1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
34 #include "diagnostic.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph
;
44 /* Local functions. */
45 static int compare_values (tree val1
, tree val2
);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
54 /* Basic block where the assertion would be inserted. */
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si
;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code
;
67 /* Value being compared against. */
70 /* Next node in the linked list. */
71 struct assert_locus_d
*next
;
74 typedef struct assert_locus_d
*assert_locus_t
;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for
;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t
*asserts_for
;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited
;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t
**vr_value
;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
98 nonnull_arg_p (tree arg
)
100 tree t
, attrs
, fntype
;
101 unsigned HOST_WIDE_INT arg_num
;
103 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
105 fntype
= TREE_TYPE (current_function_decl
);
106 attrs
= lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype
));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs
== NULL_TREE
)
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs
) == NULL_TREE
)
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
119 t
= TREE_CHAIN (t
), arg_num
++)
125 gcc_assert (t
== arg
);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
130 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
141 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
142 tree max
, bitmap equiv
)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
150 gcc_assert (min
&& max
);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
153 gcc_assert (min
!= TYPE_MIN_VALUE (TREE_TYPE (min
))
154 || max
!= TYPE_MAX_VALUE (TREE_TYPE (max
)));
156 cmp
= compare_values (min
, max
);
157 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
160 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
161 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
163 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
164 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr
->equiv
== NULL
)
174 vr
->equiv
= BITMAP_ALLOC (NULL
);
176 if (equiv
!= vr
->equiv
)
178 if (equiv
&& !bitmap_empty_p (equiv
))
179 bitmap_copy (vr
->equiv
, equiv
);
181 bitmap_clear (vr
->equiv
);
186 /* Copy value range FROM into value range TO. */
189 copy_value_range (value_range_t
*to
, value_range_t
*from
)
191 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
194 /* Set value range VR to a non-negative range of type TYPE. */
197 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
)
199 tree zero
= build_int_cst (type
, 0);
200 set_value_range (vr
, VR_RANGE
, zero
, TYPE_MAX_VALUE (type
), vr
->equiv
);
203 /* Set value range VR to a non-NULL range of type TYPE. */
206 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
208 tree zero
= build_int_cst (type
, 0);
209 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
213 /* Set value range VR to a NULL range of type TYPE. */
216 set_value_range_to_null (value_range_t
*vr
, tree type
)
218 tree zero
= build_int_cst (type
, 0);
219 set_value_range (vr
, VR_RANGE
, zero
, zero
, vr
->equiv
);
223 /* Set value range VR to VR_VARYING. */
226 set_value_range_to_varying (value_range_t
*vr
)
228 vr
->type
= VR_VARYING
;
229 vr
->min
= vr
->max
= NULL_TREE
;
231 bitmap_clear (vr
->equiv
);
235 /* Set value range VR to VR_UNDEFINED. */
238 set_value_range_to_undefined (value_range_t
*vr
)
240 vr
->type
= VR_UNDEFINED
;
241 vr
->min
= vr
->max
= NULL_TREE
;
243 bitmap_clear (vr
->equiv
);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t
*
253 get_value_range (tree var
)
257 unsigned ver
= SSA_NAME_VERSION (var
);
259 /* If we have no recorded ranges, then return NULL. */
267 /* Create a default value range. */
268 vr_value
[ver
] = vr
= XNEW (value_range_t
);
269 memset (vr
, 0, sizeof (*vr
));
271 /* Allocate an equivalence set. */
272 vr
->equiv
= BITMAP_ALLOC (NULL
);
274 /* If VAR is a default definition, the variable can take any value
276 sym
= SSA_NAME_VAR (var
);
277 if (var
== default_def (sym
))
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym
) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym
))
284 && nonnull_arg_p (sym
))
285 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
287 set_value_range_to_varying (vr
);
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
305 update_value_range (tree var
, value_range_t
*new_vr
)
307 value_range_t
*old_vr
;
310 /* Update the value range, if necessary. */
311 old_vr
= get_value_range (var
);
312 is_new
= old_vr
->type
!= new_vr
->type
313 || old_vr
->min
!= new_vr
->min
314 || old_vr
->max
!= new_vr
->max
315 || (old_vr
->equiv
== NULL
&& new_vr
->equiv
)
316 || (old_vr
->equiv
&& new_vr
->equiv
== NULL
)
317 || (!bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
));
320 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
323 BITMAP_FREE (new_vr
->equiv
);
324 new_vr
->equiv
= NULL
;
330 /* Add VAR and VAR's equivalence set to EQUIV. */
333 add_equivalence (bitmap equiv
, tree var
)
335 unsigned ver
= SSA_NAME_VERSION (var
);
336 value_range_t
*vr
= vr_value
[ver
];
338 bitmap_set_bit (equiv
, ver
);
340 bitmap_ior_into (equiv
, vr
->equiv
);
344 /* Return true if VR is ~[0, 0]. */
347 range_is_nonnull (value_range_t
*vr
)
349 return vr
->type
== VR_ANTI_RANGE
350 && integer_zerop (vr
->min
)
351 && integer_zerop (vr
->max
);
355 /* Return true if VR is [0, 0]. */
358 range_is_null (value_range_t
*vr
)
360 return vr
->type
== VR_RANGE
361 && integer_zerop (vr
->min
)
362 && integer_zerop (vr
->max
);
366 /* Return true if value range VR involves at least one symbol. */
369 symbolic_range_p (value_range_t
*vr
)
371 return (!is_gimple_min_invariant (vr
->min
)
372 || !is_gimple_min_invariant (vr
->max
));
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
379 vrp_expr_computes_nonnegative (tree expr
)
381 return tree_expr_nonnegative_p (expr
);
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
388 vrp_expr_computes_nonzero (tree expr
)
390 if (tree_expr_nonzero_p (expr
))
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr
) == ADDR_EXPR
)
397 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
399 if (base
!= NULL_TREE
400 && TREE_CODE (base
) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
403 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
404 if (range_is_nonnull (vr
))
413 /* Compare two values VAL1 and VAL2. Return
415 -2 if VAL1 and VAL2 cannot be compared at compile-time,
418 +1 if VAL1 > VAL2, and
421 This is similar to tree_int_cst_compare but supports pointer values
422 and values that cannot be compared at compile time. */
425 compare_values (tree val1
, tree val2
)
430 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
432 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
433 == POINTER_TYPE_P (TREE_TYPE (val2
)));
435 /* Do some limited symbolic comparisons. */
436 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
438 /* We can determine some comparisons against +INF and -INF even
439 if the other value is an expression. */
440 if (val1
== TYPE_MAX_VALUE (TREE_TYPE (val1
))
441 && TREE_CODE (val2
) == MINUS_EXPR
)
443 /* +INF > NAME - CST. */
446 else if (val1
== TYPE_MIN_VALUE (TREE_TYPE (val1
))
447 && TREE_CODE (val2
) == PLUS_EXPR
)
449 /* -INF < NAME + CST. */
452 else if (TREE_CODE (val1
) == MINUS_EXPR
453 && val2
== TYPE_MAX_VALUE (TREE_TYPE (val2
)))
455 /* NAME - CST < +INF. */
458 else if (TREE_CODE (val1
) == PLUS_EXPR
459 && val2
== TYPE_MIN_VALUE (TREE_TYPE (val2
)))
461 /* NAME + CST > -INF. */
466 if ((TREE_CODE (val1
) == SSA_NAME
467 || TREE_CODE (val1
) == PLUS_EXPR
468 || TREE_CODE (val1
) == MINUS_EXPR
)
469 && (TREE_CODE (val2
) == SSA_NAME
470 || TREE_CODE (val2
) == PLUS_EXPR
471 || TREE_CODE (val2
) == MINUS_EXPR
))
475 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
476 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
477 same name, return -2. */
478 if (TREE_CODE (val1
) == SSA_NAME
)
485 n1
= TREE_OPERAND (val1
, 0);
486 c1
= TREE_OPERAND (val1
, 1);
489 if (TREE_CODE (val2
) == SSA_NAME
)
496 n2
= TREE_OPERAND (val2
, 0);
497 c2
= TREE_OPERAND (val2
, 1);
500 /* Both values must use the same name. */
504 if (TREE_CODE (val1
) == SSA_NAME
)
506 if (TREE_CODE (val2
) == SSA_NAME
)
509 else if (TREE_CODE (val2
) == PLUS_EXPR
)
510 /* NAME < NAME + CST */
512 else if (TREE_CODE (val2
) == MINUS_EXPR
)
513 /* NAME > NAME - CST */
516 else if (TREE_CODE (val1
) == PLUS_EXPR
)
518 if (TREE_CODE (val2
) == SSA_NAME
)
519 /* NAME + CST > NAME */
521 else if (TREE_CODE (val2
) == PLUS_EXPR
)
522 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
523 return compare_values (c1
, c2
);
524 else if (TREE_CODE (val2
) == MINUS_EXPR
)
525 /* NAME + CST1 > NAME - CST2 */
528 else if (TREE_CODE (val1
) == MINUS_EXPR
)
530 if (TREE_CODE (val2
) == SSA_NAME
)
531 /* NAME - CST < NAME */
533 else if (TREE_CODE (val2
) == PLUS_EXPR
)
534 /* NAME - CST1 < NAME + CST2 */
536 else if (TREE_CODE (val2
) == MINUS_EXPR
)
537 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
538 C1 and C2 are swapped in the call to compare_values. */
539 return compare_values (c2
, c1
);
545 /* We cannot compare non-constants. */
546 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
549 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
551 /* We cannot compare overflowed values. */
552 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
555 return tree_int_cst_compare (val1
, val2
);
561 /* First see if VAL1 and VAL2 are not the same. */
562 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
565 /* If VAL1 is a lower address than VAL2, return -1. */
566 t
= fold_binary (LT_EXPR
, boolean_type_node
, val1
, val2
);
567 if (t
== boolean_true_node
)
570 /* If VAL1 is a higher address than VAL2, return +1. */
571 t
= fold_binary (GT_EXPR
, boolean_type_node
, val1
, val2
);
572 if (t
== boolean_true_node
)
575 /* If VAL1 is different than VAL2, return +2. */
576 t
= fold_binary (NE_EXPR
, boolean_type_node
, val1
, val2
);
577 if (t
== boolean_true_node
)
585 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
586 0 if VAL is not inside VR,
587 -2 if we cannot tell either way.
589 FIXME, the current semantics of this functions are a bit quirky
590 when taken in the context of VRP. In here we do not care
591 about VR's type. If VR is the anti-range ~[3, 5] the call
592 value_inside_range (4, VR) will return 1.
594 This is counter-intuitive in a strict sense, but the callers
595 currently expect this. They are calling the function
596 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
597 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
600 This also applies to value_ranges_intersect_p and
601 range_includes_zero_p. The semantics of VR_RANGE and
602 VR_ANTI_RANGE should be encoded here, but that also means
603 adapting the users of these functions to the new semantics. */
606 value_inside_range (tree val
, value_range_t
*vr
)
610 cmp1
= compare_values (val
, vr
->min
);
611 if (cmp1
== -2 || cmp1
== 2)
614 cmp2
= compare_values (val
, vr
->max
);
615 if (cmp2
== -2 || cmp2
== 2)
618 return (cmp1
== 0 || cmp1
== 1) && (cmp2
== -1 || cmp2
== 0);
622 /* Return true if value ranges VR0 and VR1 have a non-empty
626 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
628 return (value_inside_range (vr1
->min
, vr0
) == 1
629 || value_inside_range (vr1
->max
, vr0
) == 1
630 || value_inside_range (vr0
->min
, vr1
) == 1
631 || value_inside_range (vr0
->max
, vr1
) == 1);
635 /* Return true if VR includes the value zero, false otherwise. FIXME,
636 currently this will return false for an anti-range like ~[-4, 3].
637 This will be wrong when the semantics of value_inside_range are
638 modified (currently the users of this function expect these
642 range_includes_zero_p (value_range_t
*vr
)
646 gcc_assert (vr
->type
!= VR_UNDEFINED
647 && vr
->type
!= VR_VARYING
648 && !symbolic_range_p (vr
));
650 zero
= build_int_cst (TREE_TYPE (vr
->min
), 0);
651 return (value_inside_range (zero
, vr
) == 1);
654 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
655 false otherwise or if no value range information is available. */
658 ssa_name_nonnegative_p (tree t
)
660 value_range_t
*vr
= get_value_range (t
);
665 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
666 which would return a useful value should be encoded as a VR_RANGE. */
667 if (vr
->type
== VR_RANGE
)
669 int result
= compare_values (vr
->min
, integer_zero_node
);
671 return (result
== 0 || result
== 1);
676 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
677 false otherwise or if no value range information is available. */
680 ssa_name_nonzero_p (tree t
)
682 value_range_t
*vr
= get_value_range (t
);
687 /* A VR_RANGE which does not include zero is a nonzero value. */
688 if (vr
->type
== VR_RANGE
&& !symbolic_range_p (vr
))
689 return ! range_includes_zero_p (vr
);
691 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
692 if (vr
->type
== VR_ANTI_RANGE
&& !symbolic_range_p (vr
))
693 return range_includes_zero_p (vr
);
699 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
700 initially consider X_i and Y_j equivalent, so the equivalence set
701 of Y_j is added to the equivalence set of X_i. However, it is
702 possible to have a chain of ASSERT_EXPRs whose predicates are
703 actually incompatible. This is usually the result of nesting of
704 contradictory if-then-else statements. For instance, in PR 24670:
706 count_4 has range [-INF, 63]
710 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
713 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
719 Notice that 'if (count_19 > 63)' is trivially false and will be
720 folded out at the end. However, during propagation, the flowgraph
721 is not cleaned up and so, VRP will evaluate predicates more
722 predicates than necessary, so it must support these
723 inconsistencies. The problem here is that because of the chaining
724 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
725 Since count_4 has an incompatible range, we ICE when evaluating the
726 ranges in the equivalency set. So, we need to remove count_4 from
730 fix_equivalence_set (value_range_t
*vr_p
)
734 bitmap e
= vr_p
->equiv
;
735 bitmap to_remove
= BITMAP_ALLOC (NULL
);
737 /* Only detect inconsistencies on numeric ranges. */
738 if (vr_p
->type
== VR_VARYING
739 || vr_p
->type
== VR_UNDEFINED
740 || symbolic_range_p (vr_p
))
743 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
745 value_range_t
*equiv_vr
= vr_value
[i
];
747 if (equiv_vr
->type
== VR_VARYING
748 || equiv_vr
->type
== VR_UNDEFINED
749 || symbolic_range_p (equiv_vr
))
752 if (equiv_vr
->type
== VR_RANGE
753 && vr_p
->type
== VR_RANGE
754 && !value_ranges_intersect_p (vr_p
, equiv_vr
))
755 bitmap_set_bit (to_remove
, i
);
756 else if ((equiv_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
757 || (equiv_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
759 /* A range and an anti-range have an empty intersection if
760 their end points are the same. FIXME,
761 value_ranges_intersect_p should handle this
763 if (compare_values (equiv_vr
->min
, vr_p
->min
) == 0
764 && compare_values (equiv_vr
->max
, vr_p
->max
) == 0)
765 bitmap_set_bit (to_remove
, i
);
769 bitmap_and_compl_into (vr_p
->equiv
, to_remove
);
770 BITMAP_FREE (to_remove
);
774 /* Extract value range information from an ASSERT_EXPR EXPR and store
778 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
780 tree var
, cond
, limit
, min
, max
, type
;
781 value_range_t
*var_vr
, *limit_vr
;
782 enum tree_code cond_code
;
784 var
= ASSERT_EXPR_VAR (expr
);
785 cond
= ASSERT_EXPR_COND (expr
);
787 gcc_assert (COMPARISON_CLASS_P (cond
));
789 /* Find VAR in the ASSERT_EXPR conditional. */
790 if (var
== TREE_OPERAND (cond
, 0))
792 /* If the predicate is of the form VAR COMP LIMIT, then we just
793 take LIMIT from the RHS and use the same comparison code. */
794 limit
= TREE_OPERAND (cond
, 1);
795 cond_code
= TREE_CODE (cond
);
799 /* If the predicate is of the form LIMIT COMP VAR, then we need
800 to flip around the comparison code to create the proper range
802 limit
= TREE_OPERAND (cond
, 0);
803 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
806 type
= TREE_TYPE (limit
);
807 gcc_assert (limit
!= var
);
809 /* For pointer arithmetic, we only keep track of pointer equality
811 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
813 set_value_range_to_varying (vr_p
);
817 /* If LIMIT is another SSA name and LIMIT has a range of its own,
818 try to use LIMIT's range to avoid creating symbolic ranges
820 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
822 /* LIMIT's range is only interesting if it has any useful information. */
824 && (limit_vr
->type
== VR_UNDEFINED
825 || limit_vr
->type
== VR_VARYING
826 || symbolic_range_p (limit_vr
)))
829 /* Initially, the new range has the same set of equivalences of
830 VAR's range. This will be revised before returning the final
831 value. Since assertions may be chained via mutually exclusive
832 predicates, we will need to trim the set of equivalences before
834 gcc_assert (vr_p
->equiv
== NULL
);
835 vr_p
->equiv
= BITMAP_ALLOC (NULL
);
836 add_equivalence (vr_p
->equiv
, var
);
838 /* Extract a new range based on the asserted comparison for VAR and
839 LIMIT's value range. Notice that if LIMIT has an anti-range, we
840 will only use it for equality comparisons (EQ_EXPR). For any
841 other kind of assertion, we cannot derive a range from LIMIT's
842 anti-range that can be used to describe the new range. For
843 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
844 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
845 no single range for x_2 that could describe LE_EXPR, so we might
846 as well build the range [b_4, +INF] for it. */
847 if (cond_code
== EQ_EXPR
)
849 enum value_range_type range_type
;
853 range_type
= limit_vr
->type
;
859 range_type
= VR_RANGE
;
864 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
866 /* When asserting the equality VAR == LIMIT and LIMIT is another
867 SSA name, the new range will also inherit the equivalence set
869 if (TREE_CODE (limit
) == SSA_NAME
)
870 add_equivalence (vr_p
->equiv
, limit
);
872 else if (cond_code
== NE_EXPR
)
874 /* As described above, when LIMIT's range is an anti-range and
875 this assertion is an inequality (NE_EXPR), then we cannot
876 derive anything from the anti-range. For instance, if
877 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
878 not imply that VAR's range is [0, 0]. So, in the case of
879 anti-ranges, we just assert the inequality using LIMIT and
882 If LIMIT_VR is a range, we can only use it to build a new
883 anti-range if LIMIT_VR is a single-valued range. For
884 instance, if LIMIT_VR is [0, 1], the predicate
885 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
886 Rather, it means that for value 0 VAR should be ~[0, 0]
887 and for value 1, VAR should be ~[1, 1]. We cannot
888 represent these ranges.
890 The only situation in which we can build a valid
891 anti-range is when LIMIT_VR is a single-valued range
892 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
893 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
895 && limit_vr
->type
== VR_RANGE
896 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
903 /* In any other case, we cannot use LIMIT's range to build a
908 /* If MIN and MAX cover the whole range for their type, then
909 just use the original LIMIT. */
910 if (INTEGRAL_TYPE_P (type
)
911 && min
== TYPE_MIN_VALUE (type
)
912 && max
== TYPE_MAX_VALUE (type
))
915 set_value_range (vr_p
, VR_ANTI_RANGE
, min
, max
, vr_p
->equiv
);
917 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
919 min
= TYPE_MIN_VALUE (type
);
921 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
925 /* If LIMIT_VR is of the form [N1, N2], we need to build the
926 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
931 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
932 if (cond_code
== LT_EXPR
)
934 tree one
= build_int_cst (type
, 1);
935 max
= fold_build2 (MINUS_EXPR
, type
, max
, one
);
938 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
940 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
942 max
= TYPE_MAX_VALUE (type
);
944 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
948 /* If LIMIT_VR is of the form [N1, N2], we need to build the
949 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
954 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
955 if (cond_code
== GT_EXPR
)
957 tree one
= build_int_cst (type
, 1);
958 min
= fold_build2 (PLUS_EXPR
, type
, min
, one
);
961 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
966 /* If VAR already had a known range, it may happen that the new
967 range we have computed and VAR's range are not compatible. For
971 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
973 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
975 While the above comes from a faulty program, it will cause an ICE
976 later because p_8 and p_6 will have incompatible ranges and at
977 the same time will be considered equivalent. A similar situation
981 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
983 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
985 Again i_6 and i_7 will have incompatible ranges. It would be
986 pointless to try and do anything with i_7's range because
987 anything dominated by 'if (i_5 < 5)' will be optimized away.
988 Note, due to the wa in which simulation proceeds, the statement
989 i_7 = ASSERT_EXPR <...> we would never be visited because the
990 conditional 'if (i_5 < 5)' always evaluates to false. However,
991 this extra check does not hurt and may protect against future
992 changes to VRP that may get into a situation similar to the
993 NULL pointer dereference example.
995 Note that these compatibility tests are only needed when dealing
996 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
997 are both anti-ranges, they will always be compatible, because two
998 anti-ranges will always have a non-empty intersection. */
1000 var_vr
= get_value_range (var
);
1002 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1003 ranges or anti-ranges. */
1004 if (vr_p
->type
== VR_VARYING
1005 || vr_p
->type
== VR_UNDEFINED
1006 || var_vr
->type
== VR_VARYING
1007 || var_vr
->type
== VR_UNDEFINED
1008 || symbolic_range_p (vr_p
)
1009 || symbolic_range_p (var_vr
))
1012 if (var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_RANGE
)
1014 /* If the two ranges have a non-empty intersection, we can
1015 refine the resulting range. Since the assert expression
1016 creates an equivalency and at the same time it asserts a
1017 predicate, we can take the intersection of the two ranges to
1018 get better precision. */
1019 if (value_ranges_intersect_p (var_vr
, vr_p
))
1021 /* Use the larger of the two minimums. */
1022 if (compare_values (vr_p
->min
, var_vr
->min
) == -1)
1027 /* Use the smaller of the two maximums. */
1028 if (compare_values (vr_p
->max
, var_vr
->max
) == 1)
1033 set_value_range (vr_p
, vr_p
->type
, min
, max
, vr_p
->equiv
);
1037 /* The two ranges do not intersect, set the new range to
1038 VARYING, because we will not be able to do anything
1039 meaningful with it. */
1040 set_value_range_to_varying (vr_p
);
1043 else if ((var_vr
->type
== VR_RANGE
&& vr_p
->type
== VR_ANTI_RANGE
)
1044 || (var_vr
->type
== VR_ANTI_RANGE
&& vr_p
->type
== VR_RANGE
))
1046 /* A range and an anti-range will cancel each other only if
1047 their ends are the same. For instance, in the example above,
1048 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1049 so VR_P should be set to VR_VARYING. */
1050 if (compare_values (var_vr
->min
, vr_p
->min
) == 0
1051 && compare_values (var_vr
->max
, vr_p
->max
) == 0)
1052 set_value_range_to_varying (vr_p
);
1055 tree min
, max
, anti_min
, anti_max
, real_min
, real_max
;
1057 /* We want to compute the logical AND of the two ranges;
1058 there are three cases to consider.
1061 1. The VR_ANTI_RANGE range is completely within the
1062 VR_RANGE and the endpoints of the ranges are
1063 different. In that case the resulting range
1064 should be whichever range is more precise.
1065 Typically that will be the VR_RANGE.
1067 2. The VR_ANTI_RANGE is completely disjoint from
1068 the VR_RANGE. In this case the resulting range
1069 should be the VR_RANGE.
1071 3. There is some overlap between the VR_ANTI_RANGE
1074 3a. If the high limit of the VR_ANTI_RANGE resides
1075 within the VR_RANGE, then the result is a new
1076 VR_RANGE starting at the high limit of the
1077 the VR_ANTI_RANGE + 1 and extending to the
1078 high limit of the original VR_RANGE.
1080 3b. If the low limit of the VR_ANTI_RANGE resides
1081 within the VR_RANGE, then the result is a new
1082 VR_RANGE starting at the low limit of the original
1083 VR_RANGE and extending to the low limit of the
1084 VR_ANTI_RANGE - 1. */
1085 if (vr_p
->type
== VR_ANTI_RANGE
)
1087 anti_min
= vr_p
->min
;
1088 anti_max
= vr_p
->max
;
1089 real_min
= var_vr
->min
;
1090 real_max
= var_vr
->max
;
1094 anti_min
= var_vr
->min
;
1095 anti_max
= var_vr
->max
;
1096 real_min
= vr_p
->min
;
1097 real_max
= vr_p
->max
;
1101 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1102 not including any endpoints. */
1103 if (compare_values (anti_max
, real_max
) == -1
1104 && compare_values (anti_min
, real_min
) == 1)
1106 set_value_range (vr_p
, VR_RANGE
, real_min
,
1107 real_max
, vr_p
->equiv
);
1109 /* Case 2, VR_ANTI_RANGE completely disjoint from
1111 else if (compare_values (anti_min
, real_max
) == 1
1112 || compare_values (anti_max
, real_min
) == -1)
1114 set_value_range (vr_p
, VR_RANGE
, real_min
,
1115 real_max
, vr_p
->equiv
);
1117 /* Case 3a, the anti-range extends into the low
1118 part of the real range. Thus creating a new
1119 low for the real range. */
1120 else if ((compare_values (anti_max
, real_min
) == 1
1121 || compare_values (anti_max
, real_min
) == 0)
1122 && compare_values (anti_max
, real_max
) == -1)
1124 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (var_vr
->min
),
1126 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1128 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1130 /* Case 3b, the anti-range extends into the high
1131 part of the real range. Thus creating a new
1132 higher for the real range. */
1133 else if (compare_values (anti_min
, real_min
) == 1
1134 && (compare_values (anti_min
, real_max
) == -1
1135 || compare_values (anti_min
, real_max
) == 0))
1137 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (var_vr
->min
),
1139 build_int_cst (TREE_TYPE (var_vr
->min
), 1));
1141 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1146 /* Remove names from the equivalence set that have ranges
1147 incompatible with VR_P. */
1149 fix_equivalence_set (vr_p
);
1153 /* Extract range information from SSA name VAR and store it in VR. If
1154 VAR has an interesting range, use it. Otherwise, create the
1155 range [VAR, VAR] and return it. This is useful in situations where
1156 we may have conditionals testing values of VARYING names. For
1163 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1167 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1169 value_range_t
*var_vr
= get_value_range (var
);
1171 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1172 copy_value_range (vr
, var_vr
);
1174 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1176 add_equivalence (vr
->equiv
, var
);
1180 /* Wrapper around int_const_binop. If the operation overflows and we
1181 are not using wrapping arithmetic, then adjust the result to be
1182 -INF or +INF depending on CODE, VAL1 and VAL2. */
1185 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1190 return int_const_binop (code
, val1
, val2
, 0);
1192 /* If we are not using wrapping arithmetic, operate symbolically
1193 on -INF and +INF. */
1194 res
= int_const_binop (code
, val1
, val2
, 0);
1196 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1198 int checkz
= compare_values (res
, val1
);
1200 /* Ensure that res = val1 [+*] val2 >= val1
1201 or that res = val1 - val2 <= val1. */
1202 if (((code
== PLUS_EXPR
|| code
== MULT_EXPR
)
1203 && !(checkz
== 1 || checkz
== 0))
1204 || (code
== MINUS_EXPR
1205 && !(checkz
== 0 || checkz
== -1)))
1207 res
= copy_node (res
);
1208 TREE_OVERFLOW (res
) = 1;
1211 else if (TREE_OVERFLOW (res
)
1212 && !TREE_OVERFLOW (val1
)
1213 && !TREE_OVERFLOW (val2
))
1215 /* If the operation overflowed but neither VAL1 nor VAL2 are
1216 overflown, return -INF or +INF depending on the operation
1217 and the combination of signs of the operands. */
1218 int sgn1
= tree_int_cst_sgn (val1
);
1219 int sgn2
= tree_int_cst_sgn (val2
);
1221 /* Notice that we only need to handle the restricted set of
1222 operations handled by extract_range_from_binary_expr.
1223 Among them, only multiplication, addition and subtraction
1224 can yield overflow without overflown operands because we
1225 are working with integral types only... except in the
1226 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1227 for division too. */
1229 /* For multiplication, the sign of the overflow is given
1230 by the comparison of the signs of the operands. */
1231 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1232 /* For addition, the operands must be of the same sign
1233 to yield an overflow. Its sign is therefore that
1234 of one of the operands, for example the first. */
1235 || (code
== PLUS_EXPR
&& sgn1
> 0)
1236 /* For subtraction, the operands must be of different
1237 signs to yield an overflow. Its sign is therefore
1238 that of the first operand or the opposite of that
1239 of the second operand. A first operand of 0 counts
1240 as positive here, for the corner case 0 - (-INF),
1241 which overflows, but must yield +INF. */
1242 || (code
== MINUS_EXPR
&& sgn1
>= 0)
1243 /* For division, the only case is -INF / -1 = +INF. */
1244 || code
== TRUNC_DIV_EXPR
1245 || code
== FLOOR_DIV_EXPR
1246 || code
== CEIL_DIV_EXPR
1247 || code
== EXACT_DIV_EXPR
1248 || code
== ROUND_DIV_EXPR
)
1249 return TYPE_MAX_VALUE (TREE_TYPE (res
));
1251 return TYPE_MIN_VALUE (TREE_TYPE (res
));
1258 /* Extract range information from a binary expression EXPR based on
1259 the ranges of each of its operands and the expression code. */
1262 extract_range_from_binary_expr (value_range_t
*vr
, tree expr
)
1264 enum tree_code code
= TREE_CODE (expr
);
1265 enum value_range_type type
;
1266 tree op0
, op1
, min
, max
;
1268 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1269 value_range_t vr1
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1271 /* Not all binary expressions can be applied to ranges in a
1272 meaningful way. Handle only arithmetic operations. */
1273 if (code
!= PLUS_EXPR
1274 && code
!= MINUS_EXPR
1275 && code
!= MULT_EXPR
1276 && code
!= TRUNC_DIV_EXPR
1277 && code
!= FLOOR_DIV_EXPR
1278 && code
!= CEIL_DIV_EXPR
1279 && code
!= EXACT_DIV_EXPR
1280 && code
!= ROUND_DIV_EXPR
1283 && code
!= BIT_AND_EXPR
1284 && code
!= TRUTH_ANDIF_EXPR
1285 && code
!= TRUTH_ORIF_EXPR
1286 && code
!= TRUTH_AND_EXPR
1287 && code
!= TRUTH_OR_EXPR
)
1289 set_value_range_to_varying (vr
);
1293 /* Get value ranges for each operand. For constant operands, create
1294 a new value range with the operand to simplify processing. */
1295 op0
= TREE_OPERAND (expr
, 0);
1296 if (TREE_CODE (op0
) == SSA_NAME
)
1297 vr0
= *(get_value_range (op0
));
1298 else if (is_gimple_min_invariant (op0
))
1299 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1301 set_value_range_to_varying (&vr0
);
1303 op1
= TREE_OPERAND (expr
, 1);
1304 if (TREE_CODE (op1
) == SSA_NAME
)
1305 vr1
= *(get_value_range (op1
));
1306 else if (is_gimple_min_invariant (op1
))
1307 set_value_range (&vr1
, VR_RANGE
, op1
, op1
, NULL
);
1309 set_value_range_to_varying (&vr1
);
1311 /* If either range is UNDEFINED, so is the result. */
1312 if (vr0
.type
== VR_UNDEFINED
|| vr1
.type
== VR_UNDEFINED
)
1314 set_value_range_to_undefined (vr
);
1318 /* The type of the resulting value range defaults to VR0.TYPE. */
1321 /* Refuse to operate on VARYING ranges, ranges of different kinds
1322 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1323 because we may be able to derive a useful range even if one of
1324 the operands is VR_VARYING or symbolic range. TODO, we may be
1325 able to derive anti-ranges in some cases. */
1326 if (code
!= BIT_AND_EXPR
1327 && code
!= TRUTH_AND_EXPR
1328 && code
!= TRUTH_OR_EXPR
1329 && (vr0
.type
== VR_VARYING
1330 || vr1
.type
== VR_VARYING
1331 || vr0
.type
!= vr1
.type
1332 || symbolic_range_p (&vr0
)
1333 || symbolic_range_p (&vr1
)))
1335 set_value_range_to_varying (vr
);
1339 /* Now evaluate the expression to determine the new range. */
1340 if (POINTER_TYPE_P (TREE_TYPE (expr
))
1341 || POINTER_TYPE_P (TREE_TYPE (op0
))
1342 || POINTER_TYPE_P (TREE_TYPE (op1
)))
1344 /* For pointer types, we are really only interested in asserting
1345 whether the expression evaluates to non-NULL. FIXME, we used
1346 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1347 ivopts is generating expressions with pointer multiplication
1349 if (code
== PLUS_EXPR
)
1351 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
1352 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1353 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
1354 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1356 set_value_range_to_varying (vr
);
1360 /* Subtracting from a pointer, may yield 0, so just drop the
1361 resulting range to varying. */
1362 set_value_range_to_varying (vr
);
1368 /* For integer ranges, apply the operation to each end of the
1369 range and see what we end up with. */
1370 if (code
== TRUTH_ANDIF_EXPR
1371 || code
== TRUTH_ORIF_EXPR
1372 || code
== TRUTH_AND_EXPR
1373 || code
== TRUTH_OR_EXPR
)
1375 /* If one of the operands is zero, we know that the whole
1376 expression evaluates zero. */
1377 if (code
== TRUTH_AND_EXPR
1378 && ((vr0
.type
== VR_RANGE
1379 && integer_zerop (vr0
.min
)
1380 && integer_zerop (vr0
.max
))
1381 || (vr1
.type
== VR_RANGE
1382 && integer_zerop (vr1
.min
)
1383 && integer_zerop (vr1
.max
))))
1386 min
= max
= build_int_cst (TREE_TYPE (expr
), 0);
1388 /* If one of the operands is one, we know that the whole
1389 expression evaluates one. */
1390 else if (code
== TRUTH_OR_EXPR
1391 && ((vr0
.type
== VR_RANGE
1392 && integer_onep (vr0
.min
)
1393 && integer_onep (vr0
.max
))
1394 || (vr1
.type
== VR_RANGE
1395 && integer_onep (vr1
.min
)
1396 && integer_onep (vr1
.max
))))
1399 min
= max
= build_int_cst (TREE_TYPE (expr
), 1);
1401 else if (vr0
.type
!= VR_VARYING
1402 && vr1
.type
!= VR_VARYING
1403 && vr0
.type
== vr1
.type
1404 && !symbolic_range_p (&vr0
)
1405 && !symbolic_range_p (&vr1
))
1407 /* Boolean expressions cannot be folded with int_const_binop. */
1408 min
= fold_binary (code
, TREE_TYPE (expr
), vr0
.min
, vr1
.min
);
1409 max
= fold_binary (code
, TREE_TYPE (expr
), vr0
.max
, vr1
.max
);
1413 set_value_range_to_varying (vr
);
1417 else if (code
== PLUS_EXPR
1419 || code
== MAX_EXPR
)
1421 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1422 VR_VARYING. It would take more effort to compute a precise
1423 range for such a case. For example, if we have op0 == 1 and
1424 op1 == -1 with their ranges both being ~[0,0], we would have
1425 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1426 Note that we are guaranteed to have vr0.type == vr1.type at
1428 if (code
== PLUS_EXPR
&& vr0
.type
== VR_ANTI_RANGE
)
1430 set_value_range_to_varying (vr
);
1434 /* For operations that make the resulting range directly
1435 proportional to the original ranges, apply the operation to
1436 the same end of each range. */
1437 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1438 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
1440 else if (code
== MULT_EXPR
1441 || code
== TRUNC_DIV_EXPR
1442 || code
== FLOOR_DIV_EXPR
1443 || code
== CEIL_DIV_EXPR
1444 || code
== EXACT_DIV_EXPR
1445 || code
== ROUND_DIV_EXPR
)
1450 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1451 drop to VR_VARYING. It would take more effort to compute a
1452 precise range for such a case. For example, if we have
1453 op0 == 65536 and op1 == 65536 with their ranges both being
1454 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1455 we cannot claim that the product is in ~[0,0]. Note that we
1456 are guaranteed to have vr0.type == vr1.type at this
1458 if (code
== MULT_EXPR
1459 && vr0
.type
== VR_ANTI_RANGE
1460 && (flag_wrapv
|| TYPE_UNSIGNED (TREE_TYPE (op0
))))
1462 set_value_range_to_varying (vr
);
1466 /* Multiplications and divisions are a bit tricky to handle,
1467 depending on the mix of signs we have in the two ranges, we
1468 need to operate on different values to get the minimum and
1469 maximum values for the new range. One approach is to figure
1470 out all the variations of range combinations and do the
1473 However, this involves several calls to compare_values and it
1474 is pretty convoluted. It's simpler to do the 4 operations
1475 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1476 MAX1) and then figure the smallest and largest values to form
1479 /* Divisions by zero result in a VARYING value. */
1480 if (code
!= MULT_EXPR
1481 && (vr0
.type
== VR_ANTI_RANGE
|| range_includes_zero_p (&vr1
)))
1483 set_value_range_to_varying (vr
);
1487 /* Compute the 4 cross operations. */
1488 val
[0] = vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
1490 val
[1] = (vr1
.max
!= vr1
.min
)
1491 ? vrp_int_const_binop (code
, vr0
.min
, vr1
.max
)
1494 val
[2] = (vr0
.max
!= vr0
.min
)
1495 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.min
)
1498 val
[3] = (vr0
.min
!= vr0
.max
&& vr1
.min
!= vr1
.max
)
1499 ? vrp_int_const_binop (code
, vr0
.max
, vr1
.max
)
1502 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1506 for (i
= 1; i
< 4; i
++)
1508 if (!is_gimple_min_invariant (min
) || TREE_OVERFLOW (min
)
1509 || !is_gimple_min_invariant (max
) || TREE_OVERFLOW (max
))
1514 if (!is_gimple_min_invariant (val
[i
]) || TREE_OVERFLOW (val
[i
]))
1516 /* If we found an overflowed value, set MIN and MAX
1517 to it so that we set the resulting range to
1523 if (compare_values (val
[i
], min
) == -1)
1526 if (compare_values (val
[i
], max
) == 1)
1531 else if (code
== MINUS_EXPR
)
1533 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1534 VR_VARYING. It would take more effort to compute a precise
1535 range for such a case. For example, if we have op0 == 1 and
1536 op1 == 1 with their ranges both being ~[0,0], we would have
1537 op0 - op1 == 0, so we cannot claim that the difference is in
1538 ~[0,0]. Note that we are guaranteed to have
1539 vr0.type == vr1.type at this point. */
1540 if (vr0
.type
== VR_ANTI_RANGE
)
1542 set_value_range_to_varying (vr
);
1546 /* For MINUS_EXPR, apply the operation to the opposite ends of
1548 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.max
);
1549 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.min
);
1551 else if (code
== BIT_AND_EXPR
)
1553 if (vr0
.type
== VR_RANGE
1554 && vr0
.min
== vr0
.max
1555 && tree_expr_nonnegative_p (vr0
.max
)
1556 && TREE_CODE (vr0
.max
) == INTEGER_CST
)
1558 min
= build_int_cst (TREE_TYPE (expr
), 0);
1561 else if (vr1
.type
== VR_RANGE
1562 && vr1
.min
== vr1
.max
1563 && tree_expr_nonnegative_p (vr1
.max
)
1564 && TREE_CODE (vr1
.max
) == INTEGER_CST
)
1567 min
= build_int_cst (TREE_TYPE (expr
), 0);
1572 set_value_range_to_varying (vr
);
1579 /* If either MIN or MAX overflowed, then set the resulting range to
1581 if (!is_gimple_min_invariant (min
) || TREE_OVERFLOW (min
)
1582 || !is_gimple_min_invariant (max
) || TREE_OVERFLOW (max
))
1584 set_value_range_to_varying (vr
);
1588 cmp
= compare_values (min
, max
);
1589 if (cmp
== -2 || cmp
== 1)
1591 /* If the new range has its limits swapped around (MIN > MAX),
1592 then the operation caused one of them to wrap around, mark
1593 the new range VARYING. */
1594 set_value_range_to_varying (vr
);
1597 set_value_range (vr
, type
, min
, max
, NULL
);
1601 /* Extract range information from a unary expression EXPR based on
1602 the range of its operand and the expression code. */
1605 extract_range_from_unary_expr (value_range_t
*vr
, tree expr
)
1607 enum tree_code code
= TREE_CODE (expr
);
1610 value_range_t vr0
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
1612 /* Refuse to operate on certain unary expressions for which we
1613 cannot easily determine a resulting range. */
1614 if (code
== FIX_TRUNC_EXPR
1615 || code
== FIX_CEIL_EXPR
1616 || code
== FIX_FLOOR_EXPR
1617 || code
== FIX_ROUND_EXPR
1618 || code
== FLOAT_EXPR
1619 || code
== BIT_NOT_EXPR
1620 || code
== NON_LVALUE_EXPR
1621 || code
== CONJ_EXPR
)
1623 set_value_range_to_varying (vr
);
1627 /* Get value ranges for the operand. For constant operands, create
1628 a new value range with the operand to simplify processing. */
1629 op0
= TREE_OPERAND (expr
, 0);
1630 if (TREE_CODE (op0
) == SSA_NAME
)
1631 vr0
= *(get_value_range (op0
));
1632 else if (is_gimple_min_invariant (op0
))
1633 set_value_range (&vr0
, VR_RANGE
, op0
, op0
, NULL
);
1635 set_value_range_to_varying (&vr0
);
1637 /* If VR0 is UNDEFINED, so is the result. */
1638 if (vr0
.type
== VR_UNDEFINED
)
1640 set_value_range_to_undefined (vr
);
1644 /* Refuse to operate on symbolic ranges, or if neither operand is
1645 a pointer or integral type. */
1646 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
1647 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
1648 || (vr0
.type
!= VR_VARYING
1649 && symbolic_range_p (&vr0
)))
1651 set_value_range_to_varying (vr
);
1655 /* If the expression involves pointers, we are only interested in
1656 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1657 if (POINTER_TYPE_P (TREE_TYPE (expr
)) || POINTER_TYPE_P (TREE_TYPE (op0
)))
1659 if (range_is_nonnull (&vr0
) || tree_expr_nonzero_p (expr
))
1660 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1661 else if (range_is_null (&vr0
))
1662 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1664 set_value_range_to_varying (vr
);
1669 /* Handle unary expressions on integer ranges. */
1670 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
)
1672 tree inner_type
= TREE_TYPE (op0
);
1673 tree outer_type
= TREE_TYPE (expr
);
1675 /* If VR0 represents a simple range, then try to convert
1676 the min and max values for the range to the same type
1677 as OUTER_TYPE. If the results compare equal to VR0's
1678 min and max values and the new min is still less than
1679 or equal to the new max, then we can safely use the newly
1680 computed range for EXPR. This allows us to compute
1681 accurate ranges through many casts. */
1682 if (vr0
.type
== VR_RANGE
1683 || (vr0
.type
== VR_VARYING
1684 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)))
1686 tree new_min
, new_max
, orig_min
, orig_max
;
1688 /* Convert the input operand min/max to OUTER_TYPE. If
1689 the input has no range information, then use the min/max
1690 for the input's type. */
1691 if (vr0
.type
== VR_RANGE
)
1698 orig_min
= TYPE_MIN_VALUE (inner_type
);
1699 orig_max
= TYPE_MAX_VALUE (inner_type
);
1702 new_min
= fold_convert (outer_type
, orig_min
);
1703 new_max
= fold_convert (outer_type
, orig_max
);
1705 /* Verify the new min/max values are gimple values and
1706 that they compare equal to the original input's
1708 if (is_gimple_val (new_min
)
1709 && is_gimple_val (new_max
)
1710 && tree_int_cst_equal (new_min
, orig_min
)
1711 && tree_int_cst_equal (new_max
, orig_max
)
1712 && compare_values (new_min
, new_max
) <= 0
1713 && compare_values (new_min
, new_max
) >= -1)
1715 set_value_range (vr
, VR_RANGE
, new_min
, new_max
, vr
->equiv
);
1720 /* When converting types of different sizes, set the result to
1721 VARYING. Things like sign extensions and precision loss may
1722 change the range. For instance, if x_3 is of type 'long long
1723 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1724 is impossible to know at compile time whether y_5 will be
1726 if (TYPE_SIZE (inner_type
) != TYPE_SIZE (outer_type
)
1727 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (outer_type
))
1729 set_value_range_to_varying (vr
);
1734 /* Conversion of a VR_VARYING value to a wider type can result
1735 in a usable range. So wait until after we've handled conversions
1736 before dropping the result to VR_VARYING if we had a source
1737 operand that is VR_VARYING. */
1738 if (vr0
.type
== VR_VARYING
)
1740 set_value_range_to_varying (vr
);
1744 /* Apply the operation to each end of the range and see what we end
1746 if (code
== NEGATE_EXPR
1747 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1749 /* NEGATE_EXPR flips the range around. */
1750 min
= (vr0
.max
== TYPE_MAX_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1751 ? TYPE_MIN_VALUE (TREE_TYPE (expr
))
1752 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1754 max
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)) && !flag_wrapv
)
1755 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1756 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1759 else if (code
== NEGATE_EXPR
1760 && TYPE_UNSIGNED (TREE_TYPE (expr
)))
1762 if (!range_includes_zero_p (&vr0
))
1764 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1765 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1769 if (range_is_null (&vr0
))
1770 set_value_range_to_null (vr
, TREE_TYPE (expr
));
1772 set_value_range_to_varying (vr
);
1776 else if (code
== ABS_EXPR
1777 && !TYPE_UNSIGNED (TREE_TYPE (expr
)))
1779 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1782 && ((vr0
.type
== VR_RANGE
1783 && vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1784 || (vr0
.type
== VR_ANTI_RANGE
1785 && vr0
.min
!= TYPE_MIN_VALUE (TREE_TYPE (expr
))
1786 && !range_includes_zero_p (&vr0
))))
1788 set_value_range_to_varying (vr
);
1792 /* ABS_EXPR may flip the range around, if the original range
1793 included negative values. */
1794 min
= (vr0
.min
== TYPE_MIN_VALUE (TREE_TYPE (expr
)))
1795 ? TYPE_MAX_VALUE (TREE_TYPE (expr
))
1796 : fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1798 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1800 cmp
= compare_values (min
, max
);
1802 /* If a VR_ANTI_RANGEs contains zero, then we have
1803 ~[-INF, min(MIN, MAX)]. */
1804 if (vr0
.type
== VR_ANTI_RANGE
)
1806 if (range_includes_zero_p (&vr0
))
1808 tree type_min_value
= TYPE_MIN_VALUE (TREE_TYPE (expr
));
1810 /* Take the lower of the two values. */
1814 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1815 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1816 flag_wrapv is set and the original anti-range doesn't include
1817 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1818 min
= (flag_wrapv
&& vr0
.min
!= type_min_value
1819 ? int_const_binop (PLUS_EXPR
,
1821 integer_one_node
, 0)
1826 /* All else has failed, so create the range [0, INF], even for
1827 flag_wrapv since TYPE_MIN_VALUE is in the original
1829 vr0
.type
= VR_RANGE
;
1830 min
= build_int_cst (TREE_TYPE (expr
), 0);
1831 max
= TYPE_MAX_VALUE (TREE_TYPE (expr
));
1835 /* If the range contains zero then we know that the minimum value in the
1836 range will be zero. */
1837 else if (range_includes_zero_p (&vr0
))
1841 min
= build_int_cst (TREE_TYPE (expr
), 0);
1845 /* If the range was reversed, swap MIN and MAX. */
1856 /* Otherwise, operate on each end of the range. */
1857 min
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.min
);
1858 max
= fold_unary_to_constant (code
, TREE_TYPE (expr
), vr0
.max
);
1861 cmp
= compare_values (min
, max
);
1862 if (cmp
== -2 || cmp
== 1)
1864 /* If the new range has its limits swapped around (MIN > MAX),
1865 then the operation caused one of them to wrap around, mark
1866 the new range VARYING. */
1867 set_value_range_to_varying (vr
);
1870 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
1874 /* Extract range information from a comparison expression EXPR based
1875 on the range of its operand and the expression code. */
1878 extract_range_from_comparison (value_range_t
*vr
, tree expr
)
1880 tree val
= vrp_evaluate_conditional (expr
, false);
1883 /* Since this expression was found on the RHS of an assignment,
1884 its type may be different from _Bool. Convert VAL to EXPR's
1886 val
= fold_convert (TREE_TYPE (expr
), val
);
1887 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
1890 set_value_range_to_varying (vr
);
1894 /* Try to compute a useful range out of expression EXPR and store it
1898 extract_range_from_expr (value_range_t
*vr
, tree expr
)
1900 enum tree_code code
= TREE_CODE (expr
);
1902 if (code
== ASSERT_EXPR
)
1903 extract_range_from_assert (vr
, expr
);
1904 else if (code
== SSA_NAME
)
1905 extract_range_from_ssa_name (vr
, expr
);
1906 else if (TREE_CODE_CLASS (code
) == tcc_binary
1907 || code
== TRUTH_ANDIF_EXPR
1908 || code
== TRUTH_ORIF_EXPR
1909 || code
== TRUTH_AND_EXPR
1910 || code
== TRUTH_OR_EXPR
1911 || code
== TRUTH_XOR_EXPR
)
1912 extract_range_from_binary_expr (vr
, expr
);
1913 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
1914 extract_range_from_unary_expr (vr
, expr
);
1915 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1916 extract_range_from_comparison (vr
, expr
);
1917 else if (is_gimple_min_invariant (expr
))
1918 set_value_range (vr
, VR_RANGE
, expr
, expr
, NULL
);
1920 set_value_range_to_varying (vr
);
1922 /* If we got a varying range from the tests above, try a final
1923 time to derive a nonnegative or nonzero range. This time
1924 relying primarily on generic routines in fold in conjunction
1926 if (vr
->type
== VR_VARYING
)
1928 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
1929 && vrp_expr_computes_nonnegative (expr
))
1930 set_value_range_to_nonnegative (vr
, TREE_TYPE (expr
));
1931 else if (vrp_expr_computes_nonzero (expr
))
1932 set_value_range_to_nonnull (vr
, TREE_TYPE (expr
));
1936 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1937 would be profitable to adjust VR using scalar evolution information
1938 for VAR. If so, update VR with the new limits. */
1941 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
, tree stmt
,
1944 tree init
, step
, chrec
;
1945 bool init_is_max
, unknown_max
;
1947 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1948 better opportunities than a regular range, but I'm not sure. */
1949 if (vr
->type
== VR_ANTI_RANGE
)
1952 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
1953 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
1956 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
1957 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
1959 /* If STEP is symbolic, we can't know whether INIT will be the
1960 minimum or maximum value in the range. */
1961 if (step
== NULL_TREE
1962 || !is_gimple_min_invariant (step
))
1965 /* Do not adjust ranges when chrec may wrap. */
1966 if (scev_probably_wraps_p (chrec_type (chrec
), init
, step
, stmt
,
1967 current_loops
->parray
[CHREC_VARIABLE (chrec
)],
1968 &init_is_max
, &unknown_max
)
1972 if (!POINTER_TYPE_P (TREE_TYPE (init
))
1973 && (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
))
1975 /* For VARYING or UNDEFINED ranges, just about anything we get
1976 from scalar evolutions should be better. */
1977 tree min
= TYPE_MIN_VALUE (TREE_TYPE (init
));
1978 tree max
= TYPE_MAX_VALUE (TREE_TYPE (init
));
1985 /* If we would create an invalid range, then just assume we
1986 know absolutely nothing. This may be over-conservative,
1987 but it's clearly safe. */
1988 if (compare_values (min
, max
) == 1)
1991 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
1993 else if (vr
->type
== VR_RANGE
)
2000 /* INIT is the maximum value. If INIT is lower than VR->MAX
2001 but no smaller than VR->MIN, set VR->MAX to INIT. */
2002 if (compare_values (init
, max
) == -1)
2006 /* If we just created an invalid range with the minimum
2007 greater than the maximum, take the minimum all the
2009 if (compare_values (min
, max
) == 1)
2010 min
= TYPE_MIN_VALUE (TREE_TYPE (min
));
2015 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2016 if (compare_values (init
, min
) == 1)
2020 /* If we just created an invalid range with the minimum
2021 greater than the maximum, take the maximum all the
2023 if (compare_values (min
, max
) == 1)
2024 max
= TYPE_MAX_VALUE (TREE_TYPE (max
));
2028 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
2033 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2035 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2036 all the values in the ranges.
2038 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2040 - Return NULL_TREE if it is not always possible to determine the
2041 value of the comparison. */
2045 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
)
2047 /* VARYING or UNDEFINED ranges cannot be compared. */
2048 if (vr0
->type
== VR_VARYING
2049 || vr0
->type
== VR_UNDEFINED
2050 || vr1
->type
== VR_VARYING
2051 || vr1
->type
== VR_UNDEFINED
)
2054 /* Anti-ranges need to be handled separately. */
2055 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
2057 /* If both are anti-ranges, then we cannot compute any
2059 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
2062 /* These comparisons are never statically computable. */
2069 /* Equality can be computed only between a range and an
2070 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2071 if (vr0
->type
== VR_RANGE
)
2073 /* To simplify processing, make VR0 the anti-range. */
2074 value_range_t
*tmp
= vr0
;
2079 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
2081 if (compare_values (vr0
->min
, vr1
->min
) == 0
2082 && compare_values (vr0
->max
, vr1
->max
) == 0)
2083 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2088 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2089 operands around and change the comparison code. */
2090 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2093 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
2099 if (comp
== EQ_EXPR
)
2101 /* Equality may only be computed if both ranges represent
2102 exactly one value. */
2103 if (compare_values (vr0
->min
, vr0
->max
) == 0
2104 && compare_values (vr1
->min
, vr1
->max
) == 0)
2106 int cmp_min
= compare_values (vr0
->min
, vr1
->min
);
2107 int cmp_max
= compare_values (vr0
->max
, vr1
->max
);
2108 if (cmp_min
== 0 && cmp_max
== 0)
2109 return boolean_true_node
;
2110 else if (cmp_min
!= -2 && cmp_max
!= -2)
2111 return boolean_false_node
;
2113 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2114 else if (compare_values (vr0
->min
, vr1
->max
) == 1
2115 || compare_values (vr1
->min
, vr0
->max
) == 1)
2116 return boolean_false_node
;
2120 else if (comp
== NE_EXPR
)
2124 /* If VR0 is completely to the left or completely to the right
2125 of VR1, they are always different. Notice that we need to
2126 make sure that both comparisons yield similar results to
2127 avoid comparing values that cannot be compared at
2129 cmp1
= compare_values (vr0
->max
, vr1
->min
);
2130 cmp2
= compare_values (vr0
->min
, vr1
->max
);
2131 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
2132 return boolean_true_node
;
2134 /* If VR0 and VR1 represent a single value and are identical,
2136 else if (compare_values (vr0
->min
, vr0
->max
) == 0
2137 && compare_values (vr1
->min
, vr1
->max
) == 0
2138 && compare_values (vr0
->min
, vr1
->min
) == 0
2139 && compare_values (vr0
->max
, vr1
->max
) == 0)
2140 return boolean_false_node
;
2142 /* Otherwise, they may or may not be different. */
2146 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2150 /* If VR0 is to the left of VR1, return true. */
2151 tst
= compare_values (vr0
->max
, vr1
->min
);
2152 if ((comp
== LT_EXPR
&& tst
== -1)
2153 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2154 return boolean_true_node
;
2156 /* If VR0 is to the right of VR1, return false. */
2157 tst
= compare_values (vr0
->min
, vr1
->max
);
2158 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2159 || (comp
== LE_EXPR
&& tst
== 1))
2160 return boolean_false_node
;
2162 /* Otherwise, we don't know. */
2170 /* Given a value range VR, a value VAL and a comparison code COMP, return
2171 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2172 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2173 always returns false. Return NULL_TREE if it is not always
2174 possible to determine the value of the comparison. */
2177 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
)
2179 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
2182 /* Anti-ranges need to be handled separately. */
2183 if (vr
->type
== VR_ANTI_RANGE
)
2185 /* For anti-ranges, the only predicates that we can compute at
2186 compile time are equality and inequality. */
2193 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2194 if (value_inside_range (val
, vr
) == 1)
2195 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
2200 if (comp
== EQ_EXPR
)
2202 /* EQ_EXPR may only be computed if VR represents exactly
2204 if (compare_values (vr
->min
, vr
->max
) == 0)
2206 int cmp
= compare_values (vr
->min
, val
);
2208 return boolean_true_node
;
2209 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
2210 return boolean_false_node
;
2212 else if (compare_values (val
, vr
->min
) == -1
2213 || compare_values (vr
->max
, val
) == -1)
2214 return boolean_false_node
;
2218 else if (comp
== NE_EXPR
)
2220 /* If VAL is not inside VR, then they are always different. */
2221 if (compare_values (vr
->max
, val
) == -1
2222 || compare_values (vr
->min
, val
) == 1)
2223 return boolean_true_node
;
2225 /* If VR represents exactly one value equal to VAL, then return
2227 if (compare_values (vr
->min
, vr
->max
) == 0
2228 && compare_values (vr
->min
, val
) == 0)
2229 return boolean_false_node
;
2231 /* Otherwise, they may or may not be different. */
2234 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
2238 /* If VR is to the left of VAL, return true. */
2239 tst
= compare_values (vr
->max
, val
);
2240 if ((comp
== LT_EXPR
&& tst
== -1)
2241 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
2242 return boolean_true_node
;
2244 /* If VR is to the right of VAL, return false. */
2245 tst
= compare_values (vr
->min
, val
);
2246 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
2247 || (comp
== LE_EXPR
&& tst
== 1))
2248 return boolean_false_node
;
2250 /* Otherwise, we don't know. */
2253 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
2257 /* If VR is to the right of VAL, return true. */
2258 tst
= compare_values (vr
->min
, val
);
2259 if ((comp
== GT_EXPR
&& tst
== 1)
2260 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
2261 return boolean_true_node
;
2263 /* If VR is to the left of VAL, return false. */
2264 tst
= compare_values (vr
->max
, val
);
2265 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
2266 || (comp
== GE_EXPR
&& tst
== -1))
2267 return boolean_false_node
;
2269 /* Otherwise, we don't know. */
2277 /* Debugging dumps. */
2279 void dump_value_range (FILE *, value_range_t
*);
2280 void debug_value_range (value_range_t
*);
2281 void dump_all_value_ranges (FILE *);
2282 void debug_all_value_ranges (void);
2283 void dump_vr_equiv (FILE *, bitmap
);
2284 void debug_vr_equiv (bitmap
);
2287 /* Dump value range VR to FILE. */
2290 dump_value_range (FILE *file
, value_range_t
*vr
)
2293 fprintf (file
, "[]");
2294 else if (vr
->type
== VR_UNDEFINED
)
2295 fprintf (file
, "UNDEFINED");
2296 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
2298 tree type
= TREE_TYPE (vr
->min
);
2300 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
2302 if (INTEGRAL_TYPE_P (type
)
2303 && !TYPE_UNSIGNED (type
)
2304 && vr
->min
== TYPE_MIN_VALUE (type
))
2305 fprintf (file
, "-INF");
2307 print_generic_expr (file
, vr
->min
, 0);
2309 fprintf (file
, ", ");
2311 if (INTEGRAL_TYPE_P (type
)
2312 && vr
->max
== TYPE_MAX_VALUE (type
))
2313 fprintf (file
, "+INF");
2315 print_generic_expr (file
, vr
->max
, 0);
2317 fprintf (file
, "]");
2324 fprintf (file
, " EQUIVALENCES: { ");
2326 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
2328 print_generic_expr (file
, ssa_name (i
), 0);
2329 fprintf (file
, " ");
2333 fprintf (file
, "} (%u elements)", c
);
2336 else if (vr
->type
== VR_VARYING
)
2337 fprintf (file
, "VARYING");
2339 fprintf (file
, "INVALID RANGE");
2343 /* Dump value range VR to stderr. */
2346 debug_value_range (value_range_t
*vr
)
2348 dump_value_range (stderr
, vr
);
2352 /* Dump value ranges of all SSA_NAMEs to FILE. */
2355 dump_all_value_ranges (FILE *file
)
2359 for (i
= 0; i
< num_ssa_names
; i
++)
2363 print_generic_expr (file
, ssa_name (i
), 0);
2364 fprintf (file
, ": ");
2365 dump_value_range (file
, vr_value
[i
]);
2366 fprintf (file
, "\n");
2370 fprintf (file
, "\n");
2374 /* Dump all value ranges to stderr. */
2377 debug_all_value_ranges (void)
2379 dump_all_value_ranges (stderr
);
2383 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2384 create a new SSA name N and return the assertion assignment
2385 'V = ASSERT_EXPR <V, V OP W>'. */
2388 build_assert_expr_for (tree cond
, tree v
)
2392 gcc_assert (TREE_CODE (v
) == SSA_NAME
);
2393 n
= duplicate_ssa_name (v
, NULL_TREE
);
2395 if (COMPARISON_CLASS_P (cond
))
2397 tree a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
2398 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, a
);
2400 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
2402 /* Given !V, build the assignment N = false. */
2403 tree op0
= TREE_OPERAND (cond
, 0);
2404 gcc_assert (op0
== v
);
2405 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_false_node
);
2407 else if (TREE_CODE (cond
) == SSA_NAME
)
2409 /* Given V, build the assignment N = true. */
2410 gcc_assert (v
== cond
);
2411 assertion
= build2 (MODIFY_EXPR
, TREE_TYPE (v
), n
, boolean_true_node
);
2416 SSA_NAME_DEF_STMT (n
) = assertion
;
2418 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2419 operand of the ASSERT_EXPR. Register the new name and the old one
2420 in the replacement table so that we can fix the SSA web after
2421 adding all the ASSERT_EXPRs. */
2422 register_new_name_mapping (n
, v
);
2428 /* Return false if EXPR is a predicate expression involving floating
2432 fp_predicate (tree expr
)
2434 return (COMPARISON_CLASS_P (expr
)
2435 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))));
2439 /* If the range of values taken by OP can be inferred after STMT executes,
2440 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2441 describes the inferred range. Return true if a range could be
2445 infer_value_range (tree stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
2448 *comp_code_p
= ERROR_MARK
;
2450 /* Do not attempt to infer anything in names that flow through
2452 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
2455 /* Similarly, don't infer anything from statements that may throw
2457 if (tree_could_throw_p (stmt
))
2460 /* If STMT is the last statement of a basic block with no
2461 successors, there is no point inferring anything about any of its
2462 operands. We would not be able to find a proper insertion point
2463 for the assertion, anyway. */
2464 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 0)
2467 /* We can only assume that a pointer dereference will yield
2468 non-NULL if -fdelete-null-pointer-checks is enabled. */
2469 if (flag_delete_null_pointer_checks
&& POINTER_TYPE_P (TREE_TYPE (op
)))
2472 unsigned num_uses
, num_derefs
;
2474 count_uses_and_derefs (op
, stmt
, &num_uses
, &num_derefs
, &is_store
);
2477 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
2478 *comp_code_p
= NE_EXPR
;
2487 void dump_asserts_for (FILE *, tree
);
2488 void debug_asserts_for (tree
);
2489 void dump_all_asserts (FILE *);
2490 void debug_all_asserts (void);
2492 /* Dump all the registered assertions for NAME to FILE. */
2495 dump_asserts_for (FILE *file
, tree name
)
2499 fprintf (file
, "Assertions to be inserted for ");
2500 print_generic_expr (file
, name
, 0);
2501 fprintf (file
, "\n");
2503 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2506 fprintf (file
, "\t");
2507 print_generic_expr (file
, bsi_stmt (loc
->si
), 0);
2508 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
2511 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
2512 loc
->e
->dest
->index
);
2513 dump_edge_info (file
, loc
->e
, 0);
2515 fprintf (file
, "\n\tPREDICATE: ");
2516 print_generic_expr (file
, name
, 0);
2517 fprintf (file
, " %s ", tree_code_name
[(int)loc
->comp_code
]);
2518 print_generic_expr (file
, loc
->val
, 0);
2519 fprintf (file
, "\n\n");
2523 fprintf (file
, "\n");
2527 /* Dump all the registered assertions for NAME to stderr. */
2530 debug_asserts_for (tree name
)
2532 dump_asserts_for (stderr
, name
);
2536 /* Dump all the registered assertions for all the names to FILE. */
2539 dump_all_asserts (FILE *file
)
2544 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
2545 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
2546 dump_asserts_for (file
, ssa_name (i
));
2547 fprintf (file
, "\n");
2551 /* Dump all the registered assertions for all the names to stderr. */
2554 debug_all_asserts (void)
2556 dump_all_asserts (stderr
);
2560 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2561 'NAME COMP_CODE VAL' at a location that dominates block BB or
2562 E->DEST, then register this location as a possible insertion point
2563 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2565 BB, E and SI provide the exact insertion point for the new
2566 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2567 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2568 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2569 must not be NULL. */
2572 register_new_assert_for (tree name
,
2573 enum tree_code comp_code
,
2577 block_stmt_iterator si
)
2579 assert_locus_t n
, loc
, last_loc
;
2581 basic_block dest_bb
;
2583 #if defined ENABLE_CHECKING
2584 gcc_assert (bb
== NULL
|| e
== NULL
);
2587 gcc_assert (TREE_CODE (bsi_stmt (si
)) != COND_EXPR
2588 && TREE_CODE (bsi_stmt (si
)) != SWITCH_EXPR
);
2591 /* The new assertion A will be inserted at BB or E. We need to
2592 determine if the new location is dominated by a previously
2593 registered location for A. If we are doing an edge insertion,
2594 assume that A will be inserted at E->DEST. Note that this is not
2597 If E is a critical edge, it will be split. But even if E is
2598 split, the new block will dominate the same set of blocks that
2601 The reverse, however, is not true, blocks dominated by E->DEST
2602 will not be dominated by the new block created to split E. So,
2603 if the insertion location is on a critical edge, we will not use
2604 the new location to move another assertion previously registered
2605 at a block dominated by E->DEST. */
2606 dest_bb
= (bb
) ? bb
: e
->dest
;
2608 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2609 VAL at a block dominating DEST_BB, then we don't need to insert a new
2610 one. Similarly, if the same assertion already exists at a block
2611 dominated by DEST_BB and the new location is not on a critical
2612 edge, then update the existing location for the assertion (i.e.,
2613 move the assertion up in the dominance tree).
2615 Note, this is implemented as a simple linked list because there
2616 should not be more than a handful of assertions registered per
2617 name. If this becomes a performance problem, a table hashed by
2618 COMP_CODE and VAL could be implemented. */
2619 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
2624 if (loc
->comp_code
== comp_code
2626 || operand_equal_p (loc
->val
, val
, 0)))
2628 /* If the assertion NAME COMP_CODE VAL has already been
2629 registered at a basic block that dominates DEST_BB, then
2630 we don't need to insert the same assertion again. Note
2631 that we don't check strict dominance here to avoid
2632 replicating the same assertion inside the same basic
2633 block more than once (e.g., when a pointer is
2634 dereferenced several times inside a block).
2636 An exception to this rule are edge insertions. If the
2637 new assertion is to be inserted on edge E, then it will
2638 dominate all the other insertions that we may want to
2639 insert in DEST_BB. So, if we are doing an edge
2640 insertion, don't do this dominance check. */
2642 && dominated_by_p (CDI_DOMINATORS
, dest_bb
, loc
->bb
))
2645 /* Otherwise, if E is not a critical edge and DEST_BB
2646 dominates the existing location for the assertion, move
2647 the assertion up in the dominance tree by updating its
2648 location information. */
2649 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
2650 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
2659 /* Update the last node of the list and move to the next one. */
2664 /* If we didn't find an assertion already registered for
2665 NAME COMP_CODE VAL, add a new one at the end of the list of
2666 assertions associated with NAME. */
2667 n
= XNEW (struct assert_locus_d
);
2671 n
->comp_code
= comp_code
;
2678 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
2680 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
2684 /* Try to register an edge assertion for SSA name NAME on edge E for
2685 the conditional jump pointed to by SI. Return true if an assertion
2686 for NAME could be registered. */
2689 register_edge_assert_for (tree name
, edge e
, block_stmt_iterator si
)
2692 enum tree_code comp_code
;
2694 stmt
= bsi_stmt (si
);
2696 /* Do not attempt to infer anything in names that flow through
2698 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
2701 /* If NAME was not found in the sub-graph reachable from E, then
2702 there's nothing to do. */
2703 if (!TEST_BIT (found_in_subgraph
, SSA_NAME_VERSION (name
)))
2706 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2707 Register an assertion for NAME according to the value that NAME
2709 if (TREE_CODE (stmt
) == COND_EXPR
)
2711 /* If BB ends in a COND_EXPR then NAME then we should insert
2712 the original predicate on EDGE_TRUE_VALUE and the
2713 opposite predicate on EDGE_FALSE_VALUE. */
2714 tree cond
= COND_EXPR_COND (stmt
);
2715 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
2717 /* Predicates may be a single SSA name or NAME OP VAL. */
2720 /* If the predicate is a name, it must be NAME, in which
2721 case we create the predicate NAME == true or
2722 NAME == false accordingly. */
2723 comp_code
= EQ_EXPR
;
2724 val
= (is_else_edge
) ? boolean_false_node
: boolean_true_node
;
2728 /* Otherwise, we have a comparison of the form NAME COMP VAL
2729 or VAL COMP NAME. */
2730 if (name
== TREE_OPERAND (cond
, 1))
2732 /* If the predicate is of the form VAL COMP NAME, flip
2733 COMP around because we need to register NAME as the
2734 first operand in the predicate. */
2735 comp_code
= swap_tree_comparison (TREE_CODE (cond
));
2736 val
= TREE_OPERAND (cond
, 0);
2740 /* The comparison is of the form NAME COMP VAL, so the
2741 comparison code remains unchanged. */
2742 comp_code
= TREE_CODE (cond
);
2743 val
= TREE_OPERAND (cond
, 1);
2746 /* If we are inserting the assertion on the ELSE edge, we
2747 need to invert the sign comparison. */
2749 comp_code
= invert_tree_comparison (comp_code
, 0);
2751 /* Do not register always-false predicates. FIXME, this
2752 works around a limitation in fold() when dealing with
2753 enumerations. Given 'enum { N1, N2 } x;', fold will not
2754 fold 'if (x > N2)' to 'if (0)'. */
2755 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
2756 && (INTEGRAL_TYPE_P (TREE_TYPE (val
))
2757 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
))))
2759 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
2760 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
2762 if (comp_code
== GT_EXPR
&& compare_values (val
, max
) == 0)
2765 if (comp_code
== LT_EXPR
&& compare_values (val
, min
) == 0)
2772 /* FIXME. Handle SWITCH_EXPR. */
2776 register_new_assert_for (name
, comp_code
, val
, NULL
, e
, si
);
2781 static bool find_assert_locations (basic_block bb
);
2783 /* Determine whether the outgoing edges of BB should receive an
2784 ASSERT_EXPR for each of the operands of BB's last statement. The
2785 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2787 If any of the sub-graphs rooted at BB have an interesting use of
2788 the predicate operands, an assert location node is added to the
2789 list of assertions for the corresponding operands. */
2792 find_conditional_asserts (basic_block bb
)
2795 block_stmt_iterator last_si
;
2801 need_assert
= false;
2802 last_si
= bsi_last (bb
);
2803 last
= bsi_stmt (last_si
);
2805 /* Look for uses of the operands in each of the sub-graphs
2806 rooted at BB. We need to check each of the outgoing edges
2807 separately, so that we know what kind of ASSERT_EXPR to
2809 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2814 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2815 Otherwise, when we finish traversing each of the sub-graphs, we
2816 won't know whether the variables were found in the sub-graphs or
2817 if they had been found in a block upstream from BB.
2819 This is actually a bad idea is some cases, particularly jump
2820 threading. Consider a CFG like the following:
2830 Assume that one or more operands in the conditional at the
2831 end of block 0 are used in a conditional in block 2, but not
2832 anywhere in block 1. In this case we will not insert any
2833 assert statements in block 1, which may cause us to miss
2834 opportunities to optimize, particularly for jump threading. */
2835 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2836 RESET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2838 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2839 to determine if any of the operands in the conditional
2840 predicate are used. */
2842 need_assert
|= find_assert_locations (e
->dest
);
2844 /* Register the necessary assertions for each operand in the
2845 conditional predicate. */
2846 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2847 need_assert
|= register_edge_assert_for (op
, e
, last_si
);
2850 /* Finally, indicate that we have found the operands in the
2852 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
2853 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2859 /* Traverse all the statements in block BB looking for statements that
2860 may generate useful assertions for the SSA names in their operand.
2861 If a statement produces a useful assertion A for name N_i, then the
2862 list of assertions already generated for N_i is scanned to
2863 determine if A is actually needed.
2865 If N_i already had the assertion A at a location dominating the
2866 current location, then nothing needs to be done. Otherwise, the
2867 new location for A is recorded instead.
2869 1- For every statement S in BB, all the variables used by S are
2870 added to bitmap FOUND_IN_SUBGRAPH.
2872 2- If statement S uses an operand N in a way that exposes a known
2873 value range for N, then if N was not already generated by an
2874 ASSERT_EXPR, create a new assert location for N. For instance,
2875 if N is a pointer and the statement dereferences it, we can
2876 assume that N is not NULL.
2878 3- COND_EXPRs are a special case of #2. We can derive range
2879 information from the predicate but need to insert different
2880 ASSERT_EXPRs for each of the sub-graphs rooted at the
2881 conditional block. If the last statement of BB is a conditional
2882 expression of the form 'X op Y', then
2884 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2886 b) If the conditional is the only entry point to the sub-graph
2887 corresponding to the THEN_CLAUSE, recurse into it. On
2888 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2889 an ASSERT_EXPR is added for the corresponding variable.
2891 c) Repeat step (b) on the ELSE_CLAUSE.
2893 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2902 In this case, an assertion on the THEN clause is useful to
2903 determine that 'a' is always 9 on that edge. However, an assertion
2904 on the ELSE clause would be unnecessary.
2906 4- If BB does not end in a conditional expression, then we recurse
2907 into BB's dominator children.
2909 At the end of the recursive traversal, every SSA name will have a
2910 list of locations where ASSERT_EXPRs should be added. When a new
2911 location for name N is found, it is registered by calling
2912 register_new_assert_for. That function keeps track of all the
2913 registered assertions to prevent adding unnecessary assertions.
2914 For instance, if a pointer P_4 is dereferenced more than once in a
2915 dominator tree, only the location dominating all the dereference of
2916 P_4 will receive an ASSERT_EXPR.
2918 If this function returns true, then it means that there are names
2919 for which we need to generate ASSERT_EXPRs. Those assertions are
2920 inserted by process_assert_insertions.
2922 TODO. Handle SWITCH_EXPR. */
2925 find_assert_locations (basic_block bb
)
2927 block_stmt_iterator si
;
2932 if (TEST_BIT (blocks_visited
, bb
->index
))
2935 SET_BIT (blocks_visited
, bb
->index
);
2937 need_assert
= false;
2939 /* Traverse all PHI nodes in BB marking used operands. */
2940 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2942 use_operand_p arg_p
;
2945 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
2947 tree arg
= USE_FROM_PTR (arg_p
);
2948 if (TREE_CODE (arg
) == SSA_NAME
)
2950 gcc_assert (is_gimple_reg (PHI_RESULT (phi
)));
2951 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (arg
));
2956 /* Traverse all the statements in BB marking used names and looking
2957 for statements that may infer assertions for their used operands. */
2959 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
2964 stmt
= bsi_stmt (si
);
2966 /* See if we can derive an assertion for any of STMT's operands. */
2967 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
2970 enum tree_code comp_code
;
2972 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2973 the sub-graph of a conditional block, when we return from
2974 this recursive walk, our parent will use the
2975 FOUND_IN_SUBGRAPH bitset to determine if one of the
2976 operands it was looking for was present in the sub-graph. */
2977 SET_BIT (found_in_subgraph
, SSA_NAME_VERSION (op
));
2979 /* If OP is used in such a way that we can infer a value
2980 range for it, and we don't find a previous assertion for
2981 it, create a new assertion location node for OP. */
2982 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
2984 /* If we are able to infer a nonzero value range for OP,
2985 then walk backwards through the use-def chain to see if OP
2986 was set via a typecast.
2988 If so, then we can also infer a nonzero value range
2989 for the operand of the NOP_EXPR. */
2990 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
2993 tree def_stmt
= SSA_NAME_DEF_STMT (t
);
2995 while (TREE_CODE (def_stmt
) == MODIFY_EXPR
2996 && TREE_CODE (TREE_OPERAND (def_stmt
, 1)) == NOP_EXPR
2997 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0)) == SSA_NAME
2998 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0))))
3000 t
= TREE_OPERAND (TREE_OPERAND (def_stmt
, 1), 0);
3001 def_stmt
= SSA_NAME_DEF_STMT (t
);
3003 /* Note we want to register the assert for the
3004 operand of the NOP_EXPR after SI, not after the
3006 if (! has_single_use (t
))
3008 register_new_assert_for (t
, comp_code
, value
,
3015 /* If OP is used only once, namely in this STMT, don't
3016 bother creating an ASSERT_EXPR for it. Such an
3017 ASSERT_EXPR would do nothing but increase compile time. */
3018 if (!has_single_use (op
))
3020 register_new_assert_for (op
, comp_code
, value
, bb
, NULL
, si
);
3026 /* Remember the last statement of the block. */
3030 /* If BB's last statement is a conditional expression
3031 involving integer operands, recurse into each of the sub-graphs
3032 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3034 && TREE_CODE (last
) == COND_EXPR
3035 && !fp_predicate (COND_EXPR_COND (last
))
3036 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
3037 need_assert
|= find_conditional_asserts (bb
);
3039 /* Recurse into the dominator children of BB. */
3040 for (son
= first_dom_son (CDI_DOMINATORS
, bb
);
3042 son
= next_dom_son (CDI_DOMINATORS
, son
))
3043 need_assert
|= find_assert_locations (son
);
3049 /* Create an ASSERT_EXPR for NAME and insert it in the location
3050 indicated by LOC. Return true if we made any edge insertions. */
3053 process_assert_insertions_for (tree name
, assert_locus_t loc
)
3055 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3056 tree stmt
, cond
, assert_expr
;
3060 cond
= build2 (loc
->comp_code
, boolean_type_node
, name
, loc
->val
);
3061 assert_expr
= build_assert_expr_for (cond
, name
);
3065 /* We have been asked to insert the assertion on an edge. This
3066 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3067 #if defined ENABLE_CHECKING
3068 gcc_assert (TREE_CODE (bsi_stmt (loc
->si
)) == COND_EXPR
3069 || TREE_CODE (bsi_stmt (loc
->si
)) == SWITCH_EXPR
);
3072 bsi_insert_on_edge (loc
->e
, assert_expr
);
3076 /* Otherwise, we can insert right after LOC->SI iff the
3077 statement must not be the last statement in the block. */
3078 stmt
= bsi_stmt (loc
->si
);
3079 if (!stmt_ends_bb_p (stmt
))
3081 bsi_insert_after (&loc
->si
, assert_expr
, BSI_SAME_STMT
);
3085 /* If STMT must be the last statement in BB, we can only insert new
3086 assertions on the non-abnormal edge out of BB. Note that since
3087 STMT is not control flow, there may only be one non-abnormal edge
3089 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
3090 if (!(e
->flags
& EDGE_ABNORMAL
))
3092 bsi_insert_on_edge (e
, assert_expr
);
3100 /* Process all the insertions registered for every name N_i registered
3101 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3102 found in ASSERTS_FOR[i]. */
3105 process_assert_insertions (void)
3109 bool update_edges_p
= false;
3110 int num_asserts
= 0;
3112 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3113 dump_all_asserts (dump_file
);
3115 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
3117 assert_locus_t loc
= asserts_for
[i
];
3122 assert_locus_t next
= loc
->next
;
3123 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
3131 bsi_commit_edge_inserts ();
3133 if (dump_file
&& (dump_flags
& TDF_STATS
))
3134 fprintf (dump_file
, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3139 /* Traverse the flowgraph looking for conditional jumps to insert range
3140 expressions. These range expressions are meant to provide information
3141 to optimizations that need to reason in terms of value ranges. They
3142 will not be expanded into RTL. For instance, given:
3151 this pass will transform the code into:
3157 x = ASSERT_EXPR <x, x < y>
3162 y = ASSERT_EXPR <y, x <= y>
3166 The idea is that once copy and constant propagation have run, other
3167 optimizations will be able to determine what ranges of values can 'x'
3168 take in different paths of the code, simply by checking the reaching
3169 definition of 'x'. */
3172 insert_range_assertions (void)
3178 found_in_subgraph
= sbitmap_alloc (num_ssa_names
);
3179 sbitmap_zero (found_in_subgraph
);
3181 blocks_visited
= sbitmap_alloc (last_basic_block
);
3182 sbitmap_zero (blocks_visited
);
3184 need_assert_for
= BITMAP_ALLOC (NULL
);
3185 asserts_for
= XNEWVEC (assert_locus_t
, num_ssa_names
);
3186 memset (asserts_for
, 0, num_ssa_names
* sizeof (assert_locus_t
));
3188 calculate_dominance_info (CDI_DOMINATORS
);
3190 update_ssa_p
= false;
3191 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
3192 if (find_assert_locations (e
->dest
))
3193 update_ssa_p
= true;
3197 process_assert_insertions ();
3198 update_ssa (TODO_update_ssa_no_phi
);
3201 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3203 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
3204 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
3207 sbitmap_free (found_in_subgraph
);
3209 BITMAP_FREE (need_assert_for
);
3213 /* Convert range assertion expressions into the implied copies and
3214 copy propagate away the copies. Doing the trivial copy propagation
3215 here avoids the need to run the full copy propagation pass after
3218 FIXME, this will eventually lead to copy propagation removing the
3219 names that had useful range information attached to them. For
3220 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3221 then N_i will have the range [3, +INF].
3223 However, by converting the assertion into the implied copy
3224 operation N_i = N_j, we will then copy-propagate N_j into the uses
3225 of N_i and lose the range information. We may want to hold on to
3226 ASSERT_EXPRs a little while longer as the ranges could be used in
3227 things like jump threading.
3229 The problem with keeping ASSERT_EXPRs around is that passes after
3230 VRP need to handle them appropriately.
3232 Another approach would be to make the range information a first
3233 class property of the SSA_NAME so that it can be queried from
3234 any pass. This is made somewhat more complex by the need for
3235 multiple ranges to be associated with one SSA_NAME. */
3238 remove_range_assertions (void)
3241 block_stmt_iterator si
;
3243 /* Note that the BSI iterator bump happens at the bottom of the
3244 loop and no bump is necessary if we're removing the statement
3245 referenced by the current BSI. */
3247 for (si
= bsi_start (bb
); !bsi_end_p (si
);)
3249 tree stmt
= bsi_stmt (si
);
3251 if (TREE_CODE (stmt
) == MODIFY_EXPR
3252 && TREE_CODE (TREE_OPERAND (stmt
, 1)) == ASSERT_EXPR
)
3254 tree rhs
= TREE_OPERAND (stmt
, 1), var
;
3255 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
3256 use_operand_p use_p
;
3257 imm_use_iterator iter
;
3259 gcc_assert (cond
!= boolean_false_node
);
3261 /* Propagate the RHS into every use of the LHS. */
3262 var
= ASSERT_EXPR_VAR (rhs
);
3263 FOR_EACH_IMM_USE_SAFE (use_p
, iter
, TREE_OPERAND (stmt
, 0))
3265 SET_USE (use_p
, var
);
3266 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
3269 /* And finally, remove the copy, it is not needed. */
3270 bsi_remove (&si
, true);
3276 sbitmap_free (blocks_visited
);
3280 /* Return true if STMT is interesting for VRP. */
3283 stmt_interesting_for_vrp (tree stmt
)
3285 if (TREE_CODE (stmt
) == PHI_NODE
3286 && is_gimple_reg (PHI_RESULT (stmt
))
3287 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))
3288 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt
)))))
3290 else if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3292 tree lhs
= TREE_OPERAND (stmt
, 0);
3293 tree rhs
= TREE_OPERAND (stmt
, 1);
3295 /* In general, assignments with virtual operands are not useful
3296 for deriving ranges, with the obvious exception of calls to
3297 builtin functions. */
3298 if (TREE_CODE (lhs
) == SSA_NAME
3299 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3300 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
3301 && ((TREE_CODE (rhs
) == CALL_EXPR
3302 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == ADDR_EXPR
3303 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0))
3304 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0)))
3305 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
)))
3308 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3315 /* Initialize local data structures for VRP. */
3318 vrp_initialize (void)
3322 vr_value
= XNEWVEC (value_range_t
*, num_ssa_names
);
3323 memset (vr_value
, 0, num_ssa_names
* sizeof (value_range_t
*));
3327 block_stmt_iterator si
;
3330 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
3332 if (!stmt_interesting_for_vrp (phi
))
3334 tree lhs
= PHI_RESULT (phi
);
3335 set_value_range_to_varying (get_value_range (lhs
));
3336 DONT_SIMULATE_AGAIN (phi
) = true;
3339 DONT_SIMULATE_AGAIN (phi
) = false;
3342 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
3344 tree stmt
= bsi_stmt (si
);
3346 if (!stmt_interesting_for_vrp (stmt
))
3350 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
3351 set_value_range_to_varying (get_value_range (def
));
3352 DONT_SIMULATE_AGAIN (stmt
) = true;
3356 DONT_SIMULATE_AGAIN (stmt
) = false;
3363 /* Visit assignment STMT. If it produces an interesting range, record
3364 the SSA name in *OUTPUT_P. */
3366 static enum ssa_prop_result
3367 vrp_visit_assignment (tree stmt
, tree
*output_p
)
3372 lhs
= TREE_OPERAND (stmt
, 0);
3373 rhs
= TREE_OPERAND (stmt
, 1);
3375 /* We only keep track of ranges in integral and pointer types. */
3376 if (TREE_CODE (lhs
) == SSA_NAME
3377 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3378 /* It is valid to have NULL MIN/MAX values on a type. See
3379 build_range_type. */
3380 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
3381 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
3382 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
3385 value_range_t new_vr
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3387 extract_range_from_expr (&new_vr
, rhs
);
3389 /* If STMT is inside a loop, we may be able to know something
3390 else about the range of LHS by examining scalar evolution
3392 if (current_loops
&& (l
= loop_containing_stmt (stmt
)))
3393 adjust_range_with_scev (&new_vr
, l
, stmt
, lhs
);
3395 if (update_value_range (lhs
, &new_vr
))
3399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3401 fprintf (dump_file
, "Found new range for ");
3402 print_generic_expr (dump_file
, lhs
, 0);
3403 fprintf (dump_file
, ": ");
3404 dump_value_range (dump_file
, &new_vr
);
3405 fprintf (dump_file
, "\n\n");
3408 if (new_vr
.type
== VR_VARYING
)
3409 return SSA_PROP_VARYING
;
3411 return SSA_PROP_INTERESTING
;
3414 return SSA_PROP_NOT_INTERESTING
;
3417 /* Every other statement produces no useful ranges. */
3418 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3419 set_value_range_to_varying (get_value_range (def
));
3421 return SSA_PROP_VARYING
;
3425 /* Compare all the value ranges for names equivalent to VAR with VAL
3426 using comparison code COMP. Return the same value returned by
3427 compare_range_with_value. */
3430 compare_name_with_value (enum tree_code comp
, tree var
, tree val
)
3437 t
= retval
= NULL_TREE
;
3439 /* Get the set of equivalences for VAR. */
3440 e
= get_value_range (var
)->equiv
;
3442 /* Add VAR to its own set of equivalences so that VAR's value range
3443 is processed by this loop (otherwise, we would have to replicate
3444 the body of the loop just to check VAR's value range). */
3445 bitmap_set_bit (e
, SSA_NAME_VERSION (var
));
3447 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
3449 value_range_t equiv_vr
= *(vr_value
[i
]);
3451 /* If name N_i does not have a valid range, use N_i as its own
3452 range. This allows us to compare against names that may
3453 have N_i in their ranges. */
3454 if (equiv_vr
.type
== VR_VARYING
|| equiv_vr
.type
== VR_UNDEFINED
)
3456 equiv_vr
.type
= VR_RANGE
;
3457 equiv_vr
.min
= ssa_name (i
);
3458 equiv_vr
.max
= ssa_name (i
);
3461 t
= compare_range_with_value (comp
, &equiv_vr
, val
);
3464 /* All the ranges should compare the same against VAL. */
3465 gcc_assert (retval
== NULL
|| t
== retval
);
3470 /* Remove VAR from its own equivalence set. */
3471 bitmap_clear_bit (e
, SSA_NAME_VERSION (var
));
3476 /* We couldn't find a non-NULL value for the predicate. */
3481 /* Given a comparison code COMP and names N1 and N2, compare all the
3482 ranges equivalent to N1 against all the ranges equivalent to N2
3483 to determine the value of N1 COMP N2. Return the same value
3484 returned by compare_ranges. */
3487 compare_names (enum tree_code comp
, tree n1
, tree n2
)
3491 bitmap_iterator bi1
, bi2
;
3494 /* Compare the ranges of every name equivalent to N1 against the
3495 ranges of every name equivalent to N2. */
3496 e1
= get_value_range (n1
)->equiv
;
3497 e2
= get_value_range (n2
)->equiv
;
3499 /* Add N1 and N2 to their own set of equivalences to avoid
3500 duplicating the body of the loop just to check N1 and N2
3502 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
3503 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
3505 /* If the equivalence sets have a common intersection, then the two
3506 names can be compared without checking their ranges. */
3507 if (bitmap_intersect_p (e1
, e2
))
3509 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3510 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3512 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
3514 : boolean_false_node
;
3517 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3518 N2 to their own set of equivalences to avoid duplicating the body
3519 of the loop just to check N1 and N2 ranges. */
3520 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
3522 value_range_t vr1
= *(vr_value
[i1
]);
3524 /* If the range is VARYING or UNDEFINED, use the name itself. */
3525 if (vr1
.type
== VR_VARYING
|| vr1
.type
== VR_UNDEFINED
)
3527 vr1
.type
= VR_RANGE
;
3528 vr1
.min
= ssa_name (i1
);
3529 vr1
.max
= ssa_name (i1
);
3532 t
= retval
= NULL_TREE
;
3533 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
3535 value_range_t vr2
= *(vr_value
[i2
]);
3537 if (vr2
.type
== VR_VARYING
|| vr2
.type
== VR_UNDEFINED
)
3539 vr2
.type
= VR_RANGE
;
3540 vr2
.min
= ssa_name (i2
);
3541 vr2
.max
= ssa_name (i2
);
3544 t
= compare_ranges (comp
, &vr1
, &vr2
);
3547 /* All the ranges in the equivalent sets should compare
3549 gcc_assert (retval
== NULL
|| t
== retval
);
3556 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3557 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3562 /* None of the equivalent ranges are useful in computing this
3564 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
3565 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
3570 /* Given a conditional predicate COND, try to determine if COND yields
3571 true or false based on the value ranges of its operands. Return
3572 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3573 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3574 NULL if the conditional cannot be evaluated at compile time.
3576 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3577 the operands in COND are used when trying to compute its value.
3578 This is only used during final substitution. During propagation,
3579 we only check the range of each variable and not its equivalents. */
3582 vrp_evaluate_conditional (tree cond
, bool use_equiv_p
)
3584 gcc_assert (TREE_CODE (cond
) == SSA_NAME
3585 || TREE_CODE_CLASS (TREE_CODE (cond
)) == tcc_comparison
);
3587 if (TREE_CODE (cond
) == SSA_NAME
)
3593 retval
= compare_name_with_value (NE_EXPR
, cond
, boolean_false_node
);
3596 value_range_t
*vr
= get_value_range (cond
);
3597 retval
= compare_range_with_value (NE_EXPR
, vr
, boolean_false_node
);
3600 /* If COND has a known boolean range, return it. */
3604 /* Otherwise, if COND has a symbolic range of exactly one value,
3606 vr
= get_value_range (cond
);
3607 if (vr
->type
== VR_RANGE
&& vr
->min
== vr
->max
)
3612 tree op0
= TREE_OPERAND (cond
, 0);
3613 tree op1
= TREE_OPERAND (cond
, 1);
3615 /* We only deal with integral and pointer types. */
3616 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
3617 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
3622 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
3623 return compare_names (TREE_CODE (cond
), op0
, op1
);
3624 else if (TREE_CODE (op0
) == SSA_NAME
)
3625 return compare_name_with_value (TREE_CODE (cond
), op0
, op1
);
3626 else if (TREE_CODE (op1
) == SSA_NAME
)
3627 return compare_name_with_value (
3628 swap_tree_comparison (TREE_CODE (cond
)), op1
, op0
);
3632 value_range_t
*vr0
, *vr1
;
3634 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
3635 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
3638 return compare_ranges (TREE_CODE (cond
), vr0
, vr1
);
3639 else if (vr0
&& vr1
== NULL
)
3640 return compare_range_with_value (TREE_CODE (cond
), vr0
, op1
);
3641 else if (vr0
== NULL
&& vr1
)
3642 return compare_range_with_value (
3643 swap_tree_comparison (TREE_CODE (cond
)), vr1
, op0
);
3647 /* Anything else cannot be computed statically. */
3652 /* Visit conditional statement STMT. If we can determine which edge
3653 will be taken out of STMT's basic block, record it in
3654 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3655 SSA_PROP_VARYING. */
3657 static enum ssa_prop_result
3658 vrp_visit_cond_stmt (tree stmt
, edge
*taken_edge_p
)
3662 *taken_edge_p
= NULL
;
3664 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3665 add ASSERT_EXPRs for them. */
3666 if (TREE_CODE (stmt
) == SWITCH_EXPR
)
3667 return SSA_PROP_VARYING
;
3669 cond
= COND_EXPR_COND (stmt
);
3671 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3676 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
3677 print_generic_expr (dump_file
, cond
, 0);
3678 fprintf (dump_file
, "\nWith known ranges\n");
3680 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
3682 fprintf (dump_file
, "\t");
3683 print_generic_expr (dump_file
, use
, 0);
3684 fprintf (dump_file
, ": ");
3685 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
3688 fprintf (dump_file
, "\n");
3691 /* Compute the value of the predicate COND by checking the known
3692 ranges of each of its operands.
3694 Note that we cannot evaluate all the equivalent ranges here
3695 because those ranges may not yet be final and with the current
3696 propagation strategy, we cannot determine when the value ranges
3697 of the names in the equivalence set have changed.
3699 For instance, given the following code fragment
3703 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3707 Assume that on the first visit to i_14, i_5 has the temporary
3708 range [8, 8] because the second argument to the PHI function is
3709 not yet executable. We derive the range ~[0, 0] for i_14 and the
3710 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3711 the first time, since i_14 is equivalent to the range [8, 8], we
3712 determine that the predicate is always false.
3714 On the next round of propagation, i_13 is determined to be
3715 VARYING, which causes i_5 to drop down to VARYING. So, another
3716 visit to i_14 is scheduled. In this second visit, we compute the
3717 exact same range and equivalence set for i_14, namely ~[0, 0] and
3718 { i_5 }. But we did not have the previous range for i_5
3719 registered, so vrp_visit_assignment thinks that the range for
3720 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3721 is not visited again, which stops propagation from visiting
3722 statements in the THEN clause of that if().
3724 To properly fix this we would need to keep the previous range
3725 value for the names in the equivalence set. This way we would've
3726 discovered that from one visit to the other i_5 changed from
3727 range [8, 8] to VR_VARYING.
3729 However, fixing this apparent limitation may not be worth the
3730 additional checking. Testing on several code bases (GCC, DLV,
3731 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3732 4 more predicates folded in SPEC. */
3733 val
= vrp_evaluate_conditional (cond
, false);
3735 *taken_edge_p
= find_taken_edge (bb_for_stmt (stmt
), val
);
3737 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3739 fprintf (dump_file
, "\nPredicate evaluates to: ");
3740 if (val
== NULL_TREE
)
3741 fprintf (dump_file
, "DON'T KNOW\n");
3743 print_generic_stmt (dump_file
, val
, 0);
3746 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
3750 /* Evaluate statement STMT. If the statement produces a useful range,
3751 return SSA_PROP_INTERESTING and record the SSA name with the
3752 interesting range into *OUTPUT_P.
3754 If STMT is a conditional branch and we can determine its truth
3755 value, the taken edge is recorded in *TAKEN_EDGE_P.
3757 If STMT produces a varying value, return SSA_PROP_VARYING. */
3759 static enum ssa_prop_result
3760 vrp_visit_stmt (tree stmt
, edge
*taken_edge_p
, tree
*output_p
)
3766 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3768 fprintf (dump_file
, "\nVisiting statement:\n");
3769 print_generic_stmt (dump_file
, stmt
, dump_flags
);
3770 fprintf (dump_file
, "\n");
3773 ann
= stmt_ann (stmt
);
3774 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
3776 tree rhs
= TREE_OPERAND (stmt
, 1);
3778 /* In general, assignments with virtual operands are not useful
3779 for deriving ranges, with the obvious exception of calls to
3780 builtin functions. */
3781 if ((TREE_CODE (rhs
) == CALL_EXPR
3782 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == ADDR_EXPR
3783 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0))
3784 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs
, 0), 0)))
3785 || ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
3786 return vrp_visit_assignment (stmt
, output_p
);
3788 else if (TREE_CODE (stmt
) == COND_EXPR
|| TREE_CODE (stmt
) == SWITCH_EXPR
)
3789 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
3791 /* All other statements produce nothing of interest for VRP, so mark
3792 their outputs varying and prevent further simulation. */
3793 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
3794 set_value_range_to_varying (get_value_range (def
));
3796 return SSA_PROP_VARYING
;
3800 /* Meet operation for value ranges. Given two value ranges VR0 and
3801 VR1, store in VR0 the result of meeting VR0 and VR1.
3803 The meeting rules are as follows:
3805 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3807 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3808 union of VR0 and VR1. */
3811 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
3813 if (vr0
->type
== VR_UNDEFINED
)
3815 copy_value_range (vr0
, vr1
);
3819 if (vr1
->type
== VR_UNDEFINED
)
3821 /* Nothing to do. VR0 already has the resulting range. */
3825 if (vr0
->type
== VR_VARYING
)
3827 /* Nothing to do. VR0 already has the resulting range. */
3831 if (vr1
->type
== VR_VARYING
)
3833 set_value_range_to_varying (vr0
);
3837 if (vr0
->type
== VR_RANGE
&& vr1
->type
== VR_RANGE
)
3839 /* If VR0 and VR1 have a non-empty intersection, compute the
3840 union of both ranges. */
3841 if (value_ranges_intersect_p (vr0
, vr1
))
3846 /* The lower limit of the new range is the minimum of the
3847 two ranges. If they cannot be compared, the result is
3849 cmp
= compare_values (vr0
->min
, vr1
->min
);
3850 if (cmp
== 0 || cmp
== 1)
3856 set_value_range_to_varying (vr0
);
3860 /* Similarly, the upper limit of the new range is the
3861 maximum of the two ranges. If they cannot be compared,
3862 the result is VARYING. */
3863 cmp
= compare_values (vr0
->max
, vr1
->max
);
3864 if (cmp
== 0 || cmp
== -1)
3870 set_value_range_to_varying (vr0
);
3874 /* The resulting set of equivalences is the intersection of
3876 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3877 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3878 else if (vr0
->equiv
&& !vr1
->equiv
)
3879 bitmap_clear (vr0
->equiv
);
3881 set_value_range (vr0
, vr0
->type
, min
, max
, vr0
->equiv
);
3886 else if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
3888 /* Two anti-ranges meet only if they are both identical. */
3889 if (compare_values (vr0
->min
, vr1
->min
) == 0
3890 && compare_values (vr0
->max
, vr1
->max
) == 0
3891 && compare_values (vr0
->min
, vr0
->max
) == 0)
3893 /* The resulting set of equivalences is the intersection of
3895 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3896 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3897 else if (vr0
->equiv
&& !vr1
->equiv
)
3898 bitmap_clear (vr0
->equiv
);
3903 else if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
3905 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3906 meet only if the ranges have an empty intersection. The
3907 result of the meet operation is the anti-range. */
3908 if (!symbolic_range_p (vr0
)
3909 && !symbolic_range_p (vr1
)
3910 && !value_ranges_intersect_p (vr0
, vr1
))
3912 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3913 set. We need to compute the intersection of the two
3914 equivalence sets. */
3915 if (vr1
->type
== VR_ANTI_RANGE
)
3916 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr0
->equiv
);
3918 /* The resulting set of equivalences is the intersection of
3920 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
3921 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
3922 else if (vr0
->equiv
&& !vr1
->equiv
)
3923 bitmap_clear (vr0
->equiv
);
3934 /* The two range VR0 and VR1 do not meet. Before giving up and
3935 setting the result to VARYING, see if we can at least derive a
3936 useful anti-range. FIXME, all this nonsense about distinguishing
3937 anti-ranges from ranges is necessary because of the odd
3938 semantics of range_includes_zero_p and friends. */
3939 if (!symbolic_range_p (vr0
)
3940 && ((vr0
->type
== VR_RANGE
&& !range_includes_zero_p (vr0
))
3941 || (vr0
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr0
)))
3942 && !symbolic_range_p (vr1
)
3943 && ((vr1
->type
== VR_RANGE
&& !range_includes_zero_p (vr1
))
3944 || (vr1
->type
== VR_ANTI_RANGE
&& range_includes_zero_p (vr1
))))
3946 set_value_range_to_nonnull (vr0
, TREE_TYPE (vr0
->min
));
3948 /* Since this meet operation did not result from the meeting of
3949 two equivalent names, VR0 cannot have any equivalences. */
3951 bitmap_clear (vr0
->equiv
);
3954 set_value_range_to_varying (vr0
);
3958 /* Visit all arguments for PHI node PHI that flow through executable
3959 edges. If a valid value range can be derived from all the incoming
3960 value ranges, set a new range for the LHS of PHI. */
3962 static enum ssa_prop_result
3963 vrp_visit_phi_node (tree phi
)
3966 tree lhs
= PHI_RESULT (phi
);
3967 value_range_t
*lhs_vr
= get_value_range (lhs
);
3968 value_range_t vr_result
= { VR_UNDEFINED
, NULL_TREE
, NULL_TREE
, NULL
};
3970 copy_value_range (&vr_result
, lhs_vr
);
3972 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3974 fprintf (dump_file
, "\nVisiting PHI node: ");
3975 print_generic_expr (dump_file
, phi
, dump_flags
);
3978 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
3980 edge e
= PHI_ARG_EDGE (phi
, i
);
3982 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3985 "\n Argument #%d (%d -> %d %sexecutable)\n",
3986 i
, e
->src
->index
, e
->dest
->index
,
3987 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
3990 if (e
->flags
& EDGE_EXECUTABLE
)
3992 tree arg
= PHI_ARG_DEF (phi
, i
);
3993 value_range_t vr_arg
;
3995 if (TREE_CODE (arg
) == SSA_NAME
)
3996 vr_arg
= *(get_value_range (arg
));
3999 vr_arg
.type
= VR_RANGE
;
4002 vr_arg
.equiv
= NULL
;
4005 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4007 fprintf (dump_file
, "\t");
4008 print_generic_expr (dump_file
, arg
, dump_flags
);
4009 fprintf (dump_file
, "\n\tValue: ");
4010 dump_value_range (dump_file
, &vr_arg
);
4011 fprintf (dump_file
, "\n");
4014 vrp_meet (&vr_result
, &vr_arg
);
4016 if (vr_result
.type
== VR_VARYING
)
4021 if (vr_result
.type
== VR_VARYING
)
4024 /* To prevent infinite iterations in the algorithm, derive ranges
4025 when the new value is slightly bigger or smaller than the
4027 if (lhs_vr
->type
== VR_RANGE
&& vr_result
.type
== VR_RANGE
)
4029 if (!POINTER_TYPE_P (TREE_TYPE (lhs
)))
4031 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
4032 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
4034 /* If the new minimum is smaller or larger than the previous
4035 one, go all the way to -INF. In the first case, to avoid
4036 iterating millions of times to reach -INF, and in the
4037 other case to avoid infinite bouncing between different
4039 if (cmp_min
> 0 || cmp_min
< 0)
4040 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
4042 /* Similarly, if the new maximum is smaller or larger than
4043 the previous one, go all the way to +INF. */
4044 if (cmp_max
< 0 || cmp_max
> 0)
4045 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
4047 /* If we ended up with a (-INF, +INF) range, set it to
4049 if (vr_result
.min
== TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
))
4050 && vr_result
.max
== TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
)))
4055 /* If the new range is different than the previous value, keep
4057 if (update_value_range (lhs
, &vr_result
))
4058 return SSA_PROP_INTERESTING
;
4060 /* Nothing changed, don't add outgoing edges. */
4061 return SSA_PROP_NOT_INTERESTING
;
4063 /* No match found. Set the LHS to VARYING. */
4065 set_value_range_to_varying (lhs_vr
);
4066 return SSA_PROP_VARYING
;
4069 /* Simplify a division or modulo operator to a right shift or
4070 bitwise and if the first operand is unsigned or is greater
4071 than zero and the second operand is an exact power of two. */
4074 simplify_div_or_mod_using_ranges (tree stmt
, tree rhs
, enum tree_code rhs_code
)
4077 tree op
= TREE_OPERAND (rhs
, 0);
4078 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
4080 if (TYPE_UNSIGNED (TREE_TYPE (op
)))
4082 val
= integer_one_node
;
4086 val
= compare_range_with_value (GT_EXPR
, vr
, integer_zero_node
);
4089 if (val
&& integer_onep (val
))
4092 tree op0
= TREE_OPERAND (rhs
, 0);
4093 tree op1
= TREE_OPERAND (rhs
, 1);
4095 if (rhs_code
== TRUNC_DIV_EXPR
)
4097 t
= build_int_cst (NULL_TREE
, tree_log2 (op1
));
4098 t
= build2 (RSHIFT_EXPR
, TREE_TYPE (op0
), op0
, t
);
4102 t
= build_int_cst (TREE_TYPE (op1
), 1);
4103 t
= int_const_binop (MINUS_EXPR
, op1
, t
, 0);
4104 t
= fold_convert (TREE_TYPE (op0
), t
);
4105 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (op0
), op0
, t
);
4108 TREE_OPERAND (stmt
, 1) = t
;
4113 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4114 ABS_EXPR. If the operand is <= 0, then simplify the
4115 ABS_EXPR into a NEGATE_EXPR. */
4118 simplify_abs_using_ranges (tree stmt
, tree rhs
)
4121 tree op
= TREE_OPERAND (rhs
, 0);
4122 tree type
= TREE_TYPE (op
);
4123 value_range_t
*vr
= get_value_range (TREE_OPERAND (rhs
, 0));
4125 if (TYPE_UNSIGNED (type
))
4127 val
= integer_zero_node
;
4131 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
);
4134 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
);
4138 if (integer_zerop (val
))
4139 val
= integer_one_node
;
4140 else if (integer_onep (val
))
4141 val
= integer_zero_node
;
4146 && (integer_onep (val
) || integer_zerop (val
)))
4150 if (integer_onep (val
))
4151 t
= build1 (NEGATE_EXPR
, TREE_TYPE (op
), op
);
4155 TREE_OPERAND (stmt
, 1) = t
;
4161 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4162 a known value range VR.
4164 If there is one and only one value which will satisfy the
4165 conditional, then return that value. Else return NULL. */
4168 test_for_singularity (enum tree_code cond_code
, tree op0
,
4169 tree op1
, value_range_t
*vr
)
4174 /* Extract minimum/maximum values which satisfy the
4175 the conditional as it was written. */
4176 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
4178 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
4181 if (cond_code
== LT_EXPR
)
4183 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
4184 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
4187 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
4189 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
4192 if (cond_code
== GT_EXPR
)
4194 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
4195 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
4199 /* Now refine the minimum and maximum values using any
4200 value range information we have for op0. */
4203 if (compare_values (vr
->min
, min
) == -1)
4207 if (compare_values (vr
->max
, max
) == 1)
4212 /* If the new min/max values have converged to a single value,
4213 then there is only one value which can satisfy the condition,
4214 return that value. */
4215 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
4221 /* Simplify a conditional using a relational operator to an equality
4222 test if the range information indicates only one value can satisfy
4223 the original conditional. */
4226 simplify_cond_using_ranges (tree stmt
)
4228 tree cond
= COND_EXPR_COND (stmt
);
4229 tree op0
= TREE_OPERAND (cond
, 0);
4230 tree op1
= TREE_OPERAND (cond
, 1);
4231 enum tree_code cond_code
= TREE_CODE (cond
);
4233 if (cond_code
!= NE_EXPR
4234 && cond_code
!= EQ_EXPR
4235 && TREE_CODE (op0
) == SSA_NAME
4236 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
4237 && is_gimple_min_invariant (op1
))
4239 value_range_t
*vr
= get_value_range (op0
);
4241 /* If we have range information for OP0, then we might be
4242 able to simplify this conditional. */
4243 if (vr
->type
== VR_RANGE
)
4245 tree
new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4251 fprintf (dump_file
, "Simplified relational ");
4252 print_generic_expr (dump_file
, cond
, 0);
4253 fprintf (dump_file
, " into ");
4256 COND_EXPR_COND (stmt
)
4257 = build2 (EQ_EXPR
, boolean_type_node
, op0
, new);
4262 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4263 fprintf (dump_file
, "\n");
4269 /* Try again after inverting the condition. We only deal
4270 with integral types here, so no need to worry about
4271 issues with inverting FP comparisons. */
4272 cond_code
= invert_tree_comparison (cond_code
, false);
4273 new = test_for_singularity (cond_code
, op0
, op1
, vr
);
4279 fprintf (dump_file
, "Simplified relational ");
4280 print_generic_expr (dump_file
, cond
, 0);
4281 fprintf (dump_file
, " into ");
4284 COND_EXPR_COND (stmt
)
4285 = build2 (NE_EXPR
, boolean_type_node
, op0
, new);
4290 print_generic_expr (dump_file
, COND_EXPR_COND (stmt
), 0);
4291 fprintf (dump_file
, "\n");
4300 /* Simplify STMT using ranges if possible. */
4303 simplify_stmt_using_ranges (tree stmt
)
4305 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
4307 tree rhs
= TREE_OPERAND (stmt
, 1);
4308 enum tree_code rhs_code
= TREE_CODE (rhs
);
4310 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4311 and BIT_AND_EXPR respectively if the first operand is greater
4312 than zero and the second operand is an exact power of two. */
4313 if ((rhs_code
== TRUNC_DIV_EXPR
|| rhs_code
== TRUNC_MOD_EXPR
)
4314 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0)))
4315 && integer_pow2p (TREE_OPERAND (rhs
, 1)))
4316 simplify_div_or_mod_using_ranges (stmt
, rhs
, rhs_code
);
4318 /* Transform ABS (X) into X or -X as appropriate. */
4319 if (rhs_code
== ABS_EXPR
4320 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == SSA_NAME
4321 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs
, 0))))
4322 simplify_abs_using_ranges (stmt
, rhs
);
4324 else if (TREE_CODE (stmt
) == COND_EXPR
4325 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt
)))
4327 simplify_cond_using_ranges (stmt
);
4331 /* Stack of dest,src equivalency pairs that need to be restored after
4332 each attempt to thread a block's incoming edge to an outgoing edge.
4334 A NULL entry is used to mark the end of pairs which need to be
4336 static VEC(tree
,heap
) *stack
;
4338 /* A trivial wrapper so that we can present the generic jump
4339 threading code with a simple API for simplifying statements. */
4341 simplify_stmt_for_jump_threading (tree stmt
)
4343 /* We only use VRP information to simplify conditionals. This is
4344 overly conservative, but it's unclear if doing more would be
4345 worth the compile time cost. */
4346 if (TREE_CODE (stmt
) != COND_EXPR
)
4349 return vrp_evaluate_conditional (COND_EXPR_COND (stmt
), true);
4352 /* Blocks which have more than one predecessor and more than
4353 one successor present jump threading opportunities. ie,
4354 when the block is reached from a specific predecessor, we
4355 may be able to determine which of the outgoing edges will
4356 be traversed. When this optimization applies, we are able
4357 to avoid conditionals at runtime and we may expose secondary
4358 optimization opportunities.
4360 This routine is effectively a driver for the generic jump
4361 threading code. It basically just presents the generic code
4362 with edges that may be suitable for jump threading.
4364 Unlike DOM, we do not iterate VRP if jump threading was successful.
4365 While iterating may expose new opportunities for VRP, it is expected
4366 those opportunities would be very limited and the compile time cost
4367 to expose those opportunities would be significant.
4369 As jump threading opportunities are discovered, they are registered
4370 for later realization. */
4373 identify_jump_threads (void)
4378 /* Ugh. When substituting values earlier in this pass we can
4379 wipe the dominance information. So rebuild the dominator
4380 information as we need it within the jump threading code. */
4381 calculate_dominance_info (CDI_DOMINATORS
);
4383 /* We do not allow VRP information to be used for jump threading
4384 across a back edge in the CFG. Otherwise it becomes too
4385 difficult to avoid eliminating loop exit tests. Of course
4386 EDGE_DFS_BACK is not accurate at this time so we have to
4388 mark_dfs_back_edges ();
4390 /* Allocate our unwinder stack to unwind any temporary equivalences
4391 that might be recorded. */
4392 stack
= VEC_alloc (tree
, heap
, 20);
4394 /* To avoid lots of silly node creation, we create a single
4395 conditional and just modify it in-place when attempting to
4397 dummy
= build2 (EQ_EXPR
, boolean_type_node
, NULL
, NULL
);
4398 dummy
= build3 (COND_EXPR
, void_type_node
, dummy
, NULL
, NULL
);
4400 /* Walk through all the blocks finding those which present a
4401 potential jump threading opportunity. We could set this up
4402 as a dominator walker and record data during the walk, but
4403 I doubt it's worth the effort for the classes of jump
4404 threading opportunities we are trying to identify at this
4405 point in compilation. */
4410 /* If the generic jump threading code does not find this block
4411 interesting, then there is nothing to do. */
4412 if (! potentially_threadable_block (bb
))
4415 /* We only care about blocks ending in a COND_EXPR. While there
4416 may be some value in handling SWITCH_EXPR here, I doubt it's
4417 terribly important. */
4418 last
= bsi_stmt (bsi_last (bb
));
4419 if (TREE_CODE (last
) != COND_EXPR
)
4422 /* We're basically looking for any kind of conditional with
4423 integral type arguments. */
4424 cond
= COND_EXPR_COND (last
);
4425 if ((TREE_CODE (cond
) == SSA_NAME
4426 && INTEGRAL_TYPE_P (TREE_TYPE (cond
)))
4427 || (COMPARISON_CLASS_P (cond
)
4428 && TREE_CODE (TREE_OPERAND (cond
, 0)) == SSA_NAME
4429 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 0)))
4430 && (TREE_CODE (TREE_OPERAND (cond
, 1)) == SSA_NAME
4431 || is_gimple_min_invariant (TREE_OPERAND (cond
, 1)))
4432 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond
, 1)))))
4437 /* We've got a block with multiple predecessors and multiple
4438 successors which also ends in a suitable conditional. For
4439 each predecessor, see if we can thread it to a specific
4441 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4443 /* Do not thread across back edges or abnormal edges
4445 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
4448 thread_across_edge (dummy
, e
, true,
4450 simplify_stmt_for_jump_threading
);
4455 /* We do not actually update the CFG or SSA graphs at this point as
4456 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4457 handle ASSERT_EXPRs gracefully. */
4460 /* We identified all the jump threading opportunities earlier, but could
4461 not transform the CFG at that time. This routine transforms the
4462 CFG and arranges for the dominator tree to be rebuilt if necessary.
4464 Note the SSA graph update will occur during the normal TODO
4465 processing by the pass manager. */
4467 finalize_jump_threads (void)
4469 bool cfg_altered
= false;
4470 cfg_altered
= thread_through_all_blocks ();
4472 /* If we threaded jumps, then we need to recompute the dominance
4473 information, to safely do that we must clean up the CFG first. */
4476 free_dominance_info (CDI_DOMINATORS
);
4477 cleanup_tree_cfg ();
4478 calculate_dominance_info (CDI_DOMINATORS
);
4480 VEC_free (tree
, heap
, stack
);
4484 /* Traverse all the blocks folding conditionals with known ranges. */
4490 prop_value_t
*single_val_range
;
4491 bool do_value_subst_p
;
4495 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
4496 dump_all_value_ranges (dump_file
);
4497 fprintf (dump_file
, "\n");
4500 /* We may have ended with ranges that have exactly one value. Those
4501 values can be substituted as any other copy/const propagated
4502 value using substitute_and_fold. */
4503 single_val_range
= XNEWVEC (prop_value_t
, num_ssa_names
);
4504 memset (single_val_range
, 0, num_ssa_names
* sizeof (*single_val_range
));
4506 do_value_subst_p
= false;
4507 for (i
= 0; i
< num_ssa_names
; i
++)
4509 && vr_value
[i
]->type
== VR_RANGE
4510 && vr_value
[i
]->min
== vr_value
[i
]->max
)
4512 single_val_range
[i
].value
= vr_value
[i
]->min
;
4513 do_value_subst_p
= true;
4516 if (!do_value_subst_p
)
4518 /* We found no single-valued ranges, don't waste time trying to
4519 do single value substitution in substitute_and_fold. */
4520 free (single_val_range
);
4521 single_val_range
= NULL
;
4524 substitute_and_fold (single_val_range
, true);
4526 /* We must identify jump threading opportunities before we release
4527 the datastructures built by VRP. */
4528 identify_jump_threads ();
4530 /* Free allocated memory. */
4531 for (i
= 0; i
< num_ssa_names
; i
++)
4534 BITMAP_FREE (vr_value
[i
]->equiv
);
4538 free (single_val_range
);
4541 /* So that we can distinguish between VRP data being available
4542 and not available. */
4547 /* Main entry point to VRP (Value Range Propagation). This pass is
4548 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4549 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4550 Programming Language Design and Implementation, pp. 67-78, 1995.
4551 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4553 This is essentially an SSA-CCP pass modified to deal with ranges
4554 instead of constants.
4556 While propagating ranges, we may find that two or more SSA name
4557 have equivalent, though distinct ranges. For instance,
4560 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4562 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4566 In the code above, pointer p_5 has range [q_2, q_2], but from the
4567 code we can also determine that p_5 cannot be NULL and, if q_2 had
4568 a non-varying range, p_5's range should also be compatible with it.
4570 These equivalences are created by two expressions: ASSERT_EXPR and
4571 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4572 result of another assertion, then we can use the fact that p_5 and
4573 p_4 are equivalent when evaluating p_5's range.
4575 Together with value ranges, we also propagate these equivalences
4576 between names so that we can take advantage of information from
4577 multiple ranges when doing final replacement. Note that this
4578 equivalency relation is transitive but not symmetric.
4580 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4581 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4582 in contexts where that assertion does not hold (e.g., in line 6).
4584 TODO, the main difference between this pass and Patterson's is that
4585 we do not propagate edge probabilities. We only compute whether
4586 edges can be taken or not. That is, instead of having a spectrum
4587 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4588 DON'T KNOW. In the future, it may be worthwhile to propagate
4589 probabilities to aid branch prediction. */
4594 insert_range_assertions ();
4596 current_loops
= loop_optimizer_init (LOOPS_NORMAL
);
4598 scev_initialize (current_loops
);
4601 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
4607 loop_optimizer_finalize (current_loops
);
4608 current_loops
= NULL
;
4611 /* ASSERT_EXPRs must be removed before finalizing jump threads
4612 as finalizing jump threads calls the CFG cleanup code which
4613 does not properly handle ASSERT_EXPRs. */
4614 remove_range_assertions ();
4616 /* If we exposed any new variables, go ahead and put them into
4617 SSA form now, before we handle jump threading. This simplifies
4618 interactions between rewriting of _DECL nodes into SSA form
4619 and rewriting SSA_NAME nodes into SSA form after block
4620 duplication and CFG manipulation. */
4621 update_ssa (TODO_update_ssa
);
4623 finalize_jump_threads ();
4630 return flag_tree_vrp
!= 0;
4633 struct tree_opt_pass pass_vrp
=
4636 gate_vrp
, /* gate */
4637 execute_vrp
, /* execute */
4640 0, /* static_pass_number */
4641 TV_TREE_VRP
, /* tv_id */
4642 PROP_ssa
| PROP_alias
, /* properties_required */
4643 0, /* properties_provided */
4644 PROP_smt_usage
, /* properties_destroyed */
4645 0, /* todo_flags_start */
4651 | TODO_update_smt_usage
, /* todo_flags_finish */