1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 #include "coretypes.h"
26 #include "hard-reg-set.h"
28 #include "basic-block.h"
30 #include "cfglayout.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
76 rtx insn
; /* The insn in that the induction variable occurs. */
77 rtx base_var
; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step
; /* Step of the induction variable. */
81 unsigned loc
[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
91 rtx insn
; /* The insn in that the variable expansion occurs. */
92 rtx reg
; /* The accumulator which is expanded. */
93 VEC(rtx
,heap
) *var_expansions
; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op
; /* The type of the accumulation - addition, subtraction
96 int expansion_count
; /* Count the number of expansions generated so far. */
97 int reuse_expansion
; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
103 /* Information about optimization applied in
104 the unrolled loop. */
108 htab_t insns_to_split
; /* A hashtable of insns to split. */
109 htab_t insns_with_var_to_expand
; /* A hashtable of insns with accumulators
111 unsigned first_new_block
; /* The first basic block that was
113 basic_block loop_exit
; /* The loop exit basic block. */
114 basic_block loop_preheader
; /* The loop preheader basic block. */
117 static void decide_unrolling_and_peeling (int);
118 static void peel_loops_completely (int);
119 static void decide_peel_simple (struct loop
*, int);
120 static void decide_peel_once_rolling (struct loop
*, int);
121 static void decide_peel_completely (struct loop
*, int);
122 static void decide_unroll_stupid (struct loop
*, int);
123 static void decide_unroll_constant_iterations (struct loop
*, int);
124 static void decide_unroll_runtime_iterations (struct loop
*, int);
125 static void peel_loop_simple (struct loop
*);
126 static void peel_loop_completely (struct loop
*);
127 static void unroll_loop_stupid (struct loop
*);
128 static void unroll_loop_constant_iterations (struct loop
*);
129 static void unroll_loop_runtime_iterations (struct loop
*);
130 static struct opt_info
*analyze_insns_in_loop (struct loop
*);
131 static void opt_info_start_duplication (struct opt_info
*);
132 static void apply_opt_in_copies (struct opt_info
*, unsigned, bool, bool);
133 static void free_opt_info (struct opt_info
*);
134 static struct var_to_expand
*analyze_insn_to_expand_var (struct loop
*, rtx
);
135 static bool referenced_in_one_insn_in_loop_p (struct loop
*, rtx
);
136 static struct iv_to_split
*analyze_iv_to_split_insn (rtx
);
137 static void expand_var_during_unrolling (struct var_to_expand
*, rtx
);
138 static int insert_var_expansion_initialization (void **, void *);
139 static int combine_var_copies_in_loop_exit (void **, void *);
140 static int release_var_copies (void **, void *);
141 static rtx
get_expansion (struct var_to_expand
*);
143 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
145 unroll_and_peel_loops (int flags
)
151 /* First perform complete loop peeling (it is almost surely a win,
152 and affects parameters for further decision a lot). */
153 peel_loops_completely (flags
);
155 /* Now decide rest of unrolling and peeling. */
156 decide_unrolling_and_peeling (flags
);
158 /* Scan the loops, inner ones first. */
159 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
162 /* And perform the appropriate transformations. */
163 switch (loop
->lpt_decision
.decision
)
165 case LPT_PEEL_COMPLETELY
:
168 case LPT_PEEL_SIMPLE
:
169 peel_loop_simple (loop
);
171 case LPT_UNROLL_CONSTANT
:
172 unroll_loop_constant_iterations (loop
);
174 case LPT_UNROLL_RUNTIME
:
175 unroll_loop_runtime_iterations (loop
);
177 case LPT_UNROLL_STUPID
:
178 unroll_loop_stupid (loop
);
188 #ifdef ENABLE_CHECKING
189 verify_dominators (CDI_DOMINATORS
);
190 verify_loop_structure ();
198 /* Check whether exit of the LOOP is at the end of loop body. */
201 loop_exit_at_end_p (struct loop
*loop
)
203 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
206 if (desc
->in_edge
->dest
!= loop
->latch
)
209 /* Check that the latch is empty. */
210 FOR_BB_INSNS (loop
->latch
, insn
)
219 /* Depending on FLAGS, check whether to peel loops completely and do so. */
221 peel_loops_completely (int flags
)
226 /* Scan the loops, the inner ones first. */
227 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
229 loop
->lpt_decision
.decision
= LPT_NONE
;
233 "\n;; *** Considering loop %d for complete peeling ***\n",
236 loop
->ninsns
= num_loop_insns (loop
);
238 decide_peel_once_rolling (loop
, flags
);
239 if (loop
->lpt_decision
.decision
== LPT_NONE
)
240 decide_peel_completely (loop
, flags
);
242 if (loop
->lpt_decision
.decision
== LPT_PEEL_COMPLETELY
)
244 peel_loop_completely (loop
);
245 #ifdef ENABLE_CHECKING
246 verify_dominators (CDI_DOMINATORS
);
247 verify_loop_structure ();
253 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
255 decide_unrolling_and_peeling (int flags
)
260 /* Scan the loops, inner ones first. */
261 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
263 loop
->lpt_decision
.decision
= LPT_NONE
;
266 fprintf (dump_file
, "\n;; *** Considering loop %d ***\n", loop
->num
);
268 /* Do not peel cold areas. */
269 if (!maybe_hot_bb_p (loop
->header
))
272 fprintf (dump_file
, ";; Not considering loop, cold area\n");
276 /* Can the loop be manipulated? */
277 if (!can_duplicate_loop_p (loop
))
281 ";; Not considering loop, cannot duplicate\n");
285 /* Skip non-innermost loops. */
289 fprintf (dump_file
, ";; Not considering loop, is not innermost\n");
293 loop
->ninsns
= num_loop_insns (loop
);
294 loop
->av_ninsns
= average_num_loop_insns (loop
);
296 /* Try transformations one by one in decreasing order of
299 decide_unroll_constant_iterations (loop
, flags
);
300 if (loop
->lpt_decision
.decision
== LPT_NONE
)
301 decide_unroll_runtime_iterations (loop
, flags
);
302 if (loop
->lpt_decision
.decision
== LPT_NONE
)
303 decide_unroll_stupid (loop
, flags
);
304 if (loop
->lpt_decision
.decision
== LPT_NONE
)
305 decide_peel_simple (loop
, flags
);
309 /* Decide whether the LOOP is once rolling and suitable for complete
312 decide_peel_once_rolling (struct loop
*loop
, int flags ATTRIBUTE_UNUSED
)
314 struct niter_desc
*desc
;
317 fprintf (dump_file
, "\n;; Considering peeling once rolling loop\n");
319 /* Is the loop small enough? */
320 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS
) < loop
->ninsns
)
323 fprintf (dump_file
, ";; Not considering loop, is too big\n");
327 /* Check for simple loops. */
328 desc
= get_simple_loop_desc (loop
);
330 /* Check number of iterations. */
339 ";; Unable to prove that the loop rolls exactly once\n");
345 fprintf (dump_file
, ";; Decided to peel exactly once rolling loop\n");
346 loop
->lpt_decision
.decision
= LPT_PEEL_COMPLETELY
;
349 /* Decide whether the LOOP is suitable for complete peeling. */
351 decide_peel_completely (struct loop
*loop
, int flags ATTRIBUTE_UNUSED
)
354 struct niter_desc
*desc
;
357 fprintf (dump_file
, "\n;; Considering peeling completely\n");
359 /* Skip non-innermost loops. */
363 fprintf (dump_file
, ";; Not considering loop, is not innermost\n");
367 /* Do not peel cold areas. */
368 if (!maybe_hot_bb_p (loop
->header
))
371 fprintf (dump_file
, ";; Not considering loop, cold area\n");
375 /* Can the loop be manipulated? */
376 if (!can_duplicate_loop_p (loop
))
380 ";; Not considering loop, cannot duplicate\n");
384 /* npeel = number of iterations to peel. */
385 npeel
= PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS
) / loop
->ninsns
;
386 if (npeel
> (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES
))
387 npeel
= PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES
);
389 /* Is the loop small enough? */
393 fprintf (dump_file
, ";; Not considering loop, is too big\n");
397 /* Check for simple loops. */
398 desc
= get_simple_loop_desc (loop
);
400 /* Check number of iterations. */
408 ";; Unable to prove that the loop iterates constant times\n");
412 if (desc
->niter
> npeel
- 1)
417 ";; Not peeling loop completely, rolls too much (");
418 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, desc
->niter
);
419 fprintf (dump_file
, " iterations > %d [maximum peelings])\n", npeel
);
426 fprintf (dump_file
, ";; Decided to peel loop completely\n");
427 loop
->lpt_decision
.decision
= LPT_PEEL_COMPLETELY
;
430 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
431 completely. The transformation done:
433 for (i = 0; i < 4; i++)
445 peel_loop_completely (struct loop
*loop
)
448 unsigned HOST_WIDE_INT npeel
;
450 VEC (edge
, heap
) *remove_edges
;
452 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
453 struct opt_info
*opt_info
= NULL
;
461 wont_exit
= sbitmap_alloc (npeel
+ 1);
462 sbitmap_ones (wont_exit
);
463 RESET_BIT (wont_exit
, 0);
464 if (desc
->noloop_assumptions
)
465 RESET_BIT (wont_exit
, 1);
469 if (flag_split_ivs_in_unroller
)
470 opt_info
= analyze_insns_in_loop (loop
);
472 opt_info_start_duplication (opt_info
);
473 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
475 wont_exit
, desc
->out_edge
,
477 DLTHE_FLAG_UPDATE_FREQ
478 | DLTHE_FLAG_COMPLETTE_PEEL
480 ? DLTHE_RECORD_COPY_NUMBER
: 0));
487 apply_opt_in_copies (opt_info
, npeel
, false, true);
488 free_opt_info (opt_info
);
491 /* Remove the exit edges. */
492 for (i
= 0; VEC_iterate (edge
, remove_edges
, i
, ein
); i
++)
494 VEC_free (edge
, heap
, remove_edges
);
498 free_simple_loop_desc (loop
);
500 /* Now remove the unreachable part of the last iteration and cancel
505 fprintf (dump_file
, ";; Peeled loop completely, %d times\n", (int) npeel
);
508 /* Decide whether to unroll LOOP iterating constant number of times
512 decide_unroll_constant_iterations (struct loop
*loop
, int flags
)
514 unsigned nunroll
, nunroll_by_av
, best_copies
, best_unroll
= 0, n_copies
, i
;
515 struct niter_desc
*desc
;
517 if (!(flags
& UAP_UNROLL
))
519 /* We were not asked to, just return back silently. */
525 "\n;; Considering unrolling loop with constant "
526 "number of iterations\n");
528 /* nunroll = total number of copies of the original loop body in
529 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
530 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
532 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
533 if (nunroll
> nunroll_by_av
)
534 nunroll
= nunroll_by_av
;
535 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
536 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
538 /* Skip big loops. */
542 fprintf (dump_file
, ";; Not considering loop, is too big\n");
546 /* Check for simple loops. */
547 desc
= get_simple_loop_desc (loop
);
549 /* Check number of iterations. */
550 if (!desc
->simple_p
|| !desc
->const_iter
|| desc
->assumptions
)
554 ";; Unable to prove that the loop iterates constant times\n");
558 /* Check whether the loop rolls enough to consider. */
559 if (desc
->niter
< 2 * nunroll
)
562 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
566 /* Success; now compute number of iterations to unroll. We alter
567 nunroll so that as few as possible copies of loop body are
568 necessary, while still not decreasing the number of unrollings
569 too much (at most by 1). */
570 best_copies
= 2 * nunroll
+ 10;
573 if (i
- 1 >= desc
->niter
)
576 for (; i
>= nunroll
- 1; i
--)
578 unsigned exit_mod
= desc
->niter
% (i
+ 1);
580 if (!loop_exit_at_end_p (loop
))
581 n_copies
= exit_mod
+ i
+ 1;
582 else if (exit_mod
!= (unsigned) i
583 || desc
->noloop_assumptions
!= NULL_RTX
)
584 n_copies
= exit_mod
+ i
+ 2;
588 if (n_copies
< best_copies
)
590 best_copies
= n_copies
;
596 fprintf (dump_file
, ";; max_unroll %d (%d copies, initial %d).\n",
597 best_unroll
+ 1, best_copies
, nunroll
);
599 loop
->lpt_decision
.decision
= LPT_UNROLL_CONSTANT
;
600 loop
->lpt_decision
.times
= best_unroll
;
604 ";; Decided to unroll the constant times rolling loop, %d times.\n",
605 loop
->lpt_decision
.times
);
608 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
609 times. The transformation does this:
611 for (i = 0; i < 102; i++)
628 unroll_loop_constant_iterations (struct loop
*loop
)
630 unsigned HOST_WIDE_INT niter
;
634 VEC (edge
, heap
) *remove_edges
;
636 unsigned max_unroll
= loop
->lpt_decision
.times
;
637 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
638 bool exit_at_end
= loop_exit_at_end_p (loop
);
639 struct opt_info
*opt_info
= NULL
;
644 /* Should not get here (such loop should be peeled instead). */
645 gcc_assert (niter
> max_unroll
+ 1);
647 exit_mod
= niter
% (max_unroll
+ 1);
649 wont_exit
= sbitmap_alloc (max_unroll
+ 1);
650 sbitmap_ones (wont_exit
);
653 if (flag_split_ivs_in_unroller
654 || flag_variable_expansion_in_unroller
)
655 opt_info
= analyze_insns_in_loop (loop
);
659 /* The exit is not at the end of the loop; leave exit test
