Optimize powerpc*-*-linux* e500 hardfp/soft-fp use.
[official-gcc.git] / gcc / tree-ssa-forwprop.c
blob08ae6ef46367c5da4fc04bd62c67f668f217b7fd
1 /* Forward propagation of expressions for single use variables.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "hard-reg-set.h"
33 #include "input.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "basic-block.h"
38 #include "gimple-pretty-print.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-fold.h"
42 #include "tree-eh.h"
43 #include "gimple-expr.h"
44 #include "is-a.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "expr.h"
56 #include "tree-dfa.h"
57 #include "tree-pass.h"
58 #include "langhooks.h"
59 #include "flags.h"
60 #include "diagnostic.h"
61 #include "expr.h"
62 #include "cfgloop.h"
63 #include "optabs.h"
64 #include "tree-ssa-propagate.h"
65 #include "tree-ssa-dom.h"
66 #include "builtins.h"
67 #include "tree-cfgcleanup.h"
68 #include "tree-into-ssa.h"
69 #include "cfganal.h"
71 /* This pass propagates the RHS of assignment statements into use
72 sites of the LHS of the assignment. It's basically a specialized
73 form of tree combination. It is hoped all of this can disappear
74 when we have a generalized tree combiner.
76 One class of common cases we handle is forward propagating a single use
77 variable into a COND_EXPR.
79 bb0:
80 x = a COND b;
81 if (x) goto ... else goto ...
83 Will be transformed into:
85 bb0:
86 if (a COND b) goto ... else goto ...
88 Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
90 Or (assuming c1 and c2 are constants):
92 bb0:
93 x = a + c1;
94 if (x EQ/NEQ c2) goto ... else goto ...
96 Will be transformed into:
98 bb0:
99 if (a EQ/NEQ (c2 - c1)) goto ... else goto ...
101 Similarly for x = a - c1.
105 bb0:
106 x = !a
107 if (x) goto ... else goto ...
109 Will be transformed into:
111 bb0:
112 if (a == 0) goto ... else goto ...
114 Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
115 For these cases, we propagate A into all, possibly more than one,
116 COND_EXPRs that use X.
120 bb0:
121 x = (typecast) a
122 if (x) goto ... else goto ...
124 Will be transformed into:
126 bb0:
127 if (a != 0) goto ... else goto ...
129 (Assuming a is an integral type and x is a boolean or x is an
130 integral and a is a boolean.)
132 Similarly for the tests (x == 0), (x != 0), (x == 1) and (x != 1).
133 For these cases, we propagate A into all, possibly more than one,
134 COND_EXPRs that use X.
136 In addition to eliminating the variable and the statement which assigns
137 a value to the variable, we may be able to later thread the jump without
138 adding insane complexity in the dominator optimizer.
140 Also note these transformations can cascade. We handle this by having
141 a worklist of COND_EXPR statements to examine. As we make a change to
142 a statement, we put it back on the worklist to examine on the next
143 iteration of the main loop.
145 A second class of propagation opportunities arises for ADDR_EXPR
146 nodes.
148 ptr = &x->y->z;
149 res = *ptr;
151 Will get turned into
153 res = x->y->z;
156 ptr = (type1*)&type2var;
157 res = *ptr
159 Will get turned into (if type1 and type2 are the same size
160 and neither have volatile on them):
161 res = VIEW_CONVERT_EXPR<type1>(type2var)
165 ptr = &x[0];
166 ptr2 = ptr + <constant>;
168 Will get turned into
170 ptr2 = &x[constant/elementsize];
174 ptr = &x[0];
175 offset = index * element_size;
176 offset_p = (pointer) offset;
177 ptr2 = ptr + offset_p
179 Will get turned into:
181 ptr2 = &x[index];
184 ssa = (int) decl
185 res = ssa & 1
187 Provided that decl has known alignment >= 2, will get turned into
189 res = 0
191 We also propagate casts into SWITCH_EXPR and COND_EXPR conditions to
192 allow us to remove the cast and {NOT_EXPR,NEG_EXPR} into a subsequent
193 {NOT_EXPR,NEG_EXPR}.
195 This will (of course) be extended as other needs arise. */
197 static bool forward_propagate_addr_expr (tree, tree, bool);
199 /* Set to true if we delete dead edges during the optimization. */
200 static bool cfg_changed;
202 static tree rhs_to_tree (tree type, gimple stmt);
204 /* Get the next statement we can propagate NAME's value into skipping
205 trivial copies. Returns the statement that is suitable as a
206 propagation destination or NULL_TREE if there is no such one.
207 This only returns destinations in a single-use chain. FINAL_NAME_P
208 if non-NULL is written to the ssa name that represents the use. */
210 static gimple
211 get_prop_dest_stmt (tree name, tree *final_name_p)
213 use_operand_p use;
214 gimple use_stmt;
216 do {
217 /* If name has multiple uses, bail out. */
218 if (!single_imm_use (name, &use, &use_stmt))
219 return NULL;
221 /* If this is not a trivial copy, we found it. */
222 if (!gimple_assign_ssa_name_copy_p (use_stmt)
223 || gimple_assign_rhs1 (use_stmt) != name)
224 break;
226 /* Continue searching uses of the copy destination. */
227 name = gimple_assign_lhs (use_stmt);
228 } while (1);
230 if (final_name_p)
231 *final_name_p = name;
233 return use_stmt;
236 /* Get the statement we can propagate from into NAME skipping
237 trivial copies. Returns the statement which defines the
238 propagation source or NULL_TREE if there is no such one.
239 If SINGLE_USE_ONLY is set considers only sources which have
240 a single use chain up to NAME. If SINGLE_USE_P is non-null,
241 it is set to whether the chain to NAME is a single use chain
242 or not. SINGLE_USE_P is not written to if SINGLE_USE_ONLY is set. */
244 static gimple
245 get_prop_source_stmt (tree name, bool single_use_only, bool *single_use_p)
247 bool single_use = true;
249 do {
250 gimple def_stmt = SSA_NAME_DEF_STMT (name);
252 if (!has_single_use (name))
254 single_use = false;
255 if (single_use_only)
256 return NULL;
259 /* If name is defined by a PHI node or is the default def, bail out. */
260 if (!is_gimple_assign (def_stmt))
261 return NULL;
263 /* If def_stmt is a simple copy, continue looking. */
264 if (gimple_assign_rhs_code (def_stmt) == SSA_NAME)
265 name = gimple_assign_rhs1 (def_stmt);
266 else
268 if (!single_use_only && single_use_p)
269 *single_use_p = single_use;
271 return def_stmt;
273 } while (1);
276 /* Checks if the destination ssa name in DEF_STMT can be used as
277 propagation source. Returns true if so, otherwise false. */
279 static bool
280 can_propagate_from (gimple def_stmt)
282 gcc_assert (is_gimple_assign (def_stmt));
284 /* If the rhs has side-effects we cannot propagate from it. */
285 if (gimple_has_volatile_ops (def_stmt))
286 return false;
288 /* If the rhs is a load we cannot propagate from it. */
289 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_reference
290 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) == tcc_declaration)
291 return false;
293 /* Constants can be always propagated. */
294 if (gimple_assign_single_p (def_stmt)
295 && is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
296 return true;
298 /* We cannot propagate ssa names that occur in abnormal phi nodes. */
299 if (stmt_references_abnormal_ssa_name (def_stmt))
300 return false;
302 /* If the definition is a conversion of a pointer to a function type,
303 then we can not apply optimizations as some targets require
304 function pointers to be canonicalized and in this case this
305 optimization could eliminate a necessary canonicalization. */
306 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
308 tree rhs = gimple_assign_rhs1 (def_stmt);
309 if (POINTER_TYPE_P (TREE_TYPE (rhs))
310 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs))) == FUNCTION_TYPE)
311 return false;
314 return true;
317 /* Remove a chain of dead statements starting at the definition of
318 NAME. The chain is linked via the first operand of the defining statements.
319 If NAME was replaced in its only use then this function can be used
320 to clean up dead stmts. The function handles already released SSA
321 names gracefully.
322 Returns true if cleanup-cfg has to run. */
324 static bool
325 remove_prop_source_from_use (tree name)
327 gimple_stmt_iterator gsi;
328 gimple stmt;
329 bool cfg_changed = false;
331 do {
332 basic_block bb;
334 if (SSA_NAME_IN_FREE_LIST (name)
335 || SSA_NAME_IS_DEFAULT_DEF (name)
336 || !has_zero_uses (name))
337 return cfg_changed;
339 stmt = SSA_NAME_DEF_STMT (name);
340 if (gimple_code (stmt) == GIMPLE_PHI
341 || gimple_has_side_effects (stmt))
342 return cfg_changed;
344 bb = gimple_bb (stmt);
345 gsi = gsi_for_stmt (stmt);
346 unlink_stmt_vdef (stmt);
347 if (gsi_remove (&gsi, true))
348 cfg_changed |= gimple_purge_dead_eh_edges (bb);
349 release_defs (stmt);
351 name = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : NULL_TREE;
352 } while (name && TREE_CODE (name) == SSA_NAME);
354 return cfg_changed;
357 /* Return the rhs of a gimple_assign STMT in a form of a single tree,
358 converted to type TYPE.
360 This should disappear, but is needed so we can combine expressions and use
361 the fold() interfaces. Long term, we need to develop folding and combine
362 routines that deal with gimple exclusively . */
364 static tree
365 rhs_to_tree (tree type, gimple stmt)
367 location_t loc = gimple_location (stmt);
368 enum tree_code code = gimple_assign_rhs_code (stmt);
369 if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
370 return fold_build3_loc (loc, code, type, gimple_assign_rhs1 (stmt),
371 gimple_assign_rhs2 (stmt),
372 gimple_assign_rhs3 (stmt));
373 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
374 return fold_build2_loc (loc, code, type, gimple_assign_rhs1 (stmt),
375 gimple_assign_rhs2 (stmt));
376 else if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
377 return build1 (code, type, gimple_assign_rhs1 (stmt));
378 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
379 return gimple_assign_rhs1 (stmt);
380 else
381 gcc_unreachable ();
384 /* Combine OP0 CODE OP1 in the context of a COND_EXPR. Returns
385 the folded result in a form suitable for COND_EXPR_COND or
386 NULL_TREE, if there is no suitable simplified form. If
387 INVARIANT_ONLY is true only gimple_min_invariant results are
388 considered simplified. */
390 static tree
391 combine_cond_expr_cond (gimple stmt, enum tree_code code, tree type,
392 tree op0, tree op1, bool invariant_only)
394 tree t;
396 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
398 fold_defer_overflow_warnings ();
399 t = fold_binary_loc (gimple_location (stmt), code, type, op0, op1);
400 if (!t)
402 fold_undefer_overflow_warnings (false, NULL, 0);
403 return NULL_TREE;
406 /* Require that we got a boolean type out if we put one in. */
407 gcc_assert (TREE_CODE (TREE_TYPE (t)) == TREE_CODE (type));
409 /* Canonicalize the combined condition for use in a COND_EXPR. */
410 t = canonicalize_cond_expr_cond (t);
412 /* Bail out if we required an invariant but didn't get one. */
413 if (!t || (invariant_only && !is_gimple_min_invariant (t)))
415 fold_undefer_overflow_warnings (false, NULL, 0);
416 return NULL_TREE;
419 fold_undefer_overflow_warnings (!gimple_no_warning_p (stmt), stmt, 0);
421 return t;
424 /* Combine the comparison OP0 CODE OP1 at LOC with the defining statements
425 of its operand. Return a new comparison tree or NULL_TREE if there
426 were no simplifying combines. */
428 static tree
429 forward_propagate_into_comparison_1 (gimple stmt,
430 enum tree_code code, tree type,
431 tree op0, tree op1)
433 tree tmp = NULL_TREE;
434 tree rhs0 = NULL_TREE, rhs1 = NULL_TREE;
435 bool single_use0_p = false, single_use1_p = false;
437 /* For comparisons use the first operand, that is likely to
438 simplify comparisons against constants. */
439 if (TREE_CODE (op0) == SSA_NAME)
441 gimple def_stmt = get_prop_source_stmt (op0, false, &single_use0_p);
442 if (def_stmt && can_propagate_from (def_stmt))
444 rhs0 = rhs_to_tree (TREE_TYPE (op1), def_stmt);
445 tmp = combine_cond_expr_cond (stmt, code, type,
446 rhs0, op1, !single_use0_p);
447 if (tmp)
448 return tmp;
452 /* If that wasn't successful, try the second operand. */
453 if (TREE_CODE (op1) == SSA_NAME)
455 gimple def_stmt = get_prop_source_stmt (op1, false, &single_use1_p);
456 if (def_stmt && can_propagate_from (def_stmt))
458 rhs1 = rhs_to_tree (TREE_TYPE (op0), def_stmt);
459 tmp = combine_cond_expr_cond (stmt, code, type,
460 op0, rhs1, !single_use1_p);
461 if (tmp)
462 return tmp;
466 /* If that wasn't successful either, try both operands. */
467 if (rhs0 != NULL_TREE
468 && rhs1 != NULL_TREE)
469 tmp = combine_cond_expr_cond (stmt, code, type,
470 rhs0, rhs1,
471 !(single_use0_p && single_use1_p));
473 return tmp;
476 /* Propagate from the ssa name definition statements of the assignment
477 from a comparison at *GSI into the conditional if that simplifies it.
478 Returns 1 if the stmt was modified and 2 if the CFG needs cleanup,
479 otherwise returns 0. */
481 static int
482 forward_propagate_into_comparison (gimple_stmt_iterator *gsi)
484 gimple stmt = gsi_stmt (*gsi);
485 tree tmp;
486 bool cfg_changed = false;
487 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
488 tree rhs1 = gimple_assign_rhs1 (stmt);
489 tree rhs2 = gimple_assign_rhs2 (stmt);
491 /* Combine the comparison with defining statements. */
492 tmp = forward_propagate_into_comparison_1 (stmt,
493 gimple_assign_rhs_code (stmt),
494 type, rhs1, rhs2);
495 if (tmp && useless_type_conversion_p (type, TREE_TYPE (tmp)))
497 gimple_assign_set_rhs_from_tree (gsi, tmp);
498 fold_stmt (gsi);
499 update_stmt (gsi_stmt (*gsi));
501 if (TREE_CODE (rhs1) == SSA_NAME)
502 cfg_changed |= remove_prop_source_from_use (rhs1);
503 if (TREE_CODE (rhs2) == SSA_NAME)
504 cfg_changed |= remove_prop_source_from_use (rhs2);
505 return cfg_changed ? 2 : 1;
508 return 0;
511 /* Propagate from the ssa name definition statements of COND_EXPR
512 in GIMPLE_COND statement STMT into the conditional if that simplifies it.
513 Returns zero if no statement was changed, one if there were
514 changes and two if cfg_cleanup needs to run.
516 This must be kept in sync with forward_propagate_into_cond. */
518 static int
519 forward_propagate_into_gimple_cond (gimple stmt)
521 tree tmp;
522 enum tree_code code = gimple_cond_code (stmt);
523 bool cfg_changed = false;
524 tree rhs1 = gimple_cond_lhs (stmt);
525 tree rhs2 = gimple_cond_rhs (stmt);
527 /* We can do tree combining on SSA_NAME and comparison expressions. */
528 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
529 return 0;
531 tmp = forward_propagate_into_comparison_1 (stmt, code,
532 boolean_type_node,
533 rhs1, rhs2);
534 if (tmp)
536 if (dump_file && tmp)
538 fprintf (dump_file, " Replaced '");
539 print_gimple_expr (dump_file, stmt, 0, 0);
540 fprintf (dump_file, "' with '");
541 print_generic_expr (dump_file, tmp, 0);
542 fprintf (dump_file, "'\n");
545 gimple_cond_set_condition_from_tree (stmt, unshare_expr (tmp));
546 update_stmt (stmt);
548 if (TREE_CODE (rhs1) == SSA_NAME)
549 cfg_changed |= remove_prop_source_from_use (rhs1);
550 if (TREE_CODE (rhs2) == SSA_NAME)
551 cfg_changed |= remove_prop_source_from_use (rhs2);
552 return (cfg_changed || is_gimple_min_invariant (tmp)) ? 2 : 1;
555 /* Canonicalize _Bool == 0 and _Bool != 1 to _Bool != 0 by swapping edges. */
556 if ((TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE
557 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
558 && TYPE_PRECISION (TREE_TYPE (rhs1)) == 1))
559 && ((code == EQ_EXPR
560 && integer_zerop (rhs2))
561 || (code == NE_EXPR
562 && integer_onep (rhs2))))
564 basic_block bb = gimple_bb (stmt);
565 gimple_cond_set_code (stmt, NE_EXPR);
566 gimple_cond_set_rhs (stmt, build_zero_cst (TREE_TYPE (rhs1)));
567 EDGE_SUCC (bb, 0)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
568 EDGE_SUCC (bb, 1)->flags ^= (EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
569 return 1;
572 return 0;
576 /* Propagate from the ssa name definition statements of COND_EXPR
577 in the rhs of statement STMT into the conditional if that simplifies it.
578 Returns true zero if the stmt was changed. */
580 static bool
581 forward_propagate_into_cond (gimple_stmt_iterator *gsi_p)
583 gimple stmt = gsi_stmt (*gsi_p);
584 tree tmp = NULL_TREE;
585 tree cond = gimple_assign_rhs1 (stmt);
586 enum tree_code code = gimple_assign_rhs_code (stmt);
587 bool swap = false;
589 /* We can do tree combining on SSA_NAME and comparison expressions. */
590 if (COMPARISON_CLASS_P (cond))
591 tmp = forward_propagate_into_comparison_1 (stmt, TREE_CODE (cond),
592 TREE_TYPE (cond),
593 TREE_OPERAND (cond, 0),
594 TREE_OPERAND (cond, 1));
595 else if (TREE_CODE (cond) == SSA_NAME)
597 enum tree_code def_code;
598 tree name = cond;
599 gimple def_stmt = get_prop_source_stmt (name, true, NULL);
600 if (!def_stmt || !can_propagate_from (def_stmt))
601 return 0;
603 def_code = gimple_assign_rhs_code (def_stmt);
604 if (TREE_CODE_CLASS (def_code) == tcc_comparison)
605 tmp = fold_build2_loc (gimple_location (def_stmt),
606 def_code,
607 TREE_TYPE (cond),
608 gimple_assign_rhs1 (def_stmt),
609 gimple_assign_rhs2 (def_stmt));
610 else if (code == COND_EXPR
611 && ((def_code == BIT_NOT_EXPR
612 && TYPE_PRECISION (TREE_TYPE (cond)) == 1)
613 || (def_code == BIT_XOR_EXPR
614 && integer_onep (gimple_assign_rhs2 (def_stmt)))))
616 tmp = gimple_assign_rhs1 (def_stmt);
617 swap = true;
621 if (tmp
622 && is_gimple_condexpr (tmp))
624 if (dump_file && tmp)
626 fprintf (dump_file, " Replaced '");
627 print_generic_expr (dump_file, cond, 0);
628 fprintf (dump_file, "' with '");
629 print_generic_expr (dump_file, tmp, 0);
630 fprintf (dump_file, "'\n");
633 if ((code == VEC_COND_EXPR) ? integer_all_onesp (tmp)
634 : integer_onep (tmp))
635 gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs2 (stmt));
636 else if (integer_zerop (tmp))
637 gimple_assign_set_rhs_from_tree (gsi_p, gimple_assign_rhs3 (stmt));
638 else
640 gimple_assign_set_rhs1 (stmt, unshare_expr (tmp));
641 if (swap)
643 tree t = gimple_assign_rhs2 (stmt);
644 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs3 (stmt));
645 gimple_assign_set_rhs3 (stmt, t);
648 stmt = gsi_stmt (*gsi_p);
649 update_stmt (stmt);
651 return true;
654 return 0;
657 /* Propagate from the ssa name definition statements of COND_EXPR
658 values in the rhs of statement STMT into the conditional arms
659 if that simplifies it.
