* method.c (implicitly_declare_fn): Increase alignment if member
[official-gcc.git] / gcc / var-tracking.c
blobbdc173ef5a3416d8a04652595453b0c73c2eead2
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105 #include "regs.h"
106 #include "expr.h"
107 #include "timevar.h"
108 #include "tree-pass.h"
110 /* Type of micro operation. */
111 enum micro_operation_type
113 MO_USE, /* Use location (REG or MEM). */
114 MO_USE_NO_VAR,/* Use location which is not associated with a variable
115 or the variable is not trackable. */
116 MO_SET, /* Set location. */
117 MO_COPY, /* Copy the same portion of a variable from one
118 location to another. */
119 MO_CLOBBER, /* Clobber location. */
120 MO_CALL, /* Call insn. */
121 MO_ADJUST /* Adjust stack pointer. */
124 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
125 enum emit_note_where
127 EMIT_NOTE_BEFORE_INSN,
128 EMIT_NOTE_AFTER_INSN
131 /* Structure holding information about micro operation. */
132 typedef struct micro_operation_def
134 /* Type of micro operation. */
135 enum micro_operation_type type;
137 union {
138 /* Location. */
139 rtx loc;
141 /* Stack adjustment. */
142 HOST_WIDE_INT adjust;
143 } u;
145 /* The instruction which the micro operation is in, for MO_USE,
146 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
147 instruction or note in the original flow (before any var-tracking
148 notes are inserted, to simplify emission of notes), for MO_SET
149 and MO_CLOBBER. */
150 rtx insn;
151 } micro_operation;
153 /* Structure for passing some other parameters to function
154 emit_note_insn_var_location. */
155 typedef struct emit_note_data_def
157 /* The instruction which the note will be emitted before/after. */
158 rtx insn;
160 /* Where the note will be emitted (before/after insn)? */
161 enum emit_note_where where;
162 } emit_note_data;
164 /* Description of location of a part of a variable. The content of a physical
165 register is described by a chain of these structures.
166 The chains are pretty short (usually 1 or 2 elements) and thus
167 chain is the best data structure. */
168 typedef struct attrs_def
170 /* Pointer to next member of the list. */
171 struct attrs_def *next;
173 /* The rtx of register. */
174 rtx loc;
176 /* The declaration corresponding to LOC. */
177 tree decl;
179 /* Offset from start of DECL. */
180 HOST_WIDE_INT offset;
181 } *attrs;
183 /* Structure holding the IN or OUT set for a basic block. */
184 typedef struct dataflow_set_def
186 /* Adjustment of stack offset. */
187 HOST_WIDE_INT stack_adjust;
189 /* Attributes for registers (lists of attrs). */
190 attrs regs[FIRST_PSEUDO_REGISTER];
192 /* Variable locations. */
193 htab_t vars;
194 } dataflow_set;
196 /* The structure (one for each basic block) containing the information
197 needed for variable tracking. */
198 typedef struct variable_tracking_info_def
200 /* Number of micro operations stored in the MOS array. */
201 int n_mos;
203 /* The array of micro operations. */
204 micro_operation *mos;
206 /* The IN and OUT set for dataflow analysis. */
207 dataflow_set in;
208 dataflow_set out;
210 /* Has the block been visited in DFS? */
211 bool visited;
212 } *variable_tracking_info;
214 /* Structure for chaining the locations. */
215 typedef struct location_chain_def
217 /* Next element in the chain. */
218 struct location_chain_def *next;
220 /* The location (REG or MEM). */
221 rtx loc;
223 /* The "value" stored in this location. */
224 rtx set_src;
226 /* Initialized? */
227 enum var_init_status init;
228 } *location_chain;
230 /* Structure describing one part of variable. */
231 typedef struct variable_part_def
233 /* Chain of locations of the part. */
234 location_chain loc_chain;
236 /* Location which was last emitted to location list. */
237 rtx cur_loc;
239 /* The offset in the variable. */
240 HOST_WIDE_INT offset;
241 } variable_part;
243 /* Maximum number of location parts. */
244 #define MAX_VAR_PARTS 16
246 /* Structure describing where the variable is located. */
247 typedef struct variable_def
249 /* The declaration of the variable. */
250 tree decl;
252 /* Reference count. */
253 int refcount;
255 /* Number of variable parts. */
256 int n_var_parts;
258 /* The variable parts. */
259 variable_part var_part[MAX_VAR_PARTS];
260 } *variable;
262 /* Hash function for DECL for VARIABLE_HTAB. */
263 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
265 /* Pointer to the BB's information specific to variable tracking pass. */
266 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
268 /* Alloc pool for struct attrs_def. */
269 static alloc_pool attrs_pool;
271 /* Alloc pool for struct variable_def. */
272 static alloc_pool var_pool;
274 /* Alloc pool for struct location_chain_def. */
275 static alloc_pool loc_chain_pool;
277 /* Changed variables, notes will be emitted for them. */
278 static htab_t changed_variables;
280 /* Shall notes be emitted? */
281 static bool emit_notes;
283 /* Local function prototypes. */
284 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
285 HOST_WIDE_INT *);
286 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
287 HOST_WIDE_INT *);
288 static void bb_stack_adjust_offset (basic_block);
289 static bool vt_stack_adjustments (void);
290 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
291 static hashval_t variable_htab_hash (const void *);
292 static int variable_htab_eq (const void *, const void *);
293 static void variable_htab_free (void *);
295 static void init_attrs_list_set (attrs *);
296 static void attrs_list_clear (attrs *);
297 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
298 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
299 static void attrs_list_copy (attrs *, attrs);
300 static void attrs_list_union (attrs *, attrs);
302 static void vars_clear (htab_t);
303 static variable unshare_variable (dataflow_set *set, variable var,
304 enum var_init_status);
305 static int vars_copy_1 (void **, void *);
306 static void vars_copy (htab_t, htab_t);
307 static tree var_debug_decl (tree);
308 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
309 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
310 enum var_init_status, rtx);
311 static void var_reg_delete (dataflow_set *, rtx, bool);
312 static void var_regno_delete (dataflow_set *, int);
313 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
314 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
315 enum var_init_status, rtx);
316 static void var_mem_delete (dataflow_set *, rtx, bool);
318 static void dataflow_set_init (dataflow_set *, int);
319 static void dataflow_set_clear (dataflow_set *);
320 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
321 static int variable_union_info_cmp_pos (const void *, const void *);
322 static int variable_union (void **, void *);
323 static void dataflow_set_union (dataflow_set *, dataflow_set *);
324 static bool variable_part_different_p (variable_part *, variable_part *);
325 static bool variable_different_p (variable, variable, bool);
326 static int dataflow_set_different_1 (void **, void *);
327 static int dataflow_set_different_2 (void **, void *);
328 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
329 static void dataflow_set_destroy (dataflow_set *);
331 static bool contains_symbol_ref (rtx);
332 static bool track_expr_p (tree);
333 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
334 static int count_uses (rtx *, void *);
335 static void count_uses_1 (rtx *, void *);
336 static void count_stores (rtx, rtx, void *);
337 static int add_uses (rtx *, void *);
338 static void add_uses_1 (rtx *, void *);
339 static void add_stores (rtx, rtx, void *);
340 static bool compute_bb_dataflow (basic_block);
341 static void vt_find_locations (void);
343 static void dump_attrs_list (attrs);
344 static int dump_variable (void **, void *);
345 static void dump_vars (htab_t);
346 static void dump_dataflow_set (dataflow_set *);
347 static void dump_dataflow_sets (void);
349 static void variable_was_changed (variable, htab_t);
350 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
351 enum var_init_status, rtx);
352 static void clobber_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT,
353 rtx);
354 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
355 static int emit_note_insn_var_location (void **, void *);
356 static void emit_notes_for_changes (rtx, enum emit_note_where);
357 static int emit_notes_for_differences_1 (void **, void *);
358 static int emit_notes_for_differences_2 (void **, void *);
359 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
360 static void emit_notes_in_bb (basic_block);
361 static void vt_emit_notes (void);
363 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
364 static void vt_add_function_parameters (void);
365 static void vt_initialize (void);
366 static void vt_finalize (void);
368 /* Given a SET, calculate the amount of stack adjustment it contains
369 PRE- and POST-modifying stack pointer.
370 This function is similar to stack_adjust_offset. */
372 static void
373 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
374 HOST_WIDE_INT *post)
376 rtx src = SET_SRC (pattern);
377 rtx dest = SET_DEST (pattern);
378 enum rtx_code code;
380 if (dest == stack_pointer_rtx)
382 /* (set (reg sp) (plus (reg sp) (const_int))) */
383 code = GET_CODE (src);
384 if (! (code == PLUS || code == MINUS)
385 || XEXP (src, 0) != stack_pointer_rtx
386 || GET_CODE (XEXP (src, 1)) != CONST_INT)
387 return;
389 if (code == MINUS)
390 *post += INTVAL (XEXP (src, 1));
391 else
392 *post -= INTVAL (XEXP (src, 1));
394 else if (MEM_P (dest))
396 /* (set (mem (pre_dec (reg sp))) (foo)) */
397 src = XEXP (dest, 0);
398 code = GET_CODE (src);
400 switch (code)
402 case PRE_MODIFY:
403 case POST_MODIFY:
404 if (XEXP (src, 0) == stack_pointer_rtx)
406 rtx val = XEXP (XEXP (src, 1), 1);
407 /* We handle only adjustments by constant amount. */
408 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
409 GET_CODE (val) == CONST_INT);
411 if (code == PRE_MODIFY)
412 *pre -= INTVAL (val);
413 else
414 *post -= INTVAL (val);
415 break;
417 return;
419 case PRE_DEC:
420 if (XEXP (src, 0) == stack_pointer_rtx)
422 *pre += GET_MODE_SIZE (GET_MODE (dest));
423 break;
425 return;
427 case POST_DEC:
428 if (XEXP (src, 0) == stack_pointer_rtx)
430 *post += GET_MODE_SIZE (GET_MODE (dest));
431 break;
433 return;
435 case PRE_INC:
436 if (XEXP (src, 0) == stack_pointer_rtx)
438 *pre -= GET_MODE_SIZE (GET_MODE (dest));
439 break;
441 return;
443 case POST_INC:
444 if (XEXP (src, 0) == stack_pointer_rtx)
446 *post -= GET_MODE_SIZE (GET_MODE (dest));
447 break;
449 return;
451 default:
452 return;
457 /* Given an INSN, calculate the amount of stack adjustment it contains
458 PRE- and POST-modifying stack pointer. */
460 static void
461 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
462 HOST_WIDE_INT *post)
464 *pre = 0;
465 *post = 0;
467 if (GET_CODE (PATTERN (insn)) == SET)
468 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
469 else if (GET_CODE (PATTERN (insn)) == PARALLEL
470 || GET_CODE (PATTERN (insn)) == SEQUENCE)
472 int i;
474 /* There may be stack adjustments inside compound insns. Search
475 for them. */
476 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
477 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
478 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
479 pre, post);
483 /* Compute stack adjustment in basic block BB. */
485 static void
486 bb_stack_adjust_offset (basic_block bb)
488 HOST_WIDE_INT offset;
489 int i;
491 offset = VTI (bb)->in.stack_adjust;
492 for (i = 0; i < VTI (bb)->n_mos; i++)
494 if (VTI (bb)->mos[i].type == MO_ADJUST)
495 offset += VTI (bb)->mos[i].u.adjust;
496 else if (VTI (bb)->mos[i].type != MO_CALL)
498 if (MEM_P (VTI (bb)->mos[i].u.loc))
500 VTI (bb)->mos[i].u.loc
501 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
505 VTI (bb)->out.stack_adjust = offset;
508 /* Compute stack adjustments for all blocks by traversing DFS tree.