660 in the first copy, so that the loops that start with test
661 of exit condition have continuous body after unrolling. */
664 fprintf (dump_file
, ";; Condition on beginning of loop.\n");
666 /* Peel exit_mod iterations. */
667 RESET_BIT (wont_exit
, 0);
668 if (desc
->noloop_assumptions
)
669 RESET_BIT (wont_exit
, 1);
673 opt_info_start_duplication (opt_info
);
674 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
676 wont_exit
, desc
->out_edge
,
678 DLTHE_FLAG_UPDATE_FREQ
679 | (opt_info
&& exit_mod
> 1
680 ? DLTHE_RECORD_COPY_NUMBER
684 if (opt_info
&& exit_mod
> 1)
685 apply_opt_in_copies (opt_info
, exit_mod
, false, false);
687 desc
->noloop_assumptions
= NULL_RTX
;
688 desc
->niter
-= exit_mod
;
689 desc
->niter_max
-= exit_mod
;
692 SET_BIT (wont_exit
, 1);
696 /* Leave exit test in last copy, for the same reason as above if
697 the loop tests the condition at the end of loop body. */
700 fprintf (dump_file
, ";; Condition on end of loop.\n");
702 /* We know that niter >= max_unroll + 2; so we do not need to care of
703 case when we would exit before reaching the loop. So just peel
704 exit_mod + 1 iterations. */
705 if (exit_mod
!= max_unroll
706 || desc
->noloop_assumptions
)
708 RESET_BIT (wont_exit
, 0);
709 if (desc
->noloop_assumptions
)
710 RESET_BIT (wont_exit
, 1);
712 opt_info_start_duplication (opt_info
);
713 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
715 wont_exit
, desc
->out_edge
,
717 DLTHE_FLAG_UPDATE_FREQ
718 | (opt_info
&& exit_mod
> 0
719 ? DLTHE_RECORD_COPY_NUMBER
723 if (opt_info
&& exit_mod
> 0)
724 apply_opt_in_copies (opt_info
, exit_mod
+ 1, false, false);
726 desc
->niter
-= exit_mod
+ 1;
727 desc
->niter_max
-= exit_mod
+ 1;
728 desc
->noloop_assumptions
= NULL_RTX
;
730 SET_BIT (wont_exit
, 0);
731 SET_BIT (wont_exit
, 1);
734 RESET_BIT (wont_exit
, max_unroll
);
737 /* Now unroll the loop. */
739 opt_info_start_duplication (opt_info
);
740 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
742 wont_exit
, desc
->out_edge
,
744 DLTHE_FLAG_UPDATE_FREQ
746 ? DLTHE_RECORD_COPY_NUMBER
752 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
753 free_opt_info (opt_info
);
760 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
761 /* Find a new in and out edge; they are in the last copy we have made. */
763 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
765 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
766 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
770 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
771 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
775 desc
->niter
/= max_unroll
+ 1;
776 desc
->niter_max
/= max_unroll
+ 1;
777 desc
->niter_expr
= GEN_INT (desc
->niter
);
779 /* Remove the edges. */
780 for (i
= 0; VEC_iterate (edge
, remove_edges
, i
, e
); i
++)
782 VEC_free (edge
, heap
, remove_edges
);
786 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
787 max_unroll
, num_loop_insns (loop
));
790 /* Decide whether to unroll LOOP iterating runtime computable number of times
793 decide_unroll_runtime_iterations (struct loop
*loop
, int flags
)
795 unsigned nunroll
, nunroll_by_av
, i
;
796 struct niter_desc
*desc
;
798 if (!(flags
& UAP_UNROLL
))
800 /* We were not asked to, just return back silently. */
806 "\n;; Considering unrolling loop with runtime "
807 "computable number of iterations\n");
809 /* nunroll = total number of copies of the original loop body in
810 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
811 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
812 nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
813 if (nunroll
> nunroll_by_av
)
814 nunroll
= nunroll_by_av
;
815 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
816 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
818 /* Skip big loops. */
822 fprintf (dump_file
, ";; Not considering loop, is too big\n");
826 /* Check for simple loops. */
827 desc
= get_simple_loop_desc (loop
);
829 /* Check simpleness. */
830 if (!desc
->simple_p
|| desc
->assumptions
)
834 ";; Unable to prove that the number of iterations "
835 "can be counted in runtime\n");
839 if (desc
->const_iter
)
842 fprintf (dump_file
, ";; Loop iterates constant times\n");
846 /* If we have profile feedback, check whether the loop rolls. */
847 if (loop
->header
->count
&& expected_loop_iterations (loop
) < 2 * nunroll
)
850 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
854 /* Success; now force nunroll to be power of 2, as we are unable to
855 cope with overflows in computation of number of iterations. */
856 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
859 loop
->lpt_decision
.decision
= LPT_UNROLL_RUNTIME
;
860 loop
->lpt_decision
.times
= i
- 1;
864 ";; Decided to unroll the runtime computable "
865 "times rolling loop, %d times.\n",
866 loop
->lpt_decision
.times
);
869 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
870 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
871 and NULL is returned instead. */
874 split_edge_and_insert (edge e
, rtx insns
)
881 emit_insn_after (insns
, BB_END (bb
));
882 bb
->flags
|= BB_SUPERBLOCK
;
886 /* Unroll LOOP for that we are able to count number of iterations in runtime
887 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
888 extra care for case n < 0):
890 for (i = 0; i < n; i++)
918 unroll_loop_runtime_iterations (struct loop
*loop
)
920 rtx old_niter
, niter
, init_code
, branch_code
, tmp
;
922 basic_block preheader
, *body
, *dom_bbs
, swtch
, ezc_swtch
;
927 VEC (edge
, heap
) *remove_edges
;
929 bool extra_zero_check
, last_may_exit
;
930 unsigned max_unroll
= loop
->lpt_decision
.times
;
931 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
932 bool exit_at_end
= loop_exit_at_end_p (loop
);
933 struct opt_info
*opt_info
= NULL
;
936 if (flag_split_ivs_in_unroller
937 || flag_variable_expansion_in_unroller
)
938 opt_info
= analyze_insns_in_loop (loop
);
940 /* Remember blocks whose dominators will have to be updated. */
941 dom_bbs
= XCNEWVEC (basic_block
, n_basic_blocks
);
944 body
= get_loop_body (loop
);
945 for (i
= 0; i
< loop
->num_nodes
; i
++)
950 nldom
= get_dominated_by (CDI_DOMINATORS
, body
[i
], &ldom
);
951 for (j
= 0; j
< nldom
; j
++)
952 if (!flow_bb_inside_loop_p (loop
, ldom
[j
]))
953 dom_bbs
[n_dom_bbs
++] = ldom
[j
];
961 /* Leave exit in first copy (for explanation why see comment in
