1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
62 #include "hard-reg-set.h"
69 #include "basic-block.h"
73 #include "cfglayout.h"
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
84 #ifdef DBX_DEBUGGING_INFO
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
111 #define HAVE_READONLY_DATA_SECTION 0
114 /* Bitflags used by final_scan_insn. */
117 #define SEEN_EMITTED 4
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn
;
121 rtx current_output_insn
;
123 /* Line number of last NOTE. */
124 static int last_linenum
;
126 /* Highest line number in current block. */
127 static int high_block_linenum
;
129 /* Likewise for function. */
130 static int high_function_linenum
;
132 /* Filename of last NOTE. */
133 static const char *last_filename
;
135 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands
;
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands
;
145 /* Compare optimization flag. */
147 static rtx last_ignored_compare
= 0;
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
152 static int insn_counter
= 0;
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
164 CC_STATUS cc_prev_status
;
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
176 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
182 char regs_asm_clobbered
[FIRST_PSEUDO_REGISTER
];
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
188 int frame_pointer_needed
;
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192 static int block_depth
;
194 /* Nonzero if have enabled APP processing of our assembler output. */
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
203 #ifdef ASSEMBLER_DIALECT
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number
;
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate
;
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx
);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx
);
220 static rtx
walk_alter_subreg (rtx
*);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx
);
223 static tree
get_mem_expr_from_op (rtx
, int *);
224 static void output_asm_operand_names (rtx
*, int *, int);
225 static void output_operand (rtx
, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx
);
230 static int alter_cond (rtx
);
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx
);
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx
, rtx
, int, unsigned);
239 /* Initialize data in final at the beginning of a compilation. */
242 init_final (const char *filename ATTRIBUTE_UNUSED
)
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number
= ASSEMBLER_DIALECT
;
252 /* Default target function prologue and epilogue assembler output.
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
262 /* Default target hook that outputs nothing to a stream. */
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
276 fputs (ASM_APP_ON
, asm_out_file
);
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
289 fputs (ASM_APP_OFF
, asm_out_file
);
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
300 dbr_sequence_length (void)
302 if (final_sequence
!= 0)
303 return XVECLEN (final_sequence
, 0) - 1;
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
315 static int *insn_lengths
;
317 varray_type insn_addresses_
;
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid
;
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address
;
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address
;
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align
;
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
340 struct label_alignment
346 static rtx
*uid_align
;
347 static int *uid_shuid
;
348 static struct label_alignment
*label_align
;
350 /* Indicate that branch shortening hasn't yet been done. */
353 init_insn_lengths (void)
364 insn_lengths_max_uid
= 0;
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED
)
382 #ifdef HAVE_ATTR_length
387 if (insn_lengths_max_uid
> INSN_UID (insn
))
388 return insn_lengths
[INSN_UID (insn
)];
390 switch (GET_CODE (insn
))
398 length
= insn_default_length (insn
);
402 body
= PATTERN (insn
);
403 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
405 /* Alignment is machine-dependent and should be handled by
409 length
= insn_default_length (insn
);
413 body
= PATTERN (insn
);
414 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
417 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
418 length
= asm_insn_count (body
) * insn_default_length (insn
);
419 else if (GET_CODE (body
) == SEQUENCE
)
420 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
421 length
+= get_attr_length (XVECEXP (body
, 0, i
));
423 length
= insn_default_length (insn
);
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn
, length
);
434 #else /* not HAVE_ATTR_length */
436 #endif /* not HAVE_ATTR_length */
439 /* Code to handle alignment inside shorten_branches. */
441 /* Here is an explanation how the algorithm in align_fuzz can give
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
453 Likewise with the next alignment-delimited block following X, which we
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
459 The estimated padding is then OX - IX.
461 OX can be safely estimated as
466 OX = round_up(IX, X) + Y - X
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
481 #define LABEL_ALIGN(LABEL) align_labels_log
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
489 #define LOOP_ALIGN(LABEL) align_loops_log
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
505 #define JUMP_ALIGN(LABEL) align_jumps_log
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
512 #ifndef ADDR_VEC_ALIGN
514 final_addr_vec_align (rtx addr_vec
)
516 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
518 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
519 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
520 return exact_log2 (align
);
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533 static int min_labelno
, max_labelno
;
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541 /* For the benefit of port specific code do this also as a function. */
544 label_to_alignment (rtx label
)
546 return LABEL_TO_ALIGNMENT (label
);
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
579 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
581 int uid
= INSN_UID (start
);
583 int known_align
= 1 << known_align_log
;
584 int end_shuid
= INSN_SHUID (end
);
587 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
589 int align_addr
, new_align
;
591 uid
= INSN_UID (align_label
);
592 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
593 if (uid_shuid
[uid
] > end_shuid
)
595 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
596 new_align
= 1 << known_align_log
;
597 if (new_align
< known_align
)
599 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
600 known_align
= new_align
;
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
618 insn_current_reference_address (rtx branch
)
623 if (! INSN_ADDRESSES_SET_P ())
626 seq
= NEXT_INSN (PREV_INSN (branch
));
627 seq_uid
= INSN_UID (seq
);
628 if (!JUMP_P (branch
))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address
;
635 dest
= JUMP_LABEL (branch
);
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
641 /* Forward branch. */
642 return (insn_last_address
+ insn_lengths
[seq_uid
]
643 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
652 #endif /* HAVE_ATTR_length */
655 compute_alignments (void)
657 int log
, max_skip
, max_log
;
666 max_labelno
= max_label_num ();
667 min_labelno
= get_first_label_num ();
668 label_align
= xcalloc (max_labelno
- min_labelno
+ 1,
669 sizeof (struct label_alignment
));
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize
|| optimize_size
)
677 rtx label
= BB_HEAD (bb
);
678 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
682 || probably_never_executed_bb_p (bb
))
684 max_log
= LABEL_ALIGN (label
);
685 max_skip
= LABEL_ALIGN_MAX_SKIP
;
687 FOR_EACH_EDGE (e
, bb
->preds
)
689 if (e
->flags
& EDGE_FALLTHRU
)
690 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
692 branch_frequency
+= EDGE_FREQUENCY (e
);
696 /* There are two purposes to align block with no fallthru incoming edge:
697 1) to avoid fetch stalls when branch destination is near cache boundary
698 2) to improve cache efficiency in case the previous block is not executed
699 (so it does not need to be in the cache).