509 Return true when the adjustments on all incoming edges are consistent.
510 Heavily borrowed from pre_and_rev_post_order_compute. */
512 static bool
513 vt_stack_adjustments (void)
515 edge_iterator *stack;
516 int sp;
518 /* Initialize entry block. */
519 VTI (ENTRY_BLOCK_PTR)->visited = true;
520 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
522 /* Allocate stack for back-tracking up CFG. */
523 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
524 sp = 0;
526 /* Push the first edge on to the stack. */
527 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
529 while (sp)
531 edge_iterator ei;
532 basic_block src;
533 basic_block dest;
535 /* Look at the edge on the top of the stack. */
536 ei = stack[sp - 1];
537 src = ei_edge (ei)->src;
538 dest = ei_edge (ei)->dest;
540 /* Check if the edge destination has been visited yet. */
541 if (!VTI (dest)->visited)
543 VTI (dest)->visited = true;
544 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
545 bb_stack_adjust_offset (dest);
547 if (EDGE_COUNT (dest->succs) > 0)
548 /* Since the DEST node has been visited for the first
549 time, check its successors. */
550 stack[sp++] = ei_start (dest->succs);
552 else
554 /* Check whether the adjustments on the edges are the same. */
555 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
557 free (stack);
558 return false;
561 if (! ei_one_before_end_p (ei))
562 /* Go to the next edge. */
563 ei_next (&stack[sp - 1]);
564 else
565 /* Return to previous level if there are no more edges. */
566 sp--;
570 free (stack);
571 return true;
574 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
575 to the argument pointer. Return the new rtx. */
577 static rtx
578 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
580 rtx addr, cfa, tmp;
582 #ifdef FRAME_POINTER_CFA_OFFSET
583 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
584 cfa = plus_constant (frame_pointer_rtx, adjustment);
585 #else
586 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
587 cfa = plus_constant (arg_pointer_rtx, adjustment);
588 #endif
590 addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
591 tmp = simplify_rtx (addr);
592 if (tmp)
593 addr = tmp;
595 return replace_equiv_address_nv (mem, addr);
598 /* The hash function for variable_htab, computes the hash value
599 from the declaration of variable X. */
601 static hashval_t
602 variable_htab_hash (const void *x)
604 const variable v = (const variable) x;
606 return (VARIABLE_HASH_VAL (v->decl));
609 /* Compare the declaration of variable X with declaration Y. */
611 static int
612 variable_htab_eq (const void *x, const void *y)
614 const variable v = (const variable) x;
615 const tree decl = (const tree) y;
617 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
620 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
622 static void
623 variable_htab_free (void *elem)
625 int i;
626 variable var = (variable) elem;
627 location_chain node, next;
629 gcc_assert (var->refcount > 0);
631 var->refcount--;
632 if (var->refcount > 0)
633 return;
635 for (i = 0; i < var->n_var_parts; i++)
637 for (node = var->var_part[i].loc_chain; node; node = next)
639 next = node->next;
640 pool_free (loc_chain_pool, node);
642 var->var_part[i].loc_chain = NULL;
644 pool_free (var_pool, var);
647 /* Initialize the set (array) SET of attrs to empty lists. */
649 static void
650 init_attrs_list_set (attrs *set)
652 int i;
654 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
655 set[i] = NULL;
658 /* Make the list *LISTP empty. */
660 static void
661 attrs_list_clear (attrs *listp)
663 attrs list, next;
665 for (list = *listp; list; list = next)
667 next = list->next;
668 pool_free (attrs_pool, list);
670 *listp = NULL;
673 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
675 static attrs
676 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
678 for (; list; list = list->next)
679 if (list->decl == decl && list->offset == offset)
680 return list;
681 return NULL;
684 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
686 static void
687 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
689 attrs list;
691 list = pool_alloc (attrs_pool);
692 list->loc = loc;
693 list->decl = decl;
694 list->offset = offset;
695 list->next = *listp;
696 *listp = list;
699 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
701 static void
702 attrs_list_copy (attrs *dstp, attrs src)
704 attrs n;
706 attrs_list_clear (dstp);
707 for (; src; src = src->next)
709 n = pool_alloc (attrs_pool);
710 n->loc = src->loc;
711 n->decl = src->decl;
712 n->offset = src->offset;
713 n->next = *dstp;
714 *dstp = n;
718 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
720 static void
721 attrs_list_union (attrs *dstp, attrs src)
723 for (; src; src = src->next)
725 if (!attrs_list_member (*dstp, src->decl, src->offset))
726 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
730 /* Delete all variables from hash table VARS. */
732 static void
733 vars_clear (htab_t vars)
735 htab_empty (vars);
738 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
740 static variable
741 unshare_variable (dataflow_set *set, variable var,
742 enum var_init_status initialized)
744 void **slot;
745 variable new_var;
746 int i;
748 new_var = pool_alloc (var_pool);
749 new_var->decl = var->decl;
750 new_var->refcount = 1;
751 var->refcount--;
752 new_var->n_var_parts = var->n_var_parts;
754 for (i = 0; i < var->n_var_parts; i++)
756 location_chain node;
757 location_chain *nextp;
759 new_var->var_part[i].offset = var->var_part[i].offset;
760 nextp = &new_var->var_part[i].loc_chain;
761 for (node = var->var_part[i].loc_chain; node; node = node->next)
763 location_chain new_lc;
765 new_lc = pool_alloc (loc_chain_pool);
766 new_lc->next = NULL;
767 if (node->init > initialized)
768 new_lc->init = node->init;
769 else
770 new_lc->init = initialized;
771 if (node->set_src && !(MEM_P (node->set_src)))
772 new_lc->set_src = node->set_src;
773 else
774 new_lc->set_src = NULL;
775 new_lc->loc = node->loc;
777 *nextp = new_lc;
778 nextp = &new_lc->next;
781 /* We are at the basic block boundary when copying variable description
782 so set the CUR_LOC to be the first element of the chain. */
783 if (new_var->var_part[i].loc_chain)
784 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
785 else
786 new_var->var_part[i].cur_loc = NULL;
789 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
790 VARIABLE_HASH_VAL (new_var->decl),
791 INSERT);
792 *slot = new_var;
793 return new_var;
796 /* Add a variable from *SLOT to hash table DATA and increase its reference
797 count. */
799 static int
800 vars_copy_1 (void **slot, void *data)
802 htab_t dst = (htab_t) data;
803 variable src, *dstp;
805 src = *(variable *) slot;
806 src->refcount++;
808 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
809 VARIABLE_HASH_VAL (src->decl),
810 INSERT);
811 *dstp = src;
813 /* Continue traversing the hash table. */
814 return 1;
817 /* Copy all variables from hash table SRC to hash table DST. */
819 static void
820 vars_copy (htab_t dst, htab_t src)
822 vars_clear (dst);
823 htab_traverse (src, vars_copy_1, dst);
826 /* Map a decl to its main debug decl. */
828 static inline tree
829 var_debug_decl (tree decl)
831 if (decl && DECL_P (decl)
832 && DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
833 && DECL_P (DECL_DEBUG_EXPR (decl)))
834 decl = DECL_DEBUG_EXPR (decl);
836 return decl;
839 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
841 static void
842 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
843 rtx set_src)
845 tree decl = REG_EXPR (loc);
846 HOST_WIDE_INT offset = REG_OFFSET (loc);
847 attrs node;
849 decl = var_debug_decl (decl);
851 for (node = set->regs[REGNO (loc)]; node; node = node->next)
852 if (node->decl == decl && node->offset == offset)
853 break;
854 if (!node)
855 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
856 set_variable_part (set, loc, decl, offset, initialized, set_src);
859 static int
860 get_init_value (dataflow_set *set, rtx loc, tree decl)
862 void **slot;
863 variable var;
864 int i;
865 int ret_val = VAR_INIT_STATUS_UNKNOWN;
867 if (! flag_var_tracking_uninit)
868 return VAR_INIT_STATUS_INITIALIZED;
870 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
871 NO_INSERT);
872 if (slot)
874 var = * (variable *) slot;
875 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
877 location_chain nextp;
878 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
879 if (rtx_equal_p (nextp->loc, loc))
881 ret_val = nextp->init;
882 break;
887 return ret_val;
890 /* Delete current content of register LOC in dataflow set SET and set
891 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
892 MODIFY is true, any other live copies of the same variable part are
893 also deleted from the dataflow set, otherwise the variable part is
894 assumed to be copied from another location holding the same
895 part. */
897 static void
898 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
899 enum var_init_status initialized, rtx set_src)
901 tree decl = REG_EXPR (loc);
902 HOST_WIDE_INT offset = REG_OFFSET (loc);
903 attrs node, next;
904 attrs *nextp;
906 decl = var_debug_decl (decl);
908 if (initialized == VAR_INIT_STATUS_UNKNOWN)
909 initialized = get_init_value (set, loc, decl);
911 nextp = &set->regs[REGNO (loc)];
912 for (node = *nextp; node; node = next)
914 next = node->next;
915 if (node->decl != decl || node->offset != offset)
917 delete_variable_part (set, node->loc, node->decl, node->offset);
918 pool_free (attrs_pool, node);
919 *nextp = next;
921 else
923 node->loc = loc;
924 nextp = &node->next;
927 if (modify)
928 clobber_variable_part (set, loc, decl, offset, set_src);
929 var_reg_set (set, loc, initialized, set_src);
932 /* Delete current content of register LOC in dataflow set SET. If
933 CLOBBER is true, also delete any other live copies of the same
934 variable part. */
936 static void
937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
939 attrs *reg = &set->regs[REGNO (loc)];
940 attrs node, next;
942 if (clobber)
944 tree decl = REG_EXPR (loc);
945 HOST_WIDE_INT offset = REG_OFFSET (loc);
947 decl = var_debug_decl (decl);
949 clobber_variable_part (set, NULL, decl, offset, NULL);
952 for (node = *reg; node; node = next)
954 next = node->next;
955 delete_variable_part (set, node->loc, node->decl, node->offset);
956 pool_free (attrs_pool, node);
958 *reg = NULL;
961 /* Delete content of register with number REGNO in dataflow set SET. */
963 static void
964 var_regno_delete (dataflow_set *set, int regno)
966 attrs *reg = &set->regs[regno];
967 attrs node, next;
969 for (node = *reg; node; node = next)
971 next = node->next;
972 delete_variable_part (set, node->loc, node->decl, node->offset);
973 pool_free (attrs_pool, node);
975 *reg = NULL;