962 unroll_loop_constant_iterations). */
964 n_peel
= max_unroll
- 1;
965 extra_zero_check
= true;
966 last_may_exit
= false;
970 /* Leave exit in last copy (for explanation why see comment in
971 unroll_loop_constant_iterations). */
972 may_exit_copy
= max_unroll
;
974 extra_zero_check
= false;
975 last_may_exit
= true;
978 /* Get expression for number of iterations. */
980 old_niter
= niter
= gen_reg_rtx (desc
->mode
);
981 tmp
= force_operand (copy_rtx (desc
->niter_expr
), niter
);
983 emit_move_insn (niter
, tmp
);
985 /* Count modulo by ANDing it with max_unroll; we use the fact that
986 the number of unrollings is a power of two, and thus this is correct
987 even if there is overflow in the computation. */
988 niter
= expand_simple_binop (desc
->mode
, AND
,
990 GEN_INT (max_unroll
),
991 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
993 init_code
= get_insns ();
996 /* Precondition the loop. */
997 split_edge_and_insert (loop_preheader_edge (loop
), init_code
);
1001 wont_exit
= sbitmap_alloc (max_unroll
+ 2);
1003 /* Peel the first copy of loop body (almost always we must leave exit test
1004 here; the only exception is when we have extra zero check and the number
1005 of iterations is reliable. Also record the place of (possible) extra
1007 sbitmap_zero (wont_exit
);
1008 if (extra_zero_check
1009 && !desc
->noloop_assumptions
)
1010 SET_BIT (wont_exit
, 1);
1011 ezc_swtch
= loop_preheader_edge (loop
)->src
;
1012 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1013 1, wont_exit
, desc
->out_edge
,
1015 DLTHE_FLAG_UPDATE_FREQ
);
1018 /* Record the place where switch will be built for preconditioning. */
1019 swtch
= split_edge (loop_preheader_edge (loop
));
1021 for (i
= 0; i
< n_peel
; i
++)
1023 /* Peel the copy. */
1024 sbitmap_zero (wont_exit
);
1025 if (i
!= n_peel
- 1 || !last_may_exit
)
1026 SET_BIT (wont_exit
, 1);
1027 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1028 1, wont_exit
, desc
->out_edge
,
1030 DLTHE_FLAG_UPDATE_FREQ
);
1033 /* Create item for switch. */
1034 j
= n_peel
- i
- (extra_zero_check
? 0 : 1);
1035 p
= REG_BR_PROB_BASE
/ (i
+ 2);
1037 preheader
= split_edge (loop_preheader_edge (loop
));
1038 branch_code
= compare_and_jump_seq (copy_rtx (niter
), GEN_INT (j
), EQ
,
1039 block_label (preheader
), p
,
1042 /* We rely on the fact that the compare and jump cannot be optimized out,
1043 and hence the cfg we create is correct. */
1044 gcc_assert (branch_code
!= NULL_RTX
);
1046 swtch
= split_edge_and_insert (single_pred_edge (swtch
), branch_code
);
1047 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1048 single_pred_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1049 e
= make_edge (swtch
, preheader
,
1050 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1054 if (extra_zero_check
)
1056 /* Add branch for zero iterations. */
1057 p
= REG_BR_PROB_BASE
/ (max_unroll
+ 1);
1059 preheader
= split_edge (loop_preheader_edge (loop
));
1060 branch_code
= compare_and_jump_seq (copy_rtx (niter
), const0_rtx
, EQ
,
1061 block_label (preheader
), p
,
1063 gcc_assert (branch_code
!= NULL_RTX
);
1065 swtch
= split_edge_and_insert (single_succ_edge (swtch
), branch_code
);
1066 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1067 single_succ_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1068 e
= make_edge (swtch
, preheader
,
1069 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1073 /* Recount dominators for outer blocks. */
1074 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, n_dom_bbs
);
1076 /* And unroll loop. */
1078 sbitmap_ones (wont_exit
);
1079 RESET_BIT (wont_exit
, may_exit_copy
);
1080 opt_info_start_duplication (opt_info
);
1082 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1084 wont_exit
, desc
->out_edge
,
1086 DLTHE_FLAG_UPDATE_FREQ
1088 ? DLTHE_RECORD_COPY_NUMBER
1094 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
1095 free_opt_info (opt_info
);
1102 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
1103 /* Find a new in and out edge; they are in the last copy we have
1106 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
1108 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
1109 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
1113 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
1114 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
1118 /* Remove the edges. */
1119 for (i
= 0; VEC_iterate (edge
, remove_edges
, i
, e
); i
++)
1121 VEC_free (edge
, heap
, remove_edges
);
1123 /* We must be careful when updating the number of iterations due to
1124 preconditioning and the fact that the value must be valid at entry
1125 of the loop. After passing through the above code, we see that
1126 the correct new number of iterations is this: */
1127 gcc_assert (!desc
->const_iter
);
1129 simplify_gen_binary (UDIV
, desc
->mode
, old_niter
,
1130 GEN_INT (max_unroll
+ 1));
1131 desc
->niter_max
/= max_unroll
+ 1;
1135 simplify_gen_binary (MINUS
, desc
->mode
, desc
->niter_expr
, const1_rtx
);
1136 desc
->noloop_assumptions
= NULL_RTX
;
1142 ";; Unrolled loop %d times, counting # of iterations "
1143 "in runtime, %i insns\n",
1144 max_unroll
, num_loop_insns (loop
));
1150 /* Decide whether to simply peel LOOP and how much. */
1152 decide_peel_simple (struct loop
*loop
, int flags
)
1155 struct niter_desc
*desc
;
1157 if (!(flags
& UAP_PEEL
))
1159 /* We were not asked to, just return back silently. */
1164 fprintf (dump_file
, "\n;; Considering simply peeling loop\n");
1166 /* npeel = number of iterations to peel. */
1167 npeel
= PARAM_VALUE (PARAM_MAX_PEELED_INSNS
) / loop
->ninsns
;
1168 if (npeel
> (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES
))
1169 npeel
= PARAM_VALUE (PARAM_MAX_PEEL_TIMES
);
1171 /* Skip big loops. */
1175 fprintf (dump_file
, ";; Not considering loop, is too big\n");
1179 /* Check for simple loops. */
1180 desc
= get_simple_loop_desc (loop
);
1182 /* Check number of iterations. */
1183 if (desc
->simple_p
&& !desc
->assumptions
&& desc
->const_iter
)
1186 fprintf (dump_file
, ";; Loop iterates constant times\n");
1190 /* Do not simply peel loops with branches inside -- it increases number
1192 if (num_loop_branches (loop
) > 1)
1195 fprintf (dump_file
, ";; Not peeling, contains branches\n");
1199 if (loop
->header
->count
)
1201 unsigned niter
= expected_loop_iterations (loop
);
1202 if (niter
+ 1 > npeel
)
1206 fprintf (dump_file