660 Returns true if the stmt was changed. */
662 static bool
663 combine_cond_exprs (gimple_stmt_iterator *gsi_p)
665 gimple stmt = gsi_stmt (*gsi_p);
666 tree cond, val1, val2;
667 bool changed = false;
669 cond = gimple_assign_rhs1 (stmt);
670 val1 = gimple_assign_rhs2 (stmt);
671 if (TREE_CODE (val1) == SSA_NAME)
673 gimple def_stmt = SSA_NAME_DEF_STMT (val1);
674 if (is_gimple_assign (def_stmt)
675 && gimple_assign_rhs_code (def_stmt) == gimple_assign_rhs_code (stmt)
676 && operand_equal_p (gimple_assign_rhs1 (def_stmt), cond, 0))
678 val1 = unshare_expr (gimple_assign_rhs2 (def_stmt));
679 gimple_assign_set_rhs2 (stmt, val1);
680 changed = true;
683 val2 = gimple_assign_rhs3 (stmt);
684 if (TREE_CODE (val2) == SSA_NAME)
686 gimple def_stmt = SSA_NAME_DEF_STMT (val2);
687 if (is_gimple_assign (def_stmt)
688 && gimple_assign_rhs_code (def_stmt) == gimple_assign_rhs_code (stmt)
689 && operand_equal_p (gimple_assign_rhs1 (def_stmt), cond, 0))
691 val2 = unshare_expr (gimple_assign_rhs3 (def_stmt));
692 gimple_assign_set_rhs3 (stmt, val2);
693 changed = true;
696 if (operand_equal_p (val1, val2, 0))
698 gimple_assign_set_rhs_from_tree (gsi_p, val1);
699 stmt = gsi_stmt (*gsi_p);
700 changed = true;
703 if (changed)
704 update_stmt (stmt);
706 return changed;
709 /* We've just substituted an ADDR_EXPR into stmt. Update all the
710 relevant data structures to match. */
712 static void
713 tidy_after_forward_propagate_addr (gimple stmt)
715 /* We may have turned a trapping insn into a non-trapping insn. */
716 if (maybe_clean_or_replace_eh_stmt (stmt, stmt)
717 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
718 cfg_changed = true;
720 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR)
721 recompute_tree_invariant_for_addr_expr (gimple_assign_rhs1 (stmt));
724 /* NAME is a SSA_NAME representing DEF_RHS which is of the form
725 ADDR_EXPR <whatever>.
727 Try to forward propagate the ADDR_EXPR into the use USE_STMT.
728 Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
729 node or for recovery of array indexing from pointer arithmetic.
731 Return true if the propagation was successful (the propagation can
732 be not totally successful, yet things may have been changed). */
734 static bool
735 forward_propagate_addr_expr_1 (tree name, tree def_rhs,
736 gimple_stmt_iterator *use_stmt_gsi,
737 bool single_use_p)
739 tree lhs, rhs, rhs2, array_ref;
740 gimple use_stmt = gsi_stmt (*use_stmt_gsi);
741 enum tree_code rhs_code;
742 bool res = true;
744 gcc_assert (TREE_CODE (def_rhs) == ADDR_EXPR);
746 lhs = gimple_assign_lhs (use_stmt);
747 rhs_code = gimple_assign_rhs_code (use_stmt);
748 rhs = gimple_assign_rhs1 (use_stmt);
750 /* Do not perform copy-propagation but recurse through copy chains. */
751 if (TREE_CODE (lhs) == SSA_NAME
752 && rhs_code == SSA_NAME)
753 return forward_propagate_addr_expr (lhs, def_rhs, single_use_p);
755 /* The use statement could be a conversion. Recurse to the uses of the
756 lhs as copyprop does not copy through pointer to integer to pointer
757 conversions and FRE does not catch all cases either.
758 Treat the case of a single-use name and
759 a conversion to def_rhs type separate, though. */
760 if (TREE_CODE (lhs) == SSA_NAME
761 && CONVERT_EXPR_CODE_P (rhs_code))
763 /* If there is a point in a conversion chain where the types match
764 so we can remove a conversion re-materialize the address here
765 and stop. */
766 if (single_use_p
767 && useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (def_rhs)))
769 gimple_assign_set_rhs1 (use_stmt, unshare_expr (def_rhs));
770 gimple_assign_set_rhs_code (use_stmt, TREE_CODE (def_rhs));
771 return true;
774 /* Else recurse if the conversion preserves the address value. */
775 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
776 || POINTER_TYPE_P (TREE_TYPE (lhs)))
777 && (TYPE_PRECISION (TREE_TYPE (lhs))
778 >= TYPE_PRECISION (TREE_TYPE (def_rhs))))
779 return forward_propagate_addr_expr (lhs, def_rhs, single_use_p);
781 return false;
784 /* If this isn't a conversion chain from this on we only can propagate
785 into compatible pointer contexts. */
786 if (!types_compatible_p (TREE_TYPE (name), TREE_TYPE (def_rhs)))
787 return false;
789 /* Propagate through constant pointer adjustments. */
790 if (TREE_CODE (lhs) == SSA_NAME
791 && rhs_code == POINTER_PLUS_EXPR
792 && rhs == name
793 && TREE_CODE (gimple_assign_rhs2 (use_stmt)) == INTEGER_CST)
795 tree new_def_rhs;
796 /* As we come here with non-invariant addresses in def_rhs we need
797 to make sure we can build a valid constant offsetted address
798 for further propagation. Simply rely on fold building that
799 and check after the fact. */
800 new_def_rhs = fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (rhs)),
801 def_rhs,
802 fold_convert (ptr_type_node,
803 gimple_assign_rhs2 (use_stmt)));
804 if (TREE_CODE (new_def_rhs) == MEM_REF
805 && !is_gimple_mem_ref_addr (TREE_OPERAND (new_def_rhs, 0)))
806 return false;
807 new_def_rhs = build_fold_addr_expr_with_type (new_def_rhs,
808 TREE_TYPE (rhs));
810 /* Recurse. If we could propagate into all uses of lhs do not
811 bother to replace into the current use but just pretend we did. */
812 if (TREE_CODE (new_def_rhs) == ADDR_EXPR
813 && forward_propagate_addr_expr (lhs, new_def_rhs, single_use_p))
814 return true;
816 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_def_rhs)))
817 gimple_assign_set_rhs_with_ops (use_stmt_gsi, TREE_CODE (new_def_rhs),
818 new_def_rhs, NULL_TREE);
819 else if (is_gimple_min_invariant (new_def_rhs))
820 gimple_assign_set_rhs_with_ops (use_stmt_gsi, NOP_EXPR,
821 new_def_rhs, NULL_TREE);
822 else
823 return false;
824 gcc_assert (gsi_stmt (*use_stmt_gsi) == use_stmt);
825 update_stmt (use_stmt);
826 return true;
829 /* Now strip away any outer COMPONENT_REF/ARRAY_REF nodes from the LHS.
830 ADDR_EXPR will not appear on the LHS. */
831 tree *lhsp = gimple_assign_lhs_ptr (use_stmt);
832 while (handled_component_p (*lhsp))
833 lhsp = &TREE_OPERAND (*lhsp, 0);
834 lhs = *lhsp;
836 /* Now see if the LHS node is a MEM_REF using NAME. If so,
837 propagate the ADDR_EXPR into the use of NAME and fold the result. */
838 if (TREE_CODE (lhs) == MEM_REF
839 && TREE_OPERAND (lhs, 0) == name)
841 tree def_rhs_base;
842 HOST_WIDE_INT def_rhs_offset;
843 /* If the address is invariant we can always fold it. */
844 if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
845 &def_rhs_offset)))
847 offset_int off = mem_ref_offset (lhs);
848 tree new_ptr;
849 off += def_rhs_offset;
850 if (TREE_CODE (def_rhs_base) == MEM_REF)
852 off += mem_ref_offset (def_rhs_base);
853 new_ptr = TREE_OPERAND (def_rhs_base, 0);
855 else
856 new_ptr = build_fold_addr_expr (def_rhs_base);
857 TREE_OPERAND (lhs, 0) = new_ptr;
858 TREE_OPERAND (lhs, 1)
859 = wide_int_to_tree (TREE_TYPE (TREE_OPERAND (lhs, 1)), off);
860 tidy_after_forward_propagate_addr (use_stmt);
861 /* Continue propagating into the RHS if this was not the only use. */
862 if (single_use_p)
863 return true;
865 /* If the LHS is a plain dereference and the value type is the same as
866 that of the pointed-to type of the address we can put the
867 dereferenced address on the LHS preserving the original alias-type. */
868 else if (integer_zerop (TREE_OPERAND (lhs, 1))
869 && ((gimple_assign_lhs (use_stmt) == lhs
870 && useless_type_conversion_p
871 (TREE_TYPE (TREE_OPERAND (def_rhs, 0)),
872 TREE_TYPE (gimple_assign_rhs1 (use_stmt))))
873 || types_compatible_p (TREE_TYPE (lhs),
874 TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
875 /* Don't forward anything into clobber stmts if it would result
876 in the lhs no longer being a MEM_REF. */
877 && (!gimple_clobber_p (use_stmt)
878 || TREE_CODE (TREE_OPERAND (def_rhs, 0)) == MEM_REF))
880 tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
881 tree new_offset, new_base, saved, new_lhs;
882 while (handled_component_p (*def_rhs_basep))
883 def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
884 saved = *def_rhs_basep;
885 if (TREE_CODE (*def_rhs_basep) == MEM_REF)
887 new_base = TREE_OPERAND (*def_rhs_basep, 0);
888 new_offset = fold_convert (TREE_TYPE (TREE_OPERAND (lhs, 1)),
889 TREE_OPERAND (*def_rhs_basep, 1));
891 else
893 new_base = build_fold_addr_expr (*def_rhs_basep);
894 new_offset = TREE_OPERAND (lhs, 1);
896 *def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
897 new_base, new_offset);
898 TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (lhs);
899 TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (lhs);
900 TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (lhs);
901 new_lhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
902 *lhsp = new_lhs;
903 TREE_THIS_VOLATILE (new_lhs) = TREE_THIS_VOLATILE (lhs);
904 TREE_SIDE_EFFECTS (new_lhs) = TREE_SIDE_EFFECTS (lhs);
905 *def_rhs_basep = saved;
906 tidy_after_forward_propagate_addr (use_stmt);
907 /* Continue propagating into the RHS if this was not the
908 only use. */
909 if (single_use_p)
910 return true;
912 else
913 /* We can have a struct assignment dereferencing our name twice.
914 Note that we didn't propagate into the lhs to not falsely
915 claim we did when propagating into the rhs. */
916 res = false;
919 /* Strip away any outer COMPONENT_REF, ARRAY_REF or ADDR_EXPR
920 nodes from the RHS. */
921 tree *rhsp = gimple_assign_rhs1_ptr (use_stmt);
922 if (TREE_CODE (*rhsp) == ADDR_EXPR)
923 rhsp = &TREE_OPERAND (*rhsp, 0);
924 while (handled_component_p (*rhsp))
925 rhsp = &TREE_OPERAND (*rhsp, 0);
926 rhs = *rhsp;
928 /* Now see if the RHS node is a MEM_REF using NAME. If so,
929 propagate the ADDR_EXPR into the use of NAME and fold the result. */
930 if (TREE_CODE (rhs) == MEM_REF
931 && TREE_OPERAND (rhs, 0) == name)
933 tree def_rhs_base;
934 HOST_WIDE_INT def_rhs_offset;
935 if ((def_rhs_base = get_addr_base_and_unit_offset (TREE_OPERAND (def_rhs, 0),
936 &def_rhs_offset)))
938 offset_int off = mem_ref_offset (rhs);
939 tree new_ptr;
940 off += def_rhs_offset;
941 if (TREE_CODE (def_rhs_base) == MEM_REF)
943 off += mem_ref_offset (def_rhs_base);
944 new_ptr = TREE_OPERAND (def_rhs_base, 0);
946 else
947 new_ptr = build_fold_addr_expr (def_rhs_base);
948 TREE_OPERAND (rhs, 0) = new_ptr;
949 TREE_OPERAND (rhs, 1)
950 = wide_int_to_tree (TREE_TYPE (TREE_OPERAND (rhs, 1)), off);
951 fold_stmt_inplace (use_stmt_gsi);
952 tidy_after_forward_propagate_addr (use_stmt);
953 return res;
955 /* If the RHS is a plain dereference and the value type is the same as
956 that of the pointed-to type of the address we can put the
957 dereferenced address on the RHS preserving the original alias-type. */
958 else if (integer_zerop (TREE_OPERAND (rhs, 1))
959 && ((gimple_assign_rhs1 (use_stmt) == rhs
960 && useless_type_conversion_p
961 (TREE_TYPE (gimple_assign_lhs (use_stmt)),
962 TREE_TYPE (TREE_OPERAND (def_rhs, 0))))
963 || types_compatible_p (TREE_TYPE (rhs),
964 TREE_TYPE (TREE_OPERAND (def_rhs, 0)))))
966 tree *def_rhs_basep = &TREE_OPERAND (def_rhs, 0);
967 tree new_offset, new_base, saved, new_rhs;
968 while (handled_component_p (*def_rhs_basep))
969 def_rhs_basep = &TREE_OPERAND (*def_rhs_basep, 0);
970 saved = *def_rhs_basep;
971 if (TREE_CODE (*def_rhs_basep) == MEM_REF)
973 new_base = TREE_OPERAND (*def_rhs_basep, 0);
974 new_offset = fold_convert (TREE_TYPE (TREE_OPERAND (rhs, 1)),
975 TREE_OPERAND (*def_rhs_basep, 1));
977 else
979 new_base = build_fold_addr_expr (*def_rhs_basep);
980 new_offset = TREE_OPERAND (rhs, 1);
982 *def_rhs_basep = build2 (MEM_REF, TREE_TYPE (*def_rhs_basep),
983 new_base, new_offset);
984 TREE_THIS_VOLATILE (*def_rhs_basep) = TREE_THIS_VOLATILE (rhs);
985 TREE_SIDE_EFFECTS (*def_rhs_basep) = TREE_SIDE_EFFECTS (rhs);
986 TREE_THIS_NOTRAP (*def_rhs_basep) = TREE_THIS_NOTRAP (rhs);
987 new_rhs = unshare_expr (TREE_OPERAND (def_rhs, 0));
988 *rhsp = new_rhs;
989 TREE_THIS_VOLATILE (new_rhs) = TREE_THIS_VOLATILE (rhs);
990 TREE_SIDE_EFFECTS (new_rhs) = TREE_SIDE_EFFECTS (rhs);
991 *def_rhs_basep = saved;
992 fold_stmt_inplace (use_stmt_gsi);
993 tidy_after_forward_propagate_addr (use_stmt);
994 return res;
998 /* If the use of the ADDR_EXPR is not a POINTER_PLUS_EXPR, there
999 is nothing to do. */
1000 if (gimple_assign_rhs_code (use_stmt) != POINTER_PLUS_EXPR
1001 || gimple_assign_rhs1 (use_stmt) != name)
1002 return false;
1004 /* The remaining cases are all for turning pointer arithmetic into
1005 array indexing. They only apply when we have the address of
1006 element zero in an array. If that is not the case then there
1007 is nothing to do. */
1008 array_ref = TREE_OPERAND (def_rhs, 0);
1009 if ((TREE_CODE (array_ref) != ARRAY_REF
1010 || TREE_CODE (TREE_TYPE (TREE_OPERAND (array_ref, 0))) != ARRAY_TYPE
1011 || TREE_CODE (TREE_OPERAND (array_ref, 1)) != INTEGER_CST)
1012 && TREE_CODE (TREE_TYPE (array_ref)) != ARRAY_TYPE)
1013 return false;
1015 rhs2 = gimple_assign_rhs2 (use_stmt);
1016 /* Optimize &x[C1] p+ C2 to &x p+ C3 with C3 = C1 * element_size + C2. */
1017 if (TREE_CODE (rhs2) == INTEGER_CST)
1019 tree new_rhs = build1_loc (gimple_location (use_stmt),
1020 ADDR_EXPR, TREE_TYPE (def_rhs),
1021 fold_build2 (MEM_REF,
1022 TREE_TYPE (TREE_TYPE (def_rhs)),
1023 unshare_expr (def_rhs),
1024 fold_convert (ptr_type_node,
1025 rhs2)));
1026 gimple_assign_set_rhs_from_tree (use_stmt_gsi, new_rhs);
1027 use_stmt = gsi_stmt (*use_stmt_gsi);
1028 update_stmt (use_stmt);
1029 tidy_after_forward_propagate_addr (use_stmt);
1030 return true;
1033 return false;
1036 /* STMT is a statement of the form SSA_NAME = ADDR_EXPR <whatever>.
1038 Try to forward propagate the ADDR_EXPR into all uses of the SSA_NAME.
1039 Often this will allow for removal of an ADDR_EXPR and INDIRECT_REF
1040 node or for recovery of array indexing from pointer arithmetic.
1042 PARENT_SINGLE_USE_P tells if, when in a recursive invocation, NAME was
1043 the single use in the previous invocation. Pass true when calling
1044 this as toplevel.