978 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
979 SET to LOC.
980 Adjust the address first if it is stack pointer based. */
982 static void
983 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
984 rtx set_src)
986 tree decl = MEM_EXPR (loc);
987 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
989 decl = var_debug_decl (decl);
991 set_variable_part (set, loc, decl, offset, initialized, set_src);
994 /* Delete and set the location part of variable MEM_EXPR (LOC) in
995 dataflow set SET to LOC. If MODIFY is true, any other live copies
996 of the same variable part are also deleted from the dataflow set,
997 otherwise the variable part is assumed to be copied from another
998 location holding the same part.
999 Adjust the address first if it is stack pointer based. */
1001 static void
1002 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1003 enum var_init_status initialized, rtx set_src)
1005 tree decl = MEM_EXPR (loc);
1006 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1008 decl = var_debug_decl (decl);
1010 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1011 initialized = get_init_value (set, loc, decl);
1013 if (modify)
1014 clobber_variable_part (set, NULL, decl, offset, set_src);
1015 var_mem_set (set, loc, initialized, set_src);
1018 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1019 true, also delete any other live copies of the same variable part.
1020 Adjust the address first if it is stack pointer based. */
1022 static void
1023 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1025 tree decl = MEM_EXPR (loc);
1026 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1028 decl = var_debug_decl (decl);
1029 if (clobber)
1030 clobber_variable_part (set, NULL, decl, offset, NULL);
1031 delete_variable_part (set, loc, decl, offset);
1034 /* Initialize dataflow set SET to be empty.
1035 VARS_SIZE is the initial size of hash table VARS. */
1037 static void
1038 dataflow_set_init (dataflow_set *set, int vars_size)
1040 init_attrs_list_set (set->regs);
1041 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
1042 variable_htab_free);
1043 set->stack_adjust = 0;
1046 /* Delete the contents of dataflow set SET. */
1048 static void
1049 dataflow_set_clear (dataflow_set *set)
1051 int i;
1053 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1054 attrs_list_clear (&set->regs[i]);
1056 vars_clear (set->vars);
1059 /* Copy the contents of dataflow set SRC to DST. */
1061 static void
1062 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
1064 int i;
1066 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1067 attrs_list_copy (&dst->regs[i], src->regs[i]);
1069 vars_copy (dst->vars, src->vars);
1070 dst->stack_adjust = src->stack_adjust;
1073 /* Information for merging lists of locations for a given offset of variable.
1075 struct variable_union_info
1077 /* Node of the location chain. */
1078 location_chain lc;
1080 /* The sum of positions in the input chains. */
1081 int pos;
1083 /* The position in the chains of SRC and DST dataflow sets. */
1084 int pos_src;
1085 int pos_dst;
1088 /* Compare function for qsort, order the structures by POS element. */
1090 static int
1091 variable_union_info_cmp_pos (const void *n1, const void *n2)
1093 const struct variable_union_info *i1 = n1;
1094 const struct variable_union_info *i2 = n2;
1096 if (i1->pos != i2->pos)
1097 return i1->pos - i2->pos;
1099 return (i1->pos_dst - i2->pos_dst);
1102 /* Compute union of location parts of variable *SLOT and the same variable
1103 from hash table DATA. Compute "sorted" union of the location chains
1104 for common offsets, i.e. the locations of a variable part are sorted by
1105 a priority where the priority is the sum of the positions in the 2 chains
1106 (if a location is only in one list the position in the second list is
1107 defined to be larger than the length of the chains).
1108 When we are updating the location parts the newest location is in the
1109 beginning of the chain, so when we do the described "sorted" union
1110 we keep the newest locations in the beginning. */
1112 static int
1113 variable_union (void **slot, void *data)
1115 variable src, dst, *dstp;
1116 dataflow_set *set = (dataflow_set *) data;
1117 int i, j, k;
1119 src = *(variable *) slot;
1120 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1121 VARIABLE_HASH_VAL (src->decl),
1122 INSERT);
1123 if (!*dstp)
1125 src->refcount++;
1127 /* If CUR_LOC of some variable part is not the first element of
1128 the location chain we are going to change it so we have to make
1129 a copy of the variable. */
1130 for (k = 0; k < src->n_var_parts; k++)
1132 gcc_assert (!src->var_part[k].loc_chain
1133 == !src->var_part[k].cur_loc);
1134 if (src->var_part[k].loc_chain)
1136 gcc_assert (src->var_part[k].cur_loc);
1137 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1138 break;
1141 if (k < src->n_var_parts)
1143 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1145 if (! flag_var_tracking_uninit)
1146 status = VAR_INIT_STATUS_INITIALIZED;
1148 unshare_variable (set, src, status);
1150 else
1151 *dstp = src;
1153 /* Continue traversing the hash table. */
1154 return 1;
1156 else
1157 dst = *dstp;
1159 gcc_assert (src->n_var_parts);
1161 /* Count the number of location parts, result is K. */
1162 for (i = 0, j = 0, k = 0;
1163 i < src->n_var_parts && j < dst->n_var_parts; k++)
1165 if (src->var_part[i].offset == dst->var_part[j].offset)
1167 i++;
1168 j++;
1170 else if (src->var_part[i].offset < dst->var_part[j].offset)
1171 i++;
1172 else
1173 j++;
1175 k += src->n_var_parts - i;
1176 k += dst->n_var_parts - j;
1178 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1179 thus there are at most MAX_VAR_PARTS different offsets. */
1180 gcc_assert (k <= MAX_VAR_PARTS);
1182 if (dst->refcount > 1 && dst->n_var_parts != k)
1184 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
1186 if (! flag_var_tracking_uninit)
1187 status = VAR_INIT_STATUS_INITIALIZED;
1188 dst = unshare_variable (set, dst, status);
1191 i = src->n_var_parts - 1;
1192 j = dst->n_var_parts - 1;
1193 dst->n_var_parts = k;
1195 for (k--; k >= 0; k--)
1197 location_chain node, node2;
1199 if (i >= 0 && j >= 0
1200 && src->var_part[i].offset == dst->var_part[j].offset)
1202 /* Compute the "sorted" union of the chains, i.e. the locations which
1203 are in both chains go first, they are sorted by the sum of
1204 positions in the chains. */
1205 int dst_l, src_l;
1206 int ii, jj, n;
1207 struct variable_union_info *vui;
1209 /* If DST is shared compare the location chains.
1210 If they are different we will modify the chain in DST with
1211 high probability so make a copy of DST. */
1212 if (dst->refcount > 1)
1214 for (node = src->var_part[i].loc_chain,
1215 node2 = dst->var_part[j].loc_chain; node && node2;
1216 node = node->next, node2 = node2->next)
1218 if (!((REG_P (node2->loc)
1219 && REG_P (node->loc)
1220 && REGNO (node2->loc) == REGNO (node->loc))
1221 || rtx_equal_p (node2->loc, node->loc)))
1222 if (node2->init < node->init)
1223 node2->init = node->init;
1224 break;
1226 if (node || node2)
1227 dst = unshare_variable (set, dst, VAR_INIT_STATUS_UNKNOWN);
1230 src_l = 0;
1231 for (node = src->var_part[i].loc_chain; node; node = node->next)
1232 src_l++;
1233 dst_l = 0;
1234 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1235 dst_l++;
1236 vui = XCNEWVEC (struct variable_union_info, src_l + dst_l);
1238 /* Fill in the locations from DST. */
1239 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1240 node = node->next, jj++)
1242 vui[jj].lc = node;
1243 vui[jj].pos_dst = jj;
1245 /* Value larger than a sum of 2 valid positions. */
1246 vui[jj].pos_src = src_l + dst_l;
1249 /* Fill in the locations from SRC. */
1250 n = dst_l;
1251 for (node = src->var_part[i].loc_chain, ii = 0; node;
1252 node = node->next, ii++)
1254 /* Find location from NODE. */
1255 for (jj = 0; jj < dst_l; jj++)
1257 if ((REG_P (vui[jj].lc->loc)
1258 && REG_P (node->loc)
1259 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1260 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1262 vui[jj].pos_src = ii;
1263 break;
1266 if (jj >= dst_l) /* The location has not been found. */
1268 location_chain new_node;
1270 /* Copy the location from SRC. */
1271 new_node = pool_alloc (loc_chain_pool);
1272 new_node->loc = node->loc;
1273 new_node->init = node->init;
1274 if (!node->set_src || MEM_P (node->set_src))
1275 new_node->set_src = NULL;
1276 else
1277 new_node->set_src = node->set_src;
1278 vui[n].lc = new_node;
1279 vui[n].pos_src = ii;
1280 vui[n].pos_dst = src_l + dst_l;
1281 n++;
1285 for (ii = 0; ii < src_l + dst_l; ii++)
1286 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1288 qsort (vui, n, sizeof (struct variable_union_info),
1289 variable_union_info_cmp_pos);
1291 /* Reconnect the nodes in sorted order. */
1292 for (ii = 1; ii < n; ii++)
1293 vui[ii - 1].lc->next = vui[ii].lc;
1294 vui[n - 1].lc->next = NULL;
1296 dst->var_part[k].loc_chain = vui[0].lc;
1297 dst->var_part[k].offset = dst->var_part[j].offset;
1299 free (vui);
1300 i--;
1301 j--;
1303 else if ((i >= 0 && j >= 0
1304 && src->var_part[i].offset < dst->var_part[j].offset)
1305 || i < 0)
1307 dst->var_part[k] = dst->var_part[j];
1308 j--;
1310 else if ((i >= 0 && j >= 0
1311 && src->var_part[i].offset > dst->var_part[j].offset)
1312 || j < 0)
1314 location_chain *nextp;
1316 /* Copy the chain from SRC. */
1317 nextp = &dst->var_part[k].loc_chain;
1318 for (node = src->var_part[i].loc_chain; node; node = node->next)
1320 location_chain new_lc;
1322 new_lc = pool_alloc (loc_chain_pool);
1323 new_lc->next = NULL;
1324 new_lc->init = node->init;
1325 if (!node->set_src || MEM_P (node->set_src))
1326 new_lc->set_src = NULL;
1327 else
1328 new_lc->set_src = node->set_src;
1329 new_lc->loc = node->loc;
1331 *nextp = new_lc;
1332 nextp = &new_lc->next;
1335 dst->var_part[k].offset = src->var_part[i].offset;
1336 i--;
1339 /* We are at the basic block boundary when computing union
1340 so set the CUR_LOC to be the first element of the chain. */
1341 if (dst->var_part[k].loc_chain)
1342 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1343 else
1344 dst->var_part[k].cur_loc = NULL;
1347 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
1349 location_chain node, node2;
1350 for (node = src->var_part[i].loc_chain; node; node = node->next)
1351 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
1352 if (rtx_equal_p (node->loc, node2->loc))
1354 if (node->init > node2->init)
1355 node2->init = node->init;
1359 /* Continue traversing the hash table. */
1360 return 1;
1363 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1365 static void
1366 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1368 int i;
1370 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1371 attrs_list_union (&dst->regs[i], src->regs[i]);
1373 htab_traverse (src->vars, variable_union, dst);
1376 /* Flag whether two dataflow sets being compared contain different data. */
1377 static bool
1378 dataflow_set_different_value;
1380 static bool
1381 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1383 location_chain lc1, lc2;
1385 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1387 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1389 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1391 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1392 break;
1394 if (rtx_equal_p (lc1->loc, lc2->loc))
1395 break;
1397 if (!lc2)
1398 return true;
1400 return false;
1403 /* Return true if variables VAR1 and VAR2 are different.
1404 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1405 variable part. */
1407 static bool
1408 variable_different_p (variable var1, variable var2,
1409 bool compare_current_location)
1411 int i;
1413 if (var1 == var2)
1414 return false;
1416 if (var1->n_var_parts != var2->n_var_parts)
1417 return true;
1419 for (i = 0; i < var1->n_var_parts; i++)
1421 if (var1->var_part[i].offset != var2->var_part[i].offset)
1422 return true;
1423 if (compare_current_location)
1425 if (!((REG_P (var1->var_part[i].cur_loc)
1426 && REG_P (var2->var_part[i].cur_loc)
1427 && (REGNO (var1->var_part[i].cur_loc)
1428 == REGNO (var2->var_part[i].cur_loc)))
1429 || rtx_equal_p (var1->var_part[i].cur_loc,
1430 var2->var_part[i].cur_loc)))
1431 return true;
1433 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1434 return true;
1435 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1436 return true;
1438 return false;
1441 /* Compare variable *SLOT with the same variable in hash table DATA
1442 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1444 static int
1445 dataflow_set_different_1 (void **slot, void *data)
1447 htab_t htab = (htab_t) data;
1448 variable var1, var2;
1450 var1 = *(variable *) slot;
1451 var2 = htab_find_with_hash (htab, var1->decl,
1452 VARIABLE_HASH_VAL (var1->decl));
1453 if (!var2)
1455 dataflow_set_different_value = true;
1457 /* Stop traversing the hash table. */
1458 return 0;
1461 if (variable_different_p (var1, var2, false))
1463 dataflow_set_different_value = true;
1465 /* Stop traversing the hash table. */
1466 return 0;
1469 /* Continue traversing the hash table. */
1470 return 1;
1473 /* Compare variable *SLOT with the same variable in hash table DATA
1474 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1476 static int
1477 dataflow_set_different_2 (void **slot, void *data)
1479 htab_t htab = (htab_t) data;
1480 variable var1, var2;
1482 var1 = *(variable *) slot;
1483 var2 = htab_find_with_hash (htab, var1->decl,
1484 VARIABLE_HASH_VAL (var1->decl));
1485 if (!var2)
1487 dataflow_set_different_value = true;
1489 /* Stop traversing the hash table. */
1490 return 0;
1493 /* If both variables are defined they have been already checked for
1494 equivalence. */
1495 gcc_assert (!variable_different_p (var1, var2, false));
1497 /* Continue traversing the hash table. */
1498 return 1;
1501 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1503 static bool
1504 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1506 dataflow_set_different_value = false;
1508 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1509 if (!dataflow_set_different_value)
1511 /* We have compared the variables which are in both hash tables
1512 so now only check whether there are some variables in NEW_SET->VARS
1513 which are not in OLD_SET->VARS. */
1514 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1516 return dataflow_set_different_value;
1519 /* Free the contents of dataflow set SET. */
1521 static void
1522 dataflow_set_destroy (dataflow_set *set)
1524 int i;
1526 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1527 attrs_list_clear (&set->regs[i]);
1529 htab_delete (set->vars);
1530 set->vars = NULL;
1533 /* Return true if RTL X contains a SYMBOL_REF. */
1535 static bool
1536 contains_symbol_ref (rtx x)
1538 const char *fmt;
1539 RTX_CODE code;
1540 int i;
1542 if (!x)
1543 return false;
1545 code = GET_CODE (x);
1546 if (code == SYMBOL_REF)
1547 return true;
1549 fmt = GET_RTX_FORMAT (code);
1550 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1552 if (fmt[i] == 'e')
1554 if (contains_symbol_ref (XEXP (x, i)))
1555 return true;
1557 else if (fmt[i] == 'E')
1559 int j;
1560 for (j = 0; j < XVECLEN (x, i); j++)
1561 if (contains_symbol_ref (XVECEXP (x, i, j)))
1562 return true;
1566 return false;
1569 /* Shall EXPR be tracked? */
1571 static bool
1572 track_expr_p (tree expr)
1574 rtx decl_rtl;
1575 tree realdecl;
1577 /* If EXPR is not a parameter or a variable do not track it. */
1578 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1579 return 0;
1581 /* It also must have a name... */
1582 if (!DECL_NAME (expr))
1583 return 0;
1585 /* ... and a RTL assigned to it. */
1586 decl_rtl = DECL_RTL_IF_SET (expr);
1587 if (!decl_rtl)
1588 return 0;
1590 /* If this expression is really a debug alias of some other declaration, we
1591 don't need to track this expression if the ultimate declaration is
1592 ignored. */
1593 realdecl = expr;
1594 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
1596 realdecl = DECL_DEBUG_EXPR (realdecl);
1597 /* ??? We don't yet know how to emit DW_OP_piece for variable
1598 that has been SRA'ed. */
1599 if (!DECL_P (realdecl))
1600 return 0;
1603 /* Do not track EXPR if REALDECL it should be ignored for debugging
1604 purposes. */
1605 if (DECL_IGNORED_P (realdecl))
1606 return 0;
1608 /* Do not track global variables until we are able to emit correct location
1609 list for them. */
1610 if (TREE_STATIC (realdecl))
1611 return 0;
1613 /* When the EXPR is a DECL for alias of some variable (see example)
1614 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1615 DECL_RTL contains SYMBOL_REF.
1617 Example:
1618 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1619 char **_dl_argv;
1621 if (MEM_P (decl_rtl)
1622 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1623 return 0;
1625 /* If RTX is a memory it should not be very large (because it would be
1626 an array or struct). */
1627 if (MEM_P (decl_rtl))
1629 /* Do not track structures and arrays. */
1630 if (GET_MODE (decl_rtl) == BLKmode
1631 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
1632 return 0;
1633 if (MEM_SIZE (decl_rtl)
1634 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1635 return 0;
1638 return 1;
1641 /* Determine whether a given LOC refers to the same variable part as
1642 EXPR+OFFSET. */
1644 static bool
1645 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
1647 tree expr2;
1648 HOST_WIDE_INT offset2;
1650 if (! DECL_P (expr))
1651 return false;
1653 if (REG_P (loc))
1655 expr2 = REG_EXPR (loc);
1656 offset2 = REG_OFFSET (loc);
1658 else if (MEM_P (loc))
1660 expr2 = MEM_EXPR (loc);
1661 offset2 = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
1663 else
1664 return false;
1666 if (! expr2 || ! DECL_P (expr2))
1667 return false;
1669 expr = var_debug_decl (expr);
1670 expr2 = var_debug_decl (expr2);
1672 return (expr == expr2 && offset == offset2);
1676 /* Count uses (register and memory references) LOC which will be tracked.
1677 INSN is instruction which the LOC is part of. */
1679 static int
1680 count_uses (rtx *loc, void *insn)
1682 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1684 if (REG_P (*loc))
1686 gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
1687 VTI (bb)->n_mos++;
1689 else if (MEM_P (*loc)
1690 && MEM_EXPR (*loc)
1691 && track_expr_p (MEM_EXPR (*loc)))
1693 VTI (bb)->n_mos++;
1696 return 0;
1699 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1701 static void
1702 count_uses_1 (rtx *x, void *insn)
1704 for_each_rtx (x, count_uses, insn);
1707 /* Count stores (register and memory references) LOC which will be tracked.