, ";; Not peeling loop, rolls too much (");
1207 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1208 (HOST_WIDEST_INT
) (niter
+ 1));
1209 fprintf (dump_file
, " iterations > %d [maximum peelings])\n",
1218 /* For now we have no good heuristics to decide whether loop peeling
1219 will be effective, so disable it. */
1222 ";; Not peeling loop, no evidence it will be profitable\n");
1227 loop
->lpt_decision
.decision
= LPT_PEEL_SIMPLE
;
1228 loop
->lpt_decision
.times
= npeel
;
1231 fprintf (dump_file
, ";; Decided to simply peel the loop, %d times.\n",
1232 loop
->lpt_decision
.times
);
1235 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1241 if (!cond) goto end;
1243 if (!cond) goto end;
1250 peel_loop_simple (struct loop
*loop
)
1253 unsigned npeel
= loop
->lpt_decision
.times
;
1254 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
1255 struct opt_info
*opt_info
= NULL
;
1258 if (flag_split_ivs_in_unroller
&& npeel
> 1)
1259 opt_info
= analyze_insns_in_loop (loop
);
1261 wont_exit
= sbitmap_alloc (npeel
+ 1);
1262 sbitmap_zero (wont_exit
);
1264 opt_info_start_duplication (opt_info
);
1266 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1267 npeel
, wont_exit
, NULL
,
1268 NULL
, DLTHE_FLAG_UPDATE_FREQ
1270 ? DLTHE_RECORD_COPY_NUMBER
1278 apply_opt_in_copies (opt_info
, npeel
, false, false);
1279 free_opt_info (opt_info
);
1284 if (desc
->const_iter
)
1286 desc
->niter
-= npeel
;
1287 desc
->niter_expr
= GEN_INT (desc
->niter
);
1288 desc
->noloop_assumptions
= NULL_RTX
;
1292 /* We cannot just update niter_expr, as its value might be clobbered
1293 inside loop. We could handle this by counting the number into
1294 temporary just like we do in runtime unrolling, but it does not
1296 free_simple_loop_desc (loop
);
1300 fprintf (dump_file
, ";; Peeling loop %d times\n", npeel
);
1303 /* Decide whether to unroll LOOP stupidly and how much. */
1305 decide_unroll_stupid (struct loop
*loop
, int flags
)
1307 unsigned nunroll
, nunroll_by_av
, i
;
1308 struct niter_desc
*desc
;
1310 if (!(flags
& UAP_UNROLL_ALL
))
1312 /* We were not asked to, just return back silently. */
1317 fprintf (dump_file
, "\n;; Considering unrolling loop stupidly\n");
1319 /* nunroll = total number of copies of the original loop body in
1320 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1321 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
1323 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
1324 if (nunroll
> nunroll_by_av
)
1325 nunroll
= nunroll_by_av
;
1326 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
1327 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1329 /* Skip big loops. */
1333 fprintf (dump_file
, ";; Not considering loop, is too big\n");
1337 /* Check for simple loops. */
1338 desc
= get_simple_loop_desc (loop
);
1340 /* Check simpleness. */
1341 if (desc
->simple_p
&& !desc
->assumptions
)
1344 fprintf (dump_file
, ";; The loop is simple\n");
1348 /* Do not unroll loops with branches inside -- it increases number
1350 if (num_loop_branches (loop
) > 1)
1353 fprintf (dump_file
, ";; Not unrolling, contains branches\n");
1357 /* If we have profile feedback, check whether the loop rolls. */
1358 if (loop
->header
->count
1359 && expected_loop_iterations (loop
) < 2 * nunroll
)
1362 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
1366 /* Success. Now force nunroll to be power of 2, as it seems that this
1367 improves results (partially because of better alignments, partially
1368 because of some dark magic). */
1369 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
1372 loop
->lpt_decision
.decision
= LPT_UNROLL_STUPID
;
1373 loop
->lpt_decision
.times
= i
- 1;
1377 ";; Decided to unroll the loop stupidly, %d times.\n",
1378 loop
->lpt_decision
.times
);
1381 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1399 unroll_loop_stupid (struct loop
*loop
)
1402 unsigned nunroll
= loop
->lpt_decision
.times
;
1403 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
1404 struct opt_info
*opt_info
= NULL
;
1407 if (flag_split_ivs_in_unroller
1408 || flag_variable_expansion_in_unroller
)
1409 opt_info
= analyze_insns_in_loop (loop
);
1412 wont_exit
= sbitmap_alloc (nunroll
+ 1);
1413 sbitmap_zero (wont_exit
);
1414 opt_info_start_duplication (opt_info
);
1416 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1419 DLTHE_FLAG_UPDATE_FREQ
1421 ? DLTHE_RECORD_COPY_NUMBER
1427 apply_opt_in_copies (opt_info
, nunroll
, true, true);
1428 free_opt_info (opt_info
);
1435 /* We indeed may get here provided that there are nontrivial assumptions
1436 for a loop to be really simple. We could update the counts, but the
1437 problem is that we are unable to decide which exit will be taken
1438 (not really true in case the number of iterations is constant,
1439 but noone will do anything with this information, so we do not
1441 desc
->simple_p
= false;
1445 fprintf (dump_file
, ";; Unrolled loop %d times, %i insns\n",
1446 nunroll
, num_loop_insns (loop
));
1449 /* A hash function for information about insns to split. */
1452 si_info_hash (const void *ivts
)
1454 return (hashval_t
) INSN_UID (((struct iv_to_split
*) ivts
)->insn
);
1457 /* An equality functions for information about insns to split. */
1460 si_info_eq (const void *ivts1
, const void *ivts2
)
1462 const struct iv_to_split
*i1
= ivts1
;
1463 const struct iv_to_split
*i2
= ivts2
;
1465 return i1
->insn
== i2
->insn
;
1468 /* Return a hash for VES, which is really a "var_to_expand *". */
1471 ve_info_hash (const void *ves
)
1473 return (hashval_t
) INSN_UID (((struct var_to_expand
*) ves
)->insn
);
1476 /* Return true if IVTS1 and IVTS2 (which are really both of type
1477 "var_to_expand *") refer to the same instruction. */
1480 ve_info_eq (const void *ivts1
, const void *ivts2
)
1482 const struct var_to_expand
*i1
= ivts1
;
1483 const struct var_to_expand
*i2
= ivts2
;
1485 return i1
->insn
== i2
->insn
;
1488 /* Returns true if REG is referenced in one insn in LOOP. */
1491 referenced_in_one_insn_in_loop_p (struct loop
*loop
, rtx reg
)
1493 basic_block
*body
, bb
;
1498 body
= get_loop_body (loop
);
1499 for (i
= 0; i
< loop
->num_nodes
; i
++)
1503 FOR_BB_INSNS (bb
, insn
)
1505 if (rtx_referenced_p (reg
, insn
))
1509 return (count_ref
== 1);
1512 /* Determine whether INSN contains an accumulator
1513 which can be expanded into separate copies,
1514 one for each copy of the LOOP body.