1046 Returns true, if all uses have been propagated into. */
1048 static bool
1049 forward_propagate_addr_expr (tree name, tree rhs, bool parent_single_use_p)
1051 imm_use_iterator iter;
1052 gimple use_stmt;
1053 bool all = true;
1054 bool single_use_p = parent_single_use_p && has_single_use (name);
1056 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
1058 bool result;
1059 tree use_rhs;
1061 /* If the use is not in a simple assignment statement, then
1062 there is nothing we can do. */
1063 if (!is_gimple_assign (use_stmt))
1065 if (!is_gimple_debug (use_stmt))
1066 all = false;
1067 continue;
1070 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
1071 result = forward_propagate_addr_expr_1 (name, rhs, &gsi,
1072 single_use_p);
1073 /* If the use has moved to a different statement adjust
1074 the update machinery for the old statement too. */
1075 if (use_stmt != gsi_stmt (gsi))
1077 update_stmt (use_stmt);
1078 use_stmt = gsi_stmt (gsi);
1080 update_stmt (use_stmt);
1081 all &= result;
1083 /* Remove intermediate now unused copy and conversion chains. */
1084 use_rhs = gimple_assign_rhs1 (use_stmt);
1085 if (result
1086 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
1087 && TREE_CODE (use_rhs) == SSA_NAME
1088 && has_zero_uses (gimple_assign_lhs (use_stmt)))
1090 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
1091 release_defs (use_stmt);
1092 gsi_remove (&gsi, true);
1096 return all && has_zero_uses (name);
1100 /* Forward propagate the comparison defined in *DEFGSI like
1101 cond_1 = x CMP y to uses of the form
1102 a_1 = (T')cond_1
1103 a_1 = !cond_1
1104 a_1 = cond_1 != 0
1105 Returns true if stmt is now unused. Advance DEFGSI to the next
1106 statement. */
1108 static bool
1109 forward_propagate_comparison (gimple_stmt_iterator *defgsi)
1111 gimple stmt = gsi_stmt (*defgsi);
1112 tree name = gimple_assign_lhs (stmt);
1113 gimple use_stmt;
1114 tree tmp = NULL_TREE;
1115 gimple_stmt_iterator gsi;
1116 enum tree_code code;
1117 tree lhs;
1119 /* Don't propagate ssa names that occur in abnormal phis. */
1120 if ((TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1121 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)))
1122 || (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME
1123 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs2 (stmt))))
1124 goto bailout;
1126 /* Do not un-cse comparisons. But propagate through copies. */
1127 use_stmt = get_prop_dest_stmt (name, &name);
1128 if (!use_stmt
1129 || !is_gimple_assign (use_stmt))
1130 goto bailout;
1132 code = gimple_assign_rhs_code (use_stmt);
1133 lhs = gimple_assign_lhs (use_stmt);
1134 if (!INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1135 goto bailout;
1137 /* We can propagate the condition into a statement that
1138 computes the logical negation of the comparison result. */
1139 if ((code == BIT_NOT_EXPR
1140 && TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
1141 || (code == BIT_XOR_EXPR
1142 && integer_onep (gimple_assign_rhs2 (use_stmt))))
1144 tree type = TREE_TYPE (gimple_assign_rhs1 (stmt));
1145 bool nans = HONOR_NANS (TYPE_MODE (type));
1146 enum tree_code inv_code;
1147 inv_code = invert_tree_comparison (gimple_assign_rhs_code (stmt), nans);
1148 if (inv_code == ERROR_MARK)
1149 goto bailout;
1151 tmp = build2 (inv_code, TREE_TYPE (lhs), gimple_assign_rhs1 (stmt),
1152 gimple_assign_rhs2 (stmt));
1154 else
1155 goto bailout;
1157 gsi = gsi_for_stmt (use_stmt);
1158 gimple_assign_set_rhs_from_tree (&gsi, unshare_expr (tmp));
1159 use_stmt = gsi_stmt (gsi);
1160 update_stmt (use_stmt);
1162 if (dump_file && (dump_flags & TDF_DETAILS))
1164 fprintf (dump_file, " Replaced '");
1165 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1166 fprintf (dump_file, "' with '");
1167 print_gimple_expr (dump_file, use_stmt, 0, dump_flags);
1168 fprintf (dump_file, "'\n");
1171 /* When we remove stmt now the iterator defgsi goes off it's current
1172 sequence, hence advance it now. */
1173 gsi_next (defgsi);
1175 /* Remove defining statements. */
1176 return remove_prop_source_from_use (name);
1178 bailout:
1179 gsi_next (defgsi);
1180 return false;
1184 /* GSI_P points to a statement which performs a narrowing integral
1185 conversion.
1187 Look for cases like:
1189 t = x & c;
1190 y = (T) t;
1192 Turn them into:
1194 t = x & c;
1195 y = (T) x;
1197 If T is narrower than X's type and C merely masks off bits outside
1198 of (T) and nothing else.
1200 Normally we'd let DCE remove the dead statement. But no DCE runs
1201 after the last forwprop/combine pass, so we remove the obviously
1202 dead code ourselves.
1204 Return TRUE if a change was made, FALSE otherwise. */
1206 static bool
1207 simplify_conversion_from_bitmask (gimple_stmt_iterator *gsi_p)
1209 gimple stmt = gsi_stmt (*gsi_p);
1210 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1212 /* See if the input for the conversion was set via a BIT_AND_EXPR and
1213 the only use of the BIT_AND_EXPR result is the conversion. */
1214 if (is_gimple_assign (rhs_def_stmt)
1215 && gimple_assign_rhs_code (rhs_def_stmt) == BIT_AND_EXPR
1216 && has_single_use (gimple_assign_lhs (rhs_def_stmt)))
1218 tree rhs_def_operand1 = gimple_assign_rhs1 (rhs_def_stmt);
1219 tree rhs_def_operand2 = gimple_assign_rhs2 (rhs_def_stmt);
1220 tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
1222 /* Now verify suitability of the BIT_AND_EXPR's operands.
1223 The first must be an SSA_NAME that we can propagate and the
1224 second must be an integer constant that masks out all the
1225 bits outside the final result's type, but nothing else. */
1226 if (TREE_CODE (rhs_def_operand1) == SSA_NAME
1227 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand1)
1228 && TREE_CODE (rhs_def_operand2) == INTEGER_CST
1229 && operand_equal_p (rhs_def_operand2,
1230 build_low_bits_mask (TREE_TYPE (rhs_def_operand2),
1231 TYPE_PRECISION (lhs_type)),
1234 /* This is an optimizable case. Replace the source operand
1235 in the conversion with the first source operand of the
1236 BIT_AND_EXPR. */
1237 gimple_assign_set_rhs1 (stmt, rhs_def_operand1);
1238 stmt = gsi_stmt (*gsi_p);
1239 update_stmt (stmt);
1241 /* There is no DCE after the last forwprop pass. It's
1242 easy to clean up the first order effects here. */
1243 gimple_stmt_iterator si;
1244 si = gsi_for_stmt (rhs_def_stmt);
1245 gsi_remove (&si, true);
1246 release_defs (rhs_def_stmt);
1247 return true;
1251 return false;
1255 /* If we have lhs = ~x (STMT), look and see if earlier we had x = ~y.
1256 If so, we can change STMT into lhs = y which can later be copy
1257 propagated. Similarly for negation.
1259 This could trivially be formulated as a forward propagation
1260 to immediate uses. However, we already had an implementation
1261 from DOM which used backward propagation via the use-def links.
1263 It turns out that backward propagation is actually faster as
1264 there's less work to do for each NOT/NEG expression we find.
1265 Backwards propagation needs to look at the statement in a single
1266 backlink. Forward propagation needs to look at potentially more
1267 than one forward link.
1269 Returns true when the statement was changed. */
1271 static bool
1272 simplify_not_neg_expr (gimple_stmt_iterator *gsi_p)
1274 gimple stmt = gsi_stmt (*gsi_p);
1275 tree rhs = gimple_assign_rhs1 (stmt);
1276 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
1278 /* See if the RHS_DEF_STMT has the same form as our statement. */
1279 if (is_gimple_assign (rhs_def_stmt)
1280 && gimple_assign_rhs_code (rhs_def_stmt) == gimple_assign_rhs_code (stmt))
1282 tree rhs_def_operand = gimple_assign_rhs1 (rhs_def_stmt);
1284 /* Verify that RHS_DEF_OPERAND is a suitable SSA_NAME. */
1285 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1286 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1288 gimple_assign_set_rhs_from_tree (gsi_p, rhs_def_operand);
1289 stmt = gsi_stmt (*gsi_p);
1290 update_stmt (stmt);
1291 return true;
1295 return false;
1298 /* Helper function for simplify_gimple_switch. Remove case labels that
1299 have values outside the range of the new type. */
1301 static void
1302 simplify_gimple_switch_label_vec (gimple stmt, tree index_type)
1304 unsigned int branch_num = gimple_switch_num_labels (stmt);
1305 auto_vec<tree> labels (branch_num);
1306 unsigned int i, len;
1308 /* Collect the existing case labels in a VEC, and preprocess it as if
1309 we are gimplifying a GENERIC SWITCH_EXPR. */
1310 for (i = 1; i < branch_num; i++)
1311 labels.quick_push (gimple_switch_label (stmt, i));
1312 preprocess_case_label_vec_for_gimple (labels, index_type, NULL);
1314 /* If any labels were removed, replace the existing case labels
1315 in the GIMPLE_SWITCH statement with the correct ones.
1316 Note that the type updates were done in-place on the case labels,
1317 so we only have to replace the case labels in the GIMPLE_SWITCH
1318 if the number of labels changed. */
1319 len = labels.length ();
1320 if (len < branch_num - 1)
1322 bitmap target_blocks;
1323 edge_iterator ei;
1324 edge e;
1326 /* Corner case: *all* case labels have been removed as being
1327 out-of-range for INDEX_TYPE. Push one label and let the
1328 CFG cleanups deal with this further. */
1329 if (len == 0)
1331 tree label, elt;
1333 label = CASE_LABEL (gimple_switch_default_label (stmt));
1334 elt = build_case_label (build_int_cst (index_type, 0), NULL, label);
1335 labels.quick_push (elt);
1336 len = 1;
1339 for (i = 0; i < labels.length (); i++)
1340 gimple_switch_set_label (stmt, i + 1, labels[i]);
1341 for (i++ ; i < branch_num; i++)
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 gimple_switch_set_num_labels (stmt, len + 1);
1345 /* Cleanup any edges that are now dead. */
1346 target_blocks = BITMAP_ALLOC (NULL);
1347 for (i = 0; i < gimple_switch_num_labels (stmt); i++)
1349 tree elt = gimple_switch_label (stmt, i);
1350 basic_block target = label_to_block (CASE_LABEL (elt));
1351 bitmap_set_bit (target_blocks, target->index);
1353 for (ei = ei_start (gimple_bb (stmt)->succs); (e = ei_safe_edge (ei)); )
1355 if (! bitmap_bit_p (target_blocks, e->dest->index))
1357 remove_edge (e);
1358 cfg_changed = true;
1359 free_dominance_info (CDI_DOMINATORS);
1361 else
1362 ei_next (&ei);
1364 BITMAP_FREE (target_blocks);
1368 /* STMT is a SWITCH_EXPR for which we attempt to find equivalent forms of
1369 the condition which we may be able to optimize better. */
1371 static bool
1372 simplify_gimple_switch (gimple stmt)
1374 /* The optimization that we really care about is removing unnecessary
1375 casts. That will let us do much better in propagating the inferred
1376 constant at the switch target. */
1377 tree cond = gimple_switch_index (stmt);
1378 if (TREE_CODE (cond) == SSA_NAME)
1380 gimple def_stmt = SSA_NAME_DEF_STMT (cond);
1381 if (gimple_assign_cast_p (def_stmt))
1383 tree def = gimple_assign_rhs1 (def_stmt);
1384 if (TREE_CODE (def) != SSA_NAME)
1385 return false;
1387 /* If we have an extension or sign-change that preserves the
1388 values we check against then we can copy the source value into
1389 the switch. */
1390 tree ti = TREE_TYPE (def);
1391 if (INTEGRAL_TYPE_P (ti)
1392 && TYPE_PRECISION (ti) <= TYPE_PRECISION (TREE_TYPE (cond)))
1394 size_t n = gimple_switch_num_labels (stmt);
1395 tree min = NULL_TREE, max = NULL_TREE;
1396 if (n > 1)
1398 min = CASE_LOW (gimple_switch_label (stmt, 1));
1399 if (CASE_HIGH (gimple_switch_label (stmt, n - 1)))
1400 max = CASE_HIGH (gimple_switch_label (stmt, n - 1));
1401 else
1402 max = CASE_LOW (gimple_switch_label (stmt, n - 1));
1404 if ((!min || int_fits_type_p (min, ti))
1405 && (!max || int_fits_type_p (max, ti)))
1407 gimple_switch_set_index (stmt, def);
1408 simplify_gimple_switch_label_vec (stmt, ti);
1409 update_stmt (stmt);
1410 return true;
1416 return false;
1419 /* For pointers p2 and p1 return p2 - p1 if the
1420 difference is known and constant, otherwise return NULL. */
1422 static tree
1423 constant_pointer_difference (tree p1, tree p2)
1425 int i, j;
1426 #define CPD_ITERATIONS 5
1427 tree exps[2][CPD_ITERATIONS];
1428 tree offs[2][CPD_ITERATIONS];
1429 int cnt[2];
1431 for (i = 0; i < 2; i++)
1433 tree p = i ? p1 : p2;
1434 tree off = size_zero_node;
1435 gimple stmt;
1436 enum tree_code code;
1438 /* For each of p1 and p2 we need to iterate at least
1439 twice, to handle ADDR_EXPR directly in p1/p2,
1440 SSA_NAME with ADDR_EXPR or POINTER_PLUS_EXPR etc.
1441 on definition's stmt RHS. Iterate a few extra times. */
1442 j = 0;
1445 if (!POINTER_TYPE_P (TREE_TYPE (p)))
1446 break;
1447 if (TREE_CODE (p) == ADDR_EXPR)
1449 tree q = TREE_OPERAND (p, 0);
1450 HOST_WIDE_INT offset;
1451 tree base = get_addr_base_and_unit_offset (q, &offset);
1452 if (base)
1454 q = base;
1455 if (offset)
1456 off = size_binop (PLUS_EXPR, off, size_int (offset));
1458 if (TREE_CODE (q) == MEM_REF
1459 && TREE_CODE (TREE_OPERAND (q, 0)) == SSA_NAME)
1461 p = TREE_OPERAND (q, 0);
1462 off = size_binop (PLUS_EXPR, off,
1463 wide_int_to_tree (sizetype,
1464 mem_ref_offset (q)));
1466 else
1468 exps[i][j] = q;
1469 offs[i][j++] = off;
1470 break;
1473 if (TREE_CODE (p) != SSA_NAME)
1474 break;
1475 exps[i][j] = p;
1476 offs[i][j++] = off;
1477 if (j == CPD_ITERATIONS)
1478 break;
1479 stmt = SSA_NAME_DEF_STMT (p);
1480 if (!is_gimple_assign (stmt) || gimple_assign_lhs (stmt) != p)
1481 break;
1482 code = gimple_assign_rhs_code (stmt);
1483 if (code == POINTER_PLUS_EXPR)
1485 if (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
1486 break;
1487 off = size_binop (PLUS_EXPR, off, gimple_assign_rhs2 (stmt));
1488 p = gimple_assign_rhs1 (stmt);
1490 else if (code == ADDR_EXPR || code == NOP_EXPR)
1491 p = gimple_assign_rhs1 (stmt);
1492 else
1493 break;
1495 while (1);
1496 cnt[i] = j;
1499 for (i = 0; i < cnt[0]; i++)
1500 for (j = 0; j < cnt[1]; j++)
1501 if (exps[0][i] == exps[1][j])
1502 return size_binop (MINUS_EXPR, offs[0][i], offs[1][j]);
1504 return NULL_TREE;
1507 /* *GSI_P is a GIMPLE_CALL to a builtin function.
