Move some complex simplifications to match.pd
[official-gcc.git] / gcc / reload1.c
blobad243e321d165cb8fa2708a0ba4ca2048166322c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "predict.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "flags.h"
33 #include "alias.h"
34 #include "expmed.h"
35 #include "dojump.h"
36 #include "explow.h"
37 #include "calls.h"
38 #include "emit-rtl.h"
39 #include "varasm.h"
40 #include "stmt.h"
41 #include "expr.h"
42 #include "insn-codes.h"
43 #include "optabs.h"
44 #include "regs.h"
45 #include "addresses.h"
46 #include "cfgrtl.h"
47 #include "cfgbuild.h"
48 #include "reload.h"
49 #include "recog.h"
50 #include "except.h"
51 #include "ira.h"
52 #include "target.h"
53 #include "dumpfile.h"
54 #include "rtl-iter.h"
56 /* This file contains the reload pass of the compiler, which is
57 run after register allocation has been done. It checks that
58 each insn is valid (operands required to be in registers really
59 are in registers of the proper class) and fixes up invalid ones
60 by copying values temporarily into registers for the insns
61 that need them.
63 The results of register allocation are described by the vector
64 reg_renumber; the insns still contain pseudo regs, but reg_renumber
65 can be used to find which hard reg, if any, a pseudo reg is in.
67 The technique we always use is to free up a few hard regs that are
68 called ``reload regs'', and for each place where a pseudo reg
69 must be in a hard reg, copy it temporarily into one of the reload regs.
71 Reload regs are allocated locally for every instruction that needs
72 reloads. When there are pseudos which are allocated to a register that
73 has been chosen as a reload reg, such pseudos must be ``spilled''.
74 This means that they go to other hard regs, or to stack slots if no other
75 available hard regs can be found. Spilling can invalidate more
76 insns, requiring additional need for reloads, so we must keep checking
77 until the process stabilizes.
79 For machines with different classes of registers, we must keep track
80 of the register class needed for each reload, and make sure that
81 we allocate enough reload registers of each class.
83 The file reload.c contains the code that checks one insn for
84 validity and reports the reloads that it needs. This file
85 is in charge of scanning the entire rtl code, accumulating the
86 reload needs, spilling, assigning reload registers to use for
87 fixing up each insn, and generating the new insns to copy values
88 into the reload registers. */
90 struct target_reload default_target_reload;
91 #if SWITCHABLE_TARGET
92 struct target_reload *this_target_reload = &default_target_reload;
93 #endif
95 #define spill_indirect_levels \
96 (this_target_reload->x_spill_indirect_levels)
98 /* During reload_as_needed, element N contains a REG rtx for the hard reg
99 into which reg N has been reloaded (perhaps for a previous insn). */
100 static rtx *reg_last_reload_reg;
102 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
103 for an output reload that stores into reg N. */
104 static regset_head reg_has_output_reload;
106 /* Indicates which hard regs are reload-registers for an output reload
107 in the current insn. */
108 static HARD_REG_SET reg_is_output_reload;
110 /* Widest width in which each pseudo reg is referred to (via subreg). */
111 static unsigned int *reg_max_ref_width;
113 /* Vector to remember old contents of reg_renumber before spilling. */
114 static short *reg_old_renumber;
116 /* During reload_as_needed, element N contains the last pseudo regno reloaded
117 into hard register N. If that pseudo reg occupied more than one register,
118 reg_reloaded_contents points to that pseudo for each spill register in
119 use; all of these must remain set for an inheritance to occur. */
120 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
122 /* During reload_as_needed, element N contains the insn for which
123 hard register N was last used. Its contents are significant only
124 when reg_reloaded_valid is set for this register. */
125 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
127 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
128 static HARD_REG_SET reg_reloaded_valid;
129 /* Indicate if the register was dead at the end of the reload.
130 This is only valid if reg_reloaded_contents is set and valid. */
131 static HARD_REG_SET reg_reloaded_dead;
133 /* Indicate whether the register's current value is one that is not
134 safe to retain across a call, even for registers that are normally
135 call-saved. This is only meaningful for members of reg_reloaded_valid. */
136 static HARD_REG_SET reg_reloaded_call_part_clobbered;
138 /* Number of spill-regs so far; number of valid elements of spill_regs. */
139 static int n_spills;
141 /* In parallel with spill_regs, contains REG rtx's for those regs.
142 Holds the last rtx used for any given reg, or 0 if it has never
143 been used for spilling yet. This rtx is reused, provided it has
144 the proper mode. */
145 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
147 /* In parallel with spill_regs, contains nonzero for a spill reg
148 that was stored after the last time it was used.
149 The precise value is the insn generated to do the store. */
150 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
152 /* This is the register that was stored with spill_reg_store. This is a
153 copy of reload_out / reload_out_reg when the value was stored; if
154 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
155 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
157 /* This table is the inverse mapping of spill_regs:
158 indexed by hard reg number,
159 it contains the position of that reg in spill_regs,
160 or -1 for something that is not in spill_regs.
162 ?!? This is no longer accurate. */
163 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
165 /* This reg set indicates registers that can't be used as spill registers for
166 the currently processed insn. These are the hard registers which are live
167 during the insn, but not allocated to pseudos, as well as fixed
168 registers. */
169 static HARD_REG_SET bad_spill_regs;
171 /* These are the hard registers that can't be used as spill register for any
172 insn. This includes registers used for user variables and registers that
173 we can't eliminate. A register that appears in this set also can't be used
174 to retry register allocation. */
175 static HARD_REG_SET bad_spill_regs_global;
177 /* Describes order of use of registers for reloading
178 of spilled pseudo-registers. `n_spills' is the number of
179 elements that are actually valid; new ones are added at the end.
181 Both spill_regs and spill_reg_order are used on two occasions:
182 once during find_reload_regs, where they keep track of the spill registers
183 for a single insn, but also during reload_as_needed where they show all
184 the registers ever used by reload. For the latter case, the information
185 is calculated during finish_spills. */
186 static short spill_regs[FIRST_PSEUDO_REGISTER];
188 /* This vector of reg sets indicates, for each pseudo, which hard registers
189 may not be used for retrying global allocation because the register was
190 formerly spilled from one of them. If we allowed reallocating a pseudo to
191 a register that it was already allocated to, reload might not
192 terminate. */
193 static HARD_REG_SET *pseudo_previous_regs;
195 /* This vector of reg sets indicates, for each pseudo, which hard
196 registers may not be used for retrying global allocation because they
197 are used as spill registers during one of the insns in which the
198 pseudo is live. */
199 static HARD_REG_SET *pseudo_forbidden_regs;
201 /* All hard regs that have been used as spill registers for any insn are
202 marked in this set. */
203 static HARD_REG_SET used_spill_regs;
205 /* Index of last register assigned as a spill register. We allocate in
206 a round-robin fashion. */
207 static int last_spill_reg;
209 /* Record the stack slot for each spilled hard register. */
210 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
212 /* Width allocated so far for that stack slot. */
213 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
215 /* Record which pseudos needed to be spilled. */
216 static regset_head spilled_pseudos;
218 /* Record which pseudos changed their allocation in finish_spills. */
219 static regset_head changed_allocation_pseudos;
221 /* Used for communication between order_regs_for_reload and count_pseudo.
222 Used to avoid counting one pseudo twice. */
223 static regset_head pseudos_counted;
225 /* First uid used by insns created by reload in this function.
226 Used in find_equiv_reg. */
227 int reload_first_uid;
229 /* Flag set by local-alloc or global-alloc if anything is live in
230 a call-clobbered reg across calls. */
231 int caller_save_needed;
233 /* Set to 1 while reload_as_needed is operating.
234 Required by some machines to handle any generated moves differently. */
235 int reload_in_progress = 0;
237 /* This obstack is used for allocation of rtl during register elimination.
238 The allocated storage can be freed once find_reloads has processed the
239 insn. */
240 static struct obstack reload_obstack;
242 /* Points to the beginning of the reload_obstack. All insn_chain structures
243 are allocated first. */
244 static char *reload_startobj;
246 /* The point after all insn_chain structures. Used to quickly deallocate
247 memory allocated in copy_reloads during calculate_needs_all_insns. */
248 static char *reload_firstobj;
250 /* This points before all local rtl generated by register elimination.
251 Used to quickly free all memory after processing one insn. */
252 static char *reload_insn_firstobj;
254 /* List of insn_chain instructions, one for every insn that reload needs to
255 examine. */
256 struct insn_chain *reload_insn_chain;
258 /* TRUE if we potentially left dead insns in the insn stream and want to
259 run DCE immediately after reload, FALSE otherwise. */
260 static bool need_dce;
262 /* List of all insns needing reloads. */
263 static struct insn_chain *insns_need_reload;
265 /* This structure is used to record information about register eliminations.
266 Each array entry describes one possible way of eliminating a register
267 in favor of another. If there is more than one way of eliminating a
268 particular register, the most preferred should be specified first. */
270 struct elim_table
272 int from; /* Register number to be eliminated. */
273 int to; /* Register number used as replacement. */
274 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
275 int can_eliminate; /* Nonzero if this elimination can be done. */
276 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
277 target hook in previous scan over insns
278 made by reload. */
279 HOST_WIDE_INT offset; /* Current offset between the two regs. */
280 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
281 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
282 rtx from_rtx; /* REG rtx for the register to be eliminated.
283 We cannot simply compare the number since
284 we might then spuriously replace a hard
285 register corresponding to a pseudo
286 assigned to the reg to be eliminated. */
287 rtx to_rtx; /* REG rtx for the replacement. */
290 static struct elim_table *reg_eliminate = 0;
292 /* This is an intermediate structure to initialize the table. It has
293 exactly the members provided by ELIMINABLE_REGS. */
294 static const struct elim_table_1
296 const int from;
297 const int to;
298 } reg_eliminate_1[] =
300 /* If a set of eliminable registers was specified, define the table from it.
301 Otherwise, default to the normal case of the frame pointer being
302 replaced by the stack pointer. */
304 #ifdef ELIMINABLE_REGS
305 ELIMINABLE_REGS;
306 #else
307 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
308 #endif
310 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
312 /* Record the number of pending eliminations that have an offset not equal
313 to their initial offset. If nonzero, we use a new copy of each
314 replacement result in any insns encountered. */
315 int num_not_at_initial_offset;
317 /* Count the number of registers that we may be able to eliminate. */
318 static int num_eliminable;
319 /* And the number of registers that are equivalent to a constant that
320 can be eliminated to frame_pointer / arg_pointer + constant. */
321 static int num_eliminable_invariants;
323 /* For each label, we record the offset of each elimination. If we reach
324 a label by more than one path and an offset differs, we cannot do the
325 elimination. This information is indexed by the difference of the
326 number of the label and the first label number. We can't offset the
327 pointer itself as this can cause problems on machines with segmented
328 memory. The first table is an array of flags that records whether we
329 have yet encountered a label and the second table is an array of arrays,
330 one entry in the latter array for each elimination. */
332 static int first_label_num;
333 static char *offsets_known_at;
334 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
336 vec<reg_equivs_t, va_gc> *reg_equivs;
338 /* Stack of addresses where an rtx has been changed. We can undo the
339 changes by popping items off the stack and restoring the original
340 value at each location.
342 We use this simplistic undo capability rather than copy_rtx as copy_rtx
343 will not make a deep copy of a normally sharable rtx, such as
344 (const (plus (symbol_ref) (const_int))). If such an expression appears
345 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
346 rtx expression would be changed. See PR 42431. */
348 typedef rtx *rtx_p;
349 static vec<rtx_p> substitute_stack;
351 /* Number of labels in the current function. */
353 static int num_labels;
355 static void replace_pseudos_in (rtx *, machine_mode, rtx);
356 static void maybe_fix_stack_asms (void);
357 static void copy_reloads (struct insn_chain *);
358 static void calculate_needs_all_insns (int);
359 static int find_reg (struct insn_chain *, int);
360 static void find_reload_regs (struct insn_chain *);
361 static void select_reload_regs (void);
362 static void delete_caller_save_insns (void);
364 static void spill_failure (rtx_insn *, enum reg_class);
365 static void count_spilled_pseudo (int, int, int);
366 static void delete_dead_insn (rtx_insn *);
367 static void alter_reg (int, int, bool);
368 static void set_label_offsets (rtx, rtx_insn *, int);
369 static void check_eliminable_occurrences (rtx);
370 static void elimination_effects (rtx, machine_mode);
371 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
372 static int eliminate_regs_in_insn (rtx_insn *, int);
373 static void update_eliminable_offsets (void);
374 static void mark_not_eliminable (rtx, const_rtx, void *);
375 static void set_initial_elim_offsets (void);
376 static bool verify_initial_elim_offsets (void);
377 static void set_initial_label_offsets (void);
378 static void set_offsets_for_label (rtx_insn *);
379 static void init_eliminable_invariants (rtx_insn *, bool);
380 static void init_elim_table (void);
381 static void free_reg_equiv (void);
382 static void update_eliminables (HARD_REG_SET *);
383 static bool update_eliminables_and_spill (void);
384 static void elimination_costs_in_insn (rtx_insn *);
385 static void spill_hard_reg (unsigned int, int);
386 static int finish_spills (int);
387 static void scan_paradoxical_subregs (rtx);
388 static void count_pseudo (int);
389 static void order_regs_for_reload (struct insn_chain *);
390 static void reload_as_needed (int);
391 static void forget_old_reloads_1 (rtx, const_rtx, void *);
392 static void forget_marked_reloads (regset);
393 static int reload_reg_class_lower (const void *, const void *);
394 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
395 machine_mode);
396 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
397 machine_mode);
398 static int reload_reg_free_p (unsigned int, int, enum reload_type);
399 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
400 rtx, rtx, int, int);
401 static int free_for_value_p (int, machine_mode, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int allocate_reload_reg (struct insn_chain *, int, int);
404 static int conflicts_with_override (rtx);
405 static void failed_reload (rtx_insn *, int);
406 static int set_reload_reg (int, int);
407 static void choose_reload_regs_init (struct insn_chain *, rtx *);
408 static void choose_reload_regs (struct insn_chain *);
409 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
410 rtx, int);
411 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
412 int);
413 static void do_input_reload (struct insn_chain *, struct reload *, int);
414 static void do_output_reload (struct insn_chain *, struct reload *, int);
415 static void emit_reload_insns (struct insn_chain *);
416 static void delete_output_reload (rtx_insn *, int, int, rtx);
417 static void delete_address_reloads (rtx_insn *, rtx_insn *);
418 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
419 static void inc_for_reload (rtx, rtx, rtx, int);
420 static void add_auto_inc_notes (rtx_insn *, rtx);
421 static void substitute (rtx *, const_rtx, rtx);
422 static bool gen_reload_chain_without_interm_reg_p (int, int);
423 static int reloads_conflict (int, int);
424 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
425 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
427 /* Initialize the reload pass. This is called at the beginning of compilation
428 and may be called again if the target is reinitialized. */
430 void
431 init_reload (void)
433 int i;
435 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
436 Set spill_indirect_levels to the number of levels such addressing is
437 permitted, zero if it is not permitted at all. */
439 rtx tem
440 = gen_rtx_MEM (Pmode,
441 gen_rtx_PLUS (Pmode,
442 gen_rtx_REG (Pmode,
443 LAST_VIRTUAL_REGISTER + 1),
444 gen_int_mode (4, Pmode)));
445 spill_indirect_levels = 0;
447 while (memory_address_p (QImode, tem))
449 spill_indirect_levels++;
450 tem = gen_rtx_MEM (Pmode, tem);
453 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
455 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
456 indirect_symref_ok = memory_address_p (QImode, tem);
458 /* See if reg+reg is a valid (and offsettable) address. */
460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 tem = gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
464 gen_rtx_REG (Pmode, i));
466 /* This way, we make sure that reg+reg is an offsettable address. */
467 tem = plus_constant (Pmode, tem, 4);
469 if (memory_address_p (QImode, tem))
471 double_reg_address_ok = 1;
472 break;
476 /* Initialize obstack for our rtl allocation. */
477 if (reload_startobj == NULL)
479 gcc_obstack_init (&reload_obstack);
480 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
483 INIT_REG_SET (&spilled_pseudos);
484 INIT_REG_SET (&changed_allocation_pseudos);
485 INIT_REG_SET (&pseudos_counted);
488 /* List of insn chains that are currently unused. */
489 static struct insn_chain *unused_insn_chains = 0;
491 /* Allocate an empty insn_chain structure. */
492 struct insn_chain *
493 new_insn_chain (void)
495 struct insn_chain *c;
497 if (unused_insn_chains == 0)
499 c = XOBNEW (&reload_obstack, struct insn_chain);
500 INIT_REG_SET (&c->live_throughout);
501 INIT_REG_SET (&c->dead_or_set);
503 else
505 c = unused_insn_chains;
506 unused_insn_chains = c->next;
508 c->is_caller_save_insn = 0;
509 c->need_operand_change = 0;
510 c->need_reload = 0;
511 c->need_elim = 0;
512 return c;
515 /* Small utility function to set all regs in hard reg set TO which are
516 allocated to pseudos in regset FROM. */
518 void
519 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
521 unsigned int regno;
522 reg_set_iterator rsi;
524 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
526 int r = reg_renumber[regno];
528 if (r < 0)
530 /* reload_combine uses the information from DF_LIVE_IN,
531 which might still contain registers that have not
532 actually been allocated since they have an
533 equivalence. */
534 gcc_assert (ira_conflicts_p || reload_completed);
536 else
537 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
541 /* Replace all pseudos found in LOC with their corresponding
542 equivalences. */
544 static void
545 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
547 rtx x = *loc;
548 enum rtx_code code;
549 const char *fmt;
550 int i, j;
552 if (! x)
553 return;
555 code = GET_CODE (x);
556 if (code == REG)
558 unsigned int regno = REGNO (x);
560 if (regno < FIRST_PSEUDO_REGISTER)
561 return;
563 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
564 if (x != *loc)
566 *loc = x;
567 replace_pseudos_in (loc, mem_mode, usage);
568 return;
571 if (reg_equiv_constant (regno))
572 *loc = reg_equiv_constant (regno);
573 else if (reg_equiv_invariant (regno))
574 *loc = reg_equiv_invariant (regno);
575 else if (reg_equiv_mem (regno))
576 *loc = reg_equiv_mem (regno);
577 else if (reg_equiv_address (regno))
578 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
579 else
581 gcc_assert (!REG_P (regno_reg_rtx[regno])
582 || REGNO (regno_reg_rtx[regno]) != regno);
583 *loc = regno_reg_rtx[regno];
586 return;
588 else if (code == MEM)
590 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
591 return;
594 /* Process each of our operands recursively. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
597 if (*fmt == 'e')
598 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
599 else if (*fmt == 'E')
600 for (j = 0; j < XVECLEN (x, i); j++)
601 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
604 /* Determine if the current function has an exception receiver block
605 that reaches the exit block via non-exceptional edges */
607 static bool
608 has_nonexceptional_receiver (void)
610 edge e;
611 edge_iterator ei;
612 basic_block *tos, *worklist, bb;
614 /* If we're not optimizing, then just err on the safe side. */
615 if (!optimize)
616 return true;
618 /* First determine which blocks can reach exit via normal paths. */
619 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
621 FOR_EACH_BB_FN (bb, cfun)
622 bb->flags &= ~BB_REACHABLE;
624 /* Place the exit block on our worklist. */
625 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
626 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
628 /* Iterate: find everything reachable from what we've already seen. */
629 while (tos != worklist)
631 bb = *--tos;
633 FOR_EACH_EDGE (e, ei, bb->preds)
634 if (!(e->flags & EDGE_ABNORMAL))
636 basic_block src = e->src;
638 if (!(src->flags & BB_REACHABLE))
640 src->flags |= BB_REACHABLE;
641 *tos++ = src;
645 free (worklist);
647 /* Now see if there's a reachable block with an exceptional incoming
648 edge. */
649 FOR_EACH_BB_FN (bb, cfun)
650 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
651 return true;
653 /* No exceptional block reached exit unexceptionally. */
654 return false;
657 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
658 zero elements) to MAX_REG_NUM elements.
660 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
661 void
662 grow_reg_equivs (void)
664 int old_size = vec_safe_length (reg_equivs);
665 int max_regno = max_reg_num ();
666 int i;
667 reg_equivs_t ze;
669 memset (&ze, 0, sizeof (reg_equivs_t));
670 vec_safe_reserve (reg_equivs, max_regno);
671 for (i = old_size; i < max_regno; i++)
672 reg_equivs->quick_insert (i, ze);
676 /* Global variables used by reload and its subroutines. */
678 /* The current basic block while in calculate_elim_costs_all_insns. */
679 static basic_block elim_bb;
681 /* Set during calculate_needs if an insn needs register elimination. */
682 static int something_needs_elimination;
683 /* Set during calculate_needs if an insn needs an operand changed. */
684 static int something_needs_operands_changed;
685 /* Set by alter_regs if we spilled a register to the stack. */
686 static bool something_was_spilled;
688 /* Nonzero means we couldn't get enough spill regs. */
689 static int failure;
691 /* Temporary array of pseudo-register number. */
692 static int *temp_pseudo_reg_arr;
694 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
695 If that insn didn't set the register (i.e., it copied the register to
696 memory), just delete that insn instead of the equivalencing insn plus
697 anything now dead. If we call delete_dead_insn on that insn, we may
698 delete the insn that actually sets the register if the register dies
699 there and that is incorrect. */
700 static void
701 remove_init_insns ()
703 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
707 rtx list;
708 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
710 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
712 /* If we already deleted the insn or if it may trap, we can't
713 delete it. The latter case shouldn't happen, but can
714 if an insn has a variable address, gets a REG_EH_REGION
715 note added to it, and then gets converted into a load
716 from a constant address. */
717 if (NOTE_P (equiv_insn)
718 || can_throw_internal (equiv_insn))
720 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
721 delete_dead_insn (equiv_insn);
722 else
723 SET_INSN_DELETED (equiv_insn);
729 /* Return true if remove_init_insns will delete INSN. */
730 static bool
731 will_delete_init_insn_p (rtx_insn *insn)
733 rtx set = single_set (insn);
734 if (!set || !REG_P (SET_DEST (set)))
735 return false;
736 unsigned regno = REGNO (SET_DEST (set));
738 if (can_throw_internal (insn))
739 return false;
741 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
742 return false;
744 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
746 rtx equiv_insn = XEXP (list, 0);
747 if (equiv_insn == insn)
748 return true;
750 return false;
753 /* Main entry point for the reload pass.
755 FIRST is the first insn of the function being compiled.
757 GLOBAL nonzero means we were called from global_alloc
758 and should attempt to reallocate any pseudoregs that we
759 displace from hard regs we will use for reloads.
760 If GLOBAL is zero, we do not have enough information to do that,
761 so any pseudo reg that is spilled must go to the stack.
763 Return value is TRUE if reload likely left dead insns in the
764 stream and a DCE pass should be run to elimiante them. Else the
765 return value is FALSE. */
767 bool
768 reload (rtx_insn *first, int global)
770 int i, n;
771 rtx_insn *insn;
772 struct elim_table *ep;
773 basic_block bb;
774 bool inserted;
776 /* Make sure even insns with volatile mem refs are recognizable. */
777 init_recog ();
779 failure = 0;
781 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
783 /* Make sure that the last insn in the chain
784 is not something that needs reloading. */
785 emit_note (NOTE_INSN_DELETED);
787 /* Enable find_equiv_reg to distinguish insns made by reload. */
788 reload_first_uid = get_max_uid ();
790 #ifdef SECONDARY_MEMORY_NEEDED
791 /* Initialize the secondary memory table. */
792 clear_secondary_mem ();
793 #endif
795 /* We don't have a stack slot for any spill reg yet. */
796 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
797 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
799 /* Initialize the save area information for caller-save, in case some
800 are needed. */
801 init_save_areas ();
803 /* Compute which hard registers are now in use
804 as homes for pseudo registers.
805 This is done here rather than (eg) in global_alloc
806 because this point is reached even if not optimizing. */
807 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
808 mark_home_live (i);
810 /* A function that has a nonlocal label that can reach the exit
811 block via non-exceptional paths must save all call-saved
812 registers. */
813 if (cfun->has_nonlocal_label
814 && has_nonexceptional_receiver ())
815 crtl->saves_all_registers = 1;
817 if (crtl->saves_all_registers)
818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
819 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
820 df_set_regs_ever_live (i, true);
822 /* Find all the pseudo registers that didn't get hard regs
823 but do have known equivalent constants or memory slots.
824 These include parameters (known equivalent to parameter slots)
825 and cse'd or loop-moved constant memory addresses.
827 Record constant equivalents in reg_equiv_constant
828 so they will be substituted by find_reloads.
829 Record memory equivalents in reg_mem_equiv so they can
830 be substituted eventually by altering the REG-rtx's. */
832 grow_reg_equivs ();
833 reg_old_renumber = XCNEWVEC (short, max_regno);
834 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
835 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
836 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
838 CLEAR_HARD_REG_SET (bad_spill_regs_global);
840 init_eliminable_invariants (first, true);
841 init_elim_table ();
843 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
844 stack slots to the pseudos that lack hard regs or equivalents.
845 Do not touch virtual registers. */
847 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
848 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
849 temp_pseudo_reg_arr[n++] = i;
851 if (ira_conflicts_p)
852 /* Ask IRA to order pseudo-registers for better stack slot
853 sharing. */
854 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
856 for (i = 0; i < n; i++)
857 alter_reg (temp_pseudo_reg_arr[i], -1, false);
859 /* If we have some registers we think can be eliminated, scan all insns to
860 see if there is an insn that sets one of these registers to something
861 other than itself plus a constant. If so, the register cannot be
862 eliminated. Doing this scan here eliminates an extra pass through the
863 main reload loop in the most common case where register elimination
864 cannot be done. */
865 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
866 if (INSN_P (insn))
867 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
869 maybe_fix_stack_asms ();
871 insns_need_reload = 0;
872 something_needs_elimination = 0;
874 /* Initialize to -1, which means take the first spill register. */
875 last_spill_reg = -1;
877 /* Spill any hard regs that we know we can't eliminate. */
878 CLEAR_HARD_REG_SET (used_spill_regs);
879 /* There can be multiple ways to eliminate a register;
880 they should be listed adjacently.
881 Elimination for any register fails only if all possible ways fail. */
882 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
884 int from = ep->from;
885 int can_eliminate = 0;
888 can_eliminate |= ep->can_eliminate;
889 ep++;
891 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
892 if (! can_eliminate)
893 spill_hard_reg (from, 1);
896 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
897 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
899 finish_spills (global);
901 /* From now on, we may need to generate moves differently. We may also
902 allow modifications of insns which cause them to not be recognized.
903 Any such modifications will be cleaned up during reload itself. */
904 reload_in_progress = 1;
906 /* This loop scans the entire function each go-round
907 and repeats until one repetition spills no additional hard regs. */
908 for (;;)
910 int something_changed;
911 int did_spill;
912 HOST_WIDE_INT starting_frame_size;
914 starting_frame_size = get_frame_size ();
915 something_was_spilled = false;
917 set_initial_elim_offsets ();
918 set_initial_label_offsets ();
920 /* For each pseudo register that has an equivalent location defined,
921 try to eliminate any eliminable registers (such as the frame pointer)
922 assuming initial offsets for the replacement register, which
923 is the normal case.
925 If the resulting location is directly addressable, substitute
926 the MEM we just got directly for the old REG.
928 If it is not addressable but is a constant or the sum of a hard reg
929 and constant, it is probably not addressable because the constant is
930 out of range, in that case record the address; we will generate
931 hairy code to compute the address in a register each time it is
932 needed. Similarly if it is a hard register, but one that is not
933 valid as an address register.
935 If the location is not addressable, but does not have one of the
936 above forms, assign a stack slot. We have to do this to avoid the
937 potential of producing lots of reloads if, e.g., a location involves
938 a pseudo that didn't get a hard register and has an equivalent memory
939 location that also involves a pseudo that didn't get a hard register.
941 Perhaps at some point we will improve reload_when_needed handling
942 so this problem goes away. But that's very hairy. */
944 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
945 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
947 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
948 NULL_RTX);
950 if (strict_memory_address_addr_space_p
951 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
952 MEM_ADDR_SPACE (x)))
953 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
954 else if (CONSTANT_P (XEXP (x, 0))
955 || (REG_P (XEXP (x, 0))
956 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
957 || (GET_CODE (XEXP (x, 0)) == PLUS
958 && REG_P (XEXP (XEXP (x, 0), 0))
959 && (REGNO (XEXP (XEXP (x, 0), 0))
960 < FIRST_PSEUDO_REGISTER)
961 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
962 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
963 else
965 /* Make a new stack slot. Then indicate that something
966 changed so we go back and recompute offsets for
967 eliminable registers because the allocation of memory
968 below might change some offset. reg_equiv_{mem,address}
969 will be set up for this pseudo on the next pass around
970 the loop. */
971 reg_equiv_memory_loc (i) = 0;
972 reg_equiv_init (i) = 0;
973 alter_reg (i, -1, true);
977 if (caller_save_needed)
978 setup_save_areas ();
980 if (starting_frame_size && crtl->stack_alignment_needed)
982 /* If we have a stack frame, we must align it now. The
983 stack size may be a part of the offset computation for
984 register elimination. So if this changes the stack size,
985 then repeat the elimination bookkeeping. We don't
986 realign when there is no stack, as that will cause a
987 stack frame when none is needed should
988 STARTING_FRAME_OFFSET not be already aligned to
989 STACK_BOUNDARY. */
990 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
992 /* If we allocated another stack slot, redo elimination bookkeeping. */
993 if (something_was_spilled || starting_frame_size != get_frame_size ())
995 update_eliminables_and_spill ();
996 continue;
999 if (caller_save_needed)
1001 save_call_clobbered_regs ();
1002 /* That might have allocated new insn_chain structures. */
1003 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1006 calculate_needs_all_insns (global);
1008 if (! ira_conflicts_p)
1009 /* Don't do it for IRA. We need this info because we don't
1010 change live_throughout and dead_or_set for chains when IRA
1011 is used. */
1012 CLEAR_REG_SET (&spilled_pseudos);
1014 did_spill = 0;
1016 something_changed = 0;
1018 /* If we allocated any new memory locations, make another pass
1019 since it might have changed elimination offsets. */
1020 if (something_was_spilled || starting_frame_size != get_frame_size ())
1021 something_changed = 1;
1023 /* Even if the frame size remained the same, we might still have
1024 changed elimination offsets, e.g. if find_reloads called
1025 force_const_mem requiring the back end to allocate a constant
1026 pool base register that needs to be saved on the stack. */
1027 else if (!verify_initial_elim_offsets ())
1028 something_changed = 1;
1030 if (update_eliminables_and_spill ())
1032 did_spill = 1;
1033 something_changed = 1;
1036 select_reload_regs ();
1037 if (failure)
1038 goto failed;
1040 if (insns_need_reload != 0 || did_spill)
1041 something_changed |= finish_spills (global);
1043 if (! something_changed)
1044 break;
1046 if (caller_save_needed)
1047 delete_caller_save_insns ();
1049 obstack_free (&reload_obstack, reload_firstobj);
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1059 remove_init_insns ();
1061 /* Use the reload registers where necessary
1062 by generating move instructions to move the must-be-register
1063 values into or out of the reload registers. */
1065 if (insns_need_reload != 0 || something_needs_elimination
1066 || something_needs_operands_changed)
1068 HOST_WIDE_INT old_frame_size = get_frame_size ();
1070 reload_as_needed (global);
1072 gcc_assert (old_frame_size == get_frame_size ());
1074 gcc_assert (verify_initial_elim_offsets ());
1077 /* If we were able to eliminate the frame pointer, show that it is no
1078 longer live at the start of any basic block. If it ls live by
1079 virtue of being in a pseudo, that pseudo will be marked live
1080 and hence the frame pointer will be known to be live via that
1081 pseudo. */
1083 if (! frame_pointer_needed)
1084 FOR_EACH_BB_FN (bb, cfun)
1085 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1087 /* Come here (with failure set nonzero) if we can't get enough spill
1088 regs. */
1089 failed:
1091 CLEAR_REG_SET (&changed_allocation_pseudos);
1092 CLEAR_REG_SET (&spilled_pseudos);
1093 reload_in_progress = 0;
1095 /* Now eliminate all pseudo regs by modifying them into
1096 their equivalent memory references.
1097 The REG-rtx's for the pseudos are modified in place,
1098 so all insns that used to refer to them now refer to memory.
