* configure.ac: Don't test for [build] __cxa_atexit when building a
[official-gcc.git] / gcc / loop-unroll.c
blob6b6181496162c31a0dd2f912dc9fa5b0d72b896e
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "cfglayout.h"
30 #include "params.h"
31 #include "output.h"
32 #include "expr.h"
33 #include "hashtab.h"
34 #include "recog.h"
35 #include "varray.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
89 struct var_to_expand
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 varray_type var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
103 /* Information about optimization applied in
104 the unrolled loop. */
106 struct opt_info
108 htab_t insns_to_split; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
110 to expand. */
111 unsigned first_new_block; /* The first basic block that was
112 duplicated. */
113 basic_block loop_exit; /* The loop exit basic block. */
114 basic_block loop_preheader; /* The loop preheader basic block. */
117 static void decide_unrolling_and_peeling (struct loops *, int);
118 static void peel_loops_completely (struct loops *, int);
119 static void decide_peel_simple (struct loop *, int);
120 static void decide_peel_once_rolling (struct loop *, int);
121 static void decide_peel_completely (struct loop *, int);
122 static void decide_unroll_stupid (struct loop *, int);
123 static void decide_unroll_constant_iterations (struct loop *, int);
124 static void decide_unroll_runtime_iterations (struct loop *, int);
125 static void peel_loop_simple (struct loops *, struct loop *);
126 static void peel_loop_completely (struct loops *, struct loop *);
127 static void unroll_loop_stupid (struct loops *, struct loop *);
128 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
129 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
130 static struct opt_info *analyze_insns_in_loop (struct loop *);
131 static void opt_info_start_duplication (struct opt_info *);
132 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info *);
134 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
135 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
136 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
137 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx get_expansion (struct var_to_expand *);
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
144 void
145 unroll_and_peel_loops (struct loops *loops, int flags)
147 struct loop *loop, *next;
148 bool check;
150 /* First perform complete loop peeling (it is almost surely a win,
151 and affects parameters for further decision a lot). */
152 peel_loops_completely (loops, flags);
154 /* Now decide rest of unrolling and peeling. */
155 decide_unrolling_and_peeling (loops, flags);
157 loop = loops->tree_root;
158 while (loop->inner)
159 loop = loop->inner;
161 /* Scan the loops, inner ones first. */
162 while (loop != loops->tree_root)
164 if (loop->next)
166 next = loop->next;
167 while (next->inner)
168 next = next->inner;
170 else
171 next = loop->outer;
173 check = true;
174 /* And perform the appropriate transformations. */
175 switch (loop->lpt_decision.decision)
177 case LPT_PEEL_COMPLETELY:
178 /* Already done. */
179 gcc_unreachable ();
180 case LPT_PEEL_SIMPLE:
181 peel_loop_simple (loops, loop);
182 break;
183 case LPT_UNROLL_CONSTANT:
184 unroll_loop_constant_iterations (loops, loop);
185 break;
186 case LPT_UNROLL_RUNTIME:
187 unroll_loop_runtime_iterations (loops, loop);
188 break;
189 case LPT_UNROLL_STUPID:
190 unroll_loop_stupid (loops, loop);
191 break;
192 case LPT_NONE:
193 check = false;
194 break;
195 default:
196 gcc_unreachable ();
198 if (check)
200 #ifdef ENABLE_CHECKING
201 verify_dominators (CDI_DOMINATORS);
202 verify_loop_structure (loops);
203 #endif
205 loop = next;
208 iv_analysis_done ();
211 /* Check whether exit of the LOOP is at the end of loop body. */
213 static bool
214 loop_exit_at_end_p (struct loop *loop)
216 struct niter_desc *desc = get_simple_loop_desc (loop);
217 rtx insn;
219 if (desc->in_edge->dest != loop->latch)
220 return false;
222 /* Check that the latch is empty. */
223 FOR_BB_INSNS (loop->latch, insn)
225 if (INSN_P (insn))
226 return false;
229 return true;
232 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
233 static void
234 peel_loops_completely (struct loops *loops, int flags)
236 struct loop *loop, *next;
238 loop = loops->tree_root;
239 while (loop->inner)
240 loop = loop->inner;
242 while (loop != loops->tree_root)
244 if (loop->next)
246 next = loop->next;
247 while (next->inner)
248 next = next->inner;
250 else
251 next = loop->outer;
253 loop->lpt_decision.decision = LPT_NONE;
255 if (dump_file)
256 fprintf (dump_file,
257 "\n;; *** Considering loop %d for complete peeling ***\n",
258 loop->num);
260 loop->ninsns = num_loop_insns (loop);
262 decide_peel_once_rolling (loop, flags);
263 if (loop->lpt_decision.decision == LPT_NONE)
264 decide_peel_completely (loop, flags);
266 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
268 peel_loop_completely (loops, loop);
269 #ifdef ENABLE_CHECKING
270 verify_dominators (CDI_DOMINATORS);
271 verify_loop_structure (loops);
272 #endif
274 loop = next;
278 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
279 static void
280 decide_unrolling_and_peeling (struct loops *loops, int flags)
282 struct loop *loop = loops->tree_root, *next;
284 while (loop->inner)
285 loop = loop->inner;
287 /* Scan the loops, inner ones first. */
288 while (loop != loops->tree_root)
290 if (loop->next)
292 next = loop->next;
293 while (next->inner)
294 next = next->inner;
296 else
297 next = loop->outer;
299 loop->lpt_decision.decision = LPT_NONE;
301 if (dump_file)
302 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
304 /* Do not peel cold areas. */
305 if (!maybe_hot_bb_p (loop->header))
307 if (dump_file)
308 fprintf (dump_file, ";; Not considering loop, cold area\n");
309 loop = next;
310 continue;
313 /* Can the loop be manipulated? */
314 if (!can_duplicate_loop_p (loop))
316 if (dump_file)
317 fprintf (dump_file,
318 ";; Not considering loop, cannot duplicate\n");
319 loop = next;
320 continue;
323 /* Skip non-innermost loops. */
324 if (loop->inner)
326 if (dump_file)
327 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
328 loop = next;
329 continue;
332 loop->ninsns = num_loop_insns (loop);
333 loop->av_ninsns = average_num_loop_insns (loop);
335 /* Try transformations one by one in decreasing order of
336 priority. */
338 decide_unroll_constant_iterations (loop, flags);
339 if (loop->lpt_decision.decision == LPT_NONE)