1708 INSN is instruction which the LOC is part of. */
1710 static void
1711 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1713 count_uses (&loc, insn);
1716 /* Add uses (register and memory references) LOC which will be tracked
1717 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1719 static int
1720 add_uses (rtx *loc, void *insn)
1722 if (REG_P (*loc))
1724 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1725 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1727 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1728 ? MO_USE : MO_USE_NO_VAR);
1729 mo->u.loc = *loc;
1730 mo->insn = (rtx) insn;
1732 else if (MEM_P (*loc)
1733 && MEM_EXPR (*loc)
1734 && track_expr_p (MEM_EXPR (*loc)))
1736 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1737 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1739 mo->type = MO_USE;
1740 mo->u.loc = *loc;
1741 mo->insn = (rtx) insn;
1744 return 0;
1747 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1749 static void
1750 add_uses_1 (rtx *x, void *insn)
1752 for_each_rtx (x, add_uses, insn);
1755 /* Add stores (register and memory references) LOC which will be tracked
1756 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1757 INSN is instruction which the LOC is part of. */
1759 static void
1760 add_stores (rtx loc, rtx expr, void *insn)
1762 if (REG_P (loc))
1764 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1765 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1767 if (GET_CODE (expr) == CLOBBER
1768 || ! REG_EXPR (loc)
1769 || ! track_expr_p (REG_EXPR (loc)))
1770 mo->type = MO_CLOBBER;
1771 else if (GET_CODE (expr) == SET
1772 && SET_DEST (expr) == loc
1773 && same_variable_part_p (SET_SRC (expr),
1774 REG_EXPR (loc),
1775 REG_OFFSET (loc)))
1776 mo->type = MO_COPY;
1777 else
1778 mo->type = MO_SET;
1779 mo->u.loc = loc;
1780 mo->insn = (rtx) insn;
1782 else if (MEM_P (loc)
1783 && MEM_EXPR (loc)
1784 && track_expr_p (MEM_EXPR (loc)))
1786 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1787 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1789 if (GET_CODE (expr) == CLOBBER)
1790 mo->type = MO_CLOBBER;
1791 else if (GET_CODE (expr) == SET
1792 && SET_DEST (expr) == loc
1793 && same_variable_part_p (SET_SRC (expr),
1794 MEM_EXPR (loc),
1795 MEM_OFFSET (loc)
1796 ? INTVAL (MEM_OFFSET (loc)) : 0))
1797 mo->type = MO_COPY;
1798 else
1799 mo->type = MO_SET;
1800 mo->u.loc = loc;
1801 mo->insn = (rtx) insn;
1805 static enum var_init_status
1806 find_src_status (dataflow_set *in, rtx loc, rtx insn)
1808 rtx src = NULL_RTX;
1809 rtx pattern;
1810 tree decl = NULL_TREE;
1811 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
1813 if (! flag_var_tracking_uninit)
1814 status = VAR_INIT_STATUS_INITIALIZED;
1816 pattern = PATTERN (insn);
1818 if (GET_CODE (pattern) == COND_EXEC)
1819 pattern = COND_EXEC_CODE (pattern);
1821 if (GET_CODE (pattern) == SET)
1822 src = SET_SRC (pattern);
1823 else if (GET_CODE (pattern) == PARALLEL
1824 || GET_CODE (pattern) == SEQUENCE)
1826 int i;
1827 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1828 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
1829 && SET_DEST (XVECEXP (pattern, 0, i)) == loc)
1830 src = SET_SRC (XVECEXP (pattern, 0, i));
1833 if (src && REG_P (src))
1834 decl = var_debug_decl (REG_EXPR (src));
1835 else if (src && MEM_P (src))
1836 decl = var_debug_decl (MEM_EXPR (src));
1838 if (src && decl)
1839 status = get_init_value (in, src, decl);
1841 return status;
1844 /* LOC is the destination the variable is being copied to. INSN
1845 contains the copy instruction. SET is the dataflow set containing
1846 the variable in LOC. */
1848 static rtx
1849 find_src_set_src (dataflow_set *set, rtx loc, rtx insn)
1851 tree decl = NULL_TREE; /* The variable being copied around. */
1852 rtx src = NULL_RTX; /* The location "decl" is being copied from. */
1853 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
1854 rtx pattern;
1855 void **slot;
1856 variable var;
1857 location_chain nextp;
1858 int i;
1859 bool found;
1862 pattern = PATTERN (insn);
1863 if (GET_CODE (pattern) == COND_EXEC)
1864 pattern = COND_EXEC_CODE (pattern);
1866 if (GET_CODE (pattern) == SET)
1867 src = SET_SRC (pattern);
1868 else if (GET_CODE (pattern) == PARALLEL
1869 || GET_CODE (pattern) == SEQUENCE)
1871 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1872 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
1873 && SET_DEST (XVECEXP (pattern, 0, i)) == loc)
1874 src = SET_SRC (XVECEXP (pattern, 0, i));
1877 if (src && REG_P (src))
1878 decl = var_debug_decl (REG_EXPR (src));
1879 else if (src && MEM_P (src))
1880 decl = var_debug_decl (MEM_EXPR (src));
1882 if (src && decl)
1884 slot = htab_find_slot_with_hash (set->vars, decl,
1885 VARIABLE_HASH_VAL (decl), NO_INSERT);
1887 if (slot)
1889 var = *(variable *) slot;
1890 found = false;
1891 for (i = 0; i < var->n_var_parts && !found; i++)
1892 for (nextp = var->var_part[i].loc_chain; nextp && !found;
1893 nextp = nextp->next)
1894 if (rtx_equal_p (nextp->loc, src))
1896 set_src = nextp->set_src;
1897 found = true;
1903 return set_src;
1906 /* Compute the changes of variable locations in the basic block BB. */
1908 static bool
1909 compute_bb_dataflow (basic_block bb)
1911 int i, n, r;
1912 bool changed;
1913 dataflow_set old_out;
1914 dataflow_set *in = &VTI (bb)->in;
1915 dataflow_set *out = &VTI (bb)->out;
1917 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1918 dataflow_set_copy (&old_out, out);
1919 dataflow_set_copy (out, in);
1921 n = VTI (bb)->n_mos;
1922 for (i = 0; i < n; i++)
1924 switch (VTI (bb)->mos[i].type)
1926 case MO_CALL:
1927 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1928 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1929 var_regno_delete (out, r);
1930 break;
1932 case MO_USE:
1934 rtx loc = VTI (bb)->mos[i].u.loc;
1935 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
1937 if (! flag_var_tracking_uninit)
1938 status = VAR_INIT_STATUS_INITIALIZED;
1940 if (GET_CODE (loc) == REG)
1941 var_reg_set (out, loc, status, NULL);
1942 else if (GET_CODE (loc) == MEM)
1943 var_mem_set (out, loc, status, NULL);
1945 break;
1947 case MO_SET:
1949 rtx loc = VTI (bb)->mos[i].u.loc;
1950 rtx set_src = NULL;
1951 rtx insn = VTI (bb)->mos[i].insn;
1953 if (GET_CODE (PATTERN (insn)) == SET)
1954 set_src = SET_SRC (PATTERN (insn));
1955 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1956 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1958 int j;
1959 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1960 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1961 && SET_DEST (XVECEXP (PATTERN (insn), 0, j)) == loc)
1962 set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, j));
1965 if (REG_P (loc))
1966 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
1967 set_src);
1968 else if (MEM_P (loc))
1969 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
1970 set_src);
1972 break;
1974 case MO_COPY:
1976 rtx loc = VTI (bb)->mos[i].u.loc;
1977 enum var_init_status src_status;
1978 rtx set_src;
1980 if (! flag_var_tracking_uninit)
1981 src_status = VAR_INIT_STATUS_INITIALIZED;
1982 else
1983 src_status = find_src_status (in, loc, VTI (bb)->mos[i].insn);
1985 if (src_status == VAR_INIT_STATUS_UNKNOWN)
1986 src_status = find_src_status (out, loc, VTI (bb)->mos[i].insn);
1988 set_src = find_src_set_src (in, loc, VTI (bb)->mos[i].insn);
1990 if (REG_P (loc))
1991 var_reg_delete_and_set (out, loc, false, src_status, set_src);
1992 else if (MEM_P (loc))
1993 var_mem_delete_and_set (out, loc, false, src_status, set_src);
1995 break;
1997 case MO_USE_NO_VAR:
1999 rtx loc = VTI (bb)->mos[i].u.loc;
2001 if (REG_P (loc))
2002 var_reg_delete (out, loc, false);
2003 else if (MEM_P (loc))
2004 var_mem_delete (out, loc, false);
2006 break;
2008 case MO_CLOBBER:
2010 rtx loc = VTI (bb)->mos[i].u.loc;
2012 if (REG_P (loc))
2013 var_reg_delete (out, loc, true);
2014 else if (MEM_P (loc))
2015 var_mem_delete (out, loc, true);
2017 break;
2019 case MO_ADJUST:
2020 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
2021 break;
2025 changed = dataflow_set_different (&old_out, out);
2026 dataflow_set_destroy (&old_out);
2027 return changed;
2030 /* Find the locations of variables in the whole function. */
2032 static void
2033 vt_find_locations (void)
2035 fibheap_t worklist, pending, fibheap_swap;
2036 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
2037 basic_block bb;
2038 edge e;
2039 int *bb_order;
2040 int *rc_order;
2041 int i;
2043 /* Compute reverse completion order of depth first search of the CFG
2044 so that the data-flow runs faster. */
2045 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
2046 bb_order = XNEWVEC (int, last_basic_block);
2047 pre_and_rev_post_order_compute (NULL, rc_order, false);
2048 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
2049 bb_order[rc_order[i]] = i;
2050 free (rc_order);
2052 worklist = fibheap_new ();
2053 pending = fibheap_new ();
2054 visited = sbitmap_alloc (last_basic_block);
2055 in_worklist = sbitmap_alloc (last_basic_block);
