fix ChangeLog
[official-gcc.git] / gcc / reload1.c
blobe993749a0000cf66bae14c9d8f6eec6e44555988
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && HARD_REGNO_MODE_OK (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 int regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].regno = regno;
1970 chain->rld[i].nregs
1971 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "can%'t find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2150 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2151 int adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* No known place to spill from => no slot to reuse. */
2179 x = assign_stack_local (mode, total_size,
2180 min_align > inherent_align
2181 || total_size > inherent_size ? -1 : 0);
2183 stack_slot = x;
2185 /* Cancel the big-endian correction done in assign_stack_local.
2186 Get the address of the beginning of the slot. This is so we
2187 can do a big-endian correction unconditionally below. */
2188 if (BYTES_BIG_ENDIAN)
2190 adjust = inherent_size - total_size;
2191 if (adjust)
2192 stack_slot
2193 = adjust_address_nv (x, mode_for_size (total_size
2194 * BITS_PER_UNIT,
2195 MODE_INT, 1),
2196 adjust);
2199 if (! dont_share_p && ira_conflicts_p)
2200 /* Inform IRA about allocation a new stack slot. */
2201 ira_mark_new_stack_slot (stack_slot, i, total_size);
2204 /* Reuse a stack slot if possible. */
2205 else if (spill_stack_slot[from_reg] != 0
2206 && spill_stack_slot_width[from_reg] >= total_size
2207 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2208 >= inherent_size)
2209 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2210 x = spill_stack_slot[from_reg];
2212 /* Allocate a bigger slot. */
2213 else
2215 /* Compute maximum size needed, both for inherent size
2216 and for total size. */
2217 rtx stack_slot;
2219 if (spill_stack_slot[from_reg])
2221 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2222 > inherent_size)
2223 mode = GET_MODE (spill_stack_slot[from_reg]);
2224 if (spill_stack_slot_width[from_reg] > total_size)
2225 total_size = spill_stack_slot_width[from_reg];
2226 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2227 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2230 /* Make a slot with that size. */
2231 x = assign_stack_local (mode, total_size,
2232 min_align > inherent_align
2233 || total_size > inherent_size ? -1 : 0);
2234 stack_slot = x;
2236 /* Cancel the big-endian correction done in assign_stack_local.
2237 Get the address of the beginning of the slot. This is so we
2238 can do a big-endian correction unconditionally below. */
2239 if (BYTES_BIG_ENDIAN)
2241 adjust = GET_MODE_SIZE (mode) - total_size;
2242 if (adjust)
2243 stack_slot
2244 = adjust_address_nv (x, mode_for_size (total_size
2245 * BITS_PER_UNIT,
2246 MODE_INT, 1),
2247 adjust);
2250 spill_stack_slot[from_reg] = stack_slot;
2251 spill_stack_slot_width[from_reg] = total_size;
2254 /* On a big endian machine, the "address" of the slot
2255 is the address of the low part that fits its inherent mode. */
2256 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2257 adjust += (total_size - inherent_size);
2259 /* If we have any adjustment to make, or if the stack slot is the
2260 wrong mode, make a new stack slot. */
2261 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263 /* Set all of the memory attributes as appropriate for a spill. */
2264 set_mem_attrs_for_spill (x);
2266 /* Save the stack slot for later. */
2267 reg_equiv_memory_loc (i) = x;
2271 /* Mark the slots in regs_ever_live for the hard regs used by
2272 pseudo-reg number REGNO, accessed in MODE. */
2274 static void
2275 mark_home_live_1 (int regno, machine_mode mode)
2277 int i, lim;
2279 i = reg_renumber[regno];
2280 if (i < 0)
2281 return;
2282 lim = end_hard_regno (mode, i);
2283 while (i < lim)
2284 df_set_regs_ever_live (i++, true);
2287 /* Mark the slots in regs_ever_live for the hard regs
2288 used by pseudo-reg number REGNO. */
2290 void
2291 mark_home_live (int regno)
2293 if (reg_renumber[regno] >= 0)
2294 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2297 /* This function handles the tracking of elimination offsets around branches.
2299 X is a piece of RTL being scanned.
2301 INSN is the insn that it came from, if any.
2303 INITIAL_P is nonzero if we are to set the offset to be the initial
2304 offset and zero if we are setting the offset of the label to be the
2305 current offset. */
2307 static void
2308 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 enum rtx_code code = GET_CODE (x);
2311 rtx tem;
2312 unsigned int i;
2313 struct elim_table *p;
2315 switch (code)
2317 case LABEL_REF:
2318 if (LABEL_REF_NONLOCAL_P (x))
2319 return;
2321 x = label_ref_label (x);
2323 /* fall through */
2325 case CODE_LABEL:
2326 /* If we know nothing about this label, set the desired offsets. Note
2327 that this sets the offset at a label to be the offset before a label
2328 if we don't know anything about the label. This is not correct for
2329 the label after a BARRIER, but is the best guess we can make. If
2330 we guessed wrong, we will suppress an elimination that might have
2331 been possible had we been able to guess correctly. */
2333 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2336 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2337 = (initial_p ? reg_eliminate[i].initial_offset
2338 : reg_eliminate[i].offset);
2339 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2342 /* Otherwise, if this is the definition of a label and it is
2343 preceded by a BARRIER, set our offsets to the known offset of
2344 that label. */
2346 else if (x == insn
2347 && (tem = prev_nonnote_insn (insn)) != 0
2348 && BARRIER_P (tem))
2349 set_offsets_for_label (insn);
2350 else
2351 /* If neither of the above cases is true, compare each offset
2352 with those previously recorded and suppress any eliminations
2353 where the offsets disagree. */
2355 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2356 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2357 != (initial_p ? reg_eliminate[i].initial_offset
2358 : reg_eliminate[i].offset))
2359 reg_eliminate[i].can_eliminate = 0;
2361 return;
2363 case JUMP_TABLE_DATA:
2364 set_label_offsets (PATTERN (insn), insn, initial_p);
2365 return;
2367 case JUMP_INSN:
2368 set_label_offsets (PATTERN (insn), insn, initial_p);
2370 /* fall through */
2372 case INSN:
2373 case CALL_INSN:
2374 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2375 to indirectly and hence must have all eliminations at their
2376 initial offsets. */
2377 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2378 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2379 set_label_offsets (XEXP (tem, 0), insn, 1);
2380 return;
2382 case PARALLEL:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 /* Each of the labels in the parallel or address vector must be
2386 at their initial offsets. We want the first field for PARALLEL
2387 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2390 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2391 insn, initial_p);
2392 return;
2394 case SET:
2395 /* We only care about setting PC. If the source is not RETURN,
2396 IF_THEN_ELSE, or a label, disable any eliminations not at
2397 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2398 isn't one of those possibilities. For branches to a label,
2399 call ourselves recursively.
2401 Note that this can disable elimination unnecessarily when we have
2402 a non-local goto since it will look like a non-constant jump to
2403 someplace in the current function. This isn't a significant
2404 problem since such jumps will normally be when all elimination
2405 pairs are back to their initial offsets. */
2407 if (SET_DEST (x) != pc_rtx)
2408 return;
2410 switch (GET_CODE (SET_SRC (x)))
2412 case PC:
2413 case RETURN:
2414 return;
2416 case LABEL_REF:
2417 set_label_offsets (SET_SRC (x), insn, initial_p);
2418 return;
2420 case IF_THEN_ELSE:
2421 tem = XEXP (SET_SRC (x), 1);
2422 if (GET_CODE (tem) == LABEL_REF)
2423 set_label_offsets (label_ref_label (tem), insn, initial_p);
2424 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2425 break;
2427 tem = XEXP (SET_SRC (x), 2);
2428 if (GET_CODE (tem) == LABEL_REF)
2429 set_label_offsets (label_ref_label (tem), insn, initial_p);
2430 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2431 break;
2432 return;
2434 default:
2435 break;
2438 /* If we reach here, all eliminations must be at their initial
2439 offset because we are doing a jump to a variable address. */
2440 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2441 if (p->offset != p->initial_offset)
2442 p->can_eliminate = 0;
2443 break;
2445 default:
2446 break;
2450 /* This function examines every reg that occurs in X and adjusts the
2451 costs for its elimination which are gathered by IRA. INSN is the
2452 insn in which X occurs. We do not recurse into MEM expressions. */
2454 static void
2455 note_reg_elim_costly (const_rtx x, rtx insn)
2457 subrtx_iterator::array_type array;
2458 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 const_rtx x = *iter;
2461 if (MEM_P (x))
2462 iter.skip_subrtxes ();
2463 else if (REG_P (x)
2464 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2465 && reg_equiv_init (REGNO (x))
2466 && reg_equiv_invariant (REGNO (x)))
2468 rtx t = reg_equiv_invariant (REGNO (x));
2469 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2470 int cost = set_src_cost (new_rtx, Pmode,
2471 optimize_bb_for_speed_p (elim_bb));
2472 int freq = REG_FREQ_FROM_BB (elim_bb);
2474 if (cost != 0)
2475 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2480 /* Scan X and replace any eliminable registers (such as fp) with a
2481 replacement (such as sp), plus an offset.
2483 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2484 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2485 MEM, we are allowed to replace a sum of a register and the constant zero
2486 with the register, which we cannot do outside a MEM. In addition, we need
2487 to record the fact that a register is referenced outside a MEM.
2489 If INSN is an insn, it is the insn containing X. If we replace a REG
2490 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2491 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2492 the REG is being modified.
2494 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2495 That's used when we eliminate in expressions stored in notes.
2496 This means, do not set ref_outside_mem even if the reference
2497 is outside of MEMs.
2499 If FOR_COSTS is true, we are being called before reload in order to
2500 estimate the costs of keeping registers with an equivalence unallocated.
2502 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2503 replacements done assuming all offsets are at their initial values. If
2504 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2505 encounter, return the actual location so that find_reloads will do
2506 the proper thing. */
2508 static rtx
2509 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2510 bool may_use_invariant, bool for_costs)
2512 enum rtx_code code = GET_CODE (x);
2513 struct elim_table *ep;
2514 int regno;
2515 rtx new_rtx;
2516 int i, j;
2517 const char *fmt;
2518 int copied = 0;
2520 if (! current_function_decl)
2521 return x;
2523 switch (code)
2525 CASE_CONST_ANY:
2526 case CONST:
2527 case SYMBOL_REF:
2528 case CODE_LABEL:
2529 case PC:
2530 case CC0:
2531 case ASM_INPUT:
2532 case ADDR_VEC:
2533 case ADDR_DIFF_VEC:
2534 case RETURN:
2535 return x;
2537 case REG:
2538 regno = REGNO (x);
2540 /* First handle the case where we encounter a bare register that
2541 is eliminable. Replace it with a PLUS. */
2542 if (regno < FIRST_PSEUDO_REGISTER)
2544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2545 ep++)
2546 if (ep->from_rtx == x && ep->can_eliminate)
2547 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2550 else if (reg_renumber && reg_renumber[regno] < 0
2551 && reg_equivs
2552 && reg_equiv_invariant (regno))
2554 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2555 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2556 mem_mode, insn, true, for_costs);
2557 /* There exists at least one use of REGNO that cannot be
2558 eliminated. Prevent the defining insn from being deleted. */
2559 reg_equiv_init (regno) = NULL;
2560 if (!for_costs)
2561 alter_reg (regno, -1, true);
2563 return x;
2565 /* You might think handling MINUS in a manner similar to PLUS is a
2566 good idea. It is not. It has been tried multiple times and every
2567 time the change has had to have been reverted.
2569 Other parts of reload know a PLUS is special (gen_reload for example)
2570 and require special code to handle code a reloaded PLUS operand.
2572 Also consider backends where the flags register is clobbered by a
2573 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2574 lea instruction comes to mind). If we try to reload a MINUS, we
2575 may kill the flags register that was holding a useful value.
2577 So, please before trying to handle MINUS, consider reload as a
2578 whole instead of this little section as well as the backend issues. */
2579 case PLUS:
2580 /* If this is the sum of an eliminable register and a constant, rework
2581 the sum. */
2582 if (REG_P (XEXP (x, 0))
2583 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2584 && CONSTANT_P (XEXP (x, 1)))
2586 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2587 ep++)
2588 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 /* The only time we want to replace a PLUS with a REG (this
2591 occurs when the constant operand of the PLUS is the negative
2592 of the offset) is when we are inside a MEM. We won't want
2593 to do so at other times because that would change the
2594 structure of the insn in a way that reload can't handle.
2595 We special-case the commonest situation in
2596 eliminate_regs_in_insn, so just replace a PLUS with a
2597 PLUS here, unless inside a MEM. */
2598 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2599 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2600 return ep->to_rtx;
2601 else
2602 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2603 plus_constant (Pmode, XEXP (x, 1),
2604 ep->previous_offset));
2607 /* If the register is not eliminable, we are done since the other
2608 operand is a constant. */
2609 return x;
2612 /* If this is part of an address, we want to bring any constant to the
2613 outermost PLUS. We will do this by doing register replacement in
2614 our operands and seeing if a constant shows up in one of them.
2616 Note that there is no risk of modifying the structure of the insn,
2617 since we only get called for its operands, thus we are either
2618 modifying the address inside a MEM, or something like an address
2619 operand of a load-address insn. */
2622 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2623 for_costs);
2624 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2625 for_costs);
2627 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 /* If one side is a PLUS and the other side is a pseudo that
2630 didn't get a hard register but has a reg_equiv_constant,
2631 we must replace the constant here since it may no longer
2632 be in the position of any operand. */
2633 if (GET_CODE (new0) == PLUS && REG_P (new1)
2634 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2635 && reg_renumber[REGNO (new1)] < 0
2636 && reg_equivs
2637 && reg_equiv_constant (REGNO (new1)) != 0)
2638 new1 = reg_equiv_constant (REGNO (new1));
2639 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2640 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (new0)] < 0
2642 && reg_equiv_constant (REGNO (new0)) != 0)
2643 new0 = reg_equiv_constant (REGNO (new0));
2645 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647 /* As above, if we are not inside a MEM we do not want to
2648 turn a PLUS into something else. We might try to do so here
2649 for an addition of 0 if we aren't optimizing. */
2650 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2651 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2652 else
2653 return new_rtx;
2656 return x;
2658 case MULT:
2659 /* If this is the product of an eliminable register and a
2660 constant, apply the distribute law and move the constant out
2661 so that we have (plus (mult ..) ..). This is needed in order
2662 to keep load-address insns valid. This case is pathological.
2663 We ignore the possibility of overflow here. */
2664 if (REG_P (XEXP (x, 0))
2665 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2666 && CONST_INT_P (XEXP (x, 1)))
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2668 ep++)
2669 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 if (! mem_mode
2672 /* Refs inside notes or in DEBUG_INSNs don't count for
2673 this purpose. */
2674 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2675 || GET_CODE (insn) == INSN_LIST
2676 || DEBUG_INSN_P (insn))))
2677 ep->ref_outside_mem = 1;
2679 return
2680 plus_constant (Pmode,
2681 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2682 ep->previous_offset * INTVAL (XEXP (x, 1)));
2685 /* fall through */
2687 case CALL:
2688 case COMPARE:
2689 /* See comments before PLUS about handling MINUS. */
2690 case MINUS:
2691 case DIV: case UDIV:
2692 case MOD: case UMOD:
2693 case AND: case IOR: case XOR:
2694 case ROTATERT: case ROTATE:
2695 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2696 case NE: case EQ:
2697 case GE: case GT: case GEU: case GTU:
2698 case LE: case LT: case LEU: case LTU:
2700 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2701 for_costs);
2702 rtx new1 = XEXP (x, 1)
2703 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2704 for_costs) : 0;
2706 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2707 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 return x;
2711 case EXPR_LIST:
2712 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2713 if (XEXP (x, 0))
2715 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2716 for_costs);
2717 if (new_rtx != XEXP (x, 0))
2719 /* If this is a REG_DEAD note, it is not valid anymore.
2720 Using the eliminated version could result in creating a
2721 REG_DEAD note for the stack or frame pointer. */
2722 if (REG_NOTE_KIND (x) == REG_DEAD)
2723 return (XEXP (x, 1)
2724 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2725 for_costs)
2726 : NULL_RTX);
2728 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2732 /* fall through */
2734 case INSN_LIST:
2735 case INT_LIST:
2736 /* Now do eliminations in the rest of the chain. If this was
2737 an EXPR_LIST, this might result in allocating more memory than is
2738 strictly needed, but it simplifies the code. */
2739 if (XEXP (x, 1))
2741 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2742 for_costs);
2743 if (new_rtx != XEXP (x, 1))
2744 return
2745 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 return x;
2749 case PRE_INC:
2750 case POST_INC:
2751 case PRE_DEC:
2752 case POST_DEC:
2753 /* We do not support elimination of a register that is modified.
2754 elimination_effects has already make sure that this does not
2755 happen. */
2756 return x;
2758 case PRE_MODIFY:
2759 case POST_MODIFY:
2760 /* We do not support elimination of a register that is modified.
2761 elimination_effects has already make sure that this does not
2762 happen. The only remaining case we need to consider here is
2763 that the increment value may be an eliminable register. */
2764 if (GET_CODE (XEXP (x, 1)) == PLUS
2765 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2768 insn, true, for_costs);
2770 if (new_rtx != XEXP (XEXP (x, 1), 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2772 gen_rtx_PLUS (GET_MODE (x),
2773 XEXP (x, 0), new_rtx));
2775 return x;
2777 case STRICT_LOW_PART:
2778 case NEG: case NOT:
2779 case SIGN_EXTEND: case ZERO_EXTEND:
2780 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2781 case FLOAT: case FIX:
2782 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2783 case ABS:
2784 case SQRT:
2785 case FFS:
2786 case CLZ:
2787 case CTZ:
2788 case POPCOUNT:
2789 case PARITY:
2790 case BSWAP:
2791 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2792 for_costs);
2793 if (new_rtx != XEXP (x, 0))
2794 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2795 return x;
2797 case SUBREG:
2798 /* Similar to above processing, but preserve SUBREG_BYTE.
2799 Convert (subreg (mem)) to (mem) if not paradoxical.
2800 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2801 pseudo didn't get a hard reg, we must replace this with the
2802 eliminated version of the memory location because push_reload
2803 may do the replacement in certain circumstances. */
2804 if (REG_P (SUBREG_REG (x))
2805 && !paradoxical_subreg_p (x)
2806 && reg_equivs
2807 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 new_rtx = SUBREG_REG (x);
2811 else
2812 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814 if (new_rtx != SUBREG_REG (x))
2816 int x_size = GET_MODE_SIZE (GET_MODE (x));
2817 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819 if (MEM_P (new_rtx)
2820 && ((x_size < new_size
2821 /* On RISC machines, combine can create rtl of the form
2822 (set (subreg:m1 (reg:m2 R) 0) ...)
2823 where m1 < m2, and expects something interesting to
2824 happen to the entire word. Moreover, it will use the
2825 (reg:m2 R) later, expecting all bits to be preserved.
2826 So if the number of words is the same, preserve the
2827 subreg so that push_reload can see it. */
2828 && !(WORD_REGISTER_OPERATIONS
2829 && (x_size - 1) / UNITS_PER_WORD
2830 == (new_size -1 ) / UNITS_PER_WORD))
2831 || x_size == new_size)
2833 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2834 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2835 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2836 else
2837 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2840 return x;
2842 case MEM:
2843 /* Our only special processing is to pass the mode of the MEM to our
2844 recursive call and copy the flags. While we are here, handle this
2845 case more efficiently. */
2847 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2848 for_costs);
2849 if (for_costs
2850 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2851 && !memory_address_p (GET_MODE (x), new_rtx))
2852 note_reg_elim_costly (XEXP (x, 0), insn);
2854 return replace_equiv_address_nv (x, new_rtx);
2856 case USE:
2857 /* Handle insn_list USE that a call to a pure function may generate. */
2858 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2859 for_costs);
2860 if (new_rtx != XEXP (x, 0))
2861 return gen_rtx_USE (GET_MODE (x), new_rtx);
2862 return x;
2864 case CLOBBER:
2865 case ASM_OPERANDS:
2866 gcc_assert (insn && DEBUG_INSN_P (insn));
2867 break;
2869 case SET:
2870 gcc_unreachable ();
2872 default:
2873 break;
2876 /* Process each of our operands recursively. If any have changed, make a
2877 copy of the rtx. */
2878 fmt = GET_RTX_FORMAT (code);
2879 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2881 if (*fmt == 'e')
2883 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2884 for_costs);
2885 if (new_rtx != XEXP (x, i) && ! copied)
2887 x = shallow_copy_rtx (x);
2888 copied = 1;
2890 XEXP (x, i) = new_rtx;
2892 else if (*fmt == 'E')
2894 int copied_vec = 0;
2895 for (j = 0; j < XVECLEN (x, i); j++)
2897 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2898 for_costs);
2899 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2901 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2902 XVEC (x, i)->elem);
2903 if (! copied)
2905 x = shallow_copy_rtx (x);
2906 copied = 1;
2908 XVEC (x, i) = new_v;
2909 copied_vec = 1;
2911 XVECEXP (x, i, j) = new_rtx;
2916 return x;
2920 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2922 if (reg_eliminate == NULL)
2924 gcc_assert (targetm.no_register_allocation);
2925 return x;
2927 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2930 /* Scan rtx X for modifications of elimination target registers. Update
2931 the table of eliminables to reflect the changed state. MEM_MODE is
2932 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934 static void
2935 elimination_effects (rtx x, machine_mode mem_mode)
2937 enum rtx_code code = GET_CODE (x);
2938 struct elim_table *ep;
2939 int regno;
2940 int i, j;
2941 const char *fmt;
2943 switch (code)
2945 CASE_CONST_ANY:
2946 case CONST:
2947 case SYMBOL_REF:
2948 case CODE_LABEL:
2949 case PC:
2950 case CC0:
2951 case ASM_INPUT:
2952 case ADDR_VEC:
2953 case ADDR_DIFF_VEC:
2954 case RETURN:
2955 return;
2957 case REG:
2958 regno = REGNO (x);
2960 /* First handle the case where we encounter a bare register that
2961 is eliminable. Replace it with a PLUS. */
2962 if (regno < FIRST_PSEUDO_REGISTER)
2964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2965 ep++)
2966 if (ep->from_rtx == x && ep->can_eliminate)
2968 if (! mem_mode)
2969 ep->ref_outside_mem = 1;
2970 return;
2974 else if (reg_renumber[regno] < 0
2975 && reg_equivs
2976 && reg_equiv_constant (regno)
2977 && ! function_invariant_p (reg_equiv_constant (regno)))
2978 elimination_effects (reg_equiv_constant (regno), mem_mode);
2979 return;
2981 case PRE_INC:
2982 case POST_INC:
2983 case PRE_DEC:
2984 case POST_DEC:
2985 case POST_MODIFY:
2986 case PRE_MODIFY:
2987 /* If we modify the source of an elimination rule, disable it. */
2988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2989 if (ep->from_rtx == XEXP (x, 0))
2990 ep->can_eliminate = 0;
2992 /* If we modify the target of an elimination rule by adding a constant,
2993 update its offset. If we modify the target in any other way, we'll
2994 have to disable the rule as well. */
2995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2996 if (ep->to_rtx == XEXP (x, 0))
2998 int size = GET_MODE_SIZE (mem_mode);
3000 /* If more bytes than MEM_MODE are pushed, account for them. */
3001 #ifdef PUSH_ROUNDING
3002 if (ep->to_rtx == stack_pointer_rtx)
3003 size = PUSH_ROUNDING (size);
3004 #endif
3005 if (code == PRE_DEC || code == POST_DEC)
3006 ep->offset += size;
3007 else if (code == PRE_INC || code == POST_INC)
3008 ep->offset -= size;
3009 else if (code == PRE_MODIFY || code == POST_MODIFY)
3011 if (GET_CODE (XEXP (x, 1)) == PLUS
3012 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3013 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3014 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3015 else
3016 ep->can_eliminate = 0;
3020 /* These two aren't unary operators. */
3021 if (code == POST_MODIFY || code == PRE_MODIFY)
3022 break;
3024 /* Fall through to generic unary operation case. */
3025 gcc_fallthrough ();
3026 case STRICT_LOW_PART:
3027 case NEG: case NOT:
3028 case SIGN_EXTEND: case ZERO_EXTEND:
3029 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3030 case FLOAT: case FIX:
3031 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3032 case ABS:
3033 case SQRT:
3034 case FFS:
3035 case CLZ:
3036 case CTZ:
3037 case POPCOUNT:
3038 case PARITY:
3039 case BSWAP:
3040 elimination_effects (XEXP (x, 0), mem_mode);
3041 return;
3043 case SUBREG:
3044 if (REG_P (SUBREG_REG (x))
3045 && (GET_MODE_SIZE (GET_MODE (x))
3046 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3047 && reg_equivs
3048 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3049 return;
3051 elimination_effects (SUBREG_REG (x), mem_mode);
3052 return;
3054 case USE:
3055 /* If using a register that is the source of an eliminate we still
3056 think can be performed, note it cannot be performed since we don't
3057 know how this register is used. */
3058 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3059 if (ep->from_rtx == XEXP (x, 0))
3060 ep->can_eliminate = 0;
3062 elimination_effects (XEXP (x, 0), mem_mode);
3063 return;
3065 case CLOBBER:
3066 /* If clobbering a register that is the replacement register for an
3067 elimination we still think can be performed, note that it cannot
3068 be performed. Otherwise, we need not be concerned about it. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3070 if (ep->to_rtx == XEXP (x, 0))
3071 ep->can_eliminate = 0;
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3076 case SET:
3077 /* Check for setting a register that we know about. */
3078 if (REG_P (SET_DEST (x)))
3080 /* See if this is setting the replacement register for an
3081 elimination.