701 We to catch first case, we align frequently executed blocks.
702 To catch the second, we align blocks that are executed more frequently
703 than the predecessor and the predecessor is likely to not be executed
704 when function is called. */
707 && (branch_frequency
> BB_FREQ_MAX
/ 10
708 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
709 && (bb
->prev_bb
->frequency
710 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
712 log
= JUMP_ALIGN (label
);
716 max_skip
= JUMP_ALIGN_MAX_SKIP
;
719 /* In case block is frequent and reached mostly by non-fallthru edge,
720 align it. It is most likely a first block of loop. */
722 && maybe_hot_bb_p (bb
)
723 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
724 && branch_frequency
> fallthru_frequency
* 2)
726 log
= LOOP_ALIGN (label
);
730 max_skip
= LOOP_ALIGN_MAX_SKIP
;
733 LABEL_TO_ALIGNMENT (label
) = max_log
;
734 LABEL_TO_MAX_SKIP (label
) = max_skip
;
738 /* Make a pass over all insns and compute their actual lengths by shortening
739 any branches of variable length if possible. */
741 /* shorten_branches might be called multiple times: for example, the SH
742 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
743 In order to do this, it needs proper length information, which it obtains
744 by calling shorten_branches. This cannot be collapsed with
745 shorten_branches itself into a single pass unless we also want to integrate
746 reorg.c, since the branch splitting exposes new instructions with delay
750 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
757 #ifdef HAVE_ATTR_length
758 #define MAX_CODE_ALIGN 16
760 int something_changed
= 1;
761 char *varying_length
;
764 rtx align_tab
[MAX_CODE_ALIGN
];
768 /* Compute maximum UID and allocate label_align / uid_shuid. */
769 max_uid
= get_max_uid ();
771 /* Free uid_shuid before reallocating it. */
774 uid_shuid
= xmalloc (max_uid
* sizeof *uid_shuid
);
776 if (max_labelno
!= max_label_num ())
778 int old
= max_labelno
;
782 max_labelno
= max_label_num ();
784 n_labels
= max_labelno
- min_labelno
+ 1;
785 n_old_labels
= old
- min_labelno
+ 1;
787 label_align
= xrealloc (label_align
,
788 n_labels
* sizeof (struct label_alignment
));
790 /* Range of labels grows monotonically in the function. Abort here
791 means that the initialization of array got lost. */
792 if (n_old_labels
> n_labels
)
795 memset (label_align
+ n_old_labels
, 0,
796 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
808 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
812 INSN_SHUID (insn
) = i
++;
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
821 else if (LABEL_P (insn
))
825 /* Merge in alignments computed by compute_alignments. */
826 log
= LABEL_TO_ALIGNMENT (insn
);
830 max_skip
= LABEL_TO_MAX_SKIP (insn
);
833 log
= LABEL_ALIGN (insn
);
837 max_skip
= LABEL_ALIGN_MAX_SKIP
;
839 next
= NEXT_INSN (insn
);
840 /* ADDR_VECs only take room if read-only data goes into the text
842 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
843 if (next
&& JUMP_P (next
))
845 rtx nextbody
= PATTERN (next
);
846 if (GET_CODE (nextbody
) == ADDR_VEC
847 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
849 log
= ADDR_VEC_ALIGN (next
);
853 max_skip
= LABEL_ALIGN_MAX_SKIP
;
857 LABEL_TO_ALIGNMENT (insn
) = max_log
;
858 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
862 else if (BARRIER_P (insn
))
866 for (label
= insn
; label
&& ! INSN_P (label
);
867 label
= NEXT_INSN (label
))
870 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
874 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
880 #ifdef HAVE_ATTR_length
882 /* Allocate the rest of the arrays. */
883 insn_lengths
= xmalloc (max_uid
* sizeof (*insn_lengths
));
884 insn_lengths_max_uid
= max_uid
;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid
);
889 varying_length
= xcalloc (max_uid
, sizeof (char));
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
896 uid_align
= xcalloc (max_uid
, sizeof *uid_align
);
898 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
899 align_tab
[i
] = NULL_RTX
;
900 seq
= get_last_insn ();
901 for (; seq
; seq
= PREV_INSN (seq
))
903 int uid
= INSN_UID (seq
);
905 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
906 uid_align
[uid
] = align_tab
[0];
909 /* Found an alignment label. */
910 uid_align
[uid
] = align_tab
[log
];
911 for (i
= log
- 1; i
>= 0; i
--)
915 #ifdef CASE_VECTOR_SHORTEN_MODE
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
921 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
922 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
925 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
927 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
928 int len
, i
, min
, max
, insn_shuid
;
930 addr_diff_vec_flags flags
;
933 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
935 pat
= PATTERN (insn
);
936 len
= XVECLEN (pat
, 1);
939 min_align
= MAX_CODE_ALIGN
;
940 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
942 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
943 int shuid
= INSN_SHUID (lab
);
954 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
955 min_align
= LABEL_TO_ALIGNMENT (lab
);
957 XEXP (pat
, 2) = gen_rtx_LABEL_REF (VOIDmode
, min_lab
);
958 XEXP (pat
, 3) = gen_rtx_LABEL_REF (VOIDmode
, max_lab
);
959 insn_shuid
= INSN_SHUID (insn
);
960 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
961 flags
.min_align
= min_align
;
962 flags
.base_after_vec
= rel
> insn_shuid
;
963 flags
.min_after_vec
= min
> insn_shuid
;
964 flags
.max_after_vec
= max
> insn_shuid
;
965 flags
.min_after_base
= min
> rel
;
966 flags
.max_after_base
= max
> rel
;
967 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address
= 0, insn
= first
;
975 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
977 uid
= INSN_UID (insn
);
979 insn_lengths
[uid
] = 0;
983 int log
= LABEL_TO_ALIGNMENT (insn
);
986 int align
= 1 << log
;
987 int new_address
= (insn_current_address
+ align
- 1) & -align
;
988 insn_lengths
[uid
] = new_address
- insn_current_address
;
992 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
994 if (NOTE_P (insn
) || BARRIER_P (insn
)
997 if (INSN_DELETED_P (insn
))
1000 body
= PATTERN (insn
);
1001 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1003 /* This only takes room if read-only data goes into the text
1005 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1006 insn_lengths
[uid
] = (XVECLEN (body
,
1007 GET_CODE (body
) == ADDR_DIFF_VEC
)
1008 * GET_MODE_SIZE (GET_MODE (body
)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1011 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1012 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1013 else if (GET_CODE (body
) == SEQUENCE
)
1016 int const_delay_slots
;
1018 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1020 const_delay_slots
= 0;
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1025 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1027 rtx inner_insn
= XVECEXP (body
, 0, i
);
1028 int inner_uid
= INSN_UID (inner_insn
);
1031 if (GET_CODE (body
) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1033 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1034 * insn_default_length (inner_insn
));
1036 inner_length
= insn_default_length (inner_insn
);
1038 insn_lengths
[inner_uid
] = inner_length
;
1039 if (const_delay_slots
)
1041 if ((varying_length
[inner_uid
]
1042 = insn_variable_length_p (inner_insn
)) != 0)
1043 varying_length
[uid
] = 1;
1044 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1045 + insn_lengths
[uid
]);
1048 varying_length
[inner_uid
] = 0;
1049 insn_lengths
[uid
] += inner_length
;
1052 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1054 insn_lengths
[uid
] = insn_default_length (insn
);
1055 varying_length
[uid
] = insn_variable_length_p (insn
);
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1061 if (insn_lengths
[uid
] < 0)
1062 fatal_insn ("negative insn length", insn
);
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1070 while (something_changed
)
1072 something_changed
= 0;
1073 insn_current_align
= MAX_CODE_ALIGN
- 1;
1074 for (insn_current_address
= 0, insn
= first
;
1076 insn
= NEXT_INSN (insn
))
1079 #ifdef ADJUST_INSN_LENGTH
1084 uid
= INSN_UID (insn
);
1088 int log
= LABEL_TO_ALIGNMENT (insn
);
1089 if (log
> insn_current_align
)
1091 int align
= 1 << log
;
1092 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1093 insn_lengths
[uid
] = new_address
- insn_current_address
;
1094 insn_current_align
= log
;
1095 insn_current_address
= new_address
;
1098 insn_lengths
[uid
] = 0;
1099 INSN_ADDRESSES (uid
) = insn_current_address
;
1103 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1104 if (length_align
< insn_current_align
)
1105 insn_current_align
= length_align
;
1107 insn_last_address
= INSN_ADDRESSES (uid
);
1108 INSN_ADDRESSES (uid
) = insn_current_address
;
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize
&& JUMP_P (insn
)
1112 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1114 rtx body
= PATTERN (insn
);
1115 int old_length
= insn_lengths
[uid
];
1116 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1117 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1118 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1119 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1120 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1121 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1124 addr_diff_vec_flags flags
;
1126 /* Avoid automatic aggregate initialization. */
1127 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev
= rel_lab
;
1132 && ! insn_lengths
[INSN_UID (prev
)]
1133 && ! (varying_length
[INSN_UID (prev
)] & 1);
1134 prev
= PREV_INSN (prev
))
1135 if (varying_length
[INSN_UID (prev
)] & 2)
1137 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags
.base_after_vec
)
1147 rel_addr
+= insn_current_address
- insn_last_address
;
1148 if (flags
.min_after_vec
)
1149 min_addr
+= insn_current_address
- insn_last_address
;
1150 if (flags
.max_after_vec
)
1151 max_addr
+= insn_current_address
- insn_last_address
;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1157 if (flags
.min_after_base
)
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1165 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1166 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1169 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1173 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1175 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1176 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1179 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags
.max_after_base
)
1185 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1187 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1188 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1191 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1195 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1197 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1198 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1201 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1203 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1204 max_addr
- rel_addr
,
1206 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1209 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1210 insn_current_address
+= insn_lengths
[uid
];
1211 if (insn_lengths
[uid
] != old_length
)
1212 something_changed
= 1;
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1219 if (! (varying_length
[uid
]))
1221 if (NONJUMP_INSN_P (insn
)
1222 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1226 body
= PATTERN (insn
);
1227 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1229 rtx inner_insn
= XVECEXP (body
, 0, i
);
1230 int inner_uid
= INSN_UID (inner_insn
);
1232 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1234 insn_current_address
+= insn_lengths
[inner_uid
];
1238 insn_current_address
+= insn_lengths
[uid
];
1243 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1247 body
= PATTERN (insn
);
1249 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1251 rtx inner_insn
= XVECEXP (body
, 0, i
);
1252 int inner_uid
= INSN_UID (inner_insn
);
1255 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length
[inner_uid
])
1260 inner_length
= insn_lengths
[inner_uid
];
1262 inner_length
= insn_current_length (inner_insn
);
1264 if (inner_length
!= insn_lengths
[inner_uid
])
1266 insn_lengths
[inner_uid
] = inner_length
;
1267 something_changed
= 1;
1269 insn_current_address
+= insn_lengths
[inner_uid
];
1270 new_length
+= inner_length
;
1275 new_length
= insn_current_length (insn
);
1276 insn_current_address
+= new_length
;
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length
= new_length
;
1282 ADJUST_INSN_LENGTH (insn
, new_length
);
1283 insn_current_address
+= (new_length
- tmp_length
);
1286 if (new_length
!= insn_lengths
[uid
])
1288 insn_lengths
[uid
] = new_length
;
1289 something_changed
= 1;
1292 /* For a non-optimizing compile, do only a single pass. */
1297 free (varying_length
);
1299 #endif /* HAVE_ATTR_length */
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1308 asm_insn_count (rtx body
)
1310 const char *template;
1313 if (GET_CODE (body
) == ASM_INPUT
)
1314 template = XSTR (body
, 0);
1316 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1326 /* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1337 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1338 int optimize ATTRIBUTE_UNUSED
)
1342 this_is_asm_operands
= 0;
1344 last_filename
= locator_file (prologue_locator
);
1345 last_linenum
= locator_line (prologue_locator
);
1347 high_block_linenum
= high_function_linenum
= last_linenum
;
1349 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1351 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1352 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1353 dwarf2out_begin_prologue (0, NULL
);
1356 #ifdef LEAF_REG_REMAP
1357 if (current_function_uses_only_leaf_regs
)
1358 leaf_renumber_regs (first
);
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363 #ifdef PROFILE_BEFORE_PROLOGUE
1364 if (current_function_profile
)
1365 profile_function (file
);
1366 #endif /* PROFILE_BEFORE_PROLOGUE */
1368 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
1370 dwarf2out_frame_debug (NULL_RTX
);
1373 /* If debugging, assign block numbers to all of the blocks in this
1377 remove_unnecessary_notes ();
1378 reemit_insn_block_notes ();
1379 number_blocks (current_function_decl
);
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1386 /* First output the function prologue: code to set up the stack frame. */
1387 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391 #ifdef HAVE_prologue
1392 if (! HAVE_prologue
)
1394 profile_after_prologue (file
);
1398 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1400 #ifndef PROFILE_BEFORE_PROLOGUE
1401 if (current_function_profile
)
1402 profile_function (file
);
1403 #endif /* not PROFILE_BEFORE_PROLOGUE */
1407 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1409 #ifndef NO_PROFILE_COUNTERS
1410 # define NO_PROFILE_COUNTERS 0
1412 #if defined(ASM_OUTPUT_REG_PUSH)
1413 int sval
= current_function_returns_struct
;
1414 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1415 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1416 int cxt
= cfun
->static_chain_decl
!= NULL
;
1418 #endif /* ASM_OUTPUT_REG_PUSH */
1420 if (! NO_PROFILE_COUNTERS
)
1422 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1424 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1425 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1426 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1429 function_section (current_function_decl
);
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1433 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1436 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1438 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1440 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1443 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1448 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1450 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1452 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1454 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1457 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1462 #if defined(ASM_OUTPUT_REG_PUSH)
1463 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1464 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1468 /* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1473 final_end_function (void)
1477 (*debug_hooks
->end_function
) (high_function_linenum
);
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
1481 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1483 /* And debug output. */
1484 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1486 #if defined (DWARF2_UNWIND_INFO)
1487 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
1489 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1493 /* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above.
1496 PRESCAN is 1 if we are not really outputting,
1497 just scanning as if we were outputting.
1498 Prescanning deletes and rearranges insns just like ordinary output.
1499 PRESCAN is -2 if we are outputting after having prescanned.
1500 In this case, don't try to delete or rearrange insns
1501 because that has already been done.
1502 Prescanning is done only on certain machines. */
1505 final (rtx first
, FILE *file
, int optimize
, int prescan
)
1511 last_ignored_compare
= 0;
1513 #ifdef SDB_DEBUGGING_INFO
1514 /* When producing SDB debugging info, delete troublesome line number
1515 notes from inlined functions in other files as well as duplicate
1516 line number notes. */
1517 if (write_symbols
== SDB_DEBUG
)
1520 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1521 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
1524 #ifdef USE_MAPPED_LOCATION
1525 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last
)
1527 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1528 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)
1532 delete_insn (insn
); /* Use delete_note. */
1540 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1542 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1543 max_uid
= INSN_UID (insn
);
1545 /* If CC tracking across branches is enabled, record the insn which
1546 jumps to each branch only reached from one place. */
1547 if (optimize
&& JUMP_P (insn
))
1549 rtx lab
= JUMP_LABEL (insn
);
1550 if (lab
&& LABEL_NUSES (lab
) == 1)
1552 LABEL_REFS (lab
) = insn
;
1562 /* Output the insns. */
1563 for (insn
= NEXT_INSN (first
); insn
;)
1565 #ifdef HAVE_ATTR_length
1566 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1568 /* This can be triggered by bugs elsewhere in the compiler if
1569 new insns are created after init_insn_lengths is called. */
1571 insn_current_address
= -1;
1576 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1577 #endif /* HAVE_ATTR_length */
1579 insn
= final_scan_insn (insn
, file
, optimize
, prescan
, 0, &seen
);
1584 get_insn_template (int code
, rtx insn
)
1586 switch (insn_data
[code
].output_format
)
1588 case INSN_OUTPUT_FORMAT_SINGLE
:
1589 return insn_data
[code
].output
.single
;
1590 case INSN_OUTPUT_FORMAT_MULTI
:
1591 return insn_data
[code
].output
.multi
[which_alternative
];
1592 case INSN_OUTPUT_FORMAT_FUNCTION
:
1595 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1602 /* Emit the appropriate declaration for an alternate-entry-point
1603 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1604 LABEL_KIND != LABEL_NORMAL.
1606 The case fall-through in this function is intentional. */
1608 output_alternate_entry_point (FILE *file
, rtx insn
)
1610 const char *name
= LABEL_NAME (insn
);
1612 switch (LABEL_KIND (insn
))
1614 case LABEL_WEAK_ENTRY
:
1615 #ifdef ASM_WEAKEN_LABEL
1616 ASM_WEAKEN_LABEL (file
, name
);
1618 case LABEL_GLOBAL_ENTRY
:
1619 targetm
.asm_out
.globalize_label (file
, name
);
1620 case LABEL_STATIC_ENTRY
:
1621 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1622 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1624 ASM_OUTPUT_LABEL (file
, name
);
1633 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1634 note in the instruction chain (going forward) between the current
1635 instruction, and the next 'executable' instruction. */
1638 scan_ahead_for_unlikely_executed_note (rtx insn
)
1641 int bb_note_count
= 0;
1643 for (temp
= insn
; temp
; temp
= NEXT_INSN (temp
))
1646 && NOTE_LINE_NUMBER (temp
) == NOTE_INSN_UNLIKELY_EXECUTED_CODE
)
1649 && NOTE_LINE_NUMBER (temp
) == NOTE_INSN_BASIC_BLOCK
)
1652 if (bb_note_count
> 1)
1662 /* The final scan for one insn, INSN.
1663 Args are same as in `final', except that INSN
1664 is the insn being scanned.
1665 Value returned is the next insn to be scanned.
1667 NOPEEPHOLES is the flag to disallow peephole processing (currently
1668 used for within delayed branch sequence output).