2056 in_pending = sbitmap_alloc (last_basic_block);
2057 sbitmap_zero (in_worklist);
2059 FOR_EACH_BB (bb)
2060 fibheap_insert (pending, bb_order[bb->index], bb);
2061 sbitmap_ones (in_pending);
2063 while (!fibheap_empty (pending))
2065 fibheap_swap = pending;
2066 pending = worklist;
2067 worklist = fibheap_swap;
2068 sbitmap_swap = in_pending;
2069 in_pending = in_worklist;
2070 in_worklist = sbitmap_swap;
2072 sbitmap_zero (visited);
2074 while (!fibheap_empty (worklist))
2076 bb = fibheap_extract_min (worklist);
2077 RESET_BIT (in_worklist, bb->index);
2078 if (!TEST_BIT (visited, bb->index))
2080 bool changed;
2081 edge_iterator ei;
2083 SET_BIT (visited, bb->index);
2085 /* Calculate the IN set as union of predecessor OUT sets. */
2086 dataflow_set_clear (&VTI (bb)->in);
2087 FOR_EACH_EDGE (e, ei, bb->preds)
2089 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
2092 changed = compute_bb_dataflow (bb);
2093 if (changed)
2095 FOR_EACH_EDGE (e, ei, bb->succs)
2097 if (e->dest == EXIT_BLOCK_PTR)
2098 continue;
2100 if (e->dest == bb)
2101 continue;
2103 if (TEST_BIT (visited, e->dest->index))
2105 if (!TEST_BIT (in_pending, e->dest->index))
2107 /* Send E->DEST to next round. */
2108 SET_BIT (in_pending, e->dest->index);
2109 fibheap_insert (pending,
2110 bb_order[e->dest->index],
2111 e->dest);
2114 else if (!TEST_BIT (in_worklist, e->dest->index))
2116 /* Add E->DEST to current round. */
2117 SET_BIT (in_worklist, e->dest->index);
2118 fibheap_insert (worklist, bb_order[e->dest->index],
2119 e->dest);
2127 free (bb_order);
2128 fibheap_delete (worklist);
2129 fibheap_delete (pending);
2130 sbitmap_free (visited);
2131 sbitmap_free (in_worklist);
2132 sbitmap_free (in_pending);
2135 /* Print the content of the LIST to dump file. */
2137 static void
2138 dump_attrs_list (attrs list)
2140 for (; list; list = list->next)
2142 print_mem_expr (dump_file, list->decl);
2143 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
2145 fprintf (dump_file, "\n");
2148 /* Print the information about variable *SLOT to dump file. */
2150 static int
2151 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
2153 variable var = *(variable *) slot;
2154 int i;
2155 location_chain node;
2157 fprintf (dump_file, " name: %s\n",
2158 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
2159 for (i = 0; i < var->n_var_parts; i++)
2161 fprintf (dump_file, " offset %ld\n",
2162 (long) var->var_part[i].offset);
2163 for (node = var->var_part[i].loc_chain; node; node = node->next)
2165 fprintf (dump_file, " ");
2166 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
2167 fprintf (dump_file, "[uninit]");
2168 print_rtl_single (dump_file, node->loc);
2172 /* Continue traversing the hash table. */
2173 return 1;
2176 /* Print the information about variables from hash table VARS to dump file. */
2178 static void
2179 dump_vars (htab_t vars)
2181 if (htab_elements (vars) > 0)
2183 fprintf (dump_file, "Variables:\n");
2184 htab_traverse (vars, dump_variable, NULL);
2188 /* Print the dataflow set SET to dump file. */
2190 static void
2191 dump_dataflow_set (dataflow_set *set)
2193 int i;
2195 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
2196 set->stack_adjust);
2197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2199 if (set->regs[i])
2201 fprintf (dump_file, "Reg %d:", i);
2202 dump_attrs_list (set->regs[i]);
2205 dump_vars (set->vars);
2206 fprintf (dump_file, "\n");
2209 /* Print the IN and OUT sets for each basic block to dump file. */
2211 static void
2212 dump_dataflow_sets (void)
2214 basic_block bb;
2216 FOR_EACH_BB (bb)
2218 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
2219 fprintf (dump_file, "IN:\n");
2220 dump_dataflow_set (&VTI (bb)->in);
2221 fprintf (dump_file, "OUT:\n");
2222 dump_dataflow_set (&VTI (bb)->out);
2226 /* Add variable VAR to the hash table of changed variables and
2227 if it has no locations delete it from hash table HTAB. */
2229 static void
2230 variable_was_changed (variable var, htab_t htab)
2232 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
2234 if (emit_notes)
2236 variable *slot;
2238 slot = (variable *) htab_find_slot_with_hash (changed_variables,
2239 var->decl, hash, INSERT);
2241 if (htab && var->n_var_parts == 0)
2243 variable empty_var;
2244 void **old;
2246 empty_var = pool_alloc (var_pool);
2247 empty_var->decl = var->decl;
2248 empty_var->refcount = 1;
2249 empty_var->n_var_parts = 0;
2250 *slot = empty_var;
2252 old = htab_find_slot_with_hash (htab, var->decl, hash,
2253 NO_INSERT);
2254 if (old)
2255 htab_clear_slot (htab, old);
2257 else
2259 *slot = var;
2262 else
2264 gcc_assert (htab);
2265 if (var->n_var_parts == 0)
2267 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
2268 NO_INSERT);
2269 if (slot)
2270 htab_clear_slot (htab, slot);
2275 /* Look for the index in VAR->var_part corresponding to OFFSET.
2276 Return -1 if not found. If INSERTION_POINT is non-NULL, the
2277 referenced int will be set to the index that the part has or should
2278 have, if it should be inserted. */
2280 static inline int
2281 find_variable_location_part (variable var, HOST_WIDE_INT offset,
2282 int *insertion_point)
2284 int pos, low, high;
2286 /* Find the location part. */
2287 low = 0;
2288 high = var->n_var_parts;
2289 while (low != high)
2291 pos = (low + high) / 2;
2292 if (var->var_part[pos].offset < offset)
2293 low = pos + 1;
2294 else
2295 high = pos;
2297 pos = low;
2299 if (insertion_point)
2300 *insertion_point = pos;
2302 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2303 return pos;
2305 return -1;
2308 /* Set the part of variable's location in the dataflow set SET. The variable
2309 part is specified by variable's declaration DECL and offset OFFSET and the
2310 part's location by LOC. */
2312 static void
2313 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset,
2314 enum var_init_status initialized, rtx set_src)
2316 int pos;
2317 location_chain node, next;
2318 location_chain *nextp;
2319 variable var;
2320 void **slot;
2322 slot = htab_find_slot_with_hash (set->vars, decl,
2323 VARIABLE_HASH_VAL (decl), INSERT);
2324 if (!*slot)
2326 /* Create new variable information. */
2327 var = pool_alloc (var_pool);
2328 var->decl = decl;
2329 var->refcount = 1;
2330 var->n_var_parts = 1;
2331 var->var_part[0].offset = offset;
2332 var->var_part[0].loc_chain = NULL;
2333 var->var_part[0].cur_loc = NULL;
2334 *slot = var;
2335 pos = 0;
2337 else
2339 int inspos = 0;
2341 var = (variable) *slot;
2343 pos = find_variable_location_part (var, offset, &inspos);
2345 if (pos >= 0)
2347 node = var->var_part[pos].loc_chain;
2349 if (node
2350 && ((REG_P (node->loc) && REG_P (loc)
2351 && REGNO (node->loc) == REGNO (loc))
2352 || rtx_equal_p (node->loc, loc)))
2354 /* LOC is in the beginning of the chain so we have nothing
2355 to do. */
2356 if (node->init < initialized)
2357 node->init = initialized;
2358 if (set_src != NULL)
2359 node->set_src = set_src;
2361 *slot = var;
2362 return;
2364 else
2366 /* We have to make a copy of a shared variable. */
2367 if (var->refcount > 1)
2368 var = unshare_variable (set, var, initialized);
2371 else
2373 /* We have not found the location part, new one will be created. */
2375 /* We have to make a copy of the shared variable. */
2376 if (var->refcount > 1)
2377 var = unshare_variable (set, var, initialized);
2379 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2380 thus there are at most MAX_VAR_PARTS different offsets. */
2381 gcc_assert (var->n_var_parts < MAX_VAR_PARTS);
2383 /* We have to move the elements of array starting at index
2384 inspos to the next position. */
2385 for (pos = var->n_var_parts; pos > inspos; pos--)
2386 var->var_part[pos] = var->var_part[pos - 1];
2388 var->n_var_parts++;
2389 var->var_part[pos].offset = offset;
2390 var->var_part[pos].loc_chain = NULL;
2391 var->var_part[pos].cur_loc = NULL;
2395 /* Delete the location from the list. */
2396 nextp = &var->var_part[pos].loc_chain;
2397 for (node = var->var_part[pos].loc_chain; node; node = next)
2399 next = node->next;
2400 if ((REG_P (node->loc) && REG_P (loc)
2401 && REGNO (node->loc) == REGNO (loc))
2402 || rtx_equal_p (node->loc, loc))
2404 /* Save these values, to assign to the new node, before
2405 deleting this one. */
2406 if (node->init > initialized)
2407 initialized = node->init;
2408 if (node->set_src != NULL && set_src == NULL)
2409 set_src = node->set_src;
2410 pool_free (loc_chain_pool, node);
2411 *nextp = next;
2412 break;
2414 else
2415 nextp = &node->next;
2418 /* Add the location to the beginning. */
2419 node = pool_alloc (loc_chain_pool);
2420 node->loc = loc;
2421 node->init = initialized;
2422 node->set_src = set_src;
2423 node->next = var->var_part[pos].loc_chain;
2424 var->var_part[pos].loc_chain = node;
2426 /* If no location was emitted do so. */
2427 if (var->var_part[pos].cur_loc == NULL)
2429 var->var_part[pos].cur_loc = loc;
2430 variable_was_changed (var, set->vars);
2434 /* Remove all recorded register locations for the given variable part
2435 from dataflow set SET, except for those that are identical to loc.
2436 The variable part is specified by variable's declaration DECL and
2437 offset OFFSET. */
2439 static void
2440 clobber_variable_part (dataflow_set *set, rtx loc, tree decl,
2441 HOST_WIDE_INT offset, rtx set_src)
2443 void **slot;
2445 if (! decl || ! DECL_P (decl))
2446 return;
2448 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2449 NO_INSERT);
2450 if (slot)
2452 variable var = (variable) *slot;
2453 int pos = find_variable_location_part (var, offset, NULL);
2455 if (pos >= 0)
2457 location_chain node, next;
2459 /* Remove the register locations from the dataflow set. */
2460 next = var->var_part[pos].loc_chain;
2461 for (node = next; node; node = next)
2463 next = node->next;
2464 if (node->loc != loc
2465 && (!flag_var_tracking_uninit
2466 || !set_src
2467 || MEM_P (set_src)
2468 || !rtx_equal_p (set_src, node->set_src)))
2470 if (REG_P (node->loc))
2472 attrs anode, anext;
2473 attrs *anextp;
2475 /* Remove the variable part from the register's
2476 list, but preserve any other variable parts
2477 that might be regarded as live in that same
2478 register. */
2479 anextp = &set->regs[REGNO (node->loc)];
2480 for (anode = *anextp; anode; anode = anext)
2482 anext = anode->next;
2483 if (anode->decl == decl
2484 && anode->offset == offset)
2486 pool_free (attrs_pool, anode);
2487 *anextp = anext;
2492 delete_variable_part (set, node->loc, decl, offset);
2499 /* Delete the part of variable's location from dataflow set SET. The variable
2500 part is specified by variable's declaration DECL and offset OFFSET and the
2501 part's location by LOC. */
2503 static void
2504 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2505 HOST_WIDE_INT offset)
2507 void **slot;
2509 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2510 NO_INSERT);
2511 if (slot)
2513 variable var = (variable) *slot;
2514 int pos = find_variable_location_part (var, offset, NULL);
2516 if (pos >= 0)
2518 location_chain node, next;
2519 location_chain *nextp;
2520 bool changed;
2522 if (var->refcount > 1)
2524 /* If the variable contains the location part we have to
2525 make a copy of the variable. */
2526 for (node = var->var_part[pos].loc_chain; node;
2527 node = node->next)
2529 if ((REG_P (node->loc) && REG_P (loc)
2530 && REGNO (node->loc) == REGNO (loc))
2531 || rtx_equal_p (node->loc, loc))
2533 enum var_init_status status = VAR_INIT_STATUS_UNKNOWN;
2534 if (! flag_var_tracking_uninit)
2535 status = VAR_INIT_STATUS_INITIALIZED;
2536 var = unshare_variable (set, var, status);
2537 break;
2542 /* Delete the location part. */
2543 nextp = &var->var_part[pos].loc_chain;
2544 for (node = *nextp; node; node = next)
2546 next = node->next;
2547 if ((REG_P (node->loc) && REG_P (loc)
2548 && REGNO (node->loc) == REGNO (loc))
2549 || rtx_equal_p (node->loc, loc))
2551 pool_free (loc_chain_pool, node);
2552 *nextp = next;
2553 break;
2555 else
2556 nextp = &node->next;
2559 /* If we have deleted the location which was last emitted
2560 we have to emit new location so add the variable to set
2561 of changed variables. */
2562 if (var->var_part[pos].cur_loc
2563 && ((REG_P (loc)
2564 && REG_P (var->var_part[pos].cur_loc)
2565 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2566 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2568 changed = true;
2569 if (var->var_part[pos].loc_chain)
2570 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2572 else
2573 changed = false;
2575 if (var->var_part[pos].loc_chain == NULL)
2577 var->n_var_parts--;
2578 while (pos < var->n_var_parts)
2580 var->var_part[pos] = var->var_part[pos + 1];
2581 pos++;
2584 if (changed)
2585 variable_was_changed (var, set->vars);
2590 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2591 additional parameters: WHERE specifies whether the note shall be emitted
2592 before of after instruction INSN. */
2594 static int
2595 emit_note_insn_var_location (void **varp, void *data)
2597 variable var = *(variable *) varp;
2598 rtx insn = ((emit_note_data *)data)->insn;
2599 enum emit_note_where where = ((emit_note_data *)data)->where;
2600 rtx note;
2601 int i, j, n_var_parts;
2602 bool complete;
2603 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
2604 HOST_WIDE_INT last_limit;
2605 tree type_size_unit;
2606 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
2607 rtx loc[MAX_VAR_PARTS];
2609 gcc_assert (var->decl);
2611 if (! flag_var_tracking_uninit)
2612 initialized = VAR_INIT_STATUS_INITIALIZED;
2614 complete = true;
2615 last_limit = 0;
2616 n_var_parts = 0;
2617 for (i = 0; i < var->n_var_parts; i++)
2619 enum machine_mode mode, wider_mode;
2621 if (last_limit < var->var_part[i].offset)
2623 complete = false;
2624 break;
2626 else if (last_limit > var->var_part[i].offset)
2627 continue;
2628 offsets[n_var_parts] = var->var_part[i].offset;
2629 loc[n_var_parts] = var->var_part[i].loc_chain->loc;
2630 mode = GET_MODE (loc[n_var_parts]);
2631 initialized = var->var_part[i].loc_chain->init;
2632 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2634 /* Attempt to merge adjacent registers or memory. */
2635 wider_mode = GET_MODE_WIDER_MODE (mode);
2636 for (j = i + 1; j < var->n_var_parts; j++)
2637 if (last_limit <= var->var_part[j].offset)
2638 break;
2639 if (j < var->n_var_parts
2640 && wider_mode != VOIDmode
2641 && GET_CODE (loc[n_var_parts])
2642 == GET_CODE (var->var_part[j].loc_chain->loc)
2643 && mode == GET_MODE (var->var_part[j].loc_chain->loc)
2644 && last_limit == var->var_part[j].offset)
2646 rtx new_loc = NULL;
2647 rtx loc2 = var->var_part[j].loc_chain->loc;
2649 if (REG_P (loc[n_var_parts])
2650 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
2651 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
2652 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
2653 == REGNO (loc2))
2655 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
2656 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
2657 mode, 0);
2658 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
2659 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
2660 if (new_loc)
2662 if (!REG_P (new_loc)
2663 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
2664 new_loc = NULL;
2665 else
2666 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
2669 else if (MEM_P (loc[n_var_parts])
2670 && GET_CODE (XEXP (loc2, 0)) == PLUS
2671 && GET_CODE (XEXP (XEXP (loc2, 0), 0)) == REG
2672 && GET_CODE (XEXP (XEXP (loc2, 0), 1)) == CONST_INT)
2674 if ((GET_CODE (XEXP (loc[n_var_parts], 0)) == REG
2675 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
2676 XEXP (XEXP (loc2, 0), 0))
2677 && INTVAL (XEXP (XEXP (loc2, 0), 1))
2678 == GET_MODE_SIZE (mode))
2679 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
2680 && GET_CODE (XEXP (XEXP (loc[n_var_parts], 0), 1))
2681 == CONST_INT
2682 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
2683 XEXP (XEXP (loc2, 0), 0))
2684 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
2685 + GET_MODE_SIZE (mode)
2686 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
2687 new_loc = adjust_address_nv (loc[n_var_parts],
2688 wider_mode, 0);
2691 if (new_loc)
2693 loc[n_var_parts] = new_loc;
2694 mode = wider_mode;
2695 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2696 i = j;
2699 ++n_var_parts;
2701 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2702 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2703 complete = false;
2705 if (where == EMIT_NOTE_AFTER_INSN)
2706 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2707 else
2708 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2710 if (! flag_var_tracking_uninit)
2711 initialized = VAR_INIT_STATUS_INITIALIZED;
2713 if (!complete)
2715 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2716 NULL_RTX, (int) initialized);
2718 else if (n_var_parts == 1)
2720 rtx expr_list
2721 = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
2723 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2724 expr_list,
2725 (int) initialized);
2727 else if (n_var_parts)
2729 rtx parallel;
2731 for (i = 0; i < n_var_parts; i++)
2732 loc[i]
2733 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
2735 parallel = gen_rtx_PARALLEL (VOIDmode,
2736 gen_rtvec_v (n_var_parts, loc));
2737 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2738 parallel,
2739 (int) initialized);
2742 htab_clear_slot (changed_variables, varp);
2744 /* When there are no location parts the variable has been already
2745 removed from hash table and a new empty variable was created.
2746 Free the empty variable. */
2747 if (var->n_var_parts == 0)
2749 pool_free (var_pool, var);
2752 /* Continue traversing the hash table. */
2753 return 1;
2756 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2757 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2758 shall be emitted before of after instruction INSN. */
2760 static void
2761 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2763 emit_note_data data;
2765 data.insn = insn;
2766 data.where = where;
2767 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2770 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2771 same variable in hash table DATA or is not there at all. */
2773 static int
2774 emit_notes_for_differences_1 (void **slot, void *data)
2776 htab_t new_vars = (htab_t) data;
2777 variable old_var, new_var;
2779 old_var = *(variable *) slot;
2780 new_var = htab_find_with_hash (new_vars, old_var->decl,
2781 VARIABLE_HASH_VAL (old_var->decl));
2783 if (!new_var)
2785 /* Variable has disappeared. */
2786 variable empty_var;
2788 empty_var = pool_alloc (var_pool);
2789 empty_var->decl = old_var->decl;
2790 empty_var->refcount = 1;
2791 empty_var->n_var_parts = 0;
2792 variable_was_changed (empty_var, NULL);
2794 else if (variable_different_p (old_var, new_var, true))
2796 variable_was_changed (new_var, NULL);
2799 /* Continue traversing the hash table. */
2800 return 1;
2803 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2804 table DATA. */
2806 static int
2807 emit_notes_for_differences_2 (void **slot, void *data)
2809 htab_t old_vars = (htab_t) data;
2810 variable old_var, new_var;
2812 new_var = *(variable *) slot;
2813 old_var = htab_find_with_hash (old_vars, new_var->decl,
2814 VARIABLE_HASH_VAL (new_var->decl));
2815 if (!old_var)
2817 /* Variable has appeared. */
2818 variable_was_changed (new_var, NULL);
2821 /* Continue traversing the hash table. */
2822 return 1;
2825 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2826 NEW_SET. */
2828 static void
2829 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2830 dataflow_set *new_set)
2832 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2833 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2834 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2837 /* Emit the notes for changes of location parts in the basic block BB. */
2839 static void
2840 emit_notes_in_bb (basic_block bb)
2842 int i;
2843 dataflow_set set;
2845 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2846 dataflow_set_copy (&set, &VTI (bb)->in);
2848 for (i = 0; i < VTI (bb)->n_mos; i++)
2850 rtx insn = VTI (bb)->mos[i].insn;
2852 switch (VTI (bb)->mos[i].type)
2854 case MO_CALL:
2856 int r;
2858 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2859 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2861 var_regno_delete (&set, r);
2863 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2865 break;
2867 case MO_USE:
2869 rtx loc = VTI (bb)->mos[i].u.loc;
2871 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
2872 if (! flag_var_tracking_uninit)
2873 status = VAR_INIT_STATUS_INITIALIZED;
2874 if (GET_CODE (loc) == REG)
2875 var_reg_set (&set, loc, status, NULL);
2876 else
2877 var_mem_set (&set, loc, status, NULL);
2879 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2881 break;
2883 case MO_SET:
2885 rtx loc = VTI (bb)->mos[i].u.loc;
2886 rtx set_src = NULL;
2888 if (GET_CODE (PATTERN (insn)) == SET)
2889 set_src = SET_SRC (PATTERN (insn));
2890 else if (GET_CODE (PATTERN (insn)) == PARALLEL
2891 || GET_CODE (PATTERN (insn)) == SEQUENCE)
2893 int j;
2894 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2895 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2896 && SET_DEST (XVECEXP (PATTERN (insn), 0, j)) == loc)
2897 set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, j));
2900 if (REG_P (loc))
2901 var_reg_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
2902 set_src);
2903 else
2904 var_mem_delete_and_set (&set, loc, true, VAR_INIT_STATUS_INITIALIZED,
2905 set_src);
2907 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2909 break;
2911 case MO_COPY:
2913 rtx loc = VTI (bb)->mos[i].u.loc;
2914 enum var_init_status src_status;
2915 rtx set_src;
2917 src_status = find_src_status (&set, loc, VTI (bb)->mos[i].insn);
2918 set_src = find_src_set_src (&set, loc, VTI (bb)->mos[i].insn);
2920 if (REG_P (loc))
2921 var_reg_delete_and_set (&set, loc, false, src_status, set_src);
2922 else
2923 var_mem_delete_and_set (&set, loc, false, src_status, set_src);
2925 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2927 break;
2929 case MO_USE_NO_VAR:
2931 rtx loc = VTI (bb)->mos[i].u.loc;
2933 if (REG_P (loc))
2934 var_reg_delete (&set, loc, false);
2935 else
2936 var_mem_delete (&set, loc, false);
2938 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2940 break;
2942 case MO_CLOBBER:
2944 rtx loc = VTI (bb)->mos[i].u.loc;
2946 if (REG_P (loc))
2947 var_reg_delete (&set, loc, true);
2948 else
2949 var_mem_delete (&set, loc, true);
2951 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN);
2953 break;
2955 case MO_ADJUST:
2956 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2957 break;
2960 dataflow_set_destroy (&set);
2963 /* Emit notes for the whole function. */
2965 static void
2966 vt_emit_notes (void)
2968 basic_block bb;
2969 dataflow_set *last_out;
2970 dataflow_set empty;
2972 gcc_assert (!htab_elements (changed_variables));
2974 /* Enable emitting notes by functions (mainly by set_variable_part and
2975 delete_variable_part). */
2976 emit_notes = true;
2978 dataflow_set_init (&empty, 7);
2979 last_out = &empty;
2981 FOR_EACH_BB (bb)
2983 /* Emit the notes for changes of variable locations between two
2984 subsequent basic blocks. */
2985 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2987 /* Emit the notes for the changes in the basic block itself. */
2988 emit_notes_in_bb (bb);
2990 last_out = &VTI (bb)->out;
2992 dataflow_set_destroy (&empty);
2993 emit_notes = false;
2996 /* If there is a declaration and offset associated with register/memory RTL
2997 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2999 static bool
3000 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
3002 if (REG_P (rtl))
3004 if (REG_ATTRS (rtl))
3006 *declp = REG_EXPR (rtl);
3007 *offsetp = REG_OFFSET (rtl);
3008 return true;
3011 else if (MEM_P (rtl))
3013 if (MEM_ATTRS (rtl))
3015 *declp = MEM_EXPR (rtl);
3016 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
3017 return true;
3020 return false;
3023 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
3025 static void
3026 vt_add_function_parameters (void)
3028 tree parm;
3030 for (parm = DECL_ARGUMENTS (current_function_decl);
3031 parm; parm = TREE_CHAIN (parm))
3033 rtx decl_rtl = DECL_RTL_IF_SET (parm);
3034 rtx incoming = DECL_INCOMING_RTL (parm);
3035 tree decl;
3036 HOST_WIDE_INT offset;
3037 dataflow_set *out;
3039 if (TREE_CODE (parm) != PARM_DECL)
3040 continue;
3042 if (!DECL_NAME (parm))
3043 continue;
3045 if (!decl_rtl || !incoming)
3046 continue;
3048 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
3049 continue;
3051 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
3052 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
3053 continue;
3055 if (!decl)
3056 continue;
3058 gcc_assert (parm == decl);
3060 out = &VTI (ENTRY_BLOCK_PTR)->out;
3062 if (REG_P (incoming))
3064 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
3065 attrs_list_insert (&out->regs[REGNO (incoming)],
3066 parm, offset, incoming);
3067 set_variable_part (out, incoming, parm, offset, VAR_INIT_STATUS_INITIALIZED,
3068 NULL);
3070 else if (MEM_P (incoming))
3071 set_variable_part (out, incoming, parm, offset, VAR_INIT_STATUS_INITIALIZED,
3072 NULL);
3076 /* Allocate and initialize the data structures for variable tracking
3077 and parse the RTL to get the micro operations. */
3079 static void
3080 vt_initialize (void)
3082 basic_block bb;
3084 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
3086 FOR_EACH_BB (bb)
3088 rtx insn;
3089 HOST_WIDE_INT pre, post = 0;
3091 /* Count the number of micro operations. */
3092 VTI (bb)->n_mos = 0;
3093 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3094 insn = NEXT_INSN (insn))
3096 if (INSN_P (insn))
3098 if (!frame_pointer_needed)
3100 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3101 if (pre)
3102 VTI (bb)->n_mos++;
3103 if (post)
3104 VTI (bb)->n_mos++;
3106 note_uses (&PATTERN (insn), count_uses_1, insn);
3107 note_stores (PATTERN (insn), count_stores, insn);
3108 if (CALL_P (insn))
3109 VTI (bb)->n_mos++;
3113 /* Add the micro-operations to the array. */
3114 VTI (bb)->mos = XNEWVEC (micro_operation, VTI (bb)->n_mos);
3115 VTI (bb)->n_mos = 0;
3116 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
3117 insn = NEXT_INSN (insn))
3119 if (INSN_P (insn))
3121 int n1, n2;
3123 if (!frame_pointer_needed)
3125 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
3126 if (pre)
3128 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3130 mo->type = MO_ADJUST;
3131 mo->u.adjust = pre;
3132 mo->insn = insn;
3136 n1 = VTI (bb)->n_mos;
3137 note_uses (&PATTERN (insn), add_uses_1, insn);
3138 n2 = VTI (bb)->n_mos - 1;
3140 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
3141 while (n1 < n2)
3143 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
3144 n1++;
3145 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
3146 n2--;
3147 if (n1 < n2)
3149 micro_operation sw;
3151 sw = VTI (bb)->mos[n1];
3152 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3153 VTI (bb)->mos[n2] = sw;
3157 if (CALL_P (insn))
3159 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3161 mo->type = MO_CALL;
3162 mo->insn = insn;
3165 n1 = VTI (bb)->n_mos;
3166 /* This will record NEXT_INSN (insn), such that we can
3167 insert notes before it without worrying about any
3168 notes that MO_USEs might emit after the insn. */
3169 note_stores (PATTERN (insn), add_stores, insn);
3170 n2 = VTI (bb)->n_mos - 1;
3172 /* Order the MO_CLOBBERs to be before MO_SETs. */
3173 while (n1 < n2)
3175 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_CLOBBER)
3176 n1++;
3177 while (n1 < n2 && (VTI (bb)->mos[n2].type == MO_SET
3178 || VTI (bb)->mos[n2].type == MO_COPY))
3179 n2--;
3180 if (n1 < n2)
3182 micro_operation sw;
3184 sw = VTI (bb)->mos[n1];
3185 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
3186 VTI (bb)->mos[n2] = sw;
3190 if (!frame_pointer_needed && post)
3192 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
3194 mo->type = MO_ADJUST;
3195 mo->u.adjust = post;
3196 mo->insn = insn;
3202 /* Init the IN and OUT sets. */
3203 FOR_ALL_BB (bb)
3205 VTI (bb)->visited = false;
3206 dataflow_set_init (&VTI (bb)->in, 7);
3207 dataflow_set_init (&VTI (bb)->out, 7);
3210 attrs_pool = create_alloc_pool ("attrs_def pool",
3211 sizeof (struct attrs_def), 1024);
3212 var_pool = create_alloc_pool ("variable_def pool",
3213 sizeof (struct variable_def), 64);
3214 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
3215 sizeof (struct location_chain_def),
3216 1024);
3217 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
3218 NULL);
3219 vt_add_function_parameters ();
3222 /* Free the data structures needed for variable tracking. */
3224 static void
3225 vt_finalize (void)
3227 basic_block bb;
3229 FOR_EACH_BB (bb)
3231 free (VTI (bb)->mos);
3234 FOR_ALL_BB (bb)
3236 dataflow_set_destroy (&VTI (bb)->in);
3237 dataflow_set_destroy (&VTI (bb)->out);
3239 free_aux_for_blocks ();
3240 free_alloc_pool (attrs_pool);
3241 free_alloc_pool (var_pool);
3242 free_alloc_pool (loc_chain_pool);
3243 htab_delete (changed_variables);
3246 /* The entry point to variable tracking pass. */
3248 unsigned int
3249 variable_tracking_main (void)
3251 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
3252 return 0;
3254 mark_dfs_back_edges ();
3255 vt_initialize ();
3256 if (!frame_pointer_needed)
3258 if (!vt_stack_adjustments ())
3260 vt_finalize ();
3261 return 0;
3265 vt_find_locations ();
3266 vt_emit_notes ();
3268 if (dump_file && (dump_flags & TDF_DETAILS))
3270 dump_dataflow_sets ();
3271 dump_flow_info (dump_file, dump_flags);
3274 vt_finalize ();
3275 return 0;
3278 static bool
3279 gate_handle_var_tracking (void)
3281 return (flag_var_tracking);
3286 struct tree_opt_pass pass_variable_tracking =
3288 "vartrack", /* name */
3289 gate_handle_var_tracking, /* gate */
3290 variable_tracking_main, /* execute */
3291 NULL, /* sub */
3292 NULL, /* next */
3293 0, /* static_pass_number */
3294 TV_VAR_TRACKING, /* tv_id */
3295 0, /* properties_required */
3296 0, /* properties_provided */
3297 0, /* properties_destroyed */
3298 0, /* todo_flags_start */
3299 TODO_dump_func, /* todo_flags_finish */
3300 'V' /* letter */