1100 For a reg that has a reg_equiv_address, all those insns
1101 were changed by reloading so that no insns refer to it any longer;
1102 but the DECL_RTL of a variable decl may refer to it,
1103 and if so this causes the debugging info to mention the variable. */
1105 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1107 rtx addr = 0;
1109 if (reg_equiv_mem (i))
1110 addr = XEXP (reg_equiv_mem (i), 0);
1112 if (reg_equiv_address (i))
1113 addr = reg_equiv_address (i);
1115 if (addr)
1117 if (reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1121 REG_USERVAR_P (reg) = 0;
1122 PUT_CODE (reg, MEM);
1123 XEXP (reg, 0) = addr;
1124 if (reg_equiv_memory_loc (i))
1125 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1126 else
1127 MEM_ATTRS (reg) = 0;
1128 MEM_NOTRAP_P (reg) = 1;
1130 else if (reg_equiv_mem (i))
1131 XEXP (reg_equiv_mem (i), 0) = addr;
1134 /* We don't want complex addressing modes in debug insns
1135 if simpler ones will do, so delegitimize equivalences
1136 in debug insns. */
1137 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1139 rtx reg = regno_reg_rtx[i];
1140 rtx equiv = 0;
1141 df_ref use, next;
1143 if (reg_equiv_constant (i))
1144 equiv = reg_equiv_constant (i);
1145 else if (reg_equiv_invariant (i))
1146 equiv = reg_equiv_invariant (i);
1147 else if (reg && MEM_P (reg))
1148 equiv = targetm.delegitimize_address (reg);
1149 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1150 equiv = reg;
1152 if (equiv == reg)
1153 continue;
1155 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1157 insn = DF_REF_INSN (use);
1159 /* Make sure the next ref is for a different instruction,
1160 so that we're not affected by the rescan. */
1161 next = DF_REF_NEXT_REG (use);
1162 while (next && DF_REF_INSN (next) == insn)
1163 next = DF_REF_NEXT_REG (next);
1165 if (DEBUG_INSN_P (insn))
1167 if (!equiv)
1169 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1170 df_insn_rescan_debug_internal (insn);
1172 else
1173 INSN_VAR_LOCATION_LOC (insn)
1174 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1175 reg, equiv);
1181 /* We must set reload_completed now since the cleanup_subreg_operands call
1182 below will re-recognize each insn and reload may have generated insns
1183 which are only valid during and after reload. */
1184 reload_completed = 1;
1186 /* Make a pass over all the insns and delete all USEs which we inserted
1187 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1188 notes. Delete all CLOBBER insns, except those that refer to the return
1189 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1190 from misarranging variable-array code, and simplify (subreg (reg))
1191 operands. Strip and regenerate REG_INC notes that may have been moved
1192 around. */
1194 for (insn = first; insn; insn = NEXT_INSN (insn))
1195 if (INSN_P (insn))
1197 rtx *pnote;
1199 if (CALL_P (insn))
1200 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1201 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1203 if ((GET_CODE (PATTERN (insn)) == USE
1204 /* We mark with QImode USEs introduced by reload itself. */
1205 && (GET_MODE (insn) == QImode
1206 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1207 || (GET_CODE (PATTERN (insn)) == CLOBBER
1208 && (!MEM_P (XEXP (PATTERN (insn), 0))
1209 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1210 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1211 && XEXP (XEXP (PATTERN (insn), 0), 0)
1212 != stack_pointer_rtx))
1213 && (!REG_P (XEXP (PATTERN (insn), 0))
1214 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1216 delete_insn (insn);
1217 continue;
1220 /* Some CLOBBERs may survive until here and still reference unassigned
1221 pseudos with const equivalent, which may in turn cause ICE in later
1222 passes if the reference remains in place. */
1223 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1224 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1225 VOIDmode, PATTERN (insn));
1227 /* Discard obvious no-ops, even without -O. This optimization
1228 is fast and doesn't interfere with debugging. */
1229 if (NONJUMP_INSN_P (insn)
1230 && GET_CODE (PATTERN (insn)) == SET
1231 && REG_P (SET_SRC (PATTERN (insn)))
1232 && REG_P (SET_DEST (PATTERN (insn)))
1233 && (REGNO (SET_SRC (PATTERN (insn)))
1234 == REGNO (SET_DEST (PATTERN (insn)))))
1236 delete_insn (insn);
1237 continue;
1240 pnote = &REG_NOTES (insn);
1241 while (*pnote != 0)
1243 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1244 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1245 || REG_NOTE_KIND (*pnote) == REG_INC)
1246 *pnote = XEXP (*pnote, 1);
1247 else
1248 pnote = &XEXP (*pnote, 1);
1251 if (AUTO_INC_DEC)
1252 add_auto_inc_notes (insn, PATTERN (insn));
1254 /* Simplify (subreg (reg)) if it appears as an operand. */
1255 cleanup_subreg_operands (insn);
1257 /* Clean up invalid ASMs so that they don't confuse later passes.
1258 See PR 21299. */
1259 if (asm_noperands (PATTERN (insn)) >= 0)
1261 extract_insn (insn);
1262 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1264 error_for_asm (insn,
1265 "%<asm%> operand has impossible constraints");
1266 delete_insn (insn);
1267 continue;
1272 /* If we are doing generic stack checking, give a warning if this
1273 function's frame size is larger than we expect. */
1274 if (flag_stack_check == GENERIC_STACK_CHECK)
1276 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1277 static int verbose_warned = 0;
1279 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1280 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1281 size += UNITS_PER_WORD;
1283 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1285 warning (0, "frame size too large for reliable stack checking");
1286 if (! verbose_warned)
1288 warning (0, "try reducing the number of local variables");
1289 verbose_warned = 1;
1294 free (temp_pseudo_reg_arr);
1296 /* Indicate that we no longer have known memory locations or constants. */
1297 free_reg_equiv ();
1299 free (reg_max_ref_width);
1300 free (reg_old_renumber);
1301 free (pseudo_previous_regs);
1302 free (pseudo_forbidden_regs);
1304 CLEAR_HARD_REG_SET (used_spill_regs);
1305 for (i = 0; i < n_spills; i++)
1306 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1308 /* Free all the insn_chain structures at once. */
1309 obstack_free (&reload_obstack, reload_startobj);
1310 unused_insn_chains = 0;
1312 inserted = fixup_abnormal_edges ();
1314 /* We've possibly turned single trapping insn into multiple ones. */
1315 if (cfun->can_throw_non_call_exceptions)
1317 sbitmap blocks;
1318 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1319 bitmap_ones (blocks);
1320 find_many_sub_basic_blocks (blocks);
1321 sbitmap_free (blocks);
1324 if (inserted)
1325 commit_edge_insertions ();
1327 /* Replacing pseudos with their memory equivalents might have
1328 created shared rtx. Subsequent passes would get confused
1329 by this, so unshare everything here. */
1330 unshare_all_rtl_again (first);
1332 #ifdef STACK_BOUNDARY
1333 /* init_emit has set the alignment of the hard frame pointer
1334 to STACK_BOUNDARY. It is very likely no longer valid if
1335 the hard frame pointer was used for register allocation. */
1336 if (!frame_pointer_needed)
1337 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1338 #endif
1340 substitute_stack.release ();
1342 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1344 reload_completed = !failure;
1346 return need_dce;
1349 /* Yet another special case. Unfortunately, reg-stack forces people to
1350 write incorrect clobbers in asm statements. These clobbers must not
1351 cause the register to appear in bad_spill_regs, otherwise we'll call
1352 fatal_insn later. We clear the corresponding regnos in the live
1353 register sets to avoid this.
1354 The whole thing is rather sick, I'm afraid. */
1356 static void
1357 maybe_fix_stack_asms (void)
1359 #ifdef STACK_REGS
1360 const char *constraints[MAX_RECOG_OPERANDS];
1361 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1362 struct insn_chain *chain;
1364 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1366 int i, noperands;
1367 HARD_REG_SET clobbered, allowed;
1368 rtx pat;
1370 if (! INSN_P (chain->insn)
1371 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1372 continue;
1373 pat = PATTERN (chain->insn);
1374 if (GET_CODE (pat) != PARALLEL)
1375 continue;
1377 CLEAR_HARD_REG_SET (clobbered);
1378 CLEAR_HARD_REG_SET (allowed);
1380 /* First, make a mask of all stack regs that are clobbered. */
1381 for (i = 0; i < XVECLEN (pat, 0); i++)
1383 rtx t = XVECEXP (pat, 0, i);
1384 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1385 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1388 /* Get the operand values and constraints out of the insn. */
1389 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1390 constraints, operand_mode, NULL);
1392 /* For every operand, see what registers are allowed. */
1393 for (i = 0; i < noperands; i++)
1395 const char *p = constraints[i];
1396 /* For every alternative, we compute the class of registers allowed
1397 for reloading in CLS, and merge its contents into the reg set
1398 ALLOWED. */
1399 int cls = (int) NO_REGS;
1401 for (;;)
1403 char c = *p;
1405 if (c == '\0' || c == ',' || c == '#')
1407 /* End of one alternative - mark the regs in the current
1408 class, and reset the class. */
1409 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1410 cls = NO_REGS;
1411 p++;
1412 if (c == '#')
1413 do {
1414 c = *p++;
1415 } while (c != '\0' && c != ',');
1416 if (c == '\0')
1417 break;
1418 continue;
1421 switch (c)
1423 case 'g':
1424 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 break;
1427 default:
1428 enum constraint_num cn = lookup_constraint (p);
1429 if (insn_extra_address_constraint (cn))
1430 cls = (int) reg_class_subunion[cls]
1431 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1432 ADDRESS, SCRATCH)];
1433 else
1434 cls = (int) reg_class_subunion[cls]
1435 [reg_class_for_constraint (cn)];
1436 break;
1438 p += CONSTRAINT_LEN (c, p);
1441 /* Those of the registers which are clobbered, but allowed by the
1442 constraints, must be usable as reload registers. So clear them
1443 out of the life information. */
1444 AND_HARD_REG_SET (allowed, clobbered);
1445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1446 if (TEST_HARD_REG_BIT (allowed, i))
1448 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1449 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1453 #endif
1456 /* Copy the global variables n_reloads and rld into the corresponding elts
1457 of CHAIN. */
1458 static void
1459 copy_reloads (struct insn_chain *chain)
1461 chain->n_reloads = n_reloads;
1462 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1463 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1464 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1467 /* Walk the chain of insns, and determine for each whether it needs reloads
1468 and/or eliminations. Build the corresponding insns_need_reload list, and
1469 set something_needs_elimination as appropriate. */
1470 static void
1471 calculate_needs_all_insns (int global)
1473 struct insn_chain **pprev_reload = &insns_need_reload;
1474 struct insn_chain *chain, *next = 0;
1476 something_needs_elimination = 0;
1478 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1479 for (chain = reload_insn_chain; chain != 0; chain = next)
1481 rtx_insn *insn = chain->insn;
1483 next = chain->next;
1485 /* Clear out the shortcuts. */
1486 chain->n_reloads = 0;
1487 chain->need_elim = 0;
1488 chain->need_reload = 0;
1489 chain->need_operand_change = 0;
1491 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1492 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1493 what effects this has on the known offsets at labels. */
1495 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1496 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1497 set_label_offsets (insn, insn, 0);
1499 if (INSN_P (insn))
1501 rtx old_body = PATTERN (insn);
1502 int old_code = INSN_CODE (insn);
1503 rtx old_notes = REG_NOTES (insn);
1504 int did_elimination = 0;
1505 int operands_changed = 0;
1507 /* Skip insns that only set an equivalence. */
1508 if (will_delete_init_insn_p (insn))
1509 continue;
1511 /* If needed, eliminate any eliminable registers. */
1512 if (num_eliminable || num_eliminable_invariants)
1513 did_elimination = eliminate_regs_in_insn (insn, 0);
1515 /* Analyze the instruction. */
1516 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1517 global, spill_reg_order);
1519 /* If a no-op set needs more than one reload, this is likely
1520 to be something that needs input address reloads. We
1521 can't get rid of this cleanly later, and it is of no use
1522 anyway, so discard it now.
1523 We only do this when expensive_optimizations is enabled,
1524 since this complements reload inheritance / output
1525 reload deletion, and it can make debugging harder. */
1526 if (flag_expensive_optimizations && n_reloads > 1)
1528 rtx set = single_set (insn);
1529 if (set
1531 ((SET_SRC (set) == SET_DEST (set)
1532 && REG_P (SET_SRC (set))
1533 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1534 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1535 && reg_renumber[REGNO (SET_SRC (set))] < 0
1536 && reg_renumber[REGNO (SET_DEST (set))] < 0
1537 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1538 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1539 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1540 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1542 if (ira_conflicts_p)
1543 /* Inform IRA about the insn deletion. */
1544 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1545 REGNO (SET_SRC (set)));
1546 delete_insn (insn);
1547 /* Delete it from the reload chain. */
1548 if (chain->prev)
1549 chain->prev->next = next;
1550 else
1551 reload_insn_chain = next;
1552 if (next)
1553 next->prev = chain->prev;
1554 chain->next = unused_insn_chains;
1555 unused_insn_chains = chain;
1556 continue;
1559 if (num_eliminable)
1560 update_eliminable_offsets ();
1562 /* Remember for later shortcuts which insns had any reloads or
1563 register eliminations. */
1564 chain->need_elim = did_elimination;
1565 chain->need_reload = n_reloads > 0;
1566 chain->need_operand_change = operands_changed;
1568 /* Discard any register replacements done. */
1569 if (did_elimination)
1571 obstack_free (&reload_obstack, reload_insn_firstobj);
1572 PATTERN (insn) = old_body;
1573 INSN_CODE (insn) = old_code;
1574 REG_NOTES (insn) = old_notes;
1575 something_needs_elimination = 1;
1578 something_needs_operands_changed |= operands_changed;
1580 if (n_reloads != 0)
1582 copy_reloads (chain);
1583 *pprev_reload = chain;
1584 pprev_reload = &chain->next_need_reload;
1588 *pprev_reload = 0;
1591 /* This function is called from the register allocator to set up estimates
1592 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1593 an invariant. The structure is similar to calculate_needs_all_insns. */
1595 void
1596 calculate_elim_costs_all_insns (void)
1598 int *reg_equiv_init_cost;
1599 basic_block bb;
1600 int i;
1602 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1603 init_elim_table ();
1604 init_eliminable_invariants (get_insns (), false);
1606 set_initial_elim_offsets ();
1607 set_initial_label_offsets ();
1609 FOR_EACH_BB_FN (bb, cfun)
1611 rtx_insn *insn;
1612 elim_bb = bb;
1614 FOR_BB_INSNS (bb, insn)
1616 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1617 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1618 what effects this has on the known offsets at labels. */
1620 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1621 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1622 set_label_offsets (insn, insn, 0);
1624 if (INSN_P (insn))
1626 rtx set = single_set (insn);
1628 /* Skip insns that only set an equivalence. */
1629 if (set && REG_P (SET_DEST (set))
1630 && reg_renumber[REGNO (SET_DEST (set))] < 0
1631 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1632 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1634 unsigned regno = REGNO (SET_DEST (set));
1635 rtx_insn_list *init = reg_equiv_init (regno);
1636 if (init)
1638 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1639 false, true);
1640 machine_mode mode = GET_MODE (SET_DEST (set));
1641 int cost = set_src_cost (t, mode,
1642 optimize_bb_for_speed_p (bb));
1643 int freq = REG_FREQ_FROM_BB (bb);
1645 reg_equiv_init_cost[regno] = cost * freq;
1646 continue;
1649 /* If needed, eliminate any eliminable registers. */
1650 if (num_eliminable || num_eliminable_invariants)
1651 elimination_costs_in_insn (insn);
1653 if (num_eliminable)
1654 update_eliminable_offsets ();
1658 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 if (reg_equiv_invariant (i))
1662 if (reg_equiv_init (i))
1664 int cost = reg_equiv_init_cost[i];
1665 if (dump_file)
1666 fprintf (dump_file,
1667 "Reg %d has equivalence, initial gains %d\n", i, cost);
1668 if (cost != 0)
1669 ira_adjust_equiv_reg_cost (i, cost);
1671 else
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d had equivalence, but can't be eliminated\n",
1677 ira_adjust_equiv_reg_cost (i, 0);
1682 free (reg_equiv_init_cost);
1683 free (offsets_known_at);
1684 free (offsets_at);
1685 offsets_at = NULL;
1686 offsets_known_at = NULL;
1689 /* Comparison function for qsort to decide which of two reloads
1690 should be handled first. *P1 and *P2 are the reload numbers. */
1692 static int
1693 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1696 int t;
1698 /* Consider required reloads before optional ones. */
1699 t = rld[r1].optional - rld[r2].optional;
1700 if (t != 0)
1701 return t;
1703 /* Count all solitary classes before non-solitary ones. */
1704 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1705 - (reg_class_size[(int) rld[r1].rclass] == 1));
1706 if (t != 0)
1707 return t;
1709 /* Aside from solitaires, consider all multi-reg groups first. */
1710 t = rld[r2].nregs - rld[r1].nregs;
1711 if (t != 0)
1712 return t;
1714 /* Consider reloads in order of increasing reg-class number. */
1715 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1716 if (t != 0)
1717 return t;
1719 /* If reloads are equally urgent, sort by reload number,
1720 so that the results of qsort leave nothing to chance. */
1721 return r1 - r2;
1724 /* The cost of spilling each hard reg. */
1725 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727 /* When spilling multiple hard registers, we use SPILL_COST for the first
1728 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1729 only the first hard reg for a multi-reg pseudo. */
1730 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732 /* Map of hard regno to pseudo regno currently occupying the hard
1733 reg. */
1734 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738 static void
1739 count_pseudo (int reg)
1741 int freq = REG_FREQ (reg);
1742 int r = reg_renumber[reg];
1743 int nregs;
1745 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1746 if (ira_conflicts_p && r < 0)
1747 return;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1751 return;
1753 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755 gcc_assert (r >= 0);
1757 spill_add_cost[r] += freq;
1758 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1759 while (nregs-- > 0)
1761 hard_regno_to_pseudo_regno[r + nregs] = reg;
1762 spill_cost[r + nregs] += freq;
1766 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1767 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769 static void
1770 order_regs_for_reload (struct insn_chain *chain)
1772 unsigned i;
1773 HARD_REG_SET used_by_pseudos;
1774 HARD_REG_SET used_by_pseudos2;
1775 reg_set_iterator rsi;
1777 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779 memset (spill_cost, 0, sizeof spill_cost);
1780 memset (spill_add_cost, 0, sizeof spill_add_cost);
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 hard_regno_to_pseudo_regno[i] = -1;
1784 /* Count number of uses of each hard reg by pseudo regs allocated to it
1785 and then order them by decreasing use. First exclude hard registers
1786 that are live in or across this insn. */
1788 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1790 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793 /* Now find out which pseudos are allocated to it, and update
1794 hard_reg_n_uses. */
1795 CLEAR_REG_SET (&pseudos_counted);
1797 EXECUTE_IF_SET_IN_REG_SET
1798 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 count_pseudo (i);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 CLEAR_REG_SET (&pseudos_counted);
1810 /* Vector of reload-numbers showing the order in which the reloads should
1811 be processed. */
1812 static short reload_order[MAX_RELOADS];
1814 /* This is used to keep track of the spill regs used in one insn. */
1815 static HARD_REG_SET used_spill_regs_local;
1817 /* We decided to spill hard register SPILLED, which has a size of
1818 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1819 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1820 update SPILL_COST/SPILL_ADD_COST. */
1822 static void
1823 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 int freq = REG_FREQ (reg);
1826 int r = reg_renumber[reg];
1827 int nregs;
1829 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1830 if (ira_conflicts_p && r < 0)
1831 return;
1833 gcc_assert (r >= 0);
1835 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1838 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1839 return;
1841 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843 spill_add_cost[r] -= freq;
1844 while (nregs-- > 0)
1846 hard_regno_to_pseudo_regno[r + nregs] = -1;
1847 spill_cost[r + nregs] -= freq;
1851 /* Find reload register to use for reload number ORDER. */
1853 static int
1854 find_reg (struct insn_chain *chain, int order)
1856 int rnum = reload_order[order];
1857 struct reload *rl = rld + rnum;
1858 int best_cost = INT_MAX;
1859 int best_reg = -1;
1860 unsigned int i, j, n;
1861 int k;
1862 HARD_REG_SET not_usable;
1863 HARD_REG_SET used_by_other_reload;
1864 reg_set_iterator rsi;
1865 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1869 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1870 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872 CLEAR_HARD_REG_SET (used_by_other_reload);
1873 for (k = 0; k < order; k++)
1875 int other = reload_order[k];
1877 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1878 for (j = 0; j < rld[other].nregs; j++)
1879 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 #ifdef REG_ALLOC_ORDER
1885 unsigned int regno = reg_alloc_order[i];
1886 #else
1887 unsigned int regno = i;
1888 #endif
1890 if (! TEST_HARD_REG_BIT (not_usable, regno)
1891 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1892 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 int this_cost = spill_cost[regno];
1895 int ok = 1;
1896 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898 for (j = 1; j < this_nregs; j++)
1900 this_cost += spill_add_cost[regno + j];
1901 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1902 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1903 ok = 0;
1905 if (! ok)
1906 continue;
1908 if (ira_conflicts_p)
1910 /* Ask IRA to find a better pseudo-register for
1911 spilling. */
1912 for (n = j = 0; j < this_nregs; j++)
1914 int r = hard_regno_to_pseudo_regno[regno + j];
1916 if (r < 0)
1917 continue;
1918 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1919 regno_pseudo_regs[n++] = r;
1921 regno_pseudo_regs[n++] = -1;
1922 if (best_reg < 0
1923 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1924 best_regno_pseudo_regs,
1925 rl->in, rl->out,
1926 chain->insn))
1928 best_reg = regno;
1929 for (j = 0;; j++)
1931 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1932 if (regno_pseudo_regs[j] < 0)
1933 break;
1936 continue;
1939 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1940 this_cost--;
1941 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1942 this_cost--;
1943 if (this_cost < best_cost
1944 /* Among registers with equal cost, prefer caller-saved ones, or
1945 use REG_ALLOC_ORDER if it is defined. */
1946 || (this_cost == best_cost
1947 #ifdef REG_ALLOC_ORDER
1948 && (inv_reg_alloc_order[regno]
1949 < inv_reg_alloc_order[best_reg])
1950 #else
1951 && call_used_regs[regno]
1952 && ! call_used_regs[best_reg]
1953 #endif
1956 best_reg = regno;
1957 best_cost = this_cost;
1961 if (best_reg == -1)
1962 return 0;
1964 if (dump_file)
1965 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1968 rl->regno = best_reg;
1970 EXECUTE_IF_SET_IN_REG_SET
1971 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 count_spilled_pseudo (best_reg, rl->nregs, j);
1976 EXECUTE_IF_SET_IN_REG_SET
1977 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 count_spilled_pseudo (best_reg, rl->nregs, j);
1982 for (i = 0; i < rl->nregs; i++)
1984 gcc_assert (spill_cost[best_reg + i] == 0);
1985 gcc_assert (spill_add_cost[best_reg + i] == 0);
1986 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1987 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 return 1;
1992 /* Find more reload regs to satisfy the remaining need of an insn, which
1993 is given by CHAIN.
1994 Do it by ascending class number, since otherwise a reg
1995 might be spilled for a big class and might fail to count
1996 for a smaller class even though it belongs to that class. */
1998 static void
1999 find_reload_regs (struct insn_chain *chain)
2001 int i;
2003 /* In order to be certain of getting the registers we need,
2004 we must sort the reloads into order of increasing register class.
2005 Then our grabbing of reload registers will parallel the process
2006 that provided the reload registers. */
2007 for (i = 0; i < chain->n_reloads; i++)
2009 /* Show whether this reload already has a hard reg. */
2010 if (chain->rld[i].reg_rtx)
2012 int regno = REGNO (chain->rld[i].reg_rtx);
2013 chain->rld[i].regno = regno;
2014 chain->rld[i].nregs
2015 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 else
2018 chain->rld[i].regno = -1;
2019 reload_order[i] = i;
2022 n_reloads = chain->n_reloads;
2023 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027 if (dump_file)
2028 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032 /* Compute the order of preference for hard registers to spill. */
2034 order_regs_for_reload (chain);
2036 for (i = 0; i < n_reloads; i++)
2038 int r = reload_order[i];
2040 /* Ignore reloads that got marked inoperative. */
2041 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2042 && ! rld[r].optional
2043 && rld[r].regno == -1)
2044 if (! find_reg (chain, i))
2046 if (dump_file)
2047 fprintf (dump_file, "reload failure for reload %d\n", r);
2048 spill_failure (chain->insn, rld[r].rclass);
2049 failure = 1;
2050 return;
2054 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2055 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2060 static void
2061 select_reload_regs (void)
2063 struct insn_chain *chain;
2065 /* Try to satisfy the needs for each insn. */
2066 for (chain = insns_need_reload; chain != 0;
2067 chain = chain->next_need_reload)
2068 find_reload_regs (chain);
2071 /* Delete all insns that were inserted by emit_caller_save_insns during
2072 this iteration. */
2073 static void
2074 delete_caller_save_insns (void)
2076 struct insn_chain *c = reload_insn_chain;
2078 while (c != 0)
2080 while (c != 0 && c->is_caller_save_insn)
2082 struct insn_chain *next = c->next;
2083 rtx_insn *insn = c->insn;
2085 if (c == reload_insn_chain)
2086 reload_insn_chain = next;
2087 delete_insn (insn);
2089 if (next)
2090 next->prev = c->prev;
2091 if (c->prev)
2092 c->prev->next = next;
2093 c->next = unused_insn_chains;
2094 unused_insn_chains = c;
2095 c = next;
2097 if (c != 0)
2098 c = c->next;
2102 /* Handle the failure to find a register to spill.
2103 INSN should be one of the insns which needed this particular spill reg. */
2105 static void
2106 spill_failure (rtx_insn *insn, enum reg_class rclass)
2108 if (asm_noperands (PATTERN (insn)) >= 0)
2109 error_for_asm (insn, "can%'t find a register in class %qs while "
2110 "reloading %<asm%>",
2111 reg_class_names[rclass]);
2112 else
2114 error ("unable to find a register to spill in class %qs",
2115 reg_class_names[rclass]);
2117 if (dump_file)
2119 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2120 debug_reload_to_stream (dump_file);
2122 fatal_insn ("this is the insn:", insn);
2126 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2127 data that is dead in INSN. */
2129 static void
2130 delete_dead_insn (rtx_insn *insn)
2132 rtx_insn *prev = prev_active_insn (insn);
2133 rtx prev_dest;
2135 /* If the previous insn sets a register that dies in our insn make
2136 a note that we want to run DCE immediately after reload.
2138 We used to delete the previous insn & recurse, but that's wrong for
2139 block local equivalences. Instead of trying to figure out the exact
2140 circumstances where we can delete the potentially dead insns, just
2141 let DCE do the job. */
2142 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2143 && GET_CODE (PATTERN (prev)) == SET
2144 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145 && reg_mentioned_p (prev_dest, PATTERN (insn))
2146 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148 need_dce = 1;
2150 SET_INSN_DELETED (insn);
2153 /* Modify the home of pseudo-reg I.
2154 The new home is present in reg_renumber[I].
2156 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157 or it may be -1, meaning there is none or it is not relevant.
2158 This is used so that all pseudos spilled from a given hard reg
2159 can share one stack slot. */
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2164 /* When outputting an inline function, this can happen
2165 for a reg that isn't actually used. */
2166 if (regno_reg_rtx[i] == 0)
2167 return;
2169 /* If the reg got changed to a MEM at rtl-generation time,
2170 ignore it. */
2171 if (!REG_P (regno_reg_rtx[i]))
2172 return;
2174 /* Modify the reg-rtx to contain the new hard reg
2175 number or else to contain its pseudo reg number. */
2176 SET_REGNO (regno_reg_rtx[i],
2177 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2179 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180 allocate a stack slot for it. */
2182 if (reg_renumber[i] < 0
2183 && REG_N_REFS (i) > 0
2184 && reg_equiv_constant (i) == 0
2185 && (reg_equiv_invariant (i) == 0
2186 || reg_equiv_init (i) == 0)
2187 && reg_equiv_memory_loc (i) == 0)
2189 rtx x = NULL_RTX;
2190 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195 int adjust = 0;
2197 something_was_spilled = true;
2199 if (ira_conflicts_p)
2201 /* Mark the spill for IRA. */
2202 SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 if (!dont_share_p)
2204 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2207 if (x)
2210 /* Each pseudo reg has an inherent size which comes from its own mode,
2211 and a total size which provides room for paradoxical subregs
2212 which refer to the pseudo reg in wider modes.
2214 We can use a slot already allocated if it provides both
2215 enough inherent space and enough total space.
2216 Otherwise, we allocate a new slot, making sure that it has no less
2217 inherent space, and no less total space, then the previous slot. */
2218 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2220 rtx stack_slot;
2222 /* No known place to spill from => no slot to reuse. */
2223 x = assign_stack_local (mode, total_size,
2224 min_align > inherent_align
2225 || total_size > inherent_size ? -1 : 0);
2227 stack_slot = x;
2229 /* Cancel the big-endian correction done in assign_stack_local.
2230 Get the address of the beginning of the slot. This is so we
2231 can do a big-endian correction unconditionally below. */
2232 if (BYTES_BIG_ENDIAN)
2234 adjust = inherent_size - total_size;
2235 if (adjust)
2236 stack_slot
2237 = adjust_address_nv (x, mode_for_size (total_size
2238 * BITS_PER_UNIT,
2239 MODE_INT, 1),
2240 adjust);
2243 if (! dont_share_p && ira_conflicts_p)
2244 /* Inform IRA about allocation a new stack slot. */
2245 ira_mark_new_stack_slot (stack_slot, i, total_size);
2248 /* Reuse a stack slot if possible. */
2249 else if (spill_stack_slot[from_reg] != 0
2250 && spill_stack_slot_width[from_reg] >= total_size
2251 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 >= inherent_size)
2253 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 x = spill_stack_slot[from_reg];
2256 /* Allocate a bigger slot. */
2257 else
2259 /* Compute maximum size needed, both for inherent size
2260 and for total size. */
2261 rtx stack_slot;
2263 if (spill_stack_slot[from_reg])
2265 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 > inherent_size)
2267 mode = GET_MODE (spill_stack_slot[from_reg]);
2268 if (spill_stack_slot_width[from_reg] > total_size)
2269 total_size = spill_stack_slot_width[from_reg];
2270 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2274 /* Make a slot with that size. */
2275 x = assign_stack_local (mode, total_size,
2276 min_align > inherent_align
2277 || total_size > inherent_size ? -1 : 0);
2278 stack_slot = x;
2280 /* Cancel the big-endian correction done in assign_stack_local.
2281 Get the address of the beginning of the slot. This is so we
2282 can do a big-endian correction unconditionally below. */
2283 if (BYTES_BIG_ENDIAN)
2285 adjust = GET_MODE_SIZE (mode) - total_size;
2286 if (adjust)
2287 stack_slot
2288 = adjust_address_nv (x, mode_for_size (total_size
2289 * BITS_PER_UNIT,
2290 MODE_INT, 1),
2291 adjust);
2294 spill_stack_slot[from_reg] = stack_slot;
2295 spill_stack_slot_width[from_reg] = total_size;
2298 /* On a big endian machine, the "address" of the slot
2299 is the address of the low part that fits its inherent mode. */
2300 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 adjust += (total_size - inherent_size);
2303 /* If we have any adjustment to make, or if the stack slot is the
2304 wrong mode, make a new stack slot. */
2305 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2307 /* Set all of the memory attributes as appropriate for a spill. */
2308 set_mem_attrs_for_spill (x);
2310 /* Save the stack slot for later. */
2311 reg_equiv_memory_loc (i) = x;
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316 pseudo-reg number REGNO, accessed in MODE. */
2318 static void
2319 mark_home_live_1 (int regno, machine_mode mode)
2321 int i, lim;
2323 i = reg_renumber[regno];
2324 if (i < 0)
2325 return;
2326 lim = end_hard_regno (mode, i);
2327 while (i < lim)
2328 df_set_regs_ever_live (i++, true);
2331 /* Mark the slots in regs_ever_live for the hard regs
2332 used by pseudo-reg number REGNO. */
2334 void
2335 mark_home_live (int regno)
2337 if (reg_renumber[regno] >= 0)
2338 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2341 /* This function handles the tracking of elimination offsets around branches.
2343 X is a piece of RTL being scanned.
2345 INSN is the insn that it came from, if any.
2347 INITIAL_P is nonzero if we are to set the offset to be the initial
2348 offset and zero if we are setting the offset of the label to be the
2349 current offset. */
2351 static void
2352 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2354 enum rtx_code code = GET_CODE (x);
2355 rtx tem;
2356 unsigned int i;
2357 struct elim_table *p;
2359 switch (code)
2361 case LABEL_REF:
2362 if (LABEL_REF_NONLOCAL_P (x))
2363 return;
2365 x = LABEL_REF_LABEL (x);
2367 /* ... fall through ... */
2369 case CODE_LABEL:
2370 /* If we know nothing about this label, set the desired offsets. Note
2371 that this sets the offset at a label to be the offset before a label
2372 if we don't know anything about the label. This is not correct for
2373 the label after a BARRIER, but is the best guess we can make. If
2374 we guessed wrong, we will suppress an elimination that might have
2375 been possible had we been able to guess correctly. */
2377 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2379 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 = (initial_p ? reg_eliminate[i].initial_offset
2382 : reg_eliminate[i].offset);
2383 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2386 /* Otherwise, if this is the definition of a label and it is
2387 preceded by a BARRIER, set our offsets to the known offset of
2388 that label. */
2390 else if (x == insn
2391 && (tem = prev_nonnote_insn (insn)) != 0
2392 && BARRIER_P (tem))
2393 set_offsets_for_label (insn);
2394 else
2395 /* If neither of the above cases is true, compare each offset
2396 with those previously recorded and suppress any eliminations
2397 where the offsets disagree. */
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 != (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset))
2403 reg_eliminate[i].can_eliminate = 0;
2405 return;
2407 case JUMP_TABLE_DATA:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409 return;
2411 case JUMP_INSN:
2412 set_label_offsets (PATTERN (insn), insn, initial_p);
2414 /* ... fall through ... */
2416 case INSN:
2417 case CALL_INSN:
2418 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2419 to indirectly and hence must have all eliminations at their
2420 initial offsets. */
2421 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2422 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2423 set_label_offsets (XEXP (tem, 0), insn, 1);
2424 return;
2426 case PARALLEL:
2427 case ADDR_VEC:
2428 case ADDR_DIFF_VEC:
2429 /* Each of the labels in the parallel or address vector must be
2430 at their initial offsets. We want the first field for PARALLEL
2431 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2433 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2434 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2435 insn, initial_p);
2436 return;
2438 case SET:
2439 /* We only care about setting PC. If the source is not RETURN,
2440 IF_THEN_ELSE, or a label, disable any eliminations not at
2441 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2442 isn't one of those possibilities. For branches to a label,
2443 call ourselves recursively.