340 decide_unroll_runtime_iterations (loop, flags);
341 if (loop->lpt_decision.decision == LPT_NONE)
342 decide_unroll_stupid (loop, flags);
343 if (loop->lpt_decision.decision == LPT_NONE)
344 decide_peel_simple (loop, flags);
346 loop = next;
350 /* Decide whether the LOOP is once rolling and suitable for complete
351 peeling. */
352 static void
353 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
355 struct niter_desc *desc;
357 if (dump_file)
358 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
360 /* Is the loop small enough? */
361 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
363 if (dump_file)
364 fprintf (dump_file, ";; Not considering loop, is too big\n");
365 return;
368 /* Check for simple loops. */
369 desc = get_simple_loop_desc (loop);
371 /* Check number of iterations. */
372 if (!desc->simple_p
373 || desc->assumptions
374 || !desc->const_iter
375 || desc->niter != 0)
377 if (dump_file)
378 fprintf (dump_file,
379 ";; Unable to prove that the loop rolls exactly once\n");
380 return;
383 /* Success. */
384 if (dump_file)
385 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
386 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
389 /* Decide whether the LOOP is suitable for complete peeling. */
390 static void
391 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
393 unsigned npeel;
394 struct niter_desc *desc;
396 if (dump_file)
397 fprintf (dump_file, "\n;; Considering peeling completely\n");
399 /* Skip non-innermost loops. */
400 if (loop->inner)
402 if (dump_file)
403 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
404 return;
407 /* Do not peel cold areas. */
408 if (!maybe_hot_bb_p (loop->header))
410 if (dump_file)
411 fprintf (dump_file, ";; Not considering loop, cold area\n");
412 return;
415 /* Can the loop be manipulated? */
416 if (!can_duplicate_loop_p (loop))
418 if (dump_file)
419 fprintf (dump_file,
420 ";; Not considering loop, cannot duplicate\n");
421 return;
424 /* npeel = number of iterations to peel. */
425 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
426 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
427 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
429 /* Is the loop small enough? */
430 if (!npeel)
432 if (dump_file)
433 fprintf (dump_file, ";; Not considering loop, is too big\n");
434 return;
437 /* Check for simple loops. */
438 desc = get_simple_loop_desc (loop);
440 /* Check number of iterations. */
441 if (!desc->simple_p
442 || desc->assumptions
443 || !desc->const_iter)
445 if (dump_file)
446 fprintf (dump_file,
447 ";; Unable to prove that the loop iterates constant times\n");
448 return;
451 if (desc->niter > npeel - 1)
453 if (dump_file)
455 fprintf (dump_file,
456 ";; Not peeling loop completely, rolls too much (");
457 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
458 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
460 return;
463 /* Success. */
464 if (dump_file)
465 fprintf (dump_file, ";; Decided to peel loop completely\n");
466 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
469 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
470 completely. The transformation done:
472 for (i = 0; i < 4; i++)
473 body;
477 i = 0;
478 body; i++;
479 body; i++;
480 body; i++;
481 body; i++;
483 static void
484 peel_loop_completely (struct loops *loops, struct loop *loop)
486 sbitmap wont_exit;
487 unsigned HOST_WIDE_INT npeel;
488 unsigned n_remove_edges, i;
489 edge *remove_edges, ein;
490 struct niter_desc *desc = get_simple_loop_desc (loop);
491 struct opt_info *opt_info = NULL;
493 npeel = desc->niter;
495 if (npeel)
497 wont_exit = sbitmap_alloc (npeel + 1);
498 sbitmap_ones (wont_exit);
499 RESET_BIT (wont_exit, 0);
500 if (desc->noloop_assumptions)
501 RESET_BIT (wont_exit, 1);
503 remove_edges = xcalloc (npeel, sizeof (edge));
504 n_remove_edges = 0;
506 if (flag_split_ivs_in_unroller)
507 opt_info = analyze_insns_in_loop (loop);
509 opt_info_start_duplication (opt_info);
510 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
511 loops, npeel,
512 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
513 DLTHE_FLAG_UPDATE_FREQ))
514 abort ();
516 free (wont_exit);
518 if (opt_info)
520 apply_opt_in_copies (opt_info, npeel, false, true);
521 free_opt_info (opt_info);
524 /* Remove the exit edges. */
525 for (i = 0; i < n_remove_edges; i++)
526 remove_path (loops, remove_edges[i]);
527 free (remove_edges);
530 ein = desc->in_edge;
531 free_simple_loop_desc (loop);
533 /* Now remove the unreachable part of the last iteration and cancel
534 the loop. */
535 remove_path (loops, ein);
537 if (dump_file)
538 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
541 /* Decide whether to unroll LOOP iterating constant number of times
542 and how much. */
544 static void
545 decide_unroll_constant_iterations (struct loop *loop, int flags)
547 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
548 struct niter_desc *desc;
550 if (!(flags & UAP_UNROLL))
552 /* We were not asked to, just return back silently. */
553 return;
556 if (dump_file)
557 fprintf (dump_file,
558 "\n;; Considering unrolling loop with constant "
559 "number of iterations\n");
561 /* nunroll = total number of copies of the original loop body in
562 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
563 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
564 nunroll_by_av
565 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
566 if (nunroll > nunroll_by_av)
567 nunroll = nunroll_by_av;
568 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
569 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
571 /* Skip big loops. */
572 if (nunroll <= 1)
574 if (dump_file)
575 fprintf (dump_file, ";; Not considering loop, is too big\n");
576 return;
579 /* Check for simple loops. */
580 desc = get_simple_loop_desc (loop);
582 /* Check number of iterations. */
583 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
585 if (dump_file)
586 fprintf (dump_file,
587 ";; Unable to prove that the loop iterates constant times\n");
588 return;
591 /* Check whether the loop rolls enough to consider. */
592 if (desc->niter < 2 * nunroll)
594 if (dump_file)
595 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
596 return;
599 /* Success; now compute number of iterations to unroll. We alter
600 nunroll so that as few as possible copies of loop body are
601 necessary, while still not decreasing the number of unrollings
602 too much (at most by 1). */
603 best_copies = 2 * nunroll + 10;
605 i = 2 * nunroll + 2;
606 if (i - 1 >= desc->niter)
607 i = desc->niter - 2;
609 for (; i >= nunroll - 1; i--)
611 unsigned exit_mod = desc->niter % (i + 1);
613 if (!loop_exit_at_end_p (loop))
614 n_copies = exit_mod + i + 1;
615 else if (exit_mod != (unsigned) i
616 || desc->noloop_assumptions != NULL_RTX)
617 n_copies = exit_mod + i + 2;
618 else
619 n_copies = i + 1;
621 if (n_copies < best_copies)
623 best_copies = n_copies;
624 best_unroll = i;
628 if (dump_file)
629 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
630 best_unroll + 1, best_copies, nunroll);
632 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
633 loop->lpt_decision.times = best_unroll;
635 if (dump_file)
636 fprintf (dump_file,
637 ";; Decided to unroll the constant times rolling loop, %d times.\n",
638 loop->lpt_decision.times);
641 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
642 times. The transformation does this:
644 for (i = 0; i < 102; i++)
645 body;
649 i = 0;
650 body; i++;
651 body; i++;
652 while (i < 102)
654 body; i++;
655 body; i++;
656 body; i++;
657 body; i++;
660 static void
661 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
663 unsigned HOST_WIDE_INT niter;
664 unsigned exit_mod;
665 sbitmap wont_exit;
666 unsigned n_remove_edges, i;
667 edge *remove_edges;
668 unsigned max_unroll = loop->lpt_decision.times;
669 struct niter_desc *desc = get_simple_loop_desc (loop);
670 bool exit_at_end = loop_exit_at_end_p (loop);
671 struct opt_info *opt_info = NULL;
673 niter = desc->niter;
675 /* Should not get here (such loop should be peeled instead). */
676 gcc_assert (niter > max_unroll + 1);
678 exit_mod = niter % (max_unroll + 1);
680 wont_exit = sbitmap_alloc (max_unroll + 1);
681 sbitmap_ones (wont_exit);
683 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
684 n_remove_edges = 0;
685 if (flag_split_ivs_in_unroller
686 || flag_variable_expansion_in_unroller)
687 opt_info = analyze_insns_in_loop (loop);
689 if (!exit_at_end)
691 /* The exit is not at the end of the loop; leave exit test
692 in the first copy, so that the loops that start with test
693 of exit condition have continuous body after unrolling. */
695 if (dump_file)
696 fprintf (dump_file, ";; Condition on beginning of loop.\n");
698 /* Peel exit_mod iterations. */
699 RESET_BIT (wont_exit, 0);
700 if (desc->noloop_assumptions)
701 RESET_BIT (wont_exit, 1);
703 if (exit_mod)
705 opt_info_start_duplication (opt_info);
706 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
707 loops, exit_mod,
708 wont_exit, desc->out_edge,
709 remove_edges, &n_remove_edges,
710 DLTHE_FLAG_UPDATE_FREQ))
711 abort ();
713 if (opt_info && exit_mod > 1)
714 apply_opt_in_copies (opt_info, exit_mod, false, false);
716 desc->noloop_assumptions = NULL_RTX;
717 desc->niter -= exit_mod;
718 desc->niter_max -= exit_mod;
721 SET_BIT (wont_exit, 1);
723 else
725 /* Leave exit test in last copy, for the same reason as above if
726 the loop tests the condition at the end of loop body. */
728 if (dump_file)
729 fprintf (dump_file, ";; Condition on end of loop.\n");
731 /* We know that niter >= max_unroll + 2; so we do not need to care of
732 case when we would exit before reaching the loop. So just peel
733 exit_mod + 1 iterations. */
734 if (exit_mod != max_unroll
735 || desc->noloop_assumptions)
737 RESET_BIT (wont_exit, 0);
738 if (desc->noloop_assumptions)
739 RESET_BIT (wont_exit, 1);
741 opt_info_start_duplication (opt_info);
742 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
743 loops, exit_mod + 1,
744 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
745 DLTHE_FLAG_UPDATE_FREQ))
746 abort ();
748 if (opt_info && exit_mod > 0)
749 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
751 desc->niter -= exit_mod + 1;
752 desc->niter_max -= exit_mod + 1;
753 desc->noloop_assumptions = NULL_RTX;
755 SET_BIT (wont_exit, 0);
756 SET_BIT (wont_exit, 1);
759 RESET_BIT (wont_exit, max_unroll);
762 /* Now unroll the loop. */
764 opt_info_start_duplication (opt_info);
765 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
766 loops, max_unroll,
767 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
768 DLTHE_FLAG_UPDATE_FREQ))
769 abort ();
771 if (opt_info)
773 apply_opt_in_copies (opt_info, max_unroll, true, true);
774 free_opt_info (opt_info);
777 free (wont_exit);
779 if (exit_at_end)
781 basic_block exit_block = desc->in_edge->src->rbi->copy;
782 /* Find a new in and out edge; they are in the last copy we have made. */
784 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
786 desc->out_edge = EDGE_SUCC (exit_block, 0);
787 desc->in_edge = EDGE_SUCC (exit_block, 1);
789 else
791 desc->out_edge = EDGE_SUCC (exit_block, 1);
792 desc->in_edge = EDGE_SUCC (exit_block, 0);
796 desc->niter /= max_unroll + 1;
797 desc->niter_max /= max_unroll + 1;
798 desc->niter_expr = GEN_INT (desc->niter);
800 /* Remove the edges. */
801 for (i = 0; i < n_remove_edges; i++)
802 remove_path (loops, remove_edges[i]);
803 free (remove_edges);
805 if (dump_file)
806 fprintf (dump_file,
807 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
808 max_unroll, num_loop_insns (loop));
811 /* Decide whether to unroll LOOP iterating runtime computable number of times
812 and how much. */
813 static void
814 decide_unroll_runtime_iterations (struct loop *loop, int flags)
816 unsigned nunroll, nunroll_by_av, i;
817 struct niter_desc *desc;
819 if (!(flags & UAP_UNROLL))
821 /* We were not asked to, just return back silently. */
822 return;
825 if (dump_file)
826 fprintf (dump_file,
827 "\n;; Considering unrolling loop with runtime "
828 "computable number of iterations\n");
830 /* nunroll = total number of copies of the original loop body in
831 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
832 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
833 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
834 if (nunroll > nunroll_by_av)
835 nunroll = nunroll_by_av;
836 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
837 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
839 /* Skip big loops. */
840 if (nunroll <= 1)
842 if (dump_file)
843 fprintf (dump_file, ";; Not considering loop, is too big\n");
844 return;
847 /* Check for simple loops. */
848 desc = get_simple_loop_desc (loop);
850 /* Check simpleness. */
851 if (!desc->simple_p || desc->assumptions)
853 if (dump_file)
854 fprintf (dump_file,
855 ";; Unable to prove that the number of iterations "
856 "can be counted in runtime\n");
857 return;
860 if (desc->const_iter)
862 if (dump_file)
863 fprintf (dump_file, ";; Loop iterates constant times\n");
864 return;
867 /* If we have profile feedback, check whether the loop rolls. */
868 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
870 if (dump_file)
871 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
872 return;
875 /* Success; now force nunroll to be power of 2, as we are unable to
876 cope with overflows in computation of number of iterations. */
877 for (i = 1; 2 * i <= nunroll; i *= 2)
878 continue;
880 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
881 loop->lpt_decision.times = i - 1;
883 if (dump_file)
884 fprintf (dump_file,
885 ";; Decided to unroll the runtime computable "
886 "times rolling loop, %d times.\n",
887 loop->lpt_decision.times);
890 /* Unroll LOOP for that we are able to count number of iterations in runtime
891 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
892 extra care for case n < 0):
894 for (i = 0; i < n; i++)
895 body;
899 i = 0;
900 mod = n % 4;
902 switch (mod)
904 case 3:
905 body; i++;
906 case 2:
907 body; i++;
908 case 1:
909 body; i++;
910 case 0: ;
913 while (i < n)
915 body; i++;
916 body; i++;
917 body; i++;
918 body; i++;
921 static void
922 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
924 rtx old_niter, niter, init_code, branch_code, tmp;
925 unsigned i, j, p;
926 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
927 unsigned n_dom_bbs;
928 sbitmap wont_exit;
929 int may_exit_copy;
930 unsigned n_peel, n_remove_edges;
931 edge *remove_edges, e;
932 bool extra_zero_check, last_may_exit;
933 unsigned max_unroll = loop->lpt_decision.times;
934 struct niter_desc *desc = get_simple_loop_desc (loop);
935 bool exit_at_end = loop_exit_at_end_p (loop);
936 struct opt_info *opt_info = NULL;
938 if (flag_split_ivs_in_unroller
939 || flag_variable_expansion_in_unroller)
940 opt_info = analyze_insns_in_loop (loop);
942 /* Remember blocks whose dominators will have to be updated. */
943 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
944 n_dom_bbs = 0;
946 body = get_loop_body (loop);
947 for (i = 0; i < loop->num_nodes; i++)
949 unsigned nldom;
950 basic_block *ldom;
952 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
953 for (j = 0; j < nldom; j++)
954 if (!flow_bb_inside_loop_p (loop, ldom[j]))
955 dom_bbs[n_dom_bbs++] = ldom[j];
957 free (ldom);
959 free (body);
961 if (!exit_at_end)
963 /* Leave exit in first copy (for explanation why see comment in
964 unroll_loop_constant_iterations). */
965 may_exit_copy = 0;
966 n_peel = max_unroll - 1;
967 extra_zero_check = true;
968 last_may_exit = false;
970 else
972 /* Leave exit in last copy (for explanation why see comment in
973 unroll_loop_constant_iterations). */
974 may_exit_copy = max_unroll;
975 n_peel = max_unroll;
976 extra_zero_check = false;
977 last_may_exit = true;
980 /* Get expression for number of iterations. */
981 start_sequence ();
982 old_niter = niter = gen_reg_rtx (desc->mode);
983 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
984 if (tmp != niter)
985 emit_move_insn (niter, tmp);
987 /* Count modulo by ANDing it with max_unroll; we use the fact that
988 the number of unrollings is a power of two, and thus this is correct
989 even if there is overflow in the computation. */
990 niter = expand_simple_binop (desc->mode, AND,
991 niter,
992 GEN_INT (max_unroll),
993 NULL_RTX, 0, OPTAB_LIB_WIDEN);
995 init_code = get_insns ();
996 end_sequence ();
998 /* Precondition the loop. */
999 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1001 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1002 n_remove_edges = 0;
1004 wont_exit = sbitmap_alloc (max_unroll + 2);
1006 /* Peel the first copy of loop body (almost always we must leave exit test
1007 here; the only exception is when we have extra zero check and the number
1008 of iterations is reliable. Also record the place of (possible) extra
1009 zero check. */
1010 sbitmap_zero (wont_exit);
1011 if (extra_zero_check
1012 && !desc->noloop_assumptions)
1013 SET_BIT (wont_exit, 1);
1014 ezc_swtch = loop_preheader_edge (loop)->src;
1015 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1016 loops, 1,
1017 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1018 DLTHE_FLAG_UPDATE_FREQ))
1019 abort ();
1021 /* Record the place where switch will be built for preconditioning. */
1022 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1023 NULL_RTX);
1025 for (i = 0; i < n_peel; i++)
1027 /* Peel the copy. */
1028 sbitmap_zero (wont_exit);
1029 if (i != n_peel - 1 || !last_may_exit)
1030 SET_BIT (wont_exit, 1);
1031 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1032 loops, 1,
1033 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1034 DLTHE_FLAG_UPDATE_FREQ))
1035 abort ();
1037 /* Create item for switch. */
1038 j = n_peel - i - (extra_zero_check ? 0 : 1);
1039 p = REG_BR_PROB_BASE / (i + 2);
1041 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1042 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1043 block_label (preheader), p, NULL_RTX);
1045 swtch = loop_split_edge_with (EDGE_PRED (swtch, 0), branch_code);
1046 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1047 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1048 e = make_edge (swtch, preheader,
1049 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1050 e->probability = p;
1053 if (extra_zero_check)
1055 /* Add branch for zero iterations. */
1056 p = REG_BR_PROB_BASE / (max_unroll + 1);
1057 swtch = ezc_swtch;
1058 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1059 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1060 block_label (preheader), p, NULL_RTX);
1062 swtch = loop_split_edge_with (EDGE_SUCC (swtch, 0), branch_code);
1063 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1064 EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
1065 e = make_edge (swtch, preheader,
1066 EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
1067 e->probability = p;
1070 /* Recount dominators for outer blocks. */
1071 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1073 /* And unroll loop. */
1075 sbitmap_ones (wont_exit);
1076 RESET_BIT (wont_exit, may_exit_copy);
1077 opt_info_start_duplication (opt_info);
1079 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1080 loops, max_unroll,
1081 wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
1082 DLTHE_FLAG_UPDATE_FREQ))
1083 abort ();
1085 if (opt_info)
1087 apply_opt_in_copies (opt_info, max_unroll, true, true);
1088 free_opt_info (opt_info);
1091 free (wont_exit);
1093 if (exit_at_end)
1095 basic_block exit_block = desc->in_edge->src->rbi->copy;
1096 /* Find a new in and out edge; they are in the last copy we have made. */
1098 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1100 desc->out_edge = EDGE_SUCC (exit_block, 0);
1101 desc->in_edge = EDGE_SUCC (exit_block, 1);
1103 else
1105 desc->out_edge = EDGE_SUCC (exit_block, 1);
1106 desc->in_edge = EDGE_SUCC (exit_block, 0);
1110 /* Remove the edges. */
1111 for (i = 0; i < n_remove_edges; i++)
1112 remove_path (loops, remove_edges[i]);
1113 free (remove_edges);
1115 /* We must be careful when updating the number of iterations due to
1116 preconditioning and the fact that the value must be valid at entry
1117 of the loop. After passing through the above code, we see that
1118 the correct new number of iterations is this: */
1119 gcc_assert (!desc->const_iter);
1120 desc->niter_expr =
1121 simplify_gen_binary (UDIV, desc->mode, old_niter, GEN_INT (max_unroll + 1));
1122 desc->niter_max /= max_unroll + 1;
1123 if (exit_at_end)
1125 desc->niter_expr =
1126 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1127 desc->noloop_assumptions = NULL_RTX;
1128 desc->niter_max--;
1131 if (dump_file)
1132 fprintf (dump_file,
1133 ";; Unrolled loop %d times, counting # of iterations "
1134 "in runtime, %i insns\n",
1135 max_unroll, num_loop_insns (loop));
1138 /* Decide whether to simply peel LOOP and how much. */
1139 static void
1140 decide_peel_simple (struct loop *loop, int flags)
1142 unsigned npeel;
1143 struct niter_desc *desc;
1145 if (!(flags & UAP_PEEL))
1147 /* We were not asked to, just return back silently. */
1148 return;
1151 if (dump_file)
1152 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1154 /* npeel = number of iterations to peel. */
1155 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1156 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1157 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1159 /* Skip big loops. */
1160 if (!npeel)
1162 if (dump_file)
1163 fprintf (dump_file, ";; Not considering loop, is too big\n");
1164 return;
1167 /* Check for simple loops. */
1168 desc = get_simple_loop_desc (loop);
1170 /* Check number of iterations. */
1171 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1173 if (dump_file)
1174 fprintf (dump_file, ";; Loop iterates constant times\n");
1175 return;
1178 /* Do not simply peel loops with branches inside -- it increases number
1179 of mispredicts. */
1180 if (num_loop_branches (loop) > 1)
1182 if (dump_file)
1183 fprintf (dump_file, ";; Not peeling, contains branches\n");
1184 return;
1187 if (loop->header->count)
1189 unsigned niter = expected_loop_iterations (loop);
1190 if (niter + 1 > npeel)
1192 if (dump_file)
1194 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1195 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1196 (HOST_WIDEST_INT) (niter + 1));
1197 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1198 npeel);
1200 return;
1202 npeel = niter + 1;
1204 else
1206 /* For now we have no good heuristics to decide whether loop peeling
1207 will be effective, so disable it. */
1208 if (dump_file)
1209 fprintf (dump_file,
1210 ";; Not peeling loop, no evidence it will be profitable\n");
1211 return;
1214 /* Success. */
1215 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1216 loop->lpt_decision.times = npeel;
1218 if (dump_file)
1219 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1220 loop->lpt_decision.times);
1223 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1224 while (cond)
1225 body;
1229 if (!cond) goto end;
1230 body;
1231 if (!cond) goto end;
1232 body;
1233 while (cond)
1234 body;
1235 end: ;
1237 static void
1238 peel_loop_simple (struct loops *loops, struct loop *loop)
1240 sbitmap wont_exit;
1241 unsigned npeel = loop->lpt_decision.times;
1242 struct niter_desc *desc = get_simple_loop_desc (loop);
1243 struct opt_info *opt_info = NULL;
1245 if (flag_split_ivs_in_unroller && npeel > 1)
1246 opt_info = analyze_insns_in_loop (loop);
1248 wont_exit = sbitmap_alloc (npeel + 1);
1249 sbitmap_zero (wont_exit);
1251 opt_info_start_duplication (opt_info);
1253 if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1254 loops, npeel, wont_exit, NULL, NULL, NULL,
1255 DLTHE_FLAG_UPDATE_FREQ))
1256 abort ();
1258 free (wont_exit);
1260 if (opt_info)
1262 apply_opt_in_copies (opt_info, npeel, false, false);
1263 free_opt_info (opt_info);
1266 if (desc->simple_p)
1268 if (desc->const_iter)
1270 desc->niter -= npeel;
1271 desc->niter_expr = GEN_INT (desc->niter);
1272 desc->noloop_assumptions = NULL_RTX;
1274 else
1276 /* We cannot just update niter_expr, as its value might be clobbered
1277 inside loop. We could handle this by counting the number into
1278 temporary just like we do in runtime unrolling, but it does not
1279 seem worthwhile. */
1280 free_simple_loop_desc (loop);
1283 if (dump_file)
1284 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1287 /* Decide whether to unroll LOOP stupidly and how much. */
1288 static void
1289 decide_unroll_stupid (struct loop *loop, int flags)
1291 unsigned nunroll, nunroll_by_av, i;
1292 struct niter_desc *desc;
1294 if (!(flags & UAP_UNROLL_ALL))
1296 /* We were not asked to, just return back silently. */
1297 return;
1300 if (dump_file)
1301 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1303 /* nunroll = total number of copies of the original loop body in
1304 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1305 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1306 nunroll_by_av
1307 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1308 if (nunroll > nunroll_by_av)
1309 nunroll = nunroll_by_av;
1310 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1311 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1313 /* Skip big loops. */
1314 if (nunroll <= 1)
1316 if (dump_file)
1317 fprintf (dump_file, ";; Not considering loop, is too big\n");
1318 return;
1321 /* Check for simple loops. */
1322 desc = get_simple_loop_desc (loop);
1324 /* Check simpleness. */
1325 if (desc->simple_p && !desc->assumptions)
1327 if (dump_file)
1328 fprintf (dump_file, ";; The loop is simple\n");
1329 return;
1332 /* Do not unroll loops with branches inside -- it increases number
1333 of mispredicts. */
1334 if (num_loop_branches (loop) > 1)
1336 if (dump_file)
1337 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1338 return;
1341 /* If we have profile feedback, check whether the loop rolls. */
1342 if (loop->header->count
1343 && expected_loop_iterations (loop) < 2 * nunroll)
1345 if (dump_file)
1346 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1347 return;
1350 /* Success. Now force nunroll to be power of 2, as it seems that this
1351 improves results (partially because of better alignments, partially
1352 because of some dark magic). */
1353 for (i = 1; 2 * i <= nunroll; i *= 2)
1354 continue;
1356 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1357 loop->lpt_decision.times = i - 1;
1359 if (dump_file)
1360 fprintf (dump_file,
1361 ";; Decided to unroll the loop stupidly, %d times.\n",
1362 loop->lpt_decision.times);
1365 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1366 while (cond)
1367 body;
1371 while (cond)
1373 body;
1374 if (!cond) break;
1375 body;
1376 if (!cond) break;
1377 body;
1378 if (!cond) break;
1379 body;
1382 static void
1383 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1385 sbitmap wont_exit;
1386 unsigned nunroll = loop->lpt_decision.times;
1387 struct niter_desc *desc = get_simple_loop_desc (loop);
1388 struct opt_info *opt_info = NULL;
1390 if (flag_split_ivs_in_unroller
1391 || flag_variable_expansion_in_unroller)
1392 opt_info = analyze_insns_in_loop (loop);
1395 wont_exit = sbitmap_alloc (nunroll + 1);
1396 sbitmap_zero (wont_exit);
1397 opt_info_start_duplication (opt_info);
1399 if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1400 loops, nunroll, wont_exit, NULL, NULL, NULL,
1401 DLTHE_FLAG_UPDATE_FREQ))
1402 abort ();
1404 if (opt_info)
1406 apply_opt_in_copies (opt_info, nunroll, true, true);
1407 free_opt_info (opt_info);
1410 free (wont_exit);
1412 if (desc->simple_p)
1414 /* We indeed may get here provided that there are nontrivial assumptions
1415 for a loop to be really simple. We could update the counts, but the
1416 problem is that we are unable to decide which exit will be taken
1417 (not really true in case the number of iterations is constant,
1418 but noone will do anything with this information, so we do not
1419 worry about it). */
1420 desc->simple_p = false;
1423 if (dump_file)
1424 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1425 nunroll, num_loop_insns (loop));
1428 /* A hash function for information about insns to split. */
1430 static hashval_t
1431 si_info_hash (const void *ivts)
1433 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1436 /* An equality functions for information about insns to split. */
1438 static int
1439 si_info_eq (const void *ivts1, const void *ivts2)
1441 const struct iv_to_split *i1 = ivts1;
1442 const struct iv_to_split *i2 = ivts2;
1444 return i1->insn == i2->insn;
1447 /* Return a hash for VES, which is really a "var_to_expand *". */
1449 static hashval_t
1450 ve_info_hash (const void *ves)
1452 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1455 /* Return true if IVTS1 and IVTS2 (which are really both of type
1456 "var_to_expand *") refer to the same instruction. */
1458 static int
1459 ve_info_eq (const void *ivts1, const void *ivts2)
1461 const struct var_to_expand *i1 = ivts1;
1462 const struct var_to_expand *i2 = ivts2;
1464 return i1->insn == i2->insn;
1467 /* Returns true if REG is referenced in one insn in LOOP. */
1469 bool
1470 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1472 basic_block *body, bb;
1473 unsigned i;
1474 int count_ref = 0;
1475 rtx insn;
1477 body = get_loop_body (loop);
1478 for (i = 0; i < loop->num_nodes; i++)
1480 bb = body[i];
1482 FOR_BB_INSNS (bb, insn)
1484 if (rtx_referenced_p (reg, insn))
1485 count_ref++;
1488 return (count_ref == 1);
1491 /* Determine whether INSN contains an accumulator
1492 which can be expanded into separate copies,
1493 one for each copy of the LOOP body.
1495 for (i = 0 ; i < n; i++)
1496 sum += a[i];
1500 sum += a[i]
1501 ....
1502 i = i+1;
1503 sum1 += a[i]
1504 ....
1505 i = i+1
1506 sum2 += a[i];
1507 ....
1509 Return NULL if INSN contains no opportunity for expansion of accumulator.
1510 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1511 information and return a pointer to it.
1514 static struct var_to_expand *
1515 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1517 rtx set, dest, src, op1;
1518 struct var_to_expand *ves;
1519 enum machine_mode mode1, mode2;
1521 set = single_set (insn);
1522 if (!set)
1523 return NULL;
1525 dest = SET_DEST (set);
1526 src = SET_SRC (set);
1528 if (GET_CODE (src) != PLUS
1529 && GET_CODE (src) != MINUS
1530 && GET_CODE (src) != MULT)
1531 return NULL;
1533 if (!XEXP (src, 0))
1534 return NULL;
1536 op1 = XEXP (src, 0);
1538 if (!REG_P (dest)
1539 && !(GET_CODE (dest) == SUBREG
1540 && REG_P (SUBREG_REG (dest))))
1541 return NULL;
1543 if (!rtx_equal_p (dest, op1))
1544 return NULL;
1546 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1547 return NULL;
1549 if (rtx_referenced_p (dest, XEXP (src, 1)))
1550 return NULL;
1552 mode1 = GET_MODE (dest);
1553 mode2 = GET_MODE (XEXP (src, 1));
1554 if ((FLOAT_MODE_P (mode1)
1555 || FLOAT_MODE_P (mode2))
1556 && !flag_unsafe_math_optimizations)
1557 return NULL;
1559 /* Record the accumulator to expand. */
1560 ves = xmalloc (sizeof (struct var_to_expand));
1561 ves->insn = insn;
1562 VARRAY_RTX_INIT (ves->var_expansions, 1, "var_expansions");
1563 ves->reg = copy_rtx (dest);
1564 ves->op = GET_CODE (src);
1565 ves->expansion_count = 0;
1566 ves->reuse_expansion = 0;
1567 return ves;
1570 /* Determine whether there is an induction variable in INSN that
1571 we would like to split during unrolling.
1573 I.e. replace
1575 i = i + 1;
1577 i = i + 1;
1579 i = i + 1;
1582 type chains by
1584 i0 = i + 1
1586 i = i0 + 1
1588 i = i0 + 2
1591 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1592 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1593 pointer to it. */
1595 static struct iv_to_split *
1596 analyze_iv_to_split_insn (rtx insn)
1598 rtx set, dest;
1599 struct rtx_iv iv;
1600 struct iv_to_split *ivts;
1602 /* For now we just split the basic induction variables. Later this may be
1603 extended for example by selecting also addresses of memory references. */
1604 set = single_set (insn);
1605 if (!set)
1606 return NULL;
1608 dest = SET_DEST (set);
1609 if (!REG_P (dest))
1610 return NULL;
1612 if (!biv_p (insn, dest))
1613 return NULL;
1615 if (!iv_analyze (insn, dest, &iv))
1616 abort ();
1618 if (iv.step == const0_rtx
1619 || iv.mode != iv.extend_mode)
1620 return NULL;
1622 /* Record the insn to split. */
1623 ivts = xmalloc (sizeof (struct iv_to_split));
1624 ivts->insn = insn;
1625 ivts->base_var = NULL_RTX;
1626 ivts->step = iv.step;
1627 ivts->n_loc = 1;
1628 ivts->loc[0] = 1;
1630 return ivts;
1633 /* Determines which of insns in LOOP can be optimized.
1634 Return a OPT_INFO struct with the relevant hash tables filled
1635 with all insns to be optimized. The FIRST_NEW_BLOCK field
1636 is undefined for the return value. */
1638 static struct opt_info *
1639 analyze_insns_in_loop (struct loop *loop)
1641 basic_block *body, bb;
1642 unsigned i, n_edges = 0;
1643 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1644 rtx insn;
1645 struct iv_to_split *ivts = NULL;
1646 struct var_to_expand *ves = NULL;
1647 PTR *slot1;
1648 PTR *slot2;
1649 edge *edges = get_loop_exit_edges (loop, &n_edges);
1650 basic_block preheader;
1651 bool can_apply = false;
1653 iv_analysis_loop_init (loop);
1655 body = get_loop_body (loop);
1657 if (flag_split_ivs_in_unroller)
1658 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1659 si_info_hash, si_info_eq, free);
1661 /* Record the loop exit bb and loop preheader before the unrolling. */
1662 if (!loop_preheader_edge (loop)->src)
1664 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1665 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1667 else
1668 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1670 if (n_edges == 1
1671 && !(edges[0]->flags & EDGE_COMPLEX)
1672 && (edges[0]->flags & EDGE_LOOP_EXIT))
1674 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1675 can_apply = true;
1678 if (flag_variable_expansion_in_unroller
1679 && can_apply)
1680 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1681 ve_info_hash, ve_info_eq, free);
1683 for (i = 0; i < loop->num_nodes; i++)
1685 bb = body[i];
1686 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1687 continue;
1689 FOR_BB_INSNS (bb, insn)
1691 if (!INSN_P (insn))
1692 continue;
1694 if (opt_info->insns_to_split)
1695 ivts = analyze_iv_to_split_insn (insn);
1697 if (ivts)
1699 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1700 *slot1 = ivts;
1701 continue;
1704 if (opt_info->insns_with_var_to_expand)
1705 ves = analyze_insn_to_expand_var (loop, insn);
1707 if (ves)
1709 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1710 *slot2 = ves;
1715 free (edges);
1716 free (body);
1717 return opt_info;
1720 /* Called just before loop duplication. Records start of duplicated area
1721 to OPT_INFO. */
1723 static void
1724 opt_info_start_duplication (struct opt_info *opt_info)
1726 if (opt_info)
1727 opt_info->first_new_block = last_basic_block;
1730 /* Determine the number of iterations between initialization of the base
1731 variable and the current copy (N_COPY). N_COPIES is the total number
1732 of newly created copies. UNROLLING is true if we are unrolling
1733 (not peeling) the loop. */
1735 static unsigned
1736 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1738 if (unrolling)
1740 /* If we are unrolling, initialization is done in the original loop
1741 body (number 0). */
1742 return n_copy;
1744 else
1746 /* If we are peeling, the copy in that the initialization occurs has
1747 number 1. The original loop (number 0) is the last. */
1748 if (n_copy)
1749 return n_copy - 1;
1750 else
1751 return n_copies;
1755 /* Locate in EXPR the expression corresponding to the location recorded
1756 in IVTS, and return a pointer to the RTX for this location. */
1758 static rtx *
1759 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1761 unsigned i;
1762 rtx *ret = &expr;
1764 for (i = 0; i < ivts->n_loc; i++)
1765 ret = &XEXP (*ret, ivts->loc[i]);
1767 return ret;
1770 /* Allocate basic variable for the induction variable chain. Callback for
1771 htab_traverse. */
1773 static int
1774 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1776 struct iv_to_split *ivts = *slot;
1777 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1779 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1781 return 1;
1784 /* Insert initialization of basic variable of IVTS before INSN, taking
1785 the initial value from INSN. */
1787 static void
1788 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1790 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1791 rtx seq;
1793 start_sequence ();
1794 expr = force_operand (expr, ivts->base_var);
1795 if (expr != ivts->base_var)
1796 emit_move_insn (ivts->base_var, expr);
1797 seq = get_insns ();
1798 end_sequence ();
1800 emit_insn_before (seq, insn);
1803 /* Replace the use of induction variable described in IVTS in INSN
1804 by base variable + DELTA * step. */
1806 static void
1807 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1809 rtx expr, *loc, seq, incr, var;
1810 enum machine_mode mode = GET_MODE (ivts->base_var);
1811 rtx src, dest, set;
1813 /* Construct base + DELTA * step. */
1814 if (!delta)
1815 expr = ivts->base_var;
1816 else
1818 incr = simplify_gen_binary (MULT, mode,
1819 ivts->step, gen_int_mode (delta, mode));
1820 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1821 ivts->base_var, incr);
1824 /* Figure out where to do the replacement. */
1825 loc = get_ivts_expr (single_set (insn), ivts);
1827 /* If we can make the replacement right away, we're done. */
1828 if (validate_change (insn, loc, expr, 0))
1829 return;
1831 /* Otherwise, force EXPR into a register and try again. */
1832 start_sequence ();
1833 var = gen_reg_rtx (mode);
1834 expr = force_operand (expr, var);
1835 if (expr != var)
1836 emit_move_insn (var, expr);
1837 seq = get_insns ();
1838 end_sequence ();
1839 emit_insn_before (seq, insn);
1841 if (validate_change (insn, loc, var, 0))
1842 return;
1844 /* The last chance. Try recreating the assignment in insn
1845 completely from scratch. */
1846 set = single_set (insn);
1847 gcc_assert (set);
1849 start_sequence ();
1850 *loc = var;
1851 src = copy_rtx (SET_SRC (set));
1852 dest = copy_rtx (SET_DEST (set));
1853 src = force_operand (src, dest);
1854 if (src != dest)
1855 emit_move_insn (dest, src);
1856 seq = get_insns ();
1857 end_sequence ();
1859 emit_insn_before (seq, insn);
1860 delete_insn (insn);
1864 /* Return one expansion of the accumulator recorded in struct VE. */
1866 static rtx
1867 get_expansion (struct var_to_expand *ve)
1869 rtx reg;
1871 if (ve->reuse_expansion == 0)
1872 reg = ve->reg;
1873 else
1874 reg = VARRAY_RTX (ve->var_expansions, ve->reuse_expansion - 1);
1876 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == (unsigned) ve->reuse_expansion)
1877 ve->reuse_expansion = 0;
1878 else
1879 ve->reuse_expansion++;
1881 return reg;
1885 /* Given INSN replace the uses of the accumulator recorded in VE
1886 with a new register. */
1888 static void
1889 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1891 rtx new_reg, set;
1892 bool really_new_expansion = false;
1894 set = single_set (insn);
1895 if (!set)
1896 abort ();
1898 /* Generate a new register only if the expansion limit has not been
1899 reached. Else reuse an already existing expansion. */
1900 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1902 really_new_expansion = true;
1903 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1905 else
1906 new_reg = get_expansion (ve);
1908 validate_change (insn, &SET_DEST (set), new_reg, 1);
1909 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1911 if (apply_change_group ())
1912 if (really_new_expansion)
1914 VARRAY_PUSH_RTX (ve->var_expansions, new_reg);
1915 ve->expansion_count++;
1919 /* Initialize the variable expansions in loop preheader.
1920 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1921 basic block where the initialization of the expansions
1922 should take place. */
1924 static int
1925 insert_var_expansion_initialization (void **slot, void *place_p)
1927 struct var_to_expand *ve = *slot;
1928 basic_block place = (basic_block)place_p;
1929 rtx seq, var, zero_init, insn;
1930 unsigned i;
1932 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1933 return 1;
1935 start_sequence ();
1936 if (ve->op == PLUS || ve->op == MINUS)
1937 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1939 var = VARRAY_RTX (ve->var_expansions, i);
1940 zero_init = CONST0_RTX (GET_MODE (var));
1941 emit_move_insn (var, zero_init);
1943 else if (ve->op == MULT)
1944 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1946 var = VARRAY_RTX (ve->var_expansions, i);
1947 zero_init = CONST1_RTX (GET_MODE (var));
1948 emit_move_insn (var, zero_init);
1951 seq = get_insns ();
1952 end_sequence ();
1954 insn = BB_HEAD (place);
1955 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1956 insn = NEXT_INSN (insn);
1958 emit_insn_after (seq, insn);
1959 /* Continue traversing the hash table. */
1960 return 1;
1963 /* Combine the variable expansions at the loop exit.
1964 Callbacks for htab_traverse. PLACE_P is the loop exit
1965 basic block where the summation of the expansions should
1966 take place. */
1968 static int
1969 combine_var_copies_in_loop_exit (void **slot, void *place_p)
1971 struct var_to_expand *ve = *slot;
1972 basic_block place = (basic_block)place_p;
1973 rtx sum = ve->reg;
1974 rtx expr, seq, var, insn;
1975 unsigned i;
1977 if (VARRAY_ACTIVE_SIZE (ve->var_expansions) == 0)
1978 return 1;
1980 start_sequence ();
1981 if (ve->op == PLUS || ve->op == MINUS)
1982 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1984 var = VARRAY_RTX (ve->var_expansions, i);
1985 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
1986 var, sum);
1988 else if (ve->op == MULT)
1989 for (i = 0; i < VARRAY_ACTIVE_SIZE (ve->var_expansions); i++)
1991 var = VARRAY_RTX (ve->var_expansions, i);
1992 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
1993 var, sum);
1996 expr = force_operand (sum, ve->reg);
1997 if (expr != ve->reg)
1998 emit_move_insn (ve->reg, expr);
1999 seq = get_insns ();
2000 end_sequence ();
2002 insn = BB_HEAD (place);
2003 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2004 insn = NEXT_INSN (insn);
2006 emit_insn_after (seq, insn);
2008 /* Continue traversing the hash table. */
2009 return 1;
2012 /* Apply loop optimizations in loop copies using the
2013 data which gathered during the unrolling. Structure
2014 OPT_INFO record that data.
2016 UNROLLING is true if we unrolled (not peeled) the loop.
2017 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2018 the loop (as it should happen in complete unrolling, but not in ordinary
2019 peeling of the loop). */
2021 static void
2022 apply_opt_in_copies (struct opt_info *opt_info,
2023 unsigned n_copies, bool unrolling,
2024 bool rewrite_original_loop)
2026 unsigned i, delta;
2027 basic_block bb, orig_bb;
2028 rtx insn, orig_insn, next;
2029 struct iv_to_split ivts_templ, *ivts;
2030 struct var_to_expand ve_templ, *ves;
2032 /* Sanity check -- we need to put initialization in the original loop
2033 body. */
2034 gcc_assert (!unrolling || rewrite_original_loop);
2036 /* Allocate the basic variables (i0). */
2037 if (opt_info->insns_to_split)
2038 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2040 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2042 bb = BASIC_BLOCK (i);
2043 orig_bb = bb->rbi->original;
2045 delta = determine_split_iv_delta (bb->rbi->copy_number, n_copies,
2046 unrolling);
2047 orig_insn = BB_HEAD (orig_bb);
2048 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2050 next = NEXT_INSN (insn);
2051 if (!INSN_P (insn))
2052 continue;
2054 while (!INSN_P (orig_insn))
2055 orig_insn = NEXT_INSN (orig_insn);
2057 ivts_templ.insn = orig_insn;
2058 ve_templ.insn = orig_insn;
2060 /* Apply splitting iv optimization. */
2061 if (opt_info->insns_to_split)
2063 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2065 if (ivts)
2067 #ifdef ENABLE_CHECKING
2068 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2069 #endif
2071 if (!delta)
2072 insert_base_initialization (ivts, insn);
2073 split_iv (ivts, insn, delta);
2076 /* Apply variable expansion optimization. */
2077 if (unrolling && opt_info->insns_with_var_to_expand)
2079 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2080 if (ves)
2082 #ifdef ENABLE_CHECKING
2083 gcc_assert (rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)));
2084 #endif
2085 expand_var_during_unrolling (ves, insn);
2088 orig_insn = NEXT_INSN (orig_insn);
2092 if (!rewrite_original_loop)
2093 return;
2095 /* Initialize the variable expansions in the loop preheader
2096 and take care of combining them at the loop exit. */
2097 if (opt_info->insns_with_var_to_expand)
2099 htab_traverse (opt_info->insns_with_var_to_expand,
2100 insert_var_expansion_initialization,
2101 opt_info->loop_preheader);
2102 htab_traverse (opt_info->insns_with_var_to_expand,
2103 combine_var_copies_in_loop_exit,
2104 opt_info->loop_exit);
2107 /* Rewrite also the original loop body. Find them as originals of the blocks
2108 in the last copied iteration, i.e. those that have
2109 bb->rbi->original->copy == bb. */
2110 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2112 bb = BASIC_BLOCK (i);
2113 orig_bb = bb->rbi->original;
2114 if (orig_bb->rbi->copy != bb)
2115 continue;
2117 delta = determine_split_iv_delta (0, n_copies, unrolling);
2118 for (orig_insn = BB_HEAD (orig_bb);
2119 orig_insn != NEXT_INSN (BB_END (bb));
2120 orig_insn = next)
2122 next = NEXT_INSN (orig_insn);
2124 if (!INSN_P (orig_insn))
2125 continue;
2127 ivts_templ.insn = orig_insn;
2128 if (opt_info->insns_to_split)
2130 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2131 if (ivts)
2133 if (!delta)
2134 insert_base_initialization (ivts, orig_insn);
2135 split_iv (ivts, orig_insn, delta);
2136 continue;
2144 /* Release the data structures used for the variable expansion
2145 optimization. Callbacks for htab_traverse. */
2147 static int
2148 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2150 struct var_to_expand *ve = *slot;
2152 VARRAY_CLEAR (ve->var_expansions);
2154 /* Continue traversing the hash table. */
2155 return 1;
2158 /* Release OPT_INFO. */
2160 static void
2161 free_opt_info (struct opt_info *opt_info)
2163 if (opt_info->insns_to_split)
2164 htab_delete (opt_info->insns_to_split);
2165 if (opt_info->insns_with_var_to_expand)
2167 htab_traverse (opt_info->insns_with_var_to_expand,
2168 release_var_copies, NULL);
2169 htab_delete (opt_info->insns_with_var_to_expand);
2171 free (opt_info);