1516 for (i = 0 ; i < n; i++)
1530 Return NULL if INSN contains no opportunity for expansion of accumulator.
1531 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1532 information and return a pointer to it.
1535 static struct var_to_expand
*
1536 analyze_insn_to_expand_var (struct loop
*loop
, rtx insn
)
1538 rtx set
, dest
, src
, op1
;
1539 struct var_to_expand
*ves
;
1540 enum machine_mode mode1
, mode2
;
1542 set
= single_set (insn
);
1546 dest
= SET_DEST (set
);
1547 src
= SET_SRC (set
);
1549 if (GET_CODE (src
) != PLUS
1550 && GET_CODE (src
) != MINUS
1551 && GET_CODE (src
) != MULT
)
1554 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1555 in MD. But if there is no optab to generate the insn, we can not
1556 perform the variable expansion. This can happen if an MD provides
1557 an insn but not a named pattern to generate it, for example to avoid
1558 producing code that needs additional mode switches like for x87/mmx.
1560 So we check have_insn_for which looks for an optab for the operation
1561 in SRC. If it doesn't exist, we can't perform the expansion even
1562 though INSN is valid. */
1563 if (!have_insn_for (GET_CODE (src
), GET_MODE (src
)))
1569 op1
= XEXP (src
, 0);
1572 && !(GET_CODE (dest
) == SUBREG
1573 && REG_P (SUBREG_REG (dest
))))
1576 if (!rtx_equal_p (dest
, op1
))
1579 if (!referenced_in_one_insn_in_loop_p (loop
, dest
))
1582 if (rtx_referenced_p (dest
, XEXP (src
, 1)))
1585 mode1
= GET_MODE (dest
);
1586 mode2
= GET_MODE (XEXP (src
, 1));
1587 if ((FLOAT_MODE_P (mode1
)
1588 || FLOAT_MODE_P (mode2
))
1589 && !flag_unsafe_math_optimizations
)
1595 "\n;; Expanding Accumulator ");
1596 print_rtl (dump_file
, dest
);
1597 fprintf (dump_file
, "\n");
1600 /* Record the accumulator to expand. */
1601 ves
= XNEW (struct var_to_expand
);
1603 ves
->var_expansions
= VEC_alloc (rtx
, heap
, 1);
1604 ves
->reg
= copy_rtx (dest
);
1605 ves
->op
= GET_CODE (src
);
1606 ves
->expansion_count
= 0;
1607 ves
->reuse_expansion
= 0;
1611 /* Determine whether there is an induction variable in INSN that
1612 we would like to split during unrolling.
1632 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1633 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1636 static struct iv_to_split
*
1637 analyze_iv_to_split_insn (rtx insn
)
1641 struct iv_to_split
*ivts
;
1644 /* For now we just split the basic induction variables. Later this may be
1645 extended for example by selecting also addresses of memory references. */
1646 set
= single_set (insn
);
1650 dest
= SET_DEST (set
);
1654 if (!biv_p (insn
, dest
))
1657 ok
= iv_analyze_result (insn
, dest
, &iv
);
1659 /* This used to be an assert under the assumption that if biv_p returns
1660 true that iv_analyze_result must also return true. However, that
1661 assumption is not strictly correct as evidenced by pr25569.
1663 Returning NULL when iv_analyze_result returns false is safe and
1664 avoids the problems in pr25569 until the iv_analyze_* routines
1665 can be fixed, which is apparently hard and time consuming
1666 according to their author. */
1670 if (iv
.step
== const0_rtx
1671 || iv
.mode
!= iv
.extend_mode
)
1674 /* Record the insn to split. */
1675 ivts
= XNEW (struct iv_to_split
);
1677 ivts
->base_var
= NULL_RTX
;
1678 ivts
->step
= iv
.step
;
1685 /* Determines which of insns in LOOP can be optimized.