2445 Note that this can disable elimination unnecessarily when we have
2446 a non-local goto since it will look like a non-constant jump to
2447 someplace in the current function. This isn't a significant
2448 problem since such jumps will normally be when all elimination
2449 pairs are back to their initial offsets. */
2451 if (SET_DEST (x) != pc_rtx)
2452 return;
2454 switch (GET_CODE (SET_SRC (x)))
2456 case PC:
2457 case RETURN:
2458 return;
2460 case LABEL_REF:
2461 set_label_offsets (SET_SRC (x), insn, initial_p);
2462 return;
2464 case IF_THEN_ELSE:
2465 tem = XEXP (SET_SRC (x), 1);
2466 if (GET_CODE (tem) == LABEL_REF)
2467 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2468 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2469 break;
2471 tem = XEXP (SET_SRC (x), 2);
2472 if (GET_CODE (tem) == LABEL_REF)
2473 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2474 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2475 break;
2476 return;
2478 default:
2479 break;
2482 /* If we reach here, all eliminations must be at their initial
2483 offset because we are doing a jump to a variable address. */
2484 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2485 if (p->offset != p->initial_offset)
2486 p->can_eliminate = 0;
2487 break;
2489 default:
2490 break;
2494 /* This function examines every reg that occurs in X and adjusts the
2495 costs for its elimination which are gathered by IRA. INSN is the
2496 insn in which X occurs. We do not recurse into MEM expressions. */
2498 static void
2499 note_reg_elim_costly (const_rtx x, rtx insn)
2501 subrtx_iterator::array_type array;
2502 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2504 const_rtx x = *iter;
2505 if (MEM_P (x))
2506 iter.skip_subrtxes ();
2507 else if (REG_P (x)
2508 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2509 && reg_equiv_init (REGNO (x))
2510 && reg_equiv_invariant (REGNO (x)))
2512 rtx t = reg_equiv_invariant (REGNO (x));
2513 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2514 int cost = set_src_cost (new_rtx, Pmode,
2515 optimize_bb_for_speed_p (elim_bb));
2516 int freq = REG_FREQ_FROM_BB (elim_bb);
2518 if (cost != 0)
2519 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2524 /* Scan X and replace any eliminable registers (such as fp) with a
2525 replacement (such as sp), plus an offset.
2527 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2528 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2529 MEM, we are allowed to replace a sum of a register and the constant zero
2530 with the register, which we cannot do outside a MEM. In addition, we need
2531 to record the fact that a register is referenced outside a MEM.
2533 If INSN is an insn, it is the insn containing X. If we replace a REG
2534 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2535 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2536 the REG is being modified.
2538 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2539 That's used when we eliminate in expressions stored in notes.
2540 This means, do not set ref_outside_mem even if the reference
2541 is outside of MEMs.
2543 If FOR_COSTS is true, we are being called before reload in order to
2544 estimate the costs of keeping registers with an equivalence unallocated.
2546 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2547 replacements done assuming all offsets are at their initial values. If
2548 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2549 encounter, return the actual location so that find_reloads will do
2550 the proper thing. */
2552 static rtx
2553 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2554 bool may_use_invariant, bool for_costs)
2556 enum rtx_code code = GET_CODE (x);
2557 struct elim_table *ep;
2558 int regno;
2559 rtx new_rtx;
2560 int i, j;
2561 const char *fmt;
2562 int copied = 0;
2564 if (! current_function_decl)
2565 return x;
2567 switch (code)
2569 CASE_CONST_ANY:
2570 case CONST:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 case ASM_INPUT:
2576 case ADDR_VEC:
2577 case ADDR_DIFF_VEC:
2578 case RETURN:
2579 return x;
2581 case REG:
2582 regno = REGNO (x);
2584 /* First handle the case where we encounter a bare register that
2585 is eliminable. Replace it with a PLUS. */
2586 if (regno < FIRST_PSEUDO_REGISTER)
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == x && ep->can_eliminate)
2591 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2594 else if (reg_renumber && reg_renumber[regno] < 0
2595 && reg_equivs
2596 && reg_equiv_invariant (regno))
2598 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2599 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2600 mem_mode, insn, true, for_costs);
2601 /* There exists at least one use of REGNO that cannot be
2602 eliminated. Prevent the defining insn from being deleted. */
2603 reg_equiv_init (regno) = NULL;
2604 if (!for_costs)
2605 alter_reg (regno, -1, true);
2607 return x;
2609 /* You might think handling MINUS in a manner similar to PLUS is a
2610 good idea. It is not. It has been tried multiple times and every
2611 time the change has had to have been reverted.
2613 Other parts of reload know a PLUS is special (gen_reload for example)
2614 and require special code to handle code a reloaded PLUS operand.
2616 Also consider backends where the flags register is clobbered by a
2617 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2618 lea instruction comes to mind). If we try to reload a MINUS, we
2619 may kill the flags register that was holding a useful value.
2621 So, please before trying to handle MINUS, consider reload as a
2622 whole instead of this little section as well as the backend issues. */
2623 case PLUS:
2624 /* If this is the sum of an eliminable register and a constant, rework
2625 the sum. */
2626 if (REG_P (XEXP (x, 0))
2627 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2628 && CONSTANT_P (XEXP (x, 1)))
2630 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2631 ep++)
2632 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2634 /* The only time we want to replace a PLUS with a REG (this
2635 occurs when the constant operand of the PLUS is the negative
2636 of the offset) is when we are inside a MEM. We won't want
2637 to do so at other times because that would change the
2638 structure of the insn in a way that reload can't handle.
2639 We special-case the commonest situation in
2640 eliminate_regs_in_insn, so just replace a PLUS with a
2641 PLUS here, unless inside a MEM. */
2642 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2643 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2644 return ep->to_rtx;
2645 else
2646 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2647 plus_constant (Pmode, XEXP (x, 1),
2648 ep->previous_offset));
2651 /* If the register is not eliminable, we are done since the other
2652 operand is a constant. */
2653 return x;
2656 /* If this is part of an address, we want to bring any constant to the
2657 outermost PLUS. We will do this by doing register replacement in
2658 our operands and seeing if a constant shows up in one of them.
2660 Note that there is no risk of modifying the structure of the insn,
2661 since we only get called for its operands, thus we are either
2662 modifying the address inside a MEM, or something like an address
2663 operand of a load-address insn. */
2666 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2667 for_costs);
2668 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2669 for_costs);
2671 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2673 /* If one side is a PLUS and the other side is a pseudo that
2674 didn't get a hard register but has a reg_equiv_constant,
2675 we must replace the constant here since it may no longer
2676 be in the position of any operand. */
2677 if (GET_CODE (new0) == PLUS && REG_P (new1)
2678 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (new1)] < 0
2680 && reg_equivs
2681 && reg_equiv_constant (REGNO (new1)) != 0)
2682 new1 = reg_equiv_constant (REGNO (new1));
2683 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2684 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2685 && reg_renumber[REGNO (new0)] < 0
2686 && reg_equiv_constant (REGNO (new0)) != 0)
2687 new0 = reg_equiv_constant (REGNO (new0));
2689 new_rtx = form_sum (GET_MODE (x), new0, new1);
2691 /* As above, if we are not inside a MEM we do not want to
2692 turn a PLUS into something else. We might try to do so here
2693 for an addition of 0 if we aren't optimizing. */
2694 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2695 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2696 else
2697 return new_rtx;
2700 return x;
2702 case MULT:
2703 /* If this is the product of an eliminable register and a
2704 constant, apply the distribute law and move the constant out
2705 so that we have (plus (mult ..) ..). This is needed in order
2706 to keep load-address insns valid. This case is pathological.
2707 We ignore the possibility of overflow here. */
2708 if (REG_P (XEXP (x, 0))
2709 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2710 && CONST_INT_P (XEXP (x, 1)))
2711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2712 ep++)
2713 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2715 if (! mem_mode
2716 /* Refs inside notes or in DEBUG_INSNs don't count for
2717 this purpose. */
2718 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2719 || GET_CODE (insn) == INSN_LIST
2720 || DEBUG_INSN_P (insn))))
2721 ep->ref_outside_mem = 1;
2723 return
2724 plus_constant (Pmode,
2725 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2726 ep->previous_offset * INTVAL (XEXP (x, 1)));
2729 /* ... fall through ... */
2731 case CALL:
2732 case COMPARE:
2733 /* See comments before PLUS about handling MINUS. */
2734 case MINUS:
2735 case DIV: case UDIV:
2736 case MOD: case UMOD:
2737 case AND: case IOR: case XOR:
2738 case ROTATERT: case ROTATE:
2739 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2740 case NE: case EQ:
2741 case GE: case GT: case GEU: case GTU:
2742 case LE: case LT: case LEU: case LTU:
2744 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2745 for_costs);
2746 rtx new1 = XEXP (x, 1)
2747 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2748 for_costs) : 0;
2750 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2751 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2753 return x;
2755 case EXPR_LIST:
2756 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2757 if (XEXP (x, 0))
2759 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 0))
2763 /* If this is a REG_DEAD note, it is not valid anymore.
2764 Using the eliminated version could result in creating a
2765 REG_DEAD note for the stack or frame pointer. */
2766 if (REG_NOTE_KIND (x) == REG_DEAD)
2767 return (XEXP (x, 1)
2768 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2769 for_costs)
2770 : NULL_RTX);
2772 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2776 /* ... fall through ... */
2778 case INSN_LIST:
2779 case INT_LIST:
2780 /* Now do eliminations in the rest of the chain. If this was
2781 an EXPR_LIST, this might result in allocating more memory than is
2782 strictly needed, but it simplifies the code. */
2783 if (XEXP (x, 1))
2785 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2786 for_costs);
2787 if (new_rtx != XEXP (x, 1))
2788 return
2789 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2791 return x;
2793 case PRE_INC:
2794 case POST_INC:
2795 case PRE_DEC:
2796 case POST_DEC:
2797 /* We do not support elimination of a register that is modified.
2798 elimination_effects has already make sure that this does not
2799 happen. */
2800 return x;
2802 case PRE_MODIFY:
2803 case POST_MODIFY:
2804 /* We do not support elimination of a register that is modified.
2805 elimination_effects has already make sure that this does not
2806 happen. The only remaining case we need to consider here is
2807 that the increment value may be an eliminable register. */
2808 if (GET_CODE (XEXP (x, 1)) == PLUS
2809 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2811 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2812 insn, true, for_costs);
2814 if (new_rtx != XEXP (XEXP (x, 1), 1))
2815 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2816 gen_rtx_PLUS (GET_MODE (x),
2817 XEXP (x, 0), new_rtx));
2819 return x;
2821 case STRICT_LOW_PART:
2822 case NEG: case NOT:
2823 case SIGN_EXTEND: case ZERO_EXTEND:
2824 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2825 case FLOAT: case FIX:
2826 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2827 case ABS:
2828 case SQRT:
2829 case FFS:
2830 case CLZ:
2831 case CTZ:
2832 case POPCOUNT:
2833 case PARITY:
2834 case BSWAP:
2835 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2836 for_costs);
2837 if (new_rtx != XEXP (x, 0))
2838 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2839 return x;
2841 case SUBREG:
2842 /* Similar to above processing, but preserve SUBREG_BYTE.
2843 Convert (subreg (mem)) to (mem) if not paradoxical.
2844 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2845 pseudo didn't get a hard reg, we must replace this with the
2846 eliminated version of the memory location because push_reload
2847 may do the replacement in certain circumstances. */
2848 if (REG_P (SUBREG_REG (x))
2849 && !paradoxical_subreg_p (x)
2850 && reg_equivs
2851 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2853 new_rtx = SUBREG_REG (x);
2855 else
2856 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2858 if (new_rtx != SUBREG_REG (x))
2860 int x_size = GET_MODE_SIZE (GET_MODE (x));
2861 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2863 if (MEM_P (new_rtx)
2864 && ((x_size < new_size
2865 #if WORD_REGISTER_OPERATIONS
2866 /* On these machines, combine can create rtl of the form
2867 (set (subreg:m1 (reg:m2 R) 0) ...)
2868 where m1 < m2, and expects something interesting to
2869 happen to the entire word. Moreover, it will use the
2870 (reg:m2 R) later, expecting all bits to be preserved.
2871 So if the number of words is the same, preserve the
2872 subreg so that push_reload can see it. */
2873 && ! ((x_size - 1) / UNITS_PER_WORD
2874 == (new_size -1 ) / UNITS_PER_WORD)
2875 #endif
2877 || x_size == new_size)
2879 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2880 else
2881 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2884 return x;
2886 case MEM:
2887 /* Our only special processing is to pass the mode of the MEM to our
2888 recursive call and copy the flags. While we are here, handle this
2889 case more efficiently. */
2891 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2892 for_costs);
2893 if (for_costs
2894 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2895 && !memory_address_p (GET_MODE (x), new_rtx))
2896 note_reg_elim_costly (XEXP (x, 0), insn);
2898 return replace_equiv_address_nv (x, new_rtx);
2900 case USE:
2901 /* Handle insn_list USE that a call to a pure function may generate. */
2902 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2903 for_costs);
2904 if (new_rtx != XEXP (x, 0))
2905 return gen_rtx_USE (GET_MODE (x), new_rtx);
2906 return x;
2908 case CLOBBER:
2909 case ASM_OPERANDS:
2910 gcc_assert (insn && DEBUG_INSN_P (insn));
2911 break;
2913 case SET:
2914 gcc_unreachable ();
2916 default:
2917 break;
2920 /* Process each of our operands recursively. If any have changed, make a
2921 copy of the rtx. */
2922 fmt = GET_RTX_FORMAT (code);
2923 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2925 if (*fmt == 'e')
2927 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2928 for_costs);
2929 if (new_rtx != XEXP (x, i) && ! copied)
2931 x = shallow_copy_rtx (x);
2932 copied = 1;
2934 XEXP (x, i) = new_rtx;
2936 else if (*fmt == 'E')
2938 int copied_vec = 0;
2939 for (j = 0; j < XVECLEN (x, i); j++)
2941 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2942 for_costs);
2943 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2945 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2946 XVEC (x, i)->elem);
2947 if (! copied)
2949 x = shallow_copy_rtx (x);
2950 copied = 1;
2952 XVEC (x, i) = new_v;
2953 copied_vec = 1;
2955 XVECEXP (x, i, j) = new_rtx;
2960 return x;
2964 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2966 if (reg_eliminate == NULL)
2968 gcc_assert (targetm.no_register_allocation);
2969 return x;
2971 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2974 /* Scan rtx X for modifications of elimination target registers. Update
2975 the table of eliminables to reflect the changed state. MEM_MODE is
2976 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2978 static void
2979 elimination_effects (rtx x, machine_mode mem_mode)
2981 enum rtx_code code = GET_CODE (x);
2982 struct elim_table *ep;
2983 int regno;
2984 int i, j;
2985 const char *fmt;
2987 switch (code)
2989 CASE_CONST_ANY:
2990 case CONST:
2991 case SYMBOL_REF:
2992 case CODE_LABEL:
2993 case PC:
2994 case CC0:
2995 case ASM_INPUT:
2996 case ADDR_VEC:
2997 case ADDR_DIFF_VEC:
2998 case RETURN:
2999 return;
3001 case REG:
3002 regno = REGNO (x);
3004 /* First handle the case where we encounter a bare register that
3005 is eliminable. Replace it with a PLUS. */
3006 if (regno < FIRST_PSEUDO_REGISTER)
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3009 ep++)
3010 if (ep->from_rtx == x && ep->can_eliminate)
3012 if (! mem_mode)
3013 ep->ref_outside_mem = 1;
3014 return;
3018 else if (reg_renumber[regno] < 0
3019 && reg_equivs
3020 && reg_equiv_constant (regno)
3021 && ! function_invariant_p (reg_equiv_constant (regno)))
3022 elimination_effects (reg_equiv_constant (regno), mem_mode);
3023 return;
3025 case PRE_INC:
3026 case POST_INC:
3027 case PRE_DEC:
3028 case POST_DEC:
3029 case POST_MODIFY:
3030 case PRE_MODIFY:
3031 /* If we modify the source of an elimination rule, disable it. */
3032 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3033 if (ep->from_rtx == XEXP (x, 0))
3034 ep->can_eliminate = 0;
3036 /* If we modify the target of an elimination rule by adding a constant,
3037 update its offset. If we modify the target in any other way, we'll
3038 have to disable the rule as well. */
3039 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3040 if (ep->to_rtx == XEXP (x, 0))
3042 int size = GET_MODE_SIZE (mem_mode);
3044 /* If more bytes than MEM_MODE are pushed, account for them. */
3045 #ifdef PUSH_ROUNDING
3046 if (ep->to_rtx == stack_pointer_rtx)
3047 size = PUSH_ROUNDING (size);
3048 #endif
3049 if (code == PRE_DEC || code == POST_DEC)
3050 ep->offset += size;
3051 else if (code == PRE_INC || code == POST_INC)
3052 ep->offset -= size;
3053 else if (code == PRE_MODIFY || code == POST_MODIFY)
3055 if (GET_CODE (XEXP (x, 1)) == PLUS
3056 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3057 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3058 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3059 else
3060 ep->can_eliminate = 0;
3064 /* These two aren't unary operators. */
3065 if (code == POST_MODIFY || code == PRE_MODIFY)
3066 break;
3068 /* Fall through to generic unary operation case. */
3069 case STRICT_LOW_PART:
3070 case NEG: case NOT:
3071 case SIGN_EXTEND: case ZERO_EXTEND:
3072 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3073 case FLOAT: case FIX:
3074 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3075 case ABS:
3076 case SQRT:
3077 case FFS:
3078 case CLZ:
3079 case CTZ:
3080 case POPCOUNT:
3081 case PARITY:
3082 case BSWAP:
3083 elimination_effects (XEXP (x, 0), mem_mode);
3084 return;
3086 case SUBREG:
3087 if (REG_P (SUBREG_REG (x))
3088 && (GET_MODE_SIZE (GET_MODE (x))
3089 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3090 && reg_equivs
3091 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3092 return;
3094 elimination_effects (SUBREG_REG (x), mem_mode);
3095 return;
3097 case USE:
3098 /* If using a register that is the source of an eliminate we still
3099 think can be performed, note it cannot be performed since we don't
3100 know how this register is used. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3102 if (ep->from_rtx == XEXP (x, 0))
3103 ep->can_eliminate = 0;
3105 elimination_effects (XEXP (x, 0), mem_mode);
3106 return;
3108 case CLOBBER:
3109 /* If clobbering a register that is the replacement register for an
3110 elimination we still think can be performed, note that it cannot
3111 be performed. Otherwise, we need not be concerned about it. */
3112 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3113 if (ep->to_rtx == XEXP (x, 0))
3114 ep->can_eliminate = 0;
3116 elimination_effects (XEXP (x, 0), mem_mode);
3117 return;
3119 case SET:
3120 /* Check for setting a register that we know about. */
3121 if (REG_P (SET_DEST (x)))
3123 /* See if this is setting the replacement register for an
3124 elimination.
3126 If DEST is the hard frame pointer, we do nothing because we
3127 assume that all assignments to the frame pointer are for
3128 non-local gotos and are being done at a time when they are valid
3129 and do not disturb anything else. Some machines want to
3130 eliminate a fake argument pointer (or even a fake frame pointer)
3131 with either the real frame or the stack pointer. Assignments to
3132 the hard frame pointer must not prevent this elimination. */
3134 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3135 ep++)
3136 if (ep->to_rtx == SET_DEST (x)
3137 && SET_DEST (x) != hard_frame_pointer_rtx)
3139 /* If it is being incremented, adjust the offset. Otherwise,
3140 this elimination can't be done. */
3141 rtx src = SET_SRC (x);
3143 if (GET_CODE (src) == PLUS
3144 && XEXP (src, 0) == SET_DEST (x)
3145 && CONST_INT_P (XEXP (src, 1)))
3146 ep->offset -= INTVAL (XEXP (src, 1));
3147 else
3148 ep->can_eliminate = 0;
3152 elimination_effects (SET_DEST (x), VOIDmode);
3153 elimination_effects (SET_SRC (x), VOIDmode);
3154 return;
3156 case MEM:
3157 /* Our only special processing is to pass the mode of the MEM to our
3158 recursive call. */
3159 elimination_effects (XEXP (x, 0), GET_MODE (x));
3160 return;
3162 default:
3163 break;
3166 fmt = GET_RTX_FORMAT (code);
3167 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3169 if (*fmt == 'e')
3170 elimination_effects (XEXP (x, i), mem_mode);
3171 else if (*fmt == 'E')
3172 for (j = 0; j < XVECLEN (x, i); j++)
3173 elimination_effects (XVECEXP (x, i, j), mem_mode);
3177 /* Descend through rtx X and verify that no references to eliminable registers
3178 remain. If any do remain, mark the involved register as not
3179 eliminable. */
3181 static void
3182 check_eliminable_occurrences (rtx x)
3184 const char *fmt;
3185 int i;
3186 enum rtx_code code;
3188 if (x == 0)
3189 return;
3191 code = GET_CODE (x);
3193 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3195 struct elim_table *ep;
3197 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3198 if (ep->from_rtx == x)
3199 ep->can_eliminate = 0;
3200 return;
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3206 if (*fmt == 'e')
3207 check_eliminable_occurrences (XEXP (x, i));
3208 else if (*fmt == 'E')
3210 int j;
3211 for (j = 0; j < XVECLEN (x, i); j++)
3212 check_eliminable_occurrences (XVECEXP (x, i, j));
3217 /* Scan INSN and eliminate all eliminable registers in it.
3219 If REPLACE is nonzero, do the replacement destructively. Also
3220 delete the insn as dead it if it is setting an eliminable register.
3222 If REPLACE is zero, do all our allocations in reload_obstack.
3224 If no eliminations were done and this insn doesn't require any elimination
3225 processing (these are not identical conditions: it might be updating sp,
3226 but not referencing fp; this needs to be seen during reload_as_needed so
3227 that the offset between fp and sp can be taken into consideration), zero
3228 is returned. Otherwise, 1 is returned. */
3230 static int
3231 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3233 int icode = recog_memoized (insn);
3234 rtx old_body = PATTERN (insn);
3235 int insn_is_asm = asm_noperands (old_body) >= 0;
3236 rtx old_set = single_set (insn);
3237 rtx new_body;
3238 int val = 0;
3239 int i;
3240 rtx substed_operand[MAX_RECOG_OPERANDS];
3241 rtx orig_operand[MAX_RECOG_OPERANDS];
3242 struct elim_table *ep;
3243 rtx plus_src, plus_cst_src;
3245 if (! insn_is_asm && icode < 0)
3247 gcc_assert (DEBUG_INSN_P (insn)
3248 || GET_CODE (PATTERN (insn)) == USE
3249 || GET_CODE (PATTERN (insn)) == CLOBBER
3250 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3251 if (DEBUG_INSN_P (insn))
3252 INSN_VAR_LOCATION_LOC (insn)
3253 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3254 return 0;
3257 if (old_set != 0 && REG_P (SET_DEST (old_set))
3258 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3260 /* Check for setting an eliminable register. */
3261 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3262 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3264 /* If this is setting the frame pointer register to the
3265 hardware frame pointer register and this is an elimination
3266 that will be done (tested above), this insn is really
3267 adjusting the frame pointer downward to compensate for
3268 the adjustment done before a nonlocal goto. */
3269 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3270 && ep->from == FRAME_POINTER_REGNUM
3271 && ep->to == HARD_FRAME_POINTER_REGNUM)
3273 rtx base = SET_SRC (old_set);
3274 rtx_insn *base_insn = insn;
3275 HOST_WIDE_INT offset = 0;
3277 while (base != ep->to_rtx)
3279 rtx_insn *prev_insn;
3280 rtx prev_set;
3282 if (GET_CODE (base) == PLUS
3283 && CONST_INT_P (XEXP (base, 1)))
3285 offset += INTVAL (XEXP (base, 1));
3286 base = XEXP (base, 0);
3288 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3289 && (prev_set = single_set (prev_insn)) != 0
3290 && rtx_equal_p (SET_DEST (prev_set), base))
3292 base = SET_SRC (prev_set);
3293 base_insn = prev_insn;
3295 else
3296 break;
3299 if (base == ep->to_rtx)
3301 rtx src = plus_constant (Pmode, ep->to_rtx,
3302 offset - ep->offset);
3304 new_body = old_body;
3305 if (! replace)
3307 new_body = copy_insn (old_body);
3308 if (REG_NOTES (insn))
3309 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3311 PATTERN (insn) = new_body;
3312 old_set = single_set (insn);
3314 /* First see if this insn remains valid when we
3315 make the change. If not, keep the INSN_CODE
3316 the same and let reload fit it up. */
3317 validate_change (insn, &SET_SRC (old_set), src, 1);
3318 validate_change (insn, &SET_DEST (old_set),
3319 ep->to_rtx, 1);
3320 if (! apply_change_group ())
3322 SET_SRC (old_set) = src;
3323 SET_DEST (old_set) = ep->to_rtx;
3326 val = 1;
3327 goto done;
3331 /* In this case this insn isn't serving a useful purpose. We
3332 will delete it in reload_as_needed once we know that this
3333 elimination is, in fact, being done.
3335 If REPLACE isn't set, we can't delete this insn, but needn't
3336 process it since it won't be used unless something changes. */
3337 if (replace)
3339 delete_dead_insn (insn);
3340 return 1;
3342 val = 1;
3343 goto done;
3347 /* We allow one special case which happens to work on all machines we
3348 currently support: a single set with the source or a REG_EQUAL
3349 note being a PLUS of an eliminable register and a constant. */
3350 plus_src = plus_cst_src = 0;
3351 if (old_set && REG_P (SET_DEST (old_set)))
3353 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3354 plus_src = SET_SRC (old_set);
3355 /* First see if the source is of the form (plus (...) CST). */
3356 if (plus_src
3357 && CONST_INT_P (XEXP (plus_src, 1)))
3358 plus_cst_src = plus_src;
3359 else if (REG_P (SET_SRC (old_set))
3360 || plus_src)
3362 /* Otherwise, see if we have a REG_EQUAL note of the form
3363 (plus (...) CST). */
3364 rtx links;
3365 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3367 if ((REG_NOTE_KIND (links) == REG_EQUAL
3368 || REG_NOTE_KIND (links) == REG_EQUIV)
3369 && GET_CODE (XEXP (links, 0)) == PLUS
3370 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3372 plus_cst_src = XEXP (links, 0);
3373 break;
3378 /* Check that the first operand of the PLUS is a hard reg or
3379 the lowpart subreg of one. */
3380 if (plus_cst_src)
3382 rtx reg = XEXP (plus_cst_src, 0);
3383 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3384 reg = SUBREG_REG (reg);
3386 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3387 plus_cst_src = 0;
3390 if (plus_cst_src)
3392 rtx reg = XEXP (plus_cst_src, 0);
3393 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3395 if (GET_CODE (reg) == SUBREG)
3396 reg = SUBREG_REG (reg);
3398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3399 if (ep->from_rtx == reg && ep->can_eliminate)
3401 rtx to_rtx = ep->to_rtx;
3402 offset += ep->offset;
3403 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3405 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3406 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3407 to_rtx);
3408 /* If we have a nonzero offset, and the source is already
3409 a simple REG, the following transformation would
3410 increase the cost of the insn by replacing a simple REG
3411 with (plus (reg sp) CST). So try only when we already
3412 had a PLUS before. */
3413 if (offset == 0 || plus_src)
3415 rtx new_src = plus_constant (GET_MODE (to_rtx),
3416 to_rtx, offset);
3418 new_body = old_body;
3419 if (! replace)
3421 new_body = copy_insn (old_body);
3422 if (REG_NOTES (insn))
3423 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3425 PATTERN (insn) = new_body;
3426 old_set = single_set (insn);
3428 /* First see if this insn remains valid when we make the
3429 change. If not, try to replace the whole pattern with
3430 a simple set (this may help if the original insn was a
3431 PARALLEL that was only recognized as single_set due to
3432 REG_UNUSED notes). If this isn't valid either, keep
3433 the INSN_CODE the same and let reload fix it up. */
3434 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3436 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3438 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3439 SET_SRC (old_set) = new_src;
3442 else
3443 break;
3445 val = 1;
3446 /* This can't have an effect on elimination offsets, so skip right
3447 to the end. */
3448 goto done;
3452 /* Determine the effects of this insn on elimination offsets. */
3453 elimination_effects (old_body, VOIDmode);
3455 /* Eliminate all eliminable registers occurring in operands that
3456 can be handled by reload. */
3457 extract_insn (insn);
3458 for (i = 0; i < recog_data.n_operands; i++)
3460 orig_operand[i] = recog_data.operand[i];
3461 substed_operand[i] = recog_data.operand[i];
3463 /* For an asm statement, every operand is eliminable. */
3464 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3466 bool is_set_src, in_plus;
3468 /* Check for setting a register that we know about. */
3469 if (recog_data.operand_type[i] != OP_IN
3470 && REG_P (orig_operand[i]))
3472 /* If we are assigning to a register that can be eliminated, it
3473 must be as part of a PARALLEL, since the code above handles
3474 single SETs. We must indicate that we can no longer
3475 eliminate this reg. */
3476 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3477 ep++)
3478 if (ep->from_rtx == orig_operand[i])
3479 ep->can_eliminate = 0;
3482 /* Companion to the above plus substitution, we can allow
3483 invariants as the source of a plain move. */
3484 is_set_src = false;
3485 if (old_set
3486 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3487 is_set_src = true;
3488 in_plus = false;
3489 if (plus_src
3490 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3491 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3492 in_plus = true;
3494 substed_operand[i]
3495 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3496 replace ? insn : NULL_RTX,
3497 is_set_src || in_plus, false);
3498 if (substed_operand[i] != orig_operand[i])
3499 val = 1;
3500 /* Terminate the search in check_eliminable_occurrences at
3501 this point. */
3502 *recog_data.operand_loc[i] = 0;
3504 /* If an output operand changed from a REG to a MEM and INSN is an
3505 insn, write a CLOBBER insn. */
3506 if (recog_data.operand_type[i] != OP_IN
3507 && REG_P (orig_operand[i])
3508 && MEM_P (substed_operand[i])
3509 && replace)
3510 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3514 for (i = 0; i < recog_data.n_dups; i++)
3515 *recog_data.dup_loc[i]
3516 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3518 /* If any eliminable remain, they aren't eliminable anymore. */
3519 check_eliminable_occurrences (old_body);
3521 /* Substitute the operands; the new values are in the substed_operand
3522 array. */
3523 for (i = 0; i < recog_data.n_operands; i++)
3524 *recog_data.operand_loc[i] = substed_operand[i];
3525 for (i = 0; i < recog_data.n_dups; i++)
3526 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3528 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3529 re-recognize the insn. We do this in case we had a simple addition
3530 but now can do this as a load-address. This saves an insn in this
3531 common case.
3532 If re-recognition fails, the old insn code number will still be used,
3533 and some register operands may have changed into PLUS expressions.
3534 These will be handled by find_reloads by loading them into a register
3535 again. */
3537 if (val)
3539 /* If we aren't replacing things permanently and we changed something,
3540 make another copy to ensure that all the RTL is new. Otherwise
3541 things can go wrong if find_reload swaps commutative operands
3542 and one is inside RTL that has been copied while the other is not. */
3543 new_body = old_body;
3544 if (! replace)
3546 new_body = copy_insn (old_body);
3547 if (REG_NOTES (insn))
3548 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3550 PATTERN (insn) = new_body;
3552 /* If we had a move insn but now we don't, rerecognize it. This will
3553 cause spurious re-recognition if the old move had a PARALLEL since
3554 the new one still will, but we can't call single_set without
3555 having put NEW_BODY into the insn and the re-recognition won't
3556 hurt in this rare case. */
3557 /* ??? Why this huge if statement - why don't we just rerecognize the
3558 thing always? */
3559 if (! insn_is_asm
3560 && old_set != 0
3561 && ((REG_P (SET_SRC (old_set))
3562 && (GET_CODE (new_body) != SET
3563 || !REG_P (SET_SRC (new_body))))
3564 /* If this was a load from or store to memory, compare
3565 the MEM in recog_data.operand to the one in the insn.
