1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
27 #include "coretypes.h"
35 #include "alloc-pool.h"
41 #include "pretty-print.h"
42 #include "diagnostic-core.h"
44 #include "fold-const.h"
46 #include "stor-layout.h"
51 #include "langhooks.h"
59 /* Functions and data structures for expanding case statements. */
61 /* Case label structure, used to hold info on labels within case
62 statements. We handle "range" labels; for a single-value label
63 as in C, the high and low limits are the same.
65 We start with a vector of case nodes sorted in ascending order, and
66 the default label as the last element in the vector. Before expanding
67 to RTL, we transform this vector into a list linked via the RIGHT
68 fields in the case_node struct. Nodes with higher case values are
71 Switch statements can be output in three forms. A branch table is
72 used if there are more than a few labels and the labels are dense
73 within the range between the smallest and largest case value. If a
74 branch table is used, no further manipulations are done with the case
77 The alternative to the use of a branch table is to generate a series
78 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
79 and PARENT fields to hold a binary tree. Initially the tree is
80 totally unbalanced, with everything on the right. We balance the tree
81 with nodes on the left having lower case values than the parent
82 and nodes on the right having higher values. We then output the tree
85 For very small, suitable switch statements, we can generate a series
86 of simple bit test and branches instead. */
90 struct case_node
*left
; /* Left son in binary tree */
91 struct case_node
*right
; /* Right son in binary tree; also node chain */
92 struct case_node
*parent
; /* Parent of node in binary tree */
93 tree low
; /* Lowest index value for this label */
94 tree high
; /* Highest index value for this label */
95 tree code_label
; /* Label to jump to when node matches */
96 profile_probability prob
; /* Probability of taking this case. */
97 /* Probability of reaching subtree rooted at this node */
98 profile_probability subtree_prob
;
101 typedef struct case_node
*case_node_ptr
;
103 extern basic_block
label_to_block_fn (struct function
*, tree
);
105 static bool check_unique_operand_names (tree
, tree
, tree
);
106 static char *resolve_operand_name_1 (char *, tree
, tree
, tree
);
107 static void balance_case_nodes (case_node_ptr
*, case_node_ptr
);
108 static int node_has_low_bound (case_node_ptr
, tree
);
109 static int node_has_high_bound (case_node_ptr
, tree
);
110 static int node_is_bounded (case_node_ptr
, tree
);
111 static void emit_case_nodes (rtx
, case_node_ptr
, rtx_code_label
*,
112 profile_probability
, tree
);
114 /* Return the rtx-label that corresponds to a LABEL_DECL,
115 creating it if necessary. */
118 label_rtx (tree label
)
120 gcc_assert (TREE_CODE (label
) == LABEL_DECL
);
122 if (!DECL_RTL_SET_P (label
))
124 rtx_code_label
*r
= gen_label_rtx ();
125 SET_DECL_RTL (label
, r
);
126 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
127 LABEL_PRESERVE_P (r
) = 1;
130 return as_a
<rtx_insn
*> (DECL_RTL (label
));
133 /* As above, but also put it on the forced-reference list of the
134 function that contains it. */
136 force_label_rtx (tree label
)
138 rtx_insn
*ref
= label_rtx (label
);
139 tree function
= decl_function_context (label
);
141 gcc_assert (function
);
143 vec_safe_push (forced_labels
, ref
);
147 /* As label_rtx, but ensures (in check build), that returned value is
148 an existing label (i.e. rtx with code CODE_LABEL). */
150 jump_target_rtx (tree label
)
152 return as_a
<rtx_code_label
*> (label_rtx (label
));
155 /* Add an unconditional jump to LABEL as the next sequential instruction. */
158 emit_jump (rtx label
)
160 do_pending_stack_adjust ();
161 emit_jump_insn (targetm
.gen_jump (label
));
165 /* Handle goto statements and the labels that they can go to. */
167 /* Specify the location in the RTL code of a label LABEL,
168 which is a LABEL_DECL tree node.
170 This is used for the kind of label that the user can jump to with a
171 goto statement, and for alternatives of a switch or case statement.
172 RTL labels generated for loops and conditionals don't go through here;
173 they are generated directly at the RTL level, by other functions below.
175 Note that this has nothing to do with defining label *names*.
176 Languages vary in how they do that and what that even means. */
179 expand_label (tree label
)
181 rtx_code_label
*label_r
= jump_target_rtx (label
);
183 do_pending_stack_adjust ();
184 emit_label (label_r
);
185 if (DECL_NAME (label
))
186 LABEL_NAME (DECL_RTL (label
)) = IDENTIFIER_POINTER (DECL_NAME (label
));
188 if (DECL_NONLOCAL (label
))
190 expand_builtin_setjmp_receiver (NULL
);
191 nonlocal_goto_handler_labels
192 = gen_rtx_INSN_LIST (VOIDmode
, label_r
,
193 nonlocal_goto_handler_labels
);
196 if (FORCED_LABEL (label
))
197 vec_safe_push
<rtx_insn
*> (forced_labels
, label_r
);
199 if (DECL_NONLOCAL (label
) || FORCED_LABEL (label
))
200 maybe_set_first_label_num (label_r
);
203 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
204 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
205 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
206 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
207 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
208 constraint allows the use of a register operand. And, *IS_INOUT
209 will be true if the operand is read-write, i.e., if it is used as
210 an input as well as an output. If *CONSTRAINT_P is not in
211 canonical form, it will be made canonical. (Note that `+' will be
212 replaced with `=' as part of this process.)