1508 Optimize
1509 memcpy (p, "abcd", 4);
1510 memset (p + 4, ' ', 3);
1511 into
1512 memcpy (p, "abcd ", 7);
1513 call if the latter can be stored by pieces during expansion. */
1515 static bool
1516 simplify_builtin_call (gimple_stmt_iterator *gsi_p, tree callee2)
1518 gimple stmt1, stmt2 = gsi_stmt (*gsi_p);
1519 tree vuse = gimple_vuse (stmt2);
1520 if (vuse == NULL)
1521 return false;
1522 stmt1 = SSA_NAME_DEF_STMT (vuse);
1524 switch (DECL_FUNCTION_CODE (callee2))
1526 case BUILT_IN_MEMSET:
1527 if (gimple_call_num_args (stmt2) != 3
1528 || gimple_call_lhs (stmt2)
1529 || CHAR_BIT != 8
1530 || BITS_PER_UNIT != 8)
1531 break;
1532 else
1534 tree callee1;
1535 tree ptr1, src1, str1, off1, len1, lhs1;
1536 tree ptr2 = gimple_call_arg (stmt2, 0);
1537 tree val2 = gimple_call_arg (stmt2, 1);
1538 tree len2 = gimple_call_arg (stmt2, 2);
1539 tree diff, vdef, new_str_cst;
1540 gimple use_stmt;
1541 unsigned int ptr1_align;
1542 unsigned HOST_WIDE_INT src_len;
1543 char *src_buf;
1544 use_operand_p use_p;
1546 if (!tree_fits_shwi_p (val2)
1547 || !tree_fits_uhwi_p (len2))
1548 break;
1549 if (is_gimple_call (stmt1))
1551 /* If first stmt is a call, it needs to be memcpy
1552 or mempcpy, with string literal as second argument and
1553 constant length. */
1554 callee1 = gimple_call_fndecl (stmt1);
1555 if (callee1 == NULL_TREE
1556 || DECL_BUILT_IN_CLASS (callee1) != BUILT_IN_NORMAL
1557 || gimple_call_num_args (stmt1) != 3)
1558 break;
1559 if (DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMCPY
1560 && DECL_FUNCTION_CODE (callee1) != BUILT_IN_MEMPCPY)
1561 break;
1562 ptr1 = gimple_call_arg (stmt1, 0);
1563 src1 = gimple_call_arg (stmt1, 1);
1564 len1 = gimple_call_arg (stmt1, 2);
1565 lhs1 = gimple_call_lhs (stmt1);
1566 if (!tree_fits_uhwi_p (len1))
1567 break;
1568 str1 = string_constant (src1, &off1);
1569 if (str1 == NULL_TREE)
1570 break;
1571 if (!tree_fits_uhwi_p (off1)
1572 || compare_tree_int (off1, TREE_STRING_LENGTH (str1) - 1) > 0
1573 || compare_tree_int (len1, TREE_STRING_LENGTH (str1)
1574 - tree_to_uhwi (off1)) > 0
1575 || TREE_CODE (TREE_TYPE (str1)) != ARRAY_TYPE
1576 || TYPE_MODE (TREE_TYPE (TREE_TYPE (str1)))
1577 != TYPE_MODE (char_type_node))
1578 break;
1580 else if (gimple_assign_single_p (stmt1))
1582 /* Otherwise look for length 1 memcpy optimized into
1583 assignment. */
1584 ptr1 = gimple_assign_lhs (stmt1);
1585 src1 = gimple_assign_rhs1 (stmt1);
1586 if (TREE_CODE (ptr1) != MEM_REF
1587 || TYPE_MODE (TREE_TYPE (ptr1)) != TYPE_MODE (char_type_node)
1588 || !tree_fits_shwi_p (src1))
1589 break;
1590 ptr1 = build_fold_addr_expr (ptr1);
1591 callee1 = NULL_TREE;
1592 len1 = size_one_node;
1593 lhs1 = NULL_TREE;
1594 off1 = size_zero_node;
1595 str1 = NULL_TREE;
1597 else
1598 break;
1600 diff = constant_pointer_difference (ptr1, ptr2);
1601 if (diff == NULL && lhs1 != NULL)
1603 diff = constant_pointer_difference (lhs1, ptr2);
1604 if (DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
1605 && diff != NULL)
1606 diff = size_binop (PLUS_EXPR, diff,
1607 fold_convert (sizetype, len1));
1609 /* If the difference between the second and first destination pointer
1610 is not constant, or is bigger than memcpy length, bail out. */
1611 if (diff == NULL
1612 || !tree_fits_uhwi_p (diff)
1613 || tree_int_cst_lt (len1, diff))
1614 break;
1616 /* Use maximum of difference plus memset length and memcpy length
1617 as the new memcpy length, if it is too big, bail out. */
1618 src_len = tree_to_uhwi (diff);
1619 src_len += tree_to_uhwi (len2);
1620 if (src_len < tree_to_uhwi (len1))
1621 src_len = tree_to_uhwi (len1);
1622 if (src_len > 1024)
1623 break;
1625 /* If mempcpy value is used elsewhere, bail out, as mempcpy
1626 with bigger length will return different result. */
1627 if (lhs1 != NULL_TREE
1628 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY
1629 && (TREE_CODE (lhs1) != SSA_NAME
1630 || !single_imm_use (lhs1, &use_p, &use_stmt)
1631 || use_stmt != stmt2))
1632 break;
1634 /* If anything reads memory in between memcpy and memset
1635 call, the modified memcpy call might change it. */
1636 vdef = gimple_vdef (stmt1);
1637 if (vdef != NULL
1638 && (!single_imm_use (vdef, &use_p, &use_stmt)
1639 || use_stmt != stmt2))
1640 break;
1642 ptr1_align = get_pointer_alignment (ptr1);
1643 /* Construct the new source string literal. */
1644 src_buf = XALLOCAVEC (char, src_len + 1);
1645 if (callee1)
1646 memcpy (src_buf,
1647 TREE_STRING_POINTER (str1) + tree_to_uhwi (off1),
1648 tree_to_uhwi (len1));
1649 else
1650 src_buf[0] = tree_to_shwi (src1);
1651 memset (src_buf + tree_to_uhwi (diff),
1652 tree_to_shwi (val2), tree_to_uhwi (len2));
1653 src_buf[src_len] = '\0';
1654 /* Neither builtin_strncpy_read_str nor builtin_memcpy_read_str
1655 handle embedded '\0's. */
1656 if (strlen (src_buf) != src_len)
1657 break;
1658 rtl_profile_for_bb (gimple_bb (stmt2));
1659 /* If the new memcpy wouldn't be emitted by storing the literal
1660 by pieces, this optimization might enlarge .rodata too much,
1661 as commonly used string literals couldn't be shared any
1662 longer. */
1663 if (!can_store_by_pieces (src_len,
1664 builtin_strncpy_read_str,
1665 src_buf, ptr1_align, false))
1666 break;
1668 new_str_cst = build_string_literal (src_len, src_buf);
1669 if (callee1)
1671 /* If STMT1 is a mem{,p}cpy call, adjust it and remove
1672 memset call. */
1673 if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
1674 gimple_call_set_lhs (stmt1, NULL_TREE);
1675 gimple_call_set_arg (stmt1, 1, new_str_cst);
1676 gimple_call_set_arg (stmt1, 2,
1677 build_int_cst (TREE_TYPE (len1), src_len));
1678 update_stmt (stmt1);
1679 unlink_stmt_vdef (stmt2);
1680 gsi_remove (gsi_p, true);
1681 release_defs (stmt2);
1682 if (lhs1 && DECL_FUNCTION_CODE (callee1) == BUILT_IN_MEMPCPY)
1683 release_ssa_name (lhs1);
1684 return true;
1686 else
1688 /* Otherwise, if STMT1 is length 1 memcpy optimized into
1689 assignment, remove STMT1 and change memset call into
1690 memcpy call. */
1691 gimple_stmt_iterator gsi = gsi_for_stmt (stmt1);
1693 if (!is_gimple_val (ptr1))
1694 ptr1 = force_gimple_operand_gsi (gsi_p, ptr1, true, NULL_TREE,
1695 true, GSI_SAME_STMT);
1696 gimple_call_set_fndecl (stmt2,
1697 builtin_decl_explicit (BUILT_IN_MEMCPY));
1698 gimple_call_set_arg (stmt2, 0, ptr1);
1699 gimple_call_set_arg (stmt2, 1, new_str_cst);
1700 gimple_call_set_arg (stmt2, 2,
1701 build_int_cst (TREE_TYPE (len2), src_len));
1702 unlink_stmt_vdef (stmt1);
1703 gsi_remove (&gsi, true);
1704 release_defs (stmt1);
1705 update_stmt (stmt2);
1706 return false;
1709 break;
1710 default:
1711 break;
1713 return false;
1716 /* Checks if expression has type of one-bit precision, or is a known
1717 truth-valued expression. */
1718 static bool
1719 truth_valued_ssa_name (tree name)
1721 gimple def;
1722 tree type = TREE_TYPE (name);
1724 if (!INTEGRAL_TYPE_P (type))
1725 return false;
1726 /* Don't check here for BOOLEAN_TYPE as the precision isn't
1727 necessarily one and so ~X is not equal to !X. */
1728 if (TYPE_PRECISION (type) == 1)
1729 return true;
1730 def = SSA_NAME_DEF_STMT (name);
1731 if (is_gimple_assign (def))
1732 return truth_value_p (gimple_assign_rhs_code (def));
1733 return false;
1736 /* Helper routine for simplify_bitwise_binary_1 function.
1737 Return for the SSA name NAME the expression X if it mets condition
1738 NAME = !X. Otherwise return NULL_TREE.
1739 Detected patterns for NAME = !X are:
1740 !X and X == 0 for X with integral type.
1741 X ^ 1, X != 1,or ~X for X with integral type with precision of one. */
1742 static tree
1743 lookup_logical_inverted_value (tree name)
1745 tree op1, op2;
1746 enum tree_code code;
1747 gimple def;
1749 /* If name has none-intergal type, or isn't a SSA_NAME, then
1750 return. */
1751 if (TREE_CODE (name) != SSA_NAME
1752 || !INTEGRAL_TYPE_P (TREE_TYPE (name)))
1753 return NULL_TREE;
1754 def = SSA_NAME_DEF_STMT (name);
1755 if (!is_gimple_assign (def))
1756 return NULL_TREE;
1758 code = gimple_assign_rhs_code (def);
1759 op1 = gimple_assign_rhs1 (def);
1760 op2 = NULL_TREE;
1762 /* Get for EQ_EXPR or BIT_XOR_EXPR operation the second operand.
1763 If CODE isn't an EQ_EXPR, BIT_XOR_EXPR, or BIT_NOT_EXPR, then return. */
1764 if (code == EQ_EXPR || code == NE_EXPR
1765 || code == BIT_XOR_EXPR)
1766 op2 = gimple_assign_rhs2 (def);
1768 switch (code)
1770 case BIT_NOT_EXPR:
1771 if (truth_valued_ssa_name (name))
1772 return op1;
1773 break;
1774 case EQ_EXPR:
1775 /* Check if we have X == 0 and X has an integral type. */
1776 if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
1777 break;
1778 if (integer_zerop (op2))
1779 return op1;
1780 break;
1781 case NE_EXPR:
1782 /* Check if we have X != 1 and X is a truth-valued. */
1783 if (!INTEGRAL_TYPE_P (TREE_TYPE (op1)))
1784 break;
1785 if (integer_onep (op2) && truth_valued_ssa_name (op1))
1786 return op1;
1787 break;
1788 case BIT_XOR_EXPR:
1789 /* Check if we have X ^ 1 and X is truth valued. */
1790 if (integer_onep (op2) && truth_valued_ssa_name (op1))
1791 return op1;
1792 break;
1793 default:
1794 break;
1797 return NULL_TREE;
1800 /* Optimize ARG1 CODE ARG2 to a constant for bitwise binary
1801 operations CODE, if one operand has the logically inverted
1802 value of the other. */
1803 static tree
1804 simplify_bitwise_binary_1 (enum tree_code code, tree type,
1805 tree arg1, tree arg2)
1807 tree anot;
1809 /* If CODE isn't a bitwise binary operation, return NULL_TREE. */
1810 if (code != BIT_AND_EXPR && code != BIT_IOR_EXPR
1811 && code != BIT_XOR_EXPR)
1812 return NULL_TREE;
1814 /* First check if operands ARG1 and ARG2 are equal. If so
1815 return NULL_TREE as this optimization is handled fold_stmt. */
1816 if (arg1 == arg2)
1817 return NULL_TREE;
1818 /* See if we have in arguments logical-not patterns. */
1819 if (((anot = lookup_logical_inverted_value (arg1)) == NULL_TREE
1820 || anot != arg2)
1821 && ((anot = lookup_logical_inverted_value (arg2)) == NULL_TREE
1822 || anot != arg1))
1823 return NULL_TREE;
1825 /* X & !X -> 0. */
1826 if (code == BIT_AND_EXPR)
1827 return fold_convert (type, integer_zero_node);
1828 /* X | !X -> 1 and X ^ !X -> 1, if X is truth-valued. */
1829 if (truth_valued_ssa_name (anot))
1830 return fold_convert (type, integer_one_node);
1832 /* ??? Otherwise result is (X != 0 ? X : 1). not handled. */
1833 return NULL_TREE;
1836 /* Given a ssa_name in NAME see if it was defined by an assignment and
1837 set CODE to be the code and ARG1 to the first operand on the rhs and ARG2
1838 to the second operand on the rhs. */
1840 static inline void
1841 defcodefor_name (tree name, enum tree_code *code, tree *arg1, tree *arg2)
1843 gimple def;
1844 enum tree_code code1;
1845 tree arg11;
1846 tree arg21;
1847 tree arg31;
1848 enum gimple_rhs_class grhs_class;
1850 code1 = TREE_CODE (name);
1851 arg11 = name;
1852 arg21 = NULL_TREE;
1853 grhs_class = get_gimple_rhs_class (code1);
1855 if (code1 == SSA_NAME)
1857 def = SSA_NAME_DEF_STMT (name);
1859 if (def && is_gimple_assign (def)
1860 && can_propagate_from (def))
1862 code1 = gimple_assign_rhs_code (def);
1863 arg11 = gimple_assign_rhs1 (def);
1864 arg21 = gimple_assign_rhs2 (def);
1865 arg31 = gimple_assign_rhs2 (def);
1868 else if (grhs_class == GIMPLE_TERNARY_RHS
1869 || GIMPLE_BINARY_RHS
1870 || GIMPLE_UNARY_RHS
1871 || GIMPLE_SINGLE_RHS)
1872 extract_ops_from_tree_1 (name, &code1, &arg11, &arg21, &arg31);
1874 *code = code1;
1875 *arg1 = arg11;
1876 if (arg2)
1877 *arg2 = arg21;
1878 /* Ignore arg3 currently. */
1881 /* Return true if a conversion of an operand from type FROM to type TO
1882 should be applied after performing the operation instead. */
1884 static bool
1885 hoist_conversion_for_bitop_p (tree to, tree from)
1887 /* That's a good idea if the conversion widens the operand, thus
1888 after hoisting the conversion the operation will be narrower. */
1889 if (TYPE_PRECISION (from) < TYPE_PRECISION (to))
1890 return true;
1892 /* It's also a good idea if the conversion is to a non-integer mode. */
1893 if (GET_MODE_CLASS (TYPE_MODE (to)) != MODE_INT)
1894 return true;
1896 /* Or if the precision of TO is not the same as the precision
1897 of its mode. */
1898 if (TYPE_PRECISION (to) != GET_MODE_PRECISION (TYPE_MODE (to)))
1899 return true;
1901 return false;
1904 /* GSI points to a statement of the form
1906 result = OP0 CODE OP1
1908 Where OP0 and OP1 are single bit SSA_NAMEs and CODE is either
1909 BIT_AND_EXPR or BIT_IOR_EXPR.
1911 If OP0 is fed by a bitwise negation of another single bit SSA_NAME,
1912 then we can simplify the two statements into a single LT_EXPR or LE_EXPR
1913 when code is BIT_AND_EXPR and BIT_IOR_EXPR respectively.
1915 If a simplification is made, return TRUE, else return FALSE. */
1916 static bool
1917 simplify_bitwise_binary_boolean (gimple_stmt_iterator *gsi,
1918 enum tree_code code,
1919 tree op0, tree op1)
1921 gimple op0_def_stmt = SSA_NAME_DEF_STMT (op0);
1923 if (!is_gimple_assign (op0_def_stmt)
1924 || (gimple_assign_rhs_code (op0_def_stmt) != BIT_NOT_EXPR))
1925 return false;
1927 tree x = gimple_assign_rhs1 (op0_def_stmt);
1928 if (TREE_CODE (x) == SSA_NAME
1929 && INTEGRAL_TYPE_P (TREE_TYPE (x))
1930 && TYPE_PRECISION (TREE_TYPE (x)) == 1
1931 && TYPE_UNSIGNED (TREE_TYPE (x)) == TYPE_UNSIGNED (TREE_TYPE (op1)))
1933 enum tree_code newcode;
1935 gimple stmt = gsi_stmt (*gsi);
1936 gimple_assign_set_rhs1 (stmt, x);
1937 gimple_assign_set_rhs2 (stmt, op1);
1938 if (code == BIT_AND_EXPR)
1939 newcode = TYPE_UNSIGNED (TREE_TYPE (x)) ? LT_EXPR : GT_EXPR;
1940 else
1941 newcode = TYPE_UNSIGNED (TREE_TYPE (x)) ? LE_EXPR : GE_EXPR;
1942 gimple_assign_set_rhs_code (stmt, newcode);
1943 update_stmt (stmt);
1944 return true;
1946 return false;
1950 /* Simplify bitwise binary operations.
1951 Return true if a transformation applied, otherwise return false. */
1953 static bool
1954 simplify_bitwise_binary (gimple_stmt_iterator *gsi)
1956 gimple stmt = gsi_stmt (*gsi);
1957 tree arg1 = gimple_assign_rhs1 (stmt);
1958 tree arg2 = gimple_assign_rhs2 (stmt);
1959 enum tree_code code = gimple_assign_rhs_code (stmt);
1960 tree res;
1961 tree def1_arg1, def1_arg2, def2_arg1, def2_arg2;
1962 enum tree_code def1_code, def2_code;
1964 defcodefor_name (arg1, &def1_code, &def1_arg1, &def1_arg2);
1965 defcodefor_name (arg2, &def2_code, &def2_arg1, &def2_arg2);
1967 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1968 when profitable. */
1969 if (TREE_CODE (arg2) == INTEGER_CST
1970 && CONVERT_EXPR_CODE_P (def1_code)
1971 && hoist_conversion_for_bitop_p (TREE_TYPE (arg1), TREE_TYPE (def1_arg1))
1972 && INTEGRAL_TYPE_P (TREE_TYPE (def1_arg1))
1973 && int_fits_type_p (arg2, TREE_TYPE (def1_arg1)))
1975 gimple newop;
1976 tree tem = make_ssa_name (TREE_TYPE (def1_arg1), NULL);
1977 newop =
1978 gimple_build_assign_with_ops (code, tem, def1_arg1,
1979 fold_convert_loc (gimple_location (stmt),
1980 TREE_TYPE (def1_arg1),
1981 arg2));
1982 gimple_set_location (newop, gimple_location (stmt));
1983 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
1984 gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
1985 tem, NULL_TREE, NULL_TREE);
1986 update_stmt (gsi_stmt (*gsi));
1987 return true;
1990 /* For bitwise binary operations apply operand conversions to the
1991 binary operation result instead of to the operands. This allows
1992 to combine successive conversions and bitwise binary operations. */
1993 if (CONVERT_EXPR_CODE_P (def1_code)
1994 && CONVERT_EXPR_CODE_P (def2_code)
1995 && types_compatible_p (TREE_TYPE (def1_arg1), TREE_TYPE (def2_arg1))
1996 && hoist_conversion_for_bitop_p (TREE_TYPE (arg1), TREE_TYPE (def1_arg1)))
1998 gimple newop;
1999 tree tem = make_ssa_name (TREE_TYPE (def1_arg1), NULL);
2000 newop = gimple_build_assign_with_ops (code, tem, def1_arg1, def2_arg1);
2001 gimple_set_location (newop, gimple_location (stmt));
2002 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
2003 gimple_assign_set_rhs_with_ops_1 (gsi, NOP_EXPR,
2004 tem, NULL_TREE, NULL_TREE);
2005 update_stmt (gsi_stmt (*gsi));
2006 return true;
2010 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
2011 if (def1_code == def2_code
2012 && def1_code == BIT_AND_EXPR
2013 && operand_equal_for_phi_arg_p (def1_arg2,
2014 def2_arg2))
2016 tree b = def1_arg2;
2017 tree a = def1_arg1;
2018 tree c = def2_arg1;
2019 tree inner = fold_build2 (code, TREE_TYPE (arg2), a, c);
2020 /* If A OP0 C (this usually means C is the same as A) is 0
2021 then fold it down correctly. */
2022 if (integer_zerop (inner))
2024 gimple_assign_set_rhs_from_tree (gsi, inner);
2025 update_stmt (stmt);
2026 return true;
2028 /* If A OP0 C (this usually means C is the same as A) is a ssa_name
2029 then fold it down correctly. */
2030 else if (TREE_CODE (inner) == SSA_NAME)
2032 tree outer = fold_build2 (def1_code, TREE_TYPE (inner),
2033 inner, b);
2034 gimple_assign_set_rhs_from_tree (gsi, outer);
2035 update_stmt (stmt);
2036 return true;
2038 else
2040 gimple newop;
2041 tree tem;
2042 tem = make_ssa_name (TREE_TYPE (arg2), NULL);
2043 newop = gimple_build_assign_with_ops (code, tem, a, c);
2044 gimple_set_location (newop, gimple_location (stmt));
2045 /* Make sure to re-process the new stmt as it's walking upwards. */
2046 gsi_insert_before (gsi, newop, GSI_NEW_STMT);
2047 gimple_assign_set_rhs1 (stmt, tem);
2048 gimple_assign_set_rhs2 (stmt, b);
2049 gimple_assign_set_rhs_code (stmt, def1_code);
2050 update_stmt (stmt);
2051 return true;
2055 /* (a | CST1) & CST2 -> (a & CST2) | (CST1 & CST2). */
2056 if (code == BIT_AND_EXPR
2057 && def1_code == BIT_IOR_EXPR
2058 && CONSTANT_CLASS_P (arg2)
2059 && CONSTANT_CLASS_P (def1_arg2))
2061 tree cst = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg2),
2062 arg2, def1_arg2);
2063 tree tem;
2064 gimple newop;
2065 if (integer_zerop (cst))
2067 gimple_assign_set_rhs1 (stmt, def1_arg1);
2068 update_stmt (stmt);
2069 return true;
2071 tem = make_ssa_name (TREE_TYPE (arg2), NULL);
2072 newop = gimple_build_assign_with_ops (BIT_AND_EXPR,
2073 tem, def1_arg1, arg2);
2074 gimple_set_location (newop, gimple_location (stmt));
2075 /* Make sure to re-process the new stmt as it's walking upwards. */
2076 gsi_insert_before (gsi, newop, GSI_NEW_STMT);
2077 gimple_assign_set_rhs1 (stmt, tem);
2078 gimple_assign_set_rhs2 (stmt, cst);
2079 gimple_assign_set_rhs_code (stmt, BIT_IOR_EXPR);
2080 update_stmt (stmt);
2081 return true;
2084 /* Combine successive equal operations with constants. */
2085 if ((code == BIT_AND_EXPR
2086 || code == BIT_IOR_EXPR
2087 || code == BIT_XOR_EXPR)
2088 && def1_code == code
2089 && CONSTANT_CLASS_P (arg2)
2090 && CONSTANT_CLASS_P (def1_arg2))
2092 tree cst = fold_build2 (code, TREE_TYPE (arg2),
2093 arg2, def1_arg2);
2094 gimple_assign_set_rhs1 (stmt, def1_arg1);
2095 gimple_assign_set_rhs2 (stmt, cst);
2096 update_stmt (stmt);
2097 return true;
2100 /* Canonicalize X ^ ~0 to ~X. */
2101 if (code == BIT_XOR_EXPR
2102 && integer_all_onesp (arg2))
2104 gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, arg1, NULL_TREE);
2105 gcc_assert (gsi_stmt (*gsi) == stmt);
2106 update_stmt (stmt);
2107 return true;
2110 /* Try simple folding for X op !X, and X op X. */
2111 res = simplify_bitwise_binary_1 (code, TREE_TYPE (arg1), arg1, arg2);
2112 if (res != NULL_TREE)
2114 gimple_assign_set_rhs_from_tree (gsi, res);
2115 update_stmt (gsi_stmt (*gsi));
2116 return true;
2119 if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2121 enum tree_code ocode = code == BIT_AND_EXPR ? BIT_IOR_EXPR : BIT_AND_EXPR;
2122 if (def1_code == ocode)
2124 tree x = arg2;
2125 enum tree_code coden;
2126 tree a1, a2;
2127 /* ( X | Y) & X -> X */
2128 /* ( X & Y) | X -> X */
2129 if (x == def1_arg1
2130 || x == def1_arg2)
2132 gimple_assign_set_rhs_from_tree (gsi, x);
2133 update_stmt (gsi_stmt (*gsi));
2134 return true;
2137 defcodefor_name (def1_arg1, &coden, &a1, &a2);
2138 /* (~X | Y) & X -> X & Y */
2139 /* (~X & Y) | X -> X | Y */
2140 if (coden == BIT_NOT_EXPR && a1 == x)
2142 gimple_assign_set_rhs_with_ops (gsi, code,
2143 x, def1_arg2);
2144 gcc_assert (gsi_stmt (*gsi) == stmt);
2145 update_stmt (stmt);
2146 return true;
2148 defcodefor_name (def1_arg2, &coden, &a1, &a2);
2149 /* (Y | ~X) & X -> X & Y */
2150 /* (Y & ~X) | X -> X | Y */
2151 if (coden == BIT_NOT_EXPR && a1 == x)
2153 gimple_assign_set_rhs_with_ops (gsi, code,
2154 x, def1_arg1);
2155 gcc_assert (gsi_stmt (*gsi) == stmt);
2156 update_stmt (stmt);
2157 return true;
2160 if (def2_code == ocode)
2162 enum tree_code coden;
2163 tree a1;
2164 tree x = arg1;
2165 /* X & ( X | Y) -> X */
2166 /* X | ( X & Y) -> X */
2167 if (x == def2_arg1
2168 || x == def2_arg2)
2170 gimple_assign_set_rhs_from_tree (gsi, x);
2171 update_stmt (gsi_stmt (*gsi));
2172 return true;
2174 defcodefor_name (def2_arg1, &coden, &a1, NULL);
2175 /* (~X | Y) & X -> X & Y */
2176 /* (~X & Y) | X -> X | Y */
2177 if (coden == BIT_NOT_EXPR && a1 == x)
2179 gimple_assign_set_rhs_with_ops (gsi, code,
2180 x, def2_arg2);
2181 gcc_assert (gsi_stmt (*gsi) == stmt);
2182 update_stmt (stmt);
2183 return true;
2185 defcodefor_name (def2_arg2, &coden, &a1, NULL);
2186 /* (Y | ~X) & X -> X & Y */
2187 /* (Y & ~X) | X -> X | Y */
2188 if (coden == BIT_NOT_EXPR && a1 == x)
2190 gimple_assign_set_rhs_with_ops (gsi, code,
2191 x, def2_arg1);
2192 gcc_assert (gsi_stmt (*gsi) == stmt);
2193 update_stmt (stmt);
2194 return true;
2198 /* If arg1 and arg2 are booleans (or any single bit type)
2199 then try to simplify:
2201 (~X & Y) -> X < Y
2202 (X & ~Y) -> Y < X
2203 (~X | Y) -> X <= Y
2204 (X | ~Y) -> Y <= X
2206 But only do this if our result feeds into a comparison as
2207 this transformation is not always a win, particularly on
2208 targets with and-not instructions. */
2209 if (TREE_CODE (arg1) == SSA_NAME
2210 && TREE_CODE (arg2) == SSA_NAME
2211 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
2212 && TYPE_PRECISION (TREE_TYPE (arg1)) == 1
2213 && TYPE_PRECISION (TREE_TYPE (arg2)) == 1
2214 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
2215 == TYPE_UNSIGNED (TREE_TYPE (arg2))))
2217 use_operand_p use_p;
2218 gimple use_stmt;
2220 if (single_imm_use (gimple_assign_lhs (stmt), &use_p, &use_stmt))
2222 if (gimple_code (use_stmt) == GIMPLE_COND
2223 && gimple_cond_lhs (use_stmt) == gimple_assign_lhs (stmt)
2224 && integer_zerop (gimple_cond_rhs (use_stmt))
2225 && gimple_cond_code (use_stmt) == NE_EXPR)
2227 if (simplify_bitwise_binary_boolean (gsi, code, arg1, arg2))
2228 return true;
2229 if (simplify_bitwise_binary_boolean (gsi, code, arg2, arg1))
2230 return true;
2235 return false;
2239 /* Recognize rotation patterns. Return true if a transformation
2240 applied, otherwise return false.
2242 We are looking for X with unsigned type T with bitsize B, OP being
2243 +, | or ^, some type T2 wider than T and
2244 (X << CNT1) OP (X >> CNT2) iff CNT1 + CNT2 == B
2245 ((T) ((T2) X << CNT1)) OP ((T) ((T2) X >> CNT2)) iff CNT1 + CNT2 == B
2246 (X << Y) OP (X >> (B - Y))
2247 (X << (int) Y) OP (X >> (int) (B - Y))
2248 ((T) ((T2) X << Y)) OP ((T) ((T2) X >> (B - Y)))
2249 ((T) ((T2) X << (int) Y)) OP ((T) ((T2) X >> (int) (B - Y)))
2250 (X << Y) | (X >> ((-Y) & (B - 1)))
2251 (X << (int) Y) | (X >> (int) ((-Y) & (B - 1)))
2252 ((T) ((T2) X << Y)) | ((T) ((T2) X >> ((-Y) & (B - 1))))
2253 ((T) ((T2) X << (int) Y)) | ((T) ((T2) X >> (int) ((-Y) & (B - 1))))
2255 and transform these into:
2256 X r<< CNT1
2257 X r<< Y
2259 Note, in the patterns with T2 type, the type of OP operands
2260 might be even a signed type, but should have precision B. */
2262 static bool
2263 simplify_rotate (gimple_stmt_iterator *gsi)
2265 gimple stmt = gsi_stmt (*gsi);
2266 tree arg[2], rtype, rotcnt = NULL_TREE;
2267 tree def_arg1[2], def_arg2[2];
2268 enum tree_code def_code[2];
2269 tree lhs;
2270 int i;
2271 bool swapped_p = false;
2272 gimple g;
2274 arg[0] = gimple_assign_rhs1 (stmt);
2275 arg[1] = gimple_assign_rhs2 (stmt);
2276 rtype = TREE_TYPE (arg[0]);
2278 /* Only create rotates in complete modes. Other cases are not
2279 expanded properly. */
2280 if (!INTEGRAL_TYPE_P (rtype)
2281 || TYPE_PRECISION (rtype) != GET_MODE_PRECISION (TYPE_MODE (rtype)))
2282 return false;
2284 for (i = 0; i < 2; i++)
2285 defcodefor_name (arg[i], &def_code[i], &def_arg1[i], &def_arg2[i]);
2287 /* Look through narrowing conversions. */
2288 if (CONVERT_EXPR_CODE_P (def_code[0])
2289 && CONVERT_EXPR_CODE_P (def_code[1])
2290 && INTEGRAL_TYPE_P (TREE_TYPE (def_arg1[0]))
2291 && INTEGRAL_TYPE_P (TREE_TYPE (def_arg1[1]))
2292 && TYPE_PRECISION (TREE_TYPE (def_arg1[0]))
2293 == TYPE_PRECISION (TREE_TYPE (def_arg1[1]))
2294 && TYPE_PRECISION (TREE_TYPE (def_arg1[0])) > TYPE_PRECISION (rtype)
2295 && has_single_use (arg[0])
2296 && has_single_use (arg[1]))
2298 for (i = 0; i < 2; i++)
2300 arg[i] = def_arg1[i];
2301 defcodefor_name (arg[i], &def_code[i], &def_arg1[i], &def_arg2[i]);
2305 /* One operand has to be LSHIFT_EXPR and one RSHIFT_EXPR. */
2306 for (i = 0; i < 2; i++)
2307 if (def_code[i] != LSHIFT_EXPR && def_code[i] != RSHIFT_EXPR)
2308 return false;
2309 else if (!has_single_use (arg[i]))
2310 return false;
2311 if (def_code[0] == def_code[1])
2312 return false;
2314 /* If we've looked through narrowing conversions before, look through
2315 widening conversions from unsigned type with the same precision
2316 as rtype here. */
2317 if (TYPE_PRECISION (TREE_TYPE (def_arg1[0])) != TYPE_PRECISION (rtype))
2318 for (i = 0; i < 2; i++)
2320 tree tem;
2321 enum tree_code code;
2322 defcodefor_name (def_arg1[i], &code, &tem, NULL);
2323 if (!CONVERT_EXPR_CODE_P (code)
2324 || !INTEGRAL_TYPE_P (TREE_TYPE (tem))
2325 || TYPE_PRECISION (TREE_TYPE (tem)) != TYPE_PRECISION (rtype))
2326 return false;
2327 def_arg1[i] = tem;
2329 /* Both shifts have to use the same first operand. */
2330 if (TREE_CODE (def_arg1[0]) != SSA_NAME || def_arg1[0] != def_arg1[1])
2331 return false;
2332 if (!TYPE_UNSIGNED (TREE_TYPE (def_arg1[0])))
2333 return false;
2335 /* CNT1 + CNT2 == B case above. */
2336 if (tree_fits_uhwi_p (def_arg2[0])
2337 && tree_fits_uhwi_p (def_arg2[1])
2338 && tree_to_uhwi (def_arg2[0])
2339 + tree_to_uhwi (def_arg2[1]) == TYPE_PRECISION (rtype))
2340 rotcnt = def_arg2[0];
2341 else if (TREE_CODE (def_arg2[0]) != SSA_NAME
2342 || TREE_CODE (def_arg2[1]) != SSA_NAME)
2343 return false;
2344 else
2346 tree cdef_arg1[2], cdef_arg2[2], def_arg2_alt[2];
2347 enum tree_code cdef_code[2];
2348 /* Look through conversion of the shift count argument.
2349 The C/C++ FE cast any shift count argument to integer_type_node.
2350 The only problem might be if the shift count type maximum value
2351 is equal or smaller than number of bits in rtype. */
2352 for (i = 0; i < 2; i++)
2354 def_arg2_alt[i] = def_arg2[i];
2355 defcodefor_name (def_arg2[i], &cdef_code[i],
2356 &cdef_arg1[i], &cdef_arg2[i]);
2357 if (CONVERT_EXPR_CODE_P (cdef_code[i])
2358 && INTEGRAL_TYPE_P (TREE_TYPE (cdef_arg1[i]))
2359 && TYPE_PRECISION (TREE_TYPE (cdef_arg1[i]))
2360 > floor_log2 (TYPE_PRECISION (rtype))
2361 && TYPE_PRECISION (TREE_TYPE (cdef_arg1[i]))
2362 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (cdef_arg1[i]))))
2364 def_arg2_alt[i] = cdef_arg1[i];
2365 defcodefor_name (def_arg2_alt[i], &cdef_code[i],
2366 &cdef_arg1[i], &cdef_arg2[i]);
2369 for (i = 0; i < 2; i++)
2370 /* Check for one shift count being Y and the other B - Y,
2371 with optional casts. */
2372 if (cdef_code[i] == MINUS_EXPR
2373 && tree_fits_shwi_p (cdef_arg1[i])
2374 && tree_to_shwi (cdef_arg1[i]) == TYPE_PRECISION (rtype)
2375 && TREE_CODE (cdef_arg2[i]) == SSA_NAME)
2377 tree tem;
2378 enum tree_code code;
2380 if (cdef_arg2[i] == def_arg2[1 - i]
2381 || cdef_arg2[i] == def_arg2_alt[1 - i])
2383 rotcnt = cdef_arg2[i];
2384 break;
2386 defcodefor_name (cdef_arg2[i], &code, &tem, NULL);
2387 if (CONVERT_EXPR_CODE_P (code)
2388 && INTEGRAL_TYPE_P (TREE_TYPE (tem))
2389 && TYPE_PRECISION (TREE_TYPE (tem))
2390 > floor_log2 (TYPE_PRECISION (rtype))
2391 && TYPE_PRECISION (TREE_TYPE (tem))
2392 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (tem)))
2393 && (tem == def_arg2[1 - i]
2394 || tem == def_arg2_alt[1 - i]))
2396 rotcnt = tem;
2397 break;
2400 /* The above sequence isn't safe for Y being 0,
2401 because then one of the shifts triggers undefined behavior.
2402 This alternative is safe even for rotation count of 0.
2403 One shift count is Y and the other (-Y) & (B - 1). */
2404 else if (cdef_code[i] == BIT_AND_EXPR
2405 && tree_fits_shwi_p (cdef_arg2[i])
2406 && tree_to_shwi (cdef_arg2[i])
2407 == TYPE_PRECISION (rtype) - 1
2408 && TREE_CODE (cdef_arg1[i]) == SSA_NAME
2409 && gimple_assign_rhs_code (stmt) == BIT_IOR_EXPR)
2411 tree tem;
2412 enum tree_code code;
2414 defcodefor_name (cdef_arg1[i], &code, &tem, NULL);
2415 if (CONVERT_EXPR_CODE_P (code)
2416 && INTEGRAL_TYPE_P (TREE_TYPE (tem))
2417 && TYPE_PRECISION (TREE_TYPE (tem))
2418 > floor_log2 (TYPE_PRECISION (rtype))
2419 && TYPE_PRECISION (TREE_TYPE (tem))
2420 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (tem))))
2421 defcodefor_name (tem, &code, &tem, NULL);
2423 if (code == NEGATE_EXPR)
2425 if (tem == def_arg2[1 - i] || tem == def_arg2_alt[1 - i])
2427 rotcnt = tem;
2428 break;
2430 defcodefor_name (tem, &code, &tem, NULL);
2431 if (CONVERT_EXPR_CODE_P (code)
2432 && INTEGRAL_TYPE_P (TREE_TYPE (tem))
2433 && TYPE_PRECISION (TREE_TYPE (tem))
2434 > floor_log2 (TYPE_PRECISION (rtype))
2435 && TYPE_PRECISION (TREE_TYPE (tem))
2436 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (tem)))
2437 && (tem == def_arg2[1 - i]
2438 || tem == def_arg2_alt[1 - i]))
2440 rotcnt = tem;
2441 break;
2445 if (rotcnt == NULL_TREE)
2446 return false;
2447 swapped_p = i != 1;
2450 if (!useless_type_conversion_p (TREE_TYPE (def_arg2[0]),
2451 TREE_TYPE (rotcnt)))
2453 g = gimple_build_assign_with_ops (NOP_EXPR,
2454 make_ssa_name (TREE_TYPE (def_arg2[0]),
2455 NULL),
2456 rotcnt, NULL_TREE);
2457 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2458 rotcnt = gimple_assign_lhs (g);
2460 lhs = gimple_assign_lhs (stmt);
2461 if (!useless_type_conversion_p (rtype, TREE_TYPE (def_arg1[0])))
2462 lhs = make_ssa_name (TREE_TYPE (def_arg1[0]), NULL);
2463 g = gimple_build_assign_with_ops (((def_code[0] == LSHIFT_EXPR) ^ swapped_p)
2464 ? LROTATE_EXPR : RROTATE_EXPR,
2465 lhs, def_arg1[0], rotcnt);
2466 if (!useless_type_conversion_p (rtype, TREE_TYPE (def_arg1[0])))
2468 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2469 g = gimple_build_assign_with_ops (NOP_EXPR, gimple_assign_lhs (stmt),
2470 lhs, NULL_TREE);
2472 gsi_replace (gsi, g, false);
2473 return true;
2476 /* Perform re-associations of the plus or minus statement STMT that are
2477 always permitted. Returns true if the CFG was changed. */
2479 static bool
2480 associate_plusminus (gimple_stmt_iterator *gsi)
2482 gimple stmt = gsi_stmt (*gsi);
2483 tree rhs1 = gimple_assign_rhs1 (stmt);
2484 tree rhs2 = gimple_assign_rhs2 (stmt);
2485 enum tree_code code = gimple_assign_rhs_code (stmt);
2486 bool changed;
2488 /* We can't reassociate at all for saturating types. */
2489 if (TYPE_SATURATING (TREE_TYPE (rhs1)))
2490 return false;
2492 /* First contract negates. */
2495 changed = false;
2497 /* A +- (-B) -> A -+ B. */
2498 if (TREE_CODE (rhs2) == SSA_NAME)
2500 gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
2501 if (is_gimple_assign (def_stmt)
2502 && gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
2503 && can_propagate_from (def_stmt))
2505 code = (code == MINUS_EXPR) ? PLUS_EXPR : MINUS_EXPR;
2506 gimple_assign_set_rhs_code (stmt, code);
2507 rhs2 = gimple_assign_rhs1 (def_stmt);
2508 gimple_assign_set_rhs2 (stmt, rhs2);
2509 gimple_set_modified (stmt, true);
2510 changed = true;
2514 /* (-A) + B -> B - A. */
2515 if (TREE_CODE (rhs1) == SSA_NAME
2516 && code == PLUS_EXPR)
2518 gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
2519 if (is_gimple_assign (def_stmt)
2520 && gimple_assign_rhs_code (def_stmt) == NEGATE_EXPR
2521 && can_propagate_from (def_stmt))
2523 code = MINUS_EXPR;
2524 gimple_assign_set_rhs_code (stmt, code);
2525 rhs1 = rhs2;
2526 gimple_assign_set_rhs1 (stmt, rhs1);
2527 rhs2 = gimple_assign_rhs1 (def_stmt);
2528 gimple_assign_set_rhs2 (stmt, rhs2);
2529 gimple_set_modified (stmt, true);
2530 changed = true;
2534 while (changed);
2536 /* We can't reassociate floating-point or fixed-point plus or minus
2537 because of saturation to +-Inf. */
2538 if (FLOAT_TYPE_P (TREE_TYPE (rhs1))
2539 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1)))
2540 goto out;
2542 /* Second match patterns that allow contracting a plus-minus pair
2543 irrespective of overflow issues.
2545 (A +- B) - A -> +- B
2546 (A +- B) -+ B -> A
2547 (CST +- A) +- CST -> CST +- A
2548 (A +- CST) +- CST -> A +- CST
2549 ~A + A -> -1
2550 ~A + 1 -> -A
2551 A - (A +- B) -> -+ B
2552 A +- (B +- A) -> +- B
2553 CST +- (CST +- A) -> CST +- A
2554 CST +- (A +- CST) -> CST +- A
2555 A + ~A -> -1
2556 (T)(P + A) - (T)P -> (T)A
2558 via commutating the addition and contracting operations to zero
2559 by reassociation. */
2561 if (TREE_CODE (rhs1) == SSA_NAME)
2563 gimple def_stmt = SSA_NAME_DEF_STMT (rhs1);
2564 if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
2566 enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
2567 if (def_code == PLUS_EXPR
2568 || def_code == MINUS_EXPR)
2570 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2571 tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
2572 if (operand_equal_p (def_rhs1, rhs2, 0)
2573 && code == MINUS_EXPR)
2575 /* (A +- B) - A -> +- B. */
2576 code = ((def_code == PLUS_EXPR)
2577 ? TREE_CODE (def_rhs2) : NEGATE_EXPR);
2578 rhs1 = def_rhs2;
2579 rhs2 = NULL_TREE;
2580 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2581 gcc_assert (gsi_stmt (*gsi) == stmt);
2582 gimple_set_modified (stmt, true);
2584 else if (operand_equal_p (def_rhs2, rhs2, 0)
2585 && code != def_code)
2587 /* (A +- B) -+ B -> A. */
2588 code = TREE_CODE (def_rhs1);
2589 rhs1 = def_rhs1;
2590 rhs2 = NULL_TREE;
2591 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2592 gcc_assert (gsi_stmt (*gsi) == stmt);
2593 gimple_set_modified (stmt, true);
2595 else if (CONSTANT_CLASS_P (rhs2)
2596 && CONSTANT_CLASS_P (def_rhs1))
2598 /* (CST +- A) +- CST -> CST +- A. */
2599 tree cst = fold_binary (code, TREE_TYPE (rhs1),
2600 def_rhs1, rhs2);
2601 if (cst && !TREE_OVERFLOW (cst))
2603 code = def_code;
2604 gimple_assign_set_rhs_code (stmt, code);
2605 rhs1 = cst;
2606 gimple_assign_set_rhs1 (stmt, rhs1);
2607 rhs2 = def_rhs2;
2608 gimple_assign_set_rhs2 (stmt, rhs2);
2609 gimple_set_modified (stmt, true);
2612 else if (CONSTANT_CLASS_P (rhs2)
2613 && CONSTANT_CLASS_P (def_rhs2))
2615 /* (A +- CST) +- CST -> A +- CST. */
2616 enum tree_code mix = (code == def_code)
2617 ? PLUS_EXPR : MINUS_EXPR;
2618 tree cst = fold_binary (mix, TREE_TYPE (rhs1),
2619 def_rhs2, rhs2);
2620 if (cst && !TREE_OVERFLOW (cst))
2622 code = def_code;
2623 gimple_assign_set_rhs_code (stmt, code);
2624 rhs1 = def_rhs1;
2625 gimple_assign_set_rhs1 (stmt, rhs1);
2626 rhs2 = cst;
2627 gimple_assign_set_rhs2 (stmt, rhs2);
2628 gimple_set_modified (stmt, true);
2632 else if (def_code == BIT_NOT_EXPR && code == PLUS_EXPR)
2634 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2635 if (operand_equal_p (def_rhs1, rhs2, 0))
2637 /* ~A + A -> -1. */
2638 rhs1 = build_all_ones_cst (TREE_TYPE (rhs2));
2639 rhs2 = NULL_TREE;
2640 code = TREE_CODE (rhs1);
2641 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2642 gcc_assert (gsi_stmt (*gsi) == stmt);
2643 gimple_set_modified (stmt, true);
2645 else if ((TREE_CODE (TREE_TYPE (rhs2)) != COMPLEX_TYPE
2646 && integer_onep (rhs2))
2647 || (TREE_CODE (rhs2) == COMPLEX_CST
2648 && integer_onep (TREE_REALPART (rhs2))
2649 && integer_onep (TREE_IMAGPART (rhs2))))
2651 /* ~A + 1 -> -A. */
2652 code = NEGATE_EXPR;
2653 rhs1 = def_rhs1;
2654 rhs2 = NULL_TREE;
2655 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2656 gcc_assert (gsi_stmt (*gsi) == stmt);
2657 gimple_set_modified (stmt, true);
2660 else if (code == MINUS_EXPR
2661 && CONVERT_EXPR_CODE_P (def_code)
2662 && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
2663 && TREE_CODE (rhs2) == SSA_NAME)
2665 /* (T)(P + A) - (T)P -> (T)A. */
2666 gimple def_stmt2 = SSA_NAME_DEF_STMT (rhs2);
2667 if (is_gimple_assign (def_stmt2)
2668 && can_propagate_from (def_stmt2)
2669 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
2670 && TREE_CODE (gimple_assign_rhs1 (def_stmt2)) == SSA_NAME)
2672 /* Now we have (T)X - (T)P. */
2673 tree p = gimple_assign_rhs1 (def_stmt2);
2674 def_stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt));
2675 if (is_gimple_assign (def_stmt2)
2676 && can_propagate_from (def_stmt2)
2677 && (gimple_assign_rhs_code (def_stmt2) == POINTER_PLUS_EXPR
2678 || gimple_assign_rhs_code (def_stmt2) == PLUS_EXPR)
2679 && gimple_assign_rhs1 (def_stmt2) == p)
2681 /* And finally (T)(P + A) - (T)P. */
2682 tree a = gimple_assign_rhs2 (def_stmt2);
2683 if (TYPE_PRECISION (TREE_TYPE (rhs1))
2684 <= TYPE_PRECISION (TREE_TYPE (a))
2685 /* For integer types, if A has a smaller type
2686 than T the result depends on the possible
2687 overflow in P + A.
2688 E.g. T=size_t, A=(unsigned)429497295, P>0.
2689 However, if an overflow in P + A would cause
2690 undefined behavior, we can assume that there
2691 is no overflow. */
2692 || (INTEGRAL_TYPE_P (TREE_TYPE (p))
2693 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (p)))
2694 /* For pointer types, if the conversion of A to the
2695 final type requires a sign- or zero-extension,
2696 then we have to punt - it is not defined which
2697 one is correct. */
2698 || (POINTER_TYPE_P (TREE_TYPE (p))
2699 && TREE_CODE (a) == INTEGER_CST
2700 && tree_int_cst_sign_bit (a) == 0))
2702 if (issue_strict_overflow_warning
2703 (WARN_STRICT_OVERFLOW_MISC)
2704 && TYPE_PRECISION (TREE_TYPE (rhs1))
2705 > TYPE_PRECISION (TREE_TYPE (a))
2706 && INTEGRAL_TYPE_P (TREE_TYPE (p)))
2707 warning_at (gimple_location (stmt),
2708 OPT_Wstrict_overflow,
2709 "assuming signed overflow does not "
2710 "occur when assuming that "
2711 "(T)(P + A) - (T)P is always (T)A");
2712 if (useless_type_conversion_p (TREE_TYPE (rhs1),
2713 TREE_TYPE (a)))
2714 code = TREE_CODE (a);
2715 else
2716 code = NOP_EXPR;
2717 rhs1 = a;
2718 rhs2 = NULL_TREE;
2719 gimple_assign_set_rhs_with_ops (gsi, code, rhs1,
2720 rhs2);
2721 gcc_assert (gsi_stmt (*gsi) == stmt);
2722 gimple_set_modified (stmt, true);
2730 if (rhs2 && TREE_CODE (rhs2) == SSA_NAME)
2732 gimple def_stmt = SSA_NAME_DEF_STMT (rhs2);
2733 if (is_gimple_assign (def_stmt) && can_propagate_from (def_stmt))
2735 enum tree_code def_code = gimple_assign_rhs_code (def_stmt);
2736 if (def_code == PLUS_EXPR
2737 || def_code == MINUS_EXPR)
2739 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2740 tree def_rhs2 = gimple_assign_rhs2 (def_stmt);
2741 if (operand_equal_p (def_rhs1, rhs1, 0)
2742 && code == MINUS_EXPR)
2744 /* A - (A +- B) -> -+ B. */
2745 code = ((def_code == PLUS_EXPR)
2746 ? NEGATE_EXPR : TREE_CODE (def_rhs2));
2747 rhs1 = def_rhs2;
2748 rhs2 = NULL_TREE;
2749 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2750 gcc_assert (gsi_stmt (*gsi) == stmt);
2751 gimple_set_modified (stmt, true);
2753 else if (operand_equal_p (def_rhs2, rhs1, 0)
2754 && code != def_code)
2756 /* A +- (B +- A) -> +- B. */
2757 code = ((code == PLUS_EXPR)
2758 ? TREE_CODE (def_rhs1) : NEGATE_EXPR);
2759 rhs1 = def_rhs1;
2760 rhs2 = NULL_TREE;
2761 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2762 gcc_assert (gsi_stmt (*gsi) == stmt);
2763 gimple_set_modified (stmt, true);
2765 else if (CONSTANT_CLASS_P (rhs1)
2766 && CONSTANT_CLASS_P (def_rhs1))
2768 /* CST +- (CST +- A) -> CST +- A. */
2769 tree cst = fold_binary (code, TREE_TYPE (rhs2),
2770 rhs1, def_rhs1);
2771 if (cst && !TREE_OVERFLOW (cst))
2773 code = (code == def_code ? PLUS_EXPR : MINUS_EXPR);
2774 gimple_assign_set_rhs_code (stmt, code);
2775 rhs1 = cst;
2776 gimple_assign_set_rhs1 (stmt, rhs1);
2777 rhs2 = def_rhs2;
2778 gimple_assign_set_rhs2 (stmt, rhs2);
2779 gimple_set_modified (stmt, true);
2782 else if (CONSTANT_CLASS_P (rhs1)
2783 && CONSTANT_CLASS_P (def_rhs2))
2785 /* CST +- (A +- CST) -> CST +- A. */
2786 tree cst = fold_binary (def_code == code
2787 ? PLUS_EXPR : MINUS_EXPR,
2788 TREE_TYPE (rhs2),
2789 rhs1, def_rhs2);
2790 if (cst && !TREE_OVERFLOW (cst))
2792 rhs1 = cst;
2793 gimple_assign_set_rhs1 (stmt, rhs1);
2794 rhs2 = def_rhs1;
2795 gimple_assign_set_rhs2 (stmt, rhs2);
2796 gimple_set_modified (stmt, true);
2800 else if (def_code == BIT_NOT_EXPR)
2802 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2803 if (code == PLUS_EXPR
2804 && operand_equal_p (def_rhs1, rhs1, 0))
2806 /* A + ~A -> -1. */
2807 rhs1 = build_all_ones_cst (TREE_TYPE (rhs1));
2808 rhs2 = NULL_TREE;
2809 code = TREE_CODE (rhs1);
2810 gimple_assign_set_rhs_with_ops (gsi, code, rhs1, NULL_TREE);
2811 gcc_assert (gsi_stmt (*gsi) == stmt);
2812 gimple_set_modified (stmt, true);
2818 out:
2819 if (gimple_modified_p (stmt))
2821 fold_stmt_inplace (gsi);
2822 update_stmt (stmt);
2823 return true;
2826 return false;
2829 /* Associate operands of a POINTER_PLUS_EXPR assignmen at *GSI. Returns
2830 true if anything changed, false otherwise. */
2832 static bool
2833 associate_pointerplus_align (gimple_stmt_iterator *gsi)
2835 gimple stmt = gsi_stmt (*gsi);
2836 gimple def_stmt;
2837 tree ptr, rhs, algn;
2839 /* Pattern match
2840 tem = (sizetype) ptr;
2841 tem = tem & algn;
2842 tem = -tem;
2843 ... = ptr p+ tem;
2844 and produce the simpler and easier to analyze with respect to alignment
2845 ... = ptr & ~algn; */
2846 ptr = gimple_assign_rhs1 (stmt);
2847 rhs = gimple_assign_rhs2 (stmt);
2848 if (TREE_CODE (rhs) != SSA_NAME)
2849 return false;
2850 def_stmt = SSA_NAME_DEF_STMT (rhs);
2851 if (!is_gimple_assign (def_stmt)
2852 || gimple_assign_rhs_code (def_stmt) != NEGATE_EXPR)
2853 return false;
2854 rhs = gimple_assign_rhs1 (def_stmt);
2855 if (TREE_CODE (rhs) != SSA_NAME)
2856 return false;
2857 def_stmt = SSA_NAME_DEF_STMT (rhs);
2858 if (!is_gimple_assign (def_stmt)
2859 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
2860 return false;
2861 rhs = gimple_assign_rhs1 (def_stmt);
2862 algn = gimple_assign_rhs2 (def_stmt);
2863 if (TREE_CODE (rhs) != SSA_NAME
2864 || TREE_CODE (algn) != INTEGER_CST)
2865 return false;
2866 def_stmt = SSA_NAME_DEF_STMT (rhs);
2867 if (!is_gimple_assign (def_stmt)
2868 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
2869 return false;
2870 if (gimple_assign_rhs1 (def_stmt) != ptr)
2871 return false;
2873 algn = wide_int_to_tree (TREE_TYPE (ptr), wi::bit_not (algn));
2874 gimple_assign_set_rhs_with_ops (gsi, BIT_AND_EXPR, ptr, algn);
2875 fold_stmt_inplace (gsi);
2876 update_stmt (stmt);
2878 return true;
2881 /* Associate operands of a POINTER_PLUS_EXPR assignmen at *GSI. Returns
2882 true if anything changed, false otherwise. */
2884 static bool
2885 associate_pointerplus_diff (gimple_stmt_iterator *gsi)
2887 gimple stmt = gsi_stmt (*gsi);
2888 gimple def_stmt;
2889 tree ptr1, rhs;
2891 /* Pattern match
2892 tem1 = (long) ptr1;
2893 tem2 = (long) ptr2;
2894 tem3 = tem2 - tem1;
2895 tem4 = (unsigned long) tem3;
2896 tem5 = ptr1 + tem4;
2897 and produce
2898 tem5 = ptr2; */
2899 ptr1 = gimple_assign_rhs1 (stmt);
2900 rhs = gimple_assign_rhs2 (stmt);
2901 if (TREE_CODE (rhs) != SSA_NAME)
2902 return false;
2903 gimple minus = SSA_NAME_DEF_STMT (rhs);
2904 /* Conditionally look through a sign-changing conversion. */
2905 if (is_gimple_assign (minus)
2906 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (minus))
2907 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (minus)))
2908 == TYPE_PRECISION (TREE_TYPE (rhs)))
2909 && TREE_CODE (gimple_assign_rhs1 (minus)) == SSA_NAME)
2910 minus = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (minus));
2911 if (!is_gimple_assign (minus))
2912 return false;
2913 if (gimple_assign_rhs_code (minus) != MINUS_EXPR)
2914 return false;
2915 rhs = gimple_assign_rhs2 (minus);
2916 if (TREE_CODE (rhs) != SSA_NAME)
2917 return false;
2918 def_stmt = SSA_NAME_DEF_STMT (rhs);
2919 if (!is_gimple_assign (def_stmt)
2920 || ! CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2921 || gimple_assign_rhs1 (def_stmt) != ptr1)
2922 return false;
2923 rhs = gimple_assign_rhs1 (minus);
2924 if (TREE_CODE (rhs) != SSA_NAME)
2925 return false;
2926 def_stmt = SSA_NAME_DEF_STMT (rhs);
2927 if (!is_gimple_assign (def_stmt)
2928 || ! CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
2929 return false;
2930 rhs = gimple_assign_rhs1 (def_stmt);
2931 if (! useless_type_conversion_p (TREE_TYPE (ptr1), TREE_TYPE (rhs)))
2932 return false;
2934 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (rhs), rhs, NULL_TREE);
2935 update_stmt (stmt);
2937 return true;
2940 /* Associate operands of a POINTER_PLUS_EXPR assignmen at *GSI. Returns
2941 true if anything changed, false otherwise. */
2943 static bool
2944 associate_pointerplus (gimple_stmt_iterator *gsi)
2946 gimple stmt = gsi_stmt (*gsi);
2947 gimple def_stmt;
2948 tree ptr, off1, off2;
2950 if (associate_pointerplus_align (gsi)
2951 || associate_pointerplus_diff (gsi))
2952 return true;
2954 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2955 ptr = gimple_assign_rhs1 (stmt);
2956 off1 = gimple_assign_rhs2 (stmt);
2957 if (TREE_CODE (ptr) != SSA_NAME
2958 || !has_single_use (ptr))
2959 return false;
2960 def_stmt = SSA_NAME_DEF_STMT (ptr);
2961 if (!is_gimple_assign (def_stmt)
2962 || gimple_assign_rhs_code (def_stmt) != POINTER_PLUS_EXPR
2963 || !can_propagate_from (def_stmt))
2964 return false;
2965 ptr = gimple_assign_rhs1 (def_stmt);
2966 off2 = gimple_assign_rhs2 (def_stmt);
2967 if (!types_compatible_p (TREE_TYPE (off1), TREE_TYPE (off2)))
2968 return false;
2970 tree off = make_ssa_name (TREE_TYPE (off1), NULL);
2971 gimple ostmt = gimple_build_assign_with_ops (PLUS_EXPR, off, off1, off2);
2972 gsi_insert_before (gsi, ostmt, GSI_SAME_STMT);
2974 gimple_assign_set_rhs_with_ops (gsi, POINTER_PLUS_EXPR, ptr, off);
2975 update_stmt (stmt);
2977 return true;
2980 /* Combine two conversions in a row for the second conversion at *GSI.
2981 Returns 1 if there were any changes made, 2 if cfg-cleanup needs to
2982 run. Else it returns 0. */
2984 static int
2985 combine_conversions (gimple_stmt_iterator *gsi)
2987 gimple stmt = gsi_stmt (*gsi);
2988 gimple def_stmt;
2989 tree op0, lhs;
2990 enum tree_code code = gimple_assign_rhs_code (stmt);
2991 enum tree_code code2;
2993 gcc_checking_assert (CONVERT_EXPR_CODE_P (code)
2994 || code == FLOAT_EXPR
2995 || code == FIX_TRUNC_EXPR);
2997 lhs = gimple_assign_lhs (stmt);
2998 op0 = gimple_assign_rhs1 (stmt);
2999 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)))
3001 gimple_assign_set_rhs_code (stmt, TREE_CODE (op0));
3002 return 1;
3005 if (TREE_CODE (op0) != SSA_NAME)
3006 return 0;
3008 def_stmt = SSA_NAME_DEF_STMT (op0);
3009 if (!is_gimple_assign (def_stmt))
3010 return 0;
3012 code2 = gimple_assign_rhs_code (def_stmt);
3014 if (CONVERT_EXPR_CODE_P (code2) || code2 == FLOAT_EXPR)
3016 tree defop0 = gimple_assign_rhs1 (def_stmt);
3017 tree type = TREE_TYPE (lhs);
3018 tree inside_type = TREE_TYPE (defop0);
3019 tree inter_type = TREE_TYPE (op0);
3020 int inside_int = INTEGRAL_TYPE_P (inside_type);
3021 int inside_ptr = POINTER_TYPE_P (inside_type);
3022 int inside_float = FLOAT_TYPE_P (inside_type);
3023 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
3024 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3025 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3026 int inter_int = INTEGRAL_TYPE_P (inter_type);
3027 int inter_ptr = POINTER_TYPE_P (inter_type);
3028 int inter_float = FLOAT_TYPE_P (inter_type);
3029 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
3030 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3031 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3032 int final_int = INTEGRAL_TYPE_P (type);
3033 int final_ptr = POINTER_TYPE_P (type);
3034 int final_float = FLOAT_TYPE_P (type);
3035 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
3036 unsigned int final_prec = TYPE_PRECISION (type);
3037 int final_unsignedp = TYPE_UNSIGNED (type);
3039 /* Don't propagate ssa names that occur in abnormal phis. */
3040 if (TREE_CODE (defop0) == SSA_NAME
3041 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (defop0))
3042 return 0;
3044 /* In addition to the cases of two conversions in a row
3045 handled below, if we are converting something to its own
3046 type via an object of identical or wider precision, neither
3047 conversion is needed. */
3048 if (useless_type_conversion_p (type, inside_type)
3049 && (((inter_int || inter_ptr) && final_int)
3050 || (inter_float && final_float))
3051 && inter_prec >= final_prec)
3053 gimple_assign_set_rhs1 (stmt, unshare_expr (defop0));
3054 gimple_assign_set_rhs_code (stmt, TREE_CODE (defop0));
3055 update_stmt (stmt);
3056 return remove_prop_source_from_use (op0) ? 2 : 1;
3059 /* Likewise, if the intermediate and initial types are either both
3060 float or both integer, we don't need the middle conversion if the
3061 former is wider than the latter and doesn't change the signedness
3062 (for integers). Avoid this if the final type is a pointer since
3063 then we sometimes need the middle conversion. Likewise if the
3064 final type has a precision not equal to the size of its mode. */
3065 if (((inter_int && inside_int)
3066 || (inter_float && inside_float)
3067 || (inter_vec && inside_vec))
3068 && inter_prec >= inside_prec
3069 && (inter_float || inter_vec
3070 || inter_unsignedp == inside_unsignedp)
3071 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
3072 && TYPE_MODE (type) == TYPE_MODE (inter_type))
3073 && ! final_ptr
3074 && (! final_vec || inter_prec == inside_prec))
3076 gimple_assign_set_rhs1 (stmt, defop0);
3077 update_stmt (stmt);
3078 return remove_prop_source_from_use (op0) ? 2 : 1;
3081 /* If we have a sign-extension of a zero-extended value, we can
3082 replace that by a single zero-extension. Likewise if the
3083 final conversion does not change precision we can drop the
3084 intermediate conversion. */
3085 if (inside_int && inter_int && final_int
3086 && ((inside_prec < inter_prec && inter_prec < final_prec
3087 && inside_unsignedp && !inter_unsignedp)
3088 || final_prec == inter_prec))
3090 gimple_assign_set_rhs1 (stmt, defop0);
3091 update_stmt (stmt);
3092 return remove_prop_source_from_use (op0) ? 2 : 1;
3095 /* Two conversions in a row are not needed unless:
3096 - some conversion is floating-point (overstrict for now), or
3097 - some conversion is a vector (overstrict for now), or
3098 - the intermediate type is narrower than both initial and
3099 final, or
3100 - the intermediate type and innermost type differ in signedness,
3101 and the outermost type is wider than the intermediate, or
3102 - the initial type is a pointer type and the precisions of the
3103 intermediate and final types differ, or
3104 - the final type is a pointer type and the precisions of the
3105 initial and intermediate types differ. */
3106 if (! inside_float && ! inter_float && ! final_float
3107 && ! inside_vec && ! inter_vec && ! final_vec
3108 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3109 && ! (inside_int && inter_int
3110 && inter_unsignedp != inside_unsignedp
3111 && inter_prec < final_prec)
3112 && ((inter_unsignedp && inter_prec > inside_prec)
3113 == (final_unsignedp && final_prec > inter_prec))
3114 && ! (inside_ptr && inter_prec != final_prec)
3115 && ! (final_ptr && inside_prec != inter_prec)
3116 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
3117 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
3119 gimple_assign_set_rhs1 (stmt, defop0);
3120 update_stmt (stmt);
3121 return remove_prop_source_from_use (op0) ? 2 : 1;
3124 /* A truncation to an unsigned type should be canonicalized as
3125 bitwise and of a mask. */
3126 if (final_int && inter_int && inside_int
3127 && final_prec == inside_prec
3128 && final_prec > inter_prec
3129 && inter_unsignedp)
3131 tree tem;
3132 tem = fold_build2 (BIT_AND_EXPR, inside_type,
3133 defop0,
3134 wide_int_to_tree
3135 (inside_type,
3136 wi::mask (inter_prec, false,
3137 TYPE_PRECISION (inside_type))));
3138 if (!useless_type_conversion_p (type, inside_type))
3140 tem = force_gimple_operand_gsi (gsi, tem, true, NULL_TREE, true,
3141 GSI_SAME_STMT);
3142 gimple_assign_set_rhs1 (stmt, tem);
3144 else
3145 gimple_assign_set_rhs_from_tree (gsi, tem);
3146 update_stmt (gsi_stmt (*gsi));
3147 return 1;
3150 /* If we are converting an integer to a floating-point that can
3151 represent it exactly and back to an integer, we can skip the
3152 floating-point conversion. */
3153 if (inside_int && inter_float && final_int &&
3154 (unsigned) significand_size (TYPE_MODE (inter_type))
3155 >= inside_prec - !inside_unsignedp)
3157 if (useless_type_conversion_p (type, inside_type))
3159 gimple_assign_set_rhs1 (stmt, unshare_expr (defop0));
3160 gimple_assign_set_rhs_code (stmt, TREE_CODE (defop0));
3161 update_stmt (stmt);
3162 return remove_prop_source_from_use (op0) ? 2 : 1;
3164 else
3166 gimple_assign_set_rhs1 (stmt, defop0);
3167 gimple_assign_set_rhs_code (stmt, CONVERT_EXPR);
3168 update_stmt (stmt);
3169 return remove_prop_source_from_use (op0) ? 2 : 1;
3174 return 0;
3177 /* Combine VIEW_CONVERT_EXPRs with their defining statement. */
3179 static bool
3180 simplify_vce (gimple_stmt_iterator *gsi)
3182 gimple stmt = gsi_stmt (*gsi);
3183 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
3185 /* Drop useless VIEW_CONVERT_EXPRs. */
3186 tree op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
3187 if (useless_type_conversion_p (type, TREE_TYPE (op)))
3189 gimple_assign_set_rhs1 (stmt, op);
3190 update_stmt (stmt);
3191 return true;
3194 if (TREE_CODE (op) != SSA_NAME)
3195 return false;
3197 gimple def_stmt = SSA_NAME_DEF_STMT (op);
3198 if (!is_gimple_assign (def_stmt))
3199 return false;
3201 tree def_op = gimple_assign_rhs1 (def_stmt);
3202 switch (gimple_assign_rhs_code (def_stmt))
3204 CASE_CONVERT:
3205 /* Strip integral conversions that do not change the precision. */
3206 if ((INTEGRAL_TYPE_P (TREE_TYPE (op))
3207 || POINTER_TYPE_P (TREE_TYPE (op)))
3208 && (INTEGRAL_TYPE_P (TREE_TYPE (def_op))
3209 || POINTER_TYPE_P (TREE_TYPE (def_op)))
3210 && (TYPE_PRECISION (TREE_TYPE (op))
3211 == TYPE_PRECISION (TREE_TYPE (def_op))))
3213 TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) = def_op;
3214 update_stmt (stmt);
3215 return true;
3217 break;
3219 case VIEW_CONVERT_EXPR:
3220 /* Series of VIEW_CONVERT_EXPRs on register operands can
3221 be contracted. */
3222 if (TREE_CODE (TREE_OPERAND (def_op, 0)) == SSA_NAME)
3224 if (useless_type_conversion_p (type,
3225 TREE_TYPE (TREE_OPERAND (def_op, 0))))
3226 gimple_assign_set_rhs1 (stmt, TREE_OPERAND (def_op, 0));
3227 else
3228 TREE_OPERAND (gimple_assign_rhs1 (stmt), 0)
3229 = TREE_OPERAND (def_op, 0);
3230 update_stmt (stmt);
3231 return true;
3234 default:;
3237 return false;
3240 /* Combine an element access with a shuffle. Returns true if there were
3241 any changes made, else it returns false. */
3243 static bool
3244 simplify_bitfield_ref (gimple_stmt_iterator *gsi)
3246 gimple stmt = gsi_stmt (*gsi);
3247 gimple def_stmt;
3248 tree op, op0, op1, op2;
3249 tree elem_type;
3250 unsigned idx, n, size;
3251 enum tree_code code;
3253 op = gimple_assign_rhs1 (stmt);
3254 gcc_checking_assert (TREE_CODE (op) == BIT_FIELD_REF);
3256 op0 = TREE_OPERAND (op, 0);
3257 if (TREE_CODE (op0) != SSA_NAME
3258 || TREE_CODE (TREE_TYPE (op0)) != VECTOR_TYPE)
3259 return false;
3261 def_stmt = get_prop_source_stmt (op0, false, NULL);
3262 if (!def_stmt || !can_propagate_from (def_stmt))
3263 return false;
3265 op1 = TREE_OPERAND (op, 1);
3266 op2 = TREE_OPERAND (op, 2);
3267 code = gimple_assign_rhs_code (def_stmt);
3269 if (code == CONSTRUCTOR)
3271 tree tem = fold_ternary (BIT_FIELD_REF, TREE_TYPE (op),
3272 gimple_assign_rhs1 (def_stmt), op1, op2);
3273 if (!tem || !valid_gimple_rhs_p (tem))
3274 return false;
3275 gimple_assign_set_rhs_from_tree (gsi, tem);
3276 update_stmt (gsi_stmt (*gsi));
3277 return true;
3280 elem_type = TREE_TYPE (TREE_TYPE (op0));
3281 if (TREE_TYPE (op) != elem_type)
3282 return false;
3284 size = TREE_INT_CST_LOW (TYPE_SIZE (elem_type));
3285 n = TREE_INT_CST_LOW (op1) / size;
3286 if (n != 1)
3287 return false;
3288 idx = TREE_INT_CST_LOW (op2) / size;
3290 if (code == VEC_PERM_EXPR)
3292 tree p, m, index, tem;
3293 unsigned nelts;
3294 m = gimple_assign_rhs3 (def_stmt);
3295 if (TREE_CODE (m) != VECTOR_CST)
3296 return false;
3297 nelts = VECTOR_CST_NELTS (m);
3298 idx = TREE_INT_CST_LOW (VECTOR_CST_ELT (m, idx));
3299 idx %= 2 * nelts;
3300 if (idx < nelts)
3302 p = gimple_assign_rhs1 (def_stmt);
3304 else
3306 p = gimple_assign_rhs2 (def_stmt);
3307 idx -= nelts;
3309 index = build_int_cst (TREE_TYPE (TREE_TYPE (m)), idx * size);
3310 tem = build3 (BIT_FIELD_REF, TREE_TYPE (op),
3311 unshare_expr (p), op1, index);
3312 gimple_assign_set_rhs1 (stmt, tem);
3313 fold_stmt (gsi);
3314 update_stmt (gsi_stmt (*gsi));
3315 return true;
3318 return false;
3321 /* Determine whether applying the 2 permutations (mask1 then mask2)
3322 gives back one of the input. */
3324 static int
3325 is_combined_permutation_identity (tree mask1, tree mask2)
3327 tree mask;
3328 unsigned int nelts, i, j;
3329 bool maybe_identity1 = true;
3330 bool maybe_identity2 = true;
3332 gcc_checking_assert (TREE_CODE (mask1) == VECTOR_CST
3333 && TREE_CODE (mask2) == VECTOR_CST);
3334 mask = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (mask1), mask1, mask1, mask2);
3335 gcc_assert (TREE_CODE (mask) == VECTOR_CST);
3337 nelts = VECTOR_CST_NELTS (mask);
3338 for (i = 0; i < nelts; i++)
3340 tree val = VECTOR_CST_ELT (mask, i);
3341 gcc_assert (TREE_CODE (val) == INTEGER_CST);
3342 j = TREE_INT_CST_LOW (val) & (2 * nelts - 1);
3343 if (j == i)
3344 maybe_identity2 = false;
3345 else if (j == i + nelts)
3346 maybe_identity1 = false;
3347 else
3348 return 0;
3350 return maybe_identity1 ? 1 : maybe_identity2 ? 2 : 0;
3353 /* Combine a shuffle with its arguments. Returns 1 if there were any
3354 changes made, 2 if cfg-cleanup needs to run. Else it returns 0. */
3356 static int
3357 simplify_permutation (gimple_stmt_iterator *gsi)
3359 gimple stmt = gsi_stmt (*gsi);
3360 gimple def_stmt;
3361 tree op0, op1, op2, op3, arg0, arg1;
3362 enum tree_code code;
3363 bool single_use_op0 = false;
3365 gcc_checking_assert (gimple_assign_rhs_code (stmt) == VEC_PERM_EXPR);
3367 op0 = gimple_assign_rhs1 (stmt);
3368 op1 = gimple_assign_rhs2 (stmt);
3369 op2 = gimple_assign_rhs3 (stmt);
3371 if (TREE_CODE (op2) != VECTOR_CST)
3372 return 0;
3374 if (TREE_CODE (op0) == VECTOR_CST)
3376 code = VECTOR_CST;
3377 arg0 = op0;
3379 else if (TREE_CODE (op0) == SSA_NAME)
3381 def_stmt = get_prop_source_stmt (op0, false, &single_use_op0);
3382 if (!def_stmt || !can_propagate_from (def_stmt))
3383 return 0;
3385 code = gimple_assign_rhs_code (def_stmt);
3386 arg0 = gimple_assign_rhs1 (def_stmt);
3388 else
3389 return 0;
3391 /* Two consecutive shuffles. */
3392 if (code == VEC_PERM_EXPR)
3394 tree orig;
3395 int ident;
3397 if (op0 != op1)
3398 return 0;
3399 op3 = gimple_assign_rhs3 (def_stmt);
3400 if (TREE_CODE (op3) != VECTOR_CST)
3401 return 0;
3402 ident = is_combined_permutation_identity (op3, op2);
3403 if (!ident)
3404 return 0;
3405 orig = (ident == 1) ? gimple_assign_rhs1 (def_stmt)
3406 : gimple_assign_rhs2 (def_stmt);
3407 gimple_assign_set_rhs1 (stmt, unshare_expr (orig));
3408 gimple_assign_set_rhs_code (stmt, TREE_CODE (orig));
3409 gimple_set_num_ops (stmt, 2);
3410 update_stmt (stmt);
3411 return remove_prop_source_from_use (op0) ? 2 : 1;
3414 /* Shuffle of a constructor. */
3415 else if (code == CONSTRUCTOR || code == VECTOR_CST)
3417 tree opt;
3418 bool ret = false;
3419 if (op0 != op1)
3421 if (TREE_CODE (op0) == SSA_NAME && !single_use_op0)
3422 return 0;
3424 if (TREE_CODE (op1) == VECTOR_CST)
3425 arg1 = op1;
3426 else if (TREE_CODE (op1) == SSA_NAME)
3428 enum tree_code code2;
3430 gimple def_stmt2 = get_prop_source_stmt (op1, true, NULL);
3431 if (!def_stmt2 || !can_propagate_from (def_stmt2))
3432 return 0;
3434 code2 = gimple_assign_rhs_code (def_stmt2);
3435 if (code2 != CONSTRUCTOR && code2 != VECTOR_CST)
3436 return 0;
3437 arg1 = gimple_assign_rhs1 (def_stmt2);
3439 else
3440 return 0;
3442 else
3444 /* Already used twice in this statement. */
3445 if (TREE_CODE (op0) == SSA_NAME && num_imm_uses (op0) > 2)
3446 return 0;
3447 arg1 = arg0;
3449 opt = fold_ternary (VEC_PERM_EXPR, TREE_TYPE (op0), arg0, arg1, op2);
3450 if (!opt
3451 || (TREE_CODE (opt) != CONSTRUCTOR && TREE_CODE (opt) != VECTOR_CST))
3452 return 0;
3453 gimple_assign_set_rhs_from_tree (gsi, opt);
3454 update_stmt (gsi_stmt (*gsi));
3455 if (TREE_CODE (op0) == SSA_NAME)
3456 ret = remove_prop_source_from_use (op0);
3457 if (op0 != op1 && TREE_CODE (op1) == SSA_NAME)
3458 ret |= remove_prop_source_from_use (op1);
3459 return ret ? 2 : 1;
3462 return 0;
3465 /* Recognize a VEC_PERM_EXPR. Returns true if there were any changes. */
3467 static bool
3468 simplify_vector_constructor (gimple_stmt_iterator *gsi)
3470 gimple stmt = gsi_stmt (*gsi);
3471 gimple def_stmt;
3472 tree op, op2, orig, type, elem_type;
3473 unsigned elem_size, nelts, i;
3474 enum tree_code code;
3475 constructor_elt *elt;
3476 unsigned char *sel;
3477 bool maybe_ident;
3479 gcc_checking_assert (gimple_assign_rhs_code (stmt) == CONSTRUCTOR);
3481 op = gimple_assign_rhs1 (stmt);
3482 type = TREE_TYPE (op);
3483 gcc_checking_assert (TREE_CODE (type) == VECTOR_TYPE);
3485 nelts = TYPE_VECTOR_SUBPARTS (type);
3486 elem_type = TREE_TYPE (type);
3487 elem_size = TREE_INT_CST_LOW (TYPE_SIZE (elem_type));
3489 sel = XALLOCAVEC (unsigned char, nelts);
3490 orig = NULL;
3491 maybe_ident = true;
3492 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (op), i, elt)
3494 tree ref, op1;
3496 if (i >= nelts)
3497 return false;
3499 if (TREE_CODE (elt->value) != SSA_NAME)
3500 return false;
3501 def_stmt = get_prop_source_stmt (elt->value, false, NULL);
3502 if (!def_stmt)
3503 return false;
3504 code = gimple_assign_rhs_code (def_stmt);
3505 if (code != BIT_FIELD_REF)
3506 return false;
3507 op1 = gimple_assign_rhs1 (def_stmt);
3508 ref = TREE_OPERAND (op1, 0);
3509 if (orig)
3511 if (ref != orig)
3512 return false;
3514 else
3516 if (TREE_CODE (ref) != SSA_NAME)
3517 return false;
3518 if (!useless_type_conversion_p (type, TREE_TYPE (ref)))
3519 return false;
3520 orig = ref;
3522 if (TREE_INT_CST_LOW (TREE_OPERAND (op1, 1)) != elem_size)
3523 return false;
3524 sel[i] = TREE_INT_CST_LOW (TREE_OPERAND (op1, 2)) / elem_size;
3525 if (sel[i] != i) maybe_ident = false;
3527 if (i < nelts)
3528 return false;
3530 if (maybe_ident)
3531 gimple_assign_set_rhs_from_tree (gsi, orig);
3532 else
3534 tree mask_type, *mask_elts;
3536 if (!can_vec_perm_p (TYPE_MODE (type), false, sel))
3537 return false;
3538 mask_type
3539 = build_vector_type (build_nonstandard_integer_type (elem_size, 1),
3540 nelts);
3541 if (GET_MODE_CLASS (TYPE_MODE (mask_type)) != MODE_VECTOR_INT
3542 || GET_MODE_SIZE (TYPE_MODE (mask_type))
3543 != GET_MODE_SIZE (TYPE_MODE (type)))
3544 return false;
3545 mask_elts = XALLOCAVEC (tree, nelts);
3546 for (i = 0; i < nelts; i++)
3547 mask_elts[i] = build_int_cst (TREE_TYPE (mask_type), sel[i]);
3548 op2 = build_vector (mask_type, mask_elts);
3549 gimple_assign_set_rhs_with_ops_1 (gsi, VEC_PERM_EXPR, orig, orig, op2);
3551 update_stmt (gsi_stmt (*gsi));
3552 return true;
3555 /* Simplify multiplications.
3556 Return true if a transformation applied, otherwise return false. */
3558 static bool
3559 simplify_mult (gimple_stmt_iterator *gsi)
3561 gimple stmt = gsi_stmt (*gsi);
3562 tree arg1 = gimple_assign_rhs1 (stmt);
3563 tree arg2 = gimple_assign_rhs2 (stmt);
3565 if (TREE_CODE (arg1) != SSA_NAME)
3566 return false;
3568 gimple def_stmt = SSA_NAME_DEF_STMT (arg1);
3569 if (!is_gimple_assign (def_stmt))
3570 return false;
3572 /* Look through a sign-changing conversion. */
3573 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
3575 if (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (def_stmt)))
3576 != TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
3577 || TREE_CODE (gimple_assign_rhs1 (def_stmt)) != SSA_NAME)
3578 return false;
3579 def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt));
3580 if (!is_gimple_assign (def_stmt))
3581 return false;
3584 if (gimple_assign_rhs_code (def_stmt) == EXACT_DIV_EXPR)
3586 if (operand_equal_p (gimple_assign_rhs2 (def_stmt), arg2, 0))
3588 tree res = gimple_assign_rhs1 (def_stmt);
3589 if (useless_type_conversion_p (TREE_TYPE (arg1), TREE_TYPE (res)))
3590 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (res), res,
3591 NULL_TREE);
3592 else
3593 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, res, NULL_TREE);
3594 gcc_assert (gsi_stmt (*gsi) == stmt);
3595 update_stmt (stmt);
3596 return true;
3600 return false;
3604 /* Const-and-copy lattice for fold_all_stmts. */
3605 static vec<tree> lattice;
3607 /* Primitive "lattice" function for gimple_simplify. */
3609 static tree
3610 fwprop_ssa_val (tree name)
3612 /* First valueize NAME. */
3613 if (TREE_CODE (name) == SSA_NAME
3614 && SSA_NAME_VERSION (name) < lattice.length ())
3616 tree val = lattice[SSA_NAME_VERSION (name)];
3617 if (val)
3618 name = val;
3620 /* If NAME is not the only use signal we don't want to continue
3621 matching into its definition. */
3622 if (TREE_CODE (name) == SSA_NAME
3623 && !has_single_use (name))
3624 return NULL_TREE;
3625 return name;
3628 /* Fold all stmts using fold_stmt following only single-use chains
3629 and using a simple const-and-copy lattice. */
3631 static bool
3632 fold_all_stmts (struct function *fun)
3634 bool cfg_changed = false;
3636 /* Combine stmts with the stmts defining their operands. Do that
3637 in an order that guarantees visiting SSA defs before SSA uses. */
3638 lattice.create (num_ssa_names);
3639 lattice.quick_grow_cleared (num_ssa_names);
3640 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (fun));
3641 int postorder_num = inverted_post_order_compute (postorder);
3642 for (int i = 0; i < postorder_num; ++i)
3644 basic_block bb = BASIC_BLOCK_FOR_FN (fun, postorder[i]);
3645 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3646 !gsi_end_p (gsi); gsi_next (&gsi))
3648 gimple stmt = gsi_stmt (gsi);
3649 gimple orig_stmt = stmt;
3651 if (fold_stmt (&gsi, fwprop_ssa_val))
3653 stmt = gsi_stmt (gsi);
3654 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)
3655 && gimple_purge_dead_eh_edges (bb))
3656 cfg_changed = true;
3657 /* Cleanup the CFG if we simplified a condition to
3658 true or false. */
3659 if (gimple_code (stmt) == GIMPLE_COND
3660 && (gimple_cond_true_p (stmt)
3661 || gimple_cond_false_p (stmt)))
3662 cfg_changed = true;
3663 update_stmt (stmt);
3666 /* Fill up the lattice. */
3667 if (gimple_assign_single_p (stmt))
3669 tree lhs = gimple_assign_lhs (stmt);
3670 tree rhs = gimple_assign_rhs1 (stmt);
3671 if (TREE_CODE (lhs) == SSA_NAME)
3673 if (TREE_CODE (rhs) == SSA_NAME)
3674 lattice[SSA_NAME_VERSION (lhs)] = fwprop_ssa_val (rhs);
3675 else if (is_gimple_min_invariant (rhs))
3676 lattice[SSA_NAME_VERSION (lhs)] = rhs;
3677 else
3678 lattice[SSA_NAME_VERSION (lhs)] = lhs;
3683 free (postorder);
3684 lattice.release ();
3686 return cfg_changed;
3689 /* Main entry point for the forward propagation and statement combine
3690 optimizer. */
3692 namespace {
3694 const pass_data pass_data_forwprop =
3696 GIMPLE_PASS, /* type */
3697 "forwprop", /* name */
3698 OPTGROUP_NONE, /* optinfo_flags */
3699 TV_TREE_FORWPROP, /* tv_id */
3700 ( PROP_cfg | PROP_ssa ), /* properties_required */
3701 0, /* properties_provided */
3702 0, /* properties_destroyed */
3703 0, /* todo_flags_start */
3704 TODO_update_ssa, /* todo_flags_finish */
3707 class pass_forwprop : public gimple_opt_pass
3709 public:
3710 pass_forwprop (gcc::context *ctxt)
3711 : gimple_opt_pass (pass_data_forwprop, ctxt)
3714 /* opt_pass methods: */
3715 opt_pass * clone () { return new pass_forwprop (m_ctxt); }
3716 virtual bool gate (function *) { return flag_tree_forwprop; }
3717 virtual unsigned int execute (function *);
3719 }; // class pass_forwprop
3721 unsigned int
3722 pass_forwprop::execute (function *fun)
3724 basic_block bb;
3725 unsigned int todoflags = 0;
3727 cfg_changed = false;
3729 FOR_EACH_BB_FN (bb, fun)
3731 gimple_stmt_iterator gsi;
3733 /* Apply forward propagation to all stmts in the basic-block.
3734 Note we update GSI within the loop as necessary. */
3735 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
3737 gimple stmt = gsi_stmt (gsi);
3738 tree lhs, rhs;
3739 enum tree_code code;
3741 if (!is_gimple_assign (stmt))
3743 gsi_next (&gsi);
3744 continue;
3747 lhs = gimple_assign_lhs (stmt);
3748 rhs = gimple_assign_rhs1 (stmt);
3749 code = gimple_assign_rhs_code (stmt);
3750 if (TREE_CODE (lhs) != SSA_NAME
3751 || has_zero_uses (lhs))
3753 gsi_next (&gsi);
3754 continue;
3757 /* If this statement sets an SSA_NAME to an address,
3758 try to propagate the address into the uses of the SSA_NAME. */
3759 if (code == ADDR_EXPR
3760 /* Handle pointer conversions on invariant addresses
3761 as well, as this is valid gimple. */
3762 || (CONVERT_EXPR_CODE_P (code)
3763 && TREE_CODE (rhs) == ADDR_EXPR
3764 && POINTER_TYPE_P (TREE_TYPE (lhs))))
3766 tree base = get_base_address (TREE_OPERAND (rhs, 0));
3767 if ((!base
3768 || !DECL_P (base)
3769 || decl_address_invariant_p (base))
3770 && !stmt_references_abnormal_ssa_name (stmt)
3771 && forward_propagate_addr_expr (lhs, rhs, true))
3773 release_defs (stmt);
3774 gsi_remove (&gsi, true);
3776 else
3777 gsi_next (&gsi);
3779 else if (code == POINTER_PLUS_EXPR)
3781 tree off = gimple_assign_rhs2 (stmt);
3782 if (TREE_CODE (off) == INTEGER_CST
3783 && can_propagate_from (stmt)
3784 && !simple_iv_increment_p (stmt)
3785 /* ??? Better adjust the interface to that function
3786 instead of building new trees here. */
3787 && forward_propagate_addr_expr
3788 (lhs,
3789 build1_loc (gimple_location (stmt),
3790 ADDR_EXPR, TREE_TYPE (rhs),
3791 fold_build2 (MEM_REF,
3792 TREE_TYPE (TREE_TYPE (rhs)),
3793 rhs,
3794 fold_convert (ptr_type_node,
3795 off))), true))
3797 release_defs (stmt);
3798 gsi_remove (&gsi, true);
3800 else if (is_gimple_min_invariant (rhs))
3802 /* Make sure to fold &a[0] + off_1 here. */
3803 fold_stmt_inplace (&gsi);
3804 update_stmt (stmt);
3805 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
3806 gsi_next (&gsi);
3808 else
3809 gsi_next (&gsi);
3811 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3813 if (forward_propagate_comparison (&gsi))
3814 cfg_changed = true;
3816 else
3817 gsi_next (&gsi);
3820 /* Combine stmts with the stmts defining their operands.
3821 Note we update GSI within the loop as necessary. */
3822 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3824 gimple stmt = gsi_stmt (gsi);
3825 bool changed = false;
3827 /* Mark stmt as potentially needing revisiting. */
3828 gimple_set_plf (stmt, GF_PLF_1, false);
3830 switch (gimple_code (stmt))
3832 case GIMPLE_ASSIGN:
3834 tree rhs1 = gimple_assign_rhs1 (stmt);
3835 enum tree_code code = gimple_assign_rhs_code (stmt);
3837 if ((code == BIT_NOT_EXPR
3838 || code == NEGATE_EXPR)
3839 && TREE_CODE (rhs1) == SSA_NAME)
3840 changed = simplify_not_neg_expr (&gsi);
3841 else if (code == COND_EXPR
3842 || code == VEC_COND_EXPR)
3844 /* In this case the entire COND_EXPR is in rhs1. */
3845 if (forward_propagate_into_cond (&gsi)
3846 || combine_cond_exprs (&gsi))
3848 changed = true;
3849 stmt = gsi_stmt (gsi);
3852 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3854 int did_something;
3855 did_something = forward_propagate_into_comparison (&gsi);
3856 if (did_something == 2)
3857 cfg_changed = true;
3858 changed = did_something != 0;
3860 else if ((code == PLUS_EXPR
3861 || code == BIT_IOR_EXPR
3862 || code == BIT_XOR_EXPR)
3863 && simplify_rotate (&gsi))
3864 changed = true;
3865 else if (code == BIT_AND_EXPR
3866 || code == BIT_IOR_EXPR
3867 || code == BIT_XOR_EXPR)
3868 changed = simplify_bitwise_binary (&gsi);
3869 else if (code == MULT_EXPR)
3871 changed = simplify_mult (&gsi);
3872 if (changed
3873 && maybe_clean_or_replace_eh_stmt (stmt, stmt)
3874 && gimple_purge_dead_eh_edges (bb))
3875 cfg_changed = true;
3877 else if (code == PLUS_EXPR
3878 || code == MINUS_EXPR)
3880 changed = associate_plusminus (&gsi);
3881 if (changed
3882 && maybe_clean_or_replace_eh_stmt (stmt, stmt)
3883 && gimple_purge_dead_eh_edges (bb))
3884 cfg_changed = true;
3886 else if (code == POINTER_PLUS_EXPR)
3887 changed = associate_pointerplus (&gsi);
3888 else if (CONVERT_EXPR_CODE_P (code)
3889 || code == FLOAT_EXPR
3890 || code == FIX_TRUNC_EXPR)
3892 int did_something = combine_conversions (&gsi);
3893 if (did_something == 2)
3894 cfg_changed = true;
3896 /* If we have a narrowing conversion to an integral
3897 type that is fed by a BIT_AND_EXPR, we might be
3898 able to remove the BIT_AND_EXPR if it merely
3899 masks off bits outside the final type (and nothing
3900 else. */
3901 if (! did_something)
3903 tree outer_type = TREE_TYPE (gimple_assign_lhs (stmt));
3904 tree inner_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
3905 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
3906 && INTEGRAL_TYPE_P (outer_type)
3907 && INTEGRAL_TYPE_P (inner_type)
3908 && (TYPE_PRECISION (outer_type)
3909 <= TYPE_PRECISION (inner_type)))
3910 did_something = simplify_conversion_from_bitmask (&gsi);
3913 changed = did_something != 0;
3915 else if (code == VIEW_CONVERT_EXPR)
3916 changed = simplify_vce (&gsi);
3917 else if (code == VEC_PERM_EXPR)
3919 int did_something = simplify_permutation (&gsi);
3920 if (did_something == 2)
3921 cfg_changed = true;
3922 changed = did_something != 0;
3924 else if (code == BIT_FIELD_REF)
3925 changed = simplify_bitfield_ref (&gsi);
3926 else if (code == CONSTRUCTOR
3927 && TREE_CODE (TREE_TYPE (rhs1)) == VECTOR_TYPE)
3928 changed = simplify_vector_constructor (&gsi);
3929 break;
3932 case GIMPLE_SWITCH:
3933 changed = simplify_gimple_switch (stmt);
3934 break;
3936 case GIMPLE_COND:
3938 int did_something;
3939 did_something = forward_propagate_into_gimple_cond (stmt);
3940 if (did_something == 2)
3941 cfg_changed = true;
3942 changed = did_something != 0;
3943 break;
3946 case GIMPLE_CALL:
3948 tree callee = gimple_call_fndecl (stmt);
3949 if (callee != NULL_TREE
3950 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
3951 changed = simplify_builtin_call (&gsi, callee);
3952 break;
3955 default:;
3958 if (changed)
3960 /* If the stmt changed then re-visit it and the statements
3961 inserted before it. */
3962 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
3963 if (gimple_plf (gsi_stmt (gsi), GF_PLF_1))
3964 break;
3965 if (gsi_end_p (gsi))
3966 gsi = gsi_start_bb (bb);
3967 else
3968 gsi_next (&gsi);
3970 else
3972 /* Stmt no longer needs to be revisited. */
3973 gimple_set_plf (stmt, GF_PLF_1, true);
3974 gsi_next (&gsi);
3979 /* At the end fold all statements. */
3980 cfg_changed |= fold_all_stmts (fun);
3982 if (cfg_changed)
3983 todoflags |= TODO_cleanup_cfg;
3985 return todoflags;
3988 } // anon namespace
3990 gimple_opt_pass *
3991 make_pass_forwprop (gcc::context *ctxt)
3993 return new pass_forwprop (ctxt);