3083 If DEST is the hard frame pointer, we do nothing because we
3084 assume that all assignments to the frame pointer are for
3085 non-local gotos and are being done at a time when they are valid
3086 and do not disturb anything else. Some machines want to
3087 eliminate a fake argument pointer (or even a fake frame pointer)
3088 with either the real frame or the stack pointer. Assignments to
3089 the hard frame pointer must not prevent this elimination. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3092 ep++)
3093 if (ep->to_rtx == SET_DEST (x)
3094 && SET_DEST (x) != hard_frame_pointer_rtx)
3096 /* If it is being incremented, adjust the offset. Otherwise,
3097 this elimination can't be done. */
3098 rtx src = SET_SRC (x);
3100 if (GET_CODE (src) == PLUS
3101 && XEXP (src, 0) == SET_DEST (x)
3102 && CONST_INT_P (XEXP (src, 1)))
3103 ep->offset -= INTVAL (XEXP (src, 1));
3104 else
3105 ep->can_eliminate = 0;
3109 elimination_effects (SET_DEST (x), VOIDmode);
3110 elimination_effects (SET_SRC (x), VOIDmode);
3111 return;
3113 case MEM:
3114 /* Our only special processing is to pass the mode of the MEM to our
3115 recursive call. */
3116 elimination_effects (XEXP (x, 0), GET_MODE (x));
3117 return;
3119 default:
3120 break;
3123 fmt = GET_RTX_FORMAT (code);
3124 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3126 if (*fmt == 'e')
3127 elimination_effects (XEXP (x, i), mem_mode);
3128 else if (*fmt == 'E')
3129 for (j = 0; j < XVECLEN (x, i); j++)
3130 elimination_effects (XVECEXP (x, i, j), mem_mode);
3134 /* Descend through rtx X and verify that no references to eliminable registers
3135 remain. If any do remain, mark the involved register as not
3136 eliminable. */
3138 static void
3139 check_eliminable_occurrences (rtx x)
3141 const char *fmt;
3142 int i;
3143 enum rtx_code code;
3145 if (x == 0)
3146 return;
3148 code = GET_CODE (x);
3150 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3152 struct elim_table *ep;
3154 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3155 if (ep->from_rtx == x)
3156 ep->can_eliminate = 0;
3157 return;
3160 fmt = GET_RTX_FORMAT (code);
3161 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 if (*fmt == 'e')
3164 check_eliminable_occurrences (XEXP (x, i));
3165 else if (*fmt == 'E')
3167 int j;
3168 for (j = 0; j < XVECLEN (x, i); j++)
3169 check_eliminable_occurrences (XVECEXP (x, i, j));
3174 /* Scan INSN and eliminate all eliminable registers in it.
3176 If REPLACE is nonzero, do the replacement destructively. Also
3177 delete the insn as dead it if it is setting an eliminable register.
3179 If REPLACE is zero, do all our allocations in reload_obstack.
3181 If no eliminations were done and this insn doesn't require any elimination
3182 processing (these are not identical conditions: it might be updating sp,
3183 but not referencing fp; this needs to be seen during reload_as_needed so
3184 that the offset between fp and sp can be taken into consideration), zero
3185 is returned. Otherwise, 1 is returned. */
3187 static int
3188 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3190 int icode = recog_memoized (insn);
3191 rtx old_body = PATTERN (insn);
3192 int insn_is_asm = asm_noperands (old_body) >= 0;
3193 rtx old_set = single_set (insn);
3194 rtx new_body;
3195 int val = 0;
3196 int i;
3197 rtx substed_operand[MAX_RECOG_OPERANDS];
3198 rtx orig_operand[MAX_RECOG_OPERANDS];
3199 struct elim_table *ep;
3200 rtx plus_src, plus_cst_src;
3202 if (! insn_is_asm && icode < 0)
3204 gcc_assert (DEBUG_INSN_P (insn)
3205 || GET_CODE (PATTERN (insn)) == USE
3206 || GET_CODE (PATTERN (insn)) == CLOBBER
3207 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3208 if (DEBUG_INSN_P (insn))
3209 INSN_VAR_LOCATION_LOC (insn)
3210 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3211 return 0;
3214 if (old_set != 0 && REG_P (SET_DEST (old_set))
3215 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3217 /* Check for setting an eliminable register. */
3218 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3219 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3221 /* If this is setting the frame pointer register to the
3222 hardware frame pointer register and this is an elimination
3223 that will be done (tested above), this insn is really
3224 adjusting the frame pointer downward to compensate for
3225 the adjustment done before a nonlocal goto. */
3226 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3227 && ep->from == FRAME_POINTER_REGNUM
3228 && ep->to == HARD_FRAME_POINTER_REGNUM)
3230 rtx base = SET_SRC (old_set);
3231 rtx_insn *base_insn = insn;
3232 HOST_WIDE_INT offset = 0;
3234 while (base != ep->to_rtx)
3236 rtx_insn *prev_insn;
3237 rtx prev_set;
3239 if (GET_CODE (base) == PLUS
3240 && CONST_INT_P (XEXP (base, 1)))
3242 offset += INTVAL (XEXP (base, 1));
3243 base = XEXP (base, 0);
3245 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3246 && (prev_set = single_set (prev_insn)) != 0
3247 && rtx_equal_p (SET_DEST (prev_set), base))
3249 base = SET_SRC (prev_set);
3250 base_insn = prev_insn;
3252 else
3253 break;
3256 if (base == ep->to_rtx)
3258 rtx src = plus_constant (Pmode, ep->to_rtx,
3259 offset - ep->offset);
3261 new_body = old_body;
3262 if (! replace)
3264 new_body = copy_insn (old_body);
3265 if (REG_NOTES (insn))
3266 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3268 PATTERN (insn) = new_body;
3269 old_set = single_set (insn);
3271 /* First see if this insn remains valid when we
3272 make the change. If not, keep the INSN_CODE
3273 the same and let reload fit it up. */
3274 validate_change (insn, &SET_SRC (old_set), src, 1);
3275 validate_change (insn, &SET_DEST (old_set),
3276 ep->to_rtx, 1);
3277 if (! apply_change_group ())
3279 SET_SRC (old_set) = src;
3280 SET_DEST (old_set) = ep->to_rtx;
3283 val = 1;
3284 goto done;
3288 /* In this case this insn isn't serving a useful purpose. We
3289 will delete it in reload_as_needed once we know that this
3290 elimination is, in fact, being done.
3292 If REPLACE isn't set, we can't delete this insn, but needn't
3293 process it since it won't be used unless something changes. */
3294 if (replace)
3296 delete_dead_insn (insn);
3297 return 1;
3299 val = 1;
3300 goto done;
3304 /* We allow one special case which happens to work on all machines we
3305 currently support: a single set with the source or a REG_EQUAL
3306 note being a PLUS of an eliminable register and a constant. */
3307 plus_src = plus_cst_src = 0;
3308 if (old_set && REG_P (SET_DEST (old_set)))
3310 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3311 plus_src = SET_SRC (old_set);
3312 /* First see if the source is of the form (plus (...) CST). */
3313 if (plus_src
3314 && CONST_INT_P (XEXP (plus_src, 1)))
3315 plus_cst_src = plus_src;
3316 else if (REG_P (SET_SRC (old_set))
3317 || plus_src)
3319 /* Otherwise, see if we have a REG_EQUAL note of the form
3320 (plus (...) CST). */
3321 rtx links;
3322 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3324 if ((REG_NOTE_KIND (links) == REG_EQUAL
3325 || REG_NOTE_KIND (links) == REG_EQUIV)
3326 && GET_CODE (XEXP (links, 0)) == PLUS
3327 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3329 plus_cst_src = XEXP (links, 0);
3330 break;
3335 /* Check that the first operand of the PLUS is a hard reg or
3336 the lowpart subreg of one. */
3337 if (plus_cst_src)
3339 rtx reg = XEXP (plus_cst_src, 0);
3340 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3341 reg = SUBREG_REG (reg);
3343 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3344 plus_cst_src = 0;
3347 if (plus_cst_src)
3349 rtx reg = XEXP (plus_cst_src, 0);
3350 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3352 if (GET_CODE (reg) == SUBREG)
3353 reg = SUBREG_REG (reg);
3355 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3356 if (ep->from_rtx == reg && ep->can_eliminate)
3358 rtx to_rtx = ep->to_rtx;
3359 offset += ep->offset;
3360 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3362 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3363 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3364 to_rtx);
3365 /* If we have a nonzero offset, and the source is already
3366 a simple REG, the following transformation would
3367 increase the cost of the insn by replacing a simple REG
3368 with (plus (reg sp) CST). So try only when we already
3369 had a PLUS before. */
3370 if (offset == 0 || plus_src)
3372 rtx new_src = plus_constant (GET_MODE (to_rtx),
3373 to_rtx, offset);
3375 new_body = old_body;
3376 if (! replace)
3378 new_body = copy_insn (old_body);
3379 if (REG_NOTES (insn))
3380 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3382 PATTERN (insn) = new_body;
3383 old_set = single_set (insn);
3385 /* First see if this insn remains valid when we make the
3386 change. If not, try to replace the whole pattern with
3387 a simple set (this may help if the original insn was a
3388 PARALLEL that was only recognized as single_set due to
3389 REG_UNUSED notes). If this isn't valid either, keep
3390 the INSN_CODE the same and let reload fix it up. */
3391 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3393 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3395 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3396 SET_SRC (old_set) = new_src;
3399 else
3400 break;
3402 val = 1;
3403 /* This can't have an effect on elimination offsets, so skip right
3404 to the end. */
3405 goto done;
3409 /* Determine the effects of this insn on elimination offsets. */
3410 elimination_effects (old_body, VOIDmode);
3412 /* Eliminate all eliminable registers occurring in operands that
3413 can be handled by reload. */
3414 extract_insn (insn);
3415 for (i = 0; i < recog_data.n_operands; i++)
3417 orig_operand[i] = recog_data.operand[i];
3418 substed_operand[i] = recog_data.operand[i];
3420 /* For an asm statement, every operand is eliminable. */
3421 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3423 bool is_set_src, in_plus;
3425 /* Check for setting a register that we know about. */
3426 if (recog_data.operand_type[i] != OP_IN
3427 && REG_P (orig_operand[i]))
3429 /* If we are assigning to a register that can be eliminated, it
3430 must be as part of a PARALLEL, since the code above handles
3431 single SETs. We must indicate that we can no longer
3432 eliminate this reg. */
3433 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3434 ep++)
3435 if (ep->from_rtx == orig_operand[i])
3436 ep->can_eliminate = 0;
3439 /* Companion to the above plus substitution, we can allow
3440 invariants as the source of a plain move. */
3441 is_set_src = false;
3442 if (old_set
3443 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3444 is_set_src = true;
3445 in_plus = false;
3446 if (plus_src
3447 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3448 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3449 in_plus = true;
3451 substed_operand[i]
3452 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3453 replace ? insn : NULL_RTX,
3454 is_set_src || in_plus, false);
3455 if (substed_operand[i] != orig_operand[i])
3456 val = 1;
3457 /* Terminate the search in check_eliminable_occurrences at
3458 this point. */
3459 *recog_data.operand_loc[i] = 0;
3461 /* If an output operand changed from a REG to a MEM and INSN is an
3462 insn, write a CLOBBER insn. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i])
3465 && MEM_P (substed_operand[i])
3466 && replace)
3467 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3471 for (i = 0; i < recog_data.n_dups; i++)
3472 *recog_data.dup_loc[i]
3473 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3475 /* If any eliminable remain, they aren't eliminable anymore. */
3476 check_eliminable_occurrences (old_body);
3478 /* Substitute the operands; the new values are in the substed_operand
3479 array. */
3480 for (i = 0; i < recog_data.n_operands; i++)
3481 *recog_data.operand_loc[i] = substed_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3485 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3486 re-recognize the insn. We do this in case we had a simple addition
3487 but now can do this as a load-address. This saves an insn in this
3488 common case.
3489 If re-recognition fails, the old insn code number will still be used,
3490 and some register operands may have changed into PLUS expressions.
3491 These will be handled by find_reloads by loading them into a register
3492 again. */
3494 if (val)
3496 /* If we aren't replacing things permanently and we changed something,
3497 make another copy to ensure that all the RTL is new. Otherwise
3498 things can go wrong if find_reload swaps commutative operands
3499 and one is inside RTL that has been copied while the other is not. */
3500 new_body = old_body;
3501 if (! replace)
3503 new_body = copy_insn (old_body);
3504 if (REG_NOTES (insn))
3505 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3507 PATTERN (insn) = new_body;
3509 /* If we had a move insn but now we don't, rerecognize it. This will
3510 cause spurious re-recognition if the old move had a PARALLEL since
3511 the new one still will, but we can't call single_set without
3512 having put NEW_BODY into the insn and the re-recognition won't
3513 hurt in this rare case. */
3514 /* ??? Why this huge if statement - why don't we just rerecognize the
3515 thing always? */
3516 if (! insn_is_asm
3517 && old_set != 0
3518 && ((REG_P (SET_SRC (old_set))
3519 && (GET_CODE (new_body) != SET
3520 || !REG_P (SET_SRC (new_body))))
3521 /* If this was a load from or store to memory, compare
3522 the MEM in recog_data.operand to the one in the insn.
3523 If they are not equal, then rerecognize the insn. */
3524 || (old_set != 0
3525 && ((MEM_P (SET_SRC (old_set))
3526 && SET_SRC (old_set) != recog_data.operand[1])
3527 || (MEM_P (SET_DEST (old_set))
3528 && SET_DEST (old_set) != recog_data.operand[0])))
3529 /* If this was an add insn before, rerecognize. */
3530 || GET_CODE (SET_SRC (old_set)) == PLUS))
3532 int new_icode = recog (PATTERN (insn), insn, 0);
3533 if (new_icode >= 0)
3534 INSN_CODE (insn) = new_icode;
3538 /* Restore the old body. If there were any changes to it, we made a copy
3539 of it while the changes were still in place, so we'll correctly return
3540 a modified insn below. */
3541 if (! replace)
3543 /* Restore the old body. */
3544 for (i = 0; i < recog_data.n_operands; i++)
3545 /* Restoring a top-level match_parallel would clobber the new_body
3546 we installed in the insn. */
3547 if (recog_data.operand_loc[i] != &PATTERN (insn))
3548 *recog_data.operand_loc[i] = orig_operand[i];
3549 for (i = 0; i < recog_data.n_dups; i++)
3550 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3553 /* Update all elimination pairs to reflect the status after the current
3554 insn. The changes we make were determined by the earlier call to
3555 elimination_effects.
3557 We also detect cases where register elimination cannot be done,
3558 namely, if a register would be both changed and referenced outside a MEM
3559 in the resulting insn since such an insn is often undefined and, even if
3560 not, we cannot know what meaning will be given to it. Note that it is
3561 valid to have a register used in an address in an insn that changes it
3562 (presumably with a pre- or post-increment or decrement).
3564 If anything changes, return nonzero. */
3566 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3568 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3569 ep->can_eliminate = 0;
3571 ep->ref_outside_mem = 0;
3573 if (ep->previous_offset != ep->offset)
3574 val = 1;
3577 done:
3578 /* If we changed something, perform elimination in REG_NOTES. This is
3579 needed even when REPLACE is zero because a REG_DEAD note might refer
3580 to a register that we eliminate and could cause a different number
3581 of spill registers to be needed in the final reload pass than in
3582 the pre-passes. */
3583 if (val && REG_NOTES (insn) != 0)
3584 REG_NOTES (insn)
3585 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3586 false);
3588 return val;
3591 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3592 register allocator. INSN is the instruction we need to examine, we perform
3593 eliminations in its operands and record cases where eliminating a reg with
3594 an invariant equivalence would add extra cost. */
3596 #pragma GCC diagnostic push
3597 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3598 static void
3599 elimination_costs_in_insn (rtx_insn *insn)
3601 int icode = recog_memoized (insn);
3602 rtx old_body = PATTERN (insn);
3603 int insn_is_asm = asm_noperands (old_body) >= 0;
3604 rtx old_set = single_set (insn);
3605 int i;
3606 rtx orig_operand[MAX_RECOG_OPERANDS];
3607 rtx orig_dup[MAX_RECOG_OPERANDS];
3608 struct elim_table *ep;
3609 rtx plus_src, plus_cst_src;
3610 bool sets_reg_p;
3612 if (! insn_is_asm && icode < 0)
3614 gcc_assert (DEBUG_INSN_P (insn)
3615 || GET_CODE (PATTERN (insn)) == USE
3616 || GET_CODE (PATTERN (insn)) == CLOBBER
3617 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3618 return;
3621 if (old_set != 0 && REG_P (SET_DEST (old_set))
3622 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3624 /* Check for setting an eliminable register. */
3625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3626 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3627 return;
3630 /* We allow one special case which happens to work on all machines we
3631 currently support: a single set with the source or a REG_EQUAL
3632 note being a PLUS of an eliminable register and a constant. */
3633 plus_src = plus_cst_src = 0;
3634 sets_reg_p = false;
3635 if (old_set && REG_P (SET_DEST (old_set)))
3637 sets_reg_p = true;
3638 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3639 plus_src = SET_SRC (old_set);
3640 /* First see if the source is of the form (plus (...) CST). */
3641 if (plus_src
3642 && CONST_INT_P (XEXP (plus_src, 1)))
3643 plus_cst_src = plus_src;
3644 else if (REG_P (SET_SRC (old_set))
3645 || plus_src)
3647 /* Otherwise, see if we have a REG_EQUAL note of the form
3648 (plus (...) CST). */
3649 rtx links;
3650 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3652 if ((REG_NOTE_KIND (links) == REG_EQUAL
3653 || REG_NOTE_KIND (links) == REG_EQUIV)
3654 && GET_CODE (XEXP (links, 0)) == PLUS
3655 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3657 plus_cst_src = XEXP (links, 0);
3658 break;
3664 /* Determine the effects of this insn on elimination offsets. */
3665 elimination_effects (old_body, VOIDmode);
3667 /* Eliminate all eliminable registers occurring in operands that
3668 can be handled by reload. */
3669 extract_insn (insn);
3670 int n_dups = recog_data.n_dups;
3671 for (i = 0; i < n_dups; i++)
3672 orig_dup[i] = *recog_data.dup_loc[i];
3674 int n_operands = recog_data.n_operands;
3675 for (i = 0; i < n_operands; i++)
3677 orig_operand[i] = recog_data.operand[i];
3679 /* For an asm statement, every operand is eliminable. */
3680 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3682 bool is_set_src, in_plus;
3684 /* Check for setting a register that we know about. */
3685 if (recog_data.operand_type[i] != OP_IN
3686 && REG_P (orig_operand[i]))
3688 /* If we are assigning to a register that can be eliminated, it
3689 must be as part of a PARALLEL, since the code above handles
3690 single SETs. We must indicate that we can no longer
3691 eliminate this reg. */
3692 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3693 ep++)
3694 if (ep->from_rtx == orig_operand[i])
3695 ep->can_eliminate = 0;
3698 /* Companion to the above plus substitution, we can allow
3699 invariants as the source of a plain move. */
3700 is_set_src = false;
3701 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3702 is_set_src = true;
3703 if (is_set_src && !sets_reg_p)
3704 note_reg_elim_costly (SET_SRC (old_set), insn);
3705 in_plus = false;
3706 if (plus_src && sets_reg_p
3707 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3708 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3709 in_plus = true;
3711 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3712 NULL_RTX,
3713 is_set_src || in_plus, true);
3714 /* Terminate the search in check_eliminable_occurrences at
3715 this point. */
3716 *recog_data.operand_loc[i] = 0;
3720 for (i = 0; i < n_dups; i++)
3721 *recog_data.dup_loc[i]
3722 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3724 /* If any eliminable remain, they aren't eliminable anymore. */
3725 check_eliminable_occurrences (old_body);
3727 /* Restore the old body. */
3728 for (i = 0; i < n_operands; i++)
3729 *recog_data.operand_loc[i] = orig_operand[i];
3730 for (i = 0; i < n_dups; i++)
3731 *recog_data.dup_loc[i] = orig_dup[i];
3733 /* Update all elimination pairs to reflect the status after the current
3734 insn. The changes we make were determined by the earlier call to
3735 elimination_effects. */
3737 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3739 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3740 ep->can_eliminate = 0;
3742 ep->ref_outside_mem = 0;
3745 return;
3747 #pragma GCC diagnostic pop
3749 /* Loop through all elimination pairs.
3750 Recalculate the number not at initial offset.
3752 Compute the maximum offset (minimum offset if the stack does not
3753 grow downward) for each elimination pair. */
3755 static void
3756 update_eliminable_offsets (void)
3758 struct elim_table *ep;
3760 num_not_at_initial_offset = 0;
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 ep->previous_offset = ep->offset;
3764 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3765 num_not_at_initial_offset++;
3769 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3770 replacement we currently believe is valid, mark it as not eliminable if X
3771 modifies DEST in any way other than by adding a constant integer to it.
3773 If DEST is the frame pointer, we do nothing because we assume that
3774 all assignments to the hard frame pointer are nonlocal gotos and are being
3775 done at a time when they are valid and do not disturb anything else.
3776 Some machines want to eliminate a fake argument pointer with either the
3777 frame or stack pointer. Assignments to the hard frame pointer must not
3778 prevent this elimination.
3780 Called via note_stores from reload before starting its passes to scan
3781 the insns of the function. */
3783 static void
3784 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3786 unsigned int i;
3788 /* A SUBREG of a hard register here is just changing its mode. We should
3789 not see a SUBREG of an eliminable hard register, but check just in
3790 case. */
3791 if (GET_CODE (dest) == SUBREG)
3792 dest = SUBREG_REG (dest);
3794 if (dest == hard_frame_pointer_rtx)
3795 return;
3797 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3798 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3799 && (GET_CODE (x) != SET
3800 || GET_CODE (SET_SRC (x)) != PLUS
3801 || XEXP (SET_SRC (x), 0) != dest
3802 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3804 reg_eliminate[i].can_eliminate_previous
3805 = reg_eliminate[i].can_eliminate = 0;
3806 num_eliminable--;
3810 /* Verify that the initial elimination offsets did not change since the
3811 last call to set_initial_elim_offsets. This is used to catch cases
3812 where something illegal happened during reload_as_needed that could
3813 cause incorrect code to be generated if we did not check for it. */
3815 static bool
3816 verify_initial_elim_offsets (void)
3818 HOST_WIDE_INT t;
3819 struct elim_table *ep;
3821 if (!num_eliminable)
3822 return true;
3824 targetm.compute_frame_layout ();
3825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3827 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3828 if (t != ep->initial_offset)
3829 return false;
3832 return true;
3835 /* Reset all offsets on eliminable registers to their initial values. */
3837 static void
3838 set_initial_elim_offsets (void)
3840 struct elim_table *ep = reg_eliminate;
3842 targetm.compute_frame_layout ();
3843 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3845 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3846 ep->previous_offset = ep->offset = ep->initial_offset;
3849 num_not_at_initial_offset = 0;
3852 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3854 static void
3855 set_initial_eh_label_offset (rtx label)
3857 set_label_offsets (label, NULL, 1);
3860 /* Initialize the known label offsets.
3861 Set a known offset for each forced label to be at the initial offset
3862 of each elimination. We do this because we assume that all
3863 computed jumps occur from a location where each elimination is
3864 at its initial offset.
3865 For all other labels, show that we don't know the offsets. */
3867 static void
3868 set_initial_label_offsets (void)
3870 memset (offsets_known_at, 0, num_labels);
3872 unsigned int i;
3873 rtx_insn *insn;
3874 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3875 set_label_offsets (insn, NULL, 1);
3877 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3878 if (x->insn ())
3879 set_label_offsets (x->insn (), NULL, 1);
3881 for_each_eh_label (set_initial_eh_label_offset);
3884 /* Set all elimination offsets to the known values for the code label given
3885 by INSN. */
3887 static void
3888 set_offsets_for_label (rtx_insn *insn)
3890 unsigned int i;
3891 int label_nr = CODE_LABEL_NUMBER (insn);
3892 struct elim_table *ep;
3894 num_not_at_initial_offset = 0;
3895 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3897 ep->offset = ep->previous_offset
3898 = offsets_at[label_nr - first_label_num][i];
3899 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3900 num_not_at_initial_offset++;
3904 /* See if anything that happened changes which eliminations are valid.
3905 For example, on the SPARC, whether or not the frame pointer can
3906 be eliminated can depend on what registers have been used. We need
3907 not check some conditions again (such as flag_omit_frame_pointer)
3908 since they can't have changed. */
3910 static void
3911 update_eliminables (HARD_REG_SET *pset)
3913 int previous_frame_pointer_needed = frame_pointer_needed;
3914 struct elim_table *ep;
3916 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3917 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3918 && targetm.frame_pointer_required ())
3919 || ! targetm.can_eliminate (ep->from, ep->to)
3921 ep->can_eliminate = 0;
3923 /* Look for the case where we have discovered that we can't replace
3924 register A with register B and that means that we will now be
3925 trying to replace register A with register C. This means we can
3926 no longer replace register C with register B and we need to disable
3927 such an elimination, if it exists. This occurs often with A == ap,
3928 B == sp, and C == fp. */
3930 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3932 struct elim_table *op;
3933 int new_to = -1;
3935 if (! ep->can_eliminate && ep->can_eliminate_previous)
3937 /* Find the current elimination for ep->from, if there is a
3938 new one. */
3939 for (op = reg_eliminate;
3940 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3941 if (op->from == ep->from && op->can_eliminate)
3943 new_to = op->to;
3944 break;
3947 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3948 disable it. */
3949 for (op = reg_eliminate;
3950 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3951 if (op->from == new_to && op->to == ep->to)
3952 op->can_eliminate = 0;
3956 /* See if any registers that we thought we could eliminate the previous
3957 time are no longer eliminable. If so, something has changed and we
3958 must spill the register. Also, recompute the number of eliminable
3959 registers and see if the frame pointer is needed; it is if there is
3960 no elimination of the frame pointer that we can perform. */
3962 frame_pointer_needed = 1;
3963 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3965 if (ep->can_eliminate
3966 && ep->from == FRAME_POINTER_REGNUM
3967 && ep->to != HARD_FRAME_POINTER_REGNUM
3968 && (! SUPPORTS_STACK_ALIGNMENT
3969 || ! crtl->stack_realign_needed))
3970 frame_pointer_needed = 0;
3972 if (! ep->can_eliminate && ep->can_eliminate_previous)
3974 ep->can_eliminate_previous = 0;
3975 SET_HARD_REG_BIT (*pset, ep->from);
3976 num_eliminable--;
3980 /* If we didn't need a frame pointer last time, but we do now, spill
3981 the hard frame pointer. */
3982 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3983 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3986 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3987 Return true iff a register was spilled. */
3989 static bool
3990 update_eliminables_and_spill (void)
3992 int i;
3993 bool did_spill = false;
3994 HARD_REG_SET to_spill;
3995 CLEAR_HARD_REG_SET (to_spill);
3996 update_eliminables (&to_spill);
3997 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3999 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4000 if (TEST_HARD_REG_BIT (to_spill, i))
4002 spill_hard_reg (i, 1);
4003 did_spill = true;
4005 /* Regardless of the state of spills, if we previously had
4006 a register that we thought we could eliminate, but now can
4007 not eliminate, we must run another pass.
4009 Consider pseudos which have an entry in reg_equiv_* which
4010 reference an eliminable register. We must make another pass
4011 to update reg_equiv_* so that we do not substitute in the
4012 old value from when we thought the elimination could be
4013 performed. */
4015 return did_spill;
4018 /* Return true if X is used as the target register of an elimination. */
4020 bool
4021 elimination_target_reg_p (rtx x)
4023 struct elim_table *ep;
4025 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4026 if (ep->to_rtx == x && ep->can_eliminate)
4027 return true;
4029 return false;
4032 /* Initialize the table of registers to eliminate.
4033 Pre-condition: global flag frame_pointer_needed has been set before
4034 calling this function. */
4036 static void
4037 init_elim_table (void)
4039 struct elim_table *ep;
4040 const struct elim_table_1 *ep1;
4042 if (!reg_eliminate)
4043 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4045 num_eliminable = 0;
4047 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4048 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4050 ep->from = ep1->from;
4051 ep->to = ep1->to;
4052 ep->can_eliminate = ep->can_eliminate_previous
4053 = (targetm.can_eliminate (ep->from, ep->to)
4054 && ! (ep->to == STACK_POINTER_REGNUM
4055 && frame_pointer_needed
4056 && (! SUPPORTS_STACK_ALIGNMENT
4057 || ! stack_realign_fp)));
4060 /* Count the number of eliminable registers and build the FROM and TO
4061 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4062 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4063 We depend on this. */
4064 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4066 num_eliminable += ep->can_eliminate;
4067 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4068 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4072 /* Find all the pseudo registers that didn't get hard regs
4073 but do have known equivalent constants or memory slots.
4074 These include parameters (known equivalent to parameter slots)
4075 and cse'd or loop-moved constant memory addresses.
4077 Record constant equivalents in reg_equiv_constant
4078 so they will be substituted by find_reloads.
4079 Record memory equivalents in reg_mem_equiv so they can
4080 be substituted eventually by altering the REG-rtx's. */
4082 static void
4083 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4085 int i;
4086 rtx_insn *insn;
4088 grow_reg_equivs ();
4089 if (do_subregs)
4090 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4091 else
4092 reg_max_ref_width = NULL;
4094 num_eliminable_invariants = 0;
4096 first_label_num = get_first_label_num ();
4097 num_labels = max_label_num () - first_label_num;
4099 /* Allocate the tables used to store offset information at labels. */
4100 offsets_known_at = XNEWVEC (char, num_labels);
4101 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4103 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4104 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4105 find largest such for each pseudo. FIRST is the head of the insn
4106 list. */
4108 for (insn = first; insn; insn = NEXT_INSN (insn))
4110 rtx set = single_set (insn);
4112 /* We may introduce USEs that we want to remove at the end, so
4113 we'll mark them with QImode. Make sure there are no
4114 previously-marked insns left by say regmove. */
4115 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4116 && GET_MODE (insn) != VOIDmode)
4117 PUT_MODE (insn, VOIDmode);
4119 if (do_subregs && NONDEBUG_INSN_P (insn))
4120 scan_paradoxical_subregs (PATTERN (insn));
4122 if (set != 0 && REG_P (SET_DEST (set)))
4124 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4125 rtx x;
4127 if (! note)
4128 continue;
4130 i = REGNO (SET_DEST (set));
4131 x = XEXP (note, 0);
4133 if (i <= LAST_VIRTUAL_REGISTER)
4134 continue;
4136 /* If flag_pic and we have constant, verify it's legitimate. */
4137 if (!CONSTANT_P (x)
4138 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4140 /* It can happen that a REG_EQUIV note contains a MEM
4141 that is not a legitimate memory operand. As later
4142 stages of reload assume that all addresses found
4143 in the reg_equiv_* arrays were originally legitimate,
4144 we ignore such REG_EQUIV notes. */
4145 if (memory_operand (x, VOIDmode))
4147 /* Always unshare the equivalence, so we can
4148 substitute into this insn without touching the
4149 equivalence. */
4150 reg_equiv_memory_loc (i) = copy_rtx (x);
4152 else if (function_invariant_p (x))
4154 machine_mode mode;
4156 mode = GET_MODE (SET_DEST (set));
4157 if (GET_CODE (x) == PLUS)
4159 /* This is PLUS of frame pointer and a constant,
4160 and might be shared. Unshare it. */
4161 reg_equiv_invariant (i) = copy_rtx (x);
4162 num_eliminable_invariants++;
4164 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4166 reg_equiv_invariant (i) = x;
4167 num_eliminable_invariants++;
4169 else if (targetm.legitimate_constant_p (mode, x))
4170 reg_equiv_constant (i) = x;
4171 else
4173 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4174 if (! reg_equiv_memory_loc (i))
4175 reg_equiv_init (i) = NULL;
4178 else
4180 reg_equiv_init (i) = NULL;
4181 continue;
4184 else
4185 reg_equiv_init (i) = NULL;
4189 if (dump_file)
4190 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4191 if (reg_equiv_init (i))
4193 fprintf (dump_file, "init_insns for %u: ", i);
4194 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4195 fprintf (dump_file, "\n");
4199 /* Indicate that we no longer have known memory locations or constants.
4200 Free all data involved in tracking these. */
4202 static void
4203 free_reg_equiv (void)
4205 int i;
4207 free (offsets_known_at);
4208 free (offsets_at);
4209 offsets_at = 0;
4210 offsets_known_at = 0;
4212 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4213 if (reg_equiv_alt_mem_list (i))
4214 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4215 vec_free (reg_equivs);
4218 /* Kick all pseudos out of hard register REGNO.
4220 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4221 because we found we can't eliminate some register. In the case, no pseudos
4222 are allowed to be in the register, even if they are only in a block that
4223 doesn't require spill registers, unlike the case when we are spilling this
4224 hard reg to produce another spill register.
4226 Return nonzero if any pseudos needed to be kicked out. */
4228 static void
4229 spill_hard_reg (unsigned int regno, int cant_eliminate)
4231 int i;
4233 if (cant_eliminate)
4235 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4236 df_set_regs_ever_live (regno, true);
4239 /* Spill every pseudo reg that was allocated to this reg
4240 or to something that overlaps this reg. */
4242 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4243 if (reg_renumber[i] >= 0
4244 && (unsigned int) reg_renumber[i] <= regno
4245 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4246 SET_REGNO_REG_SET (&spilled_pseudos, i);
4249 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4250 insns that need reloads, this function is used to actually spill pseudo
4251 registers and try to reallocate them. It also sets up the spill_regs
4252 array for use by choose_reload_regs.
4254 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4255 that we displace from hard registers. */
4257 static int
4258 finish_spills (int global)
4260 struct insn_chain *chain;
4261 int something_changed = 0;
4262 unsigned i;
4263 reg_set_iterator rsi;
4265 /* Build the spill_regs array for the function. */
4266 /* If there are some registers still to eliminate and one of the spill regs
4267 wasn't ever used before, additional stack space may have to be
4268 allocated to store this register. Thus, we may have changed the offset
4269 between the stack and frame pointers, so mark that something has changed.
4271 One might think that we need only set VAL to 1 if this is a call-used
4272 register. However, the set of registers that must be saved by the
4273 prologue is not identical to the call-used set. For example, the
4274 register used by the call insn for the return PC is a call-used register,
4275 but must be saved by the prologue. */
4277 n_spills = 0;
4278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4279 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4281 spill_reg_order[i] = n_spills;
4282 spill_regs[n_spills++] = i;
4283 if (num_eliminable && ! df_regs_ever_live_p (i))
4284 something_changed = 1;
4285 df_set_regs_ever_live (i, true);
4287 else
4288 spill_reg_order[i] = -1;
4290 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4291 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4293 /* Record the current hard register the pseudo is allocated to
4294 in pseudo_previous_regs so we avoid reallocating it to the
4295 same hard reg in a later pass. */
4296 gcc_assert (reg_renumber[i] >= 0);
4298 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4299 /* Mark it as no longer having a hard register home. */
4300 reg_renumber[i] = -1;
4301 if (ira_conflicts_p)
4302 /* Inform IRA about the change. */
4303 ira_mark_allocation_change (i);
4304 /* We will need to scan everything again. */
4305 something_changed = 1;
4308 /* Retry global register allocation if possible. */
4309 if (global && ira_conflicts_p)
4311 unsigned int n;
4313 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4314 /* For every insn that needs reloads, set the registers used as spill
4315 regs in pseudo_forbidden_regs for every pseudo live across the
4316 insn. */
4317 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4319 EXECUTE_IF_SET_IN_REG_SET
4320 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4322 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4323 chain->used_spill_regs);
4325 EXECUTE_IF_SET_IN_REG_SET
4326 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4328 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4329 chain->used_spill_regs);
4333 /* Retry allocating the pseudos spilled in IRA and the
4334 reload. For each reg, merge the various reg sets that
4335 indicate which hard regs can't be used, and call
4336 ira_reassign_pseudos. */
4337 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4338 if (reg_old_renumber[i] != reg_renumber[i])
4340 if (reg_renumber[i] < 0)
4341 temp_pseudo_reg_arr[n++] = i;
4342 else
4343 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4345 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4346 bad_spill_regs_global,
4347 pseudo_forbidden_regs, pseudo_previous_regs,
4348 &spilled_pseudos))
4349 something_changed = 1;
4351 /* Fix up the register information in the insn chain.
4352 This involves deleting those of the spilled pseudos which did not get
4353 a new hard register home from the live_{before,after} sets. */
4354 for (chain = reload_insn_chain; chain; chain = chain->next)
4356 HARD_REG_SET used_by_pseudos;
4357 HARD_REG_SET used_by_pseudos2;
4359 if (! ira_conflicts_p)
4361 /* Don't do it for IRA because IRA and the reload still can
4362 assign hard registers to the spilled pseudos on next
4363 reload iterations. */
4364 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4365 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4367 /* Mark any unallocated hard regs as available for spills. That
4368 makes inheritance work somewhat better. */
4369 if (chain->need_reload)
4371 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4372 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4373 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4375 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4376 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4377 /* Value of chain->used_spill_regs from previous iteration
4378 may be not included in the value calculated here because
4379 of possible removing caller-saves insns (see function
4380 delete_caller_save_insns. */
4381 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4382 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4386 CLEAR_REG_SET (&changed_allocation_pseudos);
4387 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4388 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4390 int regno = reg_renumber[i];
4391 if (reg_old_renumber[i] == regno)
4392 continue;
4394 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4396 alter_reg (i, reg_old_renumber[i], false);
4397 reg_old_renumber[i] = regno;
4398 if (dump_file)
4400 if (regno == -1)
4401 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4402 else
4403 fprintf (dump_file, " Register %d now in %d.\n\n",
4404 i, reg_renumber[i]);
4408 return something_changed;
4411 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4413 static void
4414 scan_paradoxical_subregs (rtx x)
4416 int i;
4417 const char *fmt;
4418 enum rtx_code code = GET_CODE (x);
4420 switch (code)
4422 case REG:
4423 case CONST:
4424 case SYMBOL_REF:
4425 case LABEL_REF:
4426 CASE_CONST_ANY:
4427 case CC0:
4428 case PC:
4429 case USE:
4430 case CLOBBER:
4431 return;
4433 case SUBREG:
4434 if (REG_P (SUBREG_REG (x))
4435 && (GET_MODE_SIZE (GET_MODE (x))
4436 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4438 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4439 = GET_MODE_SIZE (GET_MODE (x));
4440 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4442 return;
4444 default:
4445 break;
4448 fmt = GET_RTX_FORMAT (code);
4449 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4451 if (fmt[i] == 'e')
4452 scan_paradoxical_subregs (XEXP (x, i));
4453 else if (fmt[i] == 'E')
4455 int j;
4456 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4457 scan_paradoxical_subregs (XVECEXP (x, i, j));
4462 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4463 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4464 and apply the corresponding narrowing subreg to *OTHER_PTR.
4465 Return true if the operands were changed, false otherwise. */
4467 static bool
4468 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4470 rtx op, inner, other, tem;
4472 op = *op_ptr;
4473 if (!paradoxical_subreg_p (op))
4474 return false;
4475 inner = SUBREG_REG (op);
4477 other = *other_ptr;
4478 tem = gen_lowpart_common (GET_MODE (inner), other);
4479 if (!tem)
4480 return false;
4482 /* If the lowpart operation turned a hard register into a subreg,
4483 rather than simplifying it to another hard register, then the
4484 mode change cannot be properly represented. For example, OTHER
4485 might be valid in its current mode, but not in the new one. */
4486 if (GET_CODE (tem) == SUBREG
4487 && REG_P (other)
4488 && HARD_REGISTER_P (other))
4489 return false;
4491 *op_ptr = inner;
4492 *other_ptr = tem;
4493 return true;
4496 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4497 examine all of the reload insns between PREV and NEXT exclusive, and
4498 annotate all that may trap. */
4500 static void
4501 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4503 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4504 if (note == NULL)
4505 return;
4506 if (!insn_could_throw_p (insn))
4507 remove_note (insn, note);
4508 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4511 /* Reload pseudo-registers into hard regs around each insn as needed.
4512 Additional register load insns are output before the insn that needs it
4513 and perhaps store insns after insns that modify the reloaded pseudo reg.
4515 reg_last_reload_reg and reg_reloaded_contents keep track of
4516 which registers are already available in reload registers.
4517 We update these for the reloads that we perform,
4518 as the insns are scanned. */
4520 static void
4521 reload_as_needed (int live_known)
4523 struct insn_chain *chain;
4524 #if AUTO_INC_DEC
4525 int i;
4526 #endif
4527 rtx_note *marker;
4529 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4530 memset (spill_reg_store, 0, sizeof spill_reg_store);
4531 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4532 INIT_REG_SET (&reg_has_output_reload);
4533 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4534 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4536 set_initial_elim_offsets ();
4538 /* Generate a marker insn that we will move around. */
4539 marker = emit_note (NOTE_INSN_DELETED);
4540 unlink_insn_chain (marker, marker);
4542 for (chain = reload_insn_chain; chain; chain = chain->next)
4544 rtx_insn *prev = 0;
4545 rtx_insn *insn = chain->insn;
4546 rtx_insn *old_next = NEXT_INSN (insn);
4547 #if AUTO_INC_DEC
4548 rtx_insn *old_prev = PREV_INSN (insn);
4549 #endif
4551 if (will_delete_init_insn_p (insn))
4552 continue;
4554 /* If we pass a label, copy the offsets from the label information
4555 into the current offsets of each elimination. */
4556 if (LABEL_P (insn))
4557 set_offsets_for_label (insn);
4559 else if (INSN_P (insn))
4561 regset_head regs_to_forget;
4562 INIT_REG_SET (&regs_to_forget);
4563 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4565 /* If this is a USE and CLOBBER of a MEM, ensure that any
4566 references to eliminable registers have been removed. */
4568 if ((GET_CODE (PATTERN (insn)) == USE
4569 || GET_CODE (PATTERN (insn)) == CLOBBER)
4570 && MEM_P (XEXP (PATTERN (insn), 0)))
4571 XEXP (XEXP (PATTERN (insn), 0), 0)
4572 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4573 GET_MODE (XEXP (PATTERN (insn), 0)),
4574 NULL_RTX);
4576 /* If we need to do register elimination processing, do so.
4577 This might delete the insn, in which case we are done. */
4578 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4580 eliminate_regs_in_insn (insn, 1);
4581 if (NOTE_P (insn))
4583 update_eliminable_offsets ();
4584 CLEAR_REG_SET (&regs_to_forget);
4585 continue;
4589 /* If need_elim is nonzero but need_reload is zero, one might think
4590 that we could simply set n_reloads to 0. However, find_reloads
4591 could have done some manipulation of the insn (such as swapping
4592 commutative operands), and these manipulations are lost during
4593 the first pass for every insn that needs register elimination.
4594 So the actions of find_reloads must be redone here. */
4596 if (! chain->need_elim && ! chain->need_reload
4597 && ! chain->need_operand_change)
4598 n_reloads = 0;
4599 /* First find the pseudo regs that must be reloaded for this insn.
4600 This info is returned in the tables reload_... (see reload.h).
4601 Also modify the body of INSN by substituting RELOAD
4602 rtx's for those pseudo regs. */
4603 else
4605 CLEAR_REG_SET (&reg_has_output_reload);
4606 CLEAR_HARD_REG_SET (reg_is_output_reload);
4608 find_reloads (insn, 1, spill_indirect_levels, live_known,
4609 spill_reg_order);
4612 if (n_reloads > 0)
4614 rtx_insn *next = NEXT_INSN (insn);
4616 /* ??? PREV can get deleted by reload inheritance.
4617 Work around this by emitting a marker note. */
4618 prev = PREV_INSN (insn);
4619 reorder_insns_nobb (marker, marker, prev);
4621 /* Now compute which reload regs to reload them into. Perhaps
4622 reusing reload regs from previous insns, or else output
4623 load insns to reload them. Maybe output store insns too.
4624 Record the choices of reload reg in reload_reg_rtx. */
4625 choose_reload_regs (chain);
4627 /* Generate the insns to reload operands into or out of
4628 their reload regs. */
4629 emit_reload_insns (chain);
4631 /* Substitute the chosen reload regs from reload_reg_rtx
4632 into the insn's body (or perhaps into the bodies of other
4633 load and store insn that we just made for reloading
4634 and that we moved the structure into). */
4635 subst_reloads (insn);
4637 prev = PREV_INSN (marker);
4638 unlink_insn_chain (marker, marker);
4640 /* Adjust the exception region notes for loads and stores. */
4641 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4642 fixup_eh_region_note (insn, prev, next);
4644 /* Adjust the location of REG_ARGS_SIZE. */
4645 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4646 if (p)
4648 remove_note (insn, p);
4649 fixup_args_size_notes (prev, PREV_INSN (next),
4650 INTVAL (XEXP (p, 0)));
4653 /* If this was an ASM, make sure that all the reload insns
4654 we have generated are valid. If not, give an error
4655 and delete them. */
4656 if (asm_noperands (PATTERN (insn)) >= 0)
4657 for (rtx_insn *p = NEXT_INSN (prev);
4658 p != next;
4659 p = NEXT_INSN (p))
4660 if (p != insn && INSN_P (p)
4661 && GET_CODE (PATTERN (p)) != USE
4662 && (recog_memoized (p) < 0
4663 || (extract_insn (p),
4664 !(constrain_operands (1,
4665 get_enabled_alternatives (p))))))
4667 error_for_asm (insn,
4668 "%<asm%> operand requires "
4669 "impossible reload");
4670 delete_insn (p);
4674 if (num_eliminable && chain->need_elim)
4675 update_eliminable_offsets ();
4677 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4678 is no longer validly lying around to save a future reload.
4679 Note that this does not detect pseudos that were reloaded
4680 for this insn in order to be stored in
4681 (obeying register constraints). That is correct; such reload
4682 registers ARE still valid. */
4683 forget_marked_reloads (&regs_to_forget);
4684 CLEAR_REG_SET (&regs_to_forget);
4686 /* There may have been CLOBBER insns placed after INSN. So scan
4687 between INSN and NEXT and use them to forget old reloads. */
4688 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4689 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4690 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4692 #if AUTO_INC_DEC
4693 /* Likewise for regs altered by auto-increment in this insn.
4694 REG_INC notes have been changed by reloading:
4695 find_reloads_address_1 records substitutions for them,
4696 which have been performed by subst_reloads above. */
4697 for (i = n_reloads - 1; i >= 0; i--)
4699 rtx in_reg = rld[i].in_reg;
4700 if (in_reg)
4702 enum rtx_code code = GET_CODE (in_reg);
4703 /* PRE_INC / PRE_DEC will have the reload register ending up
4704 with the same value as the stack slot, but that doesn't
4705 hold true for POST_INC / POST_DEC. Either we have to
4706 convert the memory access to a true POST_INC / POST_DEC,
4707 or we can't use the reload register for inheritance. */
4708 if ((code == POST_INC || code == POST_DEC)
4709 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4710 REGNO (rld[i].reg_rtx))
4711 /* Make sure it is the inc/dec pseudo, and not
4712 some other (e.g. output operand) pseudo. */
4713 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4714 == REGNO (XEXP (in_reg, 0))))
4717 rtx reload_reg = rld[i].reg_rtx;
4718 machine_mode mode = GET_MODE (reload_reg);
4719 int n = 0;
4720 rtx_insn *p;
4722 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4724 /* We really want to ignore REG_INC notes here, so
4725 use PATTERN (p) as argument to reg_set_p . */
4726 if (reg_set_p (reload_reg, PATTERN (p)))
4727 break;
4728 n = count_occurrences (PATTERN (p), reload_reg, 0);
4729 if (! n)
4730 continue;
4731 if (n == 1)
4733 rtx replace_reg
4734 = gen_rtx_fmt_e (code, mode, reload_reg);
4736 validate_replace_rtx_group (reload_reg,
4737 replace_reg, p);
4738 n = verify_changes (0);
4740 /* We must also verify that the constraints
4741 are met after the replacement. Make sure
4742 extract_insn is only called for an insn
4743 where the replacements were found to be
4744 valid so far. */
4745 if (n)
4747 extract_insn (p);
4748 n = constrain_operands (1,
4749 get_enabled_alternatives (p));
4752 /* If the constraints were not met, then
4753 undo the replacement, else confirm it. */
4754 if (!n)
4755 cancel_changes (0);
4756 else
4757 confirm_change_group ();
4759 break;
4761 if (n == 1)
4763 add_reg_note (p, REG_INC, reload_reg);
4764 /* Mark this as having an output reload so that the
4765 REG_INC processing code below won't invalidate
4766 the reload for inheritance. */
4767 SET_HARD_REG_BIT (reg_is_output_reload,
4768 REGNO (reload_reg));
4769 SET_REGNO_REG_SET (&reg_has_output_reload,
4770 REGNO (XEXP (in_reg, 0)));
4772 else
4773 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4774 NULL);
4776 else if ((code == PRE_INC || code == PRE_DEC)
4777 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4778 REGNO (rld[i].reg_rtx))
4779 /* Make sure it is the inc/dec pseudo, and not
4780 some other (e.g. output operand) pseudo. */
4781 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4782 == REGNO (XEXP (in_reg, 0))))
4784 SET_HARD_REG_BIT (reg_is_output_reload,
4785 REGNO (rld[i].reg_rtx));
4786 SET_REGNO_REG_SET (&reg_has_output_reload,
4787 REGNO (XEXP (in_reg, 0)));
4789 else if (code == PRE_INC || code == PRE_DEC
4790 || code == POST_INC || code == POST_DEC)
4792 int in_regno = REGNO (XEXP (in_reg, 0));
4794 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4796 int in_hard_regno;
4797 bool forget_p = true;
4799 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4800 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4801 in_hard_regno))
4803 for (rtx_insn *x = (old_prev ?
4804 NEXT_INSN (old_prev) : insn);
4805 x != old_next;
4806 x = NEXT_INSN (x))
4807 if (x == reg_reloaded_insn[in_hard_regno])
4809 forget_p = false;
4810 break;
4813 /* If for some reasons, we didn't set up
4814 reg_last_reload_reg in this insn,
4815 invalidate inheritance from previous
4816 insns for the incremented/decremented
4817 register. Such registers will be not in
4818 reg_has_output_reload. Invalidate it
4819 also if the corresponding element in
4820 reg_reloaded_insn is also
4821 invalidated. */
4822 if (forget_p)
4823 forget_old_reloads_1 (XEXP (in_reg, 0),
4824 NULL_RTX, NULL);
4829 /* If a pseudo that got a hard register is auto-incremented,
4830 we must purge records of copying it into pseudos without
4831 hard registers. */
4832 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4833 if (REG_NOTE_KIND (x) == REG_INC)
4835 /* See if this pseudo reg was reloaded in this insn.
4836 If so, its last-reload info is still valid
4837 because it is based on this insn's reload. */
4838 for (i = 0; i < n_reloads; i++)
4839 if (rld[i].out == XEXP (x, 0))
4840 break;
4842 if (i == n_reloads)
4843 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4845 #endif
4847 /* A reload reg's contents are unknown after a label. */
4848 if (LABEL_P (insn))
4849 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4851 /* Don't assume a reload reg is still good after a call insn
4852 if it is a call-used reg, or if it contains a value that will
4853 be partially clobbered by the call. */
4854 else if (CALL_P (insn))
4856 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4857 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4859 /* If this is a call to a setjmp-type function, we must not
4860 reuse any reload reg contents across the call; that will
4861 just be clobbered by other uses of the register in later
4862 code, before the longjmp. */
4863 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4864 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4868 /* Clean up. */
4869 free (reg_last_reload_reg);
4870 CLEAR_REG_SET (&reg_has_output_reload);
4873 /* Discard all record of any value reloaded from X,
4874 or reloaded in X from someplace else;
4875 unless X is an output reload reg of the current insn.
4877 X may be a hard reg (the reload reg)
4878 or it may be a pseudo reg that was reloaded from.
4880 When DATA is non-NULL just mark the registers in regset
4881 to be forgotten later. */
4883 static void
4884 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4885 void *data)
4887 unsigned int regno;
4888 unsigned int nr;
4889 regset regs = (regset) data;
4891 /* note_stores does give us subregs of hard regs,
4892 subreg_regno_offset requires a hard reg. */
4893 while (GET_CODE (x) == SUBREG)
4895 /* We ignore the subreg offset when calculating the regno,
4896 because we are using the entire underlying hard register
4897 below. */
4898 x = SUBREG_REG (x);
4901 if (!REG_P (x))
4902 return;
4904 regno = REGNO (x);
4906 if (regno >= FIRST_PSEUDO_REGISTER)
4907 nr = 1;
4908 else
4910 unsigned int i;
4912 nr = hard_regno_nregs[regno][GET_MODE (x)];
4913 /* Storing into a spilled-reg invalidates its contents.
4914 This can happen if a block-local pseudo is allocated to that reg
4915 and it wasn't spilled because this block's total need is 0.
4916 Then some insn might have an optional reload and use this reg. */
4917 if (!regs)
4918 for (i = 0; i < nr; i++)
4919 /* But don't do this if the reg actually serves as an output
4920 reload reg in the current instruction. */
4921 if (n_reloads == 0
4922 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4924 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4925 spill_reg_store[regno + i] = 0;
4929 if (regs)
4930 while (nr-- > 0)
4931 SET_REGNO_REG_SET (regs, regno + nr);
4932 else
4934 /* Since value of X has changed,
4935 forget any value previously copied from it. */
4937 while (nr-- > 0)
4938 /* But don't forget a copy if this is the output reload
4939 that establishes the copy's validity. */
4940 if (n_reloads == 0
4941 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4942 reg_last_reload_reg[regno + nr] = 0;
4946 /* Forget the reloads marked in regset by previous function. */
4947 static void
4948 forget_marked_reloads (regset regs)
4950 unsigned int reg;
4951 reg_set_iterator rsi;
4952 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4954 if (reg < FIRST_PSEUDO_REGISTER
4955 /* But don't do this if the reg actually serves as an output
4956 reload reg in the current instruction. */
4957 && (n_reloads == 0
4958 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4960 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4961 spill_reg_store[reg] = 0;
4963 if (n_reloads == 0
4964 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4965 reg_last_reload_reg[reg] = 0;
4969 /* The following HARD_REG_SETs indicate when each hard register is
4970 used for a reload of various parts of the current insn. */
4972 /* If reg is unavailable for all reloads. */
4973 static HARD_REG_SET reload_reg_unavailable;
4974 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4975 static HARD_REG_SET reload_reg_used;
4976 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4977 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4978 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4979 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4980 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4981 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4982 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4983 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4984 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4985 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4986 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4987 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4988 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4989 static HARD_REG_SET reload_reg_used_in_op_addr;
4990 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4991 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4992 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4993 static HARD_REG_SET reload_reg_used_in_insn;
4994 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4995 static HARD_REG_SET reload_reg_used_in_other_addr;
4997 /* If reg is in use as a reload reg for any sort of reload. */
4998 static HARD_REG_SET reload_reg_used_at_all;
5000 /* If reg is use as an inherited reload. We just mark the first register
5001 in the group. */
5002 static HARD_REG_SET reload_reg_used_for_inherit;
5004 /* Records which hard regs are used in any way, either as explicit use or
5005 by being allocated to a pseudo during any point of the current insn. */
5006 static HARD_REG_SET reg_used_in_insn;
5008 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5009 TYPE. MODE is used to indicate how many consecutive regs are
5010 actually used. */
5012 static void
5013 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5014 machine_mode mode)
5016 switch (type)
5018 case RELOAD_OTHER:
5019 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5020 break;
5022 case RELOAD_FOR_INPUT_ADDRESS:
5023 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5024 break;
5026 case RELOAD_FOR_INPADDR_ADDRESS:
5027 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5028 break;
5030 case RELOAD_FOR_OUTPUT_ADDRESS:
5031 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5032 break;
5034 case RELOAD_FOR_OUTADDR_ADDRESS:
5035 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5036 break;
5038 case RELOAD_FOR_OPERAND_ADDRESS:
5039 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5040 break;
5042 case RELOAD_FOR_OPADDR_ADDR:
5043 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5044 break;
5046 case RELOAD_FOR_OTHER_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5048 break;
5050 case RELOAD_FOR_INPUT:
5051 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5052 break;
5054 case RELOAD_FOR_OUTPUT:
5055 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5056 break;
5058 case RELOAD_FOR_INSN:
5059 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5060 break;
5063 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5066 /* Similarly, but show REGNO is no longer in use for a reload. */
5068 static void
5069 clear_reload_reg_in_use (unsigned int regno, int opnum,
5070 enum reload_type type, machine_mode mode)
5072 unsigned int nregs = hard_regno_nregs[regno][mode];
5073 unsigned int start_regno, end_regno, r;
5074 int i;
5075 /* A complication is that for some reload types, inheritance might
5076 allow multiple reloads of the same types to share a reload register.
5077 We set check_opnum if we have to check only reloads with the same
5078 operand number, and check_any if we have to check all reloads. */
5079 int check_opnum = 0;
5080 int check_any = 0;
5081 HARD_REG_SET *used_in_set;
5083 switch (type)
5085 case RELOAD_OTHER:
5086 used_in_set = &reload_reg_used;
5087 break;
5089 case RELOAD_FOR_INPUT_ADDRESS:
5090 used_in_set = &reload_reg_used_in_input_addr[opnum];
5091 break;
5093 case RELOAD_FOR_INPADDR_ADDRESS:
5094 check_opnum = 1;
5095 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5096 break;
5098 case RELOAD_FOR_OUTPUT_ADDRESS:
5099 used_in_set = &reload_reg_used_in_output_addr[opnum];
5100 break;
5102 case RELOAD_FOR_OUTADDR_ADDRESS:
5103 check_opnum = 1;
5104 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5105 break;
5107 case RELOAD_FOR_OPERAND_ADDRESS:
5108 used_in_set = &reload_reg_used_in_op_addr;
5109 break;
5111 case RELOAD_FOR_OPADDR_ADDR:
5112 check_any = 1;
5113 used_in_set = &reload_reg_used_in_op_addr_reload;
5114 break;
5116 case RELOAD_FOR_OTHER_ADDRESS:
5117 used_in_set = &reload_reg_used_in_other_addr;
5118 check_any = 1;
5119 break;
5121 case RELOAD_FOR_INPUT:
5122 used_in_set = &reload_reg_used_in_input[opnum];
5123 break;
5125 case RELOAD_FOR_OUTPUT:
5126 used_in_set = &reload_reg_used_in_output[opnum];
5127 break;
5129 case RELOAD_FOR_INSN:
5130 used_in_set = &reload_reg_used_in_insn;
5131 break;
5132 default:
5133 gcc_unreachable ();
5135 /* We resolve conflicts with remaining reloads of the same type by
5136 excluding the intervals of reload registers by them from the
5137 interval of freed reload registers. Since we only keep track of
5138 one set of interval bounds, we might have to exclude somewhat
5139 more than what would be necessary if we used a HARD_REG_SET here.
5140 But this should only happen very infrequently, so there should
5141 be no reason to worry about it. */
5143 start_regno = regno;
5144 end_regno = regno + nregs;
5145 if (check_opnum || check_any)
5147 for (i = n_reloads - 1; i >= 0; i--)
5149 if (rld[i].when_needed == type
5150 && (check_any || rld[i].opnum == opnum)
5151 && rld[i].reg_rtx)
5153 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5154 unsigned int conflict_end
5155 = end_hard_regno (rld[i].mode, conflict_start);
5157 /* If there is an overlap with the first to-be-freed register,
5158 adjust the interval start. */
5159 if (conflict_start <= start_regno && conflict_end > start_regno)
5160 start_regno = conflict_end;
5161 /* Otherwise, if there is a conflict with one of the other
5162 to-be-freed registers, adjust the interval end. */
5163 if (conflict_start > start_regno && conflict_start < end_regno)
5164 end_regno = conflict_start;
5169 for (r = start_regno; r < end_regno; r++)
5170 CLEAR_HARD_REG_BIT (*used_in_set, r);
5173 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5174 specified by OPNUM and TYPE. */
5176 static int
5177 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5179 int i;
5181 /* In use for a RELOAD_OTHER means it's not available for anything. */
5182 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5183 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5184 return 0;
5186 switch (type)
5188 case RELOAD_OTHER:
5189 /* In use for anything means we can't use it for RELOAD_OTHER. */
5190 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5192 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5193 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5194 return 0;
5196 for (i = 0; i < reload_n_operands; i++)
5197 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5202 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5203 return 0;
5205 return 1;
5207 case RELOAD_FOR_INPUT:
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5209 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5210 return 0;
5212 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5213 return 0;
5215 /* If it is used for some other input, can't use it. */
5216 for (i = 0; i < reload_n_operands; i++)
5217 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5218 return 0;
5220 /* If it is used in a later operand's address, can't use it. */
5221 for (i = opnum + 1; i < reload_n_operands; i++)
5222 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5223 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5224 return 0;
5226 return 1;
5228 case RELOAD_FOR_INPUT_ADDRESS:
5229 /* Can't use a register if it is used for an input address for this
5230 operand or used as an input in an earlier one. */
5231 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5232 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5233 return 0;
5235 for (i = 0; i < opnum; i++)
5236 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5237 return 0;
5239 return 1;
5241 case RELOAD_FOR_INPADDR_ADDRESS:
5242 /* Can't use a register if it is used for an input address
5243 for this operand or used as an input in an earlier
5244 one. */
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5246 return 0;
5248 for (i = 0; i < opnum; i++)
5249 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5250 return 0;
5252 return 1;
5254 case RELOAD_FOR_OUTPUT_ADDRESS:
5255 /* Can't use a register if it is used for an output address for this
5256 operand or used as an output in this or a later operand. Note
5257 that multiple output operands are emitted in reverse order, so
5258 the conflicting ones are those with lower indices. */
5259 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5260 return 0;
5262 for (i = 0; i <= opnum; i++)
5263 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5264 return 0;
5266 return 1;
5268 case RELOAD_FOR_OUTADDR_ADDRESS:
5269 /* Can't use a register if it is used for an output address
5270 for this operand or used as an output in this or a
5271 later operand. Note that multiple output operands are
5272 emitted in reverse order, so the conflicting ones are
5273 those with lower indices. */
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5275 return 0;
5277 for (i = 0; i <= opnum; i++)
5278 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5279 return 0;
5281 return 1;
5283 case RELOAD_FOR_OPERAND_ADDRESS:
5284 for (i = 0; i < reload_n_operands; i++)
5285 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5286 return 0;
5288 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5289 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5291 case RELOAD_FOR_OPADDR_ADDR:
5292 for (i = 0; i < reload_n_operands; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5294 return 0;
5296 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5298 case RELOAD_FOR_OUTPUT:
5299 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5300 outputs, or an operand address for this or an earlier output.
5301 Note that multiple output operands are emitted in reverse order,
5302 so the conflicting ones are those with higher indices. */
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5304 return 0;
5306 for (i = 0; i < reload_n_operands; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5308 return 0;
5310 for (i = opnum; i < reload_n_operands; i++)
5311 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5312 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5313 return 0;
5315 return 1;
5317 case RELOAD_FOR_INSN:
5318 for (i = 0; i < reload_n_operands; i++)
5319 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5320 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5321 return 0;
5323 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5324 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5326 case RELOAD_FOR_OTHER_ADDRESS:
5327 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5329 default:
5330 gcc_unreachable ();
5334 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5335 the number RELOADNUM, is still available in REGNO at the end of the insn.
5337 We can assume that the reload reg was already tested for availability
5338 at the time it is needed, and we should not check this again,
5339 in case the reg has already been marked in use. */
5341 static int
5342 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5344 int opnum = rld[reloadnum].opnum;
5345 enum reload_type type = rld[reloadnum].when_needed;
5346 int i;
5348 /* See if there is a reload with the same type for this operand, using
5349 the same register. This case is not handled by the code below. */
5350 for (i = reloadnum + 1; i < n_reloads; i++)
5352 rtx reg;
5353 int nregs;
5355 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5356 continue;
5357 reg = rld[i].reg_rtx;
5358 if (reg == NULL_RTX)
5359 continue;
5360 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5361 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5362 return 0;
5365 switch (type)
5367 case RELOAD_OTHER:
5368 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5369 its value must reach the end. */
5370 return 1;
5372 /* If this use is for part of the insn,
5373 its value reaches if no subsequent part uses the same register.
5374 Just like the above function, don't try to do this with lots
5375 of fallthroughs. */
5377 case RELOAD_FOR_OTHER_ADDRESS:
5378 /* Here we check for everything else, since these don't conflict
5379 with anything else and everything comes later. */
5381 for (i = 0; i < reload_n_operands; i++)
5382 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5386 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5387 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5388 return 0;
5390 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5391 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5392 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5393 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5395 case RELOAD_FOR_INPUT_ADDRESS:
5396 case RELOAD_FOR_INPADDR_ADDRESS:
5397 /* Similar, except that we check only for this and subsequent inputs
5398 and the address of only subsequent inputs and we do not need
5399 to check for RELOAD_OTHER objects since they are known not to
5400 conflict. */
5402 for (i = opnum; i < reload_n_operands; i++)
5403 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5404 return 0;
5406 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5407 could be killed if the register is also used by reload with type
5408 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5409 if (type == RELOAD_FOR_INPADDR_ADDRESS
5410 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5411 return 0;
5413 for (i = opnum + 1; i < reload_n_operands; i++)
5414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5415 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5416 return 0;
5418 for (i = 0; i < reload_n_operands; i++)
5419 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5420 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5421 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5422 return 0;
5424 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5425 return 0;
5427 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5428 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5429 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5431 case RELOAD_FOR_INPUT:
5432 /* Similar to input address, except we start at the next operand for
5433 both input and input address and we do not check for
5434 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5435 would conflict. */
5437 for (i = opnum + 1; i < reload_n_operands; i++)
5438 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5439 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5441 return 0;
5443 /* ... fall through ... */
5445 case RELOAD_FOR_OPERAND_ADDRESS:
5446 /* Check outputs and their addresses. */
5448 for (i = 0; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5452 return 0;
5454 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5456 case RELOAD_FOR_OPADDR_ADDR:
5457 for (i = 0; i < reload_n_operands; i++)
5458 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5459 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5461 return 0;
5463 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5464 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5465 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5467 case RELOAD_FOR_INSN:
5468 /* These conflict with other outputs with RELOAD_OTHER. So
5469 we need only check for output addresses. */
5471 opnum = reload_n_operands;
5473 /* fall through */
5475 case RELOAD_FOR_OUTPUT:
5476 case RELOAD_FOR_OUTPUT_ADDRESS:
5477 case RELOAD_FOR_OUTADDR_ADDRESS:
5478 /* We already know these can't conflict with a later output. So the
5479 only thing to check are later output addresses.
5480 Note that multiple output operands are emitted in reverse order,
5481 so the conflicting ones are those with lower indices. */
5482 for (i = 0; i < opnum; i++)
5483 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5484 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5485 return 0;
5487 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5488 could be killed if the register is also used by reload with type
5489 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5490 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5491 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5492 return 0;
5494 return 1;
5496 default:
5497 gcc_unreachable ();
5501 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5502 every register in REG. */
5504 static bool
5505 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5507 unsigned int i;
5509 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5510 if (!reload_reg_reaches_end_p (i, reloadnum))
5511 return false;
5512 return true;
5516 /* Returns whether R1 and R2 are uniquely chained: the value of one
5517 is used by the other, and that value is not used by any other
5518 reload for this insn. This is used to partially undo the decision
5519 made in find_reloads when in the case of multiple
5520 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5521 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5522 reloads. This code tries to avoid the conflict created by that
5523 change. It might be cleaner to explicitly keep track of which
5524 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5525 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5526 this after the fact. */
5527 static bool
5528 reloads_unique_chain_p (int r1, int r2)
5530 int i;
5532 /* We only check input reloads. */
5533 if (! rld[r1].in || ! rld[r2].in)
5534 return false;
5536 /* Avoid anything with output reloads. */
5537 if (rld[r1].out || rld[r2].out)
5538 return false;
5540 /* "chained" means one reload is a component of the other reload,
5541 not the same as the other reload. */
5542 if (rld[r1].opnum != rld[r2].opnum
5543 || rtx_equal_p (rld[r1].in, rld[r2].in)
5544 || rld[r1].optional || rld[r2].optional
5545 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5546 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5547 return false;
5549 /* The following loop assumes that r1 is the reload that feeds r2. */
5550 if (r1 > r2)
5551 std::swap (r1, r2);
5553 for (i = 0; i < n_reloads; i ++)
5554 /* Look for input reloads that aren't our two */
5555 if (i != r1 && i != r2 && rld[i].in)
5557 /* If our reload is mentioned at all, it isn't a simple chain. */
5558 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5559 return false;
5561 return true;
5564 /* The recursive function change all occurrences of WHAT in *WHERE
5565 to REPL. */
5566 static void
5567 substitute (rtx *where, const_rtx what, rtx repl)
5569 const char *fmt;
5570 int i;
5571 enum rtx_code code;
5573 if (*where == 0)
5574 return;
5576 if (*where == what || rtx_equal_p (*where, what))
5578 /* Record the location of the changed rtx. */
5579 substitute_stack.safe_push (where);
5580 *where = repl;
5581 return;
5584 code = GET_CODE (*where);
5585 fmt = GET_RTX_FORMAT (code);
5586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5588 if (fmt[i] == 'E')
5590 int j;
5592 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5593 substitute (&XVECEXP (*where, i, j), what, repl);
5595 else if (fmt[i] == 'e')
5596 substitute (&XEXP (*where, i), what, repl);
5600 /* The function returns TRUE if chain of reload R1 and R2 (in any
5601 order) can be evaluated without usage of intermediate register for
5602 the reload containing another reload. It is important to see
5603 gen_reload to understand what the function is trying to do. As an
5604 example, let us have reload chain
5606 r2: const
5607 r1: <something> + const
5609 and reload R2 got reload reg HR. The function returns true if
5610 there is a correct insn HR = HR + <something>. Otherwise,
5611 gen_reload will use intermediate register (and this is the reload
5612 reg for R1) to reload <something>.
5614 We need this function to find a conflict for chain reloads. In our
5615 example, if HR = HR + <something> is incorrect insn, then we cannot
5616 use HR as a reload register for R2. If we do use it then we get a
5617 wrong code:
5619 HR = const
5620 HR = <something>
5621 HR = HR + HR
5624 static bool
5625 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5627 /* Assume other cases in gen_reload are not possible for
5628 chain reloads or do need an intermediate hard registers. */
5629 bool result = true;
5630 int regno, code;
5631 rtx out, in;
5632 rtx_insn *insn;
5633 rtx_insn *last = get_last_insn ();
5635 /* Make r2 a component of r1. */
5636 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5637 std::swap (r1, r2);
5639 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5640 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5641 gcc_assert (regno >= 0);
5642 out = gen_rtx_REG (rld[r1].mode, regno);
5643 in = rld[r1].in;
5644 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5646 /* If IN is a paradoxical SUBREG, remove it and try to put the
5647 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5648 strip_paradoxical_subreg (&in, &out);
5650 if (GET_CODE (in) == PLUS
5651 && (REG_P (XEXP (in, 0))
5652 || GET_CODE (XEXP (in, 0)) == SUBREG
5653 || MEM_P (XEXP (in, 0)))
5654 && (REG_P (XEXP (in, 1))
5655 || GET_CODE (XEXP (in, 1)) == SUBREG
5656 || CONSTANT_P (XEXP (in, 1))
5657 || MEM_P (XEXP (in, 1))))
5659 insn = emit_insn (gen_rtx_SET (out, in));
5660 code = recog_memoized (insn);
5661 result = false;
5663 if (code >= 0)
5665 extract_insn (insn);
5666 /* We want constrain operands to treat this insn strictly in
5667 its validity determination, i.e., the way it would after
5668 reload has completed. */
5669 result = constrain_operands (1, get_enabled_alternatives (insn));
5672 delete_insns_since (last);
5675 /* Restore the original value at each changed address within R1. */
5676 while (!substitute_stack.is_empty ())
5678 rtx *where = substitute_stack.pop ();
5679 *where = rld[r2].in;
5682 return result;
5685 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5686 Return 0 otherwise.
5688 This function uses the same algorithm as reload_reg_free_p above. */
5690 static int
5691 reloads_conflict (int r1, int r2)
5693 enum reload_type r1_type = rld[r1].when_needed;
5694 enum reload_type r2_type = rld[r2].when_needed;
5695 int r1_opnum = rld[r1].opnum;
5696 int r2_opnum = rld[r2].opnum;
5698 /* RELOAD_OTHER conflicts with everything. */
5699 if (r2_type == RELOAD_OTHER)
5700 return 1;
5702 /* Otherwise, check conflicts differently for each type. */
5704 switch (r1_type)
5706 case RELOAD_FOR_INPUT:
5707 return (r2_type == RELOAD_FOR_INSN
5708 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5709 || r2_type == RELOAD_FOR_OPADDR_ADDR
5710 || r2_type == RELOAD_FOR_INPUT
5711 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5712 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5713 && r2_opnum > r1_opnum));
5715 case RELOAD_FOR_INPUT_ADDRESS:
5716 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5717 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5719 case RELOAD_FOR_INPADDR_ADDRESS:
5720 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5721 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5723 case RELOAD_FOR_OUTPUT_ADDRESS:
5724 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5725 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5727 case RELOAD_FOR_OUTADDR_ADDRESS:
5728 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5729 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5731 case RELOAD_FOR_OPERAND_ADDRESS:
5732 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5733 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5734 && (!reloads_unique_chain_p (r1, r2)
5735 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5737 case RELOAD_FOR_OPADDR_ADDR:
5738 return (r2_type == RELOAD_FOR_INPUT
5739 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5741 case RELOAD_FOR_OUTPUT:
5742 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5743 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5744 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5745 && r2_opnum >= r1_opnum));
5747 case RELOAD_FOR_INSN:
5748 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5749 || r2_type == RELOAD_FOR_INSN
5750 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5752 case RELOAD_FOR_OTHER_ADDRESS:
5753 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5755 case RELOAD_OTHER:
5756 return 1;
5758 default:
5759 gcc_unreachable ();
5763 /* Indexed by reload number, 1 if incoming value
5764 inherited from previous insns. */
5765 static char reload_inherited[MAX_RELOADS];
5767 /* For an inherited reload, this is the insn the reload was inherited from,
5768 if we know it. Otherwise, this is 0. */
5769 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5771 /* If nonzero, this is a place to get the value of the reload,
5772 rather than using reload_in. */
5773 static rtx reload_override_in[MAX_RELOADS];
5775 /* For each reload, the hard register number of the register used,
5776 or -1 if we did not need a register for this reload. */
5777 static int reload_spill_index[MAX_RELOADS];
5779 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5780 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5782 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5783 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5785 /* Subroutine of free_for_value_p, used to check a single register.
5786 START_REGNO is the starting regno of the full reload register
5787 (possibly comprising multiple hard registers) that we are considering. */
5789 static int
5790 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5791 enum reload_type type, rtx value, rtx out,
5792 int reloadnum, int ignore_address_reloads)
5794 int time1;
5795 /* Set if we see an input reload that must not share its reload register
5796 with any new earlyclobber, but might otherwise share the reload
5797 register with an output or input-output reload. */
5798 int check_earlyclobber = 0;
5799 int i;
5800 int copy = 0;
5802 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5803 return 0;
5805 if (out == const0_rtx)
5807 copy = 1;
5808 out = NULL_RTX;
5811 /* We use some pseudo 'time' value to check if the lifetimes of the
5812 new register use would overlap with the one of a previous reload
5813 that is not read-only or uses a different value.
5814 The 'time' used doesn't have to be linear in any shape or form, just
5815 monotonic.
5816 Some reload types use different 'buckets' for each operand.
5817 So there are MAX_RECOG_OPERANDS different time values for each
5818 such reload type.
5819 We compute TIME1 as the time when the register for the prospective
5820 new reload ceases to be live, and TIME2 for each existing
5821 reload as the time when that the reload register of that reload
5822 becomes live.
5823 Where there is little to be gained by exact lifetime calculations,
5824 we just make conservative assumptions, i.e. a longer lifetime;
5825 this is done in the 'default:' cases. */
5826 switch (type)
5828 case RELOAD_FOR_OTHER_ADDRESS:
5829 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5830 time1 = copy ? 0 : 1;
5831 break;
5832 case RELOAD_OTHER:
5833 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5834 break;
5835 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5836 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5837 respectively, to the time values for these, we get distinct time
5838 values. To get distinct time values for each operand, we have to
5839 multiply opnum by at least three. We round that up to four because
5840 multiply by four is often cheaper. */
5841 case RELOAD_FOR_INPADDR_ADDRESS:
5842 time1 = opnum * 4 + 2;
5843 break;
5844 case RELOAD_FOR_INPUT_ADDRESS:
5845 time1 = opnum * 4 + 3;
5846 break;
5847 case RELOAD_FOR_INPUT:
5848 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5849 executes (inclusive). */
5850 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5851 break;
5852 case RELOAD_FOR_OPADDR_ADDR:
5853 /* opnum * 4 + 4
5854 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5855 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5856 break;
5857 case RELOAD_FOR_OPERAND_ADDRESS:
5858 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5859 is executed. */
5860 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5861 break;
5862 case RELOAD_FOR_OUTADDR_ADDRESS:
5863 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5864 break;
5865 case RELOAD_FOR_OUTPUT_ADDRESS:
5866 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5867 break;
5868 default:
5869 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5872 for (i = 0; i < n_reloads; i++)
5874 rtx reg = rld[i].reg_rtx;
5875 if (reg && REG_P (reg)
5876 && ((unsigned) regno - true_regnum (reg)
5877 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5878 && i != reloadnum)
5880 rtx other_input = rld[i].in;
5882 /* If the other reload loads the same input value, that
5883 will not cause a conflict only if it's loading it into
5884 the same register. */
5885 if (true_regnum (reg) != start_regno)
5886 other_input = NULL_RTX;
5887 if (! other_input || ! rtx_equal_p (other_input, value)
5888 || rld[i].out || out)
5890 int time2;
5891 switch (rld[i].when_needed)
5893 case RELOAD_FOR_OTHER_ADDRESS:
5894 time2 = 0;
5895 break;
5896 case RELOAD_FOR_INPADDR_ADDRESS:
5897 /* find_reloads makes sure that a
5898 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5899 by at most one - the first -
5900 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5901 address reload is inherited, the address address reload
5902 goes away, so we can ignore this conflict. */
5903 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5904 && ignore_address_reloads
5905 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5906 Then the address address is still needed to store
5907 back the new address. */
5908 && ! rld[reloadnum].out)
5909 continue;
5910 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5911 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5912 reloads go away. */
5913 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5914 && ignore_address_reloads
5915 /* Unless we are reloading an auto_inc expression. */
5916 && ! rld[reloadnum].out)
5917 continue;
5918 time2 = rld[i].opnum * 4 + 2;
5919 break;
5920 case RELOAD_FOR_INPUT_ADDRESS:
5921 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5922 && ignore_address_reloads
5923 && ! rld[reloadnum].out)
5924 continue;
5925 time2 = rld[i].opnum * 4 + 3;
5926 break;
5927 case RELOAD_FOR_INPUT:
5928 time2 = rld[i].opnum * 4 + 4;
5929 check_earlyclobber = 1;
5930 break;
5931 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5932 == MAX_RECOG_OPERAND * 4 */
5933 case RELOAD_FOR_OPADDR_ADDR:
5934 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5935 && ignore_address_reloads
5936 && ! rld[reloadnum].out)
5937 continue;
5938 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5939 break;
5940 case RELOAD_FOR_OPERAND_ADDRESS:
5941 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5942 check_earlyclobber = 1;
5943 break;
5944 case RELOAD_FOR_INSN:
5945 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5946 break;
5947 case RELOAD_FOR_OUTPUT:
5948 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5949 instruction is executed. */
5950 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5951 break;
5952 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5953 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5954 value. */
5955 case RELOAD_FOR_OUTADDR_ADDRESS:
5956 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5957 && ignore_address_reloads
5958 && ! rld[reloadnum].out)
5959 continue;
5960 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5961 break;
5962 case RELOAD_FOR_OUTPUT_ADDRESS:
5963 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5964 break;
5965 case RELOAD_OTHER:
5966 /* If there is no conflict in the input part, handle this
5967 like an output reload. */
5968 if (! rld[i].in || rtx_equal_p (other_input, value))
5970 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5971 /* Earlyclobbered outputs must conflict with inputs. */
5972 if (earlyclobber_operand_p (rld[i].out))
5973 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5975 break;
5977 time2 = 1;
5978 /* RELOAD_OTHER might be live beyond instruction execution,
5979 but this is not obvious when we set time2 = 1. So check
5980 here if there might be a problem with the new reload
5981 clobbering the register used by the RELOAD_OTHER. */
5982 if (out)
5983 return 0;
5984 break;
5985 default:
5986 return 0;
5988 if ((time1 >= time2
5989 && (! rld[i].in || rld[i].out
5990 || ! rtx_equal_p (other_input, value)))
5991 || (out && rld[reloadnum].out_reg
5992 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5993 return 0;
5998 /* Earlyclobbered outputs must conflict with inputs. */
5999 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6000 return 0;
6002 return 1;
6005 /* Return 1 if the value in reload reg REGNO, as used by a reload
6006 needed for the part of the insn specified by OPNUM and TYPE,
6007 may be used to load VALUE into it.
6009 MODE is the mode in which the register is used, this is needed to
6010 determine how many hard regs to test.
6012 Other read-only reloads with the same value do not conflict
6013 unless OUT is nonzero and these other reloads have to live while
6014 output reloads live.
6015 If OUT is CONST0_RTX, this is a special case: it means that the
6016 test should not be for using register REGNO as reload register, but
6017 for copying from register REGNO into the reload register.
6019 RELOADNUM is the number of the reload we want to load this value for;
6020 a reload does not conflict with itself.
6022 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6023 reloads that load an address for the very reload we are considering.
6025 The caller has to make sure that there is no conflict with the return
6026 register. */
6028 static int
6029 free_for_value_p (int regno, machine_mode mode, int opnum,
6030 enum reload_type type, rtx value, rtx out, int reloadnum,
6031 int ignore_address_reloads)
6033 int nregs = hard_regno_nregs[regno][mode];
6034 while (nregs-- > 0)
6035 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6036 value, out, reloadnum,
6037 ignore_address_reloads))
6038 return 0;
6039 return 1;
6042 /* Return nonzero if the rtx X is invariant over the current function. */
6043 /* ??? Actually, the places where we use this expect exactly what is
6044 tested here, and not everything that is function invariant. In
6045 particular, the frame pointer and arg pointer are special cased;
6046 pic_offset_table_rtx is not, and we must not spill these things to
6047 memory. */
6050 function_invariant_p (const_rtx x)
6052 if (CONSTANT_P (x))
6053 return 1;
6054 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6055 return 1;
6056 if (GET_CODE (x) == PLUS
6057 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6058 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6059 return 1;
6060 return 0;
6063 /* Determine whether the reload reg X overlaps any rtx'es used for
6064 overriding inheritance. Return nonzero if so. */
6066 static int
6067 conflicts_with_override (rtx x)
6069 int i;
6070 for (i = 0; i < n_reloads; i++)
6071 if (reload_override_in[i]
6072 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6073 return 1;
6074 return 0;
6077 /* Give an error message saying we failed to find a reload for INSN,
6078 and clear out reload R. */
6079 static void
6080 failed_reload (rtx_insn *insn, int r)
6082 if (asm_noperands (PATTERN (insn)) < 0)
6083 /* It's the compiler's fault. */
6084 fatal_insn ("could not find a spill register", insn);
6086 /* It's the user's fault; the operand's mode and constraint
6087 don't match. Disable this reload so we don't crash in final. */
6088 error_for_asm (insn,
6089 "%<asm%> operand constraint incompatible with operand size");
6090 rld[r].in = 0;
6091 rld[r].out = 0;
6092 rld[r].reg_rtx = 0;
6093 rld[r].optional = 1;
6094 rld[r].secondary_p = 1;
6097 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6098 for reload R. If it's valid, get an rtx for it. Return nonzero if
6099 successful. */
6100 static int
6101 set_reload_reg (int i, int r)
6103 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6104 parameter. */
6105 int regno ATTRIBUTE_UNUSED;
6106 rtx reg = spill_reg_rtx[i];
6108 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6109 spill_reg_rtx[i] = reg
6110 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6112 regno = true_regnum (reg);
6114 /* Detect when the reload reg can't hold the reload mode.
6115 This used to be one `if', but Sequent compiler can't handle that. */
6116 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6118 machine_mode test_mode = VOIDmode;
6119 if (rld[r].in)
6120 test_mode = GET_MODE (rld[r].in);
6121 /* If rld[r].in has VOIDmode, it means we will load it
6122 in whatever mode the reload reg has: to wit, rld[r].mode.
6123 We have already tested that for validity. */
6124 /* Aside from that, we need to test that the expressions
6125 to reload from or into have modes which are valid for this
6126 reload register. Otherwise the reload insns would be invalid. */
6127 if (! (rld[r].in != 0 && test_mode != VOIDmode
6128 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6129 if (! (rld[r].out != 0
6130 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6132 /* The reg is OK. */
6133 last_spill_reg = i;
6135 /* Mark as in use for this insn the reload regs we use
6136 for this. */
6137 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6138 rld[r].when_needed, rld[r].mode);
6140 rld[r].reg_rtx = reg;
6141 reload_spill_index[r] = spill_regs[i];
6142 return 1;
6145 return 0;
6148 /* Find a spill register to use as a reload register for reload R.
6149 LAST_RELOAD is nonzero if this is the last reload for the insn being
6150 processed.
6152 Set rld[R].reg_rtx to the register allocated.
6154 We return 1 if successful, or 0 if we couldn't find a spill reg and
6155 we didn't change anything. */
6157 static int
6158 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6159 int last_reload)
6161 int i, pass, count;
6163 /* If we put this reload ahead, thinking it is a group,
6164 then insist on finding a group. Otherwise we can grab a
6165 reg that some other reload needs.
6166 (That can happen when we have a 68000 DATA_OR_FP_REG
6167 which is a group of data regs or one fp reg.)
6168 We need not be so restrictive if there are no more reloads
6169 for this insn.
6171 ??? Really it would be nicer to have smarter handling
6172 for that kind of reg class, where a problem like this is normal.
6173 Perhaps those classes should be avoided for reloading
6174 by use of more alternatives. */
6176 int force_group = rld[r].nregs > 1 && ! last_reload;
6178 /* If we want a single register and haven't yet found one,
6179 take any reg in the right class and not in use.
6180 If we want a consecutive group, here is where we look for it.
6182 We use three passes so we can first look for reload regs to
6183 reuse, which are already in use for other reloads in this insn,
6184 and only then use additional registers which are not "bad", then
6185 finally any register.
6187 I think that maximizing reuse is needed to make sure we don't
6188 run out of reload regs. Suppose we have three reloads, and
6189 reloads A and B can share regs. These need two regs.
6190 Suppose A and B are given different regs.
6191 That leaves none for C. */
6192 for (pass = 0; pass < 3; pass++)
6194 /* I is the index in spill_regs.
6195 We advance it round-robin between insns to use all spill regs
6196 equally, so that inherited reloads have a chance
6197 of leapfrogging each other. */
6199 i = last_spill_reg;
6201 for (count = 0; count < n_spills; count++)
6203 int rclass = (int) rld[r].rclass;
6204 int regnum;
6206 i++;
6207 if (i >= n_spills)
6208 i -= n_spills;
6209 regnum = spill_regs[i];
6211 if ((reload_reg_free_p (regnum, rld[r].opnum,
6212 rld[r].when_needed)
6213 || (rld[r].in
6214 /* We check reload_reg_used to make sure we
6215 don't clobber the return register. */
6216 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6217 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6218 rld[r].when_needed, rld[r].in,
6219 rld[r].out, r, 1)))
6220 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6221 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6222 /* Look first for regs to share, then for unshared. But
6223 don't share regs used for inherited reloads; they are
6224 the ones we want to preserve. */
6225 && (pass
6226 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6227 regnum)
6228 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6229 regnum))))
6231 int nr = hard_regno_nregs[regnum][rld[r].mode];
6233 /* During the second pass we want to avoid reload registers
6234 which are "bad" for this reload. */
6235 if (pass == 1
6236 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6237 continue;
6239 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6240 (on 68000) got us two FP regs. If NR is 1,
6241 we would reject both of them. */
6242 if (force_group)
6243 nr = rld[r].nregs;
6244 /* If we need only one reg, we have already won. */
6245 if (nr == 1)
6247 /* But reject a single reg if we demand a group. */
6248 if (force_group)
6249 continue;
6250 break;
6252 /* Otherwise check that as many consecutive regs as we need
6253 are available here. */
6254 while (nr > 1)
6256 int regno = regnum + nr - 1;
6257 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6258 && spill_reg_order[regno] >= 0
6259 && reload_reg_free_p (regno, rld[r].opnum,
6260 rld[r].when_needed)))
6261 break;
6262 nr--;
6264 if (nr == 1)
6265 break;
6269 /* If we found something on the current pass, omit later passes. */
6270 if (count < n_spills)
6271 break;
6274 /* We should have found a spill register by now. */
6275 if (count >= n_spills)
6276 return 0;
6278 /* I is the index in SPILL_REG_RTX of the reload register we are to
6279 allocate. Get an rtx for it and find its register number. */
6281 return set_reload_reg (i, r);
6284 /* Initialize all the tables needed to allocate reload registers.
6285 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6286 is the array we use to restore the reg_rtx field for every reload. */
6288 static void
6289 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6291 int i;
6293 for (i = 0; i < n_reloads; i++)
6294 rld[i].reg_rtx = save_reload_reg_rtx[i];
6296 memset (reload_inherited, 0, MAX_RELOADS);
6297 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6298 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6300 CLEAR_HARD_REG_SET (reload_reg_used);
6301 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6302 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6303 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6304 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6305 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6307 CLEAR_HARD_REG_SET (reg_used_in_insn);
6309 HARD_REG_SET tmp;
6310 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6311 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6312 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6313 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6314 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6315 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6318 for (i = 0; i < reload_n_operands; i++)
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6324 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6325 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6328 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6330 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6332 for (i = 0; i < n_reloads; i++)
6333 /* If we have already decided to use a certain register,
6334 don't use it in another way. */
6335 if (rld[i].reg_rtx)
6336 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6337 rld[i].when_needed, rld[i].mode);
6340 #ifdef SECONDARY_MEMORY_NEEDED
6341 /* If X is not a subreg, return it unmodified. If it is a subreg,
6342 look up whether we made a replacement for the SUBREG_REG. Return
6343 either the replacement or the SUBREG_REG. */
6345 static rtx
6346 replaced_subreg (rtx x)
6348 if (GET_CODE (x) == SUBREG)
6349 return find_replacement (&SUBREG_REG (x));
6350 return x;
6352 #endif
6354 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6355 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6356 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6357 otherwise it is NULL. */
6359 static int
6360 compute_reload_subreg_offset (machine_mode outermode,
6361 rtx subreg,
6362 machine_mode innermode)
6364 int outer_offset;
6365 machine_mode middlemode;
6367 if (!subreg)
6368 return subreg_lowpart_offset (outermode, innermode);
6370 outer_offset = SUBREG_BYTE (subreg);
6371 middlemode = GET_MODE (SUBREG_REG (subreg));
6373 /* If SUBREG is paradoxical then return the normal lowpart offset
6374 for OUTERMODE and INNERMODE. Our caller has already checked
6375 that OUTERMODE fits in INNERMODE. */
6376 if (outer_offset == 0
6377 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6378 return subreg_lowpart_offset (outermode, innermode);
6380 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6381 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6382 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6385 /* Assign hard reg targets for the pseudo-registers we must reload
6386 into hard regs for this insn.
6387 Also output the instructions to copy them in and out of the hard regs.
6389 For machines with register classes, we are responsible for
6390 finding a reload reg in the proper class. */
6392 static void
6393 choose_reload_regs (struct insn_chain *chain)
6395 rtx_insn *insn = chain->insn;
6396 int i, j;
6397 unsigned int max_group_size = 1;
6398 enum reg_class group_class = NO_REGS;
6399 int pass, win, inheritance;
6401 rtx save_reload_reg_rtx[MAX_RELOADS];
6403 /* In order to be certain of getting the registers we need,
6404 we must sort the reloads into order of increasing register class.
6405 Then our grabbing of reload registers will parallel the process
6406 that provided the reload registers.
6408 Also note whether any of the reloads wants a consecutive group of regs.
6409 If so, record the maximum size of the group desired and what
6410 register class contains all the groups needed by this insn. */
6412 for (j = 0; j < n_reloads; j++)
6414 reload_order[j] = j;
6415 if (rld[j].reg_rtx != NULL_RTX)
6417 gcc_assert (REG_P (rld[j].reg_rtx)
6418 && HARD_REGISTER_P (rld[j].reg_rtx));
6419 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6421 else
6422 reload_spill_index[j] = -1;
6424 if (rld[j].nregs > 1)
6426 max_group_size = MAX (rld[j].nregs, max_group_size);
6427 group_class
6428 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6431 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6434 if (n_reloads > 1)
6435 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6437 /* If -O, try first with inheritance, then turning it off.
6438 If not -O, don't do inheritance.
6439 Using inheritance when not optimizing leads to paradoxes
6440 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6441 because one side of the comparison might be inherited. */
6442 win = 0;
6443 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6445 choose_reload_regs_init (chain, save_reload_reg_rtx);
6447 /* Process the reloads in order of preference just found.
6448 Beyond this point, subregs can be found in reload_reg_rtx.
6450 This used to look for an existing reloaded home for all of the
6451 reloads, and only then perform any new reloads. But that could lose
6452 if the reloads were done out of reg-class order because a later
6453 reload with a looser constraint might have an old home in a register
6454 needed by an earlier reload with a tighter constraint.
6456 To solve this, we make two passes over the reloads, in the order
6457 described above. In the first pass we try to inherit a reload
6458 from a previous insn. If there is a later reload that needs a
6459 class that is a proper subset of the class being processed, we must
6460 also allocate a spill register during the first pass.
6462 Then make a second pass over the reloads to allocate any reloads
6463 that haven't been given registers yet. */
6465 for (j = 0; j < n_reloads; j++)
6467 int r = reload_order[j];
6468 rtx search_equiv = NULL_RTX;
6470 /* Ignore reloads that got marked inoperative. */
6471 if (rld[r].out == 0 && rld[r].in == 0
6472 && ! rld[r].secondary_p)
6473 continue;
6475 /* If find_reloads chose to use reload_in or reload_out as a reload
6476 register, we don't need to chose one. Otherwise, try even if it
6477 found one since we might save an insn if we find the value lying
6478 around.
6479 Try also when reload_in is a pseudo without a hard reg. */
6480 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6481 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6482 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6483 && !MEM_P (rld[r].in)
6484 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6485 continue;
6487 #if 0 /* No longer needed for correct operation.
6488 It might give better code, or might not; worth an experiment? */
6489 /* If this is an optional reload, we can't inherit from earlier insns
6490 until we are sure that any non-optional reloads have been allocated.
6491 The following code takes advantage of the fact that optional reloads
6492 are at the end of reload_order. */
6493 if (rld[r].optional != 0)
6494 for (i = 0; i < j; i++)
6495 if ((rld[reload_order[i]].out != 0
6496 || rld[reload_order[i]].in != 0
6497 || rld[reload_order[i]].secondary_p)
6498 && ! rld[reload_order[i]].optional
6499 && rld[reload_order[i]].reg_rtx == 0)
6500 allocate_reload_reg (chain, reload_order[i], 0);
6501 #endif
6503 /* First see if this pseudo is already available as reloaded
6504 for a previous insn. We cannot try to inherit for reloads
6505 that are smaller than the maximum number of registers needed
6506 for groups unless the register we would allocate cannot be used
6507 for the groups.
6509 We could check here to see if this is a secondary reload for
6510 an object that is already in a register of the desired class.
6511 This would avoid the need for the secondary reload register.
6512 But this is complex because we can't easily determine what
6513 objects might want to be loaded via this reload. So let a
6514 register be allocated here. In `emit_reload_insns' we suppress
6515 one of the loads in the case described above. */
6517 if (inheritance)
6519 int byte = 0;
6520 int regno = -1;
6521 machine_mode mode = VOIDmode;
6522 rtx subreg = NULL_RTX;
6524 if (rld[r].in == 0)
6526 else if (REG_P (rld[r].in))
6528 regno = REGNO (rld[r].in);
6529 mode = GET_MODE (rld[r].in);
6531 else if (REG_P (rld[r].in_reg))
6533 regno = REGNO (rld[r].in_reg);
6534 mode = GET_MODE (rld[r].in_reg);
6536 else if (GET_CODE (rld[r].in_reg) == SUBREG
6537 && REG_P (SUBREG_REG (rld[r].in_reg)))
6539 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6540 if (regno < FIRST_PSEUDO_REGISTER)
6541 regno = subreg_regno (rld[r].in_reg);
6542 else
6544 subreg = rld[r].in_reg;
6545 byte = SUBREG_BYTE (subreg);
6547 mode = GET_MODE (rld[r].in_reg);
6549 #if AUTO_INC_DEC
6550 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6551 && REG_P (XEXP (rld[r].in_reg, 0)))
6553 regno = REGNO (XEXP (rld[r].in_reg, 0));
6554 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6555 rld[r].out = rld[r].in;
6557 #endif
6558 #if 0
6559 /* This won't work, since REGNO can be a pseudo reg number.
6560 Also, it takes much more hair to keep track of all the things
6561 that can invalidate an inherited reload of part of a pseudoreg. */
6562 else if (GET_CODE (rld[r].in) == SUBREG
6563 && REG_P (SUBREG_REG (rld[r].in)))
6564 regno = subreg_regno (rld[r].in);
6565 #endif
6567 if (regno >= 0
6568 && reg_last_reload_reg[regno] != 0
6569 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6570 >= GET_MODE_SIZE (mode) + byte)
6571 #ifdef CANNOT_CHANGE_MODE_CLASS
6572 /* Verify that the register it's in can be used in
6573 mode MODE. */
6574 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6575 GET_MODE (reg_last_reload_reg[regno]),
6576 mode)
6577 #endif
6580 enum reg_class rclass = rld[r].rclass, last_class;
6581 rtx last_reg = reg_last_reload_reg[regno];
6583 i = REGNO (last_reg);
6584 byte = compute_reload_subreg_offset (mode,
6585 subreg,
6586 GET_MODE (last_reg));
6587 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6588 last_class = REGNO_REG_CLASS (i);
6590 if (reg_reloaded_contents[i] == regno
6591 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6592 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6593 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6594 /* Even if we can't use this register as a reload
6595 register, we might use it for reload_override_in,
6596 if copying it to the desired class is cheap
6597 enough. */
6598 || ((register_move_cost (mode, last_class, rclass)
6599 < memory_move_cost (mode, rclass, true))
6600 && (secondary_reload_class (1, rclass, mode,
6601 last_reg)
6602 == NO_REGS)
6603 #ifdef SECONDARY_MEMORY_NEEDED
6604 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6605 mode)
6606 #endif
6609 && (rld[r].nregs == max_group_size
6610 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6612 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6613 rld[r].when_needed, rld[r].in,
6614 const0_rtx, r, 1))
6616 /* If a group is needed, verify that all the subsequent
6617 registers still have their values intact. */
6618 int nr = hard_regno_nregs[i][rld[r].mode];
6619 int k;
6621 for (k = 1; k < nr; k++)
6622 if (reg_reloaded_contents[i + k] != regno
6623 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6624 break;
6626 if (k == nr)
6628 int i1;
6629 int bad_for_class;
6631 last_reg = (GET_MODE (last_reg) == mode
6632 ? last_reg : gen_rtx_REG (mode, i));
6634 bad_for_class = 0;
6635 for (k = 0; k < nr; k++)
6636 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6637 i+k);
6639 /* We found a register that contains the
6640 value we need. If this register is the
6641 same as an `earlyclobber' operand of the
6642 current insn, just mark it as a place to
6643 reload from since we can't use it as the
6644 reload register itself. */
6646 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6647 if (reg_overlap_mentioned_for_reload_p
6648 (reg_last_reload_reg[regno],
6649 reload_earlyclobbers[i1]))
6650 break;
6652 if (i1 != n_earlyclobbers
6653 || ! (free_for_value_p (i, rld[r].mode,
6654 rld[r].opnum,
6655 rld[r].when_needed, rld[r].in,
6656 rld[r].out, r, 1))
6657 /* Don't use it if we'd clobber a pseudo reg. */
6658 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6659 && rld[r].out
6660 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6661 /* Don't clobber the frame pointer. */
6662 || (i == HARD_FRAME_POINTER_REGNUM
6663 && frame_pointer_needed
6664 && rld[r].out)
6665 /* Don't really use the inherited spill reg
6666 if we need it wider than we've got it. */
6667 || (GET_MODE_SIZE (rld[r].mode)
6668 > GET_MODE_SIZE (mode))
6669 || bad_for_class
6671 /* If find_reloads chose reload_out as reload
6672 register, stay with it - that leaves the
6673 inherited register for subsequent reloads. */
6674 || (rld[r].out && rld[r].reg_rtx
6675 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6677 if (! rld[r].optional)
6679 reload_override_in[r] = last_reg;
6680 reload_inheritance_insn[r]
6681 = reg_reloaded_insn[i];
6684 else
6686 int k;
6687 /* We can use this as a reload reg. */
6688 /* Mark the register as in use for this part of
6689 the insn. */
6690 mark_reload_reg_in_use (i,
6691 rld[r].opnum,
6692 rld[r].when_needed,
6693 rld[r].mode);
6694 rld[r].reg_rtx = last_reg;
6695 reload_inherited[r] = 1;
6696 reload_inheritance_insn[r]
6697 = reg_reloaded_insn[i];
6698 reload_spill_index[r] = i;
6699 for (k = 0; k < nr; k++)
6700 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6701 i + k);
6708 /* Here's another way to see if the value is already lying around. */
6709 if (inheritance
6710 && rld[r].in != 0
6711 && ! reload_inherited[r]
6712 && rld[r].out == 0
6713 && (CONSTANT_P (rld[r].in)
6714 || GET_CODE (rld[r].in) == PLUS
6715 || REG_P (rld[r].in)
6716 || MEM_P (rld[r].in))
6717 && (rld[r].nregs == max_group_size
6718 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6719 search_equiv = rld[r].in;
6721 if (search_equiv)
6723 rtx equiv
6724 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6725 -1, NULL, 0, rld[r].mode);
6726 int regno = 0;
6728 if (equiv != 0)
6730 if (REG_P (equiv))
6731 regno = REGNO (equiv);
6732 else
6734 /* This must be a SUBREG of a hard register.
6735 Make a new REG since this might be used in an
6736 address and not all machines support SUBREGs
6737 there. */
6738 gcc_assert (GET_CODE (equiv) == SUBREG);
6739 regno = subreg_regno (equiv);
6740 equiv = gen_rtx_REG (rld[r].mode, regno);
6741 /* If we choose EQUIV as the reload register, but the
6742 loop below decides to cancel the inheritance, we'll
6743 end up reloading EQUIV in rld[r].mode, not the mode
6744 it had originally. That isn't safe when EQUIV isn't
6745 available as a spill register since its value might
6746 still be live at this point. */
6747 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6748 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6749 equiv = 0;
6753 /* If we found a spill reg, reject it unless it is free
6754 and of the desired class. */
6755 if (equiv != 0)
6757 int regs_used = 0;
6758 int bad_for_class = 0;
6759 int max_regno = regno + rld[r].nregs;
6761 for (i = regno; i < max_regno; i++)
6763 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6765 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6769 if ((regs_used
6770 && ! free_for_value_p (regno, rld[r].mode,
6771 rld[r].opnum, rld[r].when_needed,
6772 rld[r].in, rld[r].out, r, 1))
6773 || bad_for_class)
6774 equiv = 0;
6777 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6778 equiv = 0;
6780 /* We found a register that contains the value we need.
6781 If this register is the same as an `earlyclobber' operand
6782 of the current insn, just mark it as a place to reload from
6783 since we can't use it as the reload register itself. */
6785 if (equiv != 0)
6786 for (i = 0; i < n_earlyclobbers; i++)
6787 if (reg_overlap_mentioned_for_reload_p (equiv,
6788 reload_earlyclobbers[i]))
6790 if (! rld[r].optional)
6791 reload_override_in[r] = equiv;
6792 equiv = 0;
6793 break;
6796 /* If the equiv register we have found is explicitly clobbered
6797 in the current insn, it depends on the reload type if we
6798 can use it, use it for reload_override_in, or not at all.
6799 In particular, we then can't use EQUIV for a
6800 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6802 if (equiv != 0)
6804 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6805 switch (rld[r].when_needed)
6807 case RELOAD_FOR_OTHER_ADDRESS:
6808 case RELOAD_FOR_INPADDR_ADDRESS:
6809 case RELOAD_FOR_INPUT_ADDRESS:
6810 case RELOAD_FOR_OPADDR_ADDR:
6811 break;
6812 case RELOAD_OTHER:
6813 case RELOAD_FOR_INPUT:
6814 case RELOAD_FOR_OPERAND_ADDRESS:
6815 if (! rld[r].optional)
6816 reload_override_in[r] = equiv;
6817 /* Fall through. */
6818 default:
6819 equiv = 0;
6820 break;
6822 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6823 switch (rld[r].when_needed)
6825 case RELOAD_FOR_OTHER_ADDRESS:
6826 case RELOAD_FOR_INPADDR_ADDRESS:
6827 case RELOAD_FOR_INPUT_ADDRESS:
6828 case RELOAD_FOR_OPADDR_ADDR:
6829 case RELOAD_FOR_OPERAND_ADDRESS:
6830 case RELOAD_FOR_INPUT:
6831 break;
6832 case RELOAD_OTHER:
6833 if (! rld[r].optional)
6834 reload_override_in[r] = equiv;
6835 /* Fall through. */
6836 default:
6837 equiv = 0;
6838 break;
6842 /* If we found an equivalent reg, say no code need be generated
6843 to load it, and use it as our reload reg. */
6844 if (equiv != 0
6845 && (regno != HARD_FRAME_POINTER_REGNUM
6846 || !frame_pointer_needed))
6848 int nr = hard_regno_nregs[regno][rld[r].mode];
6849 int k;
6850 rld[r].reg_rtx = equiv;
6851 reload_spill_index[r] = regno;
6852 reload_inherited[r] = 1;
6854 /* If reg_reloaded_valid is not set for this register,
6855 there might be a stale spill_reg_store lying around.
6856 We must clear it, since otherwise emit_reload_insns
6857 might delete the store. */
6858 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6859 spill_reg_store[regno] = NULL;
6860 /* If any of the hard registers in EQUIV are spill
6861 registers, mark them as in use for this insn. */
6862 for (k = 0; k < nr; k++)
6864 i = spill_reg_order[regno + k];
6865 if (i >= 0)
6867 mark_reload_reg_in_use (regno, rld[r].opnum,
6868 rld[r].when_needed,
6869 rld[r].mode);
6870 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6871 regno + k);
6877 /* If we found a register to use already, or if this is an optional
6878 reload, we are done. */
6879 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6880 continue;
6882 #if 0
6883 /* No longer needed for correct operation. Might or might
6884 not give better code on the average. Want to experiment? */
6886 /* See if there is a later reload that has a class different from our
6887 class that intersects our class or that requires less register
6888 than our reload. If so, we must allocate a register to this
6889 reload now, since that reload might inherit a previous reload
6890 and take the only available register in our class. Don't do this
6891 for optional reloads since they will force all previous reloads
6892 to be allocated. Also don't do this for reloads that have been
6893 turned off. */
6895 for (i = j + 1; i < n_reloads; i++)
6897 int s = reload_order[i];
6899 if ((rld[s].in == 0 && rld[s].out == 0
6900 && ! rld[s].secondary_p)
6901 || rld[s].optional)
6902 continue;
6904 if ((rld[s].rclass != rld[r].rclass
6905 && reg_classes_intersect_p (rld[r].rclass,
6906 rld[s].rclass))
6907 || rld[s].nregs < rld[r].nregs)
6908 break;
6911 if (i == n_reloads)
6912 continue;
6914 allocate_reload_reg (chain, r, j == n_reloads - 1);
6915 #endif
6918 /* Now allocate reload registers for anything non-optional that
6919 didn't get one yet. */
6920 for (j = 0; j < n_reloads; j++)
6922 int r = reload_order[j];
6924 /* Ignore reloads that got marked inoperative. */
6925 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6926 continue;
6928 /* Skip reloads that already have a register allocated or are
6929 optional. */
6930 if (rld[r].reg_rtx != 0 || rld[r].optional)
6931 continue;
6933 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6934 break;
6937 /* If that loop got all the way, we have won. */
6938 if (j == n_reloads)
6940 win = 1;
6941 break;
6944 /* Loop around and try without any inheritance. */
6947 if (! win)
6949 /* First undo everything done by the failed attempt
6950 to allocate with inheritance. */
6951 choose_reload_regs_init (chain, save_reload_reg_rtx);
6953 /* Some sanity tests to verify that the reloads found in the first
6954 pass are identical to the ones we have now. */
6955 gcc_assert (chain->n_reloads == n_reloads);
6957 for (i = 0; i < n_reloads; i++)
6959 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6960 continue;
6961 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6962 for (j = 0; j < n_spills; j++)
6963 if (spill_regs[j] == chain->rld[i].regno)
6964 if (! set_reload_reg (j, i))
6965 failed_reload (chain->insn, i);
6969 /* If we thought we could inherit a reload, because it seemed that
6970 nothing else wanted the same reload register earlier in the insn,
6971 verify that assumption, now that all reloads have been assigned.
6972 Likewise for reloads where reload_override_in has been set. */
6974 /* If doing expensive optimizations, do one preliminary pass that doesn't
6975 cancel any inheritance, but removes reloads that have been needed only
6976 for reloads that we know can be inherited. */
6977 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6979 for (j = 0; j < n_reloads; j++)
6981 int r = reload_order[j];
6982 rtx check_reg;
6983 #ifdef SECONDARY_MEMORY_NEEDED
6984 rtx tem;
6985 #endif
6986 if (reload_inherited[r] && rld[r].reg_rtx)
6987 check_reg = rld[r].reg_rtx;
6988 else if (reload_override_in[r]
6989 && (REG_P (reload_override_in[r])
6990 || GET_CODE (reload_override_in[r]) == SUBREG))
6991 check_reg = reload_override_in[r];
6992 else
6993 continue;
6994 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6995 rld[r].opnum, rld[r].when_needed, rld[r].in,
6996 (reload_inherited[r]
6997 ? rld[r].out : const0_rtx),
6998 r, 1))
7000 if (pass)
7001 continue;
7002 reload_inherited[r] = 0;
7003 reload_override_in[r] = 0;
7005 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7006 reload_override_in, then we do not need its related
7007 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7008 likewise for other reload types.
7009 We handle this by removing a reload when its only replacement
7010 is mentioned in reload_in of the reload we are going to inherit.
7011 A special case are auto_inc expressions; even if the input is
7012 inherited, we still need the address for the output. We can
7013 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7014 If we succeeded removing some reload and we are doing a preliminary
7015 pass just to remove such reloads, make another pass, since the
7016 removal of one reload might allow us to inherit another one. */
7017 else if (rld[r].in
7018 && rld[r].out != rld[r].in
7019 && remove_address_replacements (rld[r].in))
7021 if (pass)
7022 pass = 2;
7024 #ifdef SECONDARY_MEMORY_NEEDED
7025 /* If we needed a memory location for the reload, we also have to
7026 remove its related reloads. */
7027 else if (rld[r].in
7028 && rld[r].out != rld[r].in
7029 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7030 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7031 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7032 rld[r].rclass, rld[r].inmode)
7033 && remove_address_replacements
7034 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7035 rld[r].when_needed)))
7037 if (pass)
7038 pass = 2;
7040 #endif
7044 /* Now that reload_override_in is known valid,
7045 actually override reload_in. */
7046 for (j = 0; j < n_reloads; j++)
7047 if (reload_override_in[j])
7048 rld[j].in = reload_override_in[j];
7050 /* If this reload won't be done because it has been canceled or is
7051 optional and not inherited, clear reload_reg_rtx so other
7052 routines (such as subst_reloads) don't get confused. */
7053 for (j = 0; j < n_reloads; j++)
7054 if (rld[j].reg_rtx != 0
7055 && ((rld[j].optional && ! reload_inherited[j])
7056 || (rld[j].in == 0 && rld[j].out == 0
7057 && ! rld[j].secondary_p)))
7059 int regno = true_regnum (rld[j].reg_rtx);
7061 if (spill_reg_order[regno] >= 0)
7062 clear_reload_reg_in_use (regno, rld[j].opnum,
7063 rld[j].when_needed, rld[j].mode);
7064 rld[j].reg_rtx = 0;
7065 reload_spill_index[j] = -1;
7068 /* Record which pseudos and which spill regs have output reloads. */
7069 for (j = 0; j < n_reloads; j++)
7071 int r = reload_order[j];
7073 i = reload_spill_index[r];
7075 /* I is nonneg if this reload uses a register.
7076 If rld[r].reg_rtx is 0, this is an optional reload
7077 that we opted to ignore. */
7078 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7079 && rld[r].reg_rtx != 0)
7081 int nregno = REGNO (rld[r].out_reg);
7082 int nr = 1;
7084 if (nregno < FIRST_PSEUDO_REGISTER)
7085 nr = hard_regno_nregs[nregno][rld[r].mode];
7087 while (--nr >= 0)
7088 SET_REGNO_REG_SET (&reg_has_output_reload,
7089 nregno + nr);
7091 if (i >= 0)
7092 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7094 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7095 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7096 || rld[r].when_needed == RELOAD_FOR_INSN);
7101 /* Deallocate the reload register for reload R. This is called from
7102 remove_address_replacements. */
7104 void
7105 deallocate_reload_reg (int r)
7107 int regno;
7109 if (! rld[r].reg_rtx)
7110 return;
7111 regno = true_regnum (rld[r].reg_rtx);
7112 rld[r].reg_rtx = 0;
7113 if (spill_reg_order[regno] >= 0)
7114 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7115 rld[r].mode);
7116 reload_spill_index[r] = -1;
7119 /* These arrays are filled by emit_reload_insns and its subroutines. */
7120 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7121 static rtx_insn *other_input_address_reload_insns = 0;
7122 static rtx_insn *other_input_reload_insns = 0;
7123 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7126 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7127 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7128 static rtx_insn *operand_reload_insns = 0;
7129 static rtx_insn *other_operand_reload_insns = 0;
7130 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7132 /* Values to be put in spill_reg_store are put here first. Instructions
7133 must only be placed here if the associated reload register reaches
7134 the end of the instruction's reload sequence. */
7135 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7136 static HARD_REG_SET reg_reloaded_died;
7138 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7139 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7140 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7141 adjusted register, and return true. Otherwise, return false. */
7142 static bool
7143 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7144 enum reg_class new_class,
7145 machine_mode new_mode)
7148 rtx reg;
7150 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7152 unsigned regno = REGNO (reg);
7154 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7155 continue;
7156 if (GET_MODE (reg) != new_mode)
7158 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7159 continue;
7160 if (hard_regno_nregs[regno][new_mode]
7161 > hard_regno_nregs[regno][GET_MODE (reg)])
7162 continue;
7163 reg = reload_adjust_reg_for_mode (reg, new_mode);
7165 *reload_reg = reg;
7166 return true;
7168 return false;
7171 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7172 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7173 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7174 adjusted register, and return true. Otherwise, return false. */
7175 static bool
7176 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7177 enum insn_code icode)
7180 enum reg_class new_class = scratch_reload_class (icode);
7181 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7183 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7184 new_class, new_mode);
7187 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7188 has the number J. OLD contains the value to be used as input. */
7190 static void
7191 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7192 rtx old, int j)
7194 rtx_insn *insn = chain->insn;
7195 rtx reloadreg;
7196 rtx oldequiv_reg = 0;
7197 rtx oldequiv = 0;
7198 int special = 0;
7199 machine_mode mode;
7200 rtx_insn **where;
7202 /* delete_output_reload is only invoked properly if old contains
7203 the original pseudo register. Since this is replaced with a
7204 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7205 find the pseudo in RELOAD_IN_REG. This is also used to
7206 determine whether a secondary reload is needed. */
7207 if (reload_override_in[j]
7208 && (REG_P (rl->in_reg)
7209 || (GET_CODE (rl->in_reg) == SUBREG
7210 && REG_P (SUBREG_REG (rl->in_reg)))))
7212 oldequiv = old;
7213 old = rl->in_reg;
7215 if (oldequiv == 0)
7216 oldequiv = old;
7217 else if (REG_P (oldequiv))
7218 oldequiv_reg = oldequiv;
7219 else if (GET_CODE (oldequiv) == SUBREG)
7220 oldequiv_reg = SUBREG_REG (oldequiv);
7222 reloadreg = reload_reg_rtx_for_input[j];
7223 mode = GET_MODE (reloadreg);
7225 /* If we are reloading from a register that was recently stored in
7226 with an output-reload, see if we can prove there was
7227 actually no need to store the old value in it. */
7229 if (optimize && REG_P (oldequiv)
7230 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7231 && spill_reg_store[REGNO (oldequiv)]
7232 && REG_P (old)
7233 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7234 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7235 rl->out_reg)))
7236 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7238 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7239 OLDEQUIV. */
7241 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7242 oldequiv = SUBREG_REG (oldequiv);
7243 if (GET_MODE (oldequiv) != VOIDmode
7244 && mode != GET_MODE (oldequiv))
7245 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7247 /* Switch to the right place to emit the reload insns. */
7248 switch (rl->when_needed)
7250 case RELOAD_OTHER:
7251 where = &other_input_reload_insns;
7252 break;
7253 case RELOAD_FOR_INPUT:
7254 where = &input_reload_insns[rl->opnum];
7255 break;
7256 case RELOAD_FOR_INPUT_ADDRESS:
7257 where = &input_address_reload_insns[rl->opnum];
7258 break;
7259 case RELOAD_FOR_INPADDR_ADDRESS:
7260 where = &inpaddr_address_reload_insns[rl->opnum];
7261 break;
7262 case RELOAD_FOR_OUTPUT_ADDRESS:
7263 where = &output_address_reload_insns[rl->opnum];
7264 break;
7265 case RELOAD_FOR_OUTADDR_ADDRESS:
7266 where = &outaddr_address_reload_insns[rl->opnum];
7267 break;
7268 case RELOAD_FOR_OPERAND_ADDRESS:
7269 where = &operand_reload_insns;
7270 break;
7271 case RELOAD_FOR_OPADDR_ADDR:
7272 where = &other_operand_reload_insns;
7273 break;
7274 case RELOAD_FOR_OTHER_ADDRESS:
7275 where = &other_input_address_reload_insns;
7276 break;
7277 default:
7278 gcc_unreachable ();
7281 push_to_sequence (*where);
7283 /* Auto-increment addresses must be reloaded in a special way. */
7284 if (rl->out && ! rl->out_reg)
7286 /* We are not going to bother supporting the case where a
7287 incremented register can't be copied directly from
7288 OLDEQUIV since this seems highly unlikely. */
7289 gcc_assert (rl->secondary_in_reload < 0);
7291 if (reload_inherited[j])
7292 oldequiv = reloadreg;
7294 old = XEXP (rl->in_reg, 0);
7296 /* Prevent normal processing of this reload. */
7297 special = 1;
7298 /* Output a special code sequence for this case. */
7299 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7302 /* If we are reloading a pseudo-register that was set by the previous
7303 insn, see if we can get rid of that pseudo-register entirely
7304 by redirecting the previous insn into our reload register. */
7306 else if (optimize && REG_P (old)
7307 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7308 && dead_or_set_p (insn, old)
7309 /* This is unsafe if some other reload
7310 uses the same reg first. */
7311 && ! conflicts_with_override (reloadreg)
7312 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7313 rl->when_needed, old, rl->out, j, 0))
7315 rtx_insn *temp = PREV_INSN (insn);
7316 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7317 temp = PREV_INSN (temp);
7318 if (temp
7319 && NONJUMP_INSN_P (temp)
7320 && GET_CODE (PATTERN (temp)) == SET
7321 && SET_DEST (PATTERN (temp)) == old
7322 /* Make sure we can access insn_operand_constraint. */
7323 && asm_noperands (PATTERN (temp)) < 0
7324 /* This is unsafe if operand occurs more than once in current
7325 insn. Perhaps some occurrences aren't reloaded. */
7326 && count_occurrences (PATTERN (insn), old, 0) == 1)
7328 rtx old = SET_DEST (PATTERN (temp));
7329 /* Store into the reload register instead of the pseudo. */
7330 SET_DEST (PATTERN (temp)) = reloadreg;
7332 /* Verify that resulting insn is valid.
7334 Note that we have replaced the destination of TEMP with
7335 RELOADREG. If TEMP references RELOADREG within an
7336 autoincrement addressing mode, then the resulting insn
7337 is ill-formed and we must reject this optimization. */
7338 extract_insn (temp);
7339 if (constrain_operands (1, get_enabled_alternatives (temp))
7340 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7342 /* If the previous insn is an output reload, the source is
7343 a reload register, and its spill_reg_store entry will
7344 contain the previous destination. This is now
7345 invalid. */
7346 if (REG_P (SET_SRC (PATTERN (temp)))
7347 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7349 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7350 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7353 /* If these are the only uses of the pseudo reg,
7354 pretend for GDB it lives in the reload reg we used. */
7355 if (REG_N_DEATHS (REGNO (old)) == 1
7356 && REG_N_SETS (REGNO (old)) == 1)
7358 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7359 if (ira_conflicts_p)
7360 /* Inform IRA about the change. */
7361 ira_mark_allocation_change (REGNO (old));
7362 alter_reg (REGNO (old), -1, false);
7364 special = 1;
7366 /* Adjust any debug insns between temp and insn. */
7367 while ((temp = NEXT_INSN (temp)) != insn)
7368 if (DEBUG_INSN_P (temp))
7369 INSN_VAR_LOCATION_LOC (temp)
7370 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7371 old, reloadreg);
7372 else
7373 gcc_assert (NOTE_P (temp));
7375 else
7377 SET_DEST (PATTERN (temp)) = old;
7382 /* We can't do that, so output an insn to load RELOADREG. */
7384 /* If we have a secondary reload, pick up the secondary register
7385 and icode, if any. If OLDEQUIV and OLD are different or
7386 if this is an in-out reload, recompute whether or not we
7387 still need a secondary register and what the icode should
7388 be. If we still need a secondary register and the class or
7389 icode is different, go back to reloading from OLD if using
7390 OLDEQUIV means that we got the wrong type of register. We
7391 cannot have different class or icode due to an in-out reload
7392 because we don't make such reloads when both the input and
7393 output need secondary reload registers. */
7395 if (! special && rl->secondary_in_reload >= 0)
7397 rtx second_reload_reg = 0;
7398 rtx third_reload_reg = 0;
7399 int secondary_reload = rl->secondary_in_reload;
7400 rtx real_oldequiv = oldequiv;
7401 rtx real_old = old;
7402 rtx tmp;
7403 enum insn_code icode;
7404 enum insn_code tertiary_icode = CODE_FOR_nothing;
7406 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7407 and similarly for OLD.
7408 See comments in get_secondary_reload in reload.c. */
7409 /* If it is a pseudo that cannot be replaced with its
7410 equivalent MEM, we must fall back to reload_in, which
7411 will have all the necessary substitutions registered.
7412 Likewise for a pseudo that can't be replaced with its
7413 equivalent constant.
7415 Take extra care for subregs of such pseudos. Note that
7416 we cannot use reg_equiv_mem in this case because it is
7417 not in the right mode. */
7419 tmp = oldequiv;
7420 if (GET_CODE (tmp) == SUBREG)
7421 tmp = SUBREG_REG (tmp);
7422 if (REG_P (tmp)
7423 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7424 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7425 || reg_equiv_constant (REGNO (tmp)) != 0))
7427 if (! reg_equiv_mem (REGNO (tmp))
7428 || num_not_at_initial_offset
7429 || GET_CODE (oldequiv) == SUBREG)
7430 real_oldequiv = rl->in;
7431 else
7432 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7435 tmp = old;
7436 if (GET_CODE (tmp) == SUBREG)
7437 tmp = SUBREG_REG (tmp);
7438 if (REG_P (tmp)
7439 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7440 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7441 || reg_equiv_constant (REGNO (tmp)) != 0))
7443 if (! reg_equiv_mem (REGNO (tmp))
7444 || num_not_at_initial_offset
7445 || GET_CODE (old) == SUBREG)
7446 real_old = rl->in;
7447 else
7448 real_old = reg_equiv_mem (REGNO (tmp));
7451 second_reload_reg = rld[secondary_reload].reg_rtx;
7452 if (rld[secondary_reload].secondary_in_reload >= 0)
7454 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7456 third_reload_reg = rld[tertiary_reload].reg_rtx;
7457 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7458 /* We'd have to add more code for quartary reloads. */
7459 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7461 icode = rl->secondary_in_icode;
7463 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7464 || (rl->in != 0 && rl->out != 0))
7466 secondary_reload_info sri, sri2;
7467 enum reg_class new_class, new_t_class;
7469 sri.icode = CODE_FOR_nothing;
7470 sri.prev_sri = NULL;
7471 new_class
7472 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7473 rl->rclass, mode,
7474 &sri);
7476 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7477 second_reload_reg = 0;
7478 else if (new_class == NO_REGS)
7480 if (reload_adjust_reg_for_icode (&second_reload_reg,
7481 third_reload_reg,
7482 (enum insn_code) sri.icode))
7484 icode = (enum insn_code) sri.icode;
7485 third_reload_reg = 0;
7487 else
7489 oldequiv = old;
7490 real_oldequiv = real_old;
7493 else if (sri.icode != CODE_FOR_nothing)
7494 /* We currently lack a way to express this in reloads. */
7495 gcc_unreachable ();
7496 else
7498 sri2.icode = CODE_FOR_nothing;
7499 sri2.prev_sri = &sri;
7500 new_t_class
7501 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7502 new_class, mode,
7503 &sri);
7504 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7506 if (reload_adjust_reg_for_temp (&second_reload_reg,
7507 third_reload_reg,
7508 new_class, mode))
7510 third_reload_reg = 0;
7511 tertiary_icode = (enum insn_code) sri2.icode;
7513 else
7515 oldequiv = old;
7516 real_oldequiv = real_old;
7519 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7521 rtx intermediate = second_reload_reg;
7523 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7524 new_class, mode)
7525 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7526 ((enum insn_code)
7527 sri2.icode)))
7529 second_reload_reg = intermediate;
7530 tertiary_icode = (enum insn_code) sri2.icode;
7532 else
7534 oldequiv = old;
7535 real_oldequiv = real_old;
7538 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7540 rtx intermediate = second_reload_reg;
7542 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7543 new_class, mode)
7544 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7545 new_t_class, mode))
7547 second_reload_reg = intermediate;
7548 tertiary_icode = (enum insn_code) sri2.icode;
7550 else
7552 oldequiv = old;
7553 real_oldequiv = real_old;
7556 else
7558 /* This could be handled more intelligently too. */
7559 oldequiv = old;
7560 real_oldequiv = real_old;
7565 /* If we still need a secondary reload register, check
7566 to see if it is being used as a scratch or intermediate
7567 register and generate code appropriately. If we need
7568 a scratch register, use REAL_OLDEQUIV since the form of
7569 the insn may depend on the actual address if it is
7570 a MEM. */
7572 if (second_reload_reg)
7574 if (icode != CODE_FOR_nothing)
7576 /* We'd have to add extra code to handle this case. */
7577 gcc_assert (!third_reload_reg);
7579 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7580 second_reload_reg));
7581 special = 1;
7583 else
7585 /* See if we need a scratch register to load the
7586 intermediate register (a tertiary reload). */
7587 if (tertiary_icode != CODE_FOR_nothing)
7589 emit_insn ((GEN_FCN (tertiary_icode)
7590 (second_reload_reg, real_oldequiv,
7591 third_reload_reg)));
7593 else if (third_reload_reg)
7595 gen_reload (third_reload_reg, real_oldequiv,
7596 rl->opnum,
7597 rl->when_needed);
7598 gen_reload (second_reload_reg, third_reload_reg,
7599 rl->opnum,
7600 rl->when_needed);
7602 else
7603 gen_reload (second_reload_reg, real_oldequiv,
7604 rl->opnum,
7605 rl->when_needed);
7607 oldequiv = second_reload_reg;
7612 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7614 rtx real_oldequiv = oldequiv;
7616 if ((REG_P (oldequiv)
7617 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7618 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7619 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7620 || (GET_CODE (oldequiv) == SUBREG
7621 && REG_P (SUBREG_REG (oldequiv))
7622 && (REGNO (SUBREG_REG (oldequiv))
7623 >= FIRST_PSEUDO_REGISTER)
7624 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7625 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7626 || (CONSTANT_P (oldequiv)
7627 && (targetm.preferred_reload_class (oldequiv,
7628 REGNO_REG_CLASS (REGNO (reloadreg)))
7629 == NO_REGS)))
7630 real_oldequiv = rl->in;
7631 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7632 rl->when_needed);
7635 if (cfun->can_throw_non_call_exceptions)
7636 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7638 /* End this sequence. */
7639 *where = get_insns ();
7640 end_sequence ();
7642 /* Update reload_override_in so that delete_address_reloads_1
7643 can see the actual register usage. */
7644 if (oldequiv_reg)
7645 reload_override_in[j] = oldequiv;
7648 /* Generate insns to for the output reload RL, which is for the insn described
7649 by CHAIN and has the number J. */
7650 static void
7651 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7652 int j)
7654 rtx reloadreg;
7655 rtx_insn *insn = chain->insn;
7656 int special = 0;
7657 rtx old = rl->out;
7658 machine_mode mode;
7659 rtx_insn *p;
7660 rtx rl_reg_rtx;
7662 if (rl->when_needed == RELOAD_OTHER)
7663 start_sequence ();
7664 else
7665 push_to_sequence (output_reload_insns[rl->opnum]);
7667 rl_reg_rtx = reload_reg_rtx_for_output[j];
7668 mode = GET_MODE (rl_reg_rtx);
7670 reloadreg = rl_reg_rtx;
7672 /* If we need two reload regs, set RELOADREG to the intermediate
7673 one, since it will be stored into OLD. We might need a secondary
7674 register only for an input reload, so check again here. */
7676 if (rl->secondary_out_reload >= 0)
7678 rtx real_old = old;
7679 int secondary_reload = rl->secondary_out_reload;
7680 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7682 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7683 && reg_equiv_mem (REGNO (old)) != 0)
7684 real_old = reg_equiv_mem (REGNO (old));
7686 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7688 rtx second_reloadreg = reloadreg;
7689 reloadreg = rld[secondary_reload].reg_rtx;
7691 /* See if RELOADREG is to be used as a scratch register
7692 or as an intermediate register. */
7693 if (rl->secondary_out_icode != CODE_FOR_nothing)
7695 /* We'd have to add extra code to handle this case. */
7696 gcc_assert (tertiary_reload < 0);
7698 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7699 (real_old, second_reloadreg, reloadreg)));
7700 special = 1;
7702 else
7704 /* See if we need both a scratch and intermediate reload
7705 register. */
7707 enum insn_code tertiary_icode
7708 = rld[secondary_reload].secondary_out_icode;
7710 /* We'd have to add more code for quartary reloads. */
7711 gcc_assert (tertiary_reload < 0
7712 || rld[tertiary_reload].secondary_out_reload < 0);
7714 if (GET_MODE (reloadreg) != mode)
7715 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7717 if (tertiary_icode != CODE_FOR_nothing)
7719 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7721 /* Copy primary reload reg to secondary reload reg.
7722 (Note that these have been swapped above, then
7723 secondary reload reg to OLD using our insn.) */
7725 /* If REAL_OLD is a paradoxical SUBREG, remove it
7726 and try to put the opposite SUBREG on
7727 RELOADREG. */
7728 strip_paradoxical_subreg (&real_old, &reloadreg);
7730 gen_reload (reloadreg, second_reloadreg,
7731 rl->opnum, rl->when_needed);
7732 emit_insn ((GEN_FCN (tertiary_icode)
7733 (real_old, reloadreg, third_reloadreg)));
7734 special = 1;
7737 else
7739 /* Copy between the reload regs here and then to
7740 OUT later. */
7742 gen_reload (reloadreg, second_reloadreg,
7743 rl->opnum, rl->when_needed);
7744 if (tertiary_reload >= 0)
7746 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7748 gen_reload (third_reloadreg, reloadreg,
7749 rl->opnum, rl->when_needed);
7750 reloadreg = third_reloadreg;
7757 /* Output the last reload insn. */
7758 if (! special)
7760 rtx set;
7762 /* Don't output the last reload if OLD is not the dest of
7763 INSN and is in the src and is clobbered by INSN. */
7764 if (! flag_expensive_optimizations
7765 || !REG_P (old)
7766 || !(set = single_set (insn))
7767 || rtx_equal_p (old, SET_DEST (set))
7768 || !reg_mentioned_p (old, SET_SRC (set))
7769 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7770 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7771 gen_reload (old, reloadreg, rl->opnum,
7772 rl->when_needed);
7775 /* Look at all insns we emitted, just to be safe. */
7776 for (p = get_insns (); p; p = NEXT_INSN (p))
7777 if (INSN_P (p))
7779 rtx pat = PATTERN (p);
7781 /* If this output reload doesn't come from a spill reg,
7782 clear any memory of reloaded copies of the pseudo reg.
7783 If this output reload comes from a spill reg,
7784 reg_has_output_reload will make this do nothing. */
7785 note_stores (pat, forget_old_reloads_1, NULL);
7787 if (reg_mentioned_p (rl_reg_rtx, pat))
7789 rtx set = single_set (insn);
7790 if (reload_spill_index[j] < 0
7791 && set
7792 && SET_SRC (set) == rl_reg_rtx)
7794 int src = REGNO (SET_SRC (set));
7796 reload_spill_index[j] = src;
7797 SET_HARD_REG_BIT (reg_is_output_reload, src);
7798 if (find_regno_note (insn, REG_DEAD, src))
7799 SET_HARD_REG_BIT (reg_reloaded_died, src);
7801 if (HARD_REGISTER_P (rl_reg_rtx))
7803 int s = rl->secondary_out_reload;
7804 set = single_set (p);
7805 /* If this reload copies only to the secondary reload
7806 register, the secondary reload does the actual
7807 store. */
7808 if (s >= 0 && set == NULL_RTX)
7809 /* We can't tell what function the secondary reload
7810 has and where the actual store to the pseudo is
7811 made; leave new_spill_reg_store alone. */
7813 else if (s >= 0
7814 && SET_SRC (set) == rl_reg_rtx
7815 && SET_DEST (set) == rld[s].reg_rtx)
7817 /* Usually the next instruction will be the
7818 secondary reload insn; if we can confirm
7819 that it is, setting new_spill_reg_store to
7820 that insn will allow an extra optimization. */
7821 rtx s_reg = rld[s].reg_rtx;
7822 rtx_insn *next = NEXT_INSN (p);
7823 rld[s].out = rl->out;
7824 rld[s].out_reg = rl->out_reg;
7825 set = single_set (next);
7826 if (set && SET_SRC (set) == s_reg
7827 && reload_reg_rtx_reaches_end_p (s_reg, s))
7829 SET_HARD_REG_BIT (reg_is_output_reload,
7830 REGNO (s_reg));
7831 new_spill_reg_store[REGNO (s_reg)] = next;
7834 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7835 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7840 if (rl->when_needed == RELOAD_OTHER)
7842 emit_insn (other_output_reload_insns[rl->opnum]);
7843 other_output_reload_insns[rl->opnum] = get_insns ();
7845 else
7846 output_reload_insns[rl->opnum] = get_insns ();
7848 if (cfun->can_throw_non_call_exceptions)
7849 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7851 end_sequence ();
7854 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7855 and has the number J. */
7856 static void
7857 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7859 rtx_insn *insn = chain->insn;
7860 rtx old = (rl->in && MEM_P (rl->in)
7861 ? rl->in_reg : rl->in);
7862 rtx reg_rtx = rl->reg_rtx;
7864 if (old && reg_rtx)
7866 machine_mode mode;
7868 /* Determine the mode to reload in.
7869 This is very tricky because we have three to choose from.
7870 There is the mode the insn operand wants (rl->inmode).
7871 There is the mode of the reload register RELOADREG.
7872 There is the intrinsic mode of the operand, which we could find
7873 by stripping some SUBREGs.
7874 It turns out that RELOADREG's mode is irrelevant:
7875 we can change that arbitrarily.
7877 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7878 then the reload reg may not support QImode moves, so use SImode.
7879 If foo is in memory due to spilling a pseudo reg, this is safe,
7880 because the QImode value is in the least significant part of a
7881 slot big enough for a SImode. If foo is some other sort of
7882 memory reference, then it is impossible to reload this case,
7883 so previous passes had better make sure this never happens.
7885 Then consider a one-word union which has SImode and one of its
7886 members is a float, being fetched as (SUBREG:SF union:SI).
7887 We must fetch that as SFmode because we could be loading into
7888 a float-only register. In this case OLD's mode is correct.
7890 Consider an immediate integer: it has VOIDmode. Here we need
7891 to get a mode from something else.
7893 In some cases, there is a fourth mode, the operand's
7894 containing mode. If the insn specifies a containing mode for
7895 this operand, it overrides all others.
7897 I am not sure whether the algorithm here is always right,
7898 but it does the right things in those cases. */
7900 mode = GET_MODE (old);
7901 if (mode == VOIDmode)
7902 mode = rl->inmode;
7904 /* We cannot use gen_lowpart_common since it can do the wrong thing
7905 when REG_RTX has a multi-word mode. Note that REG_RTX must
7906 always be a REG here. */
7907 if (GET_MODE (reg_rtx) != mode)
7908 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7910 reload_reg_rtx_for_input[j] = reg_rtx;
7912 if (old != 0
7913 /* AUTO_INC reloads need to be handled even if inherited. We got an
7914 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7915 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7916 && ! rtx_equal_p (reg_rtx, old)
7917 && reg_rtx != 0)
7918 emit_input_reload_insns (chain, rld + j, old, j);
7920 /* When inheriting a wider reload, we have a MEM in rl->in,
7921 e.g. inheriting a SImode output reload for
7922 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7923 if (optimize && reload_inherited[j] && rl->in
7924 && MEM_P (rl->in)
7925 && MEM_P (rl->in_reg)
7926 && reload_spill_index[j] >= 0
7927 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7928 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7930 /* If we are reloading a register that was recently stored in with an
7931 output-reload, see if we can prove there was
7932 actually no need to store the old value in it. */
7934 if (optimize
7935 && (reload_inherited[j] || reload_override_in[j])
7936 && reg_rtx
7937 && REG_P (reg_rtx)
7938 && spill_reg_store[REGNO (reg_rtx)] != 0
7939 #if 0
7940 /* There doesn't seem to be any reason to restrict this to pseudos
7941 and doing so loses in the case where we are copying from a
7942 register of the wrong class. */
7943 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7944 #endif
7945 /* The insn might have already some references to stackslots
7946 replaced by MEMs, while reload_out_reg still names the
7947 original pseudo. */
7948 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7949 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7950 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7953 /* Do output reloading for reload RL, which is for the insn described by
7954 CHAIN and has the number J.
7955 ??? At some point we need to support handling output reloads of
7956 JUMP_INSNs or insns that set cc0. */
7957 static void
7958 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7960 rtx note, old;
7961 rtx_insn *insn = chain->insn;
7962 /* If this is an output reload that stores something that is
7963 not loaded in this same reload, see if we can eliminate a previous
7964 store. */
7965 rtx pseudo = rl->out_reg;
7966 rtx reg_rtx = rl->reg_rtx;
7968 if (rl->out && reg_rtx)
7970 machine_mode mode;
7972 /* Determine the mode to reload in.
7973 See comments above (for input reloading). */
7974 mode = GET_MODE (rl->out);
7975 if (mode == VOIDmode)
7977 /* VOIDmode should never happen for an output. */
7978 if (asm_noperands (PATTERN (insn)) < 0)
7979 /* It's the compiler's fault. */
7980 fatal_insn ("VOIDmode on an output", insn);
7981 error_for_asm (insn, "output operand is constant in %<asm%>");
7982 /* Prevent crash--use something we know is valid. */
7983 mode = word_mode;
7984 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7986 if (GET_MODE (reg_rtx) != mode)
7987 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7989 reload_reg_rtx_for_output[j] = reg_rtx;
7991 if (pseudo
7992 && optimize
7993 && REG_P (pseudo)
7994 && ! rtx_equal_p (rl->in_reg, pseudo)
7995 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7996 && reg_last_reload_reg[REGNO (pseudo)])
7998 int pseudo_no = REGNO (pseudo);
7999 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8001 /* We don't need to test full validity of last_regno for
8002 inherit here; we only want to know if the store actually
8003 matches the pseudo. */
8004 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8005 && reg_reloaded_contents[last_regno] == pseudo_no
8006 && spill_reg_store[last_regno]
8007 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8008 delete_output_reload (insn, j, last_regno, reg_rtx);
8011 old = rl->out_reg;
8012 if (old == 0
8013 || reg_rtx == 0
8014 || rtx_equal_p (old, reg_rtx))
8015 return;
8017 /* An output operand that dies right away does need a reload,
8018 but need not be copied from it. Show the new location in the
8019 REG_UNUSED note. */
8020 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8021 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8023 XEXP (note, 0) = reg_rtx;
8024 return;
8026 /* Likewise for a SUBREG of an operand that dies. */
8027 else if (GET_CODE (old) == SUBREG
8028 && REG_P (SUBREG_REG (old))
8029 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8030 SUBREG_REG (old))))
8032 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8033 return;
8035 else if (GET_CODE (old) == SCRATCH)
8036 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8037 but we don't want to make an output reload. */
8038 return;
8040 /* If is a JUMP_INSN, we can't support output reloads yet. */
8041 gcc_assert (NONJUMP_INSN_P (insn));
8043 emit_output_reload_insns (chain, rld + j, j);
8046 /* A reload copies values of MODE from register SRC to register DEST.
8047 Return true if it can be treated for inheritance purposes like a
8048 group of reloads, each one reloading a single hard register. The
8049 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8050 occupy the same number of hard registers. */
8052 static bool
8053 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8054 int src ATTRIBUTE_UNUSED,
8055 machine_mode mode ATTRIBUTE_UNUSED)
8057 #ifdef CANNOT_CHANGE_MODE_CLASS
8058 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8059 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8060 #else
8061 return true;
8062 #endif
8065 /* Output insns to reload values in and out of the chosen reload regs. */
8067 static void
8068 emit_reload_insns (struct insn_chain *chain)
8070 rtx_insn *insn = chain->insn;
8072 int j;
8074 CLEAR_HARD_REG_SET (reg_reloaded_died);
8076 for (j = 0; j < reload_n_operands; j++)
8077 input_reload_insns[j] = input_address_reload_insns[j]
8078 = inpaddr_address_reload_insns[j]
8079 = output_reload_insns[j] = output_address_reload_insns[j]
8080 = outaddr_address_reload_insns[j]
8081 = other_output_reload_insns[j] = 0;
8082 other_input_address_reload_insns = 0;
8083 other_input_reload_insns = 0;
8084 operand_reload_insns = 0;
8085 other_operand_reload_insns = 0;
8087 /* Dump reloads into the dump file. */
8088 if (dump_file)
8090 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8091 debug_reload_to_stream (dump_file);
8094 for (j = 0; j < n_reloads; j++)
8095 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8097 unsigned int i;
8099 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8100 new_spill_reg_store[i] = 0;
8103 /* Now output the instructions to copy the data into and out of the
8104 reload registers. Do these in the order that the reloads were reported,
8105 since reloads of base and index registers precede reloads of operands
8106 and the operands may need the base and index registers reloaded. */
8108 for (j = 0; j < n_reloads; j++)
8110 do_input_reload (chain, rld + j, j);
8111 do_output_reload (chain, rld + j, j);
8114 /* Now write all the insns we made for reloads in the order expected by
8115 the allocation functions. Prior to the insn being reloaded, we write
8116 the following reloads:
8118 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8120 RELOAD_OTHER reloads.
8122 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8123 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8124 RELOAD_FOR_INPUT reload for the operand.
8126 RELOAD_FOR_OPADDR_ADDRS reloads.
8128 RELOAD_FOR_OPERAND_ADDRESS reloads.
8130 After the insn being reloaded, we write the following:
8132 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8133 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8134 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8135 reloads for the operand. The RELOAD_OTHER output reloads are
8136 output in descending order by reload number. */
8138 emit_insn_before (other_input_address_reload_insns, insn);
8139 emit_insn_before (other_input_reload_insns, insn);
8141 for (j = 0; j < reload_n_operands; j++)
8143 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8144 emit_insn_before (input_address_reload_insns[j], insn);
8145 emit_insn_before (input_reload_insns[j], insn);
8148 emit_insn_before (other_operand_reload_insns, insn);
8149 emit_insn_before (operand_reload_insns, insn);
8151 for (j = 0; j < reload_n_operands; j++)
8153 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8154 x = emit_insn_after (output_address_reload_insns[j], x);
8155 x = emit_insn_after (output_reload_insns[j], x);
8156 emit_insn_after (other_output_reload_insns[j], x);
8159 /* For all the spill regs newly reloaded in this instruction,
8160 record what they were reloaded from, so subsequent instructions
8161 can inherit the reloads.
8163 Update spill_reg_store for the reloads of this insn.
8164 Copy the elements that were updated in the loop above. */
8166 for (j = 0; j < n_reloads; j++)
8168 int r = reload_order[j];
8169 int i = reload_spill_index[r];
8171 /* If this is a non-inherited input reload from a pseudo, we must
8172 clear any memory of a previous store to the same pseudo. Only do
8173 something if there will not be an output reload for the pseudo
8174 being reloaded. */
8175 if (rld[r].in_reg != 0
8176 && ! (reload_inherited[r] || reload_override_in[r]))
8178 rtx reg = rld[r].in_reg;
8180 if (GET_CODE (reg) == SUBREG)
8181 reg = SUBREG_REG (reg);
8183 if (REG_P (reg)
8184 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8185 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8187 int nregno = REGNO (reg);
8189 if (reg_last_reload_reg[nregno])
8191 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8193 if (reg_reloaded_contents[last_regno] == nregno)
8194 spill_reg_store[last_regno] = 0;
8199 /* I is nonneg if this reload used a register.
8200 If rld[r].reg_rtx is 0, this is an optional reload
8201 that we opted to ignore. */
8203 if (i >= 0 && rld[r].reg_rtx != 0)
8205 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8206 int k;
8208 /* For a multi register reload, we need to check if all or part
8209 of the value lives to the end. */
8210 for (k = 0; k < nr; k++)
8211 if (reload_reg_reaches_end_p (i + k, r))
8212 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8214 /* Maybe the spill reg contains a copy of reload_out. */
8215 if (rld[r].out != 0
8216 && (REG_P (rld[r].out)
8217 || (rld[r].out_reg
8218 ? REG_P (rld[r].out_reg)
8219 /* The reload value is an auto-modification of
8220 some kind. For PRE_INC, POST_INC, PRE_DEC
8221 and POST_DEC, we record an equivalence
8222 between the reload register and the operand
8223 on the optimistic assumption that we can make
8224 the equivalence hold. reload_as_needed must
8225 then either make it hold or invalidate the
8226 equivalence.
8228 PRE_MODIFY and POST_MODIFY addresses are reloaded
8229 somewhat differently, and allowing them here leads
8230 to problems. */
8231 : (GET_CODE (rld[r].out) != POST_MODIFY
8232 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8234 rtx reg;
8236 reg = reload_reg_rtx_for_output[r];
8237 if (reload_reg_rtx_reaches_end_p (reg, r))
8239 machine_mode mode = GET_MODE (reg);
8240 int regno = REGNO (reg);
8241 int nregs = hard_regno_nregs[regno][mode];
8242 rtx out = (REG_P (rld[r].out)
8243 ? rld[r].out
8244 : rld[r].out_reg
8245 ? rld[r].out_reg
8246 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8247 int out_regno = REGNO (out);
8248 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8249 : hard_regno_nregs[out_regno][mode]);
8250 bool piecemeal;
8252 spill_reg_store[regno] = new_spill_reg_store[regno];
8253 spill_reg_stored_to[regno] = out;
8254 reg_last_reload_reg[out_regno] = reg;
8256 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8257 && nregs == out_nregs
8258 && inherit_piecemeal_p (out_regno, regno, mode));
8260 /* If OUT_REGNO is a hard register, it may occupy more than
8261 one register. If it does, say what is in the
8262 rest of the registers assuming that both registers
8263 agree on how many words the object takes. If not,
8264 invalidate the subsequent registers. */
8266 if (HARD_REGISTER_NUM_P (out_regno))
8267 for (k = 1; k < out_nregs; k++)
8268 reg_last_reload_reg[out_regno + k]
8269 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8271 /* Now do the inverse operation. */
8272 for (k = 0; k < nregs; k++)
8274 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8275 reg_reloaded_contents[regno + k]
8276 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8277 ? out_regno
8278 : out_regno + k);
8279 reg_reloaded_insn[regno + k] = insn;
8280 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8281 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8282 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8283 regno + k);
8284 else
8285 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8286 regno + k);
8290 /* Maybe the spill reg contains a copy of reload_in. Only do
8291 something if there will not be an output reload for
8292 the register being reloaded. */
8293 else if (rld[r].out_reg == 0
8294 && rld[r].in != 0
8295 && ((REG_P (rld[r].in)
8296 && !HARD_REGISTER_P (rld[r].in)
8297 && !REGNO_REG_SET_P (&reg_has_output_reload,
8298 REGNO (rld[r].in)))
8299 || (REG_P (rld[r].in_reg)
8300 && !REGNO_REG_SET_P (&reg_has_output_reload,
8301 REGNO (rld[r].in_reg))))
8302 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8304 rtx reg;
8306 reg = reload_reg_rtx_for_input[r];
8307 if (reload_reg_rtx_reaches_end_p (reg, r))
8309 machine_mode mode;
8310 int regno;
8311 int nregs;
8312 int in_regno;
8313 int in_nregs;
8314 rtx in;
8315 bool piecemeal;
8317 mode = GET_MODE (reg);
8318 regno = REGNO (reg);
8319 nregs = hard_regno_nregs[regno][mode];
8320 if (REG_P (rld[r].in)
8321 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8322 in = rld[r].in;
8323 else if (REG_P (rld[r].in_reg))
8324 in = rld[r].in_reg;
8325 else
8326 in = XEXP (rld[r].in_reg, 0);
8327 in_regno = REGNO (in);
8329 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8330 : hard_regno_nregs[in_regno][mode]);
8332 reg_last_reload_reg[in_regno] = reg;
8334 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8335 && nregs == in_nregs
8336 && inherit_piecemeal_p (regno, in_regno, mode));
8338 if (HARD_REGISTER_NUM_P (in_regno))
8339 for (k = 1; k < in_nregs; k++)
8340 reg_last_reload_reg[in_regno + k]
8341 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8343 /* Unless we inherited this reload, show we haven't
8344 recently done a store.
8345 Previous stores of inherited auto_inc expressions
8346 also have to be discarded. */
8347 if (! reload_inherited[r]
8348 || (rld[r].out && ! rld[r].out_reg))
8349 spill_reg_store[regno] = 0;
8351 for (k = 0; k < nregs; k++)
8353 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8354 reg_reloaded_contents[regno + k]
8355 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8356 ? in_regno
8357 : in_regno + k);
8358 reg_reloaded_insn[regno + k] = insn;
8359 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8360 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8361 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8362 regno + k);
8363 else
8364 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8365 regno + k);
8371 /* The following if-statement was #if 0'd in 1.34 (or before...).
8372 It's reenabled in 1.35 because supposedly nothing else
8373 deals with this problem. */
8375 /* If a register gets output-reloaded from a non-spill register,
8376 that invalidates any previous reloaded copy of it.
8377 But forget_old_reloads_1 won't get to see it, because
8378 it thinks only about the original insn. So invalidate it here.
8379 Also do the same thing for RELOAD_OTHER constraints where the
8380 output is discarded. */
8381 if (i < 0
8382 && ((rld[r].out != 0
8383 && (REG_P (rld[r].out)
8384 || (MEM_P (rld[r].out)
8385 && REG_P (rld[r].out_reg))))
8386 || (rld[r].out == 0 && rld[r].out_reg
8387 && REG_P (rld[r].out_reg))))
8389 rtx out = ((rld[r].out && REG_P (rld[r].out))
8390 ? rld[r].out : rld[r].out_reg);
8391 int out_regno = REGNO (out);
8392 machine_mode mode = GET_MODE (out);
8394 /* REG_RTX is now set or clobbered by the main instruction.
8395 As the comment above explains, forget_old_reloads_1 only
8396 sees the original instruction, and there is no guarantee
8397 that the original instruction also clobbered REG_RTX.
8398 For example, if find_reloads sees that the input side of
8399 a matched operand pair dies in this instruction, it may
8400 use the input register as the reload register.
8402 Calling forget_old_reloads_1 is a waste of effort if
8403 REG_RTX is also the output register.
8405 If we know that REG_RTX holds the value of a pseudo
8406 register, the code after the call will record that fact. */
8407 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8408 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8410 if (!HARD_REGISTER_NUM_P (out_regno))
8412 rtx src_reg;
8413 rtx_insn *store_insn = NULL;
8415 reg_last_reload_reg[out_regno] = 0;
8417 /* If we can find a hard register that is stored, record
8418 the storing insn so that we may delete this insn with
8419 delete_output_reload. */
8420 src_reg = reload_reg_rtx_for_output[r];
8422 if (src_reg)
8424 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8425 store_insn = new_spill_reg_store[REGNO (src_reg)];
8426 else
8427 src_reg = NULL_RTX;
8429 else
8431 /* If this is an optional reload, try to find the
8432 source reg from an input reload. */
8433 rtx set = single_set (insn);
8434 if (set && SET_DEST (set) == rld[r].out)
8436 int k;
8438 src_reg = SET_SRC (set);
8439 store_insn = insn;
8440 for (k = 0; k < n_reloads; k++)
8442 if (rld[k].in == src_reg)
8444 src_reg = reload_reg_rtx_for_input[k];
8445 break;
8450 if (src_reg && REG_P (src_reg)
8451 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8453 int src_regno, src_nregs, k;
8454 rtx note;
8456 gcc_assert (GET_MODE (src_reg) == mode);
8457 src_regno = REGNO (src_reg);
8458 src_nregs = hard_regno_nregs[src_regno][mode];
8459 /* The place where to find a death note varies with
8460 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8461 necessarily checked exactly in the code that moves
8462 notes, so just check both locations. */
8463 note = find_regno_note (insn, REG_DEAD, src_regno);
8464 if (! note && store_insn)
8465 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8466 for (k = 0; k < src_nregs; k++)
8468 spill_reg_store[src_regno + k] = store_insn;
8469 spill_reg_stored_to[src_regno + k] = out;
8470 reg_reloaded_contents[src_regno + k] = out_regno;
8471 reg_reloaded_insn[src_regno + k] = store_insn;
8472 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8473 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8474 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8475 mode))
8476 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8477 src_regno + k);
8478 else
8479 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8480 src_regno + k);
8481 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8482 if (note)
8483 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8484 else
8485 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8487 reg_last_reload_reg[out_regno] = src_reg;
8488 /* We have to set reg_has_output_reload here, or else
8489 forget_old_reloads_1 will clear reg_last_reload_reg
8490 right away. */
8491 SET_REGNO_REG_SET (&reg_has_output_reload,
8492 out_regno);
8495 else
8497 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8499 for (k = 0; k < out_nregs; k++)
8500 reg_last_reload_reg[out_regno + k] = 0;
8504 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8507 /* Go through the motions to emit INSN and test if it is strictly valid.
8508 Return the emitted insn if valid, else return NULL. */
8510 static rtx_insn *
8511 emit_insn_if_valid_for_reload (rtx pat)
8513 rtx_insn *last = get_last_insn ();
8514 int code;
8516 rtx_insn *insn = emit_insn (pat);
8517 code = recog_memoized (insn);
8519 if (code >= 0)
8521 extract_insn (insn);
8522 /* We want constrain operands to treat this insn strictly in its
8523 validity determination, i.e., the way it would after reload has
8524 completed. */
8525 if (constrain_operands (1, get_enabled_alternatives (insn)))
8526 return insn;
8529 delete_insns_since (last);
8530 return NULL;
8533 /* Emit code to perform a reload from IN (which may be a reload register) to
8534 OUT (which may also be a reload register). IN or OUT is from operand
8535 OPNUM with reload type TYPE.
8537 Returns first insn emitted. */
8539 static rtx_insn *
8540 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8542 rtx_insn *last = get_last_insn ();
8543 rtx_insn *tem;
8544 #ifdef SECONDARY_MEMORY_NEEDED
8545 rtx tem1, tem2;
8546 #endif
8548 /* If IN is a paradoxical SUBREG, remove it and try to put the
8549 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8550 if (!strip_paradoxical_subreg (&in, &out))
8551 strip_paradoxical_subreg (&out, &in);
8553 /* How to do this reload can get quite tricky. Normally, we are being
8554 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8555 register that didn't get a hard register. In that case we can just
8556 call emit_move_insn.
8558 We can also be asked to reload a PLUS that adds a register or a MEM to
8559 another register, constant or MEM. This can occur during frame pointer
8560 elimination and while reloading addresses. This case is handled by
8561 trying to emit a single insn to perform the add. If it is not valid,
8562 we use a two insn sequence.
8564 Or we can be asked to reload an unary operand that was a fragment of
8565 an addressing mode, into a register. If it isn't recognized as-is,
8566 we try making the unop operand and the reload-register the same:
8567 (set reg:X (unop:X expr:Y))
8568 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8570 Finally, we could be called to handle an 'o' constraint by putting
8571 an address into a register. In that case, we first try to do this
8572 with a named pattern of "reload_load_address". If no such pattern
8573 exists, we just emit a SET insn and hope for the best (it will normally
8574 be valid on machines that use 'o').
8576 This entire process is made complex because reload will never
8577 process the insns we generate here and so we must ensure that
8578 they will fit their constraints and also by the fact that parts of
8579 IN might be being reloaded separately and replaced with spill registers.
8580 Because of this, we are, in some sense, just guessing the right approach
8581 here. The one listed above seems to work.
8583 ??? At some point, this whole thing needs to be rethought. */
8585 if (GET_CODE (in) == PLUS
8586 && (REG_P (XEXP (in, 0))
8587 || GET_CODE (XEXP (in, 0)) == SUBREG
8588 || MEM_P (XEXP (in, 0)))
8589 && (REG_P (XEXP (in, 1))
8590 || GET_CODE (XEXP (in, 1)) == SUBREG
8591 || CONSTANT_P (XEXP (in, 1))
8592 || MEM_P (XEXP (in, 1))))
8594 /* We need to compute the sum of a register or a MEM and another
8595 register, constant, or MEM, and put it into the reload
8596 register. The best possible way of doing this is if the machine
8597 has a three-operand ADD insn that accepts the required operands.
8599 The simplest approach is to try to generate such an insn and see if it
8600 is recognized and matches its constraints. If so, it can be used.
8602 It might be better not to actually emit the insn unless it is valid,
8603 but we need to pass the insn as an operand to `recog' and
8604 `extract_insn' and it is simpler to emit and then delete the insn if
8605 not valid than to dummy things up. */
8607 rtx op0, op1, tem;
8608 rtx_insn *insn;
8609 enum insn_code code;
8611 op0 = find_replacement (&XEXP (in, 0));
8612 op1 = find_replacement (&XEXP (in, 1));
8614 /* Since constraint checking is strict, commutativity won't be
8615 checked, so we need to do that here to avoid spurious failure
8616 if the add instruction is two-address and the second operand
8617 of the add is the same as the reload reg, which is frequently
8618 the case. If the insn would be A = B + A, rearrange it so
8619 it will be A = A + B as constrain_operands expects. */
8621 if (REG_P (XEXP (in, 1))
8622 && REGNO (out) == REGNO (XEXP (in, 1)))
8623 tem = op0, op0 = op1, op1 = tem;
8625 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8626 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8628 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8629 if (insn)
8630 return insn;
8632 /* If that failed, we must use a conservative two-insn sequence.
8634 Use a move to copy one operand into the reload register. Prefer
8635 to reload a constant, MEM or pseudo since the move patterns can
8636 handle an arbitrary operand. If OP1 is not a constant, MEM or
8637 pseudo and OP1 is not a valid operand for an add instruction, then
8638 reload OP1.
8640 After reloading one of the operands into the reload register, add
8641 the reload register to the output register.
8643 If there is another way to do this for a specific machine, a
8644 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8645 we emit below. */
8647 code = optab_handler (add_optab, GET_MODE (out));
8649 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8650 || (REG_P (op1)
8651 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8652 || (code != CODE_FOR_nothing
8653 && !insn_operand_matches (code, 2, op1)))
8654 tem = op0, op0 = op1, op1 = tem;
8656 gen_reload (out, op0, opnum, type);
8658 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8659 This fixes a problem on the 32K where the stack pointer cannot
8660 be used as an operand of an add insn. */
8662 if (rtx_equal_p (op0, op1))
8663 op1 = out;
8665 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8666 if (insn)
8668 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8669 set_dst_reg_note (insn, REG_EQUIV, in, out);
8670 return insn;
8673 /* If that failed, copy the address register to the reload register.
8674 Then add the constant to the reload register. */
8676 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8677 gen_reload (out, op1, opnum, type);
8678 insn = emit_insn (gen_add2_insn (out, op0));
8679 set_dst_reg_note (insn, REG_EQUIV, in, out);
8682 #ifdef SECONDARY_MEMORY_NEEDED
8683 /* If we need a memory location to do the move, do it that way. */
8684 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8685 (REG_P (tem1) && REG_P (tem2)))
8686 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8687 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8688 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8689 REGNO_REG_CLASS (REGNO (tem2)),
8690 GET_MODE (out)))
8692 /* Get the memory to use and rewrite both registers to its mode. */
8693 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8695 if (GET_MODE (loc) != GET_MODE (out))
8696 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8698 if (GET_MODE (loc) != GET_MODE (in))
8699 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8701 gen_reload (loc, in, opnum, type);
8702 gen_reload (out, loc, opnum, type);
8704 #endif
8705 else if (REG_P (out) && UNARY_P (in))
8707 rtx op1;
8708 rtx out_moded;
8709 rtx_insn *set;
8711 op1 = find_replacement (&XEXP (in, 0));
8712 if (op1 != XEXP (in, 0))
8713 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8715 /* First, try a plain SET. */
8716 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8717 if (set)
8718 return set;
8720 /* If that failed, move the inner operand to the reload
8721 register, and try the same unop with the inner expression
8722 replaced with the reload register. */
8724 if (GET_MODE (op1) != GET_MODE (out))
8725 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8726 else
8727 out_moded = out;
8729 gen_reload (out_moded, op1, opnum, type);
8731 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8732 out_moded));
8733 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8734 if (insn)
8736 set_unique_reg_note (insn, REG_EQUIV, in);
8737 return insn;
8740 fatal_insn ("failure trying to reload:", set);
8742 /* If IN is a simple operand, use gen_move_insn. */
8743 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8745 tem = emit_insn (gen_move_insn (out, in));
8746 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8747 mark_jump_label (in, tem, 0);
8750 else if (targetm.have_reload_load_address ())
8751 emit_insn (targetm.gen_reload_load_address (out, in));
8753 /* Otherwise, just write (set OUT IN) and hope for the best. */
8754 else
8755 emit_insn (gen_rtx_SET (out, in));
8757 /* Return the first insn emitted.
8758 We can not just return get_last_insn, because there may have
8759 been multiple instructions emitted. Also note that gen_move_insn may
8760 emit more than one insn itself, so we can not assume that there is one
8761 insn emitted per emit_insn_before call. */
8763 return last ? NEXT_INSN (last) : get_insns ();
8766 /* Delete a previously made output-reload whose result we now believe
8767 is not needed. First we double-check.
8769 INSN is the insn now being processed.
8770 LAST_RELOAD_REG is the hard register number for which we want to delete
8771 the last output reload.
8772 J is the reload-number that originally used REG. The caller has made
8773 certain that reload J doesn't use REG any longer for input.
8774 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8776 static void
8777 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8778 rtx new_reload_reg)
8780 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8781 rtx reg = spill_reg_stored_to[last_reload_reg];
8782 int k;
8783 int n_occurrences;
8784 int n_inherited = 0;
8785 rtx substed;
8786 unsigned regno;
8787 int nregs;
8789 /* It is possible that this reload has been only used to set another reload
8790 we eliminated earlier and thus deleted this instruction too. */
8791 if (output_reload_insn->deleted ())
8792 return;
8794 /* Get the raw pseudo-register referred to. */
8796 while (GET_CODE (reg) == SUBREG)
8797 reg = SUBREG_REG (reg);
8798 substed = reg_equiv_memory_loc (REGNO (reg));
8800 /* This is unsafe if the operand occurs more often in the current
8801 insn than it is inherited. */
8802 for (k = n_reloads - 1; k >= 0; k--)
8804 rtx reg2 = rld[k].in;
8805 if (! reg2)
8806 continue;
8807 if (MEM_P (reg2) || reload_override_in[k])
8808 reg2 = rld[k].in_reg;
8810 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8811 reg2 = XEXP (rld[k].in_reg, 0);
8813 while (GET_CODE (reg2) == SUBREG)
8814 reg2 = SUBREG_REG (reg2);
8815 if (rtx_equal_p (reg2, reg))
8817 if (reload_inherited[k] || reload_override_in[k] || k == j)
8818 n_inherited++;
8819 else
8820 return;
8823 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8824 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8825 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8826 reg, 0);
8827 if (substed)
8828 n_occurrences += count_occurrences (PATTERN (insn),
8829 eliminate_regs (substed, VOIDmode,
8830 NULL_RTX), 0);
8831 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8833 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8834 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8836 if (n_occurrences > n_inherited)
8837 return;
8839 regno = REGNO (reg);
8840 if (regno >= FIRST_PSEUDO_REGISTER)
8841 nregs = 1;
8842 else
8843 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8845 /* If the pseudo-reg we are reloading is no longer referenced
8846 anywhere between the store into it and here,
8847 and we're within the same basic block, then the value can only
8848 pass through the reload reg and end up here.
8849 Otherwise, give up--return. */
8850 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8851 i1 != insn; i1 = NEXT_INSN (i1))
8853 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8854 return;
8855 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8856 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8858 /* If this is USE in front of INSN, we only have to check that
8859 there are no more references than accounted for by inheritance. */
8860 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8862 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8863 i1 = NEXT_INSN (i1);
8865 if (n_occurrences <= n_inherited && i1 == insn)
8866 break;
8867 return;
8871 /* We will be deleting the insn. Remove the spill reg information. */
8872 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8874 spill_reg_store[last_reload_reg + k] = 0;
8875 spill_reg_stored_to[last_reload_reg + k] = 0;
8878 /* The caller has already checked that REG dies or is set in INSN.
8879 It has also checked that we are optimizing, and thus some
8880 inaccuracies in the debugging information are acceptable.
8881 So we could just delete output_reload_insn. But in some cases
8882 we can improve the debugging information without sacrificing
8883 optimization - maybe even improving the code: See if the pseudo
8884 reg has been completely replaced with reload regs. If so, delete
8885 the store insn and forget we had a stack slot for the pseudo. */
8886 if (rld[j].out != rld[j].in
8887 && REG_N_DEATHS (REGNO (reg)) == 1
8888 && REG_N_SETS (REGNO (reg)) == 1
8889 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8890 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8892 rtx_insn *i2;
8894 /* We know that it was used only between here and the beginning of
8895 the current basic block. (We also know that the last use before
8896 INSN was the output reload we are thinking of deleting, but never
8897 mind that.) Search that range; see if any ref remains. */
8898 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8900 rtx set = single_set (i2);
8902 /* Uses which just store in the pseudo don't count,
8903 since if they are the only uses, they are dead. */
8904 if (set != 0 && SET_DEST (set) == reg)
8905 continue;
8906 if (LABEL_P (i2) || JUMP_P (i2))
8907 break;
8908 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8909 && reg_mentioned_p (reg, PATTERN (i2)))
8911 /* Some other ref remains; just delete the output reload we
8912 know to be dead. */
8913 delete_address_reloads (output_reload_insn, insn);
8914 delete_insn (output_reload_insn);
8915 return;
8919 /* Delete the now-dead stores into this pseudo. Note that this
8920 loop also takes care of deleting output_reload_insn. */
8921 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8923 rtx set = single_set (i2);
8925 if (set != 0 && SET_DEST (set) == reg)
8927 delete_address_reloads (i2, insn);
8928 delete_insn (i2);
8930 if (LABEL_P (i2) || JUMP_P (i2))
8931 break;
8934 /* For the debugging info, say the pseudo lives in this reload reg. */
8935 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8936 if (ira_conflicts_p)
8937 /* Inform IRA about the change. */
8938 ira_mark_allocation_change (REGNO (reg));
8939 alter_reg (REGNO (reg), -1, false);
8941 else
8943 delete_address_reloads (output_reload_insn, insn);
8944 delete_insn (output_reload_insn);
8948 /* We are going to delete DEAD_INSN. Recursively delete loads of
8949 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8950 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8951 static void
8952 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8954 rtx set = single_set (dead_insn);
8955 rtx set2, dst;
8956 rtx_insn *prev, *next;
8957 if (set)
8959 rtx dst = SET_DEST (set);
8960 if (MEM_P (dst))
8961 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8963 /* If we deleted the store from a reloaded post_{in,de}c expression,
8964 we can delete the matching adds. */
8965 prev = PREV_INSN (dead_insn);
8966 next = NEXT_INSN (dead_insn);
8967 if (! prev || ! next)
8968 return;
8969 set = single_set (next);
8970 set2 = single_set (prev);
8971 if (! set || ! set2
8972 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8973 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8974 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8975 return;
8976 dst = SET_DEST (set);
8977 if (! rtx_equal_p (dst, SET_DEST (set2))
8978 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8979 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8980 || (INTVAL (XEXP (SET_SRC (set), 1))
8981 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8982 return;
8983 delete_related_insns (prev);
8984 delete_related_insns (next);
8987 /* Subfunction of delete_address_reloads: process registers found in X. */
8988 static void
8989 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8991 rtx_insn *prev, *i2;
8992 rtx set, dst;
8993 int i, j;
8994 enum rtx_code code = GET_CODE (x);
8996 if (code != REG)
8998 const char *fmt = GET_RTX_FORMAT (code);
8999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9001 if (fmt[i] == 'e')
9002 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9003 else if (fmt[i] == 'E')
9005 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9006 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9007 current_insn);
9010 return;
9013 if (spill_reg_order[REGNO (x)] < 0)
9014 return;
9016 /* Scan backwards for the insn that sets x. This might be a way back due
9017 to inheritance. */
9018 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9020 code = GET_CODE (prev);
9021 if (code == CODE_LABEL || code == JUMP_INSN)
9022 return;
9023 if (!INSN_P (prev))
9024 continue;
9025 if (reg_set_p (x, PATTERN (prev)))
9026 break;
9027 if (reg_referenced_p (x, PATTERN (prev)))
9028 return;
9030 if (! prev || INSN_UID (prev) < reload_first_uid)
9031 return;
9032 /* Check that PREV only sets the reload register. */
9033 set = single_set (prev);
9034 if (! set)
9035 return;
9036 dst = SET_DEST (set);
9037 if (!REG_P (dst)
9038 || ! rtx_equal_p (dst, x))
9039 return;
9040 if (! reg_set_p (dst, PATTERN (dead_insn)))
9042 /* Check if DST was used in a later insn -
9043 it might have been inherited. */
9044 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9046 if (LABEL_P (i2))
9047 break;
9048 if (! INSN_P (i2))
9049 continue;
9050 if (reg_referenced_p (dst, PATTERN (i2)))
9052 /* If there is a reference to the register in the current insn,
9053 it might be loaded in a non-inherited reload. If no other
9054 reload uses it, that means the register is set before
9055 referenced. */
9056 if (i2 == current_insn)
9058 for (j = n_reloads - 1; j >= 0; j--)
9059 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9060 || reload_override_in[j] == dst)
9061 return;
9062 for (j = n_reloads - 1; j >= 0; j--)
9063 if (rld[j].in && rld[j].reg_rtx == dst)
9064 break;
9065 if (j >= 0)
9066 break;
9068 return;
9070 if (JUMP_P (i2))
9071 break;
9072 /* If DST is still live at CURRENT_INSN, check if it is used for
9073 any reload. Note that even if CURRENT_INSN sets DST, we still
9074 have to check the reloads. */
9075 if (i2 == current_insn)
9077 for (j = n_reloads - 1; j >= 0; j--)
9078 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9079 || reload_override_in[j] == dst)
9080 return;
9081 /* ??? We can't finish the loop here, because dst might be
9082 allocated to a pseudo in this block if no reload in this
9083 block needs any of the classes containing DST - see
9084 spill_hard_reg. There is no easy way to tell this, so we
9085 have to scan till the end of the basic block. */
9087 if (reg_set_p (dst, PATTERN (i2)))
9088 break;
9091 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9092 reg_reloaded_contents[REGNO (dst)] = -1;
9093 delete_insn (prev);
9096 /* Output reload-insns to reload VALUE into RELOADREG.
9097 VALUE is an autoincrement or autodecrement RTX whose operand
9098 is a register or memory location;
9099 so reloading involves incrementing that location.
9100 IN is either identical to VALUE, or some cheaper place to reload from.
9102 INC_AMOUNT is the number to increment or decrement by (always positive).
9103 This cannot be deduced from VALUE. */
9105 static void
9106 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9108 /* REG or MEM to be copied and incremented. */
9109 rtx incloc = find_replacement (&XEXP (value, 0));
9110 /* Nonzero if increment after copying. */
9111 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9112 || GET_CODE (value) == POST_MODIFY);
9113 rtx_insn *last;
9114 rtx inc;
9115 rtx_insn *add_insn;
9116 int code;
9117 rtx real_in = in == value ? incloc : in;
9119 /* No hard register is equivalent to this register after
9120 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9121 we could inc/dec that register as well (maybe even using it for
9122 the source), but I'm not sure it's worth worrying about. */
9123 if (REG_P (incloc))
9124 reg_last_reload_reg[REGNO (incloc)] = 0;
9126 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9128 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9129 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9131 else
9133 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9134 inc_amount = -inc_amount;
9136 inc = GEN_INT (inc_amount);
9139 /* If this is post-increment, first copy the location to the reload reg. */
9140 if (post && real_in != reloadreg)
9141 emit_insn (gen_move_insn (reloadreg, real_in));
9143 if (in == value)
9145 /* See if we can directly increment INCLOC. Use a method similar to
9146 that in gen_reload. */
9148 last = get_last_insn ();
9149 add_insn = emit_insn (gen_rtx_SET (incloc,
9150 gen_rtx_PLUS (GET_MODE (incloc),
9151 incloc, inc)));
9153 code = recog_memoized (add_insn);
9154 if (code >= 0)
9156 extract_insn (add_insn);
9157 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9159 /* If this is a pre-increment and we have incremented the value
9160 where it lives, copy the incremented value to RELOADREG to
9161 be used as an address. */
9163 if (! post)
9164 emit_insn (gen_move_insn (reloadreg, incloc));
9165 return;
9168 delete_insns_since (last);
9171 /* If couldn't do the increment directly, must increment in RELOADREG.
9172 The way we do this depends on whether this is pre- or post-increment.
9173 For pre-increment, copy INCLOC to the reload register, increment it
9174 there, then save back. */
9176 if (! post)
9178 if (in != reloadreg)
9179 emit_insn (gen_move_insn (reloadreg, real_in));
9180 emit_insn (gen_add2_insn (reloadreg, inc));
9181 emit_insn (gen_move_insn (incloc, reloadreg));
9183 else
9185 /* Postincrement.
9186 Because this might be a jump insn or a compare, and because RELOADREG
9187 may not be available after the insn in an input reload, we must do
9188 the incrementation before the insn being reloaded for.
9190 We have already copied IN to RELOADREG. Increment the copy in
9191 RELOADREG, save that back, then decrement RELOADREG so it has
9192 the original value. */
9194 emit_insn (gen_add2_insn (reloadreg, inc));
9195 emit_insn (gen_move_insn (incloc, reloadreg));
9196 if (CONST_INT_P (inc))
9197 emit_insn (gen_add2_insn (reloadreg,
9198 gen_int_mode (-INTVAL (inc),
9199 GET_MODE (reloadreg))));
9200 else
9201 emit_insn (gen_sub2_insn (reloadreg, inc));
9205 static void
9206 add_auto_inc_notes (rtx_insn *insn, rtx x)
9208 enum rtx_code code = GET_CODE (x);
9209 const char *fmt;
9210 int i, j;
9212 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9214 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9215 return;
9218 /* Scan all the operand sub-expressions. */
9219 fmt = GET_RTX_FORMAT (code);
9220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9222 if (fmt[i] == 'e')
9223 add_auto_inc_notes (insn, XEXP (x, i));
9224 else if (fmt[i] == 'E')
9225 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9226 add_auto_inc_notes (insn, XVECEXP (x, i, j));