214 Returns TRUE if all went well; FALSE if an error occurred. */
217 parse_output_constraint (const char **constraint_p
, int operand_num
,
218 int ninputs
, int noutputs
, bool *allows_mem
,
219 bool *allows_reg
, bool *is_inout
)
221 const char *constraint
= *constraint_p
;
224 /* Assume the constraint doesn't allow the use of either a register
229 /* Allow the `=' or `+' to not be at the beginning of the string,
230 since it wasn't explicitly documented that way, and there is a
231 large body of code that puts it last. Swap the character to
232 the front, so as not to uglify any place else. */
233 p
= strchr (constraint
, '=');
235 p
= strchr (constraint
, '+');
237 /* If the string doesn't contain an `=', issue an error
241 error ("output operand constraint lacks %<=%>");
245 /* If the constraint begins with `+', then the operand is both read
246 from and written to. */
247 *is_inout
= (*p
== '+');
249 /* Canonicalize the output constraint so that it begins with `='. */
250 if (p
!= constraint
|| *is_inout
)
253 size_t c_len
= strlen (constraint
);
256 warning (0, "output constraint %qc for operand %d "
257 "is not at the beginning",
260 /* Make a copy of the constraint. */
261 buf
= XALLOCAVEC (char, c_len
+ 1);
262 strcpy (buf
, constraint
);
263 /* Swap the first character and the `=' or `+'. */
264 buf
[p
- constraint
] = buf
[0];
265 /* Make sure the first character is an `='. (Until we do this,
266 it might be a `+'.) */
268 /* Replace the constraint with the canonicalized string. */
269 *constraint_p
= ggc_alloc_string (buf
, c_len
);
270 constraint
= *constraint_p
;
273 /* Loop through the constraint string. */
274 for (p
= constraint
+ 1; *p
; p
+= CONSTRAINT_LEN (*p
, p
))
279 error ("operand constraint contains incorrectly positioned "
284 if (operand_num
+ 1 == ninputs
+ noutputs
)
286 error ("%<%%%> constraint used with last operand");
291 case '?': case '!': case '*': case '&': case '#':
293 case 'E': case 'F': case 'G': case 'H':
294 case 's': case 'i': case 'n':
295 case 'I': case 'J': case 'K': case 'L': case 'M':
296 case 'N': case 'O': case 'P': case ',':
299 case '0': case '1': case '2': case '3': case '4':
300 case '5': case '6': case '7': case '8': case '9':
302 error ("matching constraint not valid in output operand");
306 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
307 excepting those that expand_call created. So match memory
320 enum constraint_num cn
= lookup_constraint (p
);
321 if (reg_class_for_constraint (cn
) != NO_REGS
322 || insn_extra_address_constraint (cn
))
324 else if (insn_extra_memory_constraint (cn
))
327 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
334 /* Similar, but for input constraints. */
337 parse_input_constraint (const char **constraint_p
, int input_num
,
338 int ninputs
, int noutputs
, int ninout
,
339 const char * const * constraints
,
340 bool *allows_mem
, bool *allows_reg
)
342 const char *constraint
= *constraint_p
;
343 const char *orig_constraint
= constraint
;
344 size_t c_len
= strlen (constraint
);
346 bool saw_match
= false;
348 /* Assume the constraint doesn't allow the use of either
349 a register or memory. */
353 /* Make sure constraint has neither `=', `+', nor '&'. */
355 for (j
= 0; j
< c_len
; j
+= CONSTRAINT_LEN (constraint
[j
], constraint
+j
))
356 switch (constraint
[j
])
358 case '+': case '=': case '&':
359 if (constraint
== orig_constraint
)
361 error ("input operand constraint contains %qc", constraint
[j
]);
367 if (constraint
== orig_constraint
368 && input_num
+ 1 == ninputs
- ninout
)
370 error ("%<%%%> constraint used with last operand");
376 case '?': case '!': case '*': case '#':
378 case 'E': case 'F': case 'G': case 'H':
379 case 's': case 'i': case 'n':
380 case 'I': case 'J': case 'K': case 'L': case 'M':
381 case 'N': case 'O': case 'P': case ',':
384 /* Whether or not a numeric constraint allows a register is
385 decided by the matching constraint, and so there is no need
386 to do anything special with them. We must handle them in
387 the default case, so that we don't unnecessarily force
388 operands to memory. */
389 case '0': case '1': case '2': case '3': case '4':
390 case '5': case '6': case '7': case '8': case '9':
397 match
= strtoul (constraint
+ j
, &end
, 10);
398 if (match
>= (unsigned long) noutputs
)
400 error ("matching constraint references invalid operand number");
404 /* Try and find the real constraint for this dup. Only do this
405 if the matching constraint is the only alternative. */
407 && (j
== 0 || (j
== 1 && constraint
[0] == '%')))
409 constraint
= constraints
[match
];
410 *constraint_p
= constraint
;
411 c_len
= strlen (constraint
);
413 /* ??? At the end of the loop, we will skip the first part of
414 the matched constraint. This assumes not only that the
415 other constraint is an output constraint, but also that
416 the '=' or '+' come first. */
420 j
= end
- constraint
;
421 /* Anticipate increment at end of loop. */
432 if (! ISALPHA (constraint
[j
]))
434 error ("invalid punctuation %qc in constraint", constraint
[j
]);
437 enum constraint_num cn
= lookup_constraint (constraint
+ j
);
438 if (reg_class_for_constraint (cn
) != NO_REGS
439 || insn_extra_address_constraint (cn
))
441 else if (insn_extra_memory_constraint (cn
)
442 || insn_extra_special_memory_constraint (cn
))
445 insn_extra_constraint_allows_reg_mem (cn
, allows_reg
, allows_mem
);
449 if (saw_match
&& !*allows_reg
)
450 warning (0, "matching constraint does not allow a register");
455 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
456 can be an asm-declared register. Called via walk_tree. */
459 decl_overlaps_hard_reg_set_p (tree
*declp
, int *walk_subtrees ATTRIBUTE_UNUSED
,
463 const HARD_REG_SET
*const regs
= (const HARD_REG_SET
*) data
;
467 if (DECL_HARD_REGISTER (decl
)
468 && REG_P (DECL_RTL (decl
))
469 && REGNO (DECL_RTL (decl
)) < FIRST_PSEUDO_REGISTER
)
471 rtx reg
= DECL_RTL (decl
);
473 if (overlaps_hard_reg_set_p (*regs
, GET_MODE (reg
), REGNO (reg
)))
478 else if (TYPE_P (decl
) || TREE_CODE (decl
) == PARM_DECL
)
483 /* If there is an overlap between *REGS and DECL, return the first overlap
486 tree_overlaps_hard_reg_set (tree decl
, HARD_REG_SET
*regs
)
488 return walk_tree (&decl
, decl_overlaps_hard_reg_set_p
, regs
, NULL
);
492 /* A subroutine of expand_asm_operands. Check that all operand names
493 are unique. Return true if so. We rely on the fact that these names
494 are identifiers, and so have been canonicalized by get_identifier,
495 so all we need are pointer comparisons. */
498 check_unique_operand_names (tree outputs
, tree inputs
, tree labels
)
500 tree i
, j
, i_name
= NULL_TREE
;
502 for (i
= outputs
; i
; i
= TREE_CHAIN (i
))
504 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
508 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
509 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
513 for (i
= inputs
; i
; i
= TREE_CHAIN (i
))
515 i_name
= TREE_PURPOSE (TREE_PURPOSE (i
));
519 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
520 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
522 for (j
= outputs
; j
; j
= TREE_CHAIN (j
))
523 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
527 for (i
= labels
; i
; i
= TREE_CHAIN (i
))
529 i_name
= TREE_PURPOSE (i
);
533 for (j
= TREE_CHAIN (i
); j
; j
= TREE_CHAIN (j
))
534 if (simple_cst_equal (i_name
, TREE_PURPOSE (j
)))
536 for (j
= inputs
; j
; j
= TREE_CHAIN (j
))
537 if (simple_cst_equal (i_name
, TREE_PURPOSE (TREE_PURPOSE (j
))))
544 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name
));
548 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
549 and replace the name expansions in STRING and in the constraints to
550 those numbers. This is generally done in the front end while creating
551 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
554 resolve_asm_operand_names (tree string
, tree outputs
, tree inputs
, tree labels
)
561 check_unique_operand_names (outputs
, inputs
, labels
);
563 /* Substitute [<name>] in input constraint strings. There should be no
564 named operands in output constraints. */
565 for (t
= inputs
; t
; t
= TREE_CHAIN (t
))
567 c
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
568 if (strchr (c
, '[') != NULL
)
570 p
= buffer
= xstrdup (c
);
571 while ((p
= strchr (p
, '[')) != NULL
)
572 p
= resolve_operand_name_1 (p
, outputs
, inputs
, NULL
);
573 TREE_VALUE (TREE_PURPOSE (t
))
574 = build_string (strlen (buffer
), buffer
);
579 /* Now check for any needed substitutions in the template. */
580 c
= TREE_STRING_POINTER (string
);
581 while ((c
= strchr (c
, '%')) != NULL
)
585 else if (ISALPHA (c
[1]) && c
[2] == '[')
589 c
+= 1 + (c
[1] == '%');
596 /* OK, we need to make a copy so we can perform the substitutions.