3566 If they are not equal, then rerecognize the insn. */
3567 || (old_set != 0
3568 && ((MEM_P (SET_SRC (old_set))
3569 && SET_SRC (old_set) != recog_data.operand[1])
3570 || (MEM_P (SET_DEST (old_set))
3571 && SET_DEST (old_set) != recog_data.operand[0])))
3572 /* If this was an add insn before, rerecognize. */
3573 || GET_CODE (SET_SRC (old_set)) == PLUS))
3575 int new_icode = recog (PATTERN (insn), insn, 0);
3576 if (new_icode >= 0)
3577 INSN_CODE (insn) = new_icode;
3581 /* Restore the old body. If there were any changes to it, we made a copy
3582 of it while the changes were still in place, so we'll correctly return
3583 a modified insn below. */
3584 if (! replace)
3586 /* Restore the old body. */
3587 for (i = 0; i < recog_data.n_operands; i++)
3588 /* Restoring a top-level match_parallel would clobber the new_body
3589 we installed in the insn. */
3590 if (recog_data.operand_loc[i] != &PATTERN (insn))
3591 *recog_data.operand_loc[i] = orig_operand[i];
3592 for (i = 0; i < recog_data.n_dups; i++)
3593 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3596 /* Update all elimination pairs to reflect the status after the current
3597 insn. The changes we make were determined by the earlier call to
3598 elimination_effects.
3600 We also detect cases where register elimination cannot be done,
3601 namely, if a register would be both changed and referenced outside a MEM
3602 in the resulting insn since such an insn is often undefined and, even if
3603 not, we cannot know what meaning will be given to it. Note that it is
3604 valid to have a register used in an address in an insn that changes it
3605 (presumably with a pre- or post-increment or decrement).
3607 If anything changes, return nonzero. */
3609 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3611 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3612 ep->can_eliminate = 0;
3614 ep->ref_outside_mem = 0;
3616 if (ep->previous_offset != ep->offset)
3617 val = 1;
3620 done:
3621 /* If we changed something, perform elimination in REG_NOTES. This is
3622 needed even when REPLACE is zero because a REG_DEAD note might refer
3623 to a register that we eliminate and could cause a different number
3624 of spill registers to be needed in the final reload pass than in
3625 the pre-passes. */
3626 if (val && REG_NOTES (insn) != 0)
3627 REG_NOTES (insn)
3628 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3629 false);
3631 return val;
3634 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3635 register allocator. INSN is the instruction we need to examine, we perform
3636 eliminations in its operands and record cases where eliminating a reg with
3637 an invariant equivalence would add extra cost. */
3639 static void
3640 elimination_costs_in_insn (rtx_insn *insn)
3642 int icode = recog_memoized (insn);
3643 rtx old_body = PATTERN (insn);
3644 int insn_is_asm = asm_noperands (old_body) >= 0;
3645 rtx old_set = single_set (insn);
3646 int i;
3647 rtx orig_operand[MAX_RECOG_OPERANDS];
3648 rtx orig_dup[MAX_RECOG_OPERANDS];
3649 struct elim_table *ep;
3650 rtx plus_src, plus_cst_src;
3651 bool sets_reg_p;
3653 if (! insn_is_asm && icode < 0)
3655 gcc_assert (DEBUG_INSN_P (insn)
3656 || GET_CODE (PATTERN (insn)) == USE
3657 || GET_CODE (PATTERN (insn)) == CLOBBER
3658 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3659 return;
3662 if (old_set != 0 && REG_P (SET_DEST (old_set))
3663 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3665 /* Check for setting an eliminable register. */
3666 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3667 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3668 return;
3671 /* We allow one special case which happens to work on all machines we
3672 currently support: a single set with the source or a REG_EQUAL
3673 note being a PLUS of an eliminable register and a constant. */
3674 plus_src = plus_cst_src = 0;
3675 sets_reg_p = false;
3676 if (old_set && REG_P (SET_DEST (old_set)))
3678 sets_reg_p = true;
3679 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3680 plus_src = SET_SRC (old_set);
3681 /* First see if the source is of the form (plus (...) CST). */
3682 if (plus_src
3683 && CONST_INT_P (XEXP (plus_src, 1)))
3684 plus_cst_src = plus_src;
3685 else if (REG_P (SET_SRC (old_set))
3686 || plus_src)
3688 /* Otherwise, see if we have a REG_EQUAL note of the form
3689 (plus (...) CST). */
3690 rtx links;
3691 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3693 if ((REG_NOTE_KIND (links) == REG_EQUAL
3694 || REG_NOTE_KIND (links) == REG_EQUIV)
3695 && GET_CODE (XEXP (links, 0)) == PLUS
3696 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3698 plus_cst_src = XEXP (links, 0);
3699 break;
3705 /* Determine the effects of this insn on elimination offsets. */
3706 elimination_effects (old_body, VOIDmode);
3708 /* Eliminate all eliminable registers occurring in operands that
3709 can be handled by reload. */
3710 extract_insn (insn);
3711 int n_dups = recog_data.n_dups;
3712 for (i = 0; i < n_dups; i++)
3713 orig_dup[i] = *recog_data.dup_loc[i];
3715 int n_operands = recog_data.n_operands;
3716 for (i = 0; i < n_operands; i++)
3718 orig_operand[i] = recog_data.operand[i];
3720 /* For an asm statement, every operand is eliminable. */
3721 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3723 bool is_set_src, in_plus;
3725 /* Check for setting a register that we know about. */
3726 if (recog_data.operand_type[i] != OP_IN
3727 && REG_P (orig_operand[i]))
3729 /* If we are assigning to a register that can be eliminated, it
3730 must be as part of a PARALLEL, since the code above handles
3731 single SETs. We must indicate that we can no longer
3732 eliminate this reg. */
3733 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3734 ep++)
3735 if (ep->from_rtx == orig_operand[i])
3736 ep->can_eliminate = 0;
3739 /* Companion to the above plus substitution, we can allow
3740 invariants as the source of a plain move. */
3741 is_set_src = false;
3742 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3743 is_set_src = true;
3744 if (is_set_src && !sets_reg_p)
3745 note_reg_elim_costly (SET_SRC (old_set), insn);
3746 in_plus = false;
3747 if (plus_src && sets_reg_p
3748 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3749 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3750 in_plus = true;
3752 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3753 NULL_RTX,
3754 is_set_src || in_plus, true);
3755 /* Terminate the search in check_eliminable_occurrences at
3756 this point. */
3757 *recog_data.operand_loc[i] = 0;
3761 for (i = 0; i < n_dups; i++)
3762 *recog_data.dup_loc[i]
3763 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3765 /* If any eliminable remain, they aren't eliminable anymore. */
3766 check_eliminable_occurrences (old_body);
3768 /* Restore the old body. */
3769 for (i = 0; i < n_operands; i++)
3770 *recog_data.operand_loc[i] = orig_operand[i];
3771 for (i = 0; i < n_dups; i++)
3772 *recog_data.dup_loc[i] = orig_dup[i];
3774 /* Update all elimination pairs to reflect the status after the current
3775 insn. The changes we make were determined by the earlier call to
3776 elimination_effects. */
3778 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3780 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3781 ep->can_eliminate = 0;
3783 ep->ref_outside_mem = 0;
3786 return;
3789 /* Loop through all elimination pairs.
3790 Recalculate the number not at initial offset.
3792 Compute the maximum offset (minimum offset if the stack does not
3793 grow downward) for each elimination pair. */
3795 static void
3796 update_eliminable_offsets (void)
3798 struct elim_table *ep;
3800 num_not_at_initial_offset = 0;
3801 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3803 ep->previous_offset = ep->offset;
3804 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3805 num_not_at_initial_offset++;
3809 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3810 replacement we currently believe is valid, mark it as not eliminable if X
3811 modifies DEST in any way other than by adding a constant integer to it.
3813 If DEST is the frame pointer, we do nothing because we assume that
3814 all assignments to the hard frame pointer are nonlocal gotos and are being
3815 done at a time when they are valid and do not disturb anything else.
3816 Some machines want to eliminate a fake argument pointer with either the
3817 frame or stack pointer. Assignments to the hard frame pointer must not
3818 prevent this elimination.
3820 Called via note_stores from reload before starting its passes to scan
3821 the insns of the function. */
3823 static void
3824 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3826 unsigned int i;
3828 /* A SUBREG of a hard register here is just changing its mode. We should
3829 not see a SUBREG of an eliminable hard register, but check just in
3830 case. */
3831 if (GET_CODE (dest) == SUBREG)
3832 dest = SUBREG_REG (dest);
3834 if (dest == hard_frame_pointer_rtx)
3835 return;
3837 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3838 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3839 && (GET_CODE (x) != SET
3840 || GET_CODE (SET_SRC (x)) != PLUS
3841 || XEXP (SET_SRC (x), 0) != dest
3842 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3844 reg_eliminate[i].can_eliminate_previous
3845 = reg_eliminate[i].can_eliminate = 0;
3846 num_eliminable--;
3850 /* Verify that the initial elimination offsets did not change since the
3851 last call to set_initial_elim_offsets. This is used to catch cases
3852 where something illegal happened during reload_as_needed that could
3853 cause incorrect code to be generated if we did not check for it. */
3855 static bool
3856 verify_initial_elim_offsets (void)
3858 HOST_WIDE_INT t;
3860 if (!num_eliminable)
3861 return true;
3863 #ifdef ELIMINABLE_REGS
3865 struct elim_table *ep;
3867 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3869 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3870 if (t != ep->initial_offset)
3871 return false;
3874 #else
3875 INITIAL_FRAME_POINTER_OFFSET (t);
3876 if (t != reg_eliminate[0].initial_offset)
3877 return false;
3878 #endif
3880 return true;
3883 /* Reset all offsets on eliminable registers to their initial values. */
3885 static void
3886 set_initial_elim_offsets (void)
3888 struct elim_table *ep = reg_eliminate;
3890 #ifdef ELIMINABLE_REGS
3891 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3893 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3894 ep->previous_offset = ep->offset = ep->initial_offset;
3896 #else
3897 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3898 ep->previous_offset = ep->offset = ep->initial_offset;
3899 #endif
3901 num_not_at_initial_offset = 0;
3904 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3906 static void
3907 set_initial_eh_label_offset (rtx label)
3909 set_label_offsets (label, NULL, 1);
3912 /* Initialize the known label offsets.
3913 Set a known offset for each forced label to be at the initial offset
3914 of each elimination. We do this because we assume that all
3915 computed jumps occur from a location where each elimination is
3916 at its initial offset.
3917 For all other labels, show that we don't know the offsets. */
3919 static void
3920 set_initial_label_offsets (void)
3922 memset (offsets_known_at, 0, num_labels);
3924 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3925 if (x->insn ())
3926 set_label_offsets (x->insn (), NULL, 1);
3928 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3929 if (x->insn ())
3930 set_label_offsets (x->insn (), NULL, 1);
3932 for_each_eh_label (set_initial_eh_label_offset);
3935 /* Set all elimination offsets to the known values for the code label given
3936 by INSN. */
3938 static void
3939 set_offsets_for_label (rtx_insn *insn)
3941 unsigned int i;
3942 int label_nr = CODE_LABEL_NUMBER (insn);
3943 struct elim_table *ep;
3945 num_not_at_initial_offset = 0;
3946 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3948 ep->offset = ep->previous_offset
3949 = offsets_at[label_nr - first_label_num][i];
3950 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3951 num_not_at_initial_offset++;
3955 /* See if anything that happened changes which eliminations are valid.
3956 For example, on the SPARC, whether or not the frame pointer can
3957 be eliminated can depend on what registers have been used. We need
3958 not check some conditions again (such as flag_omit_frame_pointer)
3959 since they can't have changed. */
3961 static void
3962 update_eliminables (HARD_REG_SET *pset)
3964 int previous_frame_pointer_needed = frame_pointer_needed;
3965 struct elim_table *ep;
3967 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3968 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3969 && targetm.frame_pointer_required ())
3970 #ifdef ELIMINABLE_REGS
3971 || ! targetm.can_eliminate (ep->from, ep->to)
3972 #endif
3974 ep->can_eliminate = 0;
3976 /* Look for the case where we have discovered that we can't replace
3977 register A with register B and that means that we will now be
3978 trying to replace register A with register C. This means we can
3979 no longer replace register C with register B and we need to disable
3980 such an elimination, if it exists. This occurs often with A == ap,
3981 B == sp, and C == fp. */
3983 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3985 struct elim_table *op;
3986 int new_to = -1;
3988 if (! ep->can_eliminate && ep->can_eliminate_previous)
3990 /* Find the current elimination for ep->from, if there is a
3991 new one. */
3992 for (op = reg_eliminate;
3993 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3994 if (op->from == ep->from && op->can_eliminate)
3996 new_to = op->to;
3997 break;
4000 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4001 disable it. */
4002 for (op = reg_eliminate;
4003 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4004 if (op->from == new_to && op->to == ep->to)
4005 op->can_eliminate = 0;
4009 /* See if any registers that we thought we could eliminate the previous
4010 time are no longer eliminable. If so, something has changed and we
4011 must spill the register. Also, recompute the number of eliminable
4012 registers and see if the frame pointer is needed; it is if there is
4013 no elimination of the frame pointer that we can perform. */
4015 frame_pointer_needed = 1;
4016 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4018 if (ep->can_eliminate
4019 && ep->from == FRAME_POINTER_REGNUM
4020 && ep->to != HARD_FRAME_POINTER_REGNUM
4021 && (! SUPPORTS_STACK_ALIGNMENT
4022 || ! crtl->stack_realign_needed))
4023 frame_pointer_needed = 0;
4025 if (! ep->can_eliminate && ep->can_eliminate_previous)
4027 ep->can_eliminate_previous = 0;
4028 SET_HARD_REG_BIT (*pset, ep->from);
4029 num_eliminable--;
4033 /* If we didn't need a frame pointer last time, but we do now, spill
4034 the hard frame pointer. */
4035 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4036 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4039 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4040 Return true iff a register was spilled. */
4042 static bool
4043 update_eliminables_and_spill (void)
4045 int i;
4046 bool did_spill = false;
4047 HARD_REG_SET to_spill;
4048 CLEAR_HARD_REG_SET (to_spill);
4049 update_eliminables (&to_spill);
4050 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4053 if (TEST_HARD_REG_BIT (to_spill, i))
4055 spill_hard_reg (i, 1);
4056 did_spill = true;
4058 /* Regardless of the state of spills, if we previously had
4059 a register that we thought we could eliminate, but now can
4060 not eliminate, we must run another pass.
4062 Consider pseudos which have an entry in reg_equiv_* which
4063 reference an eliminable register. We must make another pass
4064 to update reg_equiv_* so that we do not substitute in the
4065 old value from when we thought the elimination could be
4066 performed. */
4068 return did_spill;
4071 /* Return true if X is used as the target register of an elimination. */
4073 bool
4074 elimination_target_reg_p (rtx x)
4076 struct elim_table *ep;
4078 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4079 if (ep->to_rtx == x && ep->can_eliminate)
4080 return true;
4082 return false;
4085 /* Initialize the table of registers to eliminate.
4086 Pre-condition: global flag frame_pointer_needed has been set before
4087 calling this function. */
4089 static void
4090 init_elim_table (void)
4092 struct elim_table *ep;
4093 #ifdef ELIMINABLE_REGS
4094 const struct elim_table_1 *ep1;
4095 #endif
4097 if (!reg_eliminate)
4098 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4100 num_eliminable = 0;
4102 #ifdef ELIMINABLE_REGS
4103 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4104 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4106 ep->from = ep1->from;
4107 ep->to = ep1->to;
4108 ep->can_eliminate = ep->can_eliminate_previous
4109 = (targetm.can_eliminate (ep->from, ep->to)
4110 && ! (ep->to == STACK_POINTER_REGNUM
4111 && frame_pointer_needed
4112 && (! SUPPORTS_STACK_ALIGNMENT
4113 || ! stack_realign_fp)));
4115 #else
4116 reg_eliminate[0].from = reg_eliminate_1[0].from;
4117 reg_eliminate[0].to = reg_eliminate_1[0].to;
4118 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4119 = ! frame_pointer_needed;
4120 #endif
4122 /* Count the number of eliminable registers and build the FROM and TO
4123 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4124 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4125 We depend on this. */
4126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4128 num_eliminable += ep->can_eliminate;
4129 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4130 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4134 /* Find all the pseudo registers that didn't get hard regs
4135 but do have known equivalent constants or memory slots.
4136 These include parameters (known equivalent to parameter slots)
4137 and cse'd or loop-moved constant memory addresses.
4139 Record constant equivalents in reg_equiv_constant
4140 so they will be substituted by find_reloads.
4141 Record memory equivalents in reg_mem_equiv so they can
4142 be substituted eventually by altering the REG-rtx's. */
4144 static void
4145 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4147 int i;
4148 rtx_insn *insn;
4150 grow_reg_equivs ();
4151 if (do_subregs)
4152 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4153 else
4154 reg_max_ref_width = NULL;
4156 num_eliminable_invariants = 0;
4158 first_label_num = get_first_label_num ();
4159 num_labels = max_label_num () - first_label_num;
4161 /* Allocate the tables used to store offset information at labels. */
4162 offsets_known_at = XNEWVEC (char, num_labels);
4163 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4165 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4166 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4167 find largest such for each pseudo. FIRST is the head of the insn
4168 list. */
4170 for (insn = first; insn; insn = NEXT_INSN (insn))
4172 rtx set = single_set (insn);
4174 /* We may introduce USEs that we want to remove at the end, so
4175 we'll mark them with QImode. Make sure there are no
4176 previously-marked insns left by say regmove. */
4177 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4178 && GET_MODE (insn) != VOIDmode)
4179 PUT_MODE (insn, VOIDmode);
4181 if (do_subregs && NONDEBUG_INSN_P (insn))
4182 scan_paradoxical_subregs (PATTERN (insn));
4184 if (set != 0 && REG_P (SET_DEST (set)))
4186 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4187 rtx x;
4189 if (! note)
4190 continue;
4192 i = REGNO (SET_DEST (set));
4193 x = XEXP (note, 0);
4195 if (i <= LAST_VIRTUAL_REGISTER)
4196 continue;
4198 /* If flag_pic and we have constant, verify it's legitimate. */
4199 if (!CONSTANT_P (x)
4200 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4202 /* It can happen that a REG_EQUIV note contains a MEM
4203 that is not a legitimate memory operand. As later
4204 stages of reload assume that all addresses found
4205 in the reg_equiv_* arrays were originally legitimate,
4206 we ignore such REG_EQUIV notes. */
4207 if (memory_operand (x, VOIDmode))
4209 /* Always unshare the equivalence, so we can
4210 substitute into this insn without touching the
4211 equivalence. */
4212 reg_equiv_memory_loc (i) = copy_rtx (x);
4214 else if (function_invariant_p (x))
4216 machine_mode mode;
4218 mode = GET_MODE (SET_DEST (set));
4219 if (GET_CODE (x) == PLUS)
4221 /* This is PLUS of frame pointer and a constant,
4222 and might be shared. Unshare it. */
4223 reg_equiv_invariant (i) = copy_rtx (x);
4224 num_eliminable_invariants++;
4226 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4228 reg_equiv_invariant (i) = x;
4229 num_eliminable_invariants++;
4231 else if (targetm.legitimate_constant_p (mode, x))
4232 reg_equiv_constant (i) = x;
4233 else
4235 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4236 if (! reg_equiv_memory_loc (i))
4237 reg_equiv_init (i) = NULL;
4240 else
4242 reg_equiv_init (i) = NULL;
4243 continue;
4246 else
4247 reg_equiv_init (i) = NULL;
4251 if (dump_file)
4252 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4253 if (reg_equiv_init (i))
4255 fprintf (dump_file, "init_insns for %u: ", i);
4256 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4257 fprintf (dump_file, "\n");
4261 /* Indicate that we no longer have known memory locations or constants.
4262 Free all data involved in tracking these. */
4264 static void
4265 free_reg_equiv (void)
4267 int i;
4269 free (offsets_known_at);
4270 free (offsets_at);
4271 offsets_at = 0;
4272 offsets_known_at = 0;
4274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4275 if (reg_equiv_alt_mem_list (i))
4276 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4277 vec_free (reg_equivs);
4280 /* Kick all pseudos out of hard register REGNO.
4282 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4283 because we found we can't eliminate some register. In the case, no pseudos
4284 are allowed to be in the register, even if they are only in a block that
4285 doesn't require spill registers, unlike the case when we are spilling this
4286 hard reg to produce another spill register.
4288 Return nonzero if any pseudos needed to be kicked out. */
4290 static void
4291 spill_hard_reg (unsigned int regno, int cant_eliminate)
4293 int i;
4295 if (cant_eliminate)
4297 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4298 df_set_regs_ever_live (regno, true);
4301 /* Spill every pseudo reg that was allocated to this reg
4302 or to something that overlaps this reg. */
4304 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4305 if (reg_renumber[i] >= 0
4306 && (unsigned int) reg_renumber[i] <= regno
4307 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4308 SET_REGNO_REG_SET (&spilled_pseudos, i);
4311 /* After find_reload_regs has been run for all insn that need reloads,
4312 and/or spill_hard_regs was called, this function is used to actually
4313 spill pseudo registers and try to reallocate them. It also sets up the
4314 spill_regs array for use by choose_reload_regs. */
4316 static int
4317 finish_spills (int global)
4319 struct insn_chain *chain;
4320 int something_changed = 0;
4321 unsigned i;
4322 reg_set_iterator rsi;
4324 /* Build the spill_regs array for the function. */
4325 /* If there are some registers still to eliminate and one of the spill regs
4326 wasn't ever used before, additional stack space may have to be
4327 allocated to store this register. Thus, we may have changed the offset
4328 between the stack and frame pointers, so mark that something has changed.
4330 One might think that we need only set VAL to 1 if this is a call-used
4331 register. However, the set of registers that must be saved by the
4332 prologue is not identical to the call-used set. For example, the
4333 register used by the call insn for the return PC is a call-used register,
4334 but must be saved by the prologue. */
4336 n_spills = 0;
4337 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4338 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4340 spill_reg_order[i] = n_spills;
4341 spill_regs[n_spills++] = i;
4342 if (num_eliminable && ! df_regs_ever_live_p (i))
4343 something_changed = 1;
4344 df_set_regs_ever_live (i, true);
4346 else
4347 spill_reg_order[i] = -1;
4349 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4350 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4352 /* Record the current hard register the pseudo is allocated to
4353 in pseudo_previous_regs so we avoid reallocating it to the
4354 same hard reg in a later pass. */
4355 gcc_assert (reg_renumber[i] >= 0);
4357 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4358 /* Mark it as no longer having a hard register home. */
4359 reg_renumber[i] = -1;
4360 if (ira_conflicts_p)
4361 /* Inform IRA about the change. */
4362 ira_mark_allocation_change (i);
4363 /* We will need to scan everything again. */
4364 something_changed = 1;
4367 /* Retry global register allocation if possible. */
4368 if (global && ira_conflicts_p)
4370 unsigned int n;
4372 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4373 /* For every insn that needs reloads, set the registers used as spill
4374 regs in pseudo_forbidden_regs for every pseudo live across the
4375 insn. */
4376 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4378 EXECUTE_IF_SET_IN_REG_SET
4379 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4381 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4382 chain->used_spill_regs);
4384 EXECUTE_IF_SET_IN_REG_SET
4385 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4387 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4388 chain->used_spill_regs);
4392 /* Retry allocating the pseudos spilled in IRA and the
4393 reload. For each reg, merge the various reg sets that
4394 indicate which hard regs can't be used, and call
4395 ira_reassign_pseudos. */
4396 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4397 if (reg_old_renumber[i] != reg_renumber[i])
4399 if (reg_renumber[i] < 0)
4400 temp_pseudo_reg_arr[n++] = i;
4401 else
4402 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4404 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4405 bad_spill_regs_global,
4406 pseudo_forbidden_regs, pseudo_previous_regs,
4407 &spilled_pseudos))
4408 something_changed = 1;
4410 /* Fix up the register information in the insn chain.
4411 This involves deleting those of the spilled pseudos which did not get
4412 a new hard register home from the live_{before,after} sets. */
4413 for (chain = reload_insn_chain; chain; chain = chain->next)
4415 HARD_REG_SET used_by_pseudos;
4416 HARD_REG_SET used_by_pseudos2;
4418 if (! ira_conflicts_p)
4420 /* Don't do it for IRA because IRA and the reload still can
4421 assign hard registers to the spilled pseudos on next
4422 reload iterations. */
4423 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4424 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4426 /* Mark any unallocated hard regs as available for spills. That
4427 makes inheritance work somewhat better. */
4428 if (chain->need_reload)
4430 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4431 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4432 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4434 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4435 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4436 /* Value of chain->used_spill_regs from previous iteration
4437 may be not included in the value calculated here because
4438 of possible removing caller-saves insns (see function
4439 delete_caller_save_insns. */
4440 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4441 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4445 CLEAR_REG_SET (&changed_allocation_pseudos);
4446 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4447 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4449 int regno = reg_renumber[i];
4450 if (reg_old_renumber[i] == regno)
4451 continue;
4453 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4455 alter_reg (i, reg_old_renumber[i], false);
4456 reg_old_renumber[i] = regno;
4457 if (dump_file)
4459 if (regno == -1)
4460 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4461 else
4462 fprintf (dump_file, " Register %d now in %d.\n\n",
4463 i, reg_renumber[i]);
4467 return something_changed;
4470 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4472 static void
4473 scan_paradoxical_subregs (rtx x)
4475 int i;
4476 const char *fmt;
4477 enum rtx_code code = GET_CODE (x);
4479 switch (code)
4481 case REG:
4482 case CONST:
4483 case SYMBOL_REF:
4484 case LABEL_REF:
4485 CASE_CONST_ANY:
4486 case CC0:
4487 case PC:
4488 case USE:
4489 case CLOBBER:
4490 return;
4492 case SUBREG:
4493 if (REG_P (SUBREG_REG (x))
4494 && (GET_MODE_SIZE (GET_MODE (x))
4495 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4497 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4498 = GET_MODE_SIZE (GET_MODE (x));
4499 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4501 return;
4503 default:
4504 break;
4507 fmt = GET_RTX_FORMAT (code);
4508 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4510 if (fmt[i] == 'e')
4511 scan_paradoxical_subregs (XEXP (x, i));
4512 else if (fmt[i] == 'E')
4514 int j;
4515 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4516 scan_paradoxical_subregs (XVECEXP (x, i, j));
4521 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4522 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4523 and apply the corresponding narrowing subreg to *OTHER_PTR.
4524 Return true if the operands were changed, false otherwise. */
4526 static bool
4527 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4529 rtx op, inner, other, tem;
4531 op = *op_ptr;
4532 if (!paradoxical_subreg_p (op))
4533 return false;
4534 inner = SUBREG_REG (op);
4536 other = *other_ptr;
4537 tem = gen_lowpart_common (GET_MODE (inner), other);
4538 if (!tem)
4539 return false;
4541 /* If the lowpart operation turned a hard register into a subreg,
4542 rather than simplifying it to another hard register, then the
4543 mode change cannot be properly represented. For example, OTHER
4544 might be valid in its current mode, but not in the new one. */
4545 if (GET_CODE (tem) == SUBREG
4546 && REG_P (other)
4547 && HARD_REGISTER_P (other))
4548 return false;
4550 *op_ptr = inner;
4551 *other_ptr = tem;
4552 return true;
4555 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4556 examine all of the reload insns between PREV and NEXT exclusive, and
4557 annotate all that may trap. */
4559 static void
4560 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4562 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4563 if (note == NULL)
4564 return;
4565 if (!insn_could_throw_p (insn))
4566 remove_note (insn, note);
4567 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4570 /* Reload pseudo-registers into hard regs around each insn as needed.
4571 Additional register load insns are output before the insn that needs it
4572 and perhaps store insns after insns that modify the reloaded pseudo reg.
4574 reg_last_reload_reg and reg_reloaded_contents keep track of
4575 which registers are already available in reload registers.
4576 We update these for the reloads that we perform,
4577 as the insns are scanned. */
4579 static void
4580 reload_as_needed (int live_known)
4582 struct insn_chain *chain;
4583 #if AUTO_INC_DEC
4584 int i;
4585 #endif
4586 rtx_note *marker;
4588 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4589 memset (spill_reg_store, 0, sizeof spill_reg_store);
4590 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4591 INIT_REG_SET (&reg_has_output_reload);
4592 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4593 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4595 set_initial_elim_offsets ();
4597 /* Generate a marker insn that we will move around. */
4598 marker = emit_note (NOTE_INSN_DELETED);
4599 unlink_insn_chain (marker, marker);
4601 for (chain = reload_insn_chain; chain; chain = chain->next)
4603 rtx_insn *prev = 0;
4604 rtx_insn *insn = chain->insn;
4605 rtx_insn *old_next = NEXT_INSN (insn);
4606 #if AUTO_INC_DEC
4607 rtx_insn *old_prev = PREV_INSN (insn);
4608 #endif
4610 if (will_delete_init_insn_p (insn))
4611 continue;
4613 /* If we pass a label, copy the offsets from the label information
4614 into the current offsets of each elimination. */
4615 if (LABEL_P (insn))
4616 set_offsets_for_label (insn);
4618 else if (INSN_P (insn))
4620 regset_head regs_to_forget;
4621 INIT_REG_SET (&regs_to_forget);
4622 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4624 /* If this is a USE and CLOBBER of a MEM, ensure that any
4625 references to eliminable registers have been removed. */
4627 if ((GET_CODE (PATTERN (insn)) == USE
4628 || GET_CODE (PATTERN (insn)) == CLOBBER)
4629 && MEM_P (XEXP (PATTERN (insn), 0)))
4630 XEXP (XEXP (PATTERN (insn), 0), 0)
4631 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4632 GET_MODE (XEXP (PATTERN (insn), 0)),
4633 NULL_RTX);
4635 /* If we need to do register elimination processing, do so.
4636 This might delete the insn, in which case we are done. */
4637 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4639 eliminate_regs_in_insn (insn, 1);
4640 if (NOTE_P (insn))
4642 update_eliminable_offsets ();
4643 CLEAR_REG_SET (&regs_to_forget);
4644 continue;
4648 /* If need_elim is nonzero but need_reload is zero, one might think
4649 that we could simply set n_reloads to 0. However, find_reloads
4650 could have done some manipulation of the insn (such as swapping
4651 commutative operands), and these manipulations are lost during
4652 the first pass for every insn that needs register elimination.
4653 So the actions of find_reloads must be redone here. */
4655 if (! chain->need_elim && ! chain->need_reload
4656 && ! chain->need_operand_change)
4657 n_reloads = 0;
4658 /* First find the pseudo regs that must be reloaded for this insn.
4659 This info is returned in the tables reload_... (see reload.h).
4660 Also modify the body of INSN by substituting RELOAD
4661 rtx's for those pseudo regs. */
4662 else
4664 CLEAR_REG_SET (&reg_has_output_reload);
4665 CLEAR_HARD_REG_SET (reg_is_output_reload);
4667 find_reloads (insn, 1, spill_indirect_levels, live_known,
4668 spill_reg_order);
4671 if (n_reloads > 0)
4673 rtx_insn *next = NEXT_INSN (insn);
4675 /* ??? PREV can get deleted by reload inheritance.
4676 Work around this by emitting a marker note. */
4677 prev = PREV_INSN (insn);
4678 reorder_insns_nobb (marker, marker, prev);
4680 /* Now compute which reload regs to reload them into. Perhaps
4681 reusing reload regs from previous insns, or else output
4682 load insns to reload them. Maybe output store insns too.
4683 Record the choices of reload reg in reload_reg_rtx. */
4684 choose_reload_regs (chain);
4686 /* Generate the insns to reload operands into or out of
4687 their reload regs. */
4688 emit_reload_insns (chain);
4690 /* Substitute the chosen reload regs from reload_reg_rtx
4691 into the insn's body (or perhaps into the bodies of other
4692 load and store insn that we just made for reloading
4693 and that we moved the structure into). */
4694 subst_reloads (insn);
4696 prev = PREV_INSN (marker);
4697 unlink_insn_chain (marker, marker);
4699 /* Adjust the exception region notes for loads and stores. */
4700 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4701 fixup_eh_region_note (insn, prev, next);
4703 /* Adjust the location of REG_ARGS_SIZE. */
4704 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4705 if (p)
4707 remove_note (insn, p);
4708 fixup_args_size_notes (prev, PREV_INSN (next),
4709 INTVAL (XEXP (p, 0)));
4712 /* If this was an ASM, make sure that all the reload insns
4713 we have generated are valid. If not, give an error
4714 and delete them. */
4715 if (asm_noperands (PATTERN (insn)) >= 0)
4716 for (rtx_insn *p = NEXT_INSN (prev);
4717 p != next;
4718 p = NEXT_INSN (p))
4719 if (p != insn && INSN_P (p)
4720 && GET_CODE (PATTERN (p)) != USE
4721 && (recog_memoized (p) < 0
4722 || (extract_insn (p),
4723 !(constrain_operands (1,
4724 get_enabled_alternatives (p))))))
4726 error_for_asm (insn,
4727 "%<asm%> operand requires "
4728 "impossible reload");
4729 delete_insn (p);
4733 if (num_eliminable && chain->need_elim)
4734 update_eliminable_offsets ();
4736 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4737 is no longer validly lying around to save a future reload.
4738 Note that this does not detect pseudos that were reloaded
4739 for this insn in order to be stored in
4740 (obeying register constraints). That is correct; such reload
4741 registers ARE still valid. */
4742 forget_marked_reloads (&regs_to_forget);
4743 CLEAR_REG_SET (&regs_to_forget);
4745 /* There may have been CLOBBER insns placed after INSN. So scan
4746 between INSN and NEXT and use them to forget old reloads. */
4747 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4748 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4749 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4751 #if AUTO_INC_DEC
4752 /* Likewise for regs altered by auto-increment in this insn.
4753 REG_INC notes have been changed by reloading:
4754 find_reloads_address_1 records substitutions for them,
4755 which have been performed by subst_reloads above. */
4756 for (i = n_reloads - 1; i >= 0; i--)
4758 rtx in_reg = rld[i].in_reg;
4759 if (in_reg)
4761 enum rtx_code code = GET_CODE (in_reg);
4762 /* PRE_INC / PRE_DEC will have the reload register ending up
4763 with the same value as the stack slot, but that doesn't
4764 hold true for POST_INC / POST_DEC. Either we have to
4765 convert the memory access to a true POST_INC / POST_DEC,
4766 or we can't use the reload register for inheritance. */
4767 if ((code == POST_INC || code == POST_DEC)
4768 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4769 REGNO (rld[i].reg_rtx))
4770 /* Make sure it is the inc/dec pseudo, and not
4771 some other (e.g. output operand) pseudo. */
4772 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4773 == REGNO (XEXP (in_reg, 0))))
4776 rtx reload_reg = rld[i].reg_rtx;
4777 machine_mode mode = GET_MODE (reload_reg);
4778 int n = 0;
4779 rtx_insn *p;
4781 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4783 /* We really want to ignore REG_INC notes here, so
4784 use PATTERN (p) as argument to reg_set_p . */
4785 if (reg_set_p (reload_reg, PATTERN (p)))
4786 break;
4787 n = count_occurrences (PATTERN (p), reload_reg, 0);
4788 if (! n)
4789 continue;
4790 if (n == 1)
4792 rtx replace_reg
4793 = gen_rtx_fmt_e (code, mode, reload_reg);
4795 validate_replace_rtx_group (reload_reg,
4796 replace_reg, p);
4797 n = verify_changes (0);
4799 /* We must also verify that the constraints
4800 are met after the replacement. Make sure
4801 extract_insn is only called for an insn
4802 where the replacements were found to be
4803 valid so far. */
4804 if (n)
4806 extract_insn (p);
4807 n = constrain_operands (1,
4808 get_enabled_alternatives (p));
4811 /* If the constraints were not met, then
4812 undo the replacement, else confirm it. */
4813 if (!n)
4814 cancel_changes (0);
4815 else
4816 confirm_change_group ();
4818 break;
4820 if (n == 1)
4822 add_reg_note (p, REG_INC, reload_reg);
4823 /* Mark this as having an output reload so that the
4824 REG_INC processing code below won't invalidate
4825 the reload for inheritance. */
4826 SET_HARD_REG_BIT (reg_is_output_reload,
4827 REGNO (reload_reg));
4828 SET_REGNO_REG_SET (&reg_has_output_reload,
4829 REGNO (XEXP (in_reg, 0)));
4831 else
4832 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4833 NULL);
4835 else if ((code == PRE_INC || code == PRE_DEC)
4836 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4837 REGNO (rld[i].reg_rtx))
4838 /* Make sure it is the inc/dec pseudo, and not
4839 some other (e.g. output operand) pseudo. */
4840 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4841 == REGNO (XEXP (in_reg, 0))))
4843 SET_HARD_REG_BIT (reg_is_output_reload,
4844 REGNO (rld[i].reg_rtx));
4845 SET_REGNO_REG_SET (&reg_has_output_reload,
4846 REGNO (XEXP (in_reg, 0)));
4848 else if (code == PRE_INC || code == PRE_DEC
4849 || code == POST_INC || code == POST_DEC)
4851 int in_regno = REGNO (XEXP (in_reg, 0));
4853 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4855 int in_hard_regno;
4856 bool forget_p = true;
4858 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4859 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4860 in_hard_regno))
4862 for (rtx_insn *x = (old_prev ?
4863 NEXT_INSN (old_prev) : insn);
4864 x != old_next;
4865 x = NEXT_INSN (x))
4866 if (x == reg_reloaded_insn[in_hard_regno])
4868 forget_p = false;
4869 break;
4872 /* If for some reasons, we didn't set up
4873 reg_last_reload_reg in this insn,
4874 invalidate inheritance from previous
4875 insns for the incremented/decremented
4876 register. Such registers will be not in
4877 reg_has_output_reload. Invalidate it
4878 also if the corresponding element in
4879 reg_reloaded_insn is also
4880 invalidated. */
4881 if (forget_p)
4882 forget_old_reloads_1 (XEXP (in_reg, 0),
4883 NULL_RTX, NULL);
4888 /* If a pseudo that got a hard register is auto-incremented,
4889 we must purge records of copying it into pseudos without
4890 hard registers. */
4891 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4892 if (REG_NOTE_KIND (x) == REG_INC)
4894 /* See if this pseudo reg was reloaded in this insn.
4895 If so, its last-reload info is still valid
4896 because it is based on this insn's reload. */
4897 for (i = 0; i < n_reloads; i++)
4898 if (rld[i].out == XEXP (x, 0))
4899 break;
4901 if (i == n_reloads)
4902 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4904 #endif
4906 /* A reload reg's contents are unknown after a label. */
4907 if (LABEL_P (insn))
4908 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4910 /* Don't assume a reload reg is still good after a call insn
4911 if it is a call-used reg, or if it contains a value that will
4912 be partially clobbered by the call. */
4913 else if (CALL_P (insn))
4915 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4916 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4918 /* If this is a call to a setjmp-type function, we must not
4919 reuse any reload reg contents across the call; that will
4920 just be clobbered by other uses of the register in later
4921 code, before the longjmp. */
4922 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4923 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4927 /* Clean up. */
4928 free (reg_last_reload_reg);
4929 CLEAR_REG_SET (&reg_has_output_reload);
4932 /* Discard all record of any value reloaded from X,
4933 or reloaded in X from someplace else;
4934 unless X is an output reload reg of the current insn.
4936 X may be a hard reg (the reload reg)
4937 or it may be a pseudo reg that was reloaded from.
4939 When DATA is non-NULL just mark the registers in regset
4940 to be forgotten later. */
4942 static void
4943 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4944 void *data)
4946 unsigned int regno;
4947 unsigned int nr;
4948 regset regs = (regset) data;
4950 /* note_stores does give us subregs of hard regs,
4951 subreg_regno_offset requires a hard reg. */
4952 while (GET_CODE (x) == SUBREG)
4954 /* We ignore the subreg offset when calculating the regno,
4955 because we are using the entire underlying hard register
4956 below. */
4957 x = SUBREG_REG (x);
4960 if (!REG_P (x))
4961 return;
4963 regno = REGNO (x);
4965 if (regno >= FIRST_PSEUDO_REGISTER)
4966 nr = 1;
4967 else
4969 unsigned int i;
4971 nr = hard_regno_nregs[regno][GET_MODE (x)];
4972 /* Storing into a spilled-reg invalidates its contents.
4973 This can happen if a block-local pseudo is allocated to that reg
4974 and it wasn't spilled because this block's total need is 0.
4975 Then some insn might have an optional reload and use this reg. */
4976 if (!regs)
4977 for (i = 0; i < nr; i++)
4978 /* But don't do this if the reg actually serves as an output
4979 reload reg in the current instruction. */
4980 if (n_reloads == 0
4981 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4983 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4984 spill_reg_store[regno + i] = 0;
4988 if (regs)
4989 while (nr-- > 0)
4990 SET_REGNO_REG_SET (regs, regno + nr);
4991 else
4993 /* Since value of X has changed,
4994 forget any value previously copied from it. */
4996 while (nr-- > 0)
4997 /* But don't forget a copy if this is the output reload
4998 that establishes the copy's validity. */
4999 if (n_reloads == 0
5000 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5001 reg_last_reload_reg[regno + nr] = 0;
5005 /* Forget the reloads marked in regset by previous function. */
5006 static void
5007 forget_marked_reloads (regset regs)
5009 unsigned int reg;
5010 reg_set_iterator rsi;
5011 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5013 if (reg < FIRST_PSEUDO_REGISTER
5014 /* But don't do this if the reg actually serves as an output
5015 reload reg in the current instruction. */
5016 && (n_reloads == 0
5017 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5019 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5020 spill_reg_store[reg] = 0;
5022 if (n_reloads == 0
5023 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5024 reg_last_reload_reg[reg] = 0;
5028 /* The following HARD_REG_SETs indicate when each hard register is
5029 used for a reload of various parts of the current insn. */
5031 /* If reg is unavailable for all reloads. */
5032 static HARD_REG_SET reload_reg_unavailable;
5033 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5034 static HARD_REG_SET reload_reg_used;
5035 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5036 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5037 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5038 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5039 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5040 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5041 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5042 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5043 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5044 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5045 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5046 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5047 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5048 static HARD_REG_SET reload_reg_used_in_op_addr;
5049 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5050 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5051 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5052 static HARD_REG_SET reload_reg_used_in_insn;
5053 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5054 static HARD_REG_SET reload_reg_used_in_other_addr;
5056 /* If reg is in use as a reload reg for any sort of reload. */
5057 static HARD_REG_SET reload_reg_used_at_all;
5059 /* If reg is use as an inherited reload. We just mark the first register
5060 in the group. */
5061 static HARD_REG_SET reload_reg_used_for_inherit;
5063 /* Records which hard regs are used in any way, either as explicit use or
5064 by being allocated to a pseudo during any point of the current insn. */
5065 static HARD_REG_SET reg_used_in_insn;
5067 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5068 TYPE. MODE is used to indicate how many consecutive regs are
5069 actually used. */
5071 static void
5072 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5073 machine_mode mode)
5075 switch (type)
5077 case RELOAD_OTHER:
5078 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5079 break;
5081 case RELOAD_FOR_INPUT_ADDRESS:
5082 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5083 break;
5085 case RELOAD_FOR_INPADDR_ADDRESS:
5086 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5087 break;
5089 case RELOAD_FOR_OUTPUT_ADDRESS:
5090 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5091 break;
5093 case RELOAD_FOR_OUTADDR_ADDRESS:
5094 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5095 break;
5097 case RELOAD_FOR_OPERAND_ADDRESS:
5098 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5099 break;
5101 case RELOAD_FOR_OPADDR_ADDR:
5102 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5103 break;
5105 case RELOAD_FOR_OTHER_ADDRESS:
5106 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5107 break;
5109 case RELOAD_FOR_INPUT:
5110 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5111 break;
5113 case RELOAD_FOR_OUTPUT:
5114 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5115 break;
5117 case RELOAD_FOR_INSN:
5118 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5119 break;
5122 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5125 /* Similarly, but show REGNO is no longer in use for a reload. */
5127 static void
5128 clear_reload_reg_in_use (unsigned int regno, int opnum,
5129 enum reload_type type, machine_mode mode)
5131 unsigned int nregs = hard_regno_nregs[regno][mode];
5132 unsigned int start_regno, end_regno, r;
5133 int i;
5134 /* A complication is that for some reload types, inheritance might
5135 allow multiple reloads of the same types to share a reload register.
5136 We set check_opnum if we have to check only reloads with the same
5137 operand number, and check_any if we have to check all reloads. */
5138 int check_opnum = 0;
5139 int check_any = 0;
5140 HARD_REG_SET *used_in_set;
5142 switch (type)
5144 case RELOAD_OTHER:
5145 used_in_set = &reload_reg_used;
5146 break;
5148 case RELOAD_FOR_INPUT_ADDRESS:
5149 used_in_set = &reload_reg_used_in_input_addr[opnum];
5150 break;
5152 case RELOAD_FOR_INPADDR_ADDRESS:
5153 check_opnum = 1;
5154 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5155 break;
5157 case RELOAD_FOR_OUTPUT_ADDRESS:
5158 used_in_set = &reload_reg_used_in_output_addr[opnum];
5159 break;
5161 case RELOAD_FOR_OUTADDR_ADDRESS:
5162 check_opnum = 1;
5163 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5164 break;
5166 case RELOAD_FOR_OPERAND_ADDRESS:
5167 used_in_set = &reload_reg_used_in_op_addr;
5168 break;
5170 case RELOAD_FOR_OPADDR_ADDR:
5171 check_any = 1;
5172 used_in_set = &reload_reg_used_in_op_addr_reload;
5173 break;
5175 case RELOAD_FOR_OTHER_ADDRESS:
5176 used_in_set = &reload_reg_used_in_other_addr;
5177 check_any = 1;
5178 break;
5180 case RELOAD_FOR_INPUT:
5181 used_in_set = &reload_reg_used_in_input[opnum];
5182 break;
5184 case RELOAD_FOR_OUTPUT:
5185 used_in_set = &reload_reg_used_in_output[opnum];
5186 break;
5188 case RELOAD_FOR_INSN:
5189 used_in_set = &reload_reg_used_in_insn;
5190 break;
5191 default:
5192 gcc_unreachable ();
5194 /* We resolve conflicts with remaining reloads of the same type by
5195 excluding the intervals of reload registers by them from the
5196 interval of freed reload registers. Since we only keep track of
5197 one set of interval bounds, we might have to exclude somewhat
5198 more than what would be necessary if we used a HARD_REG_SET here.
5199 But this should only happen very infrequently, so there should
5200 be no reason to worry about it. */
5202 start_regno = regno;
5203 end_regno = regno + nregs;
5204 if (check_opnum || check_any)
5206 for (i = n_reloads - 1; i >= 0; i--)
5208 if (rld[i].when_needed == type
5209 && (check_any || rld[i].opnum == opnum)
5210 && rld[i].reg_rtx)
5212 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5213 unsigned int conflict_end
5214 = end_hard_regno (rld[i].mode, conflict_start);
5216 /* If there is an overlap with the first to-be-freed register,
5217 adjust the interval start. */
5218 if (conflict_start <= start_regno && conflict_end > start_regno)
5219 start_regno = conflict_end;
5220 /* Otherwise, if there is a conflict with one of the other
5221 to-be-freed registers, adjust the interval end. */
5222 if (conflict_start > start_regno && conflict_start < end_regno)
5223 end_regno = conflict_start;
5228 for (r = start_regno; r < end_regno; r++)
5229 CLEAR_HARD_REG_BIT (*used_in_set, r);
5232 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5233 specified by OPNUM and TYPE. */
5235 static int
5236 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5238 int i;
5240 /* In use for a RELOAD_OTHER means it's not available for anything. */
5241 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5242 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5243 return 0;
5245 switch (type)
5247 case RELOAD_OTHER:
5248 /* In use for anything means we can't use it for RELOAD_OTHER. */
5249 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5250 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5251 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5252 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5253 return 0;
5255 for (i = 0; i < reload_n_operands; i++)
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5258 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5259 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5260 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5261 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5262 return 0;
5264 return 1;
5266 case RELOAD_FOR_INPUT:
5267 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5268 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5269 return 0;
5271 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5272 return 0;
5274 /* If it is used for some other input, can't use it. */
5275 for (i = 0; i < reload_n_operands; i++)
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5277 return 0;
5279 /* If it is used in a later operand's address, can't use it. */
5280 for (i = opnum + 1; i < reload_n_operands; i++)
5281 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5282 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5283 return 0;
5285 return 1;
5287 case RELOAD_FOR_INPUT_ADDRESS:
5288 /* Can't use a register if it is used for an input address for this
5289 operand or used as an input in an earlier one. */
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5291 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5292 return 0;
5294 for (i = 0; i < opnum; i++)
5295 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5296 return 0;
5298 return 1;
5300 case RELOAD_FOR_INPADDR_ADDRESS:
5301 /* Can't use a register if it is used for an input address
5302 for this operand or used as an input in an earlier
5303 one. */
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5305 return 0;
5307 for (i = 0; i < opnum; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5309 return 0;
5311 return 1;
5313 case RELOAD_FOR_OUTPUT_ADDRESS:
5314 /* Can't use a register if it is used for an output address for this
5315 operand or used as an output in this or a later operand. Note
5316 that multiple output operands are emitted in reverse order, so
5317 the conflicting ones are those with lower indices. */
5318 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5319 return 0;
5321 for (i = 0; i <= opnum; i++)
5322 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5323 return 0;
5325 return 1;
5327 case RELOAD_FOR_OUTADDR_ADDRESS:
5328 /* Can't use a register if it is used for an output address
5329 for this operand or used as an output in this or a
5330 later operand. Note that multiple output operands are
5331 emitted in reverse order, so the conflicting ones are
5332 those with lower indices. */
5333 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5334 return 0;
5336 for (i = 0; i <= opnum; i++)
5337 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5338 return 0;
5340 return 1;
5342 case RELOAD_FOR_OPERAND_ADDRESS:
5343 for (i = 0; i < reload_n_operands; i++)
5344 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5345 return 0;
5347 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5348 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5350 case RELOAD_FOR_OPADDR_ADDR:
5351 for (i = 0; i < reload_n_operands; i++)
5352 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5353 return 0;
5355 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5357 case RELOAD_FOR_OUTPUT:
5358 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5359 outputs, or an operand address for this or an earlier output.
5360 Note that multiple output operands are emitted in reverse order,
5361 so the conflicting ones are those with higher indices. */
5362 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5363 return 0;
5365 for (i = 0; i < reload_n_operands; i++)
5366 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5367 return 0;
5369 for (i = opnum; i < reload_n_operands; i++)
5370 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5371 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5372 return 0;
5374 return 1;
5376 case RELOAD_FOR_INSN:
5377 for (i = 0; i < reload_n_operands; i++)
5378 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5380 return 0;
5382 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5383 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5385 case RELOAD_FOR_OTHER_ADDRESS:
5386 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5388 default:
5389 gcc_unreachable ();
5393 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5394 the number RELOADNUM, is still available in REGNO at the end of the insn.
5396 We can assume that the reload reg was already tested for availability
5397 at the time it is needed, and we should not check this again,
5398 in case the reg has already been marked in use. */
5400 static int
5401 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5403 int opnum = rld[reloadnum].opnum;
5404 enum reload_type type = rld[reloadnum].when_needed;
5405 int i;
5407 /* See if there is a reload with the same type for this operand, using
5408 the same register. This case is not handled by the code below. */
5409 for (i = reloadnum + 1; i < n_reloads; i++)
5411 rtx reg;
5412 int nregs;
5414 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5415 continue;
5416 reg = rld[i].reg_rtx;
5417 if (reg == NULL_RTX)
5418 continue;
5419 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5420 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5421 return 0;
5424 switch (type)
5426 case RELOAD_OTHER:
5427 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5428 its value must reach the end. */
5429 return 1;
5431 /* If this use is for part of the insn,
5432 its value reaches if no subsequent part uses the same register.
5433 Just like the above function, don't try to do this with lots
5434 of fallthroughs. */
5436 case RELOAD_FOR_OTHER_ADDRESS:
5437 /* Here we check for everything else, since these don't conflict
5438 with anything else and everything comes later. */
5440 for (i = 0; i < reload_n_operands; i++)
5441 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5442 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5443 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5444 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5445 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5446 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5447 return 0;
5449 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5450 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5451 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5452 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5454 case RELOAD_FOR_INPUT_ADDRESS:
5455 case RELOAD_FOR_INPADDR_ADDRESS:
5456 /* Similar, except that we check only for this and subsequent inputs
5457 and the address of only subsequent inputs and we do not need
5458 to check for RELOAD_OTHER objects since they are known not to
5459 conflict. */
5461 for (i = opnum; i < reload_n_operands; i++)
5462 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5463 return 0;
5465 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5466 could be killed if the register is also used by reload with type
5467 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5468 if (type == RELOAD_FOR_INPADDR_ADDRESS
5469 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5470 return 0;
5472 for (i = opnum + 1; i < reload_n_operands; i++)
5473 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5474 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5475 return 0;
5477 for (i = 0; i < reload_n_operands; i++)
5478 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5479 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5481 return 0;
5483 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5484 return 0;
5486 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5487 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5488 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5490 case RELOAD_FOR_INPUT:
5491 /* Similar to input address, except we start at the next operand for
5492 both input and input address and we do not check for
5493 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5494 would conflict. */
5496 for (i = opnum + 1; i < reload_n_operands; i++)
5497 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5498 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5499 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5500 return 0;
5502 /* ... fall through ... */
5504 case RELOAD_FOR_OPERAND_ADDRESS:
5505 /* Check outputs and their addresses. */
5507 for (i = 0; i < reload_n_operands; i++)
5508 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5509 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5510 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5511 return 0;
5513 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5515 case RELOAD_FOR_OPADDR_ADDR:
5516 for (i = 0; i < reload_n_operands; i++)
5517 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5518 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5519 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5520 return 0;
5522 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5523 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5524 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5526 case RELOAD_FOR_INSN:
5527 /* These conflict with other outputs with RELOAD_OTHER. So
5528 we need only check for output addresses. */
5530 opnum = reload_n_operands;
5532 /* ... fall through ... */
5534 case RELOAD_FOR_OUTPUT:
5535 case RELOAD_FOR_OUTPUT_ADDRESS:
5536 case RELOAD_FOR_OUTADDR_ADDRESS:
5537 /* We already know these can't conflict with a later output. So the
5538 only thing to check are later output addresses.
5539 Note that multiple output operands are emitted in reverse order,
5540 so the conflicting ones are those with lower indices. */
5541 for (i = 0; i < opnum; i++)
5542 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5543 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5544 return 0;
5546 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5547 could be killed if the register is also used by reload with type
5548 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5549 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5550 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5551 return 0;
5553 return 1;
5555 default:
5556 gcc_unreachable ();
5560 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5561 every register in REG. */
5563 static bool
5564 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5566 unsigned int i;
5568 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5569 if (!reload_reg_reaches_end_p (i, reloadnum))
5570 return false;
5571 return true;
5575 /* Returns whether R1 and R2 are uniquely chained: the value of one
5576 is used by the other, and that value is not used by any other
5577 reload for this insn. This is used to partially undo the decision
5578 made in find_reloads when in the case of multiple
5579 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5580 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5581 reloads. This code tries to avoid the conflict created by that
5582 change. It might be cleaner to explicitly keep track of which
5583 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5584 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5585 this after the fact. */
5586 static bool
5587 reloads_unique_chain_p (int r1, int r2)
5589 int i;
5591 /* We only check input reloads. */
5592 if (! rld[r1].in || ! rld[r2].in)
5593 return false;
5595 /* Avoid anything with output reloads. */
5596 if (rld[r1].out || rld[r2].out)
5597 return false;
5599 /* "chained" means one reload is a component of the other reload,
5600 not the same as the other reload. */
5601 if (rld[r1].opnum != rld[r2].opnum
5602 || rtx_equal_p (rld[r1].in, rld[r2].in)
5603 || rld[r1].optional || rld[r2].optional
5604 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5605 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5606 return false;
5608 /* The following loop assumes that r1 is the reload that feeds r2. */
5609 if (r1 > r2)
5610 std::swap (r1, r2);
5612 for (i = 0; i < n_reloads; i ++)
5613 /* Look for input reloads that aren't our two */
5614 if (i != r1 && i != r2 && rld[i].in)
5616 /* If our reload is mentioned at all, it isn't a simple chain. */
5617 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5618 return false;
5620 return true;
5623 /* The recursive function change all occurrences of WHAT in *WHERE
5624 to REPL. */
5625 static void
5626 substitute (rtx *where, const_rtx what, rtx repl)
5628 const char *fmt;
5629 int i;
5630 enum rtx_code code;
5632 if (*where == 0)
5633 return;
5635 if (*where == what || rtx_equal_p (*where, what))
5637 /* Record the location of the changed rtx. */
5638 substitute_stack.safe_push (where);
5639 *where = repl;
5640 return;
5643 code = GET_CODE (*where);
5644 fmt = GET_RTX_FORMAT (code);
5645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5647 if (fmt[i] == 'E')
5649 int j;
5651 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5652 substitute (&XVECEXP (*where, i, j), what, repl);
5654 else if (fmt[i] == 'e')
5655 substitute (&XEXP (*where, i), what, repl);
5659 /* The function returns TRUE if chain of reload R1 and R2 (in any
5660 order) can be evaluated without usage of intermediate register for
5661 the reload containing another reload. It is important to see
5662 gen_reload to understand what the function is trying to do. As an
5663 example, let us have reload chain
5665 r2: const
5666 r1: <something> + const
5668 and reload R2 got reload reg HR. The function returns true if
5669 there is a correct insn HR = HR + <something>. Otherwise,
5670 gen_reload will use intermediate register (and this is the reload
5671 reg for R1) to reload <something>.
5673 We need this function to find a conflict for chain reloads. In our
5674 example, if HR = HR + <something> is incorrect insn, then we cannot
5675 use HR as a reload register for R2. If we do use it then we get a
5676 wrong code:
5678 HR = const
5679 HR = <something>
5680 HR = HR + HR
5683 static bool
5684 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5686 /* Assume other cases in gen_reload are not possible for
5687 chain reloads or do need an intermediate hard registers. */
5688 bool result = true;
5689 int regno, code;
5690 rtx out, in;
5691 rtx_insn *insn;
5692 rtx_insn *last = get_last_insn ();
5694 /* Make r2 a component of r1. */
5695 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5696 std::swap (r1, r2);
5698 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5699 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5700 gcc_assert (regno >= 0);
5701 out = gen_rtx_REG (rld[r1].mode, regno);
5702 in = rld[r1].in;
5703 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5705 /* If IN is a paradoxical SUBREG, remove it and try to put the
5706 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5707 strip_paradoxical_subreg (&in, &out);
5709 if (GET_CODE (in) == PLUS
5710 && (REG_P (XEXP (in, 0))
5711 || GET_CODE (XEXP (in, 0)) == SUBREG
5712 || MEM_P (XEXP (in, 0)))
5713 && (REG_P (XEXP (in, 1))
5714 || GET_CODE (XEXP (in, 1)) == SUBREG
5715 || CONSTANT_P (XEXP (in, 1))
5716 || MEM_P (XEXP (in, 1))))
5718 insn = emit_insn (gen_rtx_SET (out, in));
5719 code = recog_memoized (insn);
5720 result = false;
5722 if (code >= 0)
5724 extract_insn (insn);
5725 /* We want constrain operands to treat this insn strictly in
5726 its validity determination, i.e., the way it would after
5727 reload has completed. */
5728 result = constrain_operands (1, get_enabled_alternatives (insn));
5731 delete_insns_since (last);
5734 /* Restore the original value at each changed address within R1. */
5735 while (!substitute_stack.is_empty ())
5737 rtx *where = substitute_stack.pop ();
5738 *where = rld[r2].in;
5741 return result;
5744 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5745 Return 0 otherwise.
5747 This function uses the same algorithm as reload_reg_free_p above. */
5749 static int
5750 reloads_conflict (int r1, int r2)
5752 enum reload_type r1_type = rld[r1].when_needed;
5753 enum reload_type r2_type = rld[r2].when_needed;
5754 int r1_opnum = rld[r1].opnum;
5755 int r2_opnum = rld[r2].opnum;
5757 /* RELOAD_OTHER conflicts with everything. */
5758 if (r2_type == RELOAD_OTHER)
5759 return 1;
5761 /* Otherwise, check conflicts differently for each type. */
5763 switch (r1_type)
5765 case RELOAD_FOR_INPUT:
5766 return (r2_type == RELOAD_FOR_INSN
5767 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5768 || r2_type == RELOAD_FOR_OPADDR_ADDR
5769 || r2_type == RELOAD_FOR_INPUT
5770 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5771 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5772 && r2_opnum > r1_opnum));
5774 case RELOAD_FOR_INPUT_ADDRESS:
5775 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5776 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5778 case RELOAD_FOR_INPADDR_ADDRESS:
5779 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5780 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5782 case RELOAD_FOR_OUTPUT_ADDRESS:
5783 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5784 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5786 case RELOAD_FOR_OUTADDR_ADDRESS:
5787 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5788 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5790 case RELOAD_FOR_OPERAND_ADDRESS:
5791 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5792 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5793 && (!reloads_unique_chain_p (r1, r2)
5794 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5796 case RELOAD_FOR_OPADDR_ADDR:
5797 return (r2_type == RELOAD_FOR_INPUT
5798 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5800 case RELOAD_FOR_OUTPUT:
5801 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5802 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5803 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5804 && r2_opnum >= r1_opnum));
5806 case RELOAD_FOR_INSN:
5807 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5808 || r2_type == RELOAD_FOR_INSN
5809 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5811 case RELOAD_FOR_OTHER_ADDRESS:
5812 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5814 case RELOAD_OTHER:
5815 return 1;
5817 default:
5818 gcc_unreachable ();
5822 /* Indexed by reload number, 1 if incoming value
5823 inherited from previous insns. */
5824 static char reload_inherited[MAX_RELOADS];
5826 /* For an inherited reload, this is the insn the reload was inherited from,
5827 if we know it. Otherwise, this is 0. */
5828 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5830 /* If nonzero, this is a place to get the value of the reload,
5831 rather than using reload_in. */
5832 static rtx reload_override_in[MAX_RELOADS];
5834 /* For each reload, the hard register number of the register used,
5835 or -1 if we did not need a register for this reload. */
5836 static int reload_spill_index[MAX_RELOADS];
5838 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5839 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5841 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5842 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5844 /* Subroutine of free_for_value_p, used to check a single register.
5845 START_REGNO is the starting regno of the full reload register
5846 (possibly comprising multiple hard registers) that we are considering. */
5848 static int
5849 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5850 enum reload_type type, rtx value, rtx out,
5851 int reloadnum, int ignore_address_reloads)
5853 int time1;
5854 /* Set if we see an input reload that must not share its reload register
5855 with any new earlyclobber, but might otherwise share the reload
5856 register with an output or input-output reload. */
5857 int check_earlyclobber = 0;
5858 int i;
5859 int copy = 0;
5861 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5862 return 0;
5864 if (out == const0_rtx)
5866 copy = 1;
5867 out = NULL_RTX;
5870 /* We use some pseudo 'time' value to check if the lifetimes of the
5871 new register use would overlap with the one of a previous reload
5872 that is not read-only or uses a different value.
5873 The 'time' used doesn't have to be linear in any shape or form, just
5874 monotonic.
5875 Some reload types use different 'buckets' for each operand.
5876 So there are MAX_RECOG_OPERANDS different time values for each
5877 such reload type.
5878 We compute TIME1 as the time when the register for the prospective
5879 new reload ceases to be live, and TIME2 for each existing
5880 reload as the time when that the reload register of that reload
5881 becomes live.
5882 Where there is little to be gained by exact lifetime calculations,
5883 we just make conservative assumptions, i.e. a longer lifetime;
5884 this is done in the 'default:' cases. */
5885 switch (type)
5887 case RELOAD_FOR_OTHER_ADDRESS:
5888 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5889 time1 = copy ? 0 : 1;
5890 break;
5891 case RELOAD_OTHER:
5892 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5893 break;
5894 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5895 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5896 respectively, to the time values for these, we get distinct time
5897 values. To get distinct time values for each operand, we have to
5898 multiply opnum by at least three. We round that up to four because
5899 multiply by four is often cheaper. */
5900 case RELOAD_FOR_INPADDR_ADDRESS:
5901 time1 = opnum * 4 + 2;
5902 break;
5903 case RELOAD_FOR_INPUT_ADDRESS:
5904 time1 = opnum * 4 + 3;
5905 break;
5906 case RELOAD_FOR_INPUT:
5907 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5908 executes (inclusive). */
5909 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5910 break;
5911 case RELOAD_FOR_OPADDR_ADDR:
5912 /* opnum * 4 + 4
5913 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5914 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5915 break;
5916 case RELOAD_FOR_OPERAND_ADDRESS:
5917 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5918 is executed. */
5919 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5920 break;
5921 case RELOAD_FOR_OUTADDR_ADDRESS:
5922 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5923 break;
5924 case RELOAD_FOR_OUTPUT_ADDRESS:
5925 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5926 break;
5927 default:
5928 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5931 for (i = 0; i < n_reloads; i++)
5933 rtx reg = rld[i].reg_rtx;
5934 if (reg && REG_P (reg)
5935 && ((unsigned) regno - true_regnum (reg)
5936 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5937 && i != reloadnum)
5939 rtx other_input = rld[i].in;
5941 /* If the other reload loads the same input value, that
5942 will not cause a conflict only if it's loading it into
5943 the same register. */
5944 if (true_regnum (reg) != start_regno)
5945 other_input = NULL_RTX;
5946 if (! other_input || ! rtx_equal_p (other_input, value)
5947 || rld[i].out || out)
5949 int time2;
5950 switch (rld[i].when_needed)
5952 case RELOAD_FOR_OTHER_ADDRESS:
5953 time2 = 0;
5954 break;
5955 case RELOAD_FOR_INPADDR_ADDRESS:
5956 /* find_reloads makes sure that a
5957 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5958 by at most one - the first -
5959 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5960 address reload is inherited, the address address reload
5961 goes away, so we can ignore this conflict. */
5962 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5963 && ignore_address_reloads
5964 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5965 Then the address address is still needed to store
5966 back the new address. */
5967 && ! rld[reloadnum].out)
5968 continue;
5969 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5970 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5971 reloads go away. */
5972 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5973 && ignore_address_reloads
5974 /* Unless we are reloading an auto_inc expression. */
5975 && ! rld[reloadnum].out)
5976 continue;
5977 time2 = rld[i].opnum * 4 + 2;
5978 break;
5979 case RELOAD_FOR_INPUT_ADDRESS:
5980 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5981 && ignore_address_reloads
5982 && ! rld[reloadnum].out)
5983 continue;
5984 time2 = rld[i].opnum * 4 + 3;
5985 break;
5986 case RELOAD_FOR_INPUT:
5987 time2 = rld[i].opnum * 4 + 4;
5988 check_earlyclobber = 1;
5989 break;
5990 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5991 == MAX_RECOG_OPERAND * 4 */
5992 case RELOAD_FOR_OPADDR_ADDR:
5993 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5994 && ignore_address_reloads
5995 && ! rld[reloadnum].out)
5996 continue;
5997 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5998 break;
5999 case RELOAD_FOR_OPERAND_ADDRESS:
6000 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6001 check_earlyclobber = 1;
6002 break;
6003 case RELOAD_FOR_INSN:
6004 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6005 break;
6006 case RELOAD_FOR_OUTPUT:
6007 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6008 instruction is executed. */
6009 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6010 break;
6011 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6012 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6013 value. */
6014 case RELOAD_FOR_OUTADDR_ADDRESS:
6015 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6016 && ignore_address_reloads
6017 && ! rld[reloadnum].out)
6018 continue;
6019 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6020 break;
6021 case RELOAD_FOR_OUTPUT_ADDRESS:
6022 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6023 break;
6024 case RELOAD_OTHER:
6025 /* If there is no conflict in the input part, handle this
6026 like an output reload. */
6027 if (! rld[i].in || rtx_equal_p (other_input, value))
6029 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6030 /* Earlyclobbered outputs must conflict with inputs. */
6031 if (earlyclobber_operand_p (rld[i].out))
6032 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6034 break;
6036 time2 = 1;
6037 /* RELOAD_OTHER might be live beyond instruction execution,
6038 but this is not obvious when we set time2 = 1. So check
6039 here if there might be a problem with the new reload
6040 clobbering the register used by the RELOAD_OTHER. */
6041 if (out)
6042 return 0;
6043 break;
6044 default:
6045 return 0;
6047 if ((time1 >= time2
6048 && (! rld[i].in || rld[i].out
6049 || ! rtx_equal_p (other_input, value)))
6050 || (out && rld[reloadnum].out_reg
6051 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6052 return 0;
6057 /* Earlyclobbered outputs must conflict with inputs. */
6058 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6059 return 0;
6061 return 1;
6064 /* Return 1 if the value in reload reg REGNO, as used by a reload
6065 needed for the part of the insn specified by OPNUM and TYPE,
6066 may be used to load VALUE into it.
6068 MODE is the mode in which the register is used, this is needed to
6069 determine how many hard regs to test.
6071 Other read-only reloads with the same value do not conflict
6072 unless OUT is nonzero and these other reloads have to live while
6073 output reloads live.
6074 If OUT is CONST0_RTX, this is a special case: it means that the
6075 test should not be for using register REGNO as reload register, but
6076 for copying from register REGNO into the reload register.
6078 RELOADNUM is the number of the reload we want to load this value for;
6079 a reload does not conflict with itself.
6081 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6082 reloads that load an address for the very reload we are considering.
6084 The caller has to make sure that there is no conflict with the return
6085 register. */
6087 static int
6088 free_for_value_p (int regno, machine_mode mode, int opnum,
6089 enum reload_type type, rtx value, rtx out, int reloadnum,
6090 int ignore_address_reloads)
6092 int nregs = hard_regno_nregs[regno][mode];
6093 while (nregs-- > 0)
6094 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6095 value, out, reloadnum,
6096 ignore_address_reloads))
6097 return 0;
6098 return 1;
6101 /* Return nonzero if the rtx X is invariant over the current function. */
6102 /* ??? Actually, the places where we use this expect exactly what is
6103 tested here, and not everything that is function invariant. In
6104 particular, the frame pointer and arg pointer are special cased;
6105 pic_offset_table_rtx is not, and we must not spill these things to
6106 memory. */
6109 function_invariant_p (const_rtx x)
6111 if (CONSTANT_P (x))
6112 return 1;
6113 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6114 return 1;
6115 if (GET_CODE (x) == PLUS
6116 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6117 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6118 return 1;
6119 return 0;
6122 /* Determine whether the reload reg X overlaps any rtx'es used for
6123 overriding inheritance. Return nonzero if so. */
6125 static int
6126 conflicts_with_override (rtx x)
6128 int i;
6129 for (i = 0; i < n_reloads; i++)
6130 if (reload_override_in[i]
6131 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6132 return 1;
6133 return 0;
6136 /* Give an error message saying we failed to find a reload for INSN,
6137 and clear out reload R. */
6138 static void
6139 failed_reload (rtx_insn *insn, int r)
6141 if (asm_noperands (PATTERN (insn)) < 0)
6142 /* It's the compiler's fault. */
6143 fatal_insn ("could not find a spill register", insn);
6145 /* It's the user's fault; the operand's mode and constraint
6146 don't match. Disable this reload so we don't crash in final. */
6147 error_for_asm (insn,
6148 "%<asm%> operand constraint incompatible with operand size");
6149 rld[r].in = 0;
6150 rld[r].out = 0;
6151 rld[r].reg_rtx = 0;
6152 rld[r].optional = 1;
6153 rld[r].secondary_p = 1;
6156 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6157 for reload R. If it's valid, get an rtx for it. Return nonzero if
6158 successful. */
6159 static int
6160 set_reload_reg (int i, int r)
6162 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6163 parameter. */
6164 int regno ATTRIBUTE_UNUSED;
6165 rtx reg = spill_reg_rtx[i];
6167 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6168 spill_reg_rtx[i] = reg
6169 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6171 regno = true_regnum (reg);
6173 /* Detect when the reload reg can't hold the reload mode.
6174 This used to be one `if', but Sequent compiler can't handle that. */
6175 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6177 machine_mode test_mode = VOIDmode;
6178 if (rld[r].in)
6179 test_mode = GET_MODE (rld[r].in);
6180 /* If rld[r].in has VOIDmode, it means we will load it
6181 in whatever mode the reload reg has: to wit, rld[r].mode.
6182 We have already tested that for validity. */
6183 /* Aside from that, we need to test that the expressions
6184 to reload from or into have modes which are valid for this
6185 reload register. Otherwise the reload insns would be invalid. */
6186 if (! (rld[r].in != 0 && test_mode != VOIDmode
6187 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6188 if (! (rld[r].out != 0
6189 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6191 /* The reg is OK. */
6192 last_spill_reg = i;
6194 /* Mark as in use for this insn the reload regs we use
6195 for this. */
6196 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6197 rld[r].when_needed, rld[r].mode);
6199 rld[r].reg_rtx = reg;
6200 reload_spill_index[r] = spill_regs[i];
6201 return 1;
6204 return 0;
6207 /* Find a spill register to use as a reload register for reload R.
6208 LAST_RELOAD is nonzero if this is the last reload for the insn being
6209 processed.
6211 Set rld[R].reg_rtx to the register allocated.
6213 We return 1 if successful, or 0 if we couldn't find a spill reg and
6214 we didn't change anything. */
6216 static int
6217 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6218 int last_reload)
6220 int i, pass, count;
6222 /* If we put this reload ahead, thinking it is a group,
6223 then insist on finding a group. Otherwise we can grab a
6224 reg that some other reload needs.
6225 (That can happen when we have a 68000 DATA_OR_FP_REG
6226 which is a group of data regs or one fp reg.)
6227 We need not be so restrictive if there are no more reloads
6228 for this insn.
6230 ??? Really it would be nicer to have smarter handling
6231 for that kind of reg class, where a problem like this is normal.
6232 Perhaps those classes should be avoided for reloading
6233 by use of more alternatives. */
6235 int force_group = rld[r].nregs > 1 && ! last_reload;
6237 /* If we want a single register and haven't yet found one,
6238 take any reg in the right class and not in use.
6239 If we want a consecutive group, here is where we look for it.
6241 We use three passes so we can first look for reload regs to
6242 reuse, which are already in use for other reloads in this insn,
6243 and only then use additional registers which are not "bad", then
6244 finally any register.
6246 I think that maximizing reuse is needed to make sure we don't
6247 run out of reload regs. Suppose we have three reloads, and
6248 reloads A and B can share regs. These need two regs.
6249 Suppose A and B are given different regs.
6250 That leaves none for C. */
6251 for (pass = 0; pass < 3; pass++)
6253 /* I is the index in spill_regs.
6254 We advance it round-robin between insns to use all spill regs
6255 equally, so that inherited reloads have a chance
6256 of leapfrogging each other. */
6258 i = last_spill_reg;
6260 for (count = 0; count < n_spills; count++)
6262 int rclass = (int) rld[r].rclass;
6263 int regnum;
6265 i++;
6266 if (i >= n_spills)
6267 i -= n_spills;
6268 regnum = spill_regs[i];
6270 if ((reload_reg_free_p (regnum, rld[r].opnum,
6271 rld[r].when_needed)
6272 || (rld[r].in
6273 /* We check reload_reg_used to make sure we
6274 don't clobber the return register. */
6275 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6276 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6277 rld[r].when_needed, rld[r].in,
6278 rld[r].out, r, 1)))
6279 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6280 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6281 /* Look first for regs to share, then for unshared. But
6282 don't share regs used for inherited reloads; they are
6283 the ones we want to preserve. */
6284 && (pass
6285 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6286 regnum)
6287 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6288 regnum))))
6290 int nr = hard_regno_nregs[regnum][rld[r].mode];
6292 /* During the second pass we want to avoid reload registers
6293 which are "bad" for this reload. */
6294 if (pass == 1
6295 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6296 continue;
6298 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6299 (on 68000) got us two FP regs. If NR is 1,
6300 we would reject both of them. */
6301 if (force_group)
6302 nr = rld[r].nregs;
6303 /* If we need only one reg, we have already won. */
6304 if (nr == 1)
6306 /* But reject a single reg if we demand a group. */
6307 if (force_group)
6308 continue;
6309 break;
6311 /* Otherwise check that as many consecutive regs as we need
6312 are available here. */
6313 while (nr > 1)
6315 int regno = regnum + nr - 1;
6316 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6317 && spill_reg_order[regno] >= 0
6318 && reload_reg_free_p (regno, rld[r].opnum,
6319 rld[r].when_needed)))
6320 break;
6321 nr--;
6323 if (nr == 1)
6324 break;
6328 /* If we found something on the current pass, omit later passes. */
6329 if (count < n_spills)
6330 break;
6333 /* We should have found a spill register by now. */
6334 if (count >= n_spills)
6335 return 0;
6337 /* I is the index in SPILL_REG_RTX of the reload register we are to
6338 allocate. Get an rtx for it and find its register number. */
6340 return set_reload_reg (i, r);
6343 /* Initialize all the tables needed to allocate reload registers.
6344 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6345 is the array we use to restore the reg_rtx field for every reload. */
6347 static void
6348 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6350 int i;
6352 for (i = 0; i < n_reloads; i++)
6353 rld[i].reg_rtx = save_reload_reg_rtx[i];
6355 memset (reload_inherited, 0, MAX_RELOADS);
6356 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6357 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6359 CLEAR_HARD_REG_SET (reload_reg_used);
6360 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6361 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6362 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6363 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6364 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6366 CLEAR_HARD_REG_SET (reg_used_in_insn);
6368 HARD_REG_SET tmp;
6369 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6370 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6371 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6372 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6373 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6374 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6377 for (i = 0; i < reload_n_operands; i++)
6379 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6380 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6381 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6382 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6383 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6384 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6387 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6389 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6391 for (i = 0; i < n_reloads; i++)
6392 /* If we have already decided to use a certain register,
6393 don't use it in another way. */
6394 if (rld[i].reg_rtx)
6395 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6396 rld[i].when_needed, rld[i].mode);
6399 #ifdef SECONDARY_MEMORY_NEEDED
6400 /* If X is not a subreg, return it unmodified. If it is a subreg,
6401 look up whether we made a replacement for the SUBREG_REG. Return
6402 either the replacement or the SUBREG_REG. */
6404 static rtx
6405 replaced_subreg (rtx x)
6407 if (GET_CODE (x) == SUBREG)
6408 return find_replacement (&SUBREG_REG (x));
6409 return x;
6411 #endif
6413 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6414 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6415 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6416 otherwise it is NULL. */
6418 static int
6419 compute_reload_subreg_offset (machine_mode outermode,
6420 rtx subreg,
6421 machine_mode innermode)
6423 int outer_offset;
6424 machine_mode middlemode;
6426 if (!subreg)
6427 return subreg_lowpart_offset (outermode, innermode);
6429 outer_offset = SUBREG_BYTE (subreg);
6430 middlemode = GET_MODE (SUBREG_REG (subreg));
6432 /* If SUBREG is paradoxical then return the normal lowpart offset
6433 for OUTERMODE and INNERMODE. Our caller has already checked
6434 that OUTERMODE fits in INNERMODE. */
6435 if (outer_offset == 0
6436 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6437 return subreg_lowpart_offset (outermode, innermode);
6439 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6440 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6441 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6444 /* Assign hard reg targets for the pseudo-registers we must reload
6445 into hard regs for this insn.
6446 Also output the instructions to copy them in and out of the hard regs.
6448 For machines with register classes, we are responsible for
6449 finding a reload reg in the proper class. */
6451 static void
6452 choose_reload_regs (struct insn_chain *chain)
6454 rtx_insn *insn = chain->insn;
6455 int i, j;
6456 unsigned int max_group_size = 1;
6457 enum reg_class group_class = NO_REGS;
6458 int pass, win, inheritance;
6460 rtx save_reload_reg_rtx[MAX_RELOADS];
6462 /* In order to be certain of getting the registers we need,
6463 we must sort the reloads into order of increasing register class.
6464 Then our grabbing of reload registers will parallel the process
6465 that provided the reload registers.
6467 Also note whether any of the reloads wants a consecutive group of regs.
6468 If so, record the maximum size of the group desired and what
6469 register class contains all the groups needed by this insn. */
6471 for (j = 0; j < n_reloads; j++)
6473 reload_order[j] = j;
6474 if (rld[j].reg_rtx != NULL_RTX)
6476 gcc_assert (REG_P (rld[j].reg_rtx)
6477 && HARD_REGISTER_P (rld[j].reg_rtx));
6478 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6480 else
6481 reload_spill_index[j] = -1;
6483 if (rld[j].nregs > 1)
6485 max_group_size = MAX (rld[j].nregs, max_group_size);
6486 group_class
6487 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6490 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6493 if (n_reloads > 1)
6494 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6496 /* If -O, try first with inheritance, then turning it off.
6497 If not -O, don't do inheritance.
6498 Using inheritance when not optimizing leads to paradoxes
6499 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6500 because one side of the comparison might be inherited. */
6501 win = 0;
6502 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6504 choose_reload_regs_init (chain, save_reload_reg_rtx);
6506 /* Process the reloads in order of preference just found.
6507 Beyond this point, subregs can be found in reload_reg_rtx.
6509 This used to look for an existing reloaded home for all of the
6510 reloads, and only then perform any new reloads. But that could lose
6511 if the reloads were done out of reg-class order because a later
6512 reload with a looser constraint might have an old home in a register
6513 needed by an earlier reload with a tighter constraint.
6515 To solve this, we make two passes over the reloads, in the order
6516 described above. In the first pass we try to inherit a reload
6517 from a previous insn. If there is a later reload that needs a
6518 class that is a proper subset of the class being processed, we must
6519 also allocate a spill register during the first pass.
6521 Then make a second pass over the reloads to allocate any reloads
6522 that haven't been given registers yet. */
6524 for (j = 0; j < n_reloads; j++)
6526 int r = reload_order[j];
6527 rtx search_equiv = NULL_RTX;
6529 /* Ignore reloads that got marked inoperative. */
6530 if (rld[r].out == 0 && rld[r].in == 0
6531 && ! rld[r].secondary_p)
6532 continue;
6534 /* If find_reloads chose to use reload_in or reload_out as a reload
6535 register, we don't need to chose one. Otherwise, try even if it
6536 found one since we might save an insn if we find the value lying
6537 around.
6538 Try also when reload_in is a pseudo without a hard reg. */
6539 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6540 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6541 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6542 && !MEM_P (rld[r].in)
6543 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6544 continue;
6546 #if 0 /* No longer needed for correct operation.
6547 It might give better code, or might not; worth an experiment? */
6548 /* If this is an optional reload, we can't inherit from earlier insns
6549 until we are sure that any non-optional reloads have been allocated.
6550 The following code takes advantage of the fact that optional reloads
6551 are at the end of reload_order. */
6552 if (rld[r].optional != 0)
6553 for (i = 0; i < j; i++)
6554 if ((rld[reload_order[i]].out != 0
6555 || rld[reload_order[i]].in != 0
6556 || rld[reload_order[i]].secondary_p)
6557 && ! rld[reload_order[i]].optional
6558 && rld[reload_order[i]].reg_rtx == 0)
6559 allocate_reload_reg (chain, reload_order[i], 0);
6560 #endif
6562 /* First see if this pseudo is already available as reloaded
6563 for a previous insn. We cannot try to inherit for reloads
6564 that are smaller than the maximum number of registers needed
6565 for groups unless the register we would allocate cannot be used
6566 for the groups.
6568 We could check here to see if this is a secondary reload for
6569 an object that is already in a register of the desired class.
6570 This would avoid the need for the secondary reload register.
6571 But this is complex because we can't easily determine what
6572 objects might want to be loaded via this reload. So let a
6573 register be allocated here. In `emit_reload_insns' we suppress
6574 one of the loads in the case described above. */
6576 if (inheritance)
6578 int byte = 0;
6579 int regno = -1;
6580 machine_mode mode = VOIDmode;
6581 rtx subreg = NULL_RTX;
6583 if (rld[r].in == 0)
6585 else if (REG_P (rld[r].in))
6587 regno = REGNO (rld[r].in);
6588 mode = GET_MODE (rld[r].in);
6590 else if (REG_P (rld[r].in_reg))
6592 regno = REGNO (rld[r].in_reg);
6593 mode = GET_MODE (rld[r].in_reg);
6595 else if (GET_CODE (rld[r].in_reg) == SUBREG
6596 && REG_P (SUBREG_REG (rld[r].in_reg)))
6598 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6599 if (regno < FIRST_PSEUDO_REGISTER)
6600 regno = subreg_regno (rld[r].in_reg);
6601 else
6603 subreg = rld[r].in_reg;
6604 byte = SUBREG_BYTE (subreg);
6606 mode = GET_MODE (rld[r].in_reg);
6608 #if AUTO_INC_DEC
6609 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6610 && REG_P (XEXP (rld[r].in_reg, 0)))
6612 regno = REGNO (XEXP (rld[r].in_reg, 0));
6613 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6614 rld[r].out = rld[r].in;
6616 #endif
6617 #if 0
6618 /* This won't work, since REGNO can be a pseudo reg number.
6619 Also, it takes much more hair to keep track of all the things
6620 that can invalidate an inherited reload of part of a pseudoreg. */
6621 else if (GET_CODE (rld[r].in) == SUBREG
6622 && REG_P (SUBREG_REG (rld[r].in)))
6623 regno = subreg_regno (rld[r].in);
6624 #endif
6626 if (regno >= 0
6627 && reg_last_reload_reg[regno] != 0
6628 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6629 >= GET_MODE_SIZE (mode) + byte)
6630 #ifdef CANNOT_CHANGE_MODE_CLASS
6631 /* Verify that the register it's in can be used in
6632 mode MODE. */
6633 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6634 GET_MODE (reg_last_reload_reg[regno]),
6635 mode)
6636 #endif
6639 enum reg_class rclass = rld[r].rclass, last_class;
6640 rtx last_reg = reg_last_reload_reg[regno];
6642 i = REGNO (last_reg);
6643 byte = compute_reload_subreg_offset (mode,
6644 subreg,
6645 GET_MODE (last_reg));
6646 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6647 last_class = REGNO_REG_CLASS (i);
6649 if (reg_reloaded_contents[i] == regno
6650 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6651 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6652 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6653 /* Even if we can't use this register as a reload
6654 register, we might use it for reload_override_in,
6655 if copying it to the desired class is cheap
6656 enough. */
6657 || ((register_move_cost (mode, last_class, rclass)
6658 < memory_move_cost (mode, rclass, true))
6659 && (secondary_reload_class (1, rclass, mode,
6660 last_reg)
6661 == NO_REGS)
6662 #ifdef SECONDARY_MEMORY_NEEDED
6663 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6664 mode)
6665 #endif
6668 && (rld[r].nregs == max_group_size
6669 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6671 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6672 rld[r].when_needed, rld[r].in,
6673 const0_rtx, r, 1))
6675 /* If a group is needed, verify that all the subsequent
6676 registers still have their values intact. */
6677 int nr = hard_regno_nregs[i][rld[r].mode];
6678 int k;
6680 for (k = 1; k < nr; k++)
6681 if (reg_reloaded_contents[i + k] != regno
6682 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6683 break;
6685 if (k == nr)
6687 int i1;
6688 int bad_for_class;
6690 last_reg = (GET_MODE (last_reg) == mode
6691 ? last_reg : gen_rtx_REG (mode, i));
6693 bad_for_class = 0;
6694 for (k = 0; k < nr; k++)
6695 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6696 i+k);
6698 /* We found a register that contains the
6699 value we need. If this register is the
6700 same as an `earlyclobber' operand of the
6701 current insn, just mark it as a place to
6702 reload from since we can't use it as the
6703 reload register itself. */
6705 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6706 if (reg_overlap_mentioned_for_reload_p
6707 (reg_last_reload_reg[regno],
6708 reload_earlyclobbers[i1]))
6709 break;
6711 if (i1 != n_earlyclobbers
6712 || ! (free_for_value_p (i, rld[r].mode,
6713 rld[r].opnum,
6714 rld[r].when_needed, rld[r].in,
6715 rld[r].out, r, 1))
6716 /* Don't use it if we'd clobber a pseudo reg. */
6717 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6718 && rld[r].out
6719 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6720 /* Don't clobber the frame pointer. */
6721 || (i == HARD_FRAME_POINTER_REGNUM
6722 && frame_pointer_needed
6723 && rld[r].out)
6724 /* Don't really use the inherited spill reg
6725 if we need it wider than we've got it. */
6726 || (GET_MODE_SIZE (rld[r].mode)
6727 > GET_MODE_SIZE (mode))
6728 || bad_for_class
6730 /* If find_reloads chose reload_out as reload
6731 register, stay with it - that leaves the
6732 inherited register for subsequent reloads. */
6733 || (rld[r].out && rld[r].reg_rtx
6734 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6736 if (! rld[r].optional)
6738 reload_override_in[r] = last_reg;
6739 reload_inheritance_insn[r]
6740 = reg_reloaded_insn[i];
6743 else
6745 int k;
6746 /* We can use this as a reload reg. */
6747 /* Mark the register as in use for this part of
6748 the insn. */
6749 mark_reload_reg_in_use (i,
6750 rld[r].opnum,
6751 rld[r].when_needed,
6752 rld[r].mode);
6753 rld[r].reg_rtx = last_reg;
6754 reload_inherited[r] = 1;
6755 reload_inheritance_insn[r]
6756 = reg_reloaded_insn[i];
6757 reload_spill_index[r] = i;
6758 for (k = 0; k < nr; k++)
6759 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6760 i + k);
6767 /* Here's another way to see if the value is already lying around. */
6768 if (inheritance
6769 && rld[r].in != 0
6770 && ! reload_inherited[r]
6771 && rld[r].out == 0
6772 && (CONSTANT_P (rld[r].in)
6773 || GET_CODE (rld[r].in) == PLUS
6774 || REG_P (rld[r].in)
6775 || MEM_P (rld[r].in))
6776 && (rld[r].nregs == max_group_size
6777 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6778 search_equiv = rld[r].in;
6780 if (search_equiv)
6782 rtx equiv
6783 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6784 -1, NULL, 0, rld[r].mode);
6785 int regno = 0;
6787 if (equiv != 0)
6789 if (REG_P (equiv))
6790 regno = REGNO (equiv);
6791 else
6793 /* This must be a SUBREG of a hard register.
6794 Make a new REG since this might be used in an
6795 address and not all machines support SUBREGs
6796 there. */
6797 gcc_assert (GET_CODE (equiv) == SUBREG);
6798 regno = subreg_regno (equiv);
6799 equiv = gen_rtx_REG (rld[r].mode, regno);
6800 /* If we choose EQUIV as the reload register, but the
6801 loop below decides to cancel the inheritance, we'll
6802 end up reloading EQUIV in rld[r].mode, not the mode
6803 it had originally. That isn't safe when EQUIV isn't
6804 available as a spill register since its value might
6805 still be live at this point. */
6806 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6807 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6808 equiv = 0;
6812 /* If we found a spill reg, reject it unless it is free
6813 and of the desired class. */
6814 if (equiv != 0)
6816 int regs_used = 0;
6817 int bad_for_class = 0;
6818 int max_regno = regno + rld[r].nregs;
6820 for (i = regno; i < max_regno; i++)
6822 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6824 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6828 if ((regs_used
6829 && ! free_for_value_p (regno, rld[r].mode,
6830 rld[r].opnum, rld[r].when_needed,
6831 rld[r].in, rld[r].out, r, 1))
6832 || bad_for_class)
6833 equiv = 0;
6836 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6837 equiv = 0;
6839 /* We found a register that contains the value we need.
6840 If this register is the same as an `earlyclobber' operand
6841 of the current insn, just mark it as a place to reload from
6842 since we can't use it as the reload register itself. */
6844 if (equiv != 0)
6845 for (i = 0; i < n_earlyclobbers; i++)
6846 if (reg_overlap_mentioned_for_reload_p (equiv,
6847 reload_earlyclobbers[i]))
6849 if (! rld[r].optional)
6850 reload_override_in[r] = equiv;
6851 equiv = 0;
6852 break;
6855 /* If the equiv register we have found is explicitly clobbered
6856 in the current insn, it depends on the reload type if we
6857 can use it, use it for reload_override_in, or not at all.
6858 In particular, we then can't use EQUIV for a
6859 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6861 if (equiv != 0)
6863 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6864 switch (rld[r].when_needed)
6866 case RELOAD_FOR_OTHER_ADDRESS:
6867 case RELOAD_FOR_INPADDR_ADDRESS:
6868 case RELOAD_FOR_INPUT_ADDRESS:
6869 case RELOAD_FOR_OPADDR_ADDR:
6870 break;
6871 case RELOAD_OTHER:
6872 case RELOAD_FOR_INPUT:
6873 case RELOAD_FOR_OPERAND_ADDRESS:
6874 if (! rld[r].optional)
6875 reload_override_in[r] = equiv;
6876 /* Fall through. */
6877 default:
6878 equiv = 0;
6879 break;
6881 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6882 switch (rld[r].when_needed)
6884 case RELOAD_FOR_OTHER_ADDRESS:
6885 case RELOAD_FOR_INPADDR_ADDRESS:
6886 case RELOAD_FOR_INPUT_ADDRESS:
6887 case RELOAD_FOR_OPADDR_ADDR:
6888 case RELOAD_FOR_OPERAND_ADDRESS:
6889 case RELOAD_FOR_INPUT:
6890 break;
6891 case RELOAD_OTHER:
6892 if (! rld[r].optional)
6893 reload_override_in[r] = equiv;
6894 /* Fall through. */
6895 default:
6896 equiv = 0;
6897 break;
6901 /* If we found an equivalent reg, say no code need be generated
6902 to load it, and use it as our reload reg. */
6903 if (equiv != 0
6904 && (regno != HARD_FRAME_POINTER_REGNUM
6905 || !frame_pointer_needed))
6907 int nr = hard_regno_nregs[regno][rld[r].mode];
6908 int k;
6909 rld[r].reg_rtx = equiv;
6910 reload_spill_index[r] = regno;
6911 reload_inherited[r] = 1;
6913 /* If reg_reloaded_valid is not set for this register,
6914 there might be a stale spill_reg_store lying around.
6915 We must clear it, since otherwise emit_reload_insns
6916 might delete the store. */
6917 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6918 spill_reg_store[regno] = NULL;
6919 /* If any of the hard registers in EQUIV are spill
6920 registers, mark them as in use for this insn. */
6921 for (k = 0; k < nr; k++)
6923 i = spill_reg_order[regno + k];
6924 if (i >= 0)
6926 mark_reload_reg_in_use (regno, rld[r].opnum,
6927 rld[r].when_needed,
6928 rld[r].mode);
6929 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6930 regno + k);
6936 /* If we found a register to use already, or if this is an optional
6937 reload, we are done. */
6938 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6939 continue;
6941 #if 0
6942 /* No longer needed for correct operation. Might or might
6943 not give better code on the average. Want to experiment? */
6945 /* See if there is a later reload that has a class different from our
6946 class that intersects our class or that requires less register
6947 than our reload. If so, we must allocate a register to this
6948 reload now, since that reload might inherit a previous reload
6949 and take the only available register in our class. Don't do this
6950 for optional reloads since they will force all previous reloads
6951 to be allocated. Also don't do this for reloads that have been
6952 turned off. */
6954 for (i = j + 1; i < n_reloads; i++)
6956 int s = reload_order[i];
6958 if ((rld[s].in == 0 && rld[s].out == 0
6959 && ! rld[s].secondary_p)
6960 || rld[s].optional)
6961 continue;
6963 if ((rld[s].rclass != rld[r].rclass
6964 && reg_classes_intersect_p (rld[r].rclass,
6965 rld[s].rclass))
6966 || rld[s].nregs < rld[r].nregs)
6967 break;
6970 if (i == n_reloads)
6971 continue;
6973 allocate_reload_reg (chain, r, j == n_reloads - 1);
6974 #endif
6977 /* Now allocate reload registers for anything non-optional that
6978 didn't get one yet. */
6979 for (j = 0; j < n_reloads; j++)
6981 int r = reload_order[j];
6983 /* Ignore reloads that got marked inoperative. */
6984 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6985 continue;
6987 /* Skip reloads that already have a register allocated or are
6988 optional. */
6989 if (rld[r].reg_rtx != 0 || rld[r].optional)
6990 continue;
6992 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6993 break;
6996 /* If that loop got all the way, we have won. */
6997 if (j == n_reloads)
6999 win = 1;
7000 break;
7003 /* Loop around and try without any inheritance. */
7006 if (! win)
7008 /* First undo everything done by the failed attempt
7009 to allocate with inheritance. */
7010 choose_reload_regs_init (chain, save_reload_reg_rtx);
7012 /* Some sanity tests to verify that the reloads found in the first
7013 pass are identical to the ones we have now. */
7014 gcc_assert (chain->n_reloads == n_reloads);
7016 for (i = 0; i < n_reloads; i++)
7018 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7019 continue;
7020 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7021 for (j = 0; j < n_spills; j++)
7022 if (spill_regs[j] == chain->rld[i].regno)
7023 if (! set_reload_reg (j, i))
7024 failed_reload (chain->insn, i);
7028 /* If we thought we could inherit a reload, because it seemed that
7029 nothing else wanted the same reload register earlier in the insn,
7030 verify that assumption, now that all reloads have been assigned.
7031 Likewise for reloads where reload_override_in has been set. */
7033 /* If doing expensive optimizations, do one preliminary pass that doesn't
7034 cancel any inheritance, but removes reloads that have been needed only
7035 for reloads that we know can be inherited. */
7036 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7038 for (j = 0; j < n_reloads; j++)
7040 int r = reload_order[j];
7041 rtx check_reg;
7042 #ifdef SECONDARY_MEMORY_NEEDED
7043 rtx tem;
7044 #endif
7045 if (reload_inherited[r] && rld[r].reg_rtx)
7046 check_reg = rld[r].reg_rtx;
7047 else if (reload_override_in[r]
7048 && (REG_P (reload_override_in[r])
7049 || GET_CODE (reload_override_in[r]) == SUBREG))
7050 check_reg = reload_override_in[r];
7051 else
7052 continue;
7053 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7054 rld[r].opnum, rld[r].when_needed, rld[r].in,
7055 (reload_inherited[r]
7056 ? rld[r].out : const0_rtx),
7057 r, 1))
7059 if (pass)
7060 continue;
7061 reload_inherited[r] = 0;
7062 reload_override_in[r] = 0;
7064 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7065 reload_override_in, then we do not need its related
7066 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7067 likewise for other reload types.
7068 We handle this by removing a reload when its only replacement
7069 is mentioned in reload_in of the reload we are going to inherit.
7070 A special case are auto_inc expressions; even if the input is
7071 inherited, we still need the address for the output. We can
7072 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7073 If we succeeded removing some reload and we are doing a preliminary
7074 pass just to remove such reloads, make another pass, since the
7075 removal of one reload might allow us to inherit another one. */
7076 else if (rld[r].in
7077 && rld[r].out != rld[r].in
7078 && remove_address_replacements (rld[r].in))
7080 if (pass)
7081 pass = 2;
7083 #ifdef SECONDARY_MEMORY_NEEDED
7084 /* If we needed a memory location for the reload, we also have to
7085 remove its related reloads. */
7086 else if (rld[r].in
7087 && rld[r].out != rld[r].in
7088 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7089 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7090 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7091 rld[r].rclass, rld[r].inmode)
7092 && remove_address_replacements
7093 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7094 rld[r].when_needed)))
7096 if (pass)
7097 pass = 2;
7099 #endif
7103 /* Now that reload_override_in is known valid,
7104 actually override reload_in. */
7105 for (j = 0; j < n_reloads; j++)
7106 if (reload_override_in[j])
7107 rld[j].in = reload_override_in[j];
7109 /* If this reload won't be done because it has been canceled or is
7110 optional and not inherited, clear reload_reg_rtx so other
7111 routines (such as subst_reloads) don't get confused. */
7112 for (j = 0; j < n_reloads; j++)
7113 if (rld[j].reg_rtx != 0
7114 && ((rld[j].optional && ! reload_inherited[j])
7115 || (rld[j].in == 0 && rld[j].out == 0
7116 && ! rld[j].secondary_p)))
7118 int regno = true_regnum (rld[j].reg_rtx);
7120 if (spill_reg_order[regno] >= 0)
7121 clear_reload_reg_in_use (regno, rld[j].opnum,
7122 rld[j].when_needed, rld[j].mode);
7123 rld[j].reg_rtx = 0;
7124 reload_spill_index[j] = -1;
7127 /* Record which pseudos and which spill regs have output reloads. */
7128 for (j = 0; j < n_reloads; j++)
7130 int r = reload_order[j];
7132 i = reload_spill_index[r];
7134 /* I is nonneg if this reload uses a register.
7135 If rld[r].reg_rtx is 0, this is an optional reload
7136 that we opted to ignore. */
7137 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7138 && rld[r].reg_rtx != 0)
7140 int nregno = REGNO (rld[r].out_reg);
7141 int nr = 1;
7143 if (nregno < FIRST_PSEUDO_REGISTER)
7144 nr = hard_regno_nregs[nregno][rld[r].mode];
7146 while (--nr >= 0)
7147 SET_REGNO_REG_SET (&reg_has_output_reload,
7148 nregno + nr);
7150 if (i >= 0)
7151 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7153 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7154 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7155 || rld[r].when_needed == RELOAD_FOR_INSN);
7160 /* Deallocate the reload register for reload R. This is called from
7161 remove_address_replacements. */
7163 void
7164 deallocate_reload_reg (int r)
7166 int regno;
7168 if (! rld[r].reg_rtx)
7169 return;
7170 regno = true_regnum (rld[r].reg_rtx);
7171 rld[r].reg_rtx = 0;
7172 if (spill_reg_order[regno] >= 0)
7173 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7174 rld[r].mode);
7175 reload_spill_index[r] = -1;
7178 /* These arrays are filled by emit_reload_insns and its subroutines. */
7179 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7180 static rtx_insn *other_input_address_reload_insns = 0;
7181 static rtx_insn *other_input_reload_insns = 0;
7182 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7183 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7184 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7185 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7186 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7187 static rtx_insn *operand_reload_insns = 0;
7188 static rtx_insn *other_operand_reload_insns = 0;
7189 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7191 /* Values to be put in spill_reg_store are put here first. Instructions
7192 must only be placed here if the associated reload register reaches
7193 the end of the instruction's reload sequence. */
7194 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7195 static HARD_REG_SET reg_reloaded_died;
7197 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7198 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7199 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7200 adjusted register, and return true. Otherwise, return false. */
7201 static bool
7202 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7203 enum reg_class new_class,
7204 machine_mode new_mode)
7207 rtx reg;
7209 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7211 unsigned regno = REGNO (reg);
7213 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7214 continue;
7215 if (GET_MODE (reg) != new_mode)
7217 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7218 continue;
7219 if (hard_regno_nregs[regno][new_mode]
7220 > hard_regno_nregs[regno][GET_MODE (reg)])
7221 continue;
7222 reg = reload_adjust_reg_for_mode (reg, new_mode);
7224 *reload_reg = reg;
7225 return true;
7227 return false;
7230 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7231 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7232 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7233 adjusted register, and return true. Otherwise, return false. */
7234 static bool
7235 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7236 enum insn_code icode)
7239 enum reg_class new_class = scratch_reload_class (icode);
7240 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7242 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7243 new_class, new_mode);
7246 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7247 has the number J. OLD contains the value to be used as input. */
7249 static void
7250 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7251 rtx old, int j)
7253 rtx_insn *insn = chain->insn;
7254 rtx reloadreg;
7255 rtx oldequiv_reg = 0;
7256 rtx oldequiv = 0;
7257 int special = 0;
7258 machine_mode mode;
7259 rtx_insn **where;
7261 /* delete_output_reload is only invoked properly if old contains
7262 the original pseudo register. Since this is replaced with a
7263 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7264 find the pseudo in RELOAD_IN_REG. This is also used to
7265 determine whether a secondary reload is needed. */
7266 if (reload_override_in[j]
7267 && (REG_P (rl->in_reg)
7268 || (GET_CODE (rl->in_reg) == SUBREG
7269 && REG_P (SUBREG_REG (rl->in_reg)))))
7271 oldequiv = old;
7272 old = rl->in_reg;
7274 if (oldequiv == 0)
7275 oldequiv = old;
7276 else if (REG_P (oldequiv))
7277 oldequiv_reg = oldequiv;
7278 else if (GET_CODE (oldequiv) == SUBREG)
7279 oldequiv_reg = SUBREG_REG (oldequiv);
7281 reloadreg = reload_reg_rtx_for_input[j];
7282 mode = GET_MODE (reloadreg);
7284 /* If we are reloading from a register that was recently stored in
7285 with an output-reload, see if we can prove there was
7286 actually no need to store the old value in it. */
7288 if (optimize && REG_P (oldequiv)
7289 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7290 && spill_reg_store[REGNO (oldequiv)]
7291 && REG_P (old)
7292 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7293 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7294 rl->out_reg)))
7295 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7297 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7298 OLDEQUIV. */
7300 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7301 oldequiv = SUBREG_REG (oldequiv);
7302 if (GET_MODE (oldequiv) != VOIDmode
7303 && mode != GET_MODE (oldequiv))
7304 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7306 /* Switch to the right place to emit the reload insns. */
7307 switch (rl->when_needed)
7309 case RELOAD_OTHER:
7310 where = &other_input_reload_insns;
7311 break;
7312 case RELOAD_FOR_INPUT:
7313 where = &input_reload_insns[rl->opnum];
7314 break;
7315 case RELOAD_FOR_INPUT_ADDRESS:
7316 where = &input_address_reload_insns[rl->opnum];
7317 break;
7318 case RELOAD_FOR_INPADDR_ADDRESS:
7319 where = &inpaddr_address_reload_insns[rl->opnum];
7320 break;
7321 case RELOAD_FOR_OUTPUT_ADDRESS:
7322 where = &output_address_reload_insns[rl->opnum];
7323 break;
7324 case RELOAD_FOR_OUTADDR_ADDRESS:
7325 where = &outaddr_address_reload_insns[rl->opnum];
7326 break;
7327 case RELOAD_FOR_OPERAND_ADDRESS:
7328 where = &operand_reload_insns;
7329 break;
7330 case RELOAD_FOR_OPADDR_ADDR:
7331 where = &other_operand_reload_insns;
7332 break;
7333 case RELOAD_FOR_OTHER_ADDRESS:
7334 where = &other_input_address_reload_insns;
7335 break;
7336 default:
7337 gcc_unreachable ();
7340 push_to_sequence (*where);
7342 /* Auto-increment addresses must be reloaded in a special way. */
7343 if (rl->out && ! rl->out_reg)
7345 /* We are not going to bother supporting the case where a
7346 incremented register can't be copied directly from
7347 OLDEQUIV since this seems highly unlikely. */
7348 gcc_assert (rl->secondary_in_reload < 0);
7350 if (reload_inherited[j])
7351 oldequiv = reloadreg;
7353 old = XEXP (rl->in_reg, 0);
7355 /* Prevent normal processing of this reload. */
7356 special = 1;
7357 /* Output a special code sequence for this case. */
7358 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7361 /* If we are reloading a pseudo-register that was set by the previous
7362 insn, see if we can get rid of that pseudo-register entirely
7363 by redirecting the previous insn into our reload register. */
7365 else if (optimize && REG_P (old)
7366 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7367 && dead_or_set_p (insn, old)
7368 /* This is unsafe if some other reload
7369 uses the same reg first. */
7370 && ! conflicts_with_override (reloadreg)
7371 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7372 rl->when_needed, old, rl->out, j, 0))
7374 rtx_insn *temp = PREV_INSN (insn);
7375 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7376 temp = PREV_INSN (temp);
7377 if (temp
7378 && NONJUMP_INSN_P (temp)
7379 && GET_CODE (PATTERN (temp)) == SET
7380 && SET_DEST (PATTERN (temp)) == old
7381 /* Make sure we can access insn_operand_constraint. */
7382 && asm_noperands (PATTERN (temp)) < 0
7383 /* This is unsafe if operand occurs more than once in current
7384 insn. Perhaps some occurrences aren't reloaded. */
7385 && count_occurrences (PATTERN (insn), old, 0) == 1)
7387 rtx old = SET_DEST (PATTERN (temp));
7388 /* Store into the reload register instead of the pseudo. */
7389 SET_DEST (PATTERN (temp)) = reloadreg;
7391 /* Verify that resulting insn is valid.
7393 Note that we have replaced the destination of TEMP with
7394 RELOADREG. If TEMP references RELOADREG within an
7395 autoincrement addressing mode, then the resulting insn
7396 is ill-formed and we must reject this optimization. */
7397 extract_insn (temp);
7398 if (constrain_operands (1, get_enabled_alternatives (temp))
7399 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7401 /* If the previous insn is an output reload, the source is
7402 a reload register, and its spill_reg_store entry will
7403 contain the previous destination. This is now
7404 invalid. */
7405 if (REG_P (SET_SRC (PATTERN (temp)))
7406 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7408 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7409 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7412 /* If these are the only uses of the pseudo reg,
7413 pretend for GDB it lives in the reload reg we used. */
7414 if (REG_N_DEATHS (REGNO (old)) == 1
7415 && REG_N_SETS (REGNO (old)) == 1)
7417 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7418 if (ira_conflicts_p)
7419 /* Inform IRA about the change. */
7420 ira_mark_allocation_change (REGNO (old));
7421 alter_reg (REGNO (old), -1, false);
7423 special = 1;
7425 /* Adjust any debug insns between temp and insn. */
7426 while ((temp = NEXT_INSN (temp)) != insn)
7427 if (DEBUG_INSN_P (temp))
7428 replace_rtx (PATTERN (temp), old, reloadreg);
7429 else
7430 gcc_assert (NOTE_P (temp));
7432 else
7434 SET_DEST (PATTERN (temp)) = old;
7439 /* We can't do that, so output an insn to load RELOADREG. */
7441 /* If we have a secondary reload, pick up the secondary register
7442 and icode, if any. If OLDEQUIV and OLD are different or
7443 if this is an in-out reload, recompute whether or not we
7444 still need a secondary register and what the icode should
7445 be. If we still need a secondary register and the class or
7446 icode is different, go back to reloading from OLD if using
7447 OLDEQUIV means that we got the wrong type of register. We
7448 cannot have different class or icode due to an in-out reload
7449 because we don't make such reloads when both the input and
7450 output need secondary reload registers. */
7452 if (! special && rl->secondary_in_reload >= 0)
7454 rtx second_reload_reg = 0;
7455 rtx third_reload_reg = 0;
7456 int secondary_reload = rl->secondary_in_reload;
7457 rtx real_oldequiv = oldequiv;
7458 rtx real_old = old;
7459 rtx tmp;
7460 enum insn_code icode;
7461 enum insn_code tertiary_icode = CODE_FOR_nothing;
7463 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7464 and similarly for OLD.
7465 See comments in get_secondary_reload in reload.c. */
7466 /* If it is a pseudo that cannot be replaced with its
7467 equivalent MEM, we must fall back to reload_in, which
7468 will have all the necessary substitutions registered.
7469 Likewise for a pseudo that can't be replaced with its
7470 equivalent constant.
7472 Take extra care for subregs of such pseudos. Note that
7473 we cannot use reg_equiv_mem in this case because it is
7474 not in the right mode. */
7476 tmp = oldequiv;
7477 if (GET_CODE (tmp) == SUBREG)
7478 tmp = SUBREG_REG (tmp);
7479 if (REG_P (tmp)
7480 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7481 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7482 || reg_equiv_constant (REGNO (tmp)) != 0))
7484 if (! reg_equiv_mem (REGNO (tmp))
7485 || num_not_at_initial_offset
7486 || GET_CODE (oldequiv) == SUBREG)
7487 real_oldequiv = rl->in;
7488 else
7489 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7492 tmp = old;
7493 if (GET_CODE (tmp) == SUBREG)
7494 tmp = SUBREG_REG (tmp);
7495 if (REG_P (tmp)
7496 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7497 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7498 || reg_equiv_constant (REGNO (tmp)) != 0))
7500 if (! reg_equiv_mem (REGNO (tmp))
7501 || num_not_at_initial_offset
7502 || GET_CODE (old) == SUBREG)
7503 real_old = rl->in;
7504 else
7505 real_old = reg_equiv_mem (REGNO (tmp));
7508 second_reload_reg = rld[secondary_reload].reg_rtx;
7509 if (rld[secondary_reload].secondary_in_reload >= 0)
7511 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7513 third_reload_reg = rld[tertiary_reload].reg_rtx;
7514 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7515 /* We'd have to add more code for quartary reloads. */
7516 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7518 icode = rl->secondary_in_icode;
7520 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7521 || (rl->in != 0 && rl->out != 0))
7523 secondary_reload_info sri, sri2;
7524 enum reg_class new_class, new_t_class;
7526 sri.icode = CODE_FOR_nothing;
7527 sri.prev_sri = NULL;
7528 new_class
7529 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7530 rl->rclass, mode,
7531 &sri);
7533 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7534 second_reload_reg = 0;
7535 else if (new_class == NO_REGS)
7537 if (reload_adjust_reg_for_icode (&second_reload_reg,
7538 third_reload_reg,
7539 (enum insn_code) sri.icode))
7541 icode = (enum insn_code) sri.icode;
7542 third_reload_reg = 0;
7544 else
7546 oldequiv = old;
7547 real_oldequiv = real_old;
7550 else if (sri.icode != CODE_FOR_nothing)
7551 /* We currently lack a way to express this in reloads. */
7552 gcc_unreachable ();
7553 else
7555 sri2.icode = CODE_FOR_nothing;
7556 sri2.prev_sri = &sri;
7557 new_t_class
7558 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7559 new_class, mode,
7560 &sri);
7561 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7563 if (reload_adjust_reg_for_temp (&second_reload_reg,
7564 third_reload_reg,
7565 new_class, mode))
7567 third_reload_reg = 0;
7568 tertiary_icode = (enum insn_code) sri2.icode;
7570 else
7572 oldequiv = old;
7573 real_oldequiv = real_old;
7576 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7578 rtx intermediate = second_reload_reg;
7580 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7581 new_class, mode)
7582 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7583 ((enum insn_code)
7584 sri2.icode)))
7586 second_reload_reg = intermediate;
7587 tertiary_icode = (enum insn_code) sri2.icode;
7589 else
7591 oldequiv = old;
7592 real_oldequiv = real_old;
7595 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7597 rtx intermediate = second_reload_reg;
7599 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7600 new_class, mode)
7601 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7602 new_t_class, mode))
7604 second_reload_reg = intermediate;
7605 tertiary_icode = (enum insn_code) sri2.icode;
7607 else
7609 oldequiv = old;
7610 real_oldequiv = real_old;
7613 else
7615 /* This could be handled more intelligently too. */
7616 oldequiv = old;
7617 real_oldequiv = real_old;
7622 /* If we still need a secondary reload register, check
7623 to see if it is being used as a scratch or intermediate
7624 register and generate code appropriately. If we need
7625 a scratch register, use REAL_OLDEQUIV since the form of
7626 the insn may depend on the actual address if it is
7627 a MEM. */
7629 if (second_reload_reg)
7631 if (icode != CODE_FOR_nothing)
7633 /* We'd have to add extra code to handle this case. */
7634 gcc_assert (!third_reload_reg);
7636 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7637 second_reload_reg));
7638 special = 1;
7640 else
7642 /* See if we need a scratch register to load the
7643 intermediate register (a tertiary reload). */
7644 if (tertiary_icode != CODE_FOR_nothing)
7646 emit_insn ((GEN_FCN (tertiary_icode)
7647 (second_reload_reg, real_oldequiv,
7648 third_reload_reg)));
7650 else if (third_reload_reg)
7652 gen_reload (third_reload_reg, real_oldequiv,
7653 rl->opnum,
7654 rl->when_needed);
7655 gen_reload (second_reload_reg, third_reload_reg,
7656 rl->opnum,
7657 rl->when_needed);
7659 else
7660 gen_reload (second_reload_reg, real_oldequiv,
7661 rl->opnum,
7662 rl->when_needed);
7664 oldequiv = second_reload_reg;
7669 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7671 rtx real_oldequiv = oldequiv;
7673 if ((REG_P (oldequiv)
7674 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7675 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7676 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7677 || (GET_CODE (oldequiv) == SUBREG
7678 && REG_P (SUBREG_REG (oldequiv))
7679 && (REGNO (SUBREG_REG (oldequiv))
7680 >= FIRST_PSEUDO_REGISTER)
7681 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7682 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7683 || (CONSTANT_P (oldequiv)
7684 && (targetm.preferred_reload_class (oldequiv,
7685 REGNO_REG_CLASS (REGNO (reloadreg)))
7686 == NO_REGS)))
7687 real_oldequiv = rl->in;
7688 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7689 rl->when_needed);
7692 if (cfun->can_throw_non_call_exceptions)
7693 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7695 /* End this sequence. */
7696 *where = get_insns ();
7697 end_sequence ();
7699 /* Update reload_override_in so that delete_address_reloads_1
7700 can see the actual register usage. */
7701 if (oldequiv_reg)
7702 reload_override_in[j] = oldequiv;
7705 /* Generate insns to for the output reload RL, which is for the insn described
7706 by CHAIN and has the number J. */
7707 static void
7708 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7709 int j)
7711 rtx reloadreg;
7712 rtx_insn *insn = chain->insn;
7713 int special = 0;
7714 rtx old = rl->out;
7715 machine_mode mode;
7716 rtx_insn *p;
7717 rtx rl_reg_rtx;
7719 if (rl->when_needed == RELOAD_OTHER)
7720 start_sequence ();
7721 else
7722 push_to_sequence (output_reload_insns[rl->opnum]);
7724 rl_reg_rtx = reload_reg_rtx_for_output[j];
7725 mode = GET_MODE (rl_reg_rtx);
7727 reloadreg = rl_reg_rtx;
7729 /* If we need two reload regs, set RELOADREG to the intermediate
7730 one, since it will be stored into OLD. We might need a secondary
7731 register only for an input reload, so check again here. */
7733 if (rl->secondary_out_reload >= 0)
7735 rtx real_old = old;
7736 int secondary_reload = rl->secondary_out_reload;
7737 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7739 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7740 && reg_equiv_mem (REGNO (old)) != 0)
7741 real_old = reg_equiv_mem (REGNO (old));
7743 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7745 rtx second_reloadreg = reloadreg;
7746 reloadreg = rld[secondary_reload].reg_rtx;
7748 /* See if RELOADREG is to be used as a scratch register
7749 or as an intermediate register. */
7750 if (rl->secondary_out_icode != CODE_FOR_nothing)
7752 /* We'd have to add extra code to handle this case. */
7753 gcc_assert (tertiary_reload < 0);
7755 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7756 (real_old, second_reloadreg, reloadreg)));
7757 special = 1;
7759 else
7761 /* See if we need both a scratch and intermediate reload
7762 register. */
7764 enum insn_code tertiary_icode
7765 = rld[secondary_reload].secondary_out_icode;
7767 /* We'd have to add more code for quartary reloads. */
7768 gcc_assert (tertiary_reload < 0
7769 || rld[tertiary_reload].secondary_out_reload < 0);
7771 if (GET_MODE (reloadreg) != mode)
7772 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7774 if (tertiary_icode != CODE_FOR_nothing)
7776 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7778 /* Copy primary reload reg to secondary reload reg.
7779 (Note that these have been swapped above, then
7780 secondary reload reg to OLD using our insn.) */
7782 /* If REAL_OLD is a paradoxical SUBREG, remove it
7783 and try to put the opposite SUBREG on
7784 RELOADREG. */
7785 strip_paradoxical_subreg (&real_old, &reloadreg);
7787 gen_reload (reloadreg, second_reloadreg,
7788 rl->opnum, rl->when_needed);
7789 emit_insn ((GEN_FCN (tertiary_icode)
7790 (real_old, reloadreg, third_reloadreg)));
7791 special = 1;
7794 else
7796 /* Copy between the reload regs here and then to
7797 OUT later. */
7799 gen_reload (reloadreg, second_reloadreg,
7800 rl->opnum, rl->when_needed);
7801 if (tertiary_reload >= 0)
7803 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7805 gen_reload (third_reloadreg, reloadreg,
7806 rl->opnum, rl->when_needed);
7807 reloadreg = third_reloadreg;
7814 /* Output the last reload insn. */
7815 if (! special)
7817 rtx set;
7819 /* Don't output the last reload if OLD is not the dest of
7820 INSN and is in the src and is clobbered by INSN. */
7821 if (! flag_expensive_optimizations
7822 || !REG_P (old)
7823 || !(set = single_set (insn))
7824 || rtx_equal_p (old, SET_DEST (set))
7825 || !reg_mentioned_p (old, SET_SRC (set))
7826 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7827 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7828 gen_reload (old, reloadreg, rl->opnum,
7829 rl->when_needed);
7832 /* Look at all insns we emitted, just to be safe. */
7833 for (p = get_insns (); p; p = NEXT_INSN (p))
7834 if (INSN_P (p))
7836 rtx pat = PATTERN (p);
7838 /* If this output reload doesn't come from a spill reg,
7839 clear any memory of reloaded copies of the pseudo reg.
7840 If this output reload comes from a spill reg,
7841 reg_has_output_reload will make this do nothing. */
7842 note_stores (pat, forget_old_reloads_1, NULL);
7844 if (reg_mentioned_p (rl_reg_rtx, pat))
7846 rtx set = single_set (insn);
7847 if (reload_spill_index[j] < 0
7848 && set
7849 && SET_SRC (set) == rl_reg_rtx)
7851 int src = REGNO (SET_SRC (set));
7853 reload_spill_index[j] = src;
7854 SET_HARD_REG_BIT (reg_is_output_reload, src);
7855 if (find_regno_note (insn, REG_DEAD, src))
7856 SET_HARD_REG_BIT (reg_reloaded_died, src);
7858 if (HARD_REGISTER_P (rl_reg_rtx))
7860 int s = rl->secondary_out_reload;
7861 set = single_set (p);
7862 /* If this reload copies only to the secondary reload
7863 register, the secondary reload does the actual
7864 store. */
7865 if (s >= 0 && set == NULL_RTX)
7866 /* We can't tell what function the secondary reload
7867 has and where the actual store to the pseudo is
7868 made; leave new_spill_reg_store alone. */
7870 else if (s >= 0
7871 && SET_SRC (set) == rl_reg_rtx
7872 && SET_DEST (set) == rld[s].reg_rtx)
7874 /* Usually the next instruction will be the
7875 secondary reload insn; if we can confirm
7876 that it is, setting new_spill_reg_store to
7877 that insn will allow an extra optimization. */
7878 rtx s_reg = rld[s].reg_rtx;
7879 rtx_insn *next = NEXT_INSN (p);
7880 rld[s].out = rl->out;
7881 rld[s].out_reg = rl->out_reg;
7882 set = single_set (next);
7883 if (set && SET_SRC (set) == s_reg
7884 && reload_reg_rtx_reaches_end_p (s_reg, s))
7886 SET_HARD_REG_BIT (reg_is_output_reload,
7887 REGNO (s_reg));
7888 new_spill_reg_store[REGNO (s_reg)] = next;
7891 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7892 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7897 if (rl->when_needed == RELOAD_OTHER)
7899 emit_insn (other_output_reload_insns[rl->opnum]);
7900 other_output_reload_insns[rl->opnum] = get_insns ();
7902 else
7903 output_reload_insns[rl->opnum] = get_insns ();
7905 if (cfun->can_throw_non_call_exceptions)
7906 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7908 end_sequence ();
7911 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7912 and has the number J. */
7913 static void
7914 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7916 rtx_insn *insn = chain->insn;
7917 rtx old = (rl->in && MEM_P (rl->in)
7918 ? rl->in_reg : rl->in);
7919 rtx reg_rtx = rl->reg_rtx;
7921 if (old && reg_rtx)
7923 machine_mode mode;
7925 /* Determine the mode to reload in.
7926 This is very tricky because we have three to choose from.
7927 There is the mode the insn operand wants (rl->inmode).
7928 There is the mode of the reload register RELOADREG.
7929 There is the intrinsic mode of the operand, which we could find
7930 by stripping some SUBREGs.
7931 It turns out that RELOADREG's mode is irrelevant:
7932 we can change that arbitrarily.
7934 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7935 then the reload reg may not support QImode moves, so use SImode.
7936 If foo is in memory due to spilling a pseudo reg, this is safe,
7937 because the QImode value is in the least significant part of a
7938 slot big enough for a SImode. If foo is some other sort of
7939 memory reference, then it is impossible to reload this case,
7940 so previous passes had better make sure this never happens.
7942 Then consider a one-word union which has SImode and one of its
7943 members is a float, being fetched as (SUBREG:SF union:SI).
7944 We must fetch that as SFmode because we could be loading into
7945 a float-only register. In this case OLD's mode is correct.
7947 Consider an immediate integer: it has VOIDmode. Here we need
7948 to get a mode from something else.
7950 In some cases, there is a fourth mode, the operand's
7951 containing mode. If the insn specifies a containing mode for
7952 this operand, it overrides all others.
7954 I am not sure whether the algorithm here is always right,
7955 but it does the right things in those cases. */
7957 mode = GET_MODE (old);
7958 if (mode == VOIDmode)
7959 mode = rl->inmode;
7961 /* We cannot use gen_lowpart_common since it can do the wrong thing
7962 when REG_RTX has a multi-word mode. Note that REG_RTX must
7963 always be a REG here. */
7964 if (GET_MODE (reg_rtx) != mode)
7965 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7967 reload_reg_rtx_for_input[j] = reg_rtx;
7969 if (old != 0
7970 /* AUTO_INC reloads need to be handled even if inherited. We got an
7971 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7972 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7973 && ! rtx_equal_p (reg_rtx, old)
7974 && reg_rtx != 0)
7975 emit_input_reload_insns (chain, rld + j, old, j);
7977 /* When inheriting a wider reload, we have a MEM in rl->in,
7978 e.g. inheriting a SImode output reload for
7979 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7980 if (optimize && reload_inherited[j] && rl->in
7981 && MEM_P (rl->in)
7982 && MEM_P (rl->in_reg)
7983 && reload_spill_index[j] >= 0
7984 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7985 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7987 /* If we are reloading a register that was recently stored in with an
7988 output-reload, see if we can prove there was
7989 actually no need to store the old value in it. */
7991 if (optimize
7992 && (reload_inherited[j] || reload_override_in[j])
7993 && reg_rtx
7994 && REG_P (reg_rtx)
7995 && spill_reg_store[REGNO (reg_rtx)] != 0
7996 #if 0
7997 /* There doesn't seem to be any reason to restrict this to pseudos
7998 and doing so loses in the case where we are copying from a
7999 register of the wrong class. */
8000 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8001 #endif
8002 /* The insn might have already some references to stackslots
8003 replaced by MEMs, while reload_out_reg still names the
8004 original pseudo. */
8005 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8006 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8007 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8010 /* Do output reloading for reload RL, which is for the insn described by
8011 CHAIN and has the number J.
8012 ??? At some point we need to support handling output reloads of
8013 JUMP_INSNs or insns that set cc0. */
8014 static void
8015 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8017 rtx note, old;
8018 rtx_insn *insn = chain->insn;
8019 /* If this is an output reload that stores something that is
8020 not loaded in this same reload, see if we can eliminate a previous
8021 store. */
8022 rtx pseudo = rl->out_reg;
8023 rtx reg_rtx = rl->reg_rtx;
8025 if (rl->out && reg_rtx)
8027 machine_mode mode;
8029 /* Determine the mode to reload in.
8030 See comments above (for input reloading). */
8031 mode = GET_MODE (rl->out);
8032 if (mode == VOIDmode)
8034 /* VOIDmode should never happen for an output. */
8035 if (asm_noperands (PATTERN (insn)) < 0)
8036 /* It's the compiler's fault. */
8037 fatal_insn ("VOIDmode on an output", insn);
8038 error_for_asm (insn, "output operand is constant in %<asm%>");
8039 /* Prevent crash--use something we know is valid. */
8040 mode = word_mode;
8041 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8043 if (GET_MODE (reg_rtx) != mode)
8044 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8046 reload_reg_rtx_for_output[j] = reg_rtx;
8048 if (pseudo
8049 && optimize
8050 && REG_P (pseudo)
8051 && ! rtx_equal_p (rl->in_reg, pseudo)
8052 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8053 && reg_last_reload_reg[REGNO (pseudo)])
8055 int pseudo_no = REGNO (pseudo);
8056 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8058 /* We don't need to test full validity of last_regno for
8059 inherit here; we only want to know if the store actually
8060 matches the pseudo. */
8061 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8062 && reg_reloaded_contents[last_regno] == pseudo_no
8063 && spill_reg_store[last_regno]
8064 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8065 delete_output_reload (insn, j, last_regno, reg_rtx);
8068 old = rl->out_reg;
8069 if (old == 0
8070 || reg_rtx == 0
8071 || rtx_equal_p (old, reg_rtx))
8072 return;
8074 /* An output operand that dies right away does need a reload,
8075 but need not be copied from it. Show the new location in the
8076 REG_UNUSED note. */
8077 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8078 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8080 XEXP (note, 0) = reg_rtx;
8081 return;
8083 /* Likewise for a SUBREG of an operand that dies. */
8084 else if (GET_CODE (old) == SUBREG
8085 && REG_P (SUBREG_REG (old))
8086 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8087 SUBREG_REG (old))))
8089 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8090 return;
8092 else if (GET_CODE (old) == SCRATCH)
8093 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8094 but we don't want to make an output reload. */
8095 return;
8097 /* If is a JUMP_INSN, we can't support output reloads yet. */
8098 gcc_assert (NONJUMP_INSN_P (insn));
8100 emit_output_reload_insns (chain, rld + j, j);
8103 /* A reload copies values of MODE from register SRC to register DEST.
8104 Return true if it can be treated for inheritance purposes like a
8105 group of reloads, each one reloading a single hard register. The
8106 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8107 occupy the same number of hard registers. */
8109 static bool
8110 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8111 int src ATTRIBUTE_UNUSED,
8112 machine_mode mode ATTRIBUTE_UNUSED)
8114 #ifdef CANNOT_CHANGE_MODE_CLASS
8115 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8116 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8117 #else
8118 return true;
8119 #endif
8122 /* Output insns to reload values in and out of the chosen reload regs. */
8124 static void
8125 emit_reload_insns (struct insn_chain *chain)
8127 rtx_insn *insn = chain->insn;
8129 int j;
8131 CLEAR_HARD_REG_SET (reg_reloaded_died);
8133 for (j = 0; j < reload_n_operands; j++)
8134 input_reload_insns[j] = input_address_reload_insns[j]
8135 = inpaddr_address_reload_insns[j]
8136 = output_reload_insns[j] = output_address_reload_insns[j]
8137 = outaddr_address_reload_insns[j]
8138 = other_output_reload_insns[j] = 0;
8139 other_input_address_reload_insns = 0;
8140 other_input_reload_insns = 0;
8141 operand_reload_insns = 0;
8142 other_operand_reload_insns = 0;
8144 /* Dump reloads into the dump file. */
8145 if (dump_file)
8147 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8148 debug_reload_to_stream (dump_file);
8151 for (j = 0; j < n_reloads; j++)
8152 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8154 unsigned int i;
8156 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8157 new_spill_reg_store[i] = 0;
8160 /* Now output the instructions to copy the data into and out of the
8161 reload registers. Do these in the order that the reloads were reported,
8162 since reloads of base and index registers precede reloads of operands
8163 and the operands may need the base and index registers reloaded. */
8165 for (j = 0; j < n_reloads; j++)
8167 do_input_reload (chain, rld + j, j);
8168 do_output_reload (chain, rld + j, j);
8171 /* Now write all the insns we made for reloads in the order expected by
8172 the allocation functions. Prior to the insn being reloaded, we write
8173 the following reloads:
8175 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8177 RELOAD_OTHER reloads.
8179 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8180 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8181 RELOAD_FOR_INPUT reload for the operand.
8183 RELOAD_FOR_OPADDR_ADDRS reloads.
8185 RELOAD_FOR_OPERAND_ADDRESS reloads.
8187 After the insn being reloaded, we write the following:
8189 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8190 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8191 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8192 reloads for the operand. The RELOAD_OTHER output reloads are
8193 output in descending order by reload number. */
8195 emit_insn_before (other_input_address_reload_insns, insn);
8196 emit_insn_before (other_input_reload_insns, insn);
8198 for (j = 0; j < reload_n_operands; j++)
8200 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8201 emit_insn_before (input_address_reload_insns[j], insn);
8202 emit_insn_before (input_reload_insns[j], insn);
8205 emit_insn_before (other_operand_reload_insns, insn);
8206 emit_insn_before (operand_reload_insns, insn);
8208 for (j = 0; j < reload_n_operands; j++)
8210 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8211 x = emit_insn_after (output_address_reload_insns[j], x);
8212 x = emit_insn_after (output_reload_insns[j], x);
8213 emit_insn_after (other_output_reload_insns[j], x);
8216 /* For all the spill regs newly reloaded in this instruction,
8217 record what they were reloaded from, so subsequent instructions
8218 can inherit the reloads.
8220 Update spill_reg_store for the reloads of this insn.
8221 Copy the elements that were updated in the loop above. */
8223 for (j = 0; j < n_reloads; j++)
8225 int r = reload_order[j];
8226 int i = reload_spill_index[r];
8228 /* If this is a non-inherited input reload from a pseudo, we must
8229 clear any memory of a previous store to the same pseudo. Only do
8230 something if there will not be an output reload for the pseudo
8231 being reloaded. */
8232 if (rld[r].in_reg != 0
8233 && ! (reload_inherited[r] || reload_override_in[r]))
8235 rtx reg = rld[r].in_reg;
8237 if (GET_CODE (reg) == SUBREG)
8238 reg = SUBREG_REG (reg);
8240 if (REG_P (reg)
8241 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8242 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8244 int nregno = REGNO (reg);
8246 if (reg_last_reload_reg[nregno])
8248 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8250 if (reg_reloaded_contents[last_regno] == nregno)
8251 spill_reg_store[last_regno] = 0;
8256 /* I is nonneg if this reload used a register.
8257 If rld[r].reg_rtx is 0, this is an optional reload
8258 that we opted to ignore. */
8260 if (i >= 0 && rld[r].reg_rtx != 0)
8262 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8263 int k;
8265 /* For a multi register reload, we need to check if all or part
8266 of the value lives to the end. */
8267 for (k = 0; k < nr; k++)
8268 if (reload_reg_reaches_end_p (i + k, r))
8269 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8271 /* Maybe the spill reg contains a copy of reload_out. */
8272 if (rld[r].out != 0
8273 && (REG_P (rld[r].out)
8274 || (rld[r].out_reg
8275 ? REG_P (rld[r].out_reg)
8276 /* The reload value is an auto-modification of
8277 some kind. For PRE_INC, POST_INC, PRE_DEC
8278 and POST_DEC, we record an equivalence
8279 between the reload register and the operand
8280 on the optimistic assumption that we can make
8281 the equivalence hold. reload_as_needed must
8282 then either make it hold or invalidate the
8283 equivalence.
8285 PRE_MODIFY and POST_MODIFY addresses are reloaded
8286 somewhat differently, and allowing them here leads
8287 to problems. */
8288 : (GET_CODE (rld[r].out) != POST_MODIFY
8289 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8291 rtx reg;
8293 reg = reload_reg_rtx_for_output[r];
8294 if (reload_reg_rtx_reaches_end_p (reg, r))
8296 machine_mode mode = GET_MODE (reg);
8297 int regno = REGNO (reg);
8298 int nregs = hard_regno_nregs[regno][mode];
8299 rtx out = (REG_P (rld[r].out)
8300 ? rld[r].out
8301 : rld[r].out_reg
8302 ? rld[r].out_reg
8303 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8304 int out_regno = REGNO (out);
8305 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8306 : hard_regno_nregs[out_regno][mode]);
8307 bool piecemeal;
8309 spill_reg_store[regno] = new_spill_reg_store[regno];
8310 spill_reg_stored_to[regno] = out;
8311 reg_last_reload_reg[out_regno] = reg;
8313 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8314 && nregs == out_nregs
8315 && inherit_piecemeal_p (out_regno, regno, mode));
8317 /* If OUT_REGNO is a hard register, it may occupy more than
8318 one register. If it does, say what is in the
8319 rest of the registers assuming that both registers
8320 agree on how many words the object takes. If not,
8321 invalidate the subsequent registers. */
8323 if (HARD_REGISTER_NUM_P (out_regno))
8324 for (k = 1; k < out_nregs; k++)
8325 reg_last_reload_reg[out_regno + k]
8326 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8328 /* Now do the inverse operation. */
8329 for (k = 0; k < nregs; k++)
8331 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8332 reg_reloaded_contents[regno + k]
8333 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8334 ? out_regno
8335 : out_regno + k);
8336 reg_reloaded_insn[regno + k] = insn;
8337 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8338 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8339 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8340 regno + k);
8341 else
8342 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8343 regno + k);
8347 /* Maybe the spill reg contains a copy of reload_in. Only do
8348 something if there will not be an output reload for
8349 the register being reloaded. */
8350 else if (rld[r].out_reg == 0
8351 && rld[r].in != 0
8352 && ((REG_P (rld[r].in)
8353 && !HARD_REGISTER_P (rld[r].in)
8354 && !REGNO_REG_SET_P (&reg_has_output_reload,
8355 REGNO (rld[r].in)))
8356 || (REG_P (rld[r].in_reg)
8357 && !REGNO_REG_SET_P (&reg_has_output_reload,
8358 REGNO (rld[r].in_reg))))
8359 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8361 rtx reg;
8363 reg = reload_reg_rtx_for_input[r];
8364 if (reload_reg_rtx_reaches_end_p (reg, r))
8366 machine_mode mode;
8367 int regno;
8368 int nregs;
8369 int in_regno;
8370 int in_nregs;
8371 rtx in;
8372 bool piecemeal;
8374 mode = GET_MODE (reg);
8375 regno = REGNO (reg);
8376 nregs = hard_regno_nregs[regno][mode];
8377 if (REG_P (rld[r].in)
8378 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8379 in = rld[r].in;
8380 else if (REG_P (rld[r].in_reg))
8381 in = rld[r].in_reg;
8382 else
8383 in = XEXP (rld[r].in_reg, 0);
8384 in_regno = REGNO (in);
8386 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8387 : hard_regno_nregs[in_regno][mode]);
8389 reg_last_reload_reg[in_regno] = reg;
8391 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8392 && nregs == in_nregs
8393 && inherit_piecemeal_p (regno, in_regno, mode));
8395 if (HARD_REGISTER_NUM_P (in_regno))
8396 for (k = 1; k < in_nregs; k++)
8397 reg_last_reload_reg[in_regno + k]
8398 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8400 /* Unless we inherited this reload, show we haven't
8401 recently done a store.
8402 Previous stores of inherited auto_inc expressions
8403 also have to be discarded. */
8404 if (! reload_inherited[r]
8405 || (rld[r].out && ! rld[r].out_reg))
8406 spill_reg_store[regno] = 0;
8408 for (k = 0; k < nregs; k++)
8410 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8411 reg_reloaded_contents[regno + k]
8412 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8413 ? in_regno
8414 : in_regno + k);
8415 reg_reloaded_insn[regno + k] = insn;
8416 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8417 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8418 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8419 regno + k);
8420 else
8421 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8422 regno + k);
8428 /* The following if-statement was #if 0'd in 1.34 (or before...).
8429 It's reenabled in 1.35 because supposedly nothing else
8430 deals with this problem. */
8432 /* If a register gets output-reloaded from a non-spill register,
8433 that invalidates any previous reloaded copy of it.
8434 But forget_old_reloads_1 won't get to see it, because
8435 it thinks only about the original insn. So invalidate it here.
8436 Also do the same thing for RELOAD_OTHER constraints where the
8437 output is discarded. */
8438 if (i < 0
8439 && ((rld[r].out != 0
8440 && (REG_P (rld[r].out)
8441 || (MEM_P (rld[r].out)
8442 && REG_P (rld[r].out_reg))))
8443 || (rld[r].out == 0 && rld[r].out_reg
8444 && REG_P (rld[r].out_reg))))
8446 rtx out = ((rld[r].out && REG_P (rld[r].out))
8447 ? rld[r].out : rld[r].out_reg);
8448 int out_regno = REGNO (out);
8449 machine_mode mode = GET_MODE (out);
8451 /* REG_RTX is now set or clobbered by the main instruction.
8452 As the comment above explains, forget_old_reloads_1 only
8453 sees the original instruction, and there is no guarantee
8454 that the original instruction also clobbered REG_RTX.
8455 For example, if find_reloads sees that the input side of
8456 a matched operand pair dies in this instruction, it may
8457 use the input register as the reload register.
8459 Calling forget_old_reloads_1 is a waste of effort if
8460 REG_RTX is also the output register.
8462 If we know that REG_RTX holds the value of a pseudo
8463 register, the code after the call will record that fact. */
8464 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8465 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8467 if (!HARD_REGISTER_NUM_P (out_regno))
8469 rtx src_reg;
8470 rtx_insn *store_insn = NULL;
8472 reg_last_reload_reg[out_regno] = 0;
8474 /* If we can find a hard register that is stored, record
8475 the storing insn so that we may delete this insn with
8476 delete_output_reload. */
8477 src_reg = reload_reg_rtx_for_output[r];
8479 if (src_reg)
8481 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8482 store_insn = new_spill_reg_store[REGNO (src_reg)];
8483 else
8484 src_reg = NULL_RTX;
8486 else
8488 /* If this is an optional reload, try to find the
8489 source reg from an input reload. */
8490 rtx set = single_set (insn);
8491 if (set && SET_DEST (set) == rld[r].out)
8493 int k;
8495 src_reg = SET_SRC (set);
8496 store_insn = insn;
8497 for (k = 0; k < n_reloads; k++)
8499 if (rld[k].in == src_reg)
8501 src_reg = reload_reg_rtx_for_input[k];
8502 break;
8507 if (src_reg && REG_P (src_reg)
8508 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8510 int src_regno, src_nregs, k;
8511 rtx note;
8513 gcc_assert (GET_MODE (src_reg) == mode);
8514 src_regno = REGNO (src_reg);
8515 src_nregs = hard_regno_nregs[src_regno][mode];
8516 /* The place where to find a death note varies with
8517 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8518 necessarily checked exactly in the code that moves
8519 notes, so just check both locations. */
8520 note = find_regno_note (insn, REG_DEAD, src_regno);
8521 if (! note && store_insn)
8522 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8523 for (k = 0; k < src_nregs; k++)
8525 spill_reg_store[src_regno + k] = store_insn;
8526 spill_reg_stored_to[src_regno + k] = out;
8527 reg_reloaded_contents[src_regno + k] = out_regno;
8528 reg_reloaded_insn[src_regno + k] = store_insn;
8529 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8530 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8531 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8532 mode))
8533 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8534 src_regno + k);
8535 else
8536 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8537 src_regno + k);
8538 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8539 if (note)
8540 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8541 else
8542 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8544 reg_last_reload_reg[out_regno] = src_reg;
8545 /* We have to set reg_has_output_reload here, or else
8546 forget_old_reloads_1 will clear reg_last_reload_reg
8547 right away. */
8548 SET_REGNO_REG_SET (&reg_has_output_reload,
8549 out_regno);
8552 else
8554 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8556 for (k = 0; k < out_nregs; k++)
8557 reg_last_reload_reg[out_regno + k] = 0;
8561 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8564 /* Go through the motions to emit INSN and test if it is strictly valid.
8565 Return the emitted insn if valid, else return NULL. */
8567 static rtx_insn *
8568 emit_insn_if_valid_for_reload (rtx pat)
8570 rtx_insn *last = get_last_insn ();
8571 int code;
8573 rtx_insn *insn = emit_insn (pat);
8574 code = recog_memoized (insn);
8576 if (code >= 0)
8578 extract_insn (insn);
8579 /* We want constrain operands to treat this insn strictly in its
8580 validity determination, i.e., the way it would after reload has
8581 completed. */
8582 if (constrain_operands (1, get_enabled_alternatives (insn)))
8583 return insn;
8586 delete_insns_since (last);
8587 return NULL;
8590 /* Emit code to perform a reload from IN (which may be a reload register) to
8591 OUT (which may also be a reload register). IN or OUT is from operand
8592 OPNUM with reload type TYPE.
8594 Returns first insn emitted. */
8596 static rtx_insn *
8597 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8599 rtx_insn *last = get_last_insn ();
8600 rtx_insn *tem;
8601 #ifdef SECONDARY_MEMORY_NEEDED
8602 rtx tem1, tem2;
8603 #endif
8605 /* If IN is a paradoxical SUBREG, remove it and try to put the
8606 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8607 if (!strip_paradoxical_subreg (&in, &out))
8608 strip_paradoxical_subreg (&out, &in);
8610 /* How to do this reload can get quite tricky. Normally, we are being
8611 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8612 register that didn't get a hard register. In that case we can just
8613 call emit_move_insn.
8615 We can also be asked to reload a PLUS that adds a register or a MEM to
8616 another register, constant or MEM. This can occur during frame pointer
8617 elimination and while reloading addresses. This case is handled by
8618 trying to emit a single insn to perform the add. If it is not valid,
8619 we use a two insn sequence.
8621 Or we can be asked to reload an unary operand that was a fragment of
8622 an addressing mode, into a register. If it isn't recognized as-is,
8623 we try making the unop operand and the reload-register the same:
8624 (set reg:X (unop:X expr:Y))
8625 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8627 Finally, we could be called to handle an 'o' constraint by putting
8628 an address into a register. In that case, we first try to do this
8629 with a named pattern of "reload_load_address". If no such pattern
8630 exists, we just emit a SET insn and hope for the best (it will normally
8631 be valid on machines that use 'o').
8633 This entire process is made complex because reload will never
8634 process the insns we generate here and so we must ensure that
8635 they will fit their constraints and also by the fact that parts of
8636 IN might be being reloaded separately and replaced with spill registers.
8637 Because of this, we are, in some sense, just guessing the right approach
8638 here. The one listed above seems to work.
8640 ??? At some point, this whole thing needs to be rethought. */
8642 if (GET_CODE (in) == PLUS
8643 && (REG_P (XEXP (in, 0))
8644 || GET_CODE (XEXP (in, 0)) == SUBREG
8645 || MEM_P (XEXP (in, 0)))
8646 && (REG_P (XEXP (in, 1))
8647 || GET_CODE (XEXP (in, 1)) == SUBREG
8648 || CONSTANT_P (XEXP (in, 1))
8649 || MEM_P (XEXP (in, 1))))
8651 /* We need to compute the sum of a register or a MEM and another
8652 register, constant, or MEM, and put it into the reload
8653 register. The best possible way of doing this is if the machine
8654 has a three-operand ADD insn that accepts the required operands.
8656 The simplest approach is to try to generate such an insn and see if it
8657 is recognized and matches its constraints. If so, it can be used.
8659 It might be better not to actually emit the insn unless it is valid,
8660 but we need to pass the insn as an operand to `recog' and
8661 `extract_insn' and it is simpler to emit and then delete the insn if
8662 not valid than to dummy things up. */
8664 rtx op0, op1, tem;
8665 rtx_insn *insn;
8666 enum insn_code code;
8668 op0 = find_replacement (&XEXP (in, 0));
8669 op1 = find_replacement (&XEXP (in, 1));
8671 /* Since constraint checking is strict, commutativity won't be
8672 checked, so we need to do that here to avoid spurious failure
8673 if the add instruction is two-address and the second operand
8674 of the add is the same as the reload reg, which is frequently
8675 the case. If the insn would be A = B + A, rearrange it so
8676 it will be A = A + B as constrain_operands expects. */
8678 if (REG_P (XEXP (in, 1))
8679 && REGNO (out) == REGNO (XEXP (in, 1)))
8680 tem = op0, op0 = op1, op1 = tem;
8682 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8683 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8685 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8686 if (insn)
8687 return insn;
8689 /* If that failed, we must use a conservative two-insn sequence.
8691 Use a move to copy one operand into the reload register. Prefer
8692 to reload a constant, MEM or pseudo since the move patterns can
8693 handle an arbitrary operand. If OP1 is not a constant, MEM or
8694 pseudo and OP1 is not a valid operand for an add instruction, then
8695 reload OP1.
8697 After reloading one of the operands into the reload register, add
8698 the reload register to the output register.
8700 If there is another way to do this for a specific machine, a
8701 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8702 we emit below. */
8704 code = optab_handler (add_optab, GET_MODE (out));
8706 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8707 || (REG_P (op1)
8708 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8709 || (code != CODE_FOR_nothing
8710 && !insn_operand_matches (code, 2, op1)))
8711 tem = op0, op0 = op1, op1 = tem;
8713 gen_reload (out, op0, opnum, type);
8715 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8716 This fixes a problem on the 32K where the stack pointer cannot
8717 be used as an operand of an add insn. */
8719 if (rtx_equal_p (op0, op1))
8720 op1 = out;
8722 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8723 if (insn)
8725 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8726 set_dst_reg_note (insn, REG_EQUIV, in, out);
8727 return insn;
8730 /* If that failed, copy the address register to the reload register.
8731 Then add the constant to the reload register. */
8733 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8734 gen_reload (out, op1, opnum, type);
8735 insn = emit_insn (gen_add2_insn (out, op0));
8736 set_dst_reg_note (insn, REG_EQUIV, in, out);
8739 #ifdef SECONDARY_MEMORY_NEEDED
8740 /* If we need a memory location to do the move, do it that way. */
8741 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8742 (REG_P (tem1) && REG_P (tem2)))
8743 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8744 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8745 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8746 REGNO_REG_CLASS (REGNO (tem2)),
8747 GET_MODE (out)))
8749 /* Get the memory to use and rewrite both registers to its mode. */
8750 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8752 if (GET_MODE (loc) != GET_MODE (out))
8753 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8755 if (GET_MODE (loc) != GET_MODE (in))
8756 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8758 gen_reload (loc, in, opnum, type);
8759 gen_reload (out, loc, opnum, type);
8761 #endif
8762 else if (REG_P (out) && UNARY_P (in))
8764 rtx insn;
8765 rtx op1;
8766 rtx out_moded;
8767 rtx_insn *set;
8769 op1 = find_replacement (&XEXP (in, 0));
8770 if (op1 != XEXP (in, 0))
8771 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8773 /* First, try a plain SET. */
8774 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8775 if (set)
8776 return set;
8778 /* If that failed, move the inner operand to the reload
8779 register, and try the same unop with the inner expression
8780 replaced with the reload register. */
8782 if (GET_MODE (op1) != GET_MODE (out))
8783 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8784 else
8785 out_moded = out;
8787 gen_reload (out_moded, op1, opnum, type);
8789 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8790 out_moded));
8791 insn = emit_insn_if_valid_for_reload (insn);
8792 if (insn)
8794 set_unique_reg_note (insn, REG_EQUIV, in);
8795 return as_a <rtx_insn *> (insn);
8798 fatal_insn ("failure trying to reload:", set);
8800 /* If IN is a simple operand, use gen_move_insn. */
8801 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8803 tem = emit_insn (gen_move_insn (out, in));
8804 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8805 mark_jump_label (in, tem, 0);
8808 else if (targetm.have_reload_load_address ())
8809 emit_insn (targetm.gen_reload_load_address (out, in));
8811 /* Otherwise, just write (set OUT IN) and hope for the best. */
8812 else
8813 emit_insn (gen_rtx_SET (out, in));
8815 /* Return the first insn emitted.
8816 We can not just return get_last_insn, because there may have
8817 been multiple instructions emitted. Also note that gen_move_insn may
8818 emit more than one insn itself, so we can not assume that there is one
8819 insn emitted per emit_insn_before call. */
8821 return last ? NEXT_INSN (last) : get_insns ();
8824 /* Delete a previously made output-reload whose result we now believe
8825 is not needed. First we double-check.
8827 INSN is the insn now being processed.
8828 LAST_RELOAD_REG is the hard register number for which we want to delete
8829 the last output reload.
8830 J is the reload-number that originally used REG. The caller has made
8831 certain that reload J doesn't use REG any longer for input.
8832 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8834 static void
8835 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8836 rtx new_reload_reg)
8838 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8839 rtx reg = spill_reg_stored_to[last_reload_reg];
8840 int k;
8841 int n_occurrences;
8842 int n_inherited = 0;
8843 rtx substed;
8844 unsigned regno;
8845 int nregs;
8847 /* It is possible that this reload has been only used to set another reload
8848 we eliminated earlier and thus deleted this instruction too. */
8849 if (output_reload_insn->deleted ())
8850 return;
8852 /* Get the raw pseudo-register referred to. */
8854 while (GET_CODE (reg) == SUBREG)
8855 reg = SUBREG_REG (reg);
8856 substed = reg_equiv_memory_loc (REGNO (reg));
8858 /* This is unsafe if the operand occurs more often in the current
8859 insn than it is inherited. */
8860 for (k = n_reloads - 1; k >= 0; k--)
8862 rtx reg2 = rld[k].in;
8863 if (! reg2)
8864 continue;
8865 if (MEM_P (reg2) || reload_override_in[k])
8866 reg2 = rld[k].in_reg;
8868 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8869 reg2 = XEXP (rld[k].in_reg, 0);
8871 while (GET_CODE (reg2) == SUBREG)
8872 reg2 = SUBREG_REG (reg2);
8873 if (rtx_equal_p (reg2, reg))
8875 if (reload_inherited[k] || reload_override_in[k] || k == j)
8876 n_inherited++;
8877 else
8878 return;
8881 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8882 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8883 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8884 reg, 0);
8885 if (substed)
8886 n_occurrences += count_occurrences (PATTERN (insn),
8887 eliminate_regs (substed, VOIDmode,
8888 NULL_RTX), 0);
8889 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8891 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8892 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8894 if (n_occurrences > n_inherited)
8895 return;
8897 regno = REGNO (reg);
8898 if (regno >= FIRST_PSEUDO_REGISTER)
8899 nregs = 1;
8900 else
8901 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8903 /* If the pseudo-reg we are reloading is no longer referenced
8904 anywhere between the store into it and here,
8905 and we're within the same basic block, then the value can only
8906 pass through the reload reg and end up here.
8907 Otherwise, give up--return. */
8908 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8909 i1 != insn; i1 = NEXT_INSN (i1))
8911 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8912 return;
8913 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8914 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8916 /* If this is USE in front of INSN, we only have to check that
8917 there are no more references than accounted for by inheritance. */
8918 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8920 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8921 i1 = NEXT_INSN (i1);
8923 if (n_occurrences <= n_inherited && i1 == insn)
8924 break;
8925 return;
8929 /* We will be deleting the insn. Remove the spill reg information. */
8930 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8932 spill_reg_store[last_reload_reg + k] = 0;
8933 spill_reg_stored_to[last_reload_reg + k] = 0;
8936 /* The caller has already checked that REG dies or is set in INSN.
8937 It has also checked that we are optimizing, and thus some
8938 inaccuracies in the debugging information are acceptable.
8939 So we could just delete output_reload_insn. But in some cases
8940 we can improve the debugging information without sacrificing
8941 optimization - maybe even improving the code: See if the pseudo
8942 reg has been completely replaced with reload regs. If so, delete
8943 the store insn and forget we had a stack slot for the pseudo. */
8944 if (rld[j].out != rld[j].in
8945 && REG_N_DEATHS (REGNO (reg)) == 1
8946 && REG_N_SETS (REGNO (reg)) == 1
8947 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8948 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8950 rtx_insn *i2;
8952 /* We know that it was used only between here and the beginning of
8953 the current basic block. (We also know that the last use before
8954 INSN was the output reload we are thinking of deleting, but never
8955 mind that.) Search that range; see if any ref remains. */
8956 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8958 rtx set = single_set (i2);
8960 /* Uses which just store in the pseudo don't count,
8961 since if they are the only uses, they are dead. */
8962 if (set != 0 && SET_DEST (set) == reg)
8963 continue;
8964 if (LABEL_P (i2) || JUMP_P (i2))
8965 break;
8966 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8967 && reg_mentioned_p (reg, PATTERN (i2)))
8969 /* Some other ref remains; just delete the output reload we
8970 know to be dead. */
8971 delete_address_reloads (output_reload_insn, insn);
8972 delete_insn (output_reload_insn);
8973 return;
8977 /* Delete the now-dead stores into this pseudo. Note that this
8978 loop also takes care of deleting output_reload_insn. */
8979 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8981 rtx set = single_set (i2);
8983 if (set != 0 && SET_DEST (set) == reg)
8985 delete_address_reloads (i2, insn);
8986 delete_insn (i2);
8988 if (LABEL_P (i2) || JUMP_P (i2))
8989 break;
8992 /* For the debugging info, say the pseudo lives in this reload reg. */
8993 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8994 if (ira_conflicts_p)
8995 /* Inform IRA about the change. */
8996 ira_mark_allocation_change (REGNO (reg));
8997 alter_reg (REGNO (reg), -1, false);
8999 else
9001 delete_address_reloads (output_reload_insn, insn);
9002 delete_insn (output_reload_insn);
9006 /* We are going to delete DEAD_INSN. Recursively delete loads of
9007 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9008 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9009 static void
9010 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9012 rtx set = single_set (dead_insn);
9013 rtx set2, dst;
9014 rtx_insn *prev, *next;
9015 if (set)
9017 rtx dst = SET_DEST (set);
9018 if (MEM_P (dst))
9019 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9021 /* If we deleted the store from a reloaded post_{in,de}c expression,
9022 we can delete the matching adds. */
9023 prev = PREV_INSN (dead_insn);
9024 next = NEXT_INSN (dead_insn);
9025 if (! prev || ! next)
9026 return;
9027 set = single_set (next);
9028 set2 = single_set (prev);
9029 if (! set || ! set2
9030 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9031 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9032 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9033 return;
9034 dst = SET_DEST (set);
9035 if (! rtx_equal_p (dst, SET_DEST (set2))
9036 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9037 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9038 || (INTVAL (XEXP (SET_SRC (set), 1))
9039 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9040 return;
9041 delete_related_insns (prev);
9042 delete_related_insns (next);
9045 /* Subfunction of delete_address_reloads: process registers found in X. */
9046 static void
9047 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9049 rtx_insn *prev, *i2;
9050 rtx set, dst;
9051 int i, j;
9052 enum rtx_code code = GET_CODE (x);
9054 if (code != REG)
9056 const char *fmt = GET_RTX_FORMAT (code);
9057 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9059 if (fmt[i] == 'e')
9060 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9061 else if (fmt[i] == 'E')
9063 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9064 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9065 current_insn);
9068 return;
9071 if (spill_reg_order[REGNO (x)] < 0)
9072 return;
9074 /* Scan backwards for the insn that sets x. This might be a way back due
9075 to inheritance. */
9076 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9078 code = GET_CODE (prev);
9079 if (code == CODE_LABEL || code == JUMP_INSN)
9080 return;
9081 if (!INSN_P (prev))
9082 continue;
9083 if (reg_set_p (x, PATTERN (prev)))
9084 break;
9085 if (reg_referenced_p (x, PATTERN (prev)))
9086 return;
9088 if (! prev || INSN_UID (prev) < reload_first_uid)
9089 return;
9090 /* Check that PREV only sets the reload register. */
9091 set = single_set (prev);
9092 if (! set)
9093 return;
9094 dst = SET_DEST (set);
9095 if (!REG_P (dst)
9096 || ! rtx_equal_p (dst, x))
9097 return;
9098 if (! reg_set_p (dst, PATTERN (dead_insn)))
9100 /* Check if DST was used in a later insn -
9101 it might have been inherited. */
9102 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9104 if (LABEL_P (i2))
9105 break;
9106 if (! INSN_P (i2))
9107 continue;
9108 if (reg_referenced_p (dst, PATTERN (i2)))
9110 /* If there is a reference to the register in the current insn,
9111 it might be loaded in a non-inherited reload. If no other
9112 reload uses it, that means the register is set before
9113 referenced. */
9114 if (i2 == current_insn)
9116 for (j = n_reloads - 1; j >= 0; j--)
9117 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9118 || reload_override_in[j] == dst)
9119 return;
9120 for (j = n_reloads - 1; j >= 0; j--)
9121 if (rld[j].in && rld[j].reg_rtx == dst)
9122 break;
9123 if (j >= 0)
9124 break;
9126 return;
9128 if (JUMP_P (i2))
9129 break;
9130 /* If DST is still live at CURRENT_INSN, check if it is used for
9131 any reload. Note that even if CURRENT_INSN sets DST, we still
9132 have to check the reloads. */
9133 if (i2 == current_insn)
9135 for (j = n_reloads - 1; j >= 0; j--)
9136 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9137 || reload_override_in[j] == dst)
9138 return;
9139 /* ??? We can't finish the loop here, because dst might be
9140 allocated to a pseudo in this block if no reload in this
9141 block needs any of the classes containing DST - see
9142 spill_hard_reg. There is no easy way to tell this, so we
9143 have to scan till the end of the basic block. */
9145 if (reg_set_p (dst, PATTERN (i2)))
9146 break;
9149 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9150 reg_reloaded_contents[REGNO (dst)] = -1;
9151 delete_insn (prev);
9154 /* Output reload-insns to reload VALUE into RELOADREG.
9155 VALUE is an autoincrement or autodecrement RTX whose operand
9156 is a register or memory location;
9157 so reloading involves incrementing that location.
9158 IN is either identical to VALUE, or some cheaper place to reload from.
9160 INC_AMOUNT is the number to increment or decrement by (always positive).
9161 This cannot be deduced from VALUE. */
9163 static void
9164 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9166 /* REG or MEM to be copied and incremented. */
9167 rtx incloc = find_replacement (&XEXP (value, 0));
9168 /* Nonzero if increment after copying. */
9169 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9170 || GET_CODE (value) == POST_MODIFY);
9171 rtx_insn *last;
9172 rtx inc;
9173 rtx_insn *add_insn;
9174 int code;
9175 rtx real_in = in == value ? incloc : in;
9177 /* No hard register is equivalent to this register after
9178 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9179 we could inc/dec that register as well (maybe even using it for
9180 the source), but I'm not sure it's worth worrying about. */
9181 if (REG_P (incloc))
9182 reg_last_reload_reg[REGNO (incloc)] = 0;
9184 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9186 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9187 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9189 else
9191 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9192 inc_amount = -inc_amount;
9194 inc = GEN_INT (inc_amount);
9197 /* If this is post-increment, first copy the location to the reload reg. */
9198 if (post && real_in != reloadreg)
9199 emit_insn (gen_move_insn (reloadreg, real_in));
9201 if (in == value)
9203 /* See if we can directly increment INCLOC. Use a method similar to
9204 that in gen_reload. */
9206 last = get_last_insn ();
9207 add_insn = emit_insn (gen_rtx_SET (incloc,
9208 gen_rtx_PLUS (GET_MODE (incloc),
9209 incloc, inc)));
9211 code = recog_memoized (add_insn);
9212 if (code >= 0)
9214 extract_insn (add_insn);
9215 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9217 /* If this is a pre-increment and we have incremented the value
9218 where it lives, copy the incremented value to RELOADREG to
9219 be used as an address. */
9221 if (! post)
9222 emit_insn (gen_move_insn (reloadreg, incloc));
9223 return;
9226 delete_insns_since (last);
9229 /* If couldn't do the increment directly, must increment in RELOADREG.
9230 The way we do this depends on whether this is pre- or post-increment.
9231 For pre-increment, copy INCLOC to the reload register, increment it
9232 there, then save back. */
9234 if (! post)
9236 if (in != reloadreg)
9237 emit_insn (gen_move_insn (reloadreg, real_in));
9238 emit_insn (gen_add2_insn (reloadreg, inc));
9239 emit_insn (gen_move_insn (incloc, reloadreg));
9241 else
9243 /* Postincrement.
9244 Because this might be a jump insn or a compare, and because RELOADREG
9245 may not be available after the insn in an input reload, we must do
9246 the incrementation before the insn being reloaded for.
9248 We have already copied IN to RELOADREG. Increment the copy in
9249 RELOADREG, save that back, then decrement RELOADREG so it has
9250 the original value. */
9252 emit_insn (gen_add2_insn (reloadreg, inc));
9253 emit_insn (gen_move_insn (incloc, reloadreg));
9254 if (CONST_INT_P (inc))
9255 emit_insn (gen_add2_insn (reloadreg,
9256 gen_int_mode (-INTVAL (inc),
9257 GET_MODE (reloadreg))));
9258 else
9259 emit_insn (gen_sub2_insn (reloadreg, inc));
9263 static void
9264 add_auto_inc_notes (rtx_insn *insn, rtx x)
9266 enum rtx_code code = GET_CODE (x);
9267 const char *fmt;
9268 int i, j;
9270 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9272 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9273 return;
9276 /* Scan all the operand sub-expressions. */
9277 fmt = GET_RTX_FORMAT (code);
9278 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9280 if (fmt[i] == 'e')
9281 add_auto_inc_notes (insn, XEXP (x, i));
9282 else if (fmt[i] == 'E')
9283 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9284 add_auto_inc_notes (insn, XVECEXP (x, i, j));