1686 Return a OPT_INFO struct with the relevant hash tables filled
1687 with all insns to be optimized. The FIRST_NEW_BLOCK field
1688 is undefined for the return value. */
1690 static struct opt_info
*
1691 analyze_insns_in_loop (struct loop
*loop
)
1693 basic_block
*body
, bb
;
1695 struct opt_info
*opt_info
= XCNEW (struct opt_info
);
1697 struct iv_to_split
*ivts
= NULL
;
1698 struct var_to_expand
*ves
= NULL
;
1701 VEC (edge
, heap
) *edges
= get_loop_exit_edges (loop
);
1703 bool can_apply
= false;
1705 iv_analysis_loop_init (loop
);
1707 body
= get_loop_body (loop
);
1709 if (flag_split_ivs_in_unroller
)
1710 opt_info
->insns_to_split
= htab_create (5 * loop
->num_nodes
,
1711 si_info_hash
, si_info_eq
, free
);
1713 /* Record the loop exit bb and loop preheader before the unrolling. */
1714 opt_info
->loop_preheader
= loop_preheader_edge (loop
)->src
;
1716 if (VEC_length (edge
, edges
) == 1)
1718 exit
= VEC_index (edge
, edges
, 0);
1719 if (!(exit
->flags
& EDGE_COMPLEX
))
1721 opt_info
->loop_exit
= split_edge (exit
);
1726 if (flag_variable_expansion_in_unroller
1728 opt_info
->insns_with_var_to_expand
= htab_create (5 * loop
->num_nodes
,
1729 ve_info_hash
, ve_info_eq
, free
);
1731 for (i
= 0; i
< loop
->num_nodes
; i
++)
1734 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
1737 FOR_BB_INSNS (bb
, insn
)
1742 if (opt_info
->insns_to_split
)
1743 ivts
= analyze_iv_to_split_insn (insn
);
1747 slot1
= htab_find_slot (opt_info
->insns_to_split
, ivts
, INSERT
);
1752 if (opt_info
->insns_with_var_to_expand
)
1753 ves
= analyze_insn_to_expand_var (loop
, insn
);
1757 slot2
= htab_find_slot (opt_info
->insns_with_var_to_expand
, ves
, INSERT
);
1763 VEC_free (edge
, heap
, edges
);
1768 /* Called just before loop duplication. Records start of duplicated area
1772 opt_info_start_duplication (struct opt_info
*opt_info
)
1775 opt_info
->first_new_block
= last_basic_block
;
1778 /* Determine the number of iterations between initialization of the base
1779 variable and the current copy (N_COPY). N_COPIES is the total number
1780 of newly created copies. UNROLLING is true if we are unrolling
1781 (not peeling) the loop. */
1784 determine_split_iv_delta (unsigned n_copy
, unsigned n_copies
, bool unrolling
)
1788 /* If we are unrolling, initialization is done in the original loop
1794 /* If we are peeling, the copy in that the initialization occurs has
1795 number 1. The original loop (number 0) is the last. */
1803 /* Locate in EXPR the expression corresponding to the location recorded
1804 in IVTS, and return a pointer to the RTX for this location. */
1807 get_ivts_expr (rtx expr
, struct iv_to_split
*ivts
)
1812 for (i
= 0; i
< ivts
->n_loc
; i
++)
1813 ret
= &XEXP (*ret
, ivts
->loc
[i
]);
1818 /* Allocate basic variable for the induction variable chain. Callback for
1822 allocate_basic_variable (void **slot
, void *data ATTRIBUTE_UNUSED
)
1824 struct iv_to_split
*ivts
= *slot
;
1825 rtx expr
= *get_ivts_expr (single_set (ivts
->insn
), ivts
);
1827 ivts
->base_var
= gen_reg_rtx (GET_MODE (expr
));
1832 /* Insert initialization of basic variable of IVTS before INSN, taking
1833 the initial value from INSN. */
1836 insert_base_initialization (struct iv_to_split
*ivts
, rtx insn
)
1838 rtx expr
= copy_rtx (*get_ivts_expr (single_set (insn
), ivts
));
1842 expr
= force_operand (expr
, ivts
->base_var
);
1843 if (expr
!= ivts
->base_var
)
1844 emit_move_insn (ivts
->base_var
, expr
);
1848 emit_insn_before (seq
, insn
);
1851 /* Replace the use of induction variable described in IVTS in INSN
1852 by base variable + DELTA * step. */
1855 split_iv (struct iv_to_split
*ivts
, rtx insn
, unsigned delta
)
1857 rtx expr
, *loc
, seq
, incr
, var
;
1858 enum machine_mode mode
= GET_MODE (ivts
->base_var
);
1861 /* Construct base + DELTA * step. */
1863 expr
= ivts
->base_var
;
1866 incr
= simplify_gen_binary (MULT
, mode
,
1867 ivts
->step
, gen_int_mode (delta
, mode
));
1868 expr
= simplify_gen_binary (PLUS
, GET_MODE (ivts
->base_var
),
1869 ivts
->base_var
, incr
);
1872 /* Figure out where to do the replacement. */
1873 loc
= get_ivts_expr (single_set (insn
), ivts
);
1875 /* If we can make the replacement right away, we're done. */
1876 if (validate_change (insn
, loc
, expr
, 0))
1879 /* Otherwise, force EXPR into a register and try again. */
1881 var
= gen_reg_rtx (mode
);
1882 expr
= force_operand (expr
, var
);
1884 emit_move_insn (var
, expr
);
1887 emit_insn_before (seq
, insn
);
1889 if (validate_change (insn
, loc
, var
, 0))
1892 /* The last chance. Try recreating the assignment in insn
1893 completely from scratch. */
1894 set
= single_set (insn
);
1899 src
= copy_rtx (SET_SRC (set
));
1900 dest
= copy_rtx (SET_DEST (set
));
1901 src
= force_operand (src
, dest
);
1903 emit_move_insn (dest
, src
);
1907 emit_insn_before (seq
, insn
);
1912 /* Return one expansion of the accumulator recorded in struct VE. */
1915 get_expansion (struct var_to_expand
*ve
)
1919 if (ve
->reuse_expansion
== 0)
1922 reg
= VEC_index (rtx
, ve
->var_expansions
, ve
->reuse_expansion
- 1);
1924 if (VEC_length (rtx
, ve
->var_expansions
) == (unsigned) ve
->reuse_expansion
)
1925 ve
->reuse_expansion
= 0;
1927 ve
->reuse_expansion
++;
1933 /* Given INSN replace the uses of the accumulator recorded in VE
1934 with a new register. */
1937 expand_var_during_unrolling (struct var_to_expand
*ve
, rtx insn
)
1940 bool really_new_expansion
= false;
1942 set
= single_set (insn
);
1945 /* Generate a new register only if the expansion limit has not been
1946 reached. Else reuse an already existing expansion. */
1947 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS
) > ve
->expansion_count
)
1949 really_new_expansion
= true;
1950 new_reg
= gen_reg_rtx (GET_MODE (ve
->reg
));
1953 new_reg
= get_expansion (ve
);
1955 validate_change (insn
, &SET_DEST (set
), new_reg
, 1);
1956 validate_change (insn
, &XEXP (SET_SRC (set
), 0), new_reg
, 1);
1958 if (apply_change_group ())
1959 if (really_new_expansion
)
1961 VEC_safe_push (rtx
, heap
, ve
->var_expansions
, new_reg
);
1962 ve
->expansion_count
++;
1966 /* Initialize the variable expansions in loop preheader.
1967 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1968 basic block where the initialization of the expansions
1969 should take place. */
1972 insert_var_expansion_initialization (void **slot
, void *place_p
)
1974 struct var_to_expand
*ve
= *slot
;
1975 basic_block place
= (basic_block
)place_p
;
1976 rtx seq
, var
, zero_init
, insn
;
1979 if (VEC_length (rtx
, ve
->var_expansions
) == 0)
1983 if (ve
->op
== PLUS
|| ve
->op
== MINUS
)
1984 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
1986 zero_init
= CONST0_RTX (GET_MODE (var
));
1987 emit_move_insn (var
, zero_init
);
1989 else if (ve
->op
== MULT
)
1990 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
1992 zero_init
= CONST1_RTX (GET_MODE (var
));
1993 emit_move_insn (var
, zero_init
);
1999 insn
= BB_HEAD (place
);
2000 while (!NOTE_INSN_BASIC_BLOCK_P (insn
))
2001 insn
= NEXT_INSN (insn
);
2003 emit_insn_after (seq
, insn
);
2004 /* Continue traversing the hash table. */
2008 /* Combine the variable expansions at the loop exit.
2009 Callbacks for htab_traverse. PLACE_P is the loop exit
2010 basic block where the summation of the expansions should
2014 combine_var_copies_in_loop_exit (void **slot
, void *place_p
)
2016 struct var_to_expand
*ve
= *slot
;
2017 basic_block place
= (basic_block
)place_p
;
2019 rtx expr
, seq
, var
, insn
;
2022 if (VEC_length (rtx
, ve
->var_expansions
) == 0)
2026 if (ve
->op
== PLUS
|| ve
->op
== MINUS
)
2027 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
2029 sum
= simplify_gen_binary (PLUS
, GET_MODE (ve
->reg
),
2032 else if (ve
->op
== MULT
)
2033 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
2035 sum
= simplify_gen_binary (MULT
, GET_MODE (ve
->reg
),
2039 expr
= force_operand (sum
, ve
->reg
);
2040 if (expr
!= ve
->reg
)
2041 emit_move_insn (ve
->reg
, expr
);
2045 insn
= BB_HEAD (place
);
2046 while (!NOTE_INSN_BASIC_BLOCK_P (insn
))
2047 insn
= NEXT_INSN (insn
);
2049 emit_insn_after (seq
, insn
);
2051 /* Continue traversing the hash table. */
2055 /* Apply loop optimizations in loop copies using the
2056 data which gathered during the unrolling. Structure
2057 OPT_INFO record that data.
2059 UNROLLING is true if we unrolled (not peeled) the loop.
2060 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2061 the loop (as it should happen in complete unrolling, but not in ordinary
2062 peeling of the loop). */
2065 apply_opt_in_copies (struct opt_info
*opt_info
,
2066 unsigned n_copies
, bool unrolling
,
2067 bool rewrite_original_loop
)
2070 basic_block bb
, orig_bb
;
2071 rtx insn
, orig_insn
, next
;
2072 struct iv_to_split ivts_templ
, *ivts
;
2073 struct var_to_expand ve_templ
, *ves
;
2075 /* Sanity check -- we need to put initialization in the original loop
2077 gcc_assert (!unrolling
|| rewrite_original_loop
);
2079 /* Allocate the basic variables (i0). */
2080 if (opt_info
->insns_to_split
)
2081 htab_traverse (opt_info
->insns_to_split
, allocate_basic_variable
, NULL
);
2083 for (i
= opt_info
->first_new_block
; i
< (unsigned) last_basic_block
; i
++)
2085 bb
= BASIC_BLOCK (i
);
2086 orig_bb
= get_bb_original (bb
);
2088 /* bb->aux holds position in copy sequence initialized by
2089 duplicate_loop_to_header_edge. */
2090 delta
= determine_split_iv_delta ((size_t)bb
->aux
, n_copies
,
2093 orig_insn
= BB_HEAD (orig_bb
);
2094 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
2096 next
= NEXT_INSN (insn
);
2100 while (!INSN_P (orig_insn
))
2101 orig_insn
= NEXT_INSN (orig_insn
);
2103 ivts_templ
.insn
= orig_insn
;
2104 ve_templ
.insn
= orig_insn
;
2106 /* Apply splitting iv optimization. */
2107 if (opt_info
->insns_to_split
)
2109 ivts
= htab_find (opt_info
->insns_to_split
, &ivts_templ
);
2113 gcc_assert (GET_CODE (PATTERN (insn
))
2114 == GET_CODE (PATTERN (orig_insn
)));
2117 insert_base_initialization (ivts
, insn
);
2118 split_iv (ivts
, insn
, delta
);
2121 /* Apply variable expansion optimization. */
2122 if (unrolling
&& opt_info
->insns_with_var_to_expand
)
2124 ves
= htab_find (opt_info
->insns_with_var_to_expand
, &ve_templ
);
2127 gcc_assert (GET_CODE (PATTERN (insn
))
2128 == GET_CODE (PATTERN (orig_insn
)));
2129 expand_var_during_unrolling (ves
, insn
);
2132 orig_insn
= NEXT_INSN (orig_insn
);
2136 if (!rewrite_original_loop
)
2139 /* Initialize the variable expansions in the loop preheader
2140 and take care of combining them at the loop exit. */
2141 if (opt_info
->insns_with_var_to_expand
)
2143 htab_traverse (opt_info
->insns_with_var_to_expand
,
2144 insert_var_expansion_initialization
,
2145 opt_info
->loop_preheader
);
2146 htab_traverse (opt_info
->insns_with_var_to_expand
,
2147 combine_var_copies_in_loop_exit
,
2148 opt_info
->loop_exit
);
2151 /* Rewrite also the original loop body. Find them as originals of the blocks
2152 in the last copied iteration, i.e. those that have
2153 get_bb_copy (get_bb_original (bb)) == bb. */
2154 for (i
= opt_info
->first_new_block
; i
< (unsigned) last_basic_block
; i
++)
2156 bb
= BASIC_BLOCK (i
);
2157 orig_bb
= get_bb_original (bb
);
2158 if (get_bb_copy (orig_bb
) != bb
)
2161 delta
= determine_split_iv_delta (0, n_copies
, unrolling
);
2162 for (orig_insn
= BB_HEAD (orig_bb
);
2163 orig_insn
!= NEXT_INSN (BB_END (bb
));
2166 next
= NEXT_INSN (orig_insn
);
2168 if (!INSN_P (orig_insn
))
2171 ivts_templ
.insn
= orig_insn
;
2172 if (opt_info
->insns_to_split
)
2174 ivts
= htab_find (opt_info
->insns_to_split
, &ivts_templ
);
2178 insert_base_initialization (ivts
, orig_insn
);
2179 split_iv (ivts
, orig_insn
, delta
);
2188 /* Release the data structures used for the variable expansion
2189 optimization. Callbacks for htab_traverse. */
2192 release_var_copies (void **slot
, void *data ATTRIBUTE_UNUSED
)
2194 struct var_to_expand
*ve
= *slot
;
2196 VEC_free (rtx
, heap
, ve
->var_expansions
);
2198 /* Continue traversing the hash table. */
2202 /* Release OPT_INFO. */
2205 free_opt_info (struct opt_info
*opt_info
)
2207 if (opt_info
->insns_to_split
)
2208 htab_delete (opt_info
->insns_to_split
);
2209 if (opt_info
->insns_with_var_to_expand
)
2211 htab_traverse (opt_info
->insns_with_var_to_expand
,
2212 release_var_copies
, NULL
);
2213 htