
& TYPE_QUAL_VOLATILE
)
467 TREE_THIS_VOLATILE (expr
) = 1;
472 /* Didn't find the base field?!? */
476 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
477 type is a class type or a pointer to a class type. In the former
478 case, TYPE is also a class type; in the latter it is another
479 pointer type. If CHECK_ACCESS is true, an error message is emitted
480 if TYPE is inaccessible. If OBJECT has pointer type, the value is
481 assumed to be non-NULL. */
484 convert_to_base (tree object
, tree type
, bool check_access
, bool nonnull
)
489 if (TYPE_PTR_P (TREE_TYPE (object
)))
491 object_type
= TREE_TYPE (TREE_TYPE (object
));
492 type
= TREE_TYPE (type
);
495 object_type
= TREE_TYPE (object
);
497 binfo
= lookup_base (object_type
, type
,
498 check_access
? ba_check
: ba_unique
,
500 if (!binfo
|| binfo
== error_mark_node
)
501 return error_mark_node
;
503 return build_base_path (PLUS_EXPR
, object
, binfo
, nonnull
);
506 /* EXPR is an expression with unqualified class type. BASE is a base
507 binfo of that class type. Returns EXPR, converted to the BASE
508 type. This function assumes that EXPR is the most derived class;
509 therefore virtual bases can be found at their static offsets. */
512 convert_to_base_statically (tree expr
, tree base
)
516 expr_type
= TREE_TYPE (expr
);
517 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base
), expr_type
))
521 pointer_type
= build_pointer_type (expr_type
);
522 expr
= build_unary_op (ADDR_EXPR
, expr
, /*noconvert=*/1);
523 if (!integer_zerop (BINFO_OFFSET (base
)))
524 expr
= build2 (PLUS_EXPR
, pointer_type
, expr
,
525 build_nop (pointer_type
, BINFO_OFFSET (base
)));
526 expr
= build_nop (build_pointer_type (BINFO_TYPE (base
)), expr
);
527 expr
= build1 (INDIRECT_REF
, BINFO_TYPE (base
), expr
);
535 build_vfield_ref (tree datum
, tree type
)
537 tree vfield
, vcontext
;
539 if (datum
== error_mark_node
)
540 return error_mark_node
;
542 /* First, convert to the requested type. */
543 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
544 datum
= convert_to_base (datum
, type
, /*check_access=*/false,
547 /* Second, the requested type may not be the owner of its own vptr.
548 If not, convert to the base class that owns it. We cannot use
549 convert_to_base here, because VCONTEXT may appear more than once
550 in the inheritance hierarchy of TYPE, and thus direct conversion
551 between the types may be ambiguous. Following the path back up
552 one step at a time via primary bases avoids the problem. */
553 vfield
= TYPE_VFIELD (type
);
554 vcontext
= DECL_CONTEXT (vfield
);
555 while (!same_type_ignoring_top_level_qualifiers_p (vcontext
, type
))
557 datum
= build_simple_base_path (datum
, CLASSTYPE_PRIMARY_BINFO (type
));
558 type
= TREE_TYPE (datum
);
561 return build3 (COMPONENT_REF
, TREE_TYPE (vfield
), datum
, vfield
, NULL_TREE
);
564 /* Given an object INSTANCE, return an expression which yields the
565 vtable element corresponding to INDEX. There are many special
566 cases for INSTANCE which we take care of here, mainly to avoid
567 creating extra tree nodes when we don't have to. */
570 build_vtbl_ref_1 (tree instance
, tree idx
)
573 tree vtbl
= NULL_TREE
;
575 /* Try to figure out what a reference refers to, and
576 access its virtual function table directly. */
579 tree fixed_type
= fixed_type_or_null (instance
, NULL
, &cdtorp
);
581 tree basetype
= non_reference (TREE_TYPE (instance
));
583 if (fixed_type
&& !cdtorp
)
585 tree binfo
= lookup_base (fixed_type
, basetype
,
586 ba_unique
| ba_quiet
, NULL
);
588 vtbl
= unshare_expr (BINFO_VTABLE (binfo
));
592 vtbl
= build_vfield_ref (instance
, basetype
);
594 assemble_external (vtbl
);
596 aref
= build_array_ref (vtbl
, idx
);
597 TREE_CONSTANT (aref
) |= TREE_CONSTANT (vtbl
) && TREE_CONSTANT (idx
);
598 TREE_INVARIANT (aref
) = TREE_CONSTANT (aref
);
604 build_vtbl_ref (tree instance
, tree idx
)
606 tree aref
= build_vtbl_ref_1 (instance
, idx
);
611 /* Given a stable object pointer INSTANCE_PTR, return an expression which
612 yields a function pointer corresponding to vtable element INDEX. */
615 build_vfn_ref (tree instance_ptr
, tree idx
)
619 aref
= build_vtbl_ref_1 (build_indirect_ref (instance_ptr
, 0), idx
);
621 /* When using function descriptors, the address of the
622 vtable entry is treated as a function pointer. */
623 if (TARGET_VTABLE_USES_DESCRIPTORS
)
624 aref
= build1 (NOP_EXPR
, TREE_TYPE (aref
),
625 build_unary_op (ADDR_EXPR
, aref
, /*noconvert=*/1));
627 /* Remember this as a method reference, for later devirtualization. */
628 aref
= build3 (OBJ_TYPE_REF
, TREE_TYPE (aref
), aref
, instance_ptr
, idx
);
633 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
634 for the given TYPE. */
637 get_vtable_name (tree type
)
639 return mangle_vtbl_for_type (type
);
642 /* DECL is an entity associated with TYPE, like a virtual table or an
643 implicitly generated constructor. Determine whether or not DECL
644 should have external or internal linkage at the object file
645 level. This routine does not deal with COMDAT linkage and other
646 similar complexities; it simply sets TREE_PUBLIC if it possible for
647 entities in other translation units to contain copies of DECL, in
651 set_linkage_according_to_type (tree type
, tree decl
)
653 /* If TYPE involves a local class in a function with internal
654 linkage, then DECL should have internal linkage too. Other local
655 classes have no linkage -- but if their containing functions
656 have external linkage, it makes sense for DECL to have external
657 linkage too. That will allow template definitions to be merged,
659 if (no_linkage_check (type
, /*relaxed_p=*/true))
661 TREE_PUBLIC (decl
) = 0;
662 DECL_INTERFACE_KNOWN (decl
) = 1;
665 TREE_PUBLIC (decl
) = 1;
668 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
669 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
670 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
673 build_vtable (tree class_type
, tree name
, tree vtable_type
)
677 decl
= build_lang_decl (VAR_DECL
, name
, vtable_type
);
678 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
679 now to avoid confusion in mangle_decl. */
680 SET_DECL_ASSEMBLER_NAME (decl
, name
);
681 DECL_CONTEXT (decl
) = class_type
;
682 DECL_ARTIFICIAL (decl
) = 1;
683 TREE_STATIC (decl
) = 1;
684 TREE_READONLY (decl
) = 1;
685 DECL_VIRTUAL_P (decl
) = 1;
686 DECL_ALIGN (decl
) = TARGET_VTABLE_ENTRY_ALIGN
;
687 DECL_VTABLE_OR_VTT_P (decl
) = 1;
688 /* At one time the vtable info was grabbed 2 words at a time. This
689 fails on sparc unless you have 8-byte alignment. (tiemann) */
690 DECL_ALIGN (decl
) = MAX (TYPE_ALIGN (double_type_node
),
692 set_linkage_according_to_type (class_type
, decl
);
693 /* The vtable has not been defined -- yet. */
694 DECL_EXTERNAL (decl
) = 1;
695 DECL_NOT_REALLY_EXTERN (decl
) = 1;
697 /* Mark the VAR_DECL node representing the vtable itself as a
698 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
699 is rather important that such things be ignored because any
700 effort to actually generate DWARF for them will run into
701 trouble when/if we encounter code like:
704 struct S { virtual void member (); };
706 because the artificial declaration of the vtable itself (as
707 manufactured by the g++ front end) will say that the vtable is
708 a static member of `S' but only *after* the debug output for
709 the definition of `S' has already been output. This causes
710 grief because the DWARF entry for the definition of the vtable
711 will try to refer back to an earlier *declaration* of the
712 vtable as a static member of `S' and there won't be one. We
713 might be able to arrange to have the "vtable static member"
714 attached to the member list for `S' before the debug info for
715 `S' get written (which would solve the problem) but that would
716 require more intrusive changes to the g++ front end. */
717 DECL_IGNORED_P (decl
) = 1;
722 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
723 or even complete. If this does not exist, create it. If COMPLETE is
724 nonzero, then complete the definition of it -- that will render it
725 impossible to actually build the vtable, but is useful to get at those
726 which are known to exist in the runtime. */
729 get_vtable_decl (tree type
, int complete
)
733 if (CLASSTYPE_VTABLES (type
))
734 return CLASSTYPE_VTABLES (type
);
736 decl
= build_vtable (type
, get_vtable_name (type
), vtbl_type_node
);
737 CLASSTYPE_VTABLES (type
) = decl
;
741 DECL_EXTERNAL (decl
) = 1;
742 finish_decl (decl
, NULL_TREE
, NULL_TREE
);
748 /* Build the primary virtual function table for TYPE. If BINFO is
749 non-NULL, build the vtable starting with the initial approximation
750 that it is the same as the one which is the head of the association
751 list. Returns a nonzero value if a new vtable is actually
755 build_primary_vtable (tree binfo
, tree type
)
760 decl
= get_vtable_decl (type
, /*complete=*/0);
764 if (BINFO_NEW_VTABLE_MARKED (binfo
))
765 /* We have already created a vtable for this base, so there's
766 no need to do it again. */
769 virtuals
= copy_list (BINFO_VIRTUALS (binfo
));
770 TREE_TYPE (decl
) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo
));
771 DECL_SIZE (decl
) = TYPE_SIZE (TREE_TYPE (decl
));
772 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (TREE_TYPE (decl
));
776 gcc_assert (TREE_TYPE (decl
) == vtbl_type_node
);
777 virtuals
= NULL_TREE
;
780 #ifdef GATHER_STATISTICS
782 n_vtable_elems
+= list_length (virtuals
);
785 /* Initialize the association list for this type, based
786 on our first approximation. */
787 BINFO_VTABLE (TYPE_BINFO (type
)) = decl
;
788 BINFO_VIRTUALS (TYPE_BINFO (type
)) = virtuals
;
789 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type
));
793 /* Give BINFO a new virtual function table which is initialized
794 with a skeleton-copy of its original initialization. The only
795 entry that changes is the `delta' entry, so we can really
796 share a lot of structure.
798 FOR_TYPE is the most derived type which caused this table to
801 Returns nonzero if we haven't met BINFO before.
803 The order in which vtables are built (by calling this function) for
804 an object must remain the same, otherwise a binary incompatibility
808 build_secondary_vtable (tree binfo
)
810 if (BINFO_NEW_VTABLE_MARKED (binfo
))
811 /* We already created a vtable for this base. There's no need to
815 /* Remember that we've created a vtable for this BINFO, so that we
816 don't try to do so again. */
817 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
819 /* Make fresh virtual list, so we can smash it later. */
820 BINFO_VIRTUALS (binfo
) = copy_list (BINFO_VIRTUALS (binfo
));
822 /* Secondary vtables are laid out as part of the same structure as
823 the primary vtable. */
824 BINFO_VTABLE (binfo
) = NULL_TREE
;
828 /* Create a new vtable for BINFO which is the hierarchy dominated by
829 T. Return nonzero if we actually created a new vtable. */
832 make_new_vtable (tree t
, tree binfo
)
834 if (binfo
== TYPE_BINFO (t
))
835 /* In this case, it is *type*'s vtable we are modifying. We start
836 with the approximation that its vtable is that of the
837 immediate base class. */
838 return build_primary_vtable (binfo
, t
);
840 /* This is our very own copy of `basetype' to play with. Later,
841 we will fill in all the virtual functions that override the
842 virtual functions in these base classes which are not defined
843 by the current type. */
844 return build_secondary_vtable (binfo
);
847 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
848 (which is in the hierarchy dominated by T) list FNDECL as its
849 BV_FN. DELTA is the required constant adjustment from the `this'
850 pointer where the vtable entry appears to the `this' required when
851 the function is actually called. */
854 modify_vtable_entry (tree t
,
864 if (fndecl
!= BV_FN (v
)
865 || !tree_int_cst_equal (delta
, BV_DELTA (v
)))
867 /* We need a new vtable for BINFO. */
868 if (make_new_vtable (t
, binfo
))
870 /* If we really did make a new vtable, we also made a copy
871 of the BINFO_VIRTUALS list. Now, we have to find the
872 corresponding entry in that list. */
873 *virtuals
= BINFO_VIRTUALS (binfo
);
874 while (BV_FN (*virtuals
) != BV_FN (v
))
875 *virtuals
= TREE_CHAIN (*virtuals
);
879 BV_DELTA (v
) = delta
;
880 BV_VCALL_INDEX (v
) = NULL_TREE
;
886 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
887 the USING_DECL naming METHOD. Returns true if the method could be
888 added to the method vec. */
891 add_method (tree type
, tree method
, tree using_decl
)
895 bool template_conv_p
= false;
897 VEC(tree
,gc
) *method_vec
;
899 bool insert_p
= false;
902 if (method
== error_mark_node
)
905 complete_p
= COMPLETE_TYPE_P (type
);
906 conv_p
= DECL_CONV_FN_P (method
);
908 template_conv_p
= (TREE_CODE (method
) == TEMPLATE_DECL
909 && DECL_TEMPLATE_CONV_FN_P (method
));
911 method_vec
= CLASSTYPE_METHOD_VEC (type
);
914 /* Make a new method vector. We start with 8 entries. We must
915 allocate at least two (for constructors and destructors), and
916 we're going to end up with an assignment operator at some
918 method_vec
= VEC_alloc (tree
, gc
, 8);
919 /* Create slots for constructors and destructors. */
920 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
921 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
922 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
925 /* Maintain TYPE_HAS_CONSTRUCTOR, etc. */
926 grok_special_member_properties (method
);
928 /* Constructors and destructors go in special slots. */
929 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method
))
930 slot
= CLASSTYPE_CONSTRUCTOR_SLOT
;
931 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
933 slot
= CLASSTYPE_DESTRUCTOR_SLOT
;
935 if (TYPE_FOR_JAVA (type
))
937 if (!DECL_ARTIFICIAL (method
))
938 error ("Java class %qT cannot have a destructor", type
);
939 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
940 error ("Java class %qT cannot have an implicit non-trivial "
950 /* See if we already have an entry with this name. */
951 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
952 VEC_iterate (tree
, method_vec
, slot
, m
);
958 if (TREE_CODE (m
) == TEMPLATE_DECL
959 && DECL_TEMPLATE_CONV_FN_P (m
))
963 if (conv_p
&& !DECL_CONV_FN_P (m
))
965 if (DECL_NAME (m
) == DECL_NAME (method
))
971 && !DECL_CONV_FN_P (m
)
972 && DECL_NAME (m
) > DECL_NAME (method
))
976 current_fns
= insert_p
? NULL_TREE
: VEC_index (tree
, method_vec
, slot
);
978 if (processing_template_decl
)
979 /* TYPE is a template class. Don't issue any errors now; wait
980 until instantiation time to complain. */
986 /* Check to see if we've already got this method. */
987 for (fns
= current_fns
; fns
; fns
= OVL_NEXT (fns
))
989 tree fn
= OVL_CURRENT (fns
);
995 if (TREE_CODE (fn
) != TREE_CODE (method
))
998 /* [over.load] Member function declarations with the
999 same name and the same parameter types cannot be
1000 overloaded if any of them is a static member
1001 function declaration.
1003 [namespace.udecl] When a using-declaration brings names
1004 from a base class into a derived class scope, member
1005 functions in the derived class override and/or hide member
1006 functions with the same name and parameter types in a base
1007 class (rather than conflicting). */
1008 fn_type
= TREE_TYPE (fn
);
1009 method_type
= TREE_TYPE (method
);
1010 parms1
= TYPE_ARG_TYPES (fn_type
);
1011 parms2
= TYPE_ARG_TYPES (method_type
);
1013 /* Compare the quals on the 'this' parm. Don't compare
1014 the whole types, as used functions are treated as
1015 coming from the using class in overload resolution. */
1016 if (! DECL_STATIC_FUNCTION_P (fn
)
1017 && ! DECL_STATIC_FUNCTION_P (method
)
1018 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1
)))
1019 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2
)))))
1022 /* For templates, the return type and template parameters
1023 must be identical. */
1024 if (TREE_CODE (fn
) == TEMPLATE_DECL
1025 && (!same_type_p (TREE_TYPE (fn_type
),
1026 TREE_TYPE (method_type
))
1027 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn
),
1028 DECL_TEMPLATE_PARMS (method
))))
1031 if (! DECL_STATIC_FUNCTION_P (fn
))
1032 parms1
= TREE_CHAIN (parms1
);
1033 if (! DECL_STATIC_FUNCTION_P (method
))
1034 parms2
= TREE_CHAIN (parms2
);
1036 if (compparms (parms1
, parms2
)
1037 && (!DECL_CONV_FN_P (fn
)
1038 || same_type_p (TREE_TYPE (fn_type
),
1039 TREE_TYPE (method_type
))))
1043 if (DECL_CONTEXT (fn
) == type
)
1044 /* Defer to the local function. */
1046 if (DECL_CONTEXT (fn
) == DECL_CONTEXT (method
))
1047 error ("repeated using declaration %q+D", using_decl
);
1049 error ("using declaration %q+D conflicts with a previous using declaration",
1054 error ("%q+#D cannot be overloaded", method
);
1055 error ("with %q+#D", fn
);
1058 /* We don't call duplicate_decls here to merge the
1059 declarations because that will confuse things if the
1060 methods have inline definitions. In particular, we
1061 will crash while processing the definitions. */
1067 /* A class should never have more than one destructor. */
1068 if (current_fns
&& DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1071 /* Add the new binding. */
1072 overload
= build_overload (method
, current_fns
);
1075 TYPE_HAS_CONVERSION (type
) = 1;
1076 else if (slot
>= CLASSTYPE_FIRST_CONVERSION_SLOT
&& !complete_p
)
1077 push_class_level_binding (DECL_NAME (method
), overload
);
1081 /* We only expect to add few methods in the COMPLETE_P case, so
1082 just make room for one more method in that case. */
1083 if (VEC_reserve (tree
, gc
, method_vec
, complete_p
? -1 : 1))
1084 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1085 if (slot
== VEC_length (tree
, method_vec
))
1086 VEC_quick_push (tree
, method_vec
, overload
);
1088 VEC_quick_insert (tree
, method_vec
, slot
, overload
);
1091 /* Replace the current slot. */
1092 VEC_replace (tree
, method_vec
, slot
, overload
);
1096 /* Subroutines of finish_struct. */
1098 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1099 legit, otherwise return 0. */
1102 alter_access (tree t
, tree fdecl
, tree access
)
1106 if (!DECL_LANG_SPECIFIC (fdecl
))
1107 retrofit_lang_decl (fdecl
);
1109 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl
));
1111 elem
= purpose_member (t
, DECL_ACCESS (fdecl
));
1114 if (TREE_VALUE (elem
) != access
)
1116 if (TREE_CODE (TREE_TYPE (fdecl
)) == FUNCTION_DECL
)
1117 error ("conflicting access specifications for method"
1118 " %q+D, ignored", TREE_TYPE (fdecl
));
1120 error ("conflicting access specifications for field %qE, ignored",
1125 /* They're changing the access to the same thing they changed
1126 it to before. That's OK. */
1132 perform_or_defer_access_check (TYPE_BINFO (t
), fdecl
, fdecl
);
1133 DECL_ACCESS (fdecl
) = tree_cons (t
, access
, DECL_ACCESS (fdecl
));
1139 /* Process the USING_DECL, which is a member of T. */
1142 handle_using_decl (tree using_decl
, tree t
)
1144 tree decl
= USING_DECL_DECLS (using_decl
);
1145 tree name
= DECL_NAME (using_decl
);
1147 = TREE_PRIVATE (using_decl
) ? access_private_node
1148 : TREE_PROTECTED (using_decl
) ? access_protected_node
1149 : access_public_node
;
1150 tree flist
= NULL_TREE
;
1153 gcc_assert (!processing_template_decl
&& decl
);
1155 old_value
= lookup_member (t
, name
, /*protect=*/0, /*want_type=*/false);
1158 if (is_overloaded_fn (old_value
))
1159 old_value
= OVL_CURRENT (old_value
);
1161 if (DECL_P (old_value
) && DECL_CONTEXT (old_value
) == t
)
1164 old_value
= NULL_TREE
;
1167 cp_emit_debug_info_for_using (decl
, USING_DECL_SCOPE (using_decl
));
1169 if (is_overloaded_fn (decl
))
1174 else if (is_overloaded_fn (old_value
))
1177 /* It's OK to use functions from a base when there are functions with
1178 the same name already present in the current class. */;
1181 error ("%q+D invalid in %q#T", using_decl
, t
);
1182 error (" because of local method %q+#D with same name",
1183 OVL_CURRENT (old_value
));
1187 else if (!DECL_ARTIFICIAL (old_value
))
1189 error ("%q+D invalid in %q#T", using_decl
, t
);
1190 error (" because of local member %q+#D with same name", old_value
);
1194 /* Make type T see field decl FDECL with access ACCESS. */
1196 for (; flist
; flist
= OVL_NEXT (flist
))
1198 add_method (t
, OVL_CURRENT (flist
), using_decl
);
1199 alter_access (t
, OVL_CURRENT (flist
), access
);
1202 alter_access (t
, decl
, access
);
1205 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1206 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1207 properties of the bases. */
1210 check_bases (tree t
,
1211 int* cant_have_const_ctor_p
,
1212 int* no_const_asn_ref_p
)
1215 int seen_non_virtual_nearly_empty_base_p
;
1219 seen_non_virtual_nearly_empty_base_p
= 0;
1221 for (binfo
= TYPE_BINFO (t
), i
= 0;
1222 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1224 tree basetype
= TREE_TYPE (base_binfo
);
1226 gcc_assert (COMPLETE_TYPE_P (basetype
));
1228 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1229 here because the case of virtual functions but non-virtual
1230 dtor is handled in finish_struct_1. */
1231 if (!TYPE_POLYMORPHIC_P (basetype
))
1232 warning (OPT_Weffc__
,
1233 "base class %q#T has a non-virtual destructor", basetype
);
1235 /* If the base class doesn't have copy constructors or
1236 assignment operators that take const references, then the
1237 derived class cannot have such a member automatically
1239 if (! TYPE_HAS_CONST_INIT_REF (basetype
))
1240 *cant_have_const_ctor_p
= 1;
1241 if (TYPE_HAS_ASSIGN_REF (basetype
)
1242 && !TYPE_HAS_CONST_ASSIGN_REF (basetype
))
1243 *no_const_asn_ref_p
= 1;
1245 if (BINFO_VIRTUAL_P (base_binfo
))
1246 /* A virtual base does not effect nearly emptiness. */
1248 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype
))
1250 if (seen_non_virtual_nearly_empty_base_p
)
1251 /* And if there is more than one nearly empty base, then the
1252 derived class is not nearly empty either. */
1253 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1255 /* Remember we've seen one. */
1256 seen_non_virtual_nearly_empty_base_p
= 1;
1258 else if (!is_empty_class (basetype
))
1259 /* If the base class is not empty or nearly empty, then this
1260 class cannot be nearly empty. */
1261 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1263 /* A lot of properties from the bases also apply to the derived
1265 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (basetype
);
1266 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
1267 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype
);
1268 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
1269 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype
);
1270 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (basetype
);
1271 TYPE_POLYMORPHIC_P (t
) |= TYPE_POLYMORPHIC_P (basetype
);
1272 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
)
1273 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype
);
1277 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1278 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1279 that have had a nearly-empty virtual primary base stolen by some
1280 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1284 determine_primary_bases (tree t
)
1287 tree primary
= NULL_TREE
;
1288 tree type_binfo
= TYPE_BINFO (t
);
1291 /* Determine the primary bases of our bases. */
1292 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1293 base_binfo
= TREE_CHAIN (base_binfo
))
1295 tree primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo
));
1297 /* See if we're the non-virtual primary of our inheritance
1299 if (!BINFO_VIRTUAL_P (base_binfo
))
1301 tree parent
= BINFO_INHERITANCE_CHAIN (base_binfo
);
1302 tree parent_primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent
));
1305 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
1306 BINFO_TYPE (parent_primary
)))
1307 /* We are the primary binfo. */
1308 BINFO_PRIMARY_P (base_binfo
) = 1;
1310 /* Determine if we have a virtual primary base, and mark it so.
1312 if (primary
&& BINFO_VIRTUAL_P (primary
))
1314 tree this_primary
= copied_binfo (primary
, base_binfo
);
1316 if (BINFO_PRIMARY_P (this_primary
))
1317 /* Someone already claimed this base. */
1318 BINFO_LOST_PRIMARY_P (base_binfo
) = 1;
1323 BINFO_PRIMARY_P (this_primary
) = 1;
1324 BINFO_INHERITANCE_CHAIN (this_primary
) = base_binfo
;
1326 /* A virtual binfo might have been copied from within
1327 another hierarchy. As we're about to use it as a
1328 primary base, make sure the offsets match. */
1329 delta
= size_diffop (convert (ssizetype
,
1330 BINFO_OFFSET (base_binfo
)),
1332 BINFO_OFFSET (this_primary
)));
1334 propagate_binfo_offsets (this_primary
, delta
);
1339 /* First look for a dynamic direct non-virtual base. */
1340 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, base_binfo
); i
++)
1342 tree basetype
= BINFO_TYPE (base_binfo
);
1344 if (TYPE_CONTAINS_VPTR_P (basetype
) && !BINFO_VIRTUAL_P (base_binfo
))
1346 primary
= base_binfo
;
1351 /* A "nearly-empty" virtual base class can be the primary base
1352 class, if no non-virtual polymorphic base can be found. Look for
1353 a nearly-empty virtual dynamic base that is not already a primary
1354 base of something in the hierarchy. If there is no such base,
1355 just pick the first nearly-empty virtual base. */
1357 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1358 base_binfo
= TREE_CHAIN (base_binfo
))
1359 if (BINFO_VIRTUAL_P (base_binfo
)
1360 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo
)))
1362 if (!BINFO_PRIMARY_P (base_binfo
))
1364 /* Found one that is not primary. */
1365 primary
= base_binfo
;
1369 /* Remember the first candidate. */
1370 primary
= base_binfo
;
1374 /* If we've got a primary base, use it. */
1377 tree basetype
= BINFO_TYPE (primary
);
1379 CLASSTYPE_PRIMARY_BINFO (t
) = primary
;
1380 if (BINFO_PRIMARY_P (primary
))
1381 /* We are stealing a primary base. */
1382 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary
)) = 1;
1383 BINFO_PRIMARY_P (primary
) = 1;
1384 if (BINFO_VIRTUAL_P (primary
))
1388 BINFO_INHERITANCE_CHAIN (primary
) = type_binfo
;
1389 /* A virtual binfo might have been copied from within
1390 another hierarchy. As we're about to use it as a primary
1391 base, make sure the offsets match. */
1392 delta
= size_diffop (ssize_int (0),
1393 convert (ssizetype
, BINFO_OFFSET (primary
)));
1395 propagate_binfo_offsets (primary
, delta
);
1398 primary
= TYPE_BINFO (basetype
);
1400 TYPE_VFIELD (t
) = TYPE_VFIELD (basetype
);
1401 BINFO_VTABLE (type_binfo
) = BINFO_VTABLE (primary
);
1402 BINFO_VIRTUALS (type_binfo
) = BINFO_VIRTUALS (primary
);
1406 /* Set memoizing fields and bits of T (and its variants) for later
1410 finish_struct_bits (tree t
)
1414 /* Fix up variants (if any). */
1415 for (variants
= TYPE_NEXT_VARIANT (t
);
1417 variants
= TYPE_NEXT_VARIANT (variants
))
1419 /* These fields are in the _TYPE part of the node, not in
1420 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1421 TYPE_HAS_CONSTRUCTOR (variants
) = TYPE_HAS_CONSTRUCTOR (t
);
1422 TYPE_NEEDS_CONSTRUCTING (variants
) = TYPE_NEEDS_CONSTRUCTING (t
);
1423 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants
)
1424 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
1426 TYPE_POLYMORPHIC_P (variants
) = TYPE_POLYMORPHIC_P (t
);
1428 TYPE_BINFO (variants
) = TYPE_BINFO (t
);
1430 /* Copy whatever these are holding today. */
1431 TYPE_VFIELD (variants
) = TYPE_VFIELD (t
);
1432 TYPE_METHODS (variants
) = TYPE_METHODS (t
);
1433 TYPE_FIELDS (variants
) = TYPE_FIELDS (t
);
1436 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) && TYPE_POLYMORPHIC_P (t
))
1437 /* For a class w/o baseclasses, 'finish_struct' has set
1438 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1439 Similarly for a class whose base classes do not have vtables.
1440 When neither of these is true, we might have removed abstract
1441 virtuals (by providing a definition), added some (by declaring
1442 new ones), or redeclared ones from a base class. We need to
1443 recalculate what's really an abstract virtual at this point (by
1444 looking in the vtables). */
1445 get_pure_virtuals (t
);
1447 /* If this type has a copy constructor or a destructor, force its
1448 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1449 nonzero. This will cause it to be passed by invisible reference
1450 and prevent it from being returned in a register. */
1451 if (! TYPE_HAS_TRIVIAL_INIT_REF (t
) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
1454 DECL_MODE (TYPE_MAIN_DECL (t
)) = BLKmode
;
1455 for (variants
= t
; variants
; variants
= TYPE_NEXT_VARIANT (variants
))
1457 TYPE_MODE (variants
) = BLKmode
;
1458 TREE_ADDRESSABLE (variants
) = 1;
1463 /* Issue warnings about T having private constructors, but no friends,
1466 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1467 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1468 non-private static member functions. */
1471 maybe_warn_about_overly_private_class (tree t
)
1473 int has_member_fn
= 0;
1474 int has_nonprivate_method
= 0;
1477 if (!warn_ctor_dtor_privacy
1478 /* If the class has friends, those entities might create and
1479 access instances, so we should not warn. */
1480 || (CLASSTYPE_FRIEND_CLASSES (t
)
1481 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
1482 /* We will have warned when the template was declared; there's
1483 no need to warn on every instantiation. */
1484 || CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
1485 /* There's no reason to even consider warning about this
1489 /* We only issue one warning, if more than one applies, because
1490 otherwise, on code like:
1493 // Oops - forgot `public:'
1499 we warn several times about essentially the same problem. */
1501 /* Check to see if all (non-constructor, non-destructor) member
1502 functions are private. (Since there are no friends or
1503 non-private statics, we can't ever call any of the private member
1505 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
1506 /* We're not interested in compiler-generated methods; they don't
1507 provide any way to call private members. */
1508 if (!DECL_ARTIFICIAL (fn
))
1510 if (!TREE_PRIVATE (fn
))
1512 if (DECL_STATIC_FUNCTION_P (fn
))
1513 /* A non-private static member function is just like a
1514 friend; it can create and invoke private member
1515 functions, and be accessed without a class
1519 has_nonprivate_method
= 1;
1520 /* Keep searching for a static member function. */
1522 else if (!DECL_CONSTRUCTOR_P (fn
) && !DECL_DESTRUCTOR_P (fn
))
1526 if (!has_nonprivate_method
&& has_member_fn
)
1528 /* There are no non-private methods, and there's at least one
1529 private member function that isn't a constructor or
1530 destructor. (If all the private members are
1531 constructors/destructors we want to use the code below that
1532 issues error messages specifically referring to
1533 constructors/destructors.) */
1535 tree binfo
= TYPE_BINFO (t
);
1537 for (i
= 0; i
!= BINFO_N_BASE_BINFOS (binfo
); i
++)
1538 if (BINFO_BASE_ACCESS (binfo
, i
) != access_private_node
)
1540 has_nonprivate_method
= 1;
1543 if (!has_nonprivate_method
)
1545 warning (OPT_Wctor_dtor_privacy
,
1546 "all member functions in class %qT are private", t
);
1551 /* Even if some of the member functions are non-private, the class
1552 won't be useful for much if all the constructors or destructors
1553 are private: such an object can never be created or destroyed. */
1554 fn
= CLASSTYPE_DESTRUCTORS (t
);
1555 if (fn
&& TREE_PRIVATE (fn
))
1557 warning (OPT_Wctor_dtor_privacy
,
1558 "%q#T only defines a private destructor and has no friends",
1563 if (TYPE_HAS_CONSTRUCTOR (t
)
1564 /* Implicitly generated constructors are always public. */
1565 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t
)
1566 || !CLASSTYPE_LAZY_COPY_CTOR (t
)))
1568 int nonprivate_ctor
= 0;
1570 /* If a non-template class does not define a copy
1571 constructor, one is defined for it, enabling it to avoid
1572 this warning. For a template class, this does not
1573 happen, and so we would normally get a warning on:
1575 template <class T> class C { private: C(); };
1577 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1578 complete non-template or fully instantiated classes have this
1580 if (!TYPE_HAS_INIT_REF (t
))
1581 nonprivate_ctor
= 1;
1583 for (fn
= CLASSTYPE_CONSTRUCTORS (t
); fn
; fn
= OVL_NEXT (fn
))
1585 tree ctor
= OVL_CURRENT (fn
);
1586 /* Ideally, we wouldn't count copy constructors (or, in
1587 fact, any constructor that takes an argument of the
1588 class type as a parameter) because such things cannot
1589 be used to construct an instance of the class unless
1590 you already have one. But, for now at least, we're
1592 if (! TREE_PRIVATE (ctor
))
1594 nonprivate_ctor
= 1;
1599 if (nonprivate_ctor
== 0)
1601 warning (OPT_Wctor_dtor_privacy
,
1602 "%q#T only defines private constructors and has no friends",
1610 gt_pointer_operator new_value
;
1614 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1617 method_name_cmp (const void* m1_p
, const void* m2_p
)
1619 const tree
*const m1
= (const tree
*) m1_p
;
1620 const tree
*const m2
= (const tree
*) m2_p
;
1622 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1624 if (*m1
== NULL_TREE
)
1626 if (*m2
== NULL_TREE
)
1628 if (DECL_NAME (OVL_CURRENT (*m1
)) < DECL_NAME (OVL_CURRENT (*m2
)))
1633 /* This routine compares two fields like method_name_cmp but using the
1634 pointer operator in resort_field_decl_data. */
1637 resort_method_name_cmp (const void* m1_p
, const void* m2_p
)
1639 const tree
*const m1
= (const tree
*) m1_p
;
1640 const tree
*const m2
= (const tree
*) m2_p
;
1641 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1643 if (*m1
== NULL_TREE
)
1645 if (*m2
== NULL_TREE
)
1648 tree d1
= DECL_NAME (OVL_CURRENT (*m1
));
1649 tree d2
= DECL_NAME (OVL_CURRENT (*m2
));
1650 resort_data
.new_value (&d1
, resort_data
.cookie
);
1651 resort_data
.new_value (&d2
, resort_data
.cookie
);
1658 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1661 resort_type_method_vec (void* obj
,
1662 void* orig_obj ATTRIBUTE_UNUSED
,
1663 gt_pointer_operator new_value
,
1666 VEC(tree
,gc
) *method_vec
= (VEC(tree
,gc
) *) obj
;
1667 int len
= VEC_length (tree
, method_vec
);
1671 /* The type conversion ops have to live at the front of the vec, so we
1673 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1674 VEC_iterate (tree
, method_vec
, slot
, fn
);
1676 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1681 resort_data
.new_value
= new_value
;
1682 resort_data
.cookie
= cookie
;
1683 qsort (VEC_address (tree
, method_vec
) + slot
, len
- slot
, sizeof (tree
),
1684 resort_method_name_cmp
);
1688 /* Warn about duplicate methods in fn_fields.
1690 Sort methods that are not special (i.e., constructors, destructors,
1691 and type conversion operators) so that we can find them faster in
1695 finish_struct_methods (tree t
)
1698 VEC(tree
,gc
) *method_vec
;
1701 method_vec
= CLASSTYPE_METHOD_VEC (t
);
1705 len
= VEC_length (tree
, method_vec
);
1707 /* Clear DECL_IN_AGGR_P for all functions. */
1708 for (fn_fields
= TYPE_METHODS (t
); fn_fields
;
1709 fn_fields
= TREE_CHAIN (fn_fields
))
1710 DECL_IN_AGGR_P (fn_fields
) = 0;
1712 /* Issue warnings about private constructors and such. If there are
1713 no methods, then some public defaults are generated. */
1714 maybe_warn_about_overly_private_class (t
);
1716 /* The type conversion ops have to live at the front of the vec, so we
1718 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1719 VEC_iterate (tree
, method_vec
, slot
, fn_fields
);
1721 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields
)))
1724 qsort (VEC_address (tree
, method_vec
) + slot
,
1725 len
-slot
, sizeof (tree
), method_name_cmp
);
1728 /* Make BINFO's vtable have N entries, including RTTI entries,
1729 vbase and vcall offsets, etc. Set its type and call the backend
1733 layout_vtable_decl (tree binfo
, int n
)
1738 atype
= build_cplus_array_type (vtable_entry_type
,
1739 build_index_type (size_int (n
- 1)));
1740 layout_type (atype
);
1742 /* We may have to grow the vtable. */
1743 vtable
= get_vtbl_decl_for_binfo (binfo
);
1744 if (!same_type_p (TREE_TYPE (vtable
), atype
))
1746 TREE_TYPE (vtable
) = atype
;
1747 DECL_SIZE (vtable
) = DECL_SIZE_UNIT (vtable
) = NULL_TREE
;
1748 layout_decl (vtable
, 0);
1752 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1753 have the same signature. */
1756 same_signature_p (tree fndecl
, tree base_fndecl
)
1758 /* One destructor overrides another if they are the same kind of
1760 if (DECL_DESTRUCTOR_P (base_fndecl
) && DECL_DESTRUCTOR_P (fndecl
)
1761 && special_function_p (base_fndecl
) == special_function_p (fndecl
))
1763 /* But a non-destructor never overrides a destructor, nor vice
1764 versa, nor do different kinds of destructors override
1765 one-another. For example, a complete object destructor does not
1766 override a deleting destructor. */
1767 if (DECL_DESTRUCTOR_P (base_fndecl
) || DECL_DESTRUCTOR_P (fndecl
))
1770 if (DECL_NAME (fndecl
) == DECL_NAME (base_fndecl
)
1771 || (DECL_CONV_FN_P (fndecl
)
1772 && DECL_CONV_FN_P (base_fndecl
)
1773 && same_type_p (DECL_CONV_FN_TYPE (fndecl
),
1774 DECL_CONV_FN_TYPE (base_fndecl
))))
1776 tree types
, base_types
;
1777 types
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1778 base_types
= TYPE_ARG_TYPES (TREE_TYPE (base_fndecl
));
1779 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types
)))
1780 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types
))))
1781 && compparms (TREE_CHAIN (base_types
), TREE_CHAIN (types
)))
1787 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1791 base_derived_from (tree derived
, tree base
)
1795 for (probe
= base
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1797 if (probe
== derived
)
1799 else if (BINFO_VIRTUAL_P (probe
))
1800 /* If we meet a virtual base, we can't follow the inheritance
1801 any more. See if the complete type of DERIVED contains
1802 such a virtual base. */
1803 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (derived
))
1809 typedef struct find_final_overrider_data_s
{
1810 /* The function for which we are trying to find a final overrider. */
1812 /* The base class in which the function was declared. */
1813 tree declaring_base
;
1814 /* The candidate overriders. */
1816 /* Path to most derived. */
1817 VEC(tree
,heap
) *path
;
1818 } find_final_overrider_data
;
1820 /* Add the overrider along the current path to FFOD->CANDIDATES.
1821 Returns true if an overrider was found; false otherwise. */
1824 dfs_find_final_overrider_1 (tree binfo
,
1825 find_final_overrider_data
*ffod
,
1830 /* If BINFO is not the most derived type, try a more derived class.
1831 A definition there will overrider a definition here. */
1835 if (dfs_find_final_overrider_1
1836 (VEC_index (tree
, ffod
->path
, depth
), ffod
, depth
))
1840 method
= look_for_overrides_here (BINFO_TYPE (binfo
), ffod
->fn
);
1843 tree
*candidate
= &ffod
->candidates
;
1845 /* Remove any candidates overridden by this new function. */
1848 /* If *CANDIDATE overrides METHOD, then METHOD
1849 cannot override anything else on the list. */
1850 if (base_derived_from (TREE_VALUE (*candidate
), binfo
))
1852 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1853 if (base_derived_from (binfo
, TREE_VALUE (*candidate
)))
1854 *candidate
= TREE_CHAIN (*candidate
);
1856 candidate
= &TREE_CHAIN (*candidate
);
1859 /* Add the new function. */
1860 ffod
->candidates
= tree_cons (method
, binfo
, ffod
->candidates
);
1867 /* Called from find_final_overrider via dfs_walk. */
1870 dfs_find_final_overrider_pre (tree binfo
, void *data
)
1872 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1874 if (binfo
== ffod
->declaring_base
)
1875 dfs_find_final_overrider_1 (binfo
, ffod
, VEC_length (tree
, ffod
->path
));
1876 VEC_safe_push (tree
, heap
, ffod
->path
, binfo
);
1882 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED
, void *data
)
1884 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1885 VEC_pop (tree
, ffod
->path
);
1890 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1891 FN and whose TREE_VALUE is the binfo for the base where the
1892 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1893 DERIVED) is the base object in which FN is declared. */
1896 find_final_overrider (tree derived
, tree binfo
, tree fn
)
1898 find_final_overrider_data ffod
;
1900 /* Getting this right is a little tricky. This is valid:
1902 struct S { virtual void f (); };
1903 struct T { virtual void f (); };
1904 struct U : public S, public T { };
1906 even though calling `f' in `U' is ambiguous. But,
1908 struct R { virtual void f(); };
1909 struct S : virtual public R { virtual void f (); };
1910 struct T : virtual public R { virtual void f (); };
1911 struct U : public S, public T { };
1913 is not -- there's no way to decide whether to put `S::f' or
1914 `T::f' in the vtable for `R'.
1916 The solution is to look at all paths to BINFO. If we find
1917 different overriders along any two, then there is a problem. */
1918 if (DECL_THUNK_P (fn
))
1919 fn
= THUNK_TARGET (fn
);
1921 /* Determine the depth of the hierarchy. */
1923 ffod
.declaring_base
= binfo
;
1924 ffod
.candidates
= NULL_TREE
;
1925 ffod
.path
= VEC_alloc (tree
, heap
, 30);
1927 dfs_walk_all (derived
, dfs_find_final_overrider_pre
,
1928 dfs_find_final_overrider_post
, &ffod
);
1930 VEC_free (tree
, heap
, ffod
.path
);
1932 /* If there was no winner, issue an error message. */
1933 if (!ffod
.candidates
|| TREE_CHAIN (ffod
.candidates
))
1934 return error_mark_node
;
1936 return ffod
.candidates
;
1939 /* Return the index of the vcall offset for FN when TYPE is used as a
1943 get_vcall_index (tree fn
, tree type
)
1945 VEC(tree_pair_s
,gc
) *indices
= CLASSTYPE_VCALL_INDICES (type
);
1949 for (ix
= 0; VEC_iterate (tree_pair_s
, indices
, ix
, p
); ix
++)
1950 if ((DECL_DESTRUCTOR_P (fn
) && DECL_DESTRUCTOR_P (p
->purpose
))
1951 || same_signature_p (fn
, p
->purpose
))
1954 /* There should always be an appropriate index. */
1958 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1959 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1960 corresponding position in the BINFO_VIRTUALS list. */
1963 update_vtable_entry_for_fn (tree t
, tree binfo
, tree fn
, tree
* virtuals
,
1971 tree overrider_fn
, overrider_target
;
1972 tree target_fn
= DECL_THUNK_P (fn
) ? THUNK_TARGET (fn
) : fn
;
1973 tree over_return
, base_return
;
1976 /* Find the nearest primary base (possibly binfo itself) which defines
1977 this function; this is the class the caller will convert to when
1978 calling FN through BINFO. */
1979 for (b
= binfo
; ; b
= get_primary_binfo (b
))
1982 if (look_for_overrides_here (BINFO_TYPE (b
), target_fn
))
1985 /* The nearest definition is from a lost primary. */
1986 if (BINFO_LOST_PRIMARY_P (b
))
1991 /* Find the final overrider. */
1992 overrider
= find_final_overrider (TYPE_BINFO (t
), b
, target_fn
);
1993 if (overrider
== error_mark_node
)
1995 error ("no unique final overrider for %qD in %qT", target_fn
, t
);
1998 overrider_target
= overrider_fn
= TREE_PURPOSE (overrider
);
2000 /* Check for adjusting covariant return types. */
2001 over_return
= TREE_TYPE (TREE_TYPE (overrider_target
));
2002 base_return
= TREE_TYPE (TREE_TYPE (target_fn
));
2004 if (POINTER_TYPE_P (over_return
)
2005 && TREE_CODE (over_return
) == TREE_CODE (base_return
)
2006 && CLASS_TYPE_P (TREE_TYPE (over_return
))
2007 && CLASS_TYPE_P (TREE_TYPE (base_return
))
2008 /* If the overrider is invalid, don't even try. */
2009 && !DECL_INVALID_OVERRIDER_P (overrider_target
))
2011 /* If FN is a covariant thunk, we must figure out the adjustment
2012 to the final base FN was converting to. As OVERRIDER_TARGET might
2013 also be converting to the return type of FN, we have to
2014 combine the two conversions here. */
2015 tree fixed_offset
, virtual_offset
;
2017 over_return
= TREE_TYPE (over_return
);
2018 base_return
= TREE_TYPE (base_return
);
2020 if (DECL_THUNK_P (fn
))
2022 gcc_assert (DECL_RESULT_THUNK_P (fn
));
2023 fixed_offset
= ssize_int (THUNK_FIXED_OFFSET (fn
));
2024 virtual_offset
= THUNK_VIRTUAL_OFFSET (fn
);
2027 fixed_offset
= virtual_offset
= NULL_TREE
;
2030 /* Find the equivalent binfo within the return type of the
2031 overriding function. We will want the vbase offset from
2033 virtual_offset
= binfo_for_vbase (BINFO_TYPE (virtual_offset
),
2035 else if (!same_type_ignoring_top_level_qualifiers_p
2036 (over_return
, base_return
))
2038 /* There was no existing virtual thunk (which takes
2039 precedence). So find the binfo of the base function's
2040 return type within the overriding function's return type.
2041 We cannot call lookup base here, because we're inside a
2042 dfs_walk, and will therefore clobber the BINFO_MARKED
2043 flags. Fortunately we know the covariancy is valid (it
2044 has already been checked), so we can just iterate along
2045 the binfos, which have been chained in inheritance graph
2046 order. Of course it is lame that we have to repeat the
2047 search here anyway -- we should really be caching pieces
2048 of the vtable and avoiding this repeated work. */
2049 tree thunk_binfo
, base_binfo
;
2051 /* Find the base binfo within the overriding function's
2052 return type. We will always find a thunk_binfo, except
2053 when the covariancy is invalid (which we will have
2054 already diagnosed). */
2055 for (base_binfo
= TYPE_BINFO (base_return
),
2056 thunk_binfo
= TYPE_BINFO (over_return
);
2058 thunk_binfo
= TREE_CHAIN (thunk_binfo
))
2059 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo
),
2060 BINFO_TYPE (base_binfo
)))
2063 /* See if virtual inheritance is involved. */
2064 for (virtual_offset
= thunk_binfo
;
2066 virtual_offset
= BINFO_INHERITANCE_CHAIN (virtual_offset
))
2067 if (BINFO_VIRTUAL_P (virtual_offset
))
2071 || (thunk_binfo
&& !BINFO_OFFSET_ZEROP (thunk_binfo
)))
2073 tree offset
= convert (ssizetype
, BINFO_OFFSET (thunk_binfo
));
2077 /* We convert via virtual base. Adjust the fixed
2078 offset to be from there. */
2079 offset
= size_diffop
2081 (ssizetype
, BINFO_OFFSET (virtual_offset
)));
2084 /* There was an existing fixed offset, this must be
2085 from the base just converted to, and the base the
2086 FN was thunking to. */
2087 fixed_offset
= size_binop (PLUS_EXPR
, fixed_offset
, offset
);
2089 fixed_offset
= offset
;
2093 if (fixed_offset
|| virtual_offset
)
2094 /* Replace the overriding function with a covariant thunk. We
2095 will emit the overriding function in its own slot as
2097 overrider_fn
= make_thunk (overrider_target
, /*this_adjusting=*/0,
2098 fixed_offset
, virtual_offset
);
2101 gcc_assert (!DECL_THUNK_P (fn
));
2103 /* Assume that we will produce a thunk that convert all the way to
2104 the final overrider, and not to an intermediate virtual base. */
2105 virtual_base
= NULL_TREE
;
2107 /* See if we can convert to an intermediate virtual base first, and then
2108 use the vcall offset located there to finish the conversion. */
2109 for (; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
2111 /* If we find the final overrider, then we can stop
2113 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b
),
2114 BINFO_TYPE (TREE_VALUE (overrider
))))
2117 /* If we find a virtual base, and we haven't yet found the
2118 overrider, then there is a virtual base between the
2119 declaring base (first_defn) and the final overrider. */
2120 if (BINFO_VIRTUAL_P (b
))
2127 if (overrider_fn
!= overrider_target
&& !virtual_base
)
2129 /* The ABI specifies that a covariant thunk includes a mangling
2130 for a this pointer adjustment. This-adjusting thunks that
2131 override a function from a virtual base have a vcall
2132 adjustment. When the virtual base in question is a primary
2133 virtual base, we know the adjustments are zero, (and in the
2134 non-covariant case, we would not use the thunk).
2135 Unfortunately we didn't notice this could happen, when
2136 designing the ABI and so never mandated that such a covariant
2137 thunk should be emitted. Because we must use the ABI mandated
2138 name, we must continue searching from the binfo where we
2139 found the most recent definition of the function, towards the
2140 primary binfo which first introduced the function into the
2141 vtable. If that enters a virtual base, we must use a vcall
2142 this-adjusting thunk. Bleah! */
2143 tree probe
= first_defn
;
2145 while ((probe
= get_primary_binfo (probe
))
2146 && (unsigned) list_length (BINFO_VIRTUALS (probe
)) > ix
)
2147 if (BINFO_VIRTUAL_P (probe
))
2148 virtual_base
= probe
;
2151 /* Even if we find a virtual base, the correct delta is
2152 between the overrider and the binfo we're building a vtable
2154 goto virtual_covariant
;
2157 /* Compute the constant adjustment to the `this' pointer. The
2158 `this' pointer, when this function is called, will point at BINFO
2159 (or one of its primary bases, which are at the same offset). */
2161 /* The `this' pointer needs to be adjusted from the declaration to
2162 the nearest virtual base. */
2163 delta
= size_diffop (convert (ssizetype
, BINFO_OFFSET (virtual_base
)),
2164 convert (ssizetype
, BINFO_OFFSET (first_defn
)));
2166 /* If the nearest definition is in a lost primary, we don't need an
2167 entry in our vtable. Except possibly in a constructor vtable,
2168 if we happen to get our primary back. In that case, the offset
2169 will be zero, as it will be a primary base. */
2170 delta
= size_zero_node
;
2172 /* The `this' pointer needs to be adjusted from pointing to
2173 BINFO to pointing at the base where the final overrider
2176 delta
= size_diffop (convert (ssizetype
,
2177 BINFO_OFFSET (TREE_VALUE (overrider
))),
2178 convert (ssizetype
, BINFO_OFFSET (binfo
)));
2180 modify_vtable_entry (t
, binfo
, overrider_fn
, delta
, virtuals
);
2183 BV_VCALL_INDEX (*virtuals
)
2184 = get_vcall_index (overrider_target
, BINFO_TYPE (virtual_base
));
2186 BV_VCALL_INDEX (*virtuals
) = NULL_TREE
;
2189 /* Called from modify_all_vtables via dfs_walk. */
2192 dfs_modify_vtables (tree binfo
, void* data
)
2194 tree t
= (tree
) data
;
2199 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2200 /* A base without a vtable needs no modification, and its bases
2201 are uninteresting. */
2202 return dfs_skip_bases
;
2204 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
)
2205 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
2206 /* Don't do the primary vtable, if it's new. */
2209 if (BINFO_PRIMARY_P (binfo
) && !BINFO_VIRTUAL_P (binfo
))
2210 /* There's no need to modify the vtable for a non-virtual primary
2211 base; we're not going to use that vtable anyhow. We do still
2212 need to do this for virtual primary bases, as they could become
2213 non-primary in a construction vtable. */
2216 make_new_vtable (t
, binfo
);
2218 /* Now, go through each of the virtual functions in the virtual
2219 function table for BINFO. Find the final overrider, and update
2220 the BINFO_VIRTUALS list appropriately. */
2221 for (ix
= 0, virtuals
= BINFO_VIRTUALS (binfo
),
2222 old_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
2224 ix
++, virtuals
= TREE_CHAIN (virtuals
),
2225 old_virtuals
= TREE_CHAIN (old_virtuals
))
2226 update_vtable_entry_for_fn (t
,
2228 BV_FN (old_virtuals
),
2234 /* Update all of the primary and secondary vtables for T. Create new
2235 vtables as required, and initialize their RTTI information. Each
2236 of the functions in VIRTUALS is declared in T and may override a
2237 virtual function from a base class; find and modify the appropriate
2238 entries to point to the overriding functions. Returns a list, in
2239 declaration order, of the virtual functions that are declared in T,
2240 but do not appear in the primary base class vtable, and which
2241 should therefore be appended to the end of the vtable for T. */
2244 modify_all_vtables (tree t
, tree virtuals
)
2246 tree binfo
= TYPE_BINFO (t
);
2249 /* Update all of the vtables. */
2250 dfs_walk_once (binfo
, dfs_modify_vtables
, NULL
, t
);
2252 /* Add virtual functions not already in our primary vtable. These
2253 will be both those introduced by this class, and those overridden
2254 from secondary bases. It does not include virtuals merely
2255 inherited from secondary bases. */
2256 for (fnsp
= &virtuals
; *fnsp
; )
2258 tree fn
= TREE_VALUE (*fnsp
);
2260 if (!value_member (fn
, BINFO_VIRTUALS (binfo
))
2261 || DECL_VINDEX (fn
) == error_mark_node
)
2263 /* We don't need to adjust the `this' pointer when
2264 calling this function. */
2265 BV_DELTA (*fnsp
) = integer_zero_node
;
2266 BV_VCALL_INDEX (*fnsp
) = NULL_TREE
;
2268 /* This is a function not already in our vtable. Keep it. */
2269 fnsp
= &TREE_CHAIN (*fnsp
);
2272 /* We've already got an entry for this function. Skip it. */
2273 *fnsp
= TREE_CHAIN (*fnsp
);
2279 /* Get the base virtual function declarations in T that have the
2283 get_basefndecls (tree name
, tree t
)
2286 tree base_fndecls
= NULL_TREE
;
2287 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
2290 /* Find virtual functions in T with the indicated NAME. */
2291 i
= lookup_fnfields_1 (t
, name
);
2293 for (methods
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (t
), i
);
2295 methods
= OVL_NEXT (methods
))
2297 tree method
= OVL_CURRENT (methods
);
2299 if (TREE_CODE (method
) == FUNCTION_DECL
2300 && DECL_VINDEX (method
))
2301 base_fndecls
= tree_cons (NULL_TREE
, method
, base_fndecls
);
2305 return base_fndecls
;
2307 for (i
= 0; i
< n_baseclasses
; i
++)
2309 tree basetype
= BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t
), i
));
2310 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2314 return base_fndecls
;
2317 /* If this declaration supersedes the declaration of
2318 a method declared virtual in the base class, then
2319 mark this field as being virtual as well. */
2322 check_for_override (tree decl
, tree ctype
)
2324 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2325 /* In [temp.mem] we have:
2327 A specialization of a member function template does not
2328 override a virtual function from a base class. */
2330 if ((DECL_DESTRUCTOR_P (decl
)
2331 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
))
2332 || DECL_CONV_FN_P (decl
))
2333 && look_for_overrides (ctype
, decl
)
2334 && !DECL_STATIC_FUNCTION_P (decl
))
2335 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2336 the error_mark_node so that we know it is an overriding
2338 DECL_VINDEX (decl
) = decl
;
2340 if (DECL_VIRTUAL_P (decl
))
2342 if (!DECL_VINDEX (decl
))
2343 DECL_VINDEX (decl
) = error_mark_node
;
2344 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
)) = 1;
2345 if (DECL_DLLIMPORT_P (decl
))
2347 /* When we handled the dllimport attribute we may not have known
2348 that this function is virtual We can't use dllimport
2349 semantics for a virtual method because we need to initialize
2350 the vtable entry with a constant address. */
2351 DECL_DLLIMPORT_P (decl
) = 0;
2352 DECL_ATTRIBUTES (decl
)
2353 = remove_attribute ("dllimport", DECL_ATTRIBUTES (decl
));
2358 /* Warn about hidden virtual functions that are not overridden in t.
2359 We know that constructors and destructors don't apply. */
2362 warn_hidden (tree t
)
2364 VEC(tree
,gc
) *method_vec
= CLASSTYPE_METHOD_VEC (t
);
2368 /* We go through each separately named virtual function. */
2369 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2370 VEC_iterate (tree
, method_vec
, i
, fns
);
2381 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2382 have the same name. Figure out what name that is. */
2383 name
= DECL_NAME (OVL_CURRENT (fns
));
2384 /* There are no possibly hidden functions yet. */
2385 base_fndecls
= NULL_TREE
;
2386 /* Iterate through all of the base classes looking for possibly
2387 hidden functions. */
2388 for (binfo
= TYPE_BINFO (t
), j
= 0;
2389 BINFO_BASE_ITERATE (binfo
, j
, base_binfo
); j
++)
2391 tree basetype
= BINFO_TYPE (base_binfo
);
2392 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2396 /* If there are no functions to hide, continue. */
2400 /* Remove any overridden functions. */
2401 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
2403 fndecl
= OVL_CURRENT (fn
);
2404 if (DECL_VINDEX (fndecl
))
2406 tree
*prev
= &base_fndecls
;
2409 /* If the method from the base class has the same
2410 signature as the method from the derived class, it
2411 has been overridden. */
2412 if (same_signature_p (fndecl
, TREE_VALUE (*prev
)))
2413 *prev
= TREE_CHAIN (*prev
);
2415 prev
= &TREE_CHAIN (*prev
);
2419 /* Now give a warning for all base functions without overriders,
2420 as they are hidden. */
2421 while (base_fndecls
)
2423 /* Here we know it is a hider, and no overrider exists. */
2424 warning (0, "%q+D was hidden", TREE_VALUE (base_fndecls
));
2425 warning (0, " by %q+D", fns
);
2426 base_fndecls
= TREE_CHAIN (base_fndecls
);
2431 /* Check for things that are invalid. There are probably plenty of other
2432 things we should check for also. */
2435 finish_struct_anon (tree t
)
2439 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
2441 if (TREE_STATIC (field
))
2443 if (TREE_CODE (field
) != FIELD_DECL
)
2446 if (DECL_NAME (field
) == NULL_TREE
2447 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
2449 tree elt
= TYPE_FIELDS (TREE_TYPE (field
));
2450 for (; elt
; elt
= TREE_CHAIN (elt
))
2452 /* We're generally only interested in entities the user
2453 declared, but we also find nested classes by noticing
2454 the TYPE_DECL that we create implicitly. You're
2455 allowed to put one anonymous union inside another,
2456 though, so we explicitly tolerate that. We use
2457 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2458 we also allow unnamed types used for defining fields. */
2459 if (DECL_ARTIFICIAL (elt
)
2460 && (!DECL_IMPLICIT_TYPEDEF_P (elt
)
2461 || TYPE_ANONYMOUS_P (TREE_TYPE (elt
))))
2464 if (TREE_CODE (elt
) != FIELD_DECL
)
2466 pedwarn ("%q+#D invalid; an anonymous union can "
2467 "only have non-static data members", elt
);
2471 if (TREE_PRIVATE (elt
))
2472 pedwarn ("private member %q+#D in anonymous union", elt
);
2473 else if (TREE_PROTECTED (elt
))
2474 pedwarn ("protected member %q+#D in anonymous union", elt
);
2476 TREE_PRIVATE (elt
) = TREE_PRIVATE (field
);
2477 TREE_PROTECTED (elt
) = TREE_PROTECTED (field
);
2483 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2484 will be used later during class template instantiation.
2485 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2486 a non-static member data (FIELD_DECL), a member function
2487 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2488 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2489 When FRIEND_P is nonzero, T is either a friend class
2490 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2491 (FUNCTION_DECL, TEMPLATE_DECL). */
2494 maybe_add_class_template_decl_list (tree type
, tree t
, int friend_p
)
2496 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2497 if (CLASSTYPE_TEMPLATE_INFO (type
))
2498 CLASSTYPE_DECL_LIST (type
)
2499 = tree_cons (friend_p
? NULL_TREE
: type
,
2500 t
, CLASSTYPE_DECL_LIST (type
));
2503 /* Create default constructors, assignment operators, and so forth for
2504 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2505 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2506 the class cannot have a default constructor, copy constructor
2507 taking a const reference argument, or an assignment operator taking
2508 a const reference, respectively. */
2511 add_implicitly_declared_members (tree t
,
2512 int cant_have_const_cctor
,
2513 int cant_have_const_assignment
)
2516 if (!CLASSTYPE_DESTRUCTORS (t
))
2518 /* In general, we create destructors lazily. */
2519 CLASSTYPE_LAZY_DESTRUCTOR (t
) = 1;
2520 /* However, if the implicit destructor is non-trivial
2521 destructor, we sometimes have to create it at this point. */
2522 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
2526 if (TYPE_FOR_JAVA (t
))
2527 /* If this a Java class, any non-trivial destructor is
2528 invalid, even if compiler-generated. Therefore, if the
2529 destructor is non-trivial we create it now. */
2537 /* If the implicit destructor will be virtual, then we must
2538 generate it now because (unfortunately) we do not
2539 generate virtual tables lazily. */
2540 binfo
= TYPE_BINFO (t
);
2541 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
2546 base_type
= BINFO_TYPE (base_binfo
);
2547 dtor
= CLASSTYPE_DESTRUCTORS (base_type
);
2548 if (dtor
&& DECL_VIRTUAL_P (dtor
))
2556 /* If we can't get away with being lazy, generate the destructor
2559 lazily_declare_fn (sfk_destructor
, t
);
2563 /* Default constructor. */
2564 if (! TYPE_HAS_CONSTRUCTOR (t
))
2566 TYPE_HAS_DEFAULT_CONSTRUCTOR (t
) = 1;
2567 CLASSTYPE_LAZY_DEFAULT_CTOR (t
) = 1;
2570 /* Copy constructor. */
2571 if (! TYPE_HAS_INIT_REF (t
) && ! TYPE_FOR_JAVA (t
))
2573 TYPE_HAS_INIT_REF (t
) = 1;
2574 TYPE_HAS_CONST_INIT_REF (t
) = !cant_have_const_cctor
;
2575 CLASSTYPE_LAZY_COPY_CTOR (t
) = 1;
2576 TYPE_HAS_CONSTRUCTOR (t
) = 1;
2579 /* If there is no assignment operator, one will be created if and
2580 when it is needed. For now, just record whether or not the type
2581 of the parameter to the assignment operator will be a const or
2582 non-const reference. */
2583 if (!TYPE_HAS_ASSIGN_REF (t
) && !TYPE_FOR_JAVA (t
))
2585 TYPE_HAS_ASSIGN_REF (t
) = 1;
2586 TYPE_HAS_CONST_ASSIGN_REF (t
) = !cant_have_const_assignment
;
2587 CLASSTYPE_LAZY_ASSIGNMENT_OP (t
) = 1;
2591 /* Subroutine of finish_struct_1. Recursively count the number of fields
2592 in TYPE, including anonymous union members. */
2595 count_fields (tree fields
)
2599 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2601 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2602 n_fields
+= count_fields (TYPE_FIELDS (TREE_TYPE (x
)));
2609 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2610 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2613 add_fields_to_record_type (tree fields
, struct sorted_fields_type
*field_vec
, int idx
)
2616 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2618 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2619 idx
= add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x
)), field_vec
, idx
);
2621 field_vec
->elts
[idx
++] = x
;
2626 /* FIELD is a bit-field. We are finishing the processing for its
2627 enclosing type. Issue any appropriate messages and set appropriate
2631 check_bitfield_decl (tree field
)
2633 tree type
= TREE_TYPE (field
);
2636 /* Extract the declared width of the bitfield, which has been
2637 temporarily stashed in DECL_INITIAL. */
2638 w
= DECL_INITIAL (field
);
2639 gcc_assert (w
!= NULL_TREE
);
2640 /* Remove the bit-field width indicator so that the rest of the
2641 compiler does not treat that value as an initializer. */
2642 DECL_INITIAL (field
) = NULL_TREE
;
2644 /* Detect invalid bit-field type. */
2645 if (!INTEGRAL_TYPE_P (type
))
2647 error ("bit-field %q+#D with non-integral type", field
);
2648 TREE_TYPE (field
) = error_mark_node
;
2649 w
= error_mark_node
;
2653 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2656 /* detect invalid field size. */
2657 w
= integral_constant_value (w
);
2659 if (TREE_CODE (w
) != INTEGER_CST
)
2661 error ("bit-field %q+D width not an integer constant", field
);
2662 w
= error_mark_node
;
2664 else if (tree_int_cst_sgn (w
) < 0)
2666 error ("negative width in bit-field %q+D", field
);
2667 w
= error_mark_node
;
2669 else if (integer_zerop (w
) && DECL_NAME (field
) != 0)
2671 error ("zero width for bit-field %q+D", field
);
2672 w
= error_mark_node
;
2674 else if (compare_tree_int (w
, TYPE_PRECISION (type
)) > 0
2675 && TREE_CODE (type
) != ENUMERAL_TYPE
2676 && TREE_CODE (type
) != BOOLEAN_TYPE
)
2677 warning (0, "width of %q+D exceeds its type", field
);
2678 else if (TREE_CODE (type
) == ENUMERAL_TYPE
2679 && (0 > compare_tree_int (w
,
2680 min_precision (TYPE_MIN_VALUE (type
),
2681 TYPE_UNSIGNED (type
)))
2682 || 0 > compare_tree_int (w
,
2684 (TYPE_MAX_VALUE (type
),
2685 TYPE_UNSIGNED (type
)))))
2686 warning (0, "%q+D is too small to hold all values of %q#T", field
, type
);
2689 if (w
!= error_mark_node
)
2691 DECL_SIZE (field
) = convert (bitsizetype
, w
);
2692 DECL_BIT_FIELD (field
) = 1;
2696 /* Non-bit-fields are aligned for their type. */
2697 DECL_BIT_FIELD (field
) = 0;
2698 CLEAR_DECL_C_BIT_FIELD (field
);
2702 /* FIELD is a non bit-field. We are finishing the processing for its
2703 enclosing type T. Issue any appropriate messages and set appropriate
2707 check_field_decl (tree field
,
2709 int* cant_have_const_ctor
,
2710 int* no_const_asn_ref
,
2711 int* any_default_members
)
2713 tree type
= strip_array_types (TREE_TYPE (field
));
2715 /* An anonymous union cannot contain any fields which would change
2716 the settings of CANT_HAVE_CONST_CTOR and friends. */
2717 if (ANON_UNION_TYPE_P (type
))
2719 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2720 structs. So, we recurse through their fields here. */
2721 else if (ANON_AGGR_TYPE_P (type
))
2725 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
2726 if (TREE_CODE (fields
) == FIELD_DECL
&& !DECL_C_BIT_FIELD (field
))
2727 check_field_decl (fields
, t
, cant_have_const_ctor
,
2728 no_const_asn_ref
, any_default_members
);
2730 /* Check members with class type for constructors, destructors,
2732 else if (CLASS_TYPE_P (type
))
2734 /* Never let anything with uninheritable virtuals
2735 make it through without complaint. */
2736 abstract_virtuals_error (field
, type
);
2738 if (TREE_CODE (t
) == UNION_TYPE
)
2740 if (TYPE_NEEDS_CONSTRUCTING (type
))
2741 error ("member %q+#D with constructor not allowed in union",
2743 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
2744 error ("member %q+#D with destructor not allowed in union", field
);
2745 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type
))
2746 error ("member %q+#D with copy assignment operator not allowed in union",
2751 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (type
);
2752 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
2753 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
);
2754 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type
);
2755 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (type
);
2758 if (!TYPE_HAS_CONST_INIT_REF (type
))
2759 *cant_have_const_ctor
= 1;
2761 if (!TYPE_HAS_CONST_ASSIGN_REF (type
))
2762 *no_const_asn_ref
= 1;
2764 if (DECL_INITIAL (field
) != NULL_TREE
)
2766 /* `build_class_init_list' does not recognize
2768 if (TREE_CODE (t
) == UNION_TYPE
&& any_default_members
!= 0)
2769 error ("multiple fields in union %qT initialized", t
);
2770 *any_default_members
= 1;
2774 /* Check the data members (both static and non-static), class-scoped
2775 typedefs, etc., appearing in the declaration of T. Issue
2776 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2777 declaration order) of access declarations; each TREE_VALUE in this
2778 list is a USING_DECL.
2780 In addition, set the following flags:
2783 The class is empty, i.e., contains no non-static data members.
2785 CANT_HAVE_CONST_CTOR_P
2786 This class cannot have an implicitly generated copy constructor
2787 taking a const reference.
2789 CANT_HAVE_CONST_ASN_REF
2790 This class cannot have an implicitly generated assignment
2791 operator taking a const reference.
2793 All of these flags should be initialized before calling this
2796 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2797 fields can be added by adding to this chain. */
2800 check_field_decls (tree t
, tree
*access_decls
,
2801 int *cant_have_const_ctor_p
,
2802 int *no_const_asn_ref_p
)
2807 int any_default_members
;
2810 /* Assume there are no access declarations. */
2811 *access_decls
= NULL_TREE
;
2812 /* Assume this class has no pointer members. */
2813 has_pointers
= false;
2814 /* Assume none of the members of this class have default
2816 any_default_members
= 0;
2818 for (field
= &TYPE_FIELDS (t
); *field
; field
= next
)
2821 tree type
= TREE_TYPE (x
);
2823 next
= &TREE_CHAIN (x
);
2825 if (TREE_CODE (x
) == USING_DECL
)
2827 /* Prune the access declaration from the list of fields. */
2828 *field
= TREE_CHAIN (x
);
2830 /* Save the access declarations for our caller. */
2831 *access_decls
= tree_cons (NULL_TREE
, x
, *access_decls
);
2833 /* Since we've reset *FIELD there's no reason to skip to the
2839 if (TREE_CODE (x
) == TYPE_DECL
2840 || TREE_CODE (x
) == TEMPLATE_DECL
)
2843 /* If we've gotten this far, it's a data member, possibly static,
2844 or an enumerator. */
2845 DECL_CONTEXT (x
) = t
;
2847 /* When this goes into scope, it will be a non-local reference. */
2848 DECL_NONLOCAL (x
) = 1;
2850 if (TREE_CODE (t
) == UNION_TYPE
)
2854 If a union contains a static data member, or a member of
2855 reference type, the program is ill-formed. */
2856 if (TREE_CODE (x
) == VAR_DECL
)
2858 error ("%q+D may not be static because it is a member of a union", x
);
2861 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2863 error ("%q+D may not have reference type %qT because"
2864 " it is a member of a union",
2870 /* Perform error checking that did not get done in
2872 if (TREE_CODE (type
) == FUNCTION_TYPE
)
2874 error ("field %q+D invalidly declared function type", x
);
2875 type
= build_pointer_type (type
);
2876 TREE_TYPE (x
) = type
;
2878 else if (TREE_CODE (type
) == METHOD_TYPE
)
2880 error ("field %q+D invalidly declared method type", x
);
2881 type
= build_pointer_type (type
);
2882 TREE_TYPE (x
) = type
;
2885 if (type
== error_mark_node
)
2888 if (TREE_CODE (x
) == CONST_DECL
|| TREE_CODE (x
) == VAR_DECL
)
2891 /* Now it can only be a FIELD_DECL. */
2893 if (TREE_PRIVATE (x
) || TREE_PROTECTED (x
))
2894 CLASSTYPE_NON_AGGREGATE (t
) = 1;
2896 /* If this is of reference type, check if it needs an init.
2897 Also do a little ANSI jig if necessary. */
2898 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2900 CLASSTYPE_NON_POD_P (t
) = 1;
2901 if (DECL_INITIAL (x
) == NULL_TREE
)
2902 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2904 /* ARM $12.6.2: [A member initializer list] (or, for an
2905 aggregate, initialization by a brace-enclosed list) is the
2906 only way to initialize nonstatic const and reference
2908 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
2910 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
2912 warning (OPT_Wextra
, "non-static reference %q+#D in class without a constructor", x
);
2915 type
= strip_array_types (type
);
2917 if (TYPE_PACKED (t
))
2919 if (!pod_type_p (type
) && !TYPE_PACKED (type
))
2923 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2927 else if (TYPE_ALIGN (TREE_TYPE (x
)) > BITS_PER_UNIT
)
2928 DECL_PACKED (x
) = 1;
2931 if (DECL_C_BIT_FIELD (x
) && integer_zerop (DECL_INITIAL (x
)))
2932 /* We don't treat zero-width bitfields as making a class
2937 /* The class is non-empty. */
2938 CLASSTYPE_EMPTY_P (t
) = 0;
2939 /* The class is not even nearly empty. */
2940 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
2941 /* If one of the data members contains an empty class,
2943 if (CLASS_TYPE_P (type
)
2944 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
2945 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
2948 /* This is used by -Weffc++ (see below). Warn only for pointers
2949 to members which might hold dynamic memory. So do not warn
2950 for pointers to functions or pointers to members. */
2951 if (TYPE_PTR_P (type
)
2952 && !TYPE_PTRFN_P (type
)
2953 && !TYPE_PTR_TO_MEMBER_P (type
))
2954 has_pointers
= true;
2956 if (CLASS_TYPE_P (type
))
2958 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type
))
2959 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2960 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
))
2961 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
2964 if (DECL_MUTABLE_P (x
) || TYPE_HAS_MUTABLE_P (type
))
2965 CLASSTYPE_HAS_MUTABLE (t
) = 1;
2967 if (! pod_type_p (type
))
2968 /* DR 148 now allows pointers to members (which are POD themselves),
2969 to be allowed in POD structs. */
2970 CLASSTYPE_NON_POD_P (t
) = 1;
2972 if (! zero_init_p (type
))
2973 CLASSTYPE_NON_ZERO_INIT_P (t
) = 1;
2975 /* If any field is const, the structure type is pseudo-const. */
2976 if (CP_TYPE_CONST_P (type
))
2978 C_TYPE_FIELDS_READONLY (t
) = 1;
2979 if (DECL_INITIAL (x
) == NULL_TREE
)
2980 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
2982 /* ARM $12.6.2: [A member initializer list] (or, for an
2983 aggregate, initialization by a brace-enclosed list) is the
2984 only way to initialize nonstatic const and reference
2986 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
2988 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
2990 warning (OPT_Wextra
, "non-static const member %q+#D in class without a constructor", x
);
2992 /* A field that is pseudo-const makes the structure likewise. */
2993 else if (CLASS_TYPE_P (type
))
2995 C_TYPE_FIELDS_READONLY (t
) |= C_TYPE_FIELDS_READONLY (type
);
2996 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
,
2997 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
2998 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
));
3001 /* Core issue 80: A nonstatic data member is required to have a
3002 different name from the class iff the class has a
3003 user-defined constructor. */
3004 if (constructor_name_p (DECL_NAME (x
), t
) && TYPE_HAS_CONSTRUCTOR (t
))
3005 pedwarn ("field %q+#D with same name as class", x
);
3007 /* We set DECL_C_BIT_FIELD in grokbitfield.
3008 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3009 if (DECL_C_BIT_FIELD (x
))
3010 check_bitfield_decl (x
);
3012 check_field_decl (x
, t
,
3013 cant_have_const_ctor_p
,
3015 &any_default_members
);
3018 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3019 it should also define a copy constructor and an assignment operator to
3020 implement the correct copy semantic (deep vs shallow, etc.). As it is
3021 not feasible to check whether the constructors do allocate dynamic memory
3022 and store it within members, we approximate the warning like this:
3024 -- Warn only if there are members which are pointers
3025 -- Warn only if there is a non-trivial constructor (otherwise,
3026 there cannot be memory allocated).
3027 -- Warn only if there is a non-trivial destructor. We assume that the
3028 user at least implemented the cleanup correctly, and a destructor
3029 is needed to free dynamic memory.
3031 This seems enough for practical purposes. */
3034 && TYPE_HAS_CONSTRUCTOR (t
)
3035 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3036 && !(TYPE_HAS_INIT_REF (t
) && TYPE_HAS_ASSIGN_REF (t
)))
3038 warning (OPT_Weffc__
, "%q#T has pointer data members", t
);
3040 if (! TYPE_HAS_INIT_REF (t
))
3042 warning (OPT_Weffc__
,
3043 " but does not override %<%T(const %T&)%>", t
, t
);
3044 if (!TYPE_HAS_ASSIGN_REF (t
))
3045 warning (OPT_Weffc__
, " or %<operator=(const %T&)%>", t
);
3047 else if (! TYPE_HAS_ASSIGN_REF (t
))
3048 warning (OPT_Weffc__
,
3049 " but does not override %<operator=(const %T&)%>", t
);
3052 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3054 TYPE_PACKED (t
) = 0;
3056 /* Check anonymous struct/anonymous union fields. */
3057 finish_struct_anon (t
);
3059 /* We've built up the list of access declarations in reverse order.
3061 *access_decls
= nreverse (*access_decls
);
3064 /* If TYPE is an empty class type, records its OFFSET in the table of
3068 record_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3072 if (!is_empty_class (type
))
3075 /* Record the location of this empty object in OFFSETS. */
3076 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3078 n
= splay_tree_insert (offsets
,
3079 (splay_tree_key
) offset
,
3080 (splay_tree_value
) NULL_TREE
);
3081 n
->value
= ((splay_tree_value
)
3082 tree_cons (NULL_TREE
,
3089 /* Returns nonzero if TYPE is an empty class type and there is
3090 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3093 check_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3098 if (!is_empty_class (type
))
3101 /* Record the location of this empty object in OFFSETS. */
3102 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3106 for (t
= (tree
) n
->value
; t
; t
= TREE_CHAIN (t
))
3107 if (same_type_p (TREE_VALUE (t
), type
))
3113 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3114 F for every subobject, passing it the type, offset, and table of
3115 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3118 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3119 than MAX_OFFSET will not be walked.
3121 If F returns a nonzero value, the traversal ceases, and that value
3122 is returned. Otherwise, returns zero. */
3125 walk_subobject_offsets (tree type
,
3126 subobject_offset_fn f
,
3133 tree type_binfo
= NULL_TREE
;
3135 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3137 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3140 if (type
== error_mark_node
)
3145 if (abi_version_at_least (2))
3147 type
= BINFO_TYPE (type
);
3150 if (CLASS_TYPE_P (type
))
3156 /* Avoid recursing into objects that are not interesting. */
3157 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3160 /* Record the location of TYPE. */
3161 r
= (*f
) (type
, offset
, offsets
);
3165 /* Iterate through the direct base classes of TYPE. */
3167 type_binfo
= TYPE_BINFO (type
);
3168 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, binfo
); i
++)
3172 if (abi_version_at_least (2)
3173 && BINFO_VIRTUAL_P (binfo
))
3177 && BINFO_VIRTUAL_P (binfo
)
3178 && !BINFO_PRIMARY_P (binfo
))
3181 if (!abi_version_at_least (2))
3182 binfo_offset
= size_binop (PLUS_EXPR
,
3184 BINFO_OFFSET (binfo
));
3188 /* We cannot rely on BINFO_OFFSET being set for the base
3189 class yet, but the offsets for direct non-virtual
3190 bases can be calculated by going back to the TYPE. */
3191 orig_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (type
), i
);
3192 binfo_offset
= size_binop (PLUS_EXPR
,
3194 BINFO_OFFSET (orig_binfo
));
3197 r
= walk_subobject_offsets (binfo
,
3202 (abi_version_at_least (2)
3203 ? /*vbases_p=*/0 : vbases_p
));
3208 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type
))
3211 VEC(tree
,gc
) *vbases
;
3213 /* Iterate through the virtual base classes of TYPE. In G++
3214 3.2, we included virtual bases in the direct base class
3215 loop above, which results in incorrect results; the
3216 correct offsets for virtual bases are only known when
3217 working with the most derived type. */
3219 for (vbases
= CLASSTYPE_VBASECLASSES (type
), ix
= 0;
3220 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
3222 r
= walk_subobject_offsets (binfo
,
3224 size_binop (PLUS_EXPR
,
3226 BINFO_OFFSET (binfo
)),
3235 /* We still have to walk the primary base, if it is
3236 virtual. (If it is non-virtual, then it was walked
3238 tree vbase
= get_primary_binfo (type_binfo
);
3240 if (vbase
&& BINFO_VIRTUAL_P (vbase
)
3241 && BINFO_PRIMARY_P (vbase
)
3242 && BINFO_INHERITANCE_CHAIN (vbase
) == type_binfo
)
3244 r
= (walk_subobject_offsets
3246 offsets
, max_offset
, /*vbases_p=*/0));
3253 /* Iterate through the fields of TYPE. */
3254 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
3255 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_ARTIFICIAL (field
))
3259 if (abi_version_at_least (2))
3260 field_offset
= byte_position (field
);
3262 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3263 field_offset
= DECL_FIELD_OFFSET (field
);
3265 r
= walk_subobject_offsets (TREE_TYPE (field
),
3267 size_binop (PLUS_EXPR
,
3277 else if (TREE_CODE (type
) == ARRAY_TYPE
)
3279 tree element_type
= strip_array_types (type
);
3280 tree domain
= TYPE_DOMAIN (type
);
3283 /* Avoid recursing into objects that are not interesting. */
3284 if (!CLASS_TYPE_P (element_type
)
3285 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type
))
3288 /* Step through each of the elements in the array. */
3289 for (index
= size_zero_node
;
3290 /* G++ 3.2 had an off-by-one error here. */
3291 (abi_version_at_least (2)
3292 ? !INT_CST_LT (TYPE_MAX_VALUE (domain
), index
)
3293 : INT_CST_LT (index
, TYPE_MAX_VALUE (domain
)));
3294 index
= size_binop (PLUS_EXPR
, index
, size_one_node
))
3296 r
= walk_subobject_offsets (TREE_TYPE (type
),
3304 offset
= size_binop (PLUS_EXPR
, offset
,
3305 TYPE_SIZE_UNIT (TREE_TYPE (type
)));
3306 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3307 there's no point in iterating through the remaining
3308 elements of the array. */
3309 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3317 /* Record all of the empty subobjects of TYPE (either a type or a
3318 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3319 is being placed at OFFSET; otherwise, it is a base class that is
3320 being placed at OFFSET. */
3323 record_subobject_offsets (tree type
,
3326 bool is_data_member
)
3329 /* If recording subobjects for a non-static data member or a
3330 non-empty base class , we do not need to record offsets beyond
3331 the size of the biggest empty class. Additional data members
3332 will go at the end of the class. Additional base classes will go
3333 either at offset zero (if empty, in which case they cannot
3334 overlap with offsets past the size of the biggest empty class) or
3335 at the end of the class.
3337 However, if we are placing an empty base class, then we must record
3338 all offsets, as either the empty class is at offset zero (where
3339 other empty classes might later be placed) or at the end of the
3340 class (where other objects might then be placed, so other empty
3341 subobjects might later overlap). */
3343 || !is_empty_class (BINFO_TYPE (type
)))
3344 max_offset
= sizeof_biggest_empty_class
;
3346 max_offset
= NULL_TREE
;
3347 walk_subobject_offsets (type
, record_subobject_offset
, offset
,
3348 offsets
, max_offset
, is_data_member
);
3351 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3352 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3353 virtual bases of TYPE are examined. */
3356 layout_conflict_p (tree type
,
3361 splay_tree_node max_node
;
3363 /* Get the node in OFFSETS that indicates the maximum offset where
3364 an empty subobject is located. */
3365 max_node
= splay_tree_max (offsets
);
3366 /* If there aren't any empty subobjects, then there's no point in
3367 performing this check. */
3371 return walk_subobject_offsets (type
, check_subobject_offset
, offset
,
3372 offsets
, (tree
) (max_node
->key
),
3376 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3377 non-static data member of the type indicated by RLI. BINFO is the
3378 binfo corresponding to the base subobject, OFFSETS maps offsets to
3379 types already located at those offsets. This function determines
3380 the position of the DECL. */
3383 layout_nonempty_base_or_field (record_layout_info rli
,
3388 tree offset
= NULL_TREE
;
3394 /* For the purposes of determining layout conflicts, we want to
3395 use the class type of BINFO; TREE_TYPE (DECL) will be the
3396 CLASSTYPE_AS_BASE version, which does not contain entries for
3397 zero-sized bases. */
3398 type
= TREE_TYPE (binfo
);
3403 type
= TREE_TYPE (decl
);
3407 /* Try to place the field. It may take more than one try if we have
3408 a hard time placing the field without putting two objects of the
3409 same type at the same address. */
3412 struct record_layout_info_s old_rli
= *rli
;
3414 /* Place this field. */
3415 place_field (rli
, decl
);
3416 offset
= byte_position (decl
);
3418 /* We have to check to see whether or not there is already
3419 something of the same type at the offset we're about to use.
3420 For example, consider:
3423 struct T : public S { int i; };
3424 struct U : public S, public T {};
3426 Here, we put S at offset zero in U. Then, we can't put T at
3427 offset zero -- its S component would be at the same address
3428 as the S we already allocated. So, we have to skip ahead.
3429 Since all data members, including those whose type is an
3430 empty class, have nonzero size, any overlap can happen only
3431 with a direct or indirect base-class -- it can't happen with
3433 /* In a union, overlap is permitted; all members are placed at
3435 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
3437 /* G++ 3.2 did not check for overlaps when placing a non-empty
3439 if (!abi_version_at_least (2) && binfo
&& BINFO_VIRTUAL_P (binfo
))
3441 if (layout_conflict_p (field_p
? type
: binfo
, offset
,
3444 /* Strip off the size allocated to this field. That puts us
3445 at the first place we could have put the field with
3446 proper alignment. */
3449 /* Bump up by the alignment required for the type. */
3451 = size_binop (PLUS_EXPR
, rli
->bitpos
,
3453 ? CLASSTYPE_ALIGN (type
)
3454 : TYPE_ALIGN (type
)));
3455 normalize_rli (rli
);
3458 /* There was no conflict. We're done laying out this field. */
3462 /* Now that we know where it will be placed, update its
3464 if (binfo
&& CLASS_TYPE_P (BINFO_TYPE (binfo
)))
3465 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3466 this point because their BINFO_OFFSET is copied from another
3467 hierarchy. Therefore, we may not need to add the entire
3469 propagate_binfo_offsets (binfo
,
3470 size_diffop (convert (ssizetype
, offset
),
3472 BINFO_OFFSET (binfo
))));
3475 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3478 empty_base_at_nonzero_offset_p (tree type
,
3480 splay_tree offsets ATTRIBUTE_UNUSED
)
3482 return is_empty_class (type
) && !integer_zerop (offset
);
3485 /* Layout the empty base BINFO. EOC indicates the byte currently just
3486 past the end of the class, and should be correctly aligned for a
3487 class of the type indicated by BINFO; OFFSETS gives the offsets of
3488 the empty bases allocated so far. T is the most derived
3489 type. Return nonzero iff we added it at the end. */
3492 layout_empty_base (tree binfo
, tree eoc
, splay_tree offsets
)
3495 tree basetype
= BINFO_TYPE (binfo
);
3498 /* This routine should only be used for empty classes. */
3499 gcc_assert (is_empty_class (basetype
));
3500 alignment
= ssize_int (CLASSTYPE_ALIGN_UNIT (basetype
));
3502 if (!integer_zerop (BINFO_OFFSET (binfo
)))
3504 if (abi_version_at_least (2))
3505 propagate_binfo_offsets
3506 (binfo
, size_diffop (size_zero_node
, BINFO_OFFSET (binfo
)));
3509 "offset of empty base %qT may not be ABI-compliant and may"
3510 "change in a future version of GCC",
3511 BINFO_TYPE (binfo
));
3514 /* This is an empty base class. We first try to put it at offset
3516 if (layout_conflict_p (binfo
,
3517 BINFO_OFFSET (binfo
),
3521 /* That didn't work. Now, we move forward from the next
3522 available spot in the class. */
3524 propagate_binfo_offsets (binfo
, convert (ssizetype
, eoc
));
3527 if (!layout_conflict_p (binfo
,
3528 BINFO_OFFSET (binfo
),
3531 /* We finally found a spot where there's no overlap. */
3534 /* There's overlap here, too. Bump along to the next spot. */
3535 propagate_binfo_offsets (binfo
, alignment
);
3541 /* Layout the base given by BINFO in the class indicated by RLI.
3542 *BASE_ALIGN is a running maximum of the alignments of
3543 any base class. OFFSETS gives the location of empty base
3544 subobjects. T is the most derived type. Return nonzero if the new
3545 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3546 *NEXT_FIELD, unless BINFO is for an empty base class.
3548 Returns the location at which the next field should be inserted. */
3551 build_base_field (record_layout_info rli
, tree binfo
,
3552 splay_tree offsets
, tree
*next_field
)
3555 tree basetype
= BINFO_TYPE (binfo
);
3557 if (!COMPLETE_TYPE_P (basetype
))
3558 /* This error is now reported in xref_tag, thus giving better
3559 location information. */
3562 /* Place the base class. */
3563 if (!is_empty_class (basetype
))
3567 /* The containing class is non-empty because it has a non-empty
3569 CLASSTYPE_EMPTY_P (t
) = 0;
3571 /* Create the FIELD_DECL. */
3572 decl
= build_decl (FIELD_DECL
, NULL_TREE
, CLASSTYPE_AS_BASE (basetype
));
3573 DECL_ARTIFICIAL (decl
) = 1;
3574 DECL_IGNORED_P (decl
) = 1;
3575 DECL_FIELD_CONTEXT (decl
) = t
;
3576 DECL_SIZE (decl
) = CLASSTYPE_SIZE (basetype
);
3577 DECL_SIZE_UNIT (decl
) = CLASSTYPE_SIZE_UNIT (basetype
);
3578 DECL_ALIGN (decl
) = CLASSTYPE_ALIGN (basetype
);
3579 DECL_USER_ALIGN (decl
) = CLASSTYPE_USER_ALIGN (basetype
);
3580 DECL_MODE (decl
) = TYPE_MODE (basetype
);
3581 DECL_FIELD_IS_BASE (decl
) = 1;
3583 /* Try to place the field. It may take more than one try if we
3584 have a hard time placing the field without putting two
3585 objects of the same type at the same address. */
3586 layout_nonempty_base_or_field (rli
, decl
, binfo
, offsets
);
3587 /* Add the new FIELD_DECL to the list of fields for T. */
3588 TREE_CHAIN (decl
) = *next_field
;
3590 next_field
= &TREE_CHAIN (decl
);
3597 /* On some platforms (ARM), even empty classes will not be
3599 eoc
= round_up (rli_size_unit_so_far (rli
),
3600 CLASSTYPE_ALIGN_UNIT (basetype
));
3601 atend
= layout_empty_base (binfo
, eoc
, offsets
);
3602 /* A nearly-empty class "has no proper base class that is empty,
3603 not morally virtual, and at an offset other than zero." */
3604 if (!BINFO_VIRTUAL_P (binfo
) && CLASSTYPE_NEARLY_EMPTY_P (t
))
3607 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3608 /* The check above (used in G++ 3.2) is insufficient because
3609 an empty class placed at offset zero might itself have an
3610 empty base at a nonzero offset. */
3611 else if (walk_subobject_offsets (basetype
,
3612 empty_base_at_nonzero_offset_p
,
3615 /*max_offset=*/NULL_TREE
,
3618 if (abi_version_at_least (2))
3619 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3622 "class %qT will be considered nearly empty in a "
3623 "future version of GCC", t
);
3627 /* We do not create a FIELD_DECL for empty base classes because
3628 it might overlap some other field. We want to be able to
3629 create CONSTRUCTORs for the class by iterating over the
3630 FIELD_DECLs, and the back end does not handle overlapping
3633 /* An empty virtual base causes a class to be non-empty
3634 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3635 here because that was already done when the virtual table
3636 pointer was created. */
3639 /* Record the offsets of BINFO and its base subobjects. */
3640 record_subobject_offsets (binfo
,
3641 BINFO_OFFSET (binfo
),
3643 /*is_data_member=*/false);
3648 /* Layout all of the non-virtual base classes. Record empty
3649 subobjects in OFFSETS. T is the most derived type. Return nonzero
3650 if the type cannot be nearly empty. The fields created
3651 corresponding to the base classes will be inserted at
3655 build_base_fields (record_layout_info rli
,
3656 splay_tree offsets
, tree
*next_field
)
3658 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3661 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
3664 /* The primary base class is always allocated first. */
3665 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
3666 next_field
= build_base_field (rli
, CLASSTYPE_PRIMARY_BINFO (t
),
3667 offsets
, next_field
);
3669 /* Now allocate the rest of the bases. */
3670 for (i
= 0; i
< n_baseclasses
; ++i
)
3674 base_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (t
), i
);
3676 /* The primary base was already allocated above, so we don't
3677 need to allocate it again here. */
3678 if (base_binfo
== CLASSTYPE_PRIMARY_BINFO (t
))
3681 /* Virtual bases are added at the end (a primary virtual base
3682 will have already been added). */
3683 if (BINFO_VIRTUAL_P (base_binfo
))
3686 next_field
= build_base_field (rli
, base_binfo
,
3687 offsets
, next_field
);
3691 /* Go through the TYPE_METHODS of T issuing any appropriate
3692 diagnostics, figuring out which methods override which other
3693 methods, and so forth. */
3696 check_methods (tree t
)
3700 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
3702 check_for_override (x
, t
);
3703 if (DECL_PURE_VIRTUAL_P (x
) && ! DECL_VINDEX (x
))
3704 error ("initializer specified for non-virtual method %q+D", x
);
3705 /* The name of the field is the original field name
3706 Save this in auxiliary field for later overloading. */
3707 if (DECL_VINDEX (x
))
3709 TYPE_POLYMORPHIC_P (t
) = 1;
3710 if (DECL_PURE_VIRTUAL_P (x
))
3711 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
3713 /* All user-declared destructors are non-trivial. */
3714 if (DECL_DESTRUCTOR_P (x
))
3715 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
) = 1;
3719 /* FN is a constructor or destructor. Clone the declaration to create
3720 a specialized in-charge or not-in-charge version, as indicated by
3724 build_clone (tree fn
, tree name
)
3729 /* Copy the function. */
3730 clone
= copy_decl (fn
);
3731 /* Remember where this function came from. */
3732 DECL_CLONED_FUNCTION (clone
) = fn
;
3733 DECL_ABSTRACT_ORIGIN (clone
) = fn
;
3734 /* Reset the function name. */
3735 DECL_NAME (clone
) = name
;
3736 SET_DECL_ASSEMBLER_NAME (clone
, NULL_TREE
);
3737 /* There's no pending inline data for this function. */
3738 DECL_PENDING_INLINE_INFO (clone
) = NULL
;
3739 DECL_PENDING_INLINE_P (clone
) = 0;
3740 /* And it hasn't yet been deferred. */
3741 DECL_DEFERRED_FN (clone
) = 0;
3743 /* The base-class destructor is not virtual. */
3744 if (name
== base_dtor_identifier
)
3746 DECL_VIRTUAL_P (clone
) = 0;
3747 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3748 DECL_VINDEX (clone
) = NULL_TREE
;
3751 /* If there was an in-charge parameter, drop it from the function
3753 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3759 exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3760 basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3761 parmtypes
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3762 /* Skip the `this' parameter. */
3763 parmtypes
= TREE_CHAIN (parmtypes
);
3764 /* Skip the in-charge parameter. */
3765 parmtypes
= TREE_CHAIN (parmtypes
);
3766 /* And the VTT parm, in a complete [cd]tor. */
3767 if (DECL_HAS_VTT_PARM_P (fn
)
3768 && ! DECL_NEEDS_VTT_PARM_P (clone
))
3769 parmtypes
= TREE_CHAIN (parmtypes
);
3770 /* If this is subobject constructor or destructor, add the vtt
3773 = build_method_type_directly (basetype
,
3774 TREE_TYPE (TREE_TYPE (clone
)),
3777 TREE_TYPE (clone
) = build_exception_variant (TREE_TYPE (clone
),
3780 = cp_build_type_attribute_variant (TREE_TYPE (clone
),
3781 TYPE_ATTRIBUTES (TREE_TYPE (fn
)));
3784 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3785 aren't function parameters; those are the template parameters. */
3786 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3788 DECL_ARGUMENTS (clone
) = copy_list (DECL_ARGUMENTS (clone
));
3789 /* Remove the in-charge parameter. */
3790 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3792 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3793 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3794 DECL_HAS_IN_CHARGE_PARM_P (clone
) = 0;
3796 /* And the VTT parm, in a complete [cd]tor. */
3797 if (DECL_HAS_VTT_PARM_P (fn
))
3799 if (DECL_NEEDS_VTT_PARM_P (clone
))
3800 DECL_HAS_VTT_PARM_P (clone
) = 1;
3803 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3804 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3805 DECL_HAS_VTT_PARM_P (clone
) = 0;
3809 for (parms
= DECL_ARGUMENTS (clone
); parms
; parms
= TREE_CHAIN (parms
))
3811 DECL_CONTEXT (parms
) = clone
;
3812 cxx_dup_lang_specific_decl (parms
);
3816 /* Create the RTL for this function. */
3817 SET_DECL_RTL (clone
, NULL_RTX
);
3818 rest_of_decl_compilation (clone
, /*top_level=*/1, at_eof
);
3820 /* Make it easy to find the CLONE given the FN. */
3821 TREE_CHAIN (clone
) = TREE_CHAIN (fn
);
3822 TREE_CHAIN (fn
) = clone
;
3824 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3825 if (TREE_CODE (clone
) == TEMPLATE_DECL
)
3829 DECL_TEMPLATE_RESULT (clone
)
3830 = build_clone (DECL_TEMPLATE_RESULT (clone
), name
);
3831 result
= DECL_TEMPLATE_RESULT (clone
);
3832 DECL_TEMPLATE_INFO (result
) = copy_node (DECL_TEMPLATE_INFO (result
));
3833 DECL_TI_TEMPLATE (result
) = clone
;
3836 note_decl_for_pch (clone
);
3841 /* Produce declarations for all appropriate clones of FN. If
3842 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3843 CLASTYPE_METHOD_VEC as well. */
3846 clone_function_decl (tree fn
, int update_method_vec_p
)
3850 /* Avoid inappropriate cloning. */
3852 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn
)))
3855 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn
))
3857 /* For each constructor, we need two variants: an in-charge version
3858 and a not-in-charge version. */
3859 clone
= build_clone (fn
, complete_ctor_identifier
);
3860 if (update_method_vec_p
)
3861 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3862 clone
= build_clone (fn
, base_ctor_identifier
);
3863 if (update_method_vec_p
)
3864 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3868 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
));
3870 /* For each destructor, we need three variants: an in-charge
3871 version, a not-in-charge version, and an in-charge deleting
3872 version. We clone the deleting version first because that
3873 means it will go second on the TYPE_METHODS list -- and that
3874 corresponds to the correct layout order in the virtual
3877 For a non-virtual destructor, we do not build a deleting
3879 if (DECL_VIRTUAL_P (fn
))
3881 clone
= build_clone (fn
, deleting_dtor_identifier
);
3882 if (update_method_vec_p
)
3883 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3885 clone
= build_clone (fn
, complete_dtor_identifier
);
3886 if (update_method_vec_p
)
3887 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3888 clone
= build_clone (fn
, base_dtor_identifier
);
3889 if (update_method_vec_p
)
3890 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3893 /* Note that this is an abstract function that is never emitted. */
3894 DECL_ABSTRACT (fn
) = 1;
3897 /* DECL is an in charge constructor, which is being defined. This will
3898 have had an in class declaration, from whence clones were
3899 declared. An out-of-class definition can specify additional default
3900 arguments. As it is the clones that are involved in overload
3901 resolution, we must propagate the information from the DECL to its
3905 adjust_clone_args (tree decl
)
3909 for (clone
= TREE_CHAIN (decl
); clone
&& DECL_CLONED_FUNCTION (clone
);
3910 clone
= TREE_CHAIN (clone
))
3912 tree orig_clone_parms
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3913 tree orig_decl_parms
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
3914 tree decl_parms
, clone_parms
;
3916 clone_parms
= orig_clone_parms
;
3918 /* Skip the 'this' parameter. */
3919 orig_clone_parms
= TREE_CHAIN (orig_clone_parms
);
3920 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3922 if (DECL_HAS_IN_CHARGE_PARM_P (decl
))
3923 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3924 if (DECL_HAS_VTT_PARM_P (decl
))
3925 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3927 clone_parms
= orig_clone_parms
;
3928 if (DECL_HAS_VTT_PARM_P (clone
))
3929 clone_parms
= TREE_CHAIN (clone_parms
);
3931 for (decl_parms
= orig_decl_parms
; decl_parms
;
3932 decl_parms
= TREE_CHAIN (decl_parms
),
3933 clone_parms
= TREE_CHAIN (clone_parms
))
3935 gcc_assert (same_type_p (TREE_TYPE (decl_parms
),
3936 TREE_TYPE (clone_parms
)));
3938 if (TREE_PURPOSE (decl_parms
) && !TREE_PURPOSE (clone_parms
))
3940 /* A default parameter has been added. Adjust the
3941 clone's parameters. */
3942 tree exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3943 tree basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3946 clone_parms
= orig_decl_parms
;
3948 if (DECL_HAS_VTT_PARM_P (clone
))
3950 clone_parms
= tree_cons (TREE_PURPOSE (orig_clone_parms
),
3951 TREE_VALUE (orig_clone_parms
),
3953 TREE_TYPE (clone_parms
) = TREE_TYPE (orig_clone_parms
);
3955 type
= build_method_type_directly (basetype
,
3956 TREE_TYPE (TREE_TYPE (clone
)),
3959 type
= build_exception_variant (type
, exceptions
);
3960 TREE_TYPE (clone
) = type
;
3962 clone_parms
= NULL_TREE
;
3966 gcc_assert (!clone_parms
);
3970 /* For each of the constructors and destructors in T, create an
3971 in-charge and not-in-charge variant. */
3974 clone_constructors_and_destructors (tree t
)
3978 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3980 if (!CLASSTYPE_METHOD_VEC (t
))
3983 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
3984 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
3985 for (fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
3986 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
3989 /* Remove all zero-width bit-fields from T. */
3992 remove_zero_width_bit_fields (tree t
)
3996 fieldsp
= &TYPE_FIELDS (t
);
3999 if (TREE_CODE (*fieldsp
) == FIELD_DECL
4000 && DECL_C_BIT_FIELD (*fieldsp
)
4001 && DECL_INITIAL (*fieldsp
))
4002 *fieldsp
= TREE_CHAIN (*fieldsp
);
4004 fieldsp
= &TREE_CHAIN (*fieldsp
);
4008 /* Returns TRUE iff we need a cookie when dynamically allocating an
4009 array whose elements have the indicated class TYPE. */
4012 type_requires_array_cookie (tree type
)
4015 bool has_two_argument_delete_p
= false;
4017 gcc_assert (CLASS_TYPE_P (type
));
4019 /* If there's a non-trivial destructor, we need a cookie. In order
4020 to iterate through the array calling the destructor for each
4021 element, we'll have to know how many elements there are. */
4022 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
4025 /* If the usual deallocation function is a two-argument whose second
4026 argument is of type `size_t', then we have to pass the size of
4027 the array to the deallocation function, so we will need to store
4029 fns
= lookup_fnfields (TYPE_BINFO (type
),
4030 ansi_opname (VEC_DELETE_EXPR
),
4032 /* If there are no `operator []' members, or the lookup is
4033 ambiguous, then we don't need a cookie. */
4034 if (!fns
|| fns
== error_mark_node
)
4036 /* Loop through all of the functions. */
4037 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
4042 /* Select the current function. */
4043 fn
= OVL_CURRENT (fns
);
4044 /* See if this function is a one-argument delete function. If
4045 it is, then it will be the usual deallocation function. */
4046 second_parm
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn
)));
4047 if (second_parm
== void_list_node
)
4049 /* Otherwise, if we have a two-argument function and the second
4050 argument is `size_t', it will be the usual deallocation
4051 function -- unless there is one-argument function, too. */
4052 if (TREE_CHAIN (second_parm
) == void_list_node
4053 && same_type_p (TREE_VALUE (second_parm
), size_type_node
))
4054 has_two_argument_delete_p
= true;
4057 return has_two_argument_delete_p
;
4060 /* Check the validity of the bases and members declared in T. Add any
4061 implicitly-generated functions (like copy-constructors and
4062 assignment operators). Compute various flag bits (like
4063 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4064 level: i.e., independently of the ABI in use. */
4067 check_bases_and_members (tree t
)
4069 /* Nonzero if the implicitly generated copy constructor should take
4070 a non-const reference argument. */
4071 int cant_have_const_ctor
;
4072 /* Nonzero if the implicitly generated assignment operator
4073 should take a non-const reference argument. */
4074 int no_const_asn_ref
;
4077 /* By default, we use const reference arguments and generate default
4079 cant_have_const_ctor
= 0;
4080 no_const_asn_ref
= 0;
4082 /* Check all the base-classes. */
4083 check_bases (t
, &cant_have_const_ctor
,
4086 /* Check all the method declarations. */
4089 /* Check all the data member declarations. We cannot call
4090 check_field_decls until we have called check_bases check_methods,
4091 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4092 being set appropriately. */
4093 check_field_decls (t
, &access_decls
,
4094 &cant_have_const_ctor
,
4097 /* A nearly-empty class has to be vptr-containing; a nearly empty
4098 class contains just a vptr. */
4099 if (!TYPE_CONTAINS_VPTR_P (t
))
4100 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4102 /* Do some bookkeeping that will guide the generation of implicitly
4103 declared member functions. */
4104 TYPE_HAS_COMPLEX_INIT_REF (t
)
4105 |= (TYPE_HAS_INIT_REF (t
) || TYPE_CONTAINS_VPTR_P (t
));
4106 TYPE_NEEDS_CONSTRUCTING (t
)
4107 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_CONTAINS_VPTR_P (t
));
4108 CLASSTYPE_NON_AGGREGATE (t
)
4109 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_POLYMORPHIC_P (t
));
4110 CLASSTYPE_NON_POD_P (t
)
4111 |= (CLASSTYPE_NON_AGGREGATE (t
)
4112 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
4113 || TYPE_HAS_ASSIGN_REF (t
));
4114 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
4115 |= TYPE_HAS_ASSIGN_REF (t
) || TYPE_CONTAINS_VPTR_P (t
);
4117 /* Synthesize any needed methods. */
4118 add_implicitly_declared_members (t
,
4119 cant_have_const_ctor
,
4122 /* Create the in-charge and not-in-charge variants of constructors
4124 clone_constructors_and_destructors (t
);
4126 /* Process the using-declarations. */
4127 for (; access_decls
; access_decls
= TREE_CHAIN (access_decls
))
4128 handle_using_decl (TREE_VALUE (access_decls
), t
);
4130 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4131 finish_struct_methods (t
);
4133 /* Figure out whether or not we will need a cookie when dynamically
4134 allocating an array of this type. */
4135 TYPE_LANG_SPECIFIC (t
)->u
.c
.vec_new_uses_cookie
4136 = type_requires_array_cookie (t
);
4139 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4140 accordingly. If a new vfield was created (because T doesn't have a
4141 primary base class), then the newly created field is returned. It
4142 is not added to the TYPE_FIELDS list; it is the caller's
4143 responsibility to do that. Accumulate declared virtual functions
4147 create_vtable_ptr (tree t
, tree
* virtuals_p
)
4151 /* Collect the virtual functions declared in T. */
4152 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
4153 if (DECL_VINDEX (fn
) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
)
4154 && TREE_CODE (DECL_VINDEX (fn
)) != INTEGER_CST
)
4156 tree new_virtual
= make_node (TREE_LIST
);
4158 BV_FN (new_virtual
) = fn
;
4159 BV_DELTA (new_virtual
) = integer_zero_node
;
4160 BV_VCALL_INDEX (new_virtual
) = NULL_TREE
;
4162 TREE_CHAIN (new_virtual
) = *virtuals_p
;
4163 *virtuals_p
= new_virtual
;
4166 /* If we couldn't find an appropriate base class, create a new field
4167 here. Even if there weren't any new virtual functions, we might need a
4168 new virtual function table if we're supposed to include vptrs in
4169 all classes that need them. */
4170 if (!TYPE_VFIELD (t
) && (*virtuals_p
|| TYPE_CONTAINS_VPTR_P (t
)))
4172 /* We build this decl with vtbl_ptr_type_node, which is a
4173 `vtable_entry_type*'. It might seem more precise to use
4174 `vtable_entry_type (*)[N]' where N is the number of virtual
4175 functions. However, that would require the vtable pointer in
4176 base classes to have a different type than the vtable pointer
4177 in derived classes. We could make that happen, but that
4178 still wouldn't solve all the problems. In particular, the
4179 type-based alias analysis code would decide that assignments
4180 to the base class vtable pointer can't alias assignments to
4181 the derived class vtable pointer, since they have different
4182 types. Thus, in a derived class destructor, where the base
4183 class constructor was inlined, we could generate bad code for
4184 setting up the vtable pointer.
4186 Therefore, we use one type for all vtable pointers. We still
4187 use a type-correct type; it's just doesn't indicate the array
4188 bounds. That's better than using `void*' or some such; it's
4189 cleaner, and it let's the alias analysis code know that these
4190 stores cannot alias stores to void*! */
4193 field
= build_decl (FIELD_DECL
, get_vfield_name (t
), vtbl_ptr_type_node
);
4194 DECL_VIRTUAL_P (field
) = 1;
4195 DECL_ARTIFICIAL (field
) = 1;
4196 DECL_FIELD_CONTEXT (field
) = t
;
4197 DECL_FCONTEXT (field
) = t
;
4199 TYPE_VFIELD (t
) = field
;
4201 /* This class is non-empty. */
4202 CLASSTYPE_EMPTY_P (t
) = 0;
4210 /* Fixup the inline function given by INFO now that the class is
4214 fixup_pending_inline (tree fn
)
4216 if (DECL_PENDING_INLINE_INFO (fn
))
4218 tree args
= DECL_ARGUMENTS (fn
);
4221 DECL_CONTEXT (args
) = fn
;
4222 args
= TREE_CHAIN (args
);
4227 /* Fixup the inline methods and friends in TYPE now that TYPE is
4231 fixup_inline_methods (tree type
)
4233 tree method
= TYPE_METHODS (type
);
4234 VEC(tree
,gc
) *friends
;
4237 if (method
&& TREE_CODE (method
) == TREE_VEC
)
4239 if (TREE_VEC_ELT (method
, 1))
4240 method
= TREE_VEC_ELT (method
, 1);
4241 else if (TREE_VEC_ELT (method
, 0))
4242 method
= TREE_VEC_ELT (method
, 0);
4244 method
= TREE_VEC_ELT (method
, 2);
4247 /* Do inline member functions. */
4248 for (; method
; method
= TREE_CHAIN (method
))
4249 fixup_pending_inline (method
);
4252 for (friends
= CLASSTYPE_INLINE_FRIENDS (type
), ix
= 0;
4253 VEC_iterate (tree
, friends
, ix
, method
); ix
++)
4254 fixup_pending_inline (method
);
4255 CLASSTYPE_INLINE_FRIENDS (type
) = NULL
;
4258 /* Add OFFSET to all base types of BINFO which is a base in the
4259 hierarchy dominated by T.
4261 OFFSET, which is a type offset, is number of bytes. */
4264 propagate_binfo_offsets (tree binfo
, tree offset
)
4270 /* Update BINFO's offset. */
4271 BINFO_OFFSET (binfo
)
4272 = convert (sizetype
,
4273 size_binop (PLUS_EXPR
,
4274 convert (ssizetype
, BINFO_OFFSET (binfo
)),
4277 /* Find the primary base class. */
4278 primary_binfo
= get_primary_binfo (binfo
);
4280 if (primary_binfo
&& BINFO_INHERITANCE_CHAIN (primary_binfo
) == binfo
)
4281 propagate_binfo_offsets (primary_binfo
, offset
);
4283 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4285 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4287 /* Don't do the primary base twice. */
4288 if (base_binfo
== primary_binfo
)
4291 if (BINFO_VIRTUAL_P (base_binfo
))
4294 propagate_binfo_offsets (base_binfo
, offset
);
4298 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4299 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4300 empty subobjects of T. */
4303 layout_virtual_bases (record_layout_info rli
, splay_tree offsets
)
4307 bool first_vbase
= true;
4310 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) == 0)
4313 if (!abi_version_at_least(2))
4315 /* In G++ 3.2, we incorrectly rounded the size before laying out
4316 the virtual bases. */
4317 finish_record_layout (rli
, /*free_p=*/false);
4318 #ifdef STRUCTURE_SIZE_BOUNDARY
4319 /* Packed structures don't need to have minimum size. */
4320 if (! TYPE_PACKED (t
))
4321 TYPE_ALIGN (t
) = MAX (TYPE_ALIGN (t
), (unsigned) STRUCTURE_SIZE_BOUNDARY
);
4323 rli
->offset
= TYPE_SIZE_UNIT (t
);
4324 rli
->bitpos
= bitsize_zero_node
;
4325 rli
->record_align
= TYPE_ALIGN (t
);
4328 /* Find the last field. The artificial fields created for virtual
4329 bases will go after the last extant field to date. */
4330 next_field
= &TYPE_FIELDS (t
);
4332 next_field
= &TREE_CHAIN (*next_field
);
4334 /* Go through the virtual bases, allocating space for each virtual
4335 base that is not already a primary base class. These are
4336 allocated in inheritance graph order. */
4337 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
4339 if (!BINFO_VIRTUAL_P (vbase
))
4342 if (!BINFO_PRIMARY_P (vbase
))
4344 tree basetype
= TREE_TYPE (vbase
);
4346 /* This virtual base is not a primary base of any class in the
4347 hierarchy, so we have to add space for it. */
4348 next_field
= build_base_field (rli
, vbase
,
4349 offsets
, next_field
);
4351 /* If the first virtual base might have been placed at a
4352 lower address, had we started from CLASSTYPE_SIZE, rather
4353 than TYPE_SIZE, issue a warning. There can be both false
4354 positives and false negatives from this warning in rare
4355 cases; to deal with all the possibilities would probably
4356 require performing both layout algorithms and comparing
4357 the results which is not particularly tractable. */
4361 (size_binop (CEIL_DIV_EXPR
,
4362 round_up (CLASSTYPE_SIZE (t
),
4363 CLASSTYPE_ALIGN (basetype
)),
4365 BINFO_OFFSET (vbase
))))
4367 "offset of virtual base %qT is not ABI-compliant and "
4368 "may change in a future version of GCC",
4371 first_vbase
= false;
4376 /* Returns the offset of the byte just past the end of the base class
4380 end_of_base (tree binfo
)
4384 if (is_empty_class (BINFO_TYPE (binfo
)))
4385 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4386 allocate some space for it. It cannot have virtual bases, so
4387 TYPE_SIZE_UNIT is fine. */
4388 size
= TYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4390 size
= CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4392 return size_binop (PLUS_EXPR
, BINFO_OFFSET (binfo
), size
);
4395 /* Returns the offset of the byte just past the end of the base class
4396 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4397 only non-virtual bases are included. */
4400 end_of_class (tree t
, int include_virtuals_p
)
4402 tree result
= size_zero_node
;
4403 VEC(tree
,gc
) *vbases
;
4409 for (binfo
= TYPE_BINFO (t
), i
= 0;
4410 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4412 if (!include_virtuals_p
4413 && BINFO_VIRTUAL_P (base_binfo
)
4414 && (!BINFO_PRIMARY_P (base_binfo
)
4415 || BINFO_INHERITANCE_CHAIN (base_binfo
) != TYPE_BINFO (t
)))
4418 offset
= end_of_base (base_binfo
);
4419 if (INT_CST_LT_UNSIGNED (result
, offset
))
4423 /* G++ 3.2 did not check indirect virtual bases. */
4424 if (abi_version_at_least (2) && include_virtuals_p
)
4425 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4426 VEC_iterate (tree
, vbases
, i
, base_binfo
); i
++)
4428 offset
= end_of_base (base_binfo
);
4429 if (INT_CST_LT_UNSIGNED (result
, offset
))
4436 /* Warn about bases of T that are inaccessible because they are
4437 ambiguous. For example:
4440 struct T : public S {};
4441 struct U : public S, public T {};
4443 Here, `(S*) new U' is not allowed because there are two `S'
4447 warn_about_ambiguous_bases (tree t
)
4450 VEC(tree
,gc
) *vbases
;
4455 /* If there are no repeated bases, nothing can be ambiguous. */
4456 if (!CLASSTYPE_REPEATED_BASE_P (t
))
4459 /* Check direct bases. */
4460 for (binfo
= TYPE_BINFO (t
), i
= 0;
4461 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4463 basetype
= BINFO_TYPE (base_binfo
);
4465 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4466 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4470 /* Check for ambiguous virtual bases. */
4472 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4473 VEC_iterate (tree
, vbases
, i
, binfo
); i
++)
4475 basetype
= BINFO_TYPE (binfo
);
4477 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4478 warning (OPT_Wextra
, "virtual base %qT inaccessible in %qT due to ambiguity",
4483 /* Compare two INTEGER_CSTs K1 and K2. */
4486 splay_tree_compare_integer_csts (splay_tree_key k1
, splay_tree_key k2
)
4488 return tree_int_cst_compare ((tree
) k1
, (tree
) k2
);
4491 /* Increase the size indicated in RLI to account for empty classes
4492 that are "off the end" of the class. */
4495 include_empty_classes (record_layout_info rli
)
4500 /* It might be the case that we grew the class to allocate a
4501 zero-sized base class. That won't be reflected in RLI, yet,
4502 because we are willing to overlay multiple bases at the same
4503 offset. However, now we need to make sure that RLI is big enough
4504 to reflect the entire class. */
4505 eoc
= end_of_class (rli
->t
,
4506 CLASSTYPE_AS_BASE (rli
->t
) != NULL_TREE
);
4507 rli_size
= rli_size_unit_so_far (rli
);
4508 if (TREE_CODE (rli_size
) == INTEGER_CST
4509 && INT_CST_LT_UNSIGNED (rli_size
, eoc
))
4511 if (!abi_version_at_least (2))
4512 /* In version 1 of the ABI, the size of a class that ends with
4513 a bitfield was not rounded up to a whole multiple of a
4514 byte. Because rli_size_unit_so_far returns only the number
4515 of fully allocated bytes, any extra bits were not included
4517 rli
->bitpos
= round_down (rli
->bitpos
, BITS_PER_UNIT
);
4519 /* The size should have been rounded to a whole byte. */
4520 gcc_assert (tree_int_cst_equal
4521 (rli
->bitpos
, round_down (rli
->bitpos
, BITS_PER_UNIT
)));
4523 = size_binop (PLUS_EXPR
,
4525 size_binop (MULT_EXPR
,
4526 convert (bitsizetype
,
4527 size_binop (MINUS_EXPR
,
4529 bitsize_int (BITS_PER_UNIT
)));
4530 normalize_rli (rli
);
4534 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4535 BINFO_OFFSETs for all of the base-classes. Position the vtable
4536 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4539 layout_class_type (tree t
, tree
*virtuals_p
)
4541 tree non_static_data_members
;
4544 record_layout_info rli
;
4545 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4546 types that appear at that offset. */
4547 splay_tree empty_base_offsets
;
4548 /* True if the last field layed out was a bit-field. */
4549 bool last_field_was_bitfield
= false;
4550 /* The location at which the next field should be inserted. */
4552 /* T, as a base class. */
4555 /* Keep track of the first non-static data member. */
4556 non_static_data_members
= TYPE_FIELDS (t
);
4558 /* Start laying out the record. */
4559 rli
= start_record_layout (t
);
4561 /* Mark all the primary bases in the hierarchy. */
4562 determine_primary_bases (t
);
4564 /* Create a pointer to our virtual function table. */
4565 vptr
= create_vtable_ptr (t
, virtuals_p
);
4567 /* The vptr is always the first thing in the class. */
4570 TREE_CHAIN (vptr
) = TYPE_FIELDS (t
);
4571 TYPE_FIELDS (t
) = vptr
;
4572 next_field
= &TREE_CHAIN (vptr
);
4573 place_field (rli
, vptr
);
4576 next_field
= &TYPE_FIELDS (t
);
4578 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4579 empty_base_offsets
= splay_tree_new (splay_tree_compare_integer_csts
,
4581 build_base_fields (rli
, empty_base_offsets
, next_field
);
4583 /* Layout the non-static data members. */
4584 for (field
= non_static_data_members
; field
; field
= TREE_CHAIN (field
))
4589 /* We still pass things that aren't non-static data members to
4590 the back-end, in case it wants to do something with them. */
4591 if (TREE_CODE (field
) != FIELD_DECL
)
4593 place_field (rli
, field
);
4594 /* If the static data member has incomplete type, keep track
4595 of it so that it can be completed later. (The handling
4596 of pending statics in finish_record_layout is
4597 insufficient; consider:
4600 struct S2 { static S1 s1; };
4602 At this point, finish_record_layout will be called, but
4603 S1 is still incomplete.) */
4604 if (TREE_CODE (field
) == VAR_DECL
)
4606 maybe_register_incomplete_var (field
);
4607 /* The visibility of static data members is determined
4608 at their point of declaration, not their point of
4610 determine_visibility (field
);
4615 type
= TREE_TYPE (field
);
4616 if (type
== error_mark_node
)
4619 padding
= NULL_TREE
;
4621 /* If this field is a bit-field whose width is greater than its
4622 type, then there are some special rules for allocating
4624 if (DECL_C_BIT_FIELD (field
)
4625 && INT_CST_LT (TYPE_SIZE (type
), DECL_SIZE (field
)))
4627 integer_type_kind itk
;
4629 bool was_unnamed_p
= false;
4630 /* We must allocate the bits as if suitably aligned for the
4631 longest integer type that fits in this many bits. type
4632 of the field. Then, we are supposed to use the left over
4633 bits as additional padding. */
4634 for (itk
= itk_char
; itk
!= itk_none
; ++itk
)
4635 if (INT_CST_LT (DECL_SIZE (field
),
4636 TYPE_SIZE (integer_types
[itk
])))
4639 /* ITK now indicates a type that is too large for the
4640 field. We have to back up by one to find the largest
4642 integer_type
= integer_types
[itk
- 1];
4644 /* Figure out how much additional padding is required. GCC
4645 3.2 always created a padding field, even if it had zero
4647 if (!abi_version_at_least (2)
4648 || INT_CST_LT (TYPE_SIZE (integer_type
), DECL_SIZE (field
)))
4650 if (abi_version_at_least (2) && TREE_CODE (t
) == UNION_TYPE
)
4651 /* In a union, the padding field must have the full width
4652 of the bit-field; all fields start at offset zero. */
4653 padding
= DECL_SIZE (field
);
4656 if (TREE_CODE (t
) == UNION_TYPE
)
4657 warning (OPT_Wabi
, "size assigned to %qT may not be "
4658 "ABI-compliant and may change in a future "
4661 padding
= size_binop (MINUS_EXPR
, DECL_SIZE (field
),
4662 TYPE_SIZE (integer_type
));
4665 #ifdef PCC_BITFIELD_TYPE_MATTERS
4666 /* An unnamed bitfield does not normally affect the
4667 alignment of the containing class on a target where
4668 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4669 make any exceptions for unnamed bitfields when the
4670 bitfields are longer than their types. Therefore, we
4671 temporarily give the field a name. */
4672 if (PCC_BITFIELD_TYPE_MATTERS
&& !DECL_NAME (field
))
4674 was_unnamed_p
= true;
4675 DECL_NAME (field
) = make_anon_name ();
4678 DECL_SIZE (field
) = TYPE_SIZE (integer_type
);
4679 DECL_ALIGN (field
) = TYPE_ALIGN (integer_type
);
4680 DECL_USER_ALIGN (field
) = TYPE_USER_ALIGN (integer_type
);
4681 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4682 empty_base_offsets
);
4684 DECL_NAME (field
) = NULL_TREE
;
4685 /* Now that layout has been performed, set the size of the
4686 field to the size of its declared type; the rest of the
4687 field is effectively invisible. */
4688 DECL_SIZE (field
) = TYPE_SIZE (type
);
4689 /* We must also reset the DECL_MODE of the field. */
4690 if (abi_version_at_least (2))
4691 DECL_MODE (field
) = TYPE_MODE (type
);
4693 && DECL_MODE (field
) != TYPE_MODE (type
))
4694 /* Versions of G++ before G++ 3.4 did not reset the
4697 "the offset of %qD may not be ABI-compliant and may "
4698 "change in a future version of GCC", field
);
4701 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4702 empty_base_offsets
);
4704 /* Remember the location of any empty classes in FIELD. */
4705 if (abi_version_at_least (2))
4706 record_subobject_offsets (TREE_TYPE (field
),
4707 byte_position(field
),
4709 /*is_data_member=*/true);
4711 /* If a bit-field does not immediately follow another bit-field,
4712 and yet it starts in the middle of a byte, we have failed to
4713 comply with the ABI. */
4715 && DECL_C_BIT_FIELD (field
)
4716 /* The TREE_NO_WARNING flag gets set by Objective-C when
4717 laying out an Objective-C class. The ObjC ABI differs
4718 from the C++ ABI, and so we do not want a warning
4720 && !TREE_NO_WARNING (field
)
4721 && !last_field_was_bitfield
4722 && !integer_zerop (size_binop (TRUNC_MOD_EXPR
,
4723 DECL_FIELD_BIT_OFFSET (field
),
4724 bitsize_unit_node
)))
4725 warning (OPT_Wabi
, "offset of %q+D is not ABI-compliant and may "
4726 "change in a future version of GCC", field
);
4728 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4729 offset of the field. */
4731 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field
),
4732 byte_position (field
))
4733 && contains_empty_class_p (TREE_TYPE (field
)))
4734 warning (OPT_Wabi
, "%q+D contains empty classes which may cause base "
4735 "classes to be placed at different locations in a "
4736 "future version of GCC", field
);
4738 /* The middle end uses the type of expressions to determine the
4739 possible range of expression values. In order to optimize
4740 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4741 must be made aware of the width of "i", via its type.
4743 Because C++ does not have integer types of arbitrary width,
4744 we must (for the purposes of the front end) convert from the
4745 type assigned here to the declared type of the bitfield
4746 whenever a bitfield expression is used as an rvalue.
4747 Similarly, when assigning a value to a bitfield, the value
4748 must be converted to the type given the bitfield here. */
4749 if (DECL_C_BIT_FIELD (field
))
4752 unsigned HOST_WIDE_INT width
;
4753 ftype
= TREE_TYPE (field
);
4754 width
= tree_low_cst (DECL_SIZE (field
), /*unsignedp=*/1);
4755 if (width
!= TYPE_PRECISION (ftype
))
4757 = c_build_bitfield_integer_type (width
,
4758 TYPE_UNSIGNED (ftype
));
4761 /* If we needed additional padding after this field, add it
4767 padding_field
= build_decl (FIELD_DECL
,
4770 DECL_BIT_FIELD (padding_field
) = 1;
4771 DECL_SIZE (padding_field
) = padding
;
4772 DECL_CONTEXT (padding_field
) = t
;
4773 DECL_ARTIFICIAL (padding_field
) = 1;
4774 DECL_IGNORED_P (padding_field
) = 1;
4775 layout_nonempty_base_or_field (rli
, padding_field
,
4777 empty_base_offsets
);
4780 last_field_was_bitfield
= DECL_C_BIT_FIELD (field
);
4783 if (abi_version_at_least (2) && !integer_zerop (rli
->bitpos
))
4785 /* Make sure that we are on a byte boundary so that the size of
4786 the class without virtual bases will always be a round number
4788 rli
->bitpos
= round_up (rli
->bitpos
, BITS_PER_UNIT
);
4789 normalize_rli (rli
);
4792 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4794 if (!abi_version_at_least (2))
4795 include_empty_classes(rli
);
4797 /* Delete all zero-width bit-fields from the list of fields. Now
4798 that the type is laid out they are no longer important. */
4799 remove_zero_width_bit_fields (t
);
4801 /* Create the version of T used for virtual bases. We do not use
4802 make_aggr_type for this version; this is an artificial type. For
4803 a POD type, we just reuse T. */
4804 if (CLASSTYPE_NON_POD_P (t
) || CLASSTYPE_EMPTY_P (t
))
4806 base_t
= make_node (TREE_CODE (t
));
4808 /* Set the size and alignment for the new type. In G++ 3.2, all
4809 empty classes were considered to have size zero when used as
4811 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t
))
4813 TYPE_SIZE (base_t
) = bitsize_zero_node
;
4814 TYPE_SIZE_UNIT (base_t
) = size_zero_node
;
4815 if (warn_abi
&& !integer_zerop (rli_size_unit_so_far (rli
)))
4817 "layout of classes derived from empty class %qT "
4818 "may change in a future version of GCC",
4825 /* If the ABI version is not at least two, and the last
4826 field was a bit-field, RLI may not be on a byte
4827 boundary. In particular, rli_size_unit_so_far might
4828 indicate the last complete byte, while rli_size_so_far
4829 indicates the total number of bits used. Therefore,
4830 rli_size_so_far, rather than rli_size_unit_so_far, is
4831 used to compute TYPE_SIZE_UNIT. */
4832 eoc
= end_of_class (t
, /*include_virtuals_p=*/0);
4833 TYPE_SIZE_UNIT (base_t
)
4834 = size_binop (MAX_EXPR
,
4836 size_binop (CEIL_DIV_EXPR
,
4837 rli_size_so_far (rli
),
4838 bitsize_int (BITS_PER_UNIT
))),
4841 = size_binop (MAX_EXPR
,
4842 rli_size_so_far (rli
),
4843 size_binop (MULT_EXPR
,
4844 convert (bitsizetype
, eoc
),
4845 bitsize_int (BITS_PER_UNIT
)));
4847 TYPE_ALIGN (base_t
) = rli
->record_align
;
4848 TYPE_USER_ALIGN (base_t
) = TYPE_USER_ALIGN (t
);
4850 /* Copy the fields from T. */
4851 next_field
= &TYPE_FIELDS (base_t
);
4852 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4853 if (TREE_CODE (field
) == FIELD_DECL
)
4855 *next_field
= build_decl (FIELD_DECL
,
4858 DECL_CONTEXT (*next_field
) = base_t
;
4859 DECL_FIELD_OFFSET (*next_field
) = DECL_FIELD_OFFSET (field
);
4860 DECL_FIELD_BIT_OFFSET (*next_field
)
4861 = DECL_FIELD_BIT_OFFSET (field
);
4862 DECL_SIZE (*next_field
) = DECL_SIZE (field
);
4863 DECL_MODE (*next_field
) = DECL_MODE (field
);
4864 next_field
= &TREE_CHAIN (*next_field
);
4867 /* Record the base version of the type. */
4868 CLASSTYPE_AS_BASE (t
) = base_t
;
4869 TYPE_CONTEXT (base_t
) = t
;
4872 CLASSTYPE_AS_BASE (t
) = t
;
4874 /* Every empty class contains an empty class. */
4875 if (CLASSTYPE_EMPTY_P (t
))
4876 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
4878 /* Set the TYPE_DECL for this type to contain the right
4879 value for DECL_OFFSET, so that we can use it as part
4880 of a COMPONENT_REF for multiple inheritance. */
4881 layout_decl (TYPE_MAIN_DECL (t
), 0);
4883 /* Now fix up any virtual base class types that we left lying
4884 around. We must get these done before we try to lay out the
4885 virtual function table. As a side-effect, this will remove the
4886 base subobject fields. */
4887 layout_virtual_bases (rli
, empty_base_offsets
);
4889 /* Make sure that empty classes are reflected in RLI at this
4891 include_empty_classes(rli
);
4893 /* Make sure not to create any structures with zero size. */
4894 if (integer_zerop (rli_size_unit_so_far (rli
)) && CLASSTYPE_EMPTY_P (t
))
4896 build_decl (FIELD_DECL
, NULL_TREE
, char_type_node
));
4898 /* Let the back-end lay out the type. */
4899 finish_record_layout (rli
, /*free_p=*/true);
4901 /* Warn about bases that can't be talked about due to ambiguity. */
4902 warn_about_ambiguous_bases (t
);
4904 /* Now that we're done with layout, give the base fields the real types. */
4905 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4906 if (DECL_ARTIFICIAL (field
) && IS_FAKE_BASE_TYPE (TREE_TYPE (field
)))
4907 TREE_TYPE (field
) = TYPE_CONTEXT (TREE_TYPE (field
));
4910 splay_tree_delete (empty_base_offsets
);
4912 if (CLASSTYPE_EMPTY_P (t
)
4913 && tree_int_cst_lt (sizeof_biggest_empty_class
,
4914 TYPE_SIZE_UNIT (t
)))
4915 sizeof_biggest_empty_class
= TYPE_SIZE_UNIT (t
);
4918 /* Determine the "key method" for the class type indicated by TYPE,
4919 and set CLASSTYPE_KEY_METHOD accordingly. */
4922 determine_key_method (tree type
)
4926 if (TYPE_FOR_JAVA (type
)
4927 || processing_template_decl
4928 || CLASSTYPE_TEMPLATE_INSTANTIATION (type
)
4929 || CLASSTYPE_INTERFACE_KNOWN (type
))
4932 /* The key method is the first non-pure virtual function that is not
4933 inline at the point of class definition. On some targets the
4934 key function may not be inline; those targets should not call
4935 this function until the end of the translation unit. */
4936 for (method
= TYPE_METHODS (type
); method
!= NULL_TREE
;
4937 method
= TREE_CHAIN (method
))
4938 if (DECL_VINDEX (method
) != NULL_TREE
4939 && ! DECL_DECLARED_INLINE_P (method
)
4940 && ! DECL_PURE_VIRTUAL_P (method
))
4942 CLASSTYPE_KEY_METHOD (type
) = method
;
4949 /* Perform processing required when the definition of T (a class type)
4953 finish_struct_1 (tree t
)
4956 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4957 tree virtuals
= NULL_TREE
;
4960 if (COMPLETE_TYPE_P (t
))
4962 gcc_assert (IS_AGGR_TYPE (t
));
4963 error ("redefinition of %q#T", t
);
4968 /* If this type was previously laid out as a forward reference,
4969 make sure we lay it out again. */
4970 TYPE_SIZE (t
) = NULL_TREE
;
4971 CLASSTYPE_PRIMARY_BINFO (t
) = NULL_TREE
;
4973 fixup_inline_methods (t
);
4975 /* Make assumptions about the class; we'll reset the flags if
4977 CLASSTYPE_EMPTY_P (t
) = 1;
4978 CLASSTYPE_NEARLY_EMPTY_P (t
) = 1;
4979 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 0;
4981 /* Do end-of-class semantic processing: checking the validity of the
4982 bases and members and add implicitly generated methods. */
4983 check_bases_and_members (t
);
4985 /* Find the key method. */
4986 if (TYPE_CONTAINS_VPTR_P (t
))
4988 /* The Itanium C++ ABI permits the key method to be chosen when
4989 the class is defined -- even though the key method so
4990 selected may later turn out to be an inline function. On
4991 some systems (such as ARM Symbian OS) the key method cannot
4992 be determined until the end of the translation unit. On such
4993 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4994 will cause the class to be added to KEYED_CLASSES. Then, in
4995 finish_file we will determine the key method. */
4996 if (targetm
.cxx
.key_method_may_be_inline ())
4997 determine_key_method (t
);
4999 /* If a polymorphic class has no key method, we may emit the vtable
5000 in every translation unit where the class definition appears. */
5001 if (CLASSTYPE_KEY_METHOD (t
) == NULL_TREE
)
5002 keyed_classes
= tree_cons (NULL_TREE
, t
, keyed_classes
);
5005 /* Layout the class itself. */
5006 layout_class_type (t
, &virtuals
);
5007 if (CLASSTYPE_AS_BASE (t
) != t
)
5008 /* We use the base type for trivial assignments, and hence it
5010 compute_record_mode (CLASSTYPE_AS_BASE (t
));
5012 virtuals
= modify_all_vtables (t
, nreverse (virtuals
));
5014 /* If necessary, create the primary vtable for this class. */
5015 if (virtuals
|| TYPE_CONTAINS_VPTR_P (t
))
5017 /* We must enter these virtuals into the table. */
5018 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5019 build_primary_vtable (NULL_TREE
, t
);
5020 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t
)))
5021 /* Here we know enough to change the type of our virtual
5022 function table, but we will wait until later this function. */
5023 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t
), t
);
5026 if (TYPE_CONTAINS_VPTR_P (t
))
5031 if (BINFO_VTABLE (TYPE_BINFO (t
)))
5032 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t
))));
5033 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5034 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t
)) == NULL_TREE
);
5036 /* Add entries for virtual functions introduced by this class. */
5037 BINFO_VIRTUALS (TYPE_BINFO (t
))
5038 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t
)), virtuals
);
5040 /* Set DECL_VINDEX for all functions declared in this class. */
5041 for (vindex
= 0, fn
= BINFO_VIRTUALS (TYPE_BINFO (t
));
5043 fn
= TREE_CHAIN (fn
),
5044 vindex
+= (TARGET_VTABLE_USES_DESCRIPTORS
5045 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1))
5047 tree fndecl
= BV_FN (fn
);
5049 if (DECL_THUNK_P (fndecl
))
5050 /* A thunk. We should never be calling this entry directly
5051 from this vtable -- we'd use the entry for the non
5052 thunk base function. */
5053 DECL_VINDEX (fndecl
) = NULL_TREE
;
5054 else if (TREE_CODE (DECL_VINDEX (fndecl
)) != INTEGER_CST
)
5055 DECL_VINDEX (fndecl
) = build_int_cst (NULL_TREE
, vindex
);
5059 finish_struct_bits (t
);
5061 /* Complete the rtl for any static member objects of the type we're
5063 for (x
= TYPE_FIELDS (t
); x
; x
= TREE_CHAIN (x
))
5064 if (TREE_CODE (x
) == VAR_DECL
&& TREE_STATIC (x
)
5065 && TREE_TYPE (x
) != error_mark_node
5066 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x
)), t
))
5067 DECL_MODE (x
) = TYPE_MODE (t
);
5069 /* Done with FIELDS...now decide whether to sort these for
5070 faster lookups later.
5072 We use a small number because most searches fail (succeeding
5073 ultimately as the search bores through the inheritance
5074 hierarchy), and we want this failure to occur quickly. */
5076 n_fields
= count_fields (TYPE_FIELDS (t
));
5079 struct sorted_fields_type
*field_vec
= GGC_NEWVAR
5080 (struct sorted_fields_type
,
5081 sizeof (struct sorted_fields_type
) + n_fields
* sizeof (tree
));
5082 field_vec
->len
= n_fields
;
5083 add_fields_to_record_type (TYPE_FIELDS (t
), field_vec
, 0);
5084 qsort (field_vec
->elts
, n_fields
, sizeof (tree
),
5086 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t
)))
5087 retrofit_lang_decl (TYPE_MAIN_DECL (t
));
5088 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t
)) = field_vec
;
5091 /* Complain if one of the field types requires lower visibility. */
5092 constrain_class_visibility (t
);
5094 /* Make the rtl for any new vtables we have created, and unmark
5095 the base types we marked. */
5098 /* Build the VTT for T. */
5101 /* This warning does not make sense for Java classes, since they
5102 cannot have destructors. */
5103 if (!TYPE_FOR_JAVA (t
) && warn_nonvdtor
&& TYPE_POLYMORPHIC_P (t
))
5107 dtor
= CLASSTYPE_DESTRUCTORS (t
);
5108 /* Warn only if the dtor is non-private or the class has
5110 if (/* An implicitly declared destructor is always public. And,
5111 if it were virtual, we would have created it by now. */
5113 || (!DECL_VINDEX (dtor
)
5114 && (!TREE_PRIVATE (dtor
)
5115 || CLASSTYPE_FRIEND_CLASSES (t
)
5116 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))))
5117 warning (0, "%q#T has virtual functions but non-virtual destructor",
5123 if (warn_overloaded_virtual
)
5126 /* Class layout, assignment of virtual table slots, etc., is now
5127 complete. Give the back end a chance to tweak the visibility of
5128 the class or perform any other required target modifications. */
5129 targetm
.cxx
.adjust_class_at_definition (t
);
5131 maybe_suppress_debug_info (t
);
5133 dump_class_hierarchy (t
);
5135 /* Finish debugging output for this type. */
5136 rest_of_type_compilation (t
, ! LOCAL_CLASS_P (t
));
5139 /* When T was built up, the member declarations were added in reverse
5140 order. Rearrange them to declaration order. */
5143 unreverse_member_declarations (tree t
)
5149 /* The following lists are all in reverse order. Put them in
5150 declaration order now. */
5151 TYPE_METHODS (t
) = nreverse (TYPE_METHODS (t
));
5152 CLASSTYPE_DECL_LIST (t
) = nreverse (CLASSTYPE_DECL_LIST (t
));
5154 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5155 reverse order, so we can't just use nreverse. */
5157 for (x
= TYPE_FIELDS (t
);
5158 x
&& TREE_CODE (x
) != TYPE_DECL
;
5161 next
= TREE_CHAIN (x
);
5162 TREE_CHAIN (x
) = prev
;
5167 TREE_CHAIN (TYPE_FIELDS (t
)) = x
;
5169 TYPE_FIELDS (t
) = prev
;
5174 finish_struct (tree t
, tree attributes
)
5176 location_t saved_loc
= input_location
;
5178 /* Now that we've got all the field declarations, reverse everything
5180 unreverse_member_declarations (t
);
5182 cplus_decl_attributes (&t
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
5184 /* Nadger the current location so that diagnostics point to the start of
5185 the struct, not the end. */
5186 input_location
= DECL_SOURCE_LOCATION (TYPE_NAME (t
));
5188 if (processing_template_decl
)
5192 finish_struct_methods (t
);
5193 TYPE_SIZE (t
) = bitsize_zero_node
;
5194 TYPE_SIZE_UNIT (t
) = size_zero_node
;
5196 /* We need to emit an error message if this type was used as a parameter
5197 and it is an abstract type, even if it is a template. We construct
5198 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5199 account and we call complete_vars with this type, which will check
5200 the PARM_DECLS. Note that while the type is being defined,
5201 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5202 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5203 CLASSTYPE_PURE_VIRTUALS (t
) = NULL
;
5204 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
5205 if (DECL_PURE_VIRTUAL_P (x
))
5206 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
5210 finish_struct_1 (t
);
5212 input_location
= saved_loc
;
5214 TYPE_BEING_DEFINED (t
) = 0;
5216 if (current_class_type
)
5219 error ("trying to finish struct, but kicked out due to previous parse errors");
5221 if (processing_template_decl
&& at_function_scope_p ())
5222 add_stmt (build_min (TAG_DEFN
, t
));
5227 /* Return the dynamic type of INSTANCE, if known.
5228 Used to determine whether the virtual function table is needed
5231 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5232 of our knowledge of its type. *NONNULL should be initialized
5233 before this function is called. */
5236 fixed_type_or_null (tree instance
, int* nonnull
, int* cdtorp
)
5238 switch (TREE_CODE (instance
))
5241 if (POINTER_TYPE_P (TREE_TYPE (instance
)))
5244 return fixed_type_or_null (TREE_OPERAND (instance
, 0),
5248 /* This is a call to a constructor, hence it's never zero. */
5249 if (TREE_HAS_CONSTRUCTOR (instance
))
5253 return TREE_TYPE (instance
);
5258 /* This is a call to a constructor, hence it's never zero. */
5259 if (TREE_HAS_CONSTRUCTOR (instance
))
5263 return TREE_TYPE (instance
);
5265 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5269 if (TREE_CODE (TREE_OPERAND (instance
, 0)) == ADDR_EXPR
)
5270 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5271 if (TREE_CODE (TREE_OPERAND (instance
, 1)) == INTEGER_CST
)
5272 /* Propagate nonnull. */
5273 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5278 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5281 instance
= TREE_OPERAND (instance
, 0);
5284 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5285 with a real object -- given &p->f, p can still be null. */
5286 tree t
= get_base_address (instance
);
5287 /* ??? Probably should check DECL_WEAK here. */
5288 if (t
&& DECL_P (t
))
5291 return fixed_type_or_null (instance
, nonnull
, cdtorp
);
5294 /* If this component is really a base class reference, then the field
5295 itself isn't definitive. */
5296 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance
, 1)))
5297 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5298 return fixed_type_or_null (TREE_OPERAND (instance
, 1), nonnull
, cdtorp
);
5302 if (TREE_CODE (TREE_TYPE (instance
)) == ARRAY_TYPE
5303 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance
))))
5307 return TREE_TYPE (TREE_TYPE (instance
));
5309 /* fall through... */
5313 if (IS_AGGR_TYPE (TREE_TYPE (instance
)))
5317 return TREE_TYPE (instance
);
5319 else if (instance
== current_class_ptr
)
5324 /* if we're in a ctor or dtor, we know our type. */
5325 if (DECL_LANG_SPECIFIC (current_function_decl
)
5326 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5327 || DECL_DESTRUCTOR_P (current_function_decl
)))
5331 return TREE_TYPE (TREE_TYPE (instance
));
5334 else if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
5336 /* Reference variables should be references to objects. */
5340 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5341 variable's initializer may refer to the variable
5343 if (TREE_CODE (instance
) == VAR_DECL
5344 && DECL_INITIAL (instance
)
5345 && !DECL_VAR_MARKED_P (instance
))
5348 DECL_VAR_MARKED_P (instance
) = 1;
5349 type
= fixed_type_or_null (DECL_INITIAL (instance
),
5351 DECL_VAR_MARKED_P (instance
) = 0;
5362 /* Return nonzero if the dynamic type of INSTANCE is known, and
5363 equivalent to the static type. We also handle the case where
5364 INSTANCE is really a pointer. Return negative if this is a
5365 ctor/dtor. There the dynamic type is known, but this might not be
5366 the most derived base of the original object, and hence virtual
5367 bases may not be layed out according to this type.
5369 Used to determine whether the virtual function table is needed
5372 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5373 of our knowledge of its type. *NONNULL should be initialized
5374 before this function is called. */
5377 resolves_to_fixed_type_p (tree instance
, int* nonnull
)
5379 tree t
= TREE_TYPE (instance
);
5382 tree fixed
= fixed_type_or_null (instance
, nonnull
, &cdtorp
);
5383 if (fixed
== NULL_TREE
)
5385 if (POINTER_TYPE_P (t
))
5387 if (!same_type_ignoring_top_level_qualifiers_p (t
, fixed
))
5389 return cdtorp
? -1 : 1;
5394 init_class_processing (void)
5396 current_class_depth
= 0;
5397 current_class_stack_size
= 10;
5399 = XNEWVEC (struct class_stack_node
, current_class_stack_size
);
5400 local_classes
= VEC_alloc (tree
, gc
, 8);
5401 sizeof_biggest_empty_class
= size_zero_node
;
5403 ridpointers
[(int) RID_PUBLIC
] = access_public_node
;
5404 ridpointers
[(int) RID_PRIVATE
] = access_private_node
;
5405 ridpointers
[(int) RID_PROTECTED
] = access_protected_node
;
5408 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5411 restore_class_cache (void)
5415 /* We are re-entering the same class we just left, so we don't
5416 have to search the whole inheritance matrix to find all the
5417 decls to bind again. Instead, we install the cached
5418 class_shadowed list and walk through it binding names. */
5419 push_binding_level (previous_class_level
);
5420 class_binding_level
= previous_class_level
;
5421 /* Restore IDENTIFIER_TYPE_VALUE. */
5422 for (type
= class_binding_level
->type_shadowed
;
5424 type
= TREE_CHAIN (type
))
5425 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type
), TREE_TYPE (type
));
5428 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5429 appropriate for TYPE.
5431 So that we may avoid calls to lookup_name, we cache the _TYPE
5432 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5434 For multiple inheritance, we perform a two-pass depth-first search
5435 of the type lattice. */
5438 pushclass (tree type
)
5440 class_stack_node_t csn
;
5442 type
= TYPE_MAIN_VARIANT (type
);
5444 /* Make sure there is enough room for the new entry on the stack. */
5445 if (current_class_depth
+ 1 >= current_class_stack_size
)
5447 current_class_stack_size
*= 2;
5449 = XRESIZEVEC (struct class_stack_node
, current_class_stack
,
5450 current_class_stack_size
);
5453 /* Insert a new entry on the class stack. */
5454 csn
= current_class_stack
+ current_class_depth
;
5455 csn
->name
= current_class_name
;
5456 csn
->type
= current_class_type
;
5457 csn
->access
= current_access_specifier
;
5458 csn
->names_used
= 0;
5460 current_class_depth
++;
5462 /* Now set up the new type. */
5463 current_class_name
= TYPE_NAME (type
);
5464 if (TREE_CODE (current_class_name
) == TYPE_DECL
)
5465 current_class_name
= DECL_NAME (current_class_name
);
5466 current_class_type
= type
;
5468 /* By default, things in classes are private, while things in
5469 structures or unions are public. */
5470 current_access_specifier
= (CLASSTYPE_DECLARED_CLASS (type
)
5471 ? access_private_node
5472 : access_public_node
);
5474 if (previous_class_level
5475 && type
!= previous_class_level
->this_entity
5476 && current_class_depth
== 1)
5478 /* Forcibly remove any old class remnants. */
5479 invalidate_class_lookup_cache ();
5482 if (!previous_class_level
5483 || type
!= previous_class_level
->this_entity
5484 || current_class_depth
> 1)
5487 restore_class_cache ();
5490 /* When we exit a toplevel class scope, we save its binding level so
5491 that we can restore it quickly. Here, we've entered some other
5492 class, so we must invalidate our cache. */
5495 invalidate_class_lookup_cache (void)
5497 previous_class_level
= NULL
;
5500 /* Get out of the current class scope. If we were in a class scope
5501 previously, that is the one popped to. */
5508 current_class_depth
--;
5509 current_class_name
= current_class_stack
[current_class_depth
].name
;
5510 current_class_type
= current_class_stack
[current_class_depth
].type
;
5511 current_access_specifier
= current_class_stack
[current_class_depth
].access
;
5512 if (current_class_stack
[current_class_depth
].names_used
)
5513 splay_tree_delete (current_class_stack
[current_class_depth
].names_used
);
5516 /* Mark the top of the class stack as hidden. */
5519 push_class_stack (void)
5521 if (current_class_depth
)
5522 ++current_class_stack
[current_class_depth
- 1].hidden
;
5525 /* Mark the top of the class stack as un-hidden. */
5528 pop_class_stack (void)
5530 if (current_class_depth
)
5531 --current_class_stack
[current_class_depth
- 1].hidden
;
5534 /* Returns 1 if the class type currently being defined is either T or
5535 a nested type of T. */
5538 currently_open_class (tree t
)
5542 /* We start looking from 1 because entry 0 is from global scope,
5544 for (i
= current_class_depth
; i
> 0; --i
)
5547 if (i
== current_class_depth
)
5548 c
= current_class_type
;
5551 if (current_class_stack
[i
].hidden
)
5553 c
= current_class_stack
[i
].type
;
5557 if (same_type_p (c
, t
))
5563 /* If either current_class_type or one of its enclosing classes are derived
5564 from T, return the appropriate type. Used to determine how we found
5565 something via unqualified lookup. */
5568 currently_open_derived_class (tree t
)
5572 /* The bases of a dependent type are unknown. */
5573 if (dependent_type_p (t
))
5576 if (!current_class_type
)
5579 if (DERIVED_FROM_P (t
, current_class_type
))
5580 return current_class_type
;
5582 for (i
= current_class_depth
- 1; i
> 0; --i
)
5584 if (current_class_stack
[i
].hidden
)
5586 if (DERIVED_FROM_P (t
, current_class_stack
[i
].type
))
5587 return current_class_stack
[i
].type
;
5593 /* When entering a class scope, all enclosing class scopes' names with
5594 static meaning (static variables, static functions, types and
5595 enumerators) have to be visible. This recursive function calls
5596 pushclass for all enclosing class contexts until global or a local
5597 scope is reached. TYPE is the enclosed class. */
5600 push_nested_class (tree type
)
5604 /* A namespace might be passed in error cases, like A::B:C. */
5605 if (type
== NULL_TREE
5606 || type
== error_mark_node
5607 || TREE_CODE (type
) == NAMESPACE_DECL
5608 || ! IS_AGGR_TYPE (type
)
5609 || TREE_CODE (type
) == TEMPLATE_TYPE_PARM
5610 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
)
5613 context
= DECL_CONTEXT (TYPE_MAIN_DECL (type
));
5615 if (context
&& CLASS_TYPE_P (context
))
5616 push_nested_class (context
);
5620 /* Undoes a push_nested_class call. */
5623 pop_nested_class (void)
5625 tree context
= DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type
));
5628 if (context
&& CLASS_TYPE_P (context
))
5629 pop_nested_class ();
5632 /* Returns the number of extern "LANG" blocks we are nested within. */
5635 current_lang_depth (void)
5637 return VEC_length (tree
, current_lang_base
);
5640 /* Set global variables CURRENT_LANG_NAME to appropriate value
5641 so that behavior of name-mangling machinery is correct. */
5644 push_lang_context (tree name
)
5646 VEC_safe_push (tree
, gc
, current_lang_base
, current_lang_name
);
5648 if (name
== lang_name_cplusplus
)
5650 current_lang_name
= name
;
5652 else if (name
== lang_name_java
)
5654 current_lang_name
= name
;
5655 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5656 (See record_builtin_java_type in decl.c.) However, that causes
5657 incorrect debug entries if these types are actually used.
5658 So we re-enable debug output after extern "Java". */
5659 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node
)) = 0;
5660 DECL_IGNORED_P (TYPE_NAME (java_short_type_node
)) = 0;
5661 DECL_IGNORED_P (TYPE_NAME (java_int_type_node
)) = 0;
5662 DECL_IGNORED_P (TYPE_NAME (java_long_type_node
)) = 0;
5663 DECL_IGNORED_P (TYPE_NAME (java_float_type_node
)) = 0;
5664 DECL_IGNORED_P (TYPE_NAME (java_double_type_node
)) = 0;
5665 DECL_IGNORED_P (TYPE_NAME (java_char_type_node
)) = 0;
5666 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node
)) = 0;
5668 else if (name
== lang_name_c
)
5670 current_lang_name
= name
;
5673 error ("language string %<\"%E\"%> not recognized", name
);
5676 /* Get out of the current language scope. */
5679 pop_lang_context (void)
5681 current_lang_name
= VEC_pop (tree
, current_lang_base
);
5684 /* Type instantiation routines. */
5686 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5687 matches the TARGET_TYPE. If there is no satisfactory match, return
5688 error_mark_node, and issue an error & warning messages under
5689 control of FLAGS. Permit pointers to member function if FLAGS
5690 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5691 a template-id, and EXPLICIT_TARGS are the explicitly provided
5692 template arguments. If OVERLOAD is for one or more member
5693 functions, then ACCESS_PATH is the base path used to reference
5694 those member functions. */
5697 resolve_address_of_overloaded_function (tree target_type
,
5699 tsubst_flags_t flags
,
5701 tree explicit_targs
,
5704 /* Here's what the standard says:
5708 If the name is a function template, template argument deduction
5709 is done, and if the argument deduction succeeds, the deduced
5710 arguments are used to generate a single template function, which
5711 is added to the set of overloaded functions considered.
5713 Non-member functions and static member functions match targets of
5714 type "pointer-to-function" or "reference-to-function." Nonstatic
5715 member functions match targets of type "pointer-to-member
5716 function;" the function type of the pointer to member is used to
5717 select the member function from the set of overloaded member
5718 functions. If a nonstatic member function is selected, the
5719 reference to the overloaded function name is required to have the
5720 form of a pointer to member as described in 5.3.1.
5722 If more than one function is selected, any template functions in
5723 the set are eliminated if the set also contains a non-template
5724 function, and any given template function is eliminated if the
5725 set contains a second template function that is more specialized
5726 than the first according to the partial ordering rules 14.5.5.2.
5727 After such eliminations, if any, there shall remain exactly one
5728 selected function. */
5731 int is_reference
= 0;
5732 /* We store the matches in a TREE_LIST rooted here. The functions
5733 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5734 interoperability with most_specialized_instantiation. */
5735 tree matches
= NULL_TREE
;
5738 /* By the time we get here, we should be seeing only real
5739 pointer-to-member types, not the internal POINTER_TYPE to
5740 METHOD_TYPE representation. */
5741 gcc_assert (TREE_CODE (target_type
) != POINTER_TYPE
5742 || TREE_CODE (TREE_TYPE (target_type
)) != METHOD_TYPE
);
5744 gcc_assert (is_overloaded_fn (overload
));
5746 /* Check that the TARGET_TYPE is reasonable. */
5747 if (TYPE_PTRFN_P (target_type
))
5749 else if (TYPE_PTRMEMFUNC_P (target_type
))
5750 /* This is OK, too. */
5752 else if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
5754 /* This is OK, too. This comes from a conversion to reference
5756 target_type
= build_reference_type (target_type
);
5761 if (flags
& tf_error
)
5762 error ("cannot resolve overloaded function %qD based on"
5763 " conversion to type %qT",
5764 DECL_NAME (OVL_FUNCTION (overload
)), target_type
);
5765 return error_mark_node
;
5768 /* If we can find a non-template function that matches, we can just
5769 use it. There's no point in generating template instantiations
5770 if we're just going to throw them out anyhow. But, of course, we
5771 can only do this when we don't *need* a template function. */
5776 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5778 tree fn
= OVL_CURRENT (fns
);
5781 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
5782 /* We're not looking for templates just yet. */
5785 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5787 /* We're looking for a non-static member, and this isn't
5788 one, or vice versa. */
5791 /* Ignore functions which haven't been explicitly
5793 if (DECL_ANTICIPATED (fn
))
5796 /* See if there's a match. */
5797 fntype
= TREE_TYPE (fn
);
5799 fntype
= build_ptrmemfunc_type (build_pointer_type (fntype
));
5800 else if (!is_reference
)
5801 fntype
= build_pointer_type (fntype
);
5803 if (can_convert_arg (target_type
, fntype
, fn
, LOOKUP_NORMAL
))
5804 matches
= tree_cons (fn
, NULL_TREE
, matches
);
5808 /* Now, if we've already got a match (or matches), there's no need
5809 to proceed to the template functions. But, if we don't have a
5810 match we need to look at them, too. */
5813 tree target_fn_type
;
5814 tree target_arg_types
;
5815 tree target_ret_type
;
5820 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type
));
5822 target_fn_type
= TREE_TYPE (target_type
);
5823 target_arg_types
= TYPE_ARG_TYPES (target_fn_type
);
5824 target_ret_type
= TREE_TYPE (target_fn_type
);
5826 /* Never do unification on the 'this' parameter. */
5827 if (TREE_CODE (target_fn_type
) == METHOD_TYPE
)
5828 target_arg_types
= TREE_CHAIN (target_arg_types
);
5830 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5832 tree fn
= OVL_CURRENT (fns
);
5834 tree instantiation_type
;
5837 if (TREE_CODE (fn
) != TEMPLATE_DECL
)
5838 /* We're only looking for templates. */
5841 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5843 /* We're not looking for a non-static member, and this is
5844 one, or vice versa. */
5847 /* Try to do argument deduction. */
5848 targs
= make_tree_vec (DECL_NTPARMS (fn
));
5849 if (fn_type_unification (fn
, explicit_targs
, targs
,
5850 target_arg_types
, target_ret_type
,
5851 DEDUCE_EXACT
, LOOKUP_NORMAL
))
5852 /* Argument deduction failed. */
5855 /* Instantiate the template. */
5856 instantiation
= instantiate_template (fn
, targs
, flags
);
5857 if (instantiation
== error_mark_node
)
5858 /* Instantiation failed. */
5861 /* See if there's a match. */
5862 instantiation_type
= TREE_TYPE (instantiation
);
5864 instantiation_type
=
5865 build_ptrmemfunc_type (build_pointer_type (instantiation_type
));
5866 else if (!is_reference
)
5867 instantiation_type
= build_pointer_type (instantiation_type
);
5868 if (can_convert_arg (target_type
, instantiation_type
, instantiation
,
5870 matches
= tree_cons (instantiation
, fn
, matches
);
5873 /* Now, remove all but the most specialized of the matches. */
5876 tree match
= most_specialized_instantiation (matches
);
5878 if (match
!= error_mark_node
)
5879 matches
= tree_cons (TREE_PURPOSE (match
),
5885 /* Now we should have exactly one function in MATCHES. */
5886 if (matches
== NULL_TREE
)
5888 /* There were *no* matches. */
5889 if (flags
& tf_error
)
5891 error ("no matches converting function %qD to type %q#T",
5892 DECL_NAME (OVL_FUNCTION (overload
)),
5895 /* print_candidates expects a chain with the functions in
5896 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5897 so why be clever?). */
5898 for (; overload
; overload
= OVL_NEXT (overload
))
5899 matches
= tree_cons (NULL_TREE
, OVL_CURRENT (overload
),
5902 print_candidates (matches
);
5904 return error_mark_node
;
5906 else if (TREE_CHAIN (matches
))
5908 /* There were too many matches. */
5910 if (flags
& tf_error
)
5914 error ("converting overloaded function %qD to type %q#T is ambiguous",
5915 DECL_NAME (OVL_FUNCTION (overload
)),
5918 /* Since print_candidates expects the functions in the
5919 TREE_VALUE slot, we flip them here. */
5920 for (match
= matches
; match
; match
= TREE_CHAIN (match
))
5921 TREE_VALUE (match
) = TREE_PURPOSE (match
);
5923 print_candidates (matches
);
5926 return error_mark_node
;
5929 /* Good, exactly one match. Now, convert it to the correct type. */
5930 fn
= TREE_PURPOSE (matches
);
5932 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
5933 && !(flags
& tf_ptrmem_ok
) && !flag_ms_extensions
)
5935 static int explained
;
5937 if (!(flags
& tf_error
))
5938 return error_mark_node
;
5940 pedwarn ("assuming pointer to member %qD", fn
);
5943 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn
);
5948 /* If we're doing overload resolution purely for the purpose of
5949 determining conversion sequences, we should not consider the
5950 function used. If this conversion sequence is selected, the
5951 function will be marked as used at this point. */
5952 if (!(flags
& tf_conv
))
5955 /* We could not check access when this expression was originally
5956 created since we did not know at that time to which function
5957 the expression referred. */
5958 if (DECL_FUNCTION_MEMBER_P (fn
))
5960 gcc_assert (access_path
);
5961 perform_or_defer_access_check (access_path
, fn
, fn
);
5965 if (TYPE_PTRFN_P (target_type
) || TYPE_PTRMEMFUNC_P (target_type
))
5966 return build_unary_op (ADDR_EXPR
, fn
, 0);
5969 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5970 will mark the function as addressed, but here we must do it
5972 cxx_mark_addressable (fn
);
5978 /* This function will instantiate the type of the expression given in
5979 RHS to match the type of LHSTYPE. If errors exist, then return
5980 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5981 we complain on errors. If we are not complaining, never modify rhs,
5982 as overload resolution wants to try many possible instantiations, in
5983 the hope that at least one will work.
5985 For non-recursive calls, LHSTYPE should be a function, pointer to
5986 function, or a pointer to member function. */
5989 instantiate_type (tree lhstype
, tree rhs
, tsubst_flags_t flags
)
5991 tsubst_flags_t flags_in
= flags
;
5992 tree access_path
= NULL_TREE
;
5994 flags
&= ~tf_ptrmem_ok
;
5996 if (TREE_CODE (lhstype
) == UNKNOWN_TYPE
)
5998 if (flags
& tf_error
)
5999 error ("not enough type information");
6000 return error_mark_node
;
6003 if (TREE_TYPE (rhs
) != NULL_TREE
&& ! (type_unknown_p (rhs
)))
6005 if (same_type_p (lhstype
, TREE_TYPE (rhs
)))
6007 if (flag_ms_extensions
6008 && TYPE_PTRMEMFUNC_P (lhstype
)
6009 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs
)))
6010 /* Microsoft allows `A::f' to be resolved to a
6011 pointer-to-member. */
6015 if (flags
& tf_error
)
6016 error ("argument of type %qT does not match %qT",
6017 TREE_TYPE (rhs
), lhstype
);
6018 return error_mark_node
;
6022 if (TREE_CODE (rhs
) == BASELINK
)
6024 access_path
= BASELINK_ACCESS_BINFO (rhs
);
6025 rhs
= BASELINK_FUNCTIONS (rhs
);
6028 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6029 deduce any type information. */
6030 if (TREE_CODE (rhs
) == NON_DEPENDENT_EXPR
)
6032 if (flags
& tf_error
)
6033 error ("not enough type information");
6034 return error_mark_node
;
6037 /* There only a few kinds of expressions that may have a type
6038 dependent on overload resolution. */
6039 gcc_assert (TREE_CODE (rhs
) == ADDR_EXPR
6040 || TREE_CODE (rhs
) == COMPONENT_REF
6041 || TREE_CODE (rhs
) == COMPOUND_EXPR
6042 || really_overloaded_fn (rhs
));
6044 /* We don't overwrite rhs if it is an overloaded function.
6045 Copying it would destroy the tree link. */
6046 if (TREE_CODE (rhs
) != OVERLOAD
)
6047 rhs
= copy_node (rhs
);
6049 /* This should really only be used when attempting to distinguish
6050 what sort of a pointer to function we have. For now, any
6051 arithmetic operation which is not supported on pointers
6052 is rejected as an error. */
6054 switch (TREE_CODE (rhs
))
6058 tree member
= TREE_OPERAND (rhs
, 1);
6060 member
= instantiate_type (lhstype
, member
, flags
);
6061 if (member
!= error_mark_node
6062 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs
, 0)))
6063 /* Do not lose object's side effects. */
6064 return build2 (COMPOUND_EXPR
, TREE_TYPE (member
),
6065 TREE_OPERAND (rhs
, 0), member
);
6070 rhs
= TREE_OPERAND (rhs
, 1);
6071 if (BASELINK_P (rhs
))
6072 return instantiate_type (lhstype
, rhs
, flags_in
);
6074 /* This can happen if we are forming a pointer-to-member for a
6076 gcc_assert (TREE_CODE (rhs
) == TEMPLATE_ID_EXPR
);
6080 case TEMPLATE_ID_EXPR
:
6082 tree fns
= TREE_OPERAND (rhs
, 0);
6083 tree args
= TREE_OPERAND (rhs
, 1);
6086 resolve_address_of_overloaded_function (lhstype
, fns
, flags_in
,
6087 /*template_only=*/true,
6094 resolve_address_of_overloaded_function (lhstype
, rhs
, flags_in
,
6095 /*template_only=*/false,
6096 /*explicit_targs=*/NULL_TREE
,
6100 TREE_OPERAND (rhs
, 0)
6101 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6102 if (TREE_OPERAND (rhs
, 0) == error_mark_node
)
6103 return error_mark_node
;
6104 TREE_OPERAND (rhs
, 1)
6105 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 1), flags
);
6106 if (TREE_OPERAND (rhs
, 1) == error_mark_node
)
6107 return error_mark_node
;
6109 TREE_TYPE (rhs
) = lhstype
;
6114 if (PTRMEM_OK_P (rhs
))
6115 flags
|= tf_ptrmem_ok
;
6117 return instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6121 return error_mark_node
;
6126 return error_mark_node
;
6129 /* Return the name of the virtual function pointer field
6130 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6131 this may have to look back through base types to find the
6132 ultimate field name. (For single inheritance, these could
6133 all be the same name. Who knows for multiple inheritance). */
6136 get_vfield_name (tree type
)
6138 tree binfo
, base_binfo
;
6141 for (binfo
= TYPE_BINFO (type
);
6142 BINFO_N_BASE_BINFOS (binfo
);
6145 base_binfo
= BINFO_BASE_BINFO (binfo
, 0);
6147 if (BINFO_VIRTUAL_P (base_binfo
)
6148 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo
)))
6152 type
= BINFO_TYPE (binfo
);
6153 buf
= (char *) alloca (sizeof (VFIELD_NAME_FORMAT
)
6154 + TYPE_NAME_LENGTH (type
) + 2);
6155 sprintf (buf
, VFIELD_NAME_FORMAT
,
6156 IDENTIFIER_POINTER (constructor_name (type
)));
6157 return get_identifier (buf
);
6161 print_class_statistics (void)
6163 #ifdef GATHER_STATISTICS
6164 fprintf (stderr
, "convert_harshness = %d\n", n_convert_harshness
);
6165 fprintf (stderr
, "compute_conversion_costs = %d\n", n_compute_conversion_costs
);
6168 fprintf (stderr
, "vtables = %d; vtable searches = %d\n",
6169 n_vtables
, n_vtable_searches
);
6170 fprintf (stderr
, "vtable entries = %d; vtable elems = %d\n",
6171 n_vtable_entries
, n_vtable_elems
);
6176 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6177 according to [class]:
6178 The class-name is also inserted
6179 into the scope of the class itself. For purposes of access checking,
6180 the inserted class name is treated as if it were a public member name. */
6183 build_self_reference (void)
6185 tree name
= constructor_name (current_class_type
);
6186 tree value
= build_lang_decl (TYPE_DECL
, name
, current_class_type
);
6189 DECL_NONLOCAL (value
) = 1;
6190 DECL_CONTEXT (value
) = current_class_type
;
6191 DECL_ARTIFICIAL (value
) = 1;
6192 SET_DECL_SELF_REFERENCE_P (value
);
6194 if (processing_template_decl
)
6195 value
= push_template_decl (value
);
6197 saved_cas
= current_access_specifier
;
6198 current_access_specifier
= access_public_node
;
6199 finish_member_declaration (value
);
6200 current_access_specifier
= saved_cas
;
6203 /* Returns 1 if TYPE contains only padding bytes. */
6206 is_empty_class (tree type
)
6208 if (type
== error_mark_node
)
6211 if (! IS_AGGR_TYPE (type
))
6214 /* In G++ 3.2, whether or not a class was empty was determined by
6215 looking at its size. */
6216 if (abi_version_at_least (2))
6217 return CLASSTYPE_EMPTY_P (type
);
6219 return integer_zerop (CLASSTYPE_SIZE (type
));
6222 /* Returns true if TYPE contains an empty class. */
6225 contains_empty_class_p (tree type
)
6227 if (is_empty_class (type
))
6229 if (CLASS_TYPE_P (type
))
6236 for (binfo
= TYPE_BINFO (type
), i
= 0;
6237 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
6238 if (contains_empty_class_p (BINFO_TYPE (base_binfo
)))
6240 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
6241 if (TREE_CODE (field
) == FIELD_DECL
6242 && !DECL_ARTIFICIAL (field
)
6243 && is_empty_class (TREE_TYPE (field
)))
6246 else if (TREE_CODE (type
) == ARRAY_TYPE
)
6247 return contains_empty_class_p (TREE_TYPE (type
));
6251 /* Note that NAME was looked up while the current class was being
6252 defined and that the result of that lookup was DECL. */
6255 maybe_note_name_used_in_class (tree name
, tree decl
)
6257 splay_tree names_used
;
6259 /* If we're not defining a class, there's nothing to do. */
6260 if (!(innermost_scope_kind() == sk_class
6261 && TYPE_BEING_DEFINED (current_class_type
)))
6264 /* If there's already a binding for this NAME, then we don't have
6265 anything to worry about. */
6266 if (lookup_member (current_class_type
, name
,
6267 /*protect=*/0, /*want_type=*/false))
6270 if (!current_class_stack
[current_class_depth
- 1].names_used
)
6271 current_class_stack
[current_class_depth
- 1].names_used
6272 = splay_tree_new (splay_tree_compare_pointers
, 0, 0);
6273 names_used
= current_class_stack
[current_class_depth
- 1].names_used
;
6275 splay_tree_insert (names_used
,
6276 (splay_tree_key
) name
,
6277 (splay_tree_value
) decl
);
6280 /* Note that NAME was declared (as DECL) in the current class. Check
6281 to see that the declaration is valid. */
6284 note_name_declared_in_class (tree name
, tree decl
)
6286 splay_tree names_used
;
6289 /* Look to see if we ever used this name. */
6291 = current_class_stack
[current_class_depth
- 1].names_used
;
6295 n
= splay_tree_lookup (names_used
, (splay_tree_key
) name
);
6298 /* [basic.scope.class]
6300 A name N used in a class S shall refer to the same declaration
6301 in its context and when re-evaluated in the completed scope of
6303 error ("declaration of %q#D", decl
);
6304 error ("changes meaning of %qD from %q+#D",
6305 DECL_NAME (OVL_CURRENT (decl
)), (tree
) n
->value
);
6309 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6310 Secondary vtables are merged with primary vtables; this function
6311 will return the VAR_DECL for the primary vtable. */
6314 get_vtbl_decl_for_binfo (tree binfo
)
6318 decl
= BINFO_VTABLE (binfo
);
6319 if (decl
&& TREE_CODE (decl
) == PLUS_EXPR
)
6321 gcc_assert (TREE_CODE (TREE_OPERAND (decl
, 0)) == ADDR_EXPR
);
6322 decl
= TREE_OPERAND (TREE_OPERAND (decl
, 0), 0);
6325 gcc_assert (TREE_CODE (decl
) == VAR_DECL
);
6330 /* Returns the binfo for the primary base of BINFO. If the resulting
6331 BINFO is a virtual base, and it is inherited elsewhere in the
6332 hierarchy, then the returned binfo might not be the primary base of
6333 BINFO in the complete object. Check BINFO_PRIMARY_P or
6334 BINFO_LOST_PRIMARY_P to be sure. */
6337 get_primary_binfo (tree binfo
)
6341 primary_base
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo
));
6345 return copied_binfo (primary_base
, binfo
);
6348 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6351 maybe_indent_hierarchy (FILE * stream
, int indent
, int indented_p
)
6354 fprintf (stream
, "%*s", indent
, "");
6358 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6359 INDENT should be zero when called from the top level; it is
6360 incremented recursively. IGO indicates the next expected BINFO in
6361 inheritance graph ordering. */
6364 dump_class_hierarchy_r (FILE *stream
,
6374 indented
= maybe_indent_hierarchy (stream
, indent
, 0);
6375 fprintf (stream
, "%s (0x%lx) ",
6376 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
),
6377 (unsigned long) binfo
);
6380 fprintf (stream
, "alternative-path\n");
6383 igo
= TREE_CHAIN (binfo
);
6385 fprintf (stream
, HOST_WIDE_INT_PRINT_DEC
,
6386 tree_low_cst (BINFO_OFFSET (binfo
), 0));
6387 if (is_empty_class (BINFO_TYPE (binfo
)))
6388 fprintf (stream
, " empty");
6389 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo
)))
6390 fprintf (stream
, " nearly-empty");
6391 if (BINFO_VIRTUAL_P (binfo
))
6392 fprintf (stream
, " virtual");
6393 fprintf (stream
, "\n");
6396 if (BINFO_PRIMARY_P (binfo
))
6398 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6399 fprintf (stream
, " primary-for %s (0x%lx)",
6400 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
6401 TFF_PLAIN_IDENTIFIER
),
6402 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo
));
6404 if (BINFO_LOST_PRIMARY_P (binfo
))
6406 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6407 fprintf (stream
, " lost-primary");
6410 fprintf (stream
, "\n");
6412 if (!(flags
& TDF_SLIM
))
6416 if (BINFO_SUBVTT_INDEX (binfo
))
6418 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6419 fprintf (stream
, " subvttidx=%s",
6420 expr_as_string (BINFO_SUBVTT_INDEX (binfo
),
6421 TFF_PLAIN_IDENTIFIER
));
6423 if (BINFO_VPTR_INDEX (binfo
))
6425 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6426 fprintf (stream
, " vptridx=%s",
6427 expr_as_string (BINFO_VPTR_INDEX (binfo
),
6428 TFF_PLAIN_IDENTIFIER
));
6430 if (BINFO_VPTR_FIELD (binfo
))
6432 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6433 fprintf (stream
, " vbaseoffset=%s",
6434 expr_as_string (BINFO_VPTR_FIELD (binfo
),
6435 TFF_PLAIN_IDENTIFIER
));
6437 if (BINFO_VTABLE (binfo
))
6439 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6440 fprintf (stream
, " vptr=%s",
6441 expr_as_string (BINFO_VTABLE (binfo
),
6442 TFF_PLAIN_IDENTIFIER
));
6446 fprintf (stream
, "\n");
6449 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
6450 igo
= dump_class_hierarchy_r (stream
, flags
, base_binfo
, igo
, indent
+ 2);
6455 /* Dump the BINFO hierarchy for T. */
6458 dump_class_hierarchy_1 (FILE *stream
, int flags
, tree t
)
6460 fprintf (stream
, "Class %s\n", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6461 fprintf (stream
, " size=%lu align=%lu\n",
6462 (unsigned long)(tree_low_cst (TYPE_SIZE (t
), 0) / BITS_PER_UNIT
),
6463 (unsigned long)(TYPE_ALIGN (t
) / BITS_PER_UNIT
));
6464 fprintf (stream
, " base size=%lu base align=%lu\n",
6465 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t
)), 0)
6467 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t
))
6469 dump_class_hierarchy_r (stream
, flags
, TYPE_BINFO (t
), TYPE_BINFO (t
), 0);
6470 fprintf (stream
, "\n");
6473 /* Debug interface to hierarchy dumping. */
6476 debug_class (tree t
)
6478 dump_class_hierarchy_1 (stderr
, TDF_SLIM
, t
);
6482 dump_class_hierarchy (tree t
)
6485 FILE *stream
= dump_begin (TDI_class
, &flags
);
6489 dump_class_hierarchy_1 (stream
, flags
, t
);
6490 dump_end (TDI_class
, stream
);
6495 dump_array (FILE * stream
, tree decl
)
6498 unsigned HOST_WIDE_INT ix
;
6500 tree size
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl
)));
6502 elt
= (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl
))), 0)
6504 fprintf (stream
, "%s:", decl_as_string (decl
, TFF_PLAIN_IDENTIFIER
));
6505 fprintf (stream
, " %s entries",
6506 expr_as_string (size_binop (PLUS_EXPR
, size
, size_one_node
),
6507 TFF_PLAIN_IDENTIFIER
));
6508 fprintf (stream
, "\n");
6510 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl
)),
6512 fprintf (stream
, "%-4ld %s\n", (long)(ix
* elt
),
6513 expr_as_string (value
, TFF_PLAIN_IDENTIFIER
));
6517 dump_vtable (tree t
, tree binfo
, tree vtable
)
6520 FILE *stream
= dump_begin (TDI_class
, &flags
);
6525 if (!(flags
& TDF_SLIM
))
6527 int ctor_vtbl_p
= TYPE_BINFO (t
) != binfo
;
6529 fprintf (stream
, "%s for %s",
6530 ctor_vtbl_p
? "Construction vtable" : "Vtable",
6531 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
));
6534 if (!BINFO_VIRTUAL_P (binfo
))
6535 fprintf (stream
, " (0x%lx instance)", (unsigned long)binfo
);
6536 fprintf (stream
, " in %s", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6538 fprintf (stream
, "\n");
6539 dump_array (stream
, vtable
);
6540 fprintf (stream
, "\n");
6543 dump_end (TDI_class
, stream
);
6547 dump_vtt (tree t
, tree vtt
)
6550 FILE *stream
= dump_begin (TDI_class
, &flags
);
6555 if (!(flags
& TDF_SLIM
))
6557 fprintf (stream
, "VTT for %s\n",
6558 type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6559 dump_array (stream
, vtt
);
6560 fprintf (stream
, "\n");
6563 dump_end (TDI_class
, stream
);
6566 /* Dump a function or thunk and its thunkees. */
6569 dump_thunk (FILE *stream
, int indent
, tree thunk
)
6571 static const char spaces
[] = " ";
6572 tree name
= DECL_NAME (thunk
);
6575 fprintf (stream
, "%.*s%p %s %s", indent
, spaces
,
6577 !DECL_THUNK_P (thunk
) ? "function"
6578 : DECL_THIS_THUNK_P (thunk
) ? "this-thunk" : "covariant-thunk",
6579 name
? IDENTIFIER_POINTER (name
) : "<unset>");
6580 if (DECL_THUNK_P (thunk
))
6582 HOST_WIDE_INT fixed_adjust
= THUNK_FIXED_OFFSET (thunk
);
6583 tree virtual_adjust
= THUNK_VIRTUAL_OFFSET (thunk
);
6585 fprintf (stream
, " fixed=" HOST_WIDE_INT_PRINT_DEC
, fixed_adjust
);
6586 if (!virtual_adjust
)
6588 else if (DECL_THIS_THUNK_P (thunk
))
6589 fprintf (stream
, " vcall=" HOST_WIDE_INT_PRINT_DEC
,
6590 tree_low_cst (virtual_adjust
, 0));
6592 fprintf (stream
, " vbase=" HOST_WIDE_INT_PRINT_DEC
"(%s)",
6593 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust
), 0),
6594 type_as_string (BINFO_TYPE (virtual_adjust
), TFF_SCOPE
));
6595 if (THUNK_ALIAS (thunk
))
6596 fprintf (stream
, " alias to %p", (void *)THUNK_ALIAS (thunk
));
6598 fprintf (stream
, "\n");
6599 for (thunks
= DECL_THUNKS (thunk
); thunks
; thunks
= TREE_CHAIN (thunks
))
6600 dump_thunk (stream
, indent
+ 2, thunks
);
6603 /* Dump the thunks for FN. */
6606 debug_thunks (tree fn
)
6608 dump_thunk (stderr
, 0, fn
);
6611 /* Virtual function table initialization. */
6613 /* Create all the necessary vtables for T and its base classes. */
6616 finish_vtbls (tree t
)
6621 /* We lay out the primary and secondary vtables in one contiguous
6622 vtable. The primary vtable is first, followed by the non-virtual
6623 secondary vtables in inheritance graph order. */
6624 list
= build_tree_list (BINFO_VTABLE (TYPE_BINFO (t
)), NULL_TREE
);
6625 accumulate_vtbl_inits (TYPE_BINFO (t
), TYPE_BINFO (t
),
6626 TYPE_BINFO (t
), t
, list
);
6628 /* Then come the virtual bases, also in inheritance graph order. */
6629 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
6631 if (!BINFO_VIRTUAL_P (vbase
))
6633 accumulate_vtbl_inits (vbase
, vbase
, TYPE_BINFO (t
), t
, list
);
6636 if (BINFO_VTABLE (TYPE_BINFO (t
)))
6637 initialize_vtable (TYPE_BINFO (t
), TREE_VALUE (list
));
6640 /* Initialize the vtable for BINFO with the INITS. */
6643 initialize_vtable (tree binfo
, tree inits
)
6647 layout_vtable_decl (binfo
, list_length (inits
));
6648 decl
= get_vtbl_decl_for_binfo (binfo
);
6649 initialize_artificial_var (decl
, inits
);
6650 dump_vtable (BINFO_TYPE (binfo
), binfo
, decl
);
6653 /* Build the VTT (virtual table table) for T.
6654 A class requires a VTT if it has virtual bases.
6657 1 - primary virtual pointer for complete object T
6658 2 - secondary VTTs for each direct non-virtual base of T which requires a
6660 3 - secondary virtual pointers for each direct or indirect base of T which
6661 has virtual bases or is reachable via a virtual path from T.
6662 4 - secondary VTTs for each direct or indirect virtual base of T.
6664 Secondary VTTs look like complete object VTTs without part 4. */
6674 /* Build up the initializers for the VTT. */
6676 index
= size_zero_node
;
6677 build_vtt_inits (TYPE_BINFO (t
), t
, &inits
, &index
);
6679 /* If we didn't need a VTT, we're done. */
6683 /* Figure out the type of the VTT. */
6684 type
= build_index_type (size_int (list_length (inits
) - 1));
6685 type
= build_cplus_array_type (const_ptr_type_node
, type
);
6687 /* Now, build the VTT object itself. */
6688 vtt
= build_vtable (t
, mangle_vtt_for_type (t
), type
);
6689 initialize_artificial_var (vtt
, inits
);
6690 /* Add the VTT to the vtables list. */
6691 TREE_CHAIN (vtt
) = TREE_CHAIN (CLASSTYPE_VTABLES (t
));
6692 TREE_CHAIN (CLASSTYPE_VTABLES (t
)) = vtt
;
6697 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6698 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6699 and CHAIN the vtable pointer for this binfo after construction is
6700 complete. VALUE can also be another BINFO, in which case we recurse. */
6703 binfo_ctor_vtable (tree binfo
)
6709 vt
= BINFO_VTABLE (binfo
);
6710 if (TREE_CODE (vt
) == TREE_LIST
)
6711 vt
= TREE_VALUE (vt
);
6712 if (TREE_CODE (vt
) == TREE_BINFO
)
6721 /* Data for secondary VTT initialization. */
6722 typedef struct secondary_vptr_vtt_init_data_s
6724 /* Is this the primary VTT? */
6727 /* Current index into the VTT. */
6730 /* TREE_LIST of initializers built up. */
6733 /* The type being constructed by this secondary VTT. */
6734 tree type_being_constructed
;
6735 } secondary_vptr_vtt_init_data
;
6737 /* Recursively build the VTT-initializer for BINFO (which is in the
6738 hierarchy dominated by T). INITS points to the end of the initializer
6739 list to date. INDEX is the VTT index where the next element will be
6740 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6741 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6742 for virtual bases of T. When it is not so, we build the constructor
6743 vtables for the BINFO-in-T variant. */
6746 build_vtt_inits (tree binfo
, tree t
, tree
*inits
, tree
*index
)
6751 tree secondary_vptrs
;
6752 secondary_vptr_vtt_init_data data
;
6753 int top_level_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
6755 /* We only need VTTs for subobjects with virtual bases. */
6756 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
6759 /* We need to use a construction vtable if this is not the primary
6763 build_ctor_vtbl_group (binfo
, t
);
6765 /* Record the offset in the VTT where this sub-VTT can be found. */
6766 BINFO_SUBVTT_INDEX (binfo
) = *index
;
6769 /* Add the address of the primary vtable for the complete object. */
6770 init
= binfo_ctor_vtable (binfo
);
6771 *inits
= build_tree_list (NULL_TREE
, init
);
6772 inits
= &TREE_CHAIN (*inits
);
6775 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6776 BINFO_VPTR_INDEX (binfo
) = *index
;
6778 *index
= size_binop (PLUS_EXPR
, *index
, TYPE_SIZE_UNIT (ptr_type_node
));
6780 /* Recursively add the secondary VTTs for non-virtual bases. */
6781 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, b
); ++i
)
6782 if (!BINFO_VIRTUAL_P (b
))
6783 inits
= build_vtt_inits (b
, t
, inits
, index
);
6785 /* Add secondary virtual pointers for all subobjects of BINFO with
6786 either virtual bases or reachable along a virtual path, except
6787 subobjects that are non-virtual primary bases. */
6788 data
.top_level_p
= top_level_p
;
6789 data
.index
= *index
;
6791 data
.type_being_constructed
= BINFO_TYPE (binfo
);
6793 dfs_walk_once (binfo
, dfs_build_secondary_vptr_vtt_inits
, NULL
, &data
);
6795 *index
= data
.index
;
6797 /* The secondary vptrs come back in reverse order. After we reverse
6798 them, and add the INITS, the last init will be the first element
6800 secondary_vptrs
= data
.inits
;
6801 if (secondary_vptrs
)
6803 *inits
= nreverse (secondary_vptrs
);
6804 inits
= &TREE_CHAIN (secondary_vptrs
);
6805 gcc_assert (*inits
== NULL_TREE
);
6809 /* Add the secondary VTTs for virtual bases in inheritance graph
6811 for (b
= TYPE_BINFO (BINFO_TYPE (binfo
)); b
; b
= TREE_CHAIN (b
))
6813 if (!BINFO_VIRTUAL_P (b
))
6816 inits
= build_vtt_inits (b
, t
, inits
, index
);
6819 /* Remove the ctor vtables we created. */
6820 dfs_walk_all (binfo
, dfs_fixup_binfo_vtbls
, NULL
, binfo
);
6825 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6826 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6829 dfs_build_secondary_vptr_vtt_inits (tree binfo
, void *data_
)
6831 secondary_vptr_vtt_init_data
*data
= (secondary_vptr_vtt_init_data
*)data_
;
6833 /* We don't care about bases that don't have vtables. */
6834 if (!TYPE_VFIELD (BINFO_TYPE (binfo
)))
6835 return dfs_skip_bases
;
6837 /* We're only interested in proper subobjects of the type being
6839 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->type_being_constructed
))
6842 /* We're only interested in bases with virtual bases or reachable
6843 via a virtual path from the type being constructed. */
6844 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
6845 || binfo_via_virtual (binfo
, data
->type_being_constructed
)))
6846 return dfs_skip_bases
;
6848 /* We're not interested in non-virtual primary bases. */
6849 if (!BINFO_VIRTUAL_P (binfo
) && BINFO_PRIMARY_P (binfo
))
6852 /* Record the index where this secondary vptr can be found. */
6853 if (data
->top_level_p
)
6855 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6856 BINFO_VPTR_INDEX (binfo
) = data
->index
;
6858 if (BINFO_VIRTUAL_P (binfo
))
6860 /* It's a primary virtual base, and this is not a
6861 construction vtable. Find the base this is primary of in
6862 the inheritance graph, and use that base's vtable
6864 while (BINFO_PRIMARY_P (binfo
))
6865 binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
6869 /* Add the initializer for the secondary vptr itself. */
6870 data
->inits
= tree_cons (NULL_TREE
, binfo_ctor_vtable (binfo
), data
->inits
);
6872 /* Advance the vtt index. */
6873 data
->index
= size_binop (PLUS_EXPR
, data
->index
,
6874 TYPE_SIZE_UNIT (ptr_type_node
));
6879 /* Called from build_vtt_inits via dfs_walk. After building
6880 constructor vtables and generating the sub-vtt from them, we need
6881 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6882 binfo of the base whose sub vtt was generated. */
6885 dfs_fixup_binfo_vtbls (tree binfo
, void* data
)
6887 tree vtable
= BINFO_VTABLE (binfo
);
6889 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
6890 /* If this class has no vtable, none of its bases do. */
6891 return dfs_skip_bases
;
6894 /* This might be a primary base, so have no vtable in this
6898 /* If we scribbled the construction vtable vptr into BINFO, clear it
6900 if (TREE_CODE (vtable
) == TREE_LIST
6901 && (TREE_PURPOSE (vtable
) == (tree
) data
))
6902 BINFO_VTABLE (binfo
) = TREE_CHAIN (vtable
);
6907 /* Build the construction vtable group for BINFO which is in the
6908 hierarchy dominated by T. */
6911 build_ctor_vtbl_group (tree binfo
, tree t
)
6920 /* See if we've already created this construction vtable group. */
6921 id
= mangle_ctor_vtbl_for_type (t
, binfo
);
6922 if (IDENTIFIER_GLOBAL_VALUE (id
))
6925 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
));
6926 /* Build a version of VTBL (with the wrong type) for use in
6927 constructing the addresses of secondary vtables in the
6928 construction vtable group. */
6929 vtbl
= build_vtable (t
, id
, ptr_type_node
);
6930 DECL_CONSTRUCTION_VTABLE_P (vtbl
) = 1;
6931 list
= build_tree_list (vtbl
, NULL_TREE
);
6932 accumulate_vtbl_inits (binfo
, TYPE_BINFO (TREE_TYPE (binfo
)),
6935 /* Add the vtables for each of our virtual bases using the vbase in T
6937 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
6939 vbase
= TREE_CHAIN (vbase
))
6943 if (!BINFO_VIRTUAL_P (vbase
))
6945 b
= copied_binfo (vbase
, binfo
);
6947 accumulate_vtbl_inits (b
, vbase
, binfo
, t
, list
);
6949 inits
= TREE_VALUE (list
);
6951 /* Figure out the type of the construction vtable. */
6952 type
= build_index_type (size_int (list_length (inits
) - 1));
6953 type
= build_cplus_array_type (vtable_entry_type
, type
);
6954 TREE_TYPE (vtbl
) = type
;
6956 /* Initialize the construction vtable. */
6957 CLASSTYPE_VTABLES (t
) = chainon (CLASSTYPE_VTABLES (t
), vtbl
);
6958 initialize_artificial_var (vtbl
, inits
);
6959 dump_vtable (t
, binfo
, vtbl
);
6962 /* Add the vtbl initializers for BINFO (and its bases other than
6963 non-virtual primaries) to the list of INITS. BINFO is in the
6964 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6965 the constructor the vtbl inits should be accumulated for. (If this
6966 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6967 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6968 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6969 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6970 but are not necessarily the same in terms of layout. */
6973 accumulate_vtbl_inits (tree binfo
,
6981 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
6983 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (orig_binfo
)));
6985 /* If it doesn't have a vptr, we don't do anything. */
6986 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
6989 /* If we're building a construction vtable, we're not interested in
6990 subobjects that don't require construction vtables. */
6992 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
6993 && !binfo_via_virtual (orig_binfo
, BINFO_TYPE (rtti_binfo
)))
6996 /* Build the initializers for the BINFO-in-T vtable. */
6998 = chainon (TREE_VALUE (inits
),
6999 dfs_accumulate_vtbl_inits (binfo
, orig_binfo
,
7000 rtti_binfo
, t
, inits
));
7002 /* Walk the BINFO and its bases. We walk in preorder so that as we
7003 initialize each vtable we can figure out at what offset the
7004 secondary vtable lies from the primary vtable. We can't use
7005 dfs_walk here because we need to iterate through bases of BINFO
7006 and RTTI_BINFO simultaneously. */
7007 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7009 /* Skip virtual bases. */
7010 if (BINFO_VIRTUAL_P (base_binfo
))
7012 accumulate_vtbl_inits (base_binfo
,
7013 BINFO_BASE_BINFO (orig_binfo
, i
),
7019 /* Called from accumulate_vtbl_inits. Returns the initializers for
7020 the BINFO vtable. */
7023 dfs_accumulate_vtbl_inits (tree binfo
,
7029 tree inits
= NULL_TREE
;
7030 tree vtbl
= NULL_TREE
;
7031 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7034 && BINFO_VIRTUAL_P (orig_binfo
) && BINFO_PRIMARY_P (orig_binfo
))
7036 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7037 primary virtual base. If it is not the same primary in
7038 the hierarchy of T, we'll need to generate a ctor vtable
7039 for it, to place at its location in T. If it is the same
7040 primary, we still need a VTT entry for the vtable, but it
7041 should point to the ctor vtable for the base it is a
7042 primary for within the sub-hierarchy of RTTI_BINFO.
7044 There are three possible cases:
7046 1) We are in the same place.
7047 2) We are a primary base within a lost primary virtual base of
7049 3) We are primary to something not a base of RTTI_BINFO. */
7052 tree last
= NULL_TREE
;
7054 /* First, look through the bases we are primary to for RTTI_BINFO
7055 or a virtual base. */
7057 while (BINFO_PRIMARY_P (b
))
7059 b
= BINFO_INHERITANCE_CHAIN (b
);
7061 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7064 /* If we run out of primary links, keep looking down our
7065 inheritance chain; we might be an indirect primary. */
7066 for (b
= last
; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
7067 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7071 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7072 base B and it is a base of RTTI_BINFO, this is case 2. In
7073 either case, we share our vtable with LAST, i.e. the
7074 derived-most base within B of which we are a primary. */
7076 || (b
&& binfo_for_vbase (BINFO_TYPE (b
), BINFO_TYPE (rtti_binfo
))))
7077 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7078 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7079 binfo_ctor_vtable after everything's been set up. */
7082 /* Otherwise, this is case 3 and we get our own. */
7084 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo
))
7092 /* Compute the initializer for this vtable. */
7093 inits
= build_vtbl_initializer (binfo
, orig_binfo
, t
, rtti_binfo
,
7096 /* Figure out the position to which the VPTR should point. */
7097 vtbl
= TREE_PURPOSE (l
);
7098 vtbl
= build1 (ADDR_EXPR
, vtbl_ptr_type_node
, vtbl
);
7099 index
= size_binop (PLUS_EXPR
,
7100 size_int (non_fn_entries
),
7101 size_int (list_length (TREE_VALUE (l
))));
7102 index
= size_binop (MULT_EXPR
,
7103 TYPE_SIZE_UNIT (vtable_entry_type
),
7105 vtbl
= build2 (PLUS_EXPR
, TREE_TYPE (vtbl
), vtbl
, index
);
7109 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7110 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7111 straighten this out. */
7112 BINFO_VTABLE (binfo
) = tree_cons (rtti_binfo
, vtbl
, BINFO_VTABLE (binfo
));
7113 else if (BINFO_PRIMARY_P (binfo
) && BINFO_VIRTUAL_P (binfo
))
7116 /* For an ordinary vtable, set BINFO_VTABLE. */
7117 BINFO_VTABLE (binfo
) = vtbl
;
7122 static GTY(()) tree abort_fndecl_addr
;
7124 /* Construct the initializer for BINFO's virtual function table. BINFO
7125 is part of the hierarchy dominated by T. If we're building a
7126 construction vtable, the ORIG_BINFO is the binfo we should use to
7127 find the actual function pointers to put in the vtable - but they
7128 can be overridden on the path to most-derived in the graph that
7129 ORIG_BINFO belongs. Otherwise,
7130 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7131 BINFO that should be indicated by the RTTI information in the
7132 vtable; it will be a base class of T, rather than T itself, if we
7133 are building a construction vtable.
7135 The value returned is a TREE_LIST suitable for wrapping in a
7136 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7137 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7138 number of non-function entries in the vtable.
7140 It might seem that this function should never be called with a
7141 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7142 base is always subsumed by a derived class vtable. However, when
7143 we are building construction vtables, we do build vtables for
7144 primary bases; we need these while the primary base is being
7148 build_vtbl_initializer (tree binfo
,
7152 int* non_fn_entries_p
)
7159 VEC(tree
,gc
) *vbases
;
7161 /* Initialize VID. */
7162 memset (&vid
, 0, sizeof (vid
));
7165 vid
.rtti_binfo
= rtti_binfo
;
7166 vid
.last_init
= &vid
.inits
;
7167 vid
.primary_vtbl_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
7168 vid
.ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7169 vid
.generate_vcall_entries
= true;
7170 /* The first vbase or vcall offset is at index -3 in the vtable. */
7171 vid
.index
= ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE
);
7173 /* Add entries to the vtable for RTTI. */
7174 build_rtti_vtbl_entries (binfo
, &vid
);
7176 /* Create an array for keeping track of the functions we've
7177 processed. When we see multiple functions with the same
7178 signature, we share the vcall offsets. */
7179 vid
.fns
= VEC_alloc (tree
, gc
, 32);
7180 /* Add the vcall and vbase offset entries. */
7181 build_vcall_and_vbase_vtbl_entries (binfo
, &vid
);
7183 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7184 build_vbase_offset_vtbl_entries. */
7185 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
7186 VEC_iterate (tree
, vbases
, ix
, vbinfo
); ix
++)
7187 BINFO_VTABLE_PATH_MARKED (vbinfo
) = 0;
7189 /* If the target requires padding between data entries, add that now. */
7190 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE
> 1)
7194 for (prev
= &vid
.inits
; (cur
= *prev
); prev
= &TREE_CHAIN (cur
))
7199 for (i
= 1; i
< TARGET_VTABLE_DATA_ENTRY_DISTANCE
; ++i
)
7200 add
= tree_cons (NULL_TREE
,
7201 build1 (NOP_EXPR
, vtable_entry_type
,
7208 if (non_fn_entries_p
)
7209 *non_fn_entries_p
= list_length (vid
.inits
);
7211 /* Go through all the ordinary virtual functions, building up
7213 vfun_inits
= NULL_TREE
;
7214 for (v
= BINFO_VIRTUALS (orig_binfo
); v
; v
= TREE_CHAIN (v
))
7218 tree fn
, fn_original
;
7219 tree init
= NULL_TREE
;
7223 if (DECL_THUNK_P (fn
))
7225 if (!DECL_NAME (fn
))
7227 if (THUNK_ALIAS (fn
))
7229 fn
= THUNK_ALIAS (fn
);
7232 fn_original
= THUNK_TARGET (fn
);
7235 /* If the only definition of this function signature along our
7236 primary base chain is from a lost primary, this vtable slot will
7237 never be used, so just zero it out. This is important to avoid
7238 requiring extra thunks which cannot be generated with the function.
7240 We first check this in update_vtable_entry_for_fn, so we handle
7241 restored primary bases properly; we also need to do it here so we
7242 zero out unused slots in ctor vtables, rather than filling themff
7243 with erroneous values (though harmless, apart from relocation
7245 for (b
= binfo
; ; b
= get_primary_binfo (b
))
7247 /* We found a defn before a lost primary; go ahead as normal. */
7248 if (look_for_overrides_here (BINFO_TYPE (b
), fn_original
))
7251 /* The nearest definition is from a lost primary; clear the
7253 if (BINFO_LOST_PRIMARY_P (b
))
7255 init
= size_zero_node
;
7262 /* Pull the offset for `this', and the function to call, out of
7264 delta
= BV_DELTA (v
);
7265 vcall_index
= BV_VCALL_INDEX (v
);
7267 gcc_assert (TREE_CODE (delta
) == INTEGER_CST
);
7268 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
);
7270 /* You can't call an abstract virtual function; it's abstract.
7271 So, we replace these functions with __pure_virtual. */
7272 if (DECL_PURE_VIRTUAL_P (fn_original
))
7275 if (abort_fndecl_addr
== NULL
)
7276 abort_fndecl_addr
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7277 init
= abort_fndecl_addr
;
7281 if (!integer_zerop (delta
) || vcall_index
)
7283 fn
= make_thunk (fn
, /*this_adjusting=*/1, delta
, vcall_index
);
7284 if (!DECL_NAME (fn
))
7287 /* Take the address of the function, considering it to be of an
7288 appropriate generic type. */
7289 init
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7293 /* And add it to the chain of initializers. */
7294 if (TARGET_VTABLE_USES_DESCRIPTORS
)
7297 if (init
== size_zero_node
)
7298 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7299 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7301 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7303 tree fdesc
= build2 (FDESC_EXPR
, vfunc_ptr_type_node
,
7304 TREE_OPERAND (init
, 0),
7305 build_int_cst (NULL_TREE
, i
));
7306 TREE_CONSTANT (fdesc
) = 1;
7307 TREE_INVARIANT (fdesc
) = 1;
7309 vfun_inits
= tree_cons (NULL_TREE
, fdesc
, vfun_inits
);
7313 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7316 /* The initializers for virtual functions were built up in reverse
7317 order; straighten them out now. */
7318 vfun_inits
= nreverse (vfun_inits
);
7320 /* The negative offset initializers are also in reverse order. */
7321 vid
.inits
= nreverse (vid
.inits
);
7323 /* Chain the two together. */
7324 return chainon (vid
.inits
, vfun_inits
);
7327 /* Adds to vid->inits the initializers for the vbase and vcall
7328 offsets in BINFO, which is in the hierarchy dominated by T. */
7331 build_vcall_and_vbase_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7335 /* If this is a derived class, we must first create entries
7336 corresponding to the primary base class. */
7337 b
= get_primary_binfo (binfo
);
7339 build_vcall_and_vbase_vtbl_entries (b
, vid
);
7341 /* Add the vbase entries for this base. */
7342 build_vbase_offset_vtbl_entries (binfo
, vid
);
7343 /* Add the vcall entries for this base. */
7344 build_vcall_offset_vtbl_entries (binfo
, vid
);
7347 /* Returns the initializers for the vbase offset entries in the vtable
7348 for BINFO (which is part of the class hierarchy dominated by T), in
7349 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7350 where the next vbase offset will go. */
7353 build_vbase_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7357 tree non_primary_binfo
;
7359 /* If there are no virtual baseclasses, then there is nothing to
7361 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
7366 /* We might be a primary base class. Go up the inheritance hierarchy
7367 until we find the most derived class of which we are a primary base:
7368 it is the offset of that which we need to use. */
7369 non_primary_binfo
= binfo
;
7370 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7374 /* If we have reached a virtual base, then it must be a primary
7375 base (possibly multi-level) of vid->binfo, or we wouldn't
7376 have called build_vcall_and_vbase_vtbl_entries for it. But it
7377 might be a lost primary, so just skip down to vid->binfo. */
7378 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7380 non_primary_binfo
= vid
->binfo
;
7384 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7385 if (get_primary_binfo (b
) != non_primary_binfo
)
7387 non_primary_binfo
= b
;
7390 /* Go through the virtual bases, adding the offsets. */
7391 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
7393 vbase
= TREE_CHAIN (vbase
))
7398 if (!BINFO_VIRTUAL_P (vbase
))
7401 /* Find the instance of this virtual base in the complete
7403 b
= copied_binfo (vbase
, binfo
);
7405 /* If we've already got an offset for this virtual base, we
7406 don't need another one. */
7407 if (BINFO_VTABLE_PATH_MARKED (b
))
7409 BINFO_VTABLE_PATH_MARKED (b
) = 1;
7411 /* Figure out where we can find this vbase offset. */
7412 delta
= size_binop (MULT_EXPR
,
7415 TYPE_SIZE_UNIT (vtable_entry_type
)));
7416 if (vid
->primary_vtbl_p
)
7417 BINFO_VPTR_FIELD (b
) = delta
;
7419 if (binfo
!= TYPE_BINFO (t
))
7420 /* The vbase offset had better be the same. */
7421 gcc_assert (tree_int_cst_equal (delta
, BINFO_VPTR_FIELD (vbase
)));
7423 /* The next vbase will come at a more negative offset. */
7424 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7425 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7427 /* The initializer is the delta from BINFO to this virtual base.
7428 The vbase offsets go in reverse inheritance-graph order, and
7429 we are walking in inheritance graph order so these end up in
7431 delta
= size_diffop (BINFO_OFFSET (b
), BINFO_OFFSET (non_primary_binfo
));
7434 = build_tree_list (NULL_TREE
,
7435 fold_build1 (NOP_EXPR
,
7438 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7442 /* Adds the initializers for the vcall offset entries in the vtable
7443 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7447 build_vcall_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7449 /* We only need these entries if this base is a virtual base. We
7450 compute the indices -- but do not add to the vtable -- when
7451 building the main vtable for a class. */
7452 if (BINFO_VIRTUAL_P (binfo
) || binfo
== TYPE_BINFO (vid
->derived
))
7454 /* We need a vcall offset for each of the virtual functions in this
7455 vtable. For example:
7457 class A { virtual void f (); };
7458 class B1 : virtual public A { virtual void f (); };
7459 class B2 : virtual public A { virtual void f (); };
7460 class C: public B1, public B2 { virtual void f (); };
7462 A C object has a primary base of B1, which has a primary base of A. A
7463 C also has a secondary base of B2, which no longer has a primary base
7464 of A. So the B2-in-C construction vtable needs a secondary vtable for
7465 A, which will adjust the A* to a B2* to call f. We have no way of
7466 knowing what (or even whether) this offset will be when we define B2,
7467 so we store this "vcall offset" in the A sub-vtable and look it up in
7468 a "virtual thunk" for B2::f.
7470 We need entries for all the functions in our primary vtable and
7471 in our non-virtual bases' secondary vtables. */
7473 /* If we are just computing the vcall indices -- but do not need
7474 the actual entries -- not that. */
7475 if (!BINFO_VIRTUAL_P (binfo
))
7476 vid
->generate_vcall_entries
= false;
7477 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7478 add_vcall_offset_vtbl_entries_r (binfo
, vid
);
7482 /* Build vcall offsets, starting with those for BINFO. */
7485 add_vcall_offset_vtbl_entries_r (tree binfo
, vtbl_init_data
* vid
)
7491 /* Don't walk into virtual bases -- except, of course, for the
7492 virtual base for which we are building vcall offsets. Any
7493 primary virtual base will have already had its offsets generated
7494 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7495 if (BINFO_VIRTUAL_P (binfo
) && vid
->vbase
!= binfo
)
7498 /* If BINFO has a primary base, process it first. */
7499 primary_binfo
= get_primary_binfo (binfo
);
7501 add_vcall_offset_vtbl_entries_r (primary_binfo
, vid
);
7503 /* Add BINFO itself to the list. */
7504 add_vcall_offset_vtbl_entries_1 (binfo
, vid
);
7506 /* Scan the non-primary bases of BINFO. */
7507 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7508 if (base_binfo
!= primary_binfo
)
7509 add_vcall_offset_vtbl_entries_r (base_binfo
, vid
);
7512 /* Called from build_vcall_offset_vtbl_entries_r. */
7515 add_vcall_offset_vtbl_entries_1 (tree binfo
, vtbl_init_data
* vid
)
7517 /* Make entries for the rest of the virtuals. */
7518 if (abi_version_at_least (2))
7522 /* The ABI requires that the methods be processed in declaration
7523 order. G++ 3.2 used the order in the vtable. */
7524 for (orig_fn
= TYPE_METHODS (BINFO_TYPE (binfo
));
7526 orig_fn
= TREE_CHAIN (orig_fn
))
7527 if (DECL_VINDEX (orig_fn
))
7528 add_vcall_offset (orig_fn
, binfo
, vid
);
7532 tree derived_virtuals
;
7535 /* If BINFO is a primary base, the most derived class which has
7536 BINFO as a primary base; otherwise, just BINFO. */
7537 tree non_primary_binfo
;
7539 /* We might be a primary base class. Go up the inheritance hierarchy
7540 until we find the most derived class of which we are a primary base:
7541 it is the BINFO_VIRTUALS there that we need to consider. */
7542 non_primary_binfo
= binfo
;
7543 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7547 /* If we have reached a virtual base, then it must be vid->vbase,
7548 because we ignore other virtual bases in
7549 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7550 base (possibly multi-level) of vid->binfo, or we wouldn't
7551 have called build_vcall_and_vbase_vtbl_entries for it. But it
7552 might be a lost primary, so just skip down to vid->binfo. */
7553 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7555 gcc_assert (non_primary_binfo
== vid
->vbase
);
7556 non_primary_binfo
= vid
->binfo
;
7560 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7561 if (get_primary_binfo (b
) != non_primary_binfo
)
7563 non_primary_binfo
= b
;
7566 if (vid
->ctor_vtbl_p
)
7567 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7568 where rtti_binfo is the most derived type. */
7570 = original_binfo (non_primary_binfo
, vid
->rtti_binfo
);
7572 for (base_virtuals
= BINFO_VIRTUALS (binfo
),
7573 derived_virtuals
= BINFO_VIRTUALS (non_primary_binfo
),
7574 orig_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
7576 base_virtuals
= TREE_CHAIN (base_virtuals
),
7577 derived_virtuals
= TREE_CHAIN (derived_virtuals
),
7578 orig_virtuals
= TREE_CHAIN (orig_virtuals
))
7582 /* Find the declaration that originally caused this function to
7583 be present in BINFO_TYPE (binfo). */
7584 orig_fn
= BV_FN (orig_virtuals
);
7586 /* When processing BINFO, we only want to generate vcall slots for
7587 function slots introduced in BINFO. So don't try to generate
7588 one if the function isn't even defined in BINFO. */
7589 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), DECL_CONTEXT (orig_fn
)))
7592 add_vcall_offset (orig_fn
, binfo
, vid
);
7597 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7600 add_vcall_offset (tree orig_fn
, tree binfo
, vtbl_init_data
*vid
)
7606 /* If there is already an entry for a function with the same
7607 signature as FN, then we do not need a second vcall offset.
7608 Check the list of functions already present in the derived
7610 for (i
= 0; VEC_iterate (tree
, vid
->fns
, i
, derived_entry
); ++i
)
7612 if (same_signature_p (derived_entry
, orig_fn
)
7613 /* We only use one vcall offset for virtual destructors,
7614 even though there are two virtual table entries. */
7615 || (DECL_DESTRUCTOR_P (derived_entry
)
7616 && DECL_DESTRUCTOR_P (orig_fn
)))
7620 /* If we are building these vcall offsets as part of building
7621 the vtable for the most derived class, remember the vcall
7623 if (vid
->binfo
== TYPE_BINFO (vid
->derived
))
7625 tree_pair_p elt
= VEC_safe_push (tree_pair_s
, gc
,
7626 CLASSTYPE_VCALL_INDICES (vid
->derived
),
7628 elt
->purpose
= orig_fn
;
7629 elt
->value
= vid
->index
;
7632 /* The next vcall offset will be found at a more negative
7634 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7635 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7637 /* Keep track of this function. */
7638 VEC_safe_push (tree
, gc
, vid
->fns
, orig_fn
);
7640 if (vid
->generate_vcall_entries
)
7645 /* Find the overriding function. */
7646 fn
= find_final_overrider (vid
->rtti_binfo
, binfo
, orig_fn
);
7647 if (fn
== error_mark_node
)
7648 vcall_offset
= build1 (NOP_EXPR
, vtable_entry_type
,
7652 base
= TREE_VALUE (fn
);
7654 /* The vbase we're working on is a primary base of
7655 vid->binfo. But it might be a lost primary, so its
7656 BINFO_OFFSET might be wrong, so we just use the
7657 BINFO_OFFSET from vid->binfo. */
7658 vcall_offset
= size_diffop (BINFO_OFFSET (base
),
7659 BINFO_OFFSET (vid
->binfo
));
7660 vcall_offset
= fold_build1 (NOP_EXPR
, vtable_entry_type
,
7663 /* Add the initializer to the vtable. */
7664 *vid
->last_init
= build_tree_list (NULL_TREE
, vcall_offset
);
7665 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7669 /* Return vtbl initializers for the RTTI entries corresponding to the
7670 BINFO's vtable. The RTTI entries should indicate the object given
7671 by VID->rtti_binfo. */
7674 build_rtti_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7683 basetype
= BINFO_TYPE (binfo
);
7684 t
= BINFO_TYPE (vid
->rtti_binfo
);
7686 /* To find the complete object, we will first convert to our most
7687 primary base, and then add the offset in the vtbl to that value. */
7689 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b
))
7690 && !BINFO_LOST_PRIMARY_P (b
))
7694 primary_base
= get_primary_binfo (b
);
7695 gcc_assert (BINFO_PRIMARY_P (primary_base
)
7696 && BINFO_INHERITANCE_CHAIN (primary_base
) == b
);
7699 offset
= size_diffop (BINFO_OFFSET (vid
->rtti_binfo
), BINFO_OFFSET (b
));
7701 /* The second entry is the address of the typeinfo object. */
7703 decl
= build_address (get_tinfo_decl (t
));
7705 decl
= integer_zero_node
;
7707 /* Convert the declaration to a type that can be stored in the
7709 init
= build_nop (vfunc_ptr_type_node
, decl
);
7710 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7711 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7713 /* Add the offset-to-top entry. It comes earlier in the vtable than
7714 the typeinfo entry. Convert the offset to look like a
7715 function pointer, so that we can put it in the vtable. */
7716 init
= build_nop (vfunc_ptr_type_node
, offset
);
7717 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7718 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7721 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7722 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7725 cp_fold_obj_type_ref (tree ref
, tree known_type
)
7727 HOST_WIDE_INT index
= tree_low_cst (OBJ_TYPE_REF_TOKEN (ref
), 1);
7728 HOST_WIDE_INT i
= 0;
7729 tree v
= BINFO_VIRTUALS (TYPE_BINFO (known_type
));
7734 i
+= (TARGET_VTABLE_USES_DESCRIPTORS
7735 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1);
7741 #ifdef ENABLE_CHECKING
7742 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref
),
7743 DECL_VINDEX (fndecl
)));
7746 cgraph_node (fndecl
)->local
.vtable_method
= true;
7748 return build_address (fndecl
);
7751 #include "gt-cp-class.h"