1670 SEEN is used to track the end of the prologue, for emitting
1671 debug information. We force the emission of a line note after
1672 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1673 at the beginning of the second basic block, whichever comes
1677 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1678 int prescan
, int nopeepholes ATTRIBUTE_UNUSED
,
1687 /* Ignore deleted insns. These can occur when we split insns (due to a
1688 template of "#") while not optimizing. */
1689 if (INSN_DELETED_P (insn
))
1690 return NEXT_INSN (insn
);
1692 switch (GET_CODE (insn
))
1698 switch (NOTE_LINE_NUMBER (insn
))
1700 case NOTE_INSN_DELETED
:
1701 case NOTE_INSN_LOOP_BEG
:
1702 case NOTE_INSN_LOOP_END
:
1703 case NOTE_INSN_LOOP_CONT
:
1704 case NOTE_INSN_LOOP_VTOP
:
1705 case NOTE_INSN_FUNCTION_END
:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1707 case NOTE_INSN_EXPECTED_VALUE
:
1710 case NOTE_INSN_UNLIKELY_EXECUTED_CODE
:
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1717 unlikely_text_section ();
1720 case NOTE_INSN_BASIC_BLOCK
:
1722 /* If we are performing the optimization that partitions
1723 basic blocks into hot & cold sections of the .o file,
1724 then at the start of each new basic block, before
1725 beginning to write code for the basic block, we need to
1726 check to see whether the basic block belongs in the hot
1727 or cold section of the .o file, and change the section we
1728 are writing to appropriately. */
1730 if (flag_reorder_blocks_and_partition
1731 && in_unlikely_text_section()
1732 && !scan_ahead_for_unlikely_executed_note (insn
))
1735 #ifdef TARGET_UNWIND_INFO
1736 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1740 fprintf (asm_out_file
, "\t%s basic block %d\n",
1741 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1743 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1745 *seen
|= SEEN_EMITTED
;
1746 last_filename
= NULL
;
1753 case NOTE_INSN_EH_REGION_BEG
:
1754 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1755 NOTE_EH_HANDLER (insn
));
1758 case NOTE_INSN_EH_REGION_END
:
1759 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1760 NOTE_EH_HANDLER (insn
));
1763 case NOTE_INSN_PROLOGUE_END
:
1764 targetm
.asm_out
.function_end_prologue (file
);
1765 profile_after_prologue (file
);
1767 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1769 *seen
|= SEEN_EMITTED
;
1770 last_filename
= NULL
;
1777 case NOTE_INSN_EPILOGUE_BEG
:
1778 targetm
.asm_out
.function_begin_epilogue (file
);
1781 case NOTE_INSN_FUNCTION_BEG
:
1783 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1785 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1787 *seen
|= SEEN_EMITTED
;
1788 last_filename
= NULL
;
1795 case NOTE_INSN_BLOCK_BEG
:
1796 if (debug_info_level
== DINFO_LEVEL_NORMAL
1797 || debug_info_level
== DINFO_LEVEL_VERBOSE
1798 || write_symbols
== DWARF_DEBUG
1799 || write_symbols
== DWARF2_DEBUG
1800 || write_symbols
== VMS_AND_DWARF2_DEBUG
1801 || write_symbols
== VMS_DEBUG
)
1803 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1807 high_block_linenum
= last_linenum
;
1809 /* Output debugging info about the symbol-block beginning. */
1810 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1812 /* Mark this block as output. */
1813 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1817 case NOTE_INSN_BLOCK_END
:
1818 if (debug_info_level
== DINFO_LEVEL_NORMAL
1819 || debug_info_level
== DINFO_LEVEL_VERBOSE
1820 || write_symbols
== DWARF_DEBUG
1821 || write_symbols
== DWARF2_DEBUG
1822 || write_symbols
== VMS_AND_DWARF2_DEBUG
1823 || write_symbols
== VMS_DEBUG
)
1825 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1829 /* End of a symbol-block. */
1831 if (block_depth
< 0)
1834 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1838 case NOTE_INSN_DELETED_LABEL
:
1839 /* Emit the label. We may have deleted the CODE_LABEL because
1840 the label could be proved to be unreachable, though still
1841 referenced (in the form of having its address taken. */
1842 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1845 case NOTE_INSN_VAR_LOCATION
:
1846 (*debug_hooks
->var_location
) (insn
);
1853 if (NOTE_LINE_NUMBER (insn
) <= 0)
1860 #if defined (DWARF2_UNWIND_INFO)
1861 if (dwarf2out_do_frame ())
1862 dwarf2out_frame_debug (insn
);
1867 /* The target port might emit labels in the output function for
1868 some insn, e.g. sh.c output_branchy_insn. */
1869 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1871 int align
= LABEL_TO_ALIGNMENT (insn
);
1872 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1873 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1876 if (align
&& NEXT_INSN (insn
))
1878 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1879 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1881 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1882 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1884 ASM_OUTPUT_ALIGN (file
, align
);
1891 /* If this label is reached from only one place, set the condition
1892 codes from the instruction just before the branch. */
1894 /* Disabled because some insns set cc_status in the C output code
1895 and NOTICE_UPDATE_CC alone can set incorrect status. */
1896 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1898 rtx jump
= LABEL_REFS (insn
);
1899 rtx barrier
= prev_nonnote_insn (insn
);
1901 /* If the LABEL_REFS field of this label has been set to point
1902 at a branch, the predecessor of the branch is a regular
1903 insn, and that branch is the only way to reach this label,
1904 set the condition codes based on the branch and its
1906 if (barrier
&& BARRIER_P (barrier
)
1907 && jump
&& JUMP_P (jump
)
1908 && (prev
= prev_nonnote_insn (jump
))
1909 && NONJUMP_INSN_P (prev
))
1911 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1912 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1919 if (LABEL_NAME (insn
))
1920 (*debug_hooks
->label
) (insn
);
1922 /* If we are doing the optimization that partitions hot & cold
1923 basic blocks into separate sections of the .o file, we need
1924 to ensure the jump table ends up in the correct section... */
1926 if (flag_reorder_blocks_and_partition
)
1928 rtx tmp_table
, tmp_label
;
1930 && tablejump_p (NEXT_INSN (insn
), &tmp_label
, &tmp_table
))
1932 /* Do nothing; Do NOT change the current section. */
1934 else if (scan_ahead_for_unlikely_executed_note (insn
))
1935 unlikely_text_section ();
1938 if (in_unlikely_text_section ())
1945 fputs (ASM_APP_OFF
, file
);
1948 if (NEXT_INSN (insn
) != 0
1949 && JUMP_P (NEXT_INSN (insn
)))
1951 rtx nextbody
= PATTERN (NEXT_INSN (insn
));
1953 /* If this label is followed by a jump-table,
1954 make sure we put the label in the read-only section. Also
1955 possibly write the label and jump table together. */
1957 if (GET_CODE (nextbody
) == ADDR_VEC
1958 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1960 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1961 /* In this case, the case vector is being moved by the
1962 target, so don't output the label at all. Leave that
1963 to the back end macros. */
1965 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1969 readonly_data_section ();
1971 #ifdef ADDR_VEC_ALIGN
1972 log_align
= ADDR_VEC_ALIGN (NEXT_INSN (insn
));
1974 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1976 ASM_OUTPUT_ALIGN (file
, log_align
);
1979 function_section (current_function_decl
);
1981 #ifdef ASM_OUTPUT_CASE_LABEL
1982 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1985 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1991 if (LABEL_ALT_ENTRY_P (insn
))
1992 output_alternate_entry_point (file
, insn
);
1994 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1999 rtx body
= PATTERN (insn
);
2000 int insn_code_number
;
2001 const char *template;
2003 /* An INSN, JUMP_INSN or CALL_INSN.
2004 First check for special kinds that recog doesn't recognize. */
2006 if (GET_CODE (body
) == USE
/* These are just declarations. */
2007 || GET_CODE (body
) == CLOBBER
)
2012 /* If there is a REG_CC_SETTER note on this insn, it means that
2013 the setting of the condition code was done in the delay slot
2014 of the insn that branched here. So recover the cc status
2015 from the insn that set it. */
2017 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2020 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2021 cc_prev_status
= cc_status
;
2026 /* Detect insns that are really jump-tables
2027 and output them as such. */
2029 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2031 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2040 fputs (ASM_APP_OFF
, file
);
2044 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2045 if (GET_CODE (body
) == ADDR_VEC
)
2047 #ifdef ASM_OUTPUT_ADDR_VEC
2048 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2055 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2056 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2062 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2063 for (idx
= 0; idx
< vlen
; idx
++)
2065 if (GET_CODE (body
) == ADDR_VEC
)
2067 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2068 ASM_OUTPUT_ADDR_VEC_ELT
2069 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2076 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2077 ASM_OUTPUT_ADDR_DIFF_ELT
2080 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2081 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2087 #ifdef ASM_OUTPUT_CASE_END
2088 ASM_OUTPUT_CASE_END (file
,
2089 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2094 function_section (current_function_decl
);
2098 /* Output this line note if it is the first or the last line
2100 if (notice_source_line (insn
))
2102 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2105 if (GET_CODE (body
) == ASM_INPUT
)
2107 const char *string
= XSTR (body
, 0);
2109 /* There's no telling what that did to the condition codes. */
2118 fputs (ASM_APP_ON
, file
);
2121 fprintf (asm_out_file
, "\t%s\n", string
);
2126 /* Detect `asm' construct with operands. */
2127 if (asm_noperands (body
) >= 0)
2129 unsigned int noperands
= asm_noperands (body
);
2130 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2133 /* There's no telling what that did to the condition codes. */
2138 /* Get out the operand values. */
2139 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2140 /* Inhibit aborts on what would otherwise be compiler bugs. */
2141 insn_noperands
= noperands
;
2142 this_is_asm_operands
= insn
;
2144 #ifdef FINAL_PRESCAN_INSN
2145 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2148 /* Output the insn using them. */
2153 fputs (ASM_APP_ON
, file
);
2156 output_asm_insn (string
, ops
);
2159 this_is_asm_operands
= 0;
2163 if (prescan
<= 0 && app_on
)
2165 fputs (ASM_APP_OFF
, file
);
2169 if (GET_CODE (body
) == SEQUENCE
)
2171 /* A delayed-branch sequence */
2177 final_sequence
= body
;
2179 /* Record the delay slots' frame information before the branch.
2180 This is needed for delayed calls: see execute_cfa_program(). */
2181 #if defined (DWARF2_UNWIND_INFO)
2182 if (dwarf2out_do_frame ())
2183 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2184 dwarf2out_frame_debug (XVECEXP (body
, 0, i
));
2187 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2188 force the restoration of a comparison that was previously
2189 thought unnecessary. If that happens, cancel this sequence
2190 and cause that insn to be restored. */
2192 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, prescan
, 1, seen
);
2193 if (next
!= XVECEXP (body
, 0, 1))
2199 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2201 rtx insn
= XVECEXP (body
, 0, i
);
2202 rtx next
= NEXT_INSN (insn
);
2203 /* We loop in case any instruction in a delay slot gets
2206 insn
= final_scan_insn (insn
, file
, 0, prescan
, 1, seen
);
2207 while (insn
!= next
);
2209 #ifdef DBR_OUTPUT_SEQEND
2210 DBR_OUTPUT_SEQEND (file
);
2214 /* If the insn requiring the delay slot was a CALL_INSN, the
2215 insns in the delay slot are actually executed before the
2216 called function. Hence we don't preserve any CC-setting
2217 actions in these insns and the CC must be marked as being
2218 clobbered by the function. */
2219 if (CALL_P (XVECEXP (body
, 0, 0)))
2226 /* We have a real machine instruction as rtl. */
2228 body
= PATTERN (insn
);
2231 set
= single_set (insn
);
2233 /* Check for redundant test and compare instructions
2234 (when the condition codes are already set up as desired).
2235 This is done only when optimizing; if not optimizing,
2236 it should be possible for the user to alter a variable
2237 with the debugger in between statements
2238 and the next statement should reexamine the variable
2239 to compute the condition codes. */
2244 && GET_CODE (SET_DEST (set
)) == CC0
2245 && insn
!= last_ignored_compare
)
2247 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2248 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2249 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2251 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2252 XEXP (SET_SRC (set
), 0)
2253 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2254 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2255 XEXP (SET_SRC (set
), 1)
2256 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2258 if ((cc_status
.value1
!= 0
2259 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2260 || (cc_status
.value2
!= 0
2261 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2263 /* Don't delete insn if it has an addressing side-effect. */
2264 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2265 /* or if anything in it is volatile. */
2266 && ! volatile_refs_p (PATTERN (insn
)))
2268 /* We don't really delete the insn; just ignore it. */
2269 last_ignored_compare
= insn
;
2278 /* Don't bother outputting obvious no-ops, even without -O.
2279 This optimization is fast and doesn't interfere with debugging.
2280 Don't do this if the insn is in a delay slot, since this
2281 will cause an improper number of delay insns to be written. */
2282 if (final_sequence
== 0
2284 && NONJUMP_INSN_P (insn
) && GET_CODE (body
) == SET
2285 && REG_P (SET_SRC (body
))
2286 && REG_P (SET_DEST (body
))
2287 && REGNO (SET_SRC (body
)) == REGNO (SET_DEST (body
)))
2292 /* If this is a conditional branch, maybe modify it
2293 if the cc's are in a nonstandard state
2294 so that it accomplishes the same thing that it would
2295 do straightforwardly if the cc's were set up normally. */
2297 if (cc_status
.flags
!= 0
2299 && GET_CODE (body
) == SET
2300 && SET_DEST (body
) == pc_rtx
2301 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2302 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2303 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
2304 /* This is done during prescan; it is not done again
2305 in final scan when prescan has been done. */
2308 /* This function may alter the contents of its argument
2309 and clear some of the cc_status.flags bits.
2310 It may also return 1 meaning condition now always true
2311 or -1 meaning condition now always false
2312 or 2 meaning condition nontrivial but altered. */
2313 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2314 /* If condition now has fixed value, replace the IF_THEN_ELSE
2315 with its then-operand or its else-operand. */
2317 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2319 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2321 /* The jump is now either unconditional or a no-op.
2322 If it has become a no-op, don't try to output it.
2323 (It would not be recognized.) */
2324 if (SET_SRC (body
) == pc_rtx
)
2329 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2330 /* Replace (set (pc) (return)) with (return). */
2331 PATTERN (insn
) = body
= SET_SRC (body
);
2333 /* Rerecognize the instruction if it has changed. */
2335 INSN_CODE (insn
) = -1;
2338 /* Make same adjustments to instructions that examine the
2339 condition codes without jumping and instructions that
2340 handle conditional moves (if this machine has either one). */
2342 if (cc_status
.flags
!= 0
2345 rtx cond_rtx
, then_rtx
, else_rtx
;
2348 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2350 cond_rtx
= XEXP (SET_SRC (set
), 0);
2351 then_rtx
= XEXP (SET_SRC (set
), 1);
2352 else_rtx
= XEXP (SET_SRC (set
), 2);
2356 cond_rtx
= SET_SRC (set
);
2357 then_rtx
= const_true_rtx
;
2358 else_rtx
= const0_rtx
;
2361 switch (GET_CODE (cond_rtx
))
2375 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2377 result
= alter_cond (cond_rtx
);
2379 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2380 else if (result
== -1)
2381 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2382 else if (result
== 2)
2383 INSN_CODE (insn
) = -1;
2384 if (SET_DEST (set
) == SET_SRC (set
))
2396 #ifdef HAVE_peephole
2397 /* Do machine-specific peephole optimizations if desired. */
2399 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2401 rtx next
= peephole (insn
);
2402 /* When peepholing, if there were notes within the peephole,
2403 emit them before the peephole. */
2404 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2406 rtx note
, prev
= PREV_INSN (insn
);
2408 for (note
= NEXT_INSN (insn
); note
!= next
;
2409 note
= NEXT_INSN (note
))
2410 final_scan_insn (note
, file
, optimize
, prescan
, nopeepholes
, seen
);
2412 /* In case this is prescan, put the notes
2413 in proper position for later rescan. */
2414 note
= NEXT_INSN (insn
);
2415 PREV_INSN (note
) = prev
;
2416 NEXT_INSN (prev
) = note
;
2417 NEXT_INSN (PREV_INSN (next
)) = insn
;
2418 PREV_INSN (insn
) = PREV_INSN (next
);
2419 NEXT_INSN (insn
) = next
;
2420 PREV_INSN (next
) = insn
;
2423 /* PEEPHOLE might have changed this. */
2424 body
= PATTERN (insn
);
2428 /* Try to recognize the instruction.
2429 If successful, verify that the operands satisfy the
2430 constraints for the instruction. Crash if they don't,
2431 since `reload' should have changed them so that they do. */
2433 insn_code_number
= recog_memoized (insn
);
2434 cleanup_subreg_operands (insn
);
2436 /* Dump the insn in the assembly for debugging. */
2437 if (flag_dump_rtl_in_asm
)
2439 print_rtx_head
= ASM_COMMENT_START
;
2440 print_rtl_single (asm_out_file
, insn
);
2441 print_rtx_head
= "";
2444 if (! constrain_operands_cached (1))
2445 fatal_insn_not_found (insn
);
2447 /* Some target machines need to prescan each insn before
2450 #ifdef FINAL_PRESCAN_INSN
2451 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2454 #ifdef HAVE_conditional_execution
2455 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2456 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2458 current_insn_predicate
= NULL_RTX
;
2462 cc_prev_status
= cc_status
;
2464 /* Update `cc_status' for this instruction.
2465 The instruction's output routine may change it further.
2466 If the output routine for a jump insn needs to depend
2467 on the cc status, it should look at cc_prev_status. */
2469 NOTICE_UPDATE_CC (body
, insn
);
2472 current_output_insn
= debug_insn
= insn
;
2474 #if defined (DWARF2_UNWIND_INFO)
2475 if (CALL_P (insn
) && dwarf2out_do_frame ())
2476 dwarf2out_frame_debug (insn
);
2479 /* Find the proper template for this insn. */
2480 template = get_insn_template (insn_code_number
, insn
);
2482 /* If the C code returns 0, it means that it is a jump insn
2483 which follows a deleted test insn, and that test insn
2484 needs to be reinserted. */
2489 if (prev_nonnote_insn (insn
) != last_ignored_compare
)
2492 /* We have already processed the notes between the setter and
2493 the user. Make sure we don't process them again, this is
2494 particularly important if one of the notes is a block
2495 scope note or an EH note. */
2497 prev
!= last_ignored_compare
;
2498 prev
= PREV_INSN (prev
))
2501 delete_insn (prev
); /* Use delete_note. */
2507 /* If the template is the string "#", it means that this insn must
2509 if (template[0] == '#' && template[1] == '\0')
2511 rtx
new = try_split (body
, insn
, 0);
2513 /* If we didn't split the insn, go away. */
2514 if (new == insn
&& PATTERN (new) == body
)
2515 fatal_insn ("could not split insn", insn
);
2517 #ifdef HAVE_ATTR_length
2518 /* This instruction should have been split in shorten_branches,
2519 to ensure that we would have valid length info for the
2530 #ifdef TARGET_UNWIND_INFO
2531 /* ??? This will put the directives in the wrong place if
2532 get_insn_template outputs assembly directly. However calling it
2533 before get_insn_template breaks if the insns is split. */
2534 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2537 /* Output assembler code from the template. */
2538 output_asm_insn (template, recog_data
.operand
);
2540 /* If necessary, report the effect that the instruction has on
2541 the unwind info. We've already done this for delay slots
2542 and call instructions. */
2543 #if defined (DWARF2_UNWIND_INFO)
2544 if (NONJUMP_INSN_P (insn
)
2545 #if !defined (HAVE_prologue)
2546 && !ACCUMULATE_OUTGOING_ARGS
2548 && final_sequence
== 0
2549 && dwarf2out_do_frame ())
2550 dwarf2out_frame_debug (insn
);
2553 current_output_insn
= debug_insn
= 0;
2556 return NEXT_INSN (insn
);
2559 /* Output debugging info to the assembler file FILE
2560 based on the NOTE-insn INSN, assumed to be a line number. */
2563 notice_source_line (rtx insn
)
2565 const char *filename
= insn_file (insn
);
2566 int linenum
= insn_line (insn
);
2568 if (filename
&& (filename
!= last_filename
|| last_linenum
!= linenum
))
2570 last_filename
= filename
;
2571 last_linenum
= linenum
;
2572 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2573 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2579 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2580 directly to the desired hard register. */
2583 cleanup_subreg_operands (rtx insn
)
2586 extract_insn_cached (insn
);
2587 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2589 /* The following test cannot use recog_data.operand when testing
2590 for a SUBREG: the underlying object might have been changed
2591 already if we are inside a match_operator expression that
2592 matches the else clause. Instead we test the underlying
2593 expression directly. */
2594 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2595 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2596 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2597 || GET_CODE (recog_data
.operand
[i
]) == MULT
2598 || MEM_P (recog_data
.operand
[i
]))
2599 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2602 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2604 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2605 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2606 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2607 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2608 || MEM_P (*recog_data
.dup_loc
[i
]))
2609 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2613 /* If X is a SUBREG, replace it with a REG or a MEM,
2614 based on the thing it is a subreg of. */
2617 alter_subreg (rtx
*xp
)
2620 rtx y
= SUBREG_REG (x
);
2622 /* simplify_subreg does not remove subreg from volatile references.
2623 We are required to. */
2625 *xp
= adjust_address (y
, GET_MODE (x
), SUBREG_BYTE (x
));
2628 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2633 /* Simplify_subreg can't handle some REG cases, but we have to. */
2636 unsigned int regno
= subreg_hard_regno (x
, 1);
2637 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2646 /* Do alter_subreg on all the SUBREGs contained in X. */
2649 walk_alter_subreg (rtx
*xp
)
2652 switch (GET_CODE (x
))
2657 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2658 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2663 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2667 return alter_subreg (xp
);
2678 /* Given BODY, the body of a jump instruction, alter the jump condition
2679 as required by the bits that are set in cc_status.flags.
2680 Not all of the bits there can be handled at this level in all cases.
2682 The value is normally 0.
2683 1 means that the condition has become always true.
2684 -1 means that the condition has become always false.
2685 2 means that COND has been altered. */
2688 alter_cond (rtx cond
)
2692 if (cc_status
.flags
& CC_REVERSED
)
2695 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2698 if (cc_status
.flags
& CC_INVERTED
)
2701 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2704 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2705 switch (GET_CODE (cond
))
2710 /* Jump becomes unconditional. */
2716 /* Jump becomes no-op. */
2720 PUT_CODE (cond
, EQ
);
2725 PUT_CODE (cond
, NE
);
2733 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2734 switch (GET_CODE (cond
))
2738 /* Jump becomes unconditional. */
2743 /* Jump becomes no-op. */
2748 PUT_CODE (cond
, EQ
);
2754 PUT_CODE (cond
, NE
);
2762 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2763 switch (GET_CODE (cond
))
2766 /* Jump becomes unconditional. */
2770 PUT_CODE (cond
, EQ
);
2775 PUT_CODE (cond
, NE
);
2780 /* Jump becomes no-op. */
2787 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2788 switch (GET_CODE (cond
))
2794 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2799 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2804 if (cc_status
.flags
& CC_NOT_SIGNED
)
2805 /* The flags are valid if signed condition operators are converted
2807 switch (GET_CODE (cond
))
2810 PUT_CODE (cond
, LEU
);
2815 PUT_CODE (cond
, LTU
);
2820 PUT_CODE (cond
, GTU
);
2825 PUT_CODE (cond
, GEU
);
2837 /* Report inconsistency between the assembler template and the operands.
2838 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2841 output_operand_lossage (const char *msgid
, ...)
2845 const char *pfx_str
;
2848 va_start (ap
, msgid
);
2850 pfx_str
= this_is_asm_operands
? _("invalid `asm': ") : "output_operand: ";
2851 asprintf (&fmt_string
, "%s%s", pfx_str
, _(msgid
));
2852 vasprintf (&new_message
, fmt_string
, ap
);
2854 if (this_is_asm_operands
)
2855 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2857 internal_error ("%s", new_message
);
2864 /* Output of assembler code from a template, and its subroutines. */
2866 /* Annotate the assembly with a comment describing the pattern and
2867 alternative used. */
2870 output_asm_name (void)
2874 int num
= INSN_CODE (debug_insn
);
2875 fprintf (asm_out_file
, "\t%s %d\t%s",
2876 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2877 insn_data
[num
].name
);
2878 if (insn_data
[num
].n_alternatives
> 1)
2879 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2880 #ifdef HAVE_ATTR_length
2881 fprintf (asm_out_file
, "\t[length = %d]",
2882 get_attr_length (debug_insn
));
2884 /* Clear this so only the first assembler insn
2885 of any rtl insn will get the special comment for -dp. */
2890 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2891 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2892 corresponds to the address of the object and 0 if to the object. */
2895 get_mem_expr_from_op (rtx op
, int *paddressp
)
2903 return REG_EXPR (op
);
2904 else if (!MEM_P (op
))
2907 if (MEM_EXPR (op
) != 0)
2908 return MEM_EXPR (op
);
2910 /* Otherwise we have an address, so indicate it and look at the address. */
2914 /* First check if we have a decl for the address, then look at the right side
2915 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2916 But don't allow the address to itself be indirect. */
2917 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2919 else if (GET_CODE (op
) == PLUS
2920 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2923 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2924 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2927 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2928 return inner_addressp
? 0 : expr
;
2931 /* Output operand names for assembler instructions. OPERANDS is the
2932 operand vector, OPORDER is the order to write the operands, and NOPS
2933 is the number of operands to write. */
2936 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2941 for (i
= 0; i
< nops
; i
++)
2944 rtx op
= operands
[oporder
[i
]];
2945 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2947 fprintf (asm_out_file
, "%c%s",
2948 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2952 fprintf (asm_out_file
, "%s",
2953 addressp
? "*" : "");
2954 print_mem_expr (asm_out_file
, expr
);
2957 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2958 && ORIGINAL_REGNO (op
) != REGNO (op
))
2959 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2963 /* Output text from TEMPLATE to the assembler output file,
2964 obeying %-directions to substitute operands taken from
2965 the vector OPERANDS.
2967 %N (for N a digit) means print operand N in usual manner.
2968 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2969 and print the label name with no punctuation.
2970 %cN means require operand N to be a constant
2971 and print the constant expression with no punctuation.
2972 %aN means expect operand N to be a memory address
2973 (not a memory reference!) and print a reference
2975 %nN means expect operand N to be a constant
2976 and print a constant expression for minus the value
2977 of the operand, with no other punctuation. */
2980 output_asm_insn (const char *template, rtx
*operands
)
2984 #ifdef ASSEMBLER_DIALECT
2987 int oporder
[MAX_RECOG_OPERANDS
];
2988 char opoutput
[MAX_RECOG_OPERANDS
];
2991 /* An insn may return a null string template
2992 in a case where no assembler code is needed. */
2996 memset (opoutput
, 0, sizeof opoutput
);
2998 putc ('\t', asm_out_file
);
3000 #ifdef ASM_OUTPUT_OPCODE
3001 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3008 if (flag_verbose_asm
)
3009 output_asm_operand_names (operands
, oporder
, ops
);
3010 if (flag_print_asm_name
)
3014 memset (opoutput
, 0, sizeof opoutput
);
3016 putc (c
, asm_out_file
);
3017 #ifdef ASM_OUTPUT_OPCODE
3018 while ((c
= *p
) == '\t')
3020 putc (c
, asm_out_file
);
3023 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3027 #ifdef ASSEMBLER_DIALECT
3033 output_operand_lossage ("nested assembly dialect alternatives");
3037 /* If we want the first dialect, do nothing. Otherwise, skip
3038 DIALECT_NUMBER of strings ending with '|'. */
3039 for (i
= 0; i
< dialect_number
; i
++)
3041 while (*p
&& *p
!= '}' && *p
++ != '|')
3050 output_operand_lossage ("unterminated assembly dialect alternative");
3057 /* Skip to close brace. */
3062 output_operand_lossage ("unterminated assembly dialect alternative");
3066 while (*p
++ != '}');
3070 putc (c
, asm_out_file
);
3075 putc (c
, asm_out_file
);
3081 /* %% outputs a single %. */
3085 putc (c
, asm_out_file
);
3087 /* %= outputs a number which is unique to each insn in the entire
3088 compilation. This is useful for making local labels that are
3089 referred to more than once in a given insn. */
3093 fprintf (asm_out_file
, "%d", insn_counter
);
3095 /* % followed by a letter and some digits
3096 outputs an operand in a special way depending on the letter.
3097 Letters `acln' are implemented directly.
3098 Other letters are passed to `output_operand' so that
3099 the PRINT_OPERAND macro can define them. */
3100 else if (ISALPHA (*p
))
3106 output_operand_lossage ("operand number missing after %%-letter");
3107 else if (this_is_asm_operands
3108 && (c
< 0 || (unsigned int) c
>= insn_noperands
))
3109 output_operand_lossage ("operand number out of range");
3110 else if (letter
== 'l')
3111 output_asm_label (operands
[c
]);
3112 else if (letter
== 'a')
3113 output_address (operands
[c
]);
3114 else if (letter
== 'c')
3116 if (CONSTANT_ADDRESS_P (operands
[c
]))
3117 output_addr_const (asm_out_file
, operands
[c
]);
3119 output_operand (operands
[c
], 'c');
3121 else if (letter
== 'n')
3123 if (GET_CODE (operands
[c
]) == CONST_INT
)
3124 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3125 - INTVAL (operands
[c
]));
3128 putc ('-', asm_out_file
);
3129 output_addr_const (asm_out_file
, operands
[c
]);
3133 output_operand (operands
[c
], letter
);
3139 while (ISDIGIT (c
= *p
))
3142 /* % followed by a digit outputs an operand the default way. */
3143 else if (ISDIGIT (*p
))
3146 if (this_is_asm_operands
3147 && (c
< 0 || (unsigned int) c
>= insn_noperands
))
3148 output_operand_lossage ("operand number out of range");
3150 output_operand (operands
[c
], 0);
3156 while (ISDIGIT (c
= *p
))
3159 /* % followed by punctuation: output something for that
3160 punctuation character alone, with no operand.
3161 The PRINT_OPERAND macro decides what is actually done. */
3162 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3163 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3164 output_operand (NULL_RTX
, *p
++);
3167 output_operand_lossage ("invalid %%-code");
3171 putc (c
, asm_out_file
);
3174 /* Write out the variable names for operands, if we know them. */
3175 if (flag_verbose_asm
)
3176 output_asm_operand_names (operands
, oporder
, ops
);
3177 if (flag_print_asm_name
)
3180 putc ('\n', asm_out_file
);
3183 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3186 output_asm_label (rtx x
)
3190 if (GET_CODE (x
) == LABEL_REF
)
3194 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3195 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3197 output_operand_lossage ("`%%l' operand isn't a label");
3199 assemble_name (asm_out_file
, buf
);
3202 /* Print operand X using machine-dependent assembler syntax.
3203 The macro PRINT_OPERAND is defined just to control this function.
3204 CODE is a non-digit that preceded the operand-number in the % spec,
3205 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3206 between the % and the digits.
3207 When CODE is a non-letter, X is 0.
3209 The meanings of the letters are machine-dependent and controlled
3210 by PRINT_OPERAND. */
3213 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3215 if (x
&& GET_CODE (x
) == SUBREG
)
3216 x
= alter_subreg (&x
);
3218 /* If X is a pseudo-register, abort now rather than writing trash to the
3221 if (x
&& REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3224 PRINT_OPERAND (asm_out_file
, x
, code
);
3227 /* Print a memory reference operand for address X
3228 using machine-dependent assembler syntax.
3229 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3232 output_address (rtx x
)
3234 walk_alter_subreg (&x
);
3235 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3238 /* Print an integer constant expression in assembler syntax.
3239 Addition and subtraction are the only arithmetic
3240 that may appear in these expressions. */
3243 output_addr_const (FILE *file
, rtx x
)
3248 switch (GET_CODE (x
))
3255 if (SYMBOL_REF_DECL (x
))
3256 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3257 #ifdef ASM_OUTPUT_SYMBOL_REF
3258 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3260 assemble_name (file
, XSTR (x
, 0));
3268 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3269 #ifdef ASM_OUTPUT_LABEL_REF
3270 ASM_OUTPUT_LABEL_REF (file
, buf
);
3272 assemble_name (file
, buf
);
3277 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3281 /* This used to output parentheses around the expression,
3282 but that does not work on the 386 (either ATT or BSD assembler). */
3283 output_addr_const (file
, XEXP (x
, 0));
3287 if (GET_MODE (x
) == VOIDmode
)
3289 /* We can use %d if the number is one word and positive. */
3290 if (CONST_DOUBLE_HIGH (x
))
3291 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3292 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3293 else if (CONST_DOUBLE_LOW (x
) < 0)
3294 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3296 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3299 /* We can't handle floating point constants;
3300 PRINT_OPERAND must handle them. */
3301 output_operand_lossage ("floating constant misused");
3305 /* Some assemblers need integer constants to appear last (eg masm). */
3306 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3308 output_addr_const (file
, XEXP (x
, 1));
3309 if (INTVAL (XEXP (x
, 0)) >= 0)
3310 fprintf (file
, "+");
3311 output_addr_const (file
, XEXP (x
, 0));
3315 output_addr_const (file
, XEXP (x
, 0));
3316 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3317 || INTVAL (XEXP (x
, 1)) >= 0)
3318 fprintf (file
, "+");
3319 output_addr_const (file
, XEXP (x
, 1));
3324 /* Avoid outputting things like x-x or x+5-x,
3325 since some assemblers can't handle that. */
3326 x
= simplify_subtraction (x
);
3327 if (GET_CODE (x
) != MINUS
)
3330 output_addr_const (file
, XEXP (x
, 0));
3331 fprintf (file
, "-");
3332 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3333 || GET_CODE (XEXP (x
, 1)) == PC
3334 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3335 output_addr_const (file
, XEXP (x
, 1));
3338 fputs (targetm
.asm_out
.open_paren
, file
);
3339 output_addr_const (file
, XEXP (x
, 1));
3340 fputs (targetm
.asm_out
.close_paren
, file
);
3347 output_addr_const (file
, XEXP (x
, 0));
3351 #ifdef OUTPUT_ADDR_CONST_EXTRA
3352 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3357 output_operand_lossage ("invalid expression as operand");
3361 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3362 %R prints the value of REGISTER_PREFIX.
3363 %L prints the value of LOCAL_LABEL_PREFIX.
3364 %U prints the value of USER_LABEL_PREFIX.
3365 %I prints the value of IMMEDIATE_PREFIX.
3366 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3367 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3369 We handle alternate assembler dialects here, just like output_asm_insn. */
3372 asm_fprintf (FILE *file
, const char *p
, ...)
3378 va_start (argptr
, p
);
3385 #ifdef ASSEMBLER_DIALECT
3390 /* If we want the first dialect, do nothing. Otherwise, skip
3391 DIALECT_NUMBER of strings ending with '|'. */
3392 for (i
= 0; i
< dialect_number
; i
++)
3394 while (*p
&& *p
++ != '|')
3404 /* Skip to close brace. */
3405 while (*p
&& *p
++ != '}')
3416 while (strchr ("-+ #0", c
))
3421 while (ISDIGIT (c
) || c
== '.')
3432 case 'd': case 'i': case 'u':
3433 case 'x': case 'X': case 'o':
3437 fprintf (file
, buf
, va_arg (argptr
, int));
3441 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3442 'o' cases, but we do not check for those cases. It
3443 means that the value is a HOST_WIDE_INT, which may be
3444 either `long' or `long long'. */
3445 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3446 q
+= strlen (HOST_WIDE_INT_PRINT
);
3449 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3454 #ifdef HAVE_LONG_LONG
3460 fprintf (file
, buf
, va_arg (argptr
, long long));
3467 fprintf (file
, buf
, va_arg (argptr
, long));
3475 fprintf (file
, buf
, va_arg (argptr
, char *));
3479 #ifdef ASM_OUTPUT_OPCODE
3480 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3485 #ifdef REGISTER_PREFIX
3486 fprintf (file
, "%s", REGISTER_PREFIX
);
3491 #ifdef IMMEDIATE_PREFIX
3492 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3497 #ifdef LOCAL_LABEL_PREFIX
3498 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3503 fputs (user_label_prefix
, file
);
3506 #ifdef ASM_FPRINTF_EXTENSIONS
3507 /* Uppercase letters are reserved for general use by asm_fprintf
3508 and so are not available to target specific code. In order to
3509 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3510 they are defined here. As they get turned into real extensions
3511 to asm_fprintf they should be removed from this list. */
3512 case 'A': case 'B': case 'C': case 'D': case 'E':
3513 case 'F': case 'G': case 'H': case 'J': case 'K':
3514 case 'M': case 'N': case 'P': case 'Q': case 'S':
3515 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3518 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3531 /* Split up a CONST_DOUBLE or integer constant rtx
3532 into two rtx's for single words,
3533 storing in *FIRST the word that comes first in memory in the target
3534 and in *SECOND the other. */
3537 split_double (rtx value
, rtx
*first
, rtx
*second
)
3539 if (GET_CODE (value
) == CONST_INT
)
3541 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3543 /* In this case the CONST_INT holds both target words.
3544 Extract the bits from it into two word-sized pieces.
3545 Sign extend each half to HOST_WIDE_INT. */
3546 unsigned HOST_WIDE_INT low
, high
;
3547 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3549 /* Set sign_bit to the most significant bit of a word. */
3551 sign_bit
<<= BITS_PER_WORD
- 1;
3553 /* Set mask so that all bits of the word are set. We could
3554 have used 1 << BITS_PER_WORD instead of basing the
3555 calculation on sign_bit. However, on machines where
3556 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3557 compiler warning, even though the code would never be
3559 mask
= sign_bit
<< 1;
3562 /* Set sign_extend as any remaining bits. */
3563 sign_extend
= ~mask
;
3565 /* Pick the lower word and sign-extend it. */
3566 low
= INTVAL (value
);
3571 /* Pick the higher word, shifted to the least significant
3572 bits, and sign-extend it. */
3573 high
= INTVAL (value
);
3574 high
>>= BITS_PER_WORD
- 1;
3577 if (high
& sign_bit
)
3578 high
|= sign_extend
;
3580 /* Store the words in the target machine order. */
3581 if (WORDS_BIG_ENDIAN
)
3583 *first
= GEN_INT (high
);
3584 *second
= GEN_INT (low
);
3588 *first
= GEN_INT (low
);
3589 *second
= GEN_INT (high
);
3594 /* The rule for using CONST_INT for a wider mode
3595 is that we regard the value as signed.
3596 So sign-extend it. */
3597 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3598 if (WORDS_BIG_ENDIAN
)
3610 else if (GET_CODE (value
) != CONST_DOUBLE
)
3612 if (WORDS_BIG_ENDIAN
)
3614 *first
= const0_rtx
;
3620 *second
= const0_rtx
;
3623 else if (GET_MODE (value
) == VOIDmode
3624 /* This is the old way we did CONST_DOUBLE integers. */
3625 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3627 /* In an integer, the words are defined as most and least significant.
3628 So order them by the target's convention. */
3629 if (WORDS_BIG_ENDIAN
)
3631 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3632 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3636 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3637 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3644 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3646 /* Note, this converts the REAL_VALUE_TYPE to the target's
3647 format, splits up the floating point double and outputs
3648 exactly 32 bits of it into each of l[0] and l[1] --
3649 not necessarily BITS_PER_WORD bits. */
3650 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3652 /* If 32 bits is an entire word for the target, but not for the host,
3653 then sign-extend on the host so that the number will look the same
3654 way on the host that it would on the target. See for instance
3655 simplify_unary_operation. The #if is needed to avoid compiler
3658 #if HOST_BITS_PER_LONG > 32
3659 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3661 if (l
[0] & ((long) 1 << 31))
3662 l
[0] |= ((long) (-1) << 32);
3663 if (l
[1] & ((long) 1 << 31))
3664 l
[1] |= ((long) (-1) << 32);
3668 *first
= GEN_INT (l
[0]);
3669 *second
= GEN_INT (l
[1]);
3673 /* Return nonzero if this function has no function calls. */
3676 leaf_function_p (void)
3681 if (current_function_profile
|| profile_arc_flag
)
3684 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3687 && ! SIBLING_CALL_P (insn
))
3689 if (NONJUMP_INSN_P (insn
)
3690 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3691 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3692 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3695 for (link
= current_function_epilogue_delay_list
;
3697 link
= XEXP (link
, 1))
3699 insn
= XEXP (link
, 0);
3702 && ! SIBLING_CALL_P (insn
))
3704 if (NONJUMP_INSN_P (insn
)
3705 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3706 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3707 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3714 /* Return 1 if branch is a forward branch.
3715 Uses insn_shuid array, so it works only in the final pass. May be used by
3716 output templates to customary add branch prediction hints.
3719 final_forward_branch_p (rtx insn
)
3721 int insn_id
, label_id
;
3724 insn_id
= INSN_SHUID (insn
);
3725 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3726 /* We've hit some insns that does not have id information available. */
3727 if (!insn_id
|| !label_id
)
3729 return insn_id
< label_id
;
3732 /* On some machines, a function with no call insns
3733 can run faster if it doesn't create its own register window.
3734 When output, the leaf function should use only the "output"
3735 registers. Ordinarily, the function would be compiled to use
3736 the "input" registers to find its arguments; it is a candidate
3737 for leaf treatment if it uses only the "input" registers.
3738 Leaf function treatment means renumbering so the function
3739 uses the "output" registers instead. */
3741 #ifdef LEAF_REGISTERS
3743 /* Return 1 if this function uses only the registers that can be
3744 safely renumbered. */
3747 only_leaf_regs_used (void)
3750 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3752 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3753 if ((regs_ever_live
[i
] || global_regs
[i
])
3754 && ! permitted_reg_in_leaf_functions
[i
])
3757 if (current_function_uses_pic_offset_table
3758 && pic_offset_table_rtx
!= 0
3759 && REG_P (pic_offset_table_rtx
)
3760 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3766 /* Scan all instructions and renumber all registers into those
3767 available in leaf functions. */
3770 leaf_renumber_regs (rtx first
)
3774 /* Renumber only the actual patterns.
3775 The reg-notes can contain frame pointer refs,
3776 and renumbering them could crash, and should not be needed. */
3777 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3779 leaf_renumber_regs_insn (PATTERN (insn
));
3780 for (insn
= current_function_epilogue_delay_list
;
3782 insn
= XEXP (insn
, 1))
3783 if (INSN_P (XEXP (insn
, 0)))
3784 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3787 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3788 available in leaf functions. */
3791 leaf_renumber_regs_insn (rtx in_rtx
)
3794 const char *format_ptr
;
3799 /* Renumber all input-registers into output-registers.
3800 renumbered_regs would be 1 for an output-register;
3807 /* Don't renumber the same reg twice. */
3811 newreg
= REGNO (in_rtx
);
3812 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3813 to reach here as part of a REG_NOTE. */
3814 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3819 newreg
= LEAF_REG_REMAP (newreg
);
3822 regs_ever_live
[REGNO (in_rtx
)] = 0;
3823 regs_ever_live
[newreg
] = 1;
3824 REGNO (in_rtx
) = newreg
;
3828 if (INSN_P (in_rtx
))
3830 /* Inside a SEQUENCE, we find insns.
3831 Renumber just the patterns of these insns,
3832 just as we do for the top-level insns. */
3833 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3837 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3839 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3840 switch (*format_ptr
++)
3843 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3847 if (NULL
!= XVEC (in_rtx
, i
))
3849 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3850 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3870 /* When -gused is used, emit debug info for only used symbols. But in
3871 addition to the standard intercepted debug_hooks there are some direct
3872 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3873 Those routines may also be called from a higher level intercepted routine. So
3874 to prevent recording data for an inner call to one of these for an intercept,
3875 we maintain an intercept nesting counter (debug_nesting). We only save the
3876 intercepted arguments if the nesting is 1. */
3877 int debug_nesting
= 0;
3879 static tree
*symbol_queue
;
3880 int symbol_queue_index
= 0;
3881 static int symbol_queue_size
= 0;
3883 /* Generate the symbols for any queued up type symbols we encountered
3884 while generating the type info for some originally used symbol.
3885 This might generate additional entries in the queue. Only when
3886 the nesting depth goes to 0 is this routine called. */
3889 debug_flush_symbol_queue (void)
3893 /* Make sure that additionally queued items are not flushed
3898 for (i
= 0; i
< symbol_queue_index
; ++i
)
3900 /* If we pushed queued symbols then such symbols are must be
3901 output no matter what anyone else says. Specifically,
3902 we need to make sure dbxout_symbol() thinks the symbol was
3903 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3904 which may be set for outside reasons. */
3905 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3906 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3907 TREE_USED (symbol_queue
[i
]) = 1;
3908 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3910 #ifdef DBX_DEBUGGING_INFO
3911 dbxout_symbol (symbol_queue
[i
], 0);
3914 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3915 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3918 symbol_queue_index
= 0;
3922 /* Queue a type symbol needed as part of the definition of a decl
3923 symbol. These symbols are generated when debug_flush_symbol_queue()
3927 debug_queue_symbol (tree decl
)
3929 if (symbol_queue_index
>= symbol_queue_size
)
3931 symbol_queue_size
+= 10;
3932 symbol_queue
= xrealloc (symbol_queue
,
3933 symbol_queue_size
* sizeof (tree
));
3936 symbol_queue
[symbol_queue_index
++] = decl
;
3939 /* Free symbol queue. */
3941 debug_free_queue (void)
3945 free (symbol_queue
);
3946 symbol_queue
= NULL
;
3947 symbol_queue_size
= 0;