597 Assume that we will not need extra space--we get to remove '['
598 and ']', which means we cannot have a problem until we have more
599 than 999 operands. */
600 buffer
= xstrdup (TREE_STRING_POINTER (string
));
601 p
= buffer
+ (c
- TREE_STRING_POINTER (string
));
603 while ((p
= strchr (p
, '%')) != NULL
)
607 else if (ISALPHA (p
[1]) && p
[2] == '[')
611 p
+= 1 + (p
[1] == '%');
615 p
= resolve_operand_name_1 (p
, outputs
, inputs
, labels
);
618 string
= build_string (strlen (buffer
), buffer
);
625 /* A subroutine of resolve_operand_names. P points to the '[' for a
626 potential named operand of the form [<name>]. In place, replace
627 the name and brackets with a number. Return a pointer to the
628 balance of the string after substitution. */
631 resolve_operand_name_1 (char *p
, tree outputs
, tree inputs
, tree labels
)
637 /* Collect the operand name. */
638 q
= strchr (++p
, ']');
641 error ("missing close brace for named operand");
642 return strchr (p
, '\0');
646 /* Resolve the name to a number. */
647 for (op
= 0, t
= outputs
; t
; t
= TREE_CHAIN (t
), op
++)
649 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
650 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
653 for (t
= inputs
; t
; t
= TREE_CHAIN (t
), op
++)
655 tree name
= TREE_PURPOSE (TREE_PURPOSE (t
));
656 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
659 for (t
= labels
; t
; t
= TREE_CHAIN (t
), op
++)
661 tree name
= TREE_PURPOSE (t
);
662 if (name
&& strcmp (TREE_STRING_POINTER (name
), p
) == 0)
666 error ("undefined named operand %qs", identifier_to_locale (p
));
670 /* Replace the name with the number. Unfortunately, not all libraries
671 get the return value of sprintf correct, so search for the end of the
672 generated string by hand. */
673 sprintf (--p
, "%d", op
);
674 p
= strchr (p
, '\0');
676 /* Verify the no extra buffer space assumption. */
679 /* Shift the rest of the buffer down to fill the gap. */
680 memmove (p
, q
+ 1, strlen (q
+ 1) + 1);
686 /* Generate RTL to return directly from the current function.
687 (That is, we bypass any return value.) */
690 expand_naked_return (void)
692 rtx_code_label
*end_label
;
694 clear_pending_stack_adjust ();
695 do_pending_stack_adjust ();
697 end_label
= naked_return_label
;
699 end_label
= naked_return_label
= gen_label_rtx ();
701 emit_jump (end_label
);
704 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
705 is the probability of jumping to LABEL. */
707 do_jump_if_equal (machine_mode mode
, rtx op0
, rtx op1
, rtx_code_label
*label
,
708 int unsignedp
, profile_probability prob
)
710 do_compare_rtx_and_jump (op0
, op1
, EQ
, unsignedp
, mode
,
711 NULL_RTX
, NULL
, label
, prob
);
714 /* Do the insertion of a case label into case_list. The labels are
715 fed to us in descending order from the sorted vector of case labels used
716 in the tree part of the middle end. So the list we construct is
717 sorted in ascending order.
719 LABEL is the case label to be inserted. LOW and HIGH are the bounds
720 against which the index is compared to jump to LABEL and PROB is the
721 estimated probability LABEL is reached from the switch statement. */
723 static struct case_node
*
724 add_case_node (struct case_node
*head
, tree low
, tree high
,
725 tree label
, profile_probability prob
,
726 object_allocator
<case_node
> &case_node_pool
)
730 gcc_checking_assert (low
);
731 gcc_checking_assert (high
&& (TREE_TYPE (low
) == TREE_TYPE (high
)));
733 /* Add this label to the chain. */
734 r
= case_node_pool
.allocate ();
737 r
->code_label
= label
;
738 r
->parent
= r
->left
= NULL
;
740 r
->subtree_prob
= prob
;
745 /* Dump ROOT, a list or tree of case nodes, to file. */
748 dump_case_nodes (FILE *f
, struct case_node
*root
,
749 int indent_step
, int indent_level
)
755 dump_case_nodes (f
, root
->left
, indent_step
, indent_level
);
758 fprintf (f
, "%*s", indent_step
* indent_level
, "");
759 print_dec (root
->low
, f
, TYPE_SIGN (TREE_TYPE (root
->low
)));
760 if (!tree_int_cst_equal (root
->low
, root
->high
))
762 fprintf (f
, " ... ");
763 print_dec (root
->high
, f
, TYPE_SIGN (TREE_TYPE (root
->high
)));
767 dump_case_nodes (f
, root
->right
, indent_step
, indent_level
);
770 /* Return the smallest number of different values for which it is best to use a
771 jump-table instead of a tree of conditional branches. */
774 case_values_threshold (void)
776 unsigned int threshold
= PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD
);
779 threshold
= targetm
.case_values_threshold ();
784 /* Return true if a switch should be expanded as a decision tree.
785 RANGE is the difference between highest and lowest case.
786 UNIQ is number of unique case node targets, not counting the default case.
787 COUNT is the number of comparisons needed, not counting the default case. */
790 expand_switch_as_decision_tree_p (tree range
,
791 unsigned int uniq ATTRIBUTE_UNUSED
,
796 /* If neither casesi or tablejump is available, or flag_jump_tables
797 over-ruled us, we really have no choice. */
798 if (!targetm
.have_casesi () && !targetm
.have_tablejump ())
800 if (!flag_jump_tables
)
802 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
807 /* If the switch is relatively small such that the cost of one
808 indirect jump on the target are higher than the cost of a
809 decision tree, go with the decision tree.
811 If range of values is much bigger than number of values,
812 or if it is too large to represent in a HOST_WIDE_INT,
813 make a sequence of conditional branches instead of a dispatch.
815 The definition of "much bigger" depends on whether we are
816 optimizing for size or for speed. If the former, the maximum
817 ratio range/count = 3, because this was found to be the optimal
818 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
819 10 is much older, and was probably selected after an extensive
820 benchmarking investigation on numerous platforms. Or maybe it
821 just made sense to someone at some point in the history of GCC,
823 max_ratio
= optimize_insn_for_size_p () ? 3 : 10;
824 if (count
< case_values_threshold ()
825 || ! tree_fits_uhwi_p (range
)
826 || compare_tree_int (range
, max_ratio
* count
) > 0)
832 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
833 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
834 DEFAULT_PROB is the estimated probability that it jumps to
837 We generate a binary decision tree to select the appropriate target
838 code. This is done as follows:
840 If the index is a short or char that we do not have
841 an insn to handle comparisons directly, convert it to
842 a full integer now, rather than letting each comparison
843 generate the conversion.
845 Load the index into a register.
847 The list of cases is rearranged into a binary tree,
848 nearly optimal assuming equal probability for each case.
850 The tree is transformed into RTL, eliminating redundant
851 test conditions at the same time.
853 If program flow could reach the end of the decision tree
854 an unconditional jump to the default code is emitted.
856 The above process is unaware of the CFG. The caller has to fix up
857 the CFG itself. This is done in cfgexpand.c. */
860 emit_case_decision_tree (tree index_expr
, tree index_type
,
861 case_node_ptr case_list
, rtx_code_label
*default_label
,
862 profile_probability default_prob
)
864 rtx index
= expand_normal (index_expr
);
866 if (GET_MODE_CLASS (GET_MODE (index
)) == MODE_INT
867 && ! have_insn_for (COMPARE
, GET_MODE (index
)))
869 int unsignedp
= TYPE_UNSIGNED (index_type
);
870 machine_mode wider_mode
;
871 for (wider_mode
= GET_MODE (index
); wider_mode
!= VOIDmode
;
872 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
873 if (have_insn_for (COMPARE
, wider_mode
))
875 index
= convert_to_mode (wider_mode
, index
, unsignedp
);
880 do_pending_stack_adjust ();
884 index
= copy_to_reg (index
);
885 if (TREE_CODE (index_expr
) == SSA_NAME
)
886 set_reg_attrs_for_decl_rtl (index_expr
, index
);
889 balance_case_nodes (&case_list
, NULL
);
891 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
893 int indent_step
= ceil_log2 (TYPE_PRECISION (index_type
)) + 2;
894 fprintf (dump_file
, ";; Expanding GIMPLE switch as decision tree:\n");
895 dump_case_nodes (dump_file
, case_list
, indent_step
, 0);
898 emit_case_nodes (index
, case_list
, default_label
, default_prob
, index_type
);
900 emit_jump (default_label
);
903 /* Return the sum of probabilities of outgoing edges of basic block BB. */
905 static profile_probability
906 get_outgoing_edge_probs (basic_block bb
)
910 profile_probability prob_sum
= profile_probability::never ();
912 return profile_probability::never ();
913 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
914 prob_sum
+= e
->probability
;
918 /* Computes the conditional probability of jumping to a target if the branch
919 instruction is executed.
920 TARGET_PROB is the estimated probability of jumping to a target relative
921 to some basic block BB.
922 BASE_PROB is the probability of reaching the branch instruction relative
923 to the same basic block BB. */
925 static inline profile_probability
926 conditional_probability (profile_probability target_prob
,
927 profile_probability base_prob
)
929 return target_prob
/ base_prob
;
932 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
933 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
934 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
935 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
937 First, a jump insn is emitted. First we try "casesi". If that
938 fails, try "tablejump". A target *must* have one of them (or both).
940 Then, a table with the target labels is emitted.
942 The process is unaware of the CFG. The caller has to fix up
943 the CFG itself. This is done in cfgexpand.c. */
946 emit_case_dispatch_table (tree index_expr
, tree index_type
,
947 struct case_node
*case_list
, rtx default_label
,
948 edge default_edge
, tree minval
, tree maxval
,
949 tree range
, basic_block stmt_bb
)
954 rtx_insn
*fallback_label
= label_rtx (case_list
->code_label
);
955 rtx_code_label
*table_label
= gen_label_rtx ();
956 bool has_gaps
= false;
957 profile_probability default_prob
= default_edge
? default_edge
->probability
958 : profile_probability::never ();
959 profile_probability base
= get_outgoing_edge_probs (stmt_bb
);
960 bool try_with_tablejump
= false;
962 profile_probability new_default_prob
= conditional_probability (default_prob
,
965 if (! try_casesi (index_type
, index_expr
, minval
, range
,
966 table_label
, default_label
, fallback_label
,
969 /* Index jumptables from zero for suitable values of minval to avoid
970 a subtraction. For the rationale see:
971 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
972 if (optimize_insn_for_speed_p ()
973 && compare_tree_int (minval
, 0) > 0
974 && compare_tree_int (minval
, 3) < 0)
976 minval
= build_int_cst (index_type
, 0);
980 try_with_tablejump
= true;
983 /* Get table of labels to jump to, in order of case index. */
985 ncases
= tree_to_shwi (range
) + 1;
986 labelvec
= XALLOCAVEC (rtx
, ncases
);
987 memset (labelvec
, 0, ncases
* sizeof (rtx
));
989 for (n
= case_list
; n
; n
= n
->right
)
991 /* Compute the low and high bounds relative to the minimum
992 value since that should fit in a HOST_WIDE_INT while the
993 actual values may not. */
995 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
998 = tree_to_uhwi (fold_build2 (MINUS_EXPR
, index_type
,
1002 for (i
= i_low
; i
<= i_high
; i
++)
1004 = gen_rtx_LABEL_REF (Pmode
, label_rtx (n
->code_label
));
1007 /* The dispatch table may contain gaps, including at the beginning of
1008 the table if we tried to avoid the minval subtraction. We fill the
1009 dispatch table slots associated with the gaps with the default case label.
1010 However, in the event the default case is unreachable, we then use
1011 any label from one of the case statements. */
1012 rtx gap_label
= (default_label
) ? default_label
: fallback_label
;
1014 for (i
= 0; i
< ncases
; i
++)
1015 if (labelvec
[i
] == 0)
1018 labelvec
[i
] = gen_rtx_LABEL_REF (Pmode
, gap_label
);
1021 if (has_gaps
&& default_label
)
1023 /* There is at least one entry in the jump table that jumps
1024 to default label. The default label can either be reached
1025 through the indirect jump or the direct conditional jump
1026 before that. Split the probability of reaching the
1027 default label among these two jumps. */
1029 = conditional_probability (default_prob
.apply_scale (1, 2), base
);
1030 default_prob
= default_prob
.apply_scale (1, 2);
1031 base
-= default_prob
;
1035 base
-= default_prob
;
1036 default_prob
= profile_probability::never ();
1040 default_edge
->probability
= default_prob
;
1042 /* We have altered the probability of the default edge. So the probabilities
1043 of all other edges need to be adjusted so that it sums up to
1044 REG_BR_PROB_BASE. */
1045 if (base
> profile_probability::never ())
1049 FOR_EACH_EDGE (e
, ei
, stmt_bb
->succs
)
1050 e
->probability
/= base
;
1053 if (try_with_tablejump
)
1055 bool ok
= try_tablejump (index_type
, index_expr
, minval
, range
,
1056 table_label
, default_label
, new_default_prob
);
1059 /* Output the table. */
1060 emit_label (table_label
);
1062 if (CASE_VECTOR_PC_RELATIVE
|| flag_pic
)
1063 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE
,
1064 gen_rtx_LABEL_REF (Pmode
,
1066 gen_rtvec_v (ncases
, labelvec
),
1067 const0_rtx
, const0_rtx
));
1069 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE
,
1070 gen_rtvec_v (ncases
, labelvec
)));
1072 /* Record no drop-through after the table. */
1076 /* Reset the aux field of all outgoing edges of basic block BB. */
1079 reset_out_edges_aux (basic_block bb
)
1083 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1087 /* Compute the number of case labels that correspond to each outgoing edge of
1088 STMT. Record this information in the aux field of the edge. */
1091 compute_cases_per_edge (gswitch
*stmt
)
1093 basic_block bb
= gimple_bb (stmt
);
1094 reset_out_edges_aux (bb
);
1095 int ncases
= gimple_switch_num_labels (stmt
);
1096 for (int i
= ncases
- 1; i
>= 1; --i
)
1098 tree elt
= gimple_switch_label (stmt
, i
);
1099 tree lab
= CASE_LABEL (elt
);
1100 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1101 edge case_edge
= find_edge (bb
, case_bb
);
1102 case_edge
->aux
= (void *)((intptr_t)(case_edge
->aux
) + 1);
1106 /* Terminate a case Ada or switch (C) statement
1107 in which ORIG_INDEX is the expression to be tested.
1108 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1109 type as given in the source before any compiler conversions.
1110 Generate the code to test it and jump to the right place. */
1113 expand_case (gswitch
*stmt
)
1115 tree minval
= NULL_TREE
, maxval
= NULL_TREE
, range
= NULL_TREE
;
1116 rtx_code_label
*default_label
;
1117 unsigned int count
, uniq
;
1119 int ncases
= gimple_switch_num_labels (stmt
);
1120 tree index_expr
= gimple_switch_index (stmt
);
1121 tree index_type
= TREE_TYPE (index_expr
);
1123 basic_block bb
= gimple_bb (stmt
);
1125 /* A list of case labels; it is first built as a list and it may then
1126 be rearranged into a nearly balanced binary tree. */
1127 struct case_node
*case_list
= 0;
1129 /* A pool for case nodes. */
1130 object_allocator
<case_node
> case_node_pool ("struct case_node pool");
1132 /* An ERROR_MARK occurs for various reasons including invalid data type.
1133 ??? Can this still happen, with GIMPLE and all? */
1134 if (index_type
== error_mark_node
)
1137 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1138 expressions being INTEGER_CST. */
1139 gcc_assert (TREE_CODE (index_expr
) != INTEGER_CST
);
1141 /* Optimization of switch statements with only one label has already
1142 occurred, so we should never see them at this point. */
1143 gcc_assert (ncases
> 1);
1145 do_pending_stack_adjust ();
1147 /* Find the default case target label. */
1148 tree default_lab
= CASE_LABEL (gimple_switch_default_label (stmt
));
1149 default_label
= jump_target_rtx (default_lab
);
1150 basic_block default_bb
= label_to_block_fn (cfun
, default_lab
);
1151 edge default_edge
= find_edge (bb
, default_bb
);
1152 profile_probability default_prob
= default_edge
->probability
;
1154 /* Get upper and lower bounds of case values. */
1155 elt
= gimple_switch_label (stmt
, 1);
1156 minval
= fold_convert (index_type
, CASE_LOW (elt
));
1157 elt
= gimple_switch_label (stmt
, ncases
- 1);
1158 if (CASE_HIGH (elt
))
1159 maxval
= fold_convert (index_type
, CASE_HIGH (elt
));
1161 maxval
= fold_convert (index_type
, CASE_LOW (elt
));
1163 /* Compute span of values. */
1164 range
= fold_build2 (MINUS_EXPR
, index_type
, maxval
, minval
);
1166 /* Listify the labels queue and gather some numbers to decide
1167 how to expand this switch(). */
1170 hash_set
<tree
> seen_labels
;
1171 compute_cases_per_edge (stmt
);
1173 for (i
= ncases
- 1; i
>= 1; --i
)
1175 elt
= gimple_switch_label (stmt
, i
);
1176 tree low
= CASE_LOW (elt
);
1178 tree high
= CASE_HIGH (elt
);
1179 gcc_assert (! high
|| tree_int_cst_lt (low
, high
));
1180 tree lab
= CASE_LABEL (elt
);
1182 /* Count the elements.
1183 A range counts double, since it requires two compares. */
1188 /* If we have not seen this label yet, then increase the
1189 number of unique case node targets seen. */
1190 if (!seen_labels
.add (lab
))
1193 /* The bounds on the case range, LOW and HIGH, have to be converted
1194 to case's index type TYPE. Note that the original type of the
1195 case index in the source code is usually "lost" during
1196 gimplification due to type promotion, but the case labels retain the
1197 original type. Make sure to drop overflow flags. */
1198 low
= fold_convert (index_type
, low
);
1199 if (TREE_OVERFLOW (low
))
1200 low
= wide_int_to_tree (index_type
, low
);
1202 /* The canonical from of a case label in GIMPLE is that a simple case
1203 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1204 the back ends want simple cases to have high == low. */
1207 high
= fold_convert (index_type
, high
);
1208 if (TREE_OVERFLOW (high
))
1209 high
= wide_int_to_tree (index_type
, high
);
1211 basic_block case_bb
= label_to_block_fn (cfun
, lab
);
1212 edge case_edge
= find_edge (bb
, case_bb
);
1213 case_list
= add_case_node (
1214 case_list
, low
, high
, lab
,
1215 case_edge
->probability
.apply_scale (1, (intptr_t)(case_edge
->aux
)),
1218 reset_out_edges_aux (bb
);
1220 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1221 destination, such as one with a default case only.
1222 It also removes cases that are out of range for the switch
1223 type, so we should never get a zero here. */
1224 gcc_assert (count
> 0);
1226 rtx_insn
*before_case
= get_last_insn ();
1228 /* Decide how to expand this switch.
1229 The two options at this point are a dispatch table (casesi or
1230 tablejump) or a decision tree. */
1232 if (expand_switch_as_decision_tree_p (range
, uniq
, count
))
1233 emit_case_decision_tree (index_expr
, index_type
,
1234 case_list
, default_label
,
1238 /* If the default case is unreachable, then set default_label to NULL
1239 so that we omit the range check when generating the dispatch table.
1240 We also remove the edge to the unreachable default case. The block
1241 itself will be automatically removed later. */
1242 if (EDGE_COUNT (default_edge
->dest
->succs
) == 0
1243 && gimple_seq_unreachable_p (bb_seq (default_edge
->dest
)))
1245 default_label
= NULL
;
1246 remove_edge (default_edge
);
1247 default_edge
= NULL
;
1249 emit_case_dispatch_table (index_expr
, index_type
,
1250 case_list
, default_label
, default_edge
,
1251 minval
, maxval
, range
, bb
);
1254 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1259 /* Expand the dispatch to a short decrement chain if there are few cases
1260 to dispatch to. Likewise if neither casesi nor tablejump is available,
1261 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1262 tablejump. The index mode is always the mode of integer_type_node.
1263 Trap if no case matches the index.
1265 DISPATCH_INDEX is the index expression to switch on. It should be a
1266 memory or register operand.
1268 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1269 ascending order, be contiguous, starting with value 0, and contain only
1270 single-valued case labels. */
1273 expand_sjlj_dispatch_table (rtx dispatch_index
,
1274 vec
<tree
> dispatch_table
)
1276 tree index_type
= integer_type_node
;
1277 machine_mode index_mode
= TYPE_MODE (index_type
);
1279 int ncases
= dispatch_table
.length ();
1281 do_pending_stack_adjust ();
1282 rtx_insn
*before_case
= get_last_insn ();
1284 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1285 labels. This covers more than 98% of the cases in libjava,
1286 and seems to be a reasonable compromise between the "old way"
1287 of expanding as a decision tree or dispatch table vs. the "new
1288 way" with decrement chain or dispatch table. */
1289 if (dispatch_table
.length () <= 5
1290 || (!targetm
.have_casesi () && !targetm
.have_tablejump ())
1291 || !flag_jump_tables
)
1293 /* Expand the dispatch as a decrement chain:
1295 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1299 if (index == 0) do_0; else index--;
1300 if (index == 0) do_1; else index--;
1302 if (index == 0) do_N; else index--;
1304 This is more efficient than a dispatch table on most machines.
1305 The last "index--" is redundant but the code is trivially dead
1306 and will be cleaned up by later passes. */
1307 rtx index
= copy_to_mode_reg (index_mode
, dispatch_index
);
1308 rtx zero
= CONST0_RTX (index_mode
);
1309 for (int i
= 0; i
< ncases
; i
++)
1311 tree elt
= dispatch_table
[i
];
1312 rtx_code_label
*lab
= jump_target_rtx (CASE_LABEL (elt
));
1313 do_jump_if_equal (index_mode
, index
, zero
, lab
, 0,
1314 profile_probability::uninitialized ());
1315 force_expand_binop (index_mode
, sub_optab
,
1316 index
, CONST1_RTX (index_mode
),
1317 index
, 0, OPTAB_DIRECT
);
1322 /* Similar to expand_case, but much simpler. */
1323 struct case_node
*case_list
= 0;
1324 object_allocator
<case_node
> case_node_pool ("struct sjlj_case pool");
1325 tree index_expr
= make_tree (index_type
, dispatch_index
);
1326 tree minval
= build_int_cst (index_type
, 0);
1327 tree maxval
= CASE_LOW (dispatch_table
.last ());
1328 tree range
= maxval
;
1329 rtx_code_label
*default_label
= gen_label_rtx ();
1331 for (int i
= ncases
- 1; i
>= 0; --i
)
1333 tree elt
= dispatch_table
[i
];
1334 tree low
= CASE_LOW (elt
);
1335 tree lab
= CASE_LABEL (elt
);
1336 case_list
= add_case_node (case_list
, low
, low
, lab
,
1337 profile_probability::guessed_always ()
1338 .apply_scale (1, ncases
),
1342 emit_case_dispatch_table (index_expr
, index_type
,
1343 case_list
, default_label
, NULL
,
1344 minval
, maxval
, range
,
1345 BLOCK_FOR_INSN (before_case
));
1346 emit_label (default_label
);
1349 /* Dispatching something not handled? Trap! */
1350 expand_builtin_trap ();
1352 reorder_insns (NEXT_INSN (before_case
), get_last_insn (), before_case
);
1358 /* Take an ordered list of case nodes
1359 and transform them into a near optimal binary tree,
1360 on the assumption that any target code selection value is as
1361 likely as any other.
1363 The transformation is performed by splitting the ordered
1364 list into two equal sections plus a pivot. The parts are
1365 then attached to the pivot as left and right branches. Each
1366 branch is then transformed recursively. */
1369 balance_case_nodes (case_node_ptr
*head
, case_node_ptr parent
)
1381 /* Count the number of entries on branch. Also count the ranges. */
1385 if (!tree_int_cst_equal (np
->low
, np
->high
))
1394 /* Split this list if it is long enough for that to help. */
1398 /* If there are just three nodes, split at the middle one. */
1400 npp
= &(*npp
)->right
;
1403 /* Find the place in the list that bisects the list's total cost,
1404 where ranges count as 2.
1405 Here I gets half the total cost. */
1406 i
= (i
+ ranges
+ 1) / 2;
1409 /* Skip nodes while their cost does not reach that amount. */
1410 if (!tree_int_cst_equal ((*npp
)->low
, (*npp
)->high
))
1415 npp
= &(*npp
)->right
;
1420 np
->parent
= parent
;
1423 /* Optimize each of the two split parts. */
1424 balance_case_nodes (&np
->left
, np
);
1425 balance_case_nodes (&np
->right
, np
);
1426 np
->subtree_prob
= np
->prob
;
1427 np
->subtree_prob
+= np
->left
->subtree_prob
;
1428 np
->subtree_prob
+= np
->right
->subtree_prob
;
1432 /* Else leave this branch as one level,
1433 but fill in `parent' fields. */
1435 np
->parent
= parent
;
1436 np
->subtree_prob
= np
->prob
;
1437 for (; np
->right
; np
= np
->right
)
1439 np
->right
->parent
= np
;
1440 (*head
)->subtree_prob
+= np
->right
->subtree_prob
;
1446 /* Search the parent sections of the case node tree
1447 to see if a test for the lower bound of NODE would be redundant.
1448 INDEX_TYPE is the type of the index expression.
1450 The instructions to generate the case decision tree are
1451 output in the same order as nodes are processed so it is
1452 known that if a parent node checks the range of the current
1453 node minus one that the current node is bounded at its lower
1454 span. Thus the test would be redundant. */
1457 node_has_low_bound (case_node_ptr node
, tree index_type
)
1460 case_node_ptr pnode
;
1462 /* If the lower bound of this node is the lowest value in the index type,
1463 we need not test it. */
1465 if (tree_int_cst_equal (node
->low
, TYPE_MIN_VALUE (index_type
)))
1468 /* If this node has a left branch, the value at the left must be less
1469 than that at this node, so it cannot be bounded at the bottom and
1470 we need not bother testing any further. */
1475 low_minus_one
= fold_build2 (MINUS_EXPR
, TREE_TYPE (node
->low
),
1477 build_int_cst (TREE_TYPE (node
->low
), 1));
1479 /* If the subtraction above overflowed, we can't verify anything.
1480 Otherwise, look for a parent that tests our value - 1. */
1482 if (! tree_int_cst_lt (low_minus_one
, node
->low
))
1485 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1486 if (tree_int_cst_equal (low_minus_one
, pnode
->high
))
1492 /* Search the parent sections of the case node tree
1493 to see if a test for the upper bound of NODE would be redundant.
1494 INDEX_TYPE is the type of the index expression.
1496 The instructions to generate the case decision tree are
1497 output in the same order as nodes are processed so it is
1498 known that if a parent node checks the range of the current
1499 node plus one that the current node is bounded at its upper
1500 span. Thus the test would be redundant. */
1503 node_has_high_bound (case_node_ptr node
, tree index_type
)
1506 case_node_ptr pnode
;
1508 /* If there is no upper bound, obviously no test is needed. */
1510 if (TYPE_MAX_VALUE (index_type
) == NULL
)
1513 /* If the upper bound of this node is the highest value in the type
1514 of the index expression, we need not test against it. */
1516 if (tree_int_cst_equal (node
->high
, TYPE_MAX_VALUE (index_type
)))
1519 /* If this node has a right branch, the value at the right must be greater
1520 than that at this node, so it cannot be bounded at the top and
1521 we need not bother testing any further. */
1526 high_plus_one
= fold_build2 (PLUS_EXPR
, TREE_TYPE (node
->high
),
1528 build_int_cst (TREE_TYPE (node
->high
), 1));
1530 /* If the addition above overflowed, we can't verify anything.
1531 Otherwise, look for a parent that tests our value + 1. */
1533 if (! tree_int_cst_lt (node
->high
, high_plus_one
))
1536 for (pnode
= node
->parent
; pnode
; pnode
= pnode
->parent
)
1537 if (tree_int_cst_equal (high_plus_one
, pnode
->low
))
1543 /* Search the parent sections of the
1544 case node tree to see if both tests for the upper and lower
1545 bounds of NODE would be redundant. */
1548 node_is_bounded (case_node_ptr node
, tree index_type
)
1550 return (node_has_low_bound (node
, index_type
)
1551 && node_has_high_bound (node
, index_type
));
1555 /* Emit step-by-step code to select a case for the value of INDEX.
1556 The thus generated decision tree follows the form of the
1557 case-node binary tree NODE, whose nodes represent test conditions.
1558 INDEX_TYPE is the type of the index of the switch.
1560 Care is taken to prune redundant tests from the decision tree
1561 by detecting any boundary conditions already checked by
1562 emitted rtx. (See node_has_high_bound, node_has_low_bound
1563 and node_is_bounded, above.)
1565 Where the test conditions can be shown to be redundant we emit
1566 an unconditional jump to the target code. As a further
1567 optimization, the subordinates of a tree node are examined to
1568 check for bounded nodes. In this case conditional and/or
1569 unconditional jumps as a result of the boundary check for the
1570 current node are arranged to target the subordinates associated
1571 code for out of bound conditions on the current node.
1573 We can assume that when control reaches the code generated here,
1574 the index value has already been compared with the parents
1575 of this node, and determined to be on the same side of each parent
1576 as this node is. Thus, if this node tests for the value 51,
1577 and a parent tested for 52, we don't need to consider
1578 the possibility of a value greater than 51. If another parent
1579 tests for the value 50, then this node need not test anything. */
1582 emit_case_nodes (rtx index
, case_node_ptr node
, rtx_code_label
*default_label
,
1583 profile_probability default_prob
, tree index_type
)
1585 /* If INDEX has an unsigned type, we must make unsigned branches. */
1586 int unsignedp
= TYPE_UNSIGNED (index_type
);
1587 profile_probability probability
;
1588 profile_probability prob
= node
->prob
, subtree_prob
= node
->subtree_prob
;
1589 machine_mode mode
= GET_MODE (index
);
1590 machine_mode imode
= TYPE_MODE (index_type
);
1592 /* Handle indices detected as constant during RTL expansion. */
1593 if (mode
== VOIDmode
)
1596 /* See if our parents have already tested everything for us.
1597 If they have, emit an unconditional jump for this node. */
1598 if (node_is_bounded (node
, index_type
))
1599 emit_jump (label_rtx (node
->code_label
));
1601 else if (tree_int_cst_equal (node
->low
, node
->high
))
1603 probability
= conditional_probability (prob
, subtree_prob
+ default_prob
);
1604 /* Node is single valued. First see if the index expression matches
1605 this node and then check our children, if any. */
1606 do_jump_if_equal (mode
, index
,
1607 convert_modes (mode
, imode
,
1608 expand_normal (node
->low
),
1610 jump_target_rtx (node
->code_label
),
1611 unsignedp
, probability
);
1612 /* Since this case is taken at this point, reduce its weight from
1614 subtree_prob
-= prob
;
1615 if (node
->right
!= 0 && node
->left
!= 0)
1617 /* This node has children on both sides.
1618 Dispatch to one side or the other
1619 by comparing the index value with this node's value.
1620 If one subtree is bounded, check that one first,
1621 so we can avoid real branches in the tree. */
1623 if (node_is_bounded (node
->right
, index_type
))
1625 probability
= conditional_probability (
1627 subtree_prob
+ default_prob
);
1628 emit_cmp_and_jump_insns (index
,
1631 expand_normal (node
->high
),
1633 GT
, NULL_RTX
, mode
, unsignedp
,
1634 label_rtx (node
->right
->code_label
),
1636 emit_case_nodes (index
, node
->left
, default_label
, default_prob
,
1640 else if (node_is_bounded (node
->left
, index_type
))
1642 probability
= conditional_probability (
1644 subtree_prob
+ default_prob
);
1645 emit_cmp_and_jump_insns (index
,
1648 expand_normal (node
->high
),
1650 LT
, NULL_RTX
, mode
, unsignedp
,
1651 label_rtx (node
->left
->code_label
),
1653 emit_case_nodes (index
, node
->right
, default_label
, default_prob
,
1657 /* If both children are single-valued cases with no
1658 children, finish up all the work. This way, we can save
1659 one ordered comparison. */
1660 else if (tree_int_cst_equal (node
->right
->low
, node
->right
->high
)
1661 && node
->right
->left
== 0
1662 && node
->right
->right
== 0
1663 && tree_int_cst_equal (node
->left
->low
, node
->left
->high
)
1664 && node
->left
->left
== 0
1665 && node
->left
->right
== 0)
1667 /* Neither node is bounded. First distinguish the two sides;
1668 then emit the code for one side at a time. */
1670 /* See if the value matches what the right hand side
1672 probability
= conditional_probability (
1674 subtree_prob
+ default_prob
);
1675 do_jump_if_equal (mode
, index
,
1676 convert_modes (mode
, imode
,
1677 expand_normal (node
->right
->low
),
1679 jump_target_rtx (node
->right
->code_label
),
1680 unsignedp
, probability
);
1682 /* See if the value matches what the left hand side
1684 probability
= conditional_probability (
1686 subtree_prob
+ default_prob
);
1687 do_jump_if_equal (mode
, index
,
1688 convert_modes (mode
, imode
,
1689 expand_normal (node
->left
->low
),
1691 jump_target_rtx (node
->left
->code_label
),
1692 unsignedp
, probability
);
1697 /* Neither node is bounded. First distinguish the two sides;
1698 then emit the code for one side at a time. */
1701 = build_decl (curr_insn_location (),
1702 LABEL_DECL
, NULL_TREE
, void_type_node
);
1704 /* The default label could be reached either through the right
1705 subtree or the left subtree. Divide the probability
1707 probability
= conditional_probability (
1708 node
->right
->subtree_prob
+ default_prob
.apply_scale (1, 2),
1709 subtree_prob
+ default_prob
);
1710 /* See if the value is on the right. */
1711 emit_cmp_and_jump_insns (index
,
1714 expand_normal (node
->high
),
1716 GT
, NULL_RTX
, mode
, unsignedp
,
1717 label_rtx (test_label
),
1719 default_prob
= default_prob
.apply_scale (1, 2);
1721 /* Value must be on the left.
1722 Handle the left-hand subtree. */
1723 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1724 /* If left-hand subtree does nothing,
1727 emit_jump (default_label
);
1729 /* Code branches here for the right-hand subtree. */
1730 expand_label (test_label
);
1731 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1735 else if (node
->right
!= 0 && node
->left
== 0)
1737 /* Here we have a right child but no left so we issue a conditional
1738 branch to default and process the right child.
1740 Omit the conditional branch to default if the right child
1741 does not have any children and is single valued; it would
1742 cost too much space to save so little time. */
1744 if (node
->right
->right
|| node
->right
->left
1745 || !tree_int_cst_equal (node
->right
->low
, node
->right
->high
))
1747 if (!node_has_low_bound (node
, index_type
))
1749 probability
= conditional_probability (
1750 default_prob
.apply_scale (1, 2),
1751 subtree_prob
+ default_prob
);
1752 emit_cmp_and_jump_insns (index
,
1755 expand_normal (node
->high
),
1757 LT
, NULL_RTX
, mode
, unsignedp
,
1760 default_prob
= default_prob
.apply_scale (1, 2);
1763 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1767 probability
= conditional_probability (
1768 node
->right
->subtree_prob
,
1769 subtree_prob
+ default_prob
);
1770 /* We cannot process node->right normally
1771 since we haven't ruled out the numbers less than
1772 this node's value. So handle node->right explicitly. */
1773 do_jump_if_equal (mode
, index
,
1776 expand_normal (node
->right
->low
),
1778 jump_target_rtx (node
->right
->code_label
),
1779 unsignedp
, probability
);
1783 else if (node
->right
== 0 && node
->left
!= 0)
1785 /* Just one subtree, on the left. */
1786 if (node
->left
->left
|| node
->left
->right
1787 || !tree_int_cst_equal (node
->left
->low
, node
->left
->high
))
1789 if (!node_has_high_bound (node
, index_type
))
1791 probability
= conditional_probability (
1792 default_prob
.apply_scale (1, 2),
1793 subtree_prob
+ default_prob
);
1794 emit_cmp_and_jump_insns (index
,
1797 expand_normal (node
->high
),
1799 GT
, NULL_RTX
, mode
, unsignedp
,
1802 default_prob
= default_prob
.apply_scale (1, 2);
1805 emit_case_nodes (index
, node
->left
, default_label
,
1806 default_prob
, index_type
);
1810 probability
= conditional_probability (
1811 node
->left
->subtree_prob
,
1812 subtree_prob
+ default_prob
);
1813 /* We cannot process node->left normally
1814 since we haven't ruled out the numbers less than
1815 this node's value. So handle node->left explicitly. */
1816 do_jump_if_equal (mode
, index
,
1819 expand_normal (node
->left
->low
),
1821 jump_target_rtx (node
->left
->code_label
),
1822 unsignedp
, probability
);
1828 /* Node is a range. These cases are very similar to those for a single
1829 value, except that we do not start by testing whether this node
1830 is the one to branch to. */
1832 if (node
->right
!= 0 && node
->left
!= 0)
1834 /* Node has subtrees on both sides.
1835 If the right-hand subtree is bounded,
1836 test for it first, since we can go straight there.
1837 Otherwise, we need to make a branch in the control structure,
1838 then handle the two subtrees. */
1839 tree test_label
= 0;
1841 if (node_is_bounded (node
->right
, index_type
))
1843 /* Right hand node is fully bounded so we can eliminate any
1844 testing and branch directly to the target code. */
1845 probability
= conditional_probability (
1846 node
->right
->subtree_prob
,
1847 subtree_prob
+ default_prob
);
1848 emit_cmp_and_jump_insns (index
,
1851 expand_normal (node
->high
),
1853 GT
, NULL_RTX
, mode
, unsignedp
,
1854 label_rtx (node
->right
->code_label
),
1859 /* Right hand node requires testing.
1860 Branch to a label where we will handle it later. */
1862 test_label
= build_decl (curr_insn_location (),
1863 LABEL_DECL
, NULL_TREE
, void_type_node
);
1864 probability
= conditional_probability (
1865 node
->right
->subtree_prob
+ default_prob
.apply_scale (1, 2),
1866 subtree_prob
+ default_prob
);
1867 emit_cmp_and_jump_insns (index
,
1870 expand_normal (node
->high
),
1872 GT
, NULL_RTX
, mode
, unsignedp
,
1873 label_rtx (test_label
),
1875 default_prob
= default_prob
.apply_scale (1, 2);
1878 /* Value belongs to this node or to the left-hand subtree. */
1880 probability
= conditional_probability (
1882 subtree_prob
+ default_prob
);
1883 emit_cmp_and_jump_insns (index
,
1886 expand_normal (node
->low
),
1888 GE
, NULL_RTX
, mode
, unsignedp
,
1889 label_rtx (node
->code_label
),
1892 /* Handle the left-hand subtree. */
1893 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1895 /* If right node had to be handled later, do that now. */
1899 /* If the left-hand subtree fell through,
1900 don't let it fall into the right-hand subtree. */
1902 emit_jump (default_label
);
1904 expand_label (test_label
);
1905 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1909 else if (node
->right
!= 0 && node
->left
== 0)
1911 /* Deal with values to the left of this node,
1912 if they are possible. */
1913 if (!node_has_low_bound (node
, index_type
))
1915 probability
= conditional_probability (
1916 default_prob
.apply_scale (1, 2),
1917 subtree_prob
+ default_prob
);
1918 emit_cmp_and_jump_insns (index
,
1921 expand_normal (node
->low
),
1923 LT
, NULL_RTX
, mode
, unsignedp
,
1926 default_prob
= default_prob
.apply_scale (1, 2);
1929 /* Value belongs to this node or to the right-hand subtree. */
1931 probability
= conditional_probability (
1933 subtree_prob
+ default_prob
);
1934 emit_cmp_and_jump_insns (index
,
1937 expand_normal (node
->high
),
1939 LE
, NULL_RTX
, mode
, unsignedp
,
1940 label_rtx (node
->code_label
),
1943 emit_case_nodes (index
, node
->right
, default_label
, default_prob
, index_type
);
1946 else if (node
->right
== 0 && node
->left
!= 0)
1948 /* Deal with values to the right of this node,
1949 if they are possible. */
1950 if (!node_has_high_bound (node
, index_type
))
1952 probability
= conditional_probability (
1953 default_prob
.apply_scale (1, 2),
1954 subtree_prob
+ default_prob
);
1955 emit_cmp_and_jump_insns (index
,
1958 expand_normal (node
->high
),
1960 GT
, NULL_RTX
, mode
, unsignedp
,
1963 default_prob
= default_prob
.apply_scale (1, 2);
1966 /* Value belongs to this node or to the left-hand subtree. */
1968 probability
= conditional_probability (
1970 subtree_prob
+ default_prob
);
1971 emit_cmp_and_jump_insns (index
,
1974 expand_normal (node
->low
),
1976 GE
, NULL_RTX
, mode
, unsignedp
,
1977 label_rtx (node
->code_label
),
1980 emit_case_nodes (index
, node
->left
, default_label
, default_prob
, index_type
);
1985 /* Node has no children so we check low and high bounds to remove
1986 redundant tests. Only one of the bounds can exist,
1987 since otherwise this node is bounded--a case tested already. */
1988 int high_bound
= node_has_high_bound (node
, index_type
);
1989 int low_bound
= node_has_low_bound (node
, index_type
);
1991 if (!high_bound
&& low_bound
)
1993 probability
= conditional_probability (
1995 subtree_prob
+ default_prob
);
1996 emit_cmp_and_jump_insns (index
,
1999 expand_normal (node
->high
),
2001 GT
, NULL_RTX
, mode
, unsignedp
,
2006 else if (!low_bound
&& high_bound
)
2008 probability
= conditional_probability (
2010 subtree_prob
+ default_prob
);
2011 emit_cmp_and_jump_insns (index
,
2014 expand_normal (node
->low
),
2016 LT
, NULL_RTX
, mode
, unsignedp
,
2020 else if (!low_bound
&& !high_bound
)
2022 /* Widen LOW and HIGH to the same width as INDEX. */
2023 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
2024 tree low
= build1 (CONVERT_EXPR
, type
, node
->low
);
2025 tree high
= build1 (CONVERT_EXPR
, type
, node
->high
);
2026 rtx low_rtx
, new_index
, new_bound
;
2028 /* Instead of doing two branches, emit one unsigned branch for
2029 (index-low) > (high-low). */
2030 low_rtx
= expand_expr (low
, NULL_RTX
, mode
, EXPAND_NORMAL
);
2031 new_index
= expand_simple_binop (mode
, MINUS
, index
, low_rtx
,
2032 NULL_RTX
, unsignedp
,
2034 new_bound
= expand_expr (fold_build2 (MINUS_EXPR
, type
,
2036 NULL_RTX
, mode
, EXPAND_NORMAL
);
2038 probability
= conditional_probability (
2040 subtree_prob
+ default_prob
);
2041 emit_cmp_and_jump_insns (new_index
, new_bound
, GT
, NULL_RTX
,
2042 mode
, 1, default_label
, probability
);
2045 emit_jump (jump_target_rtx (node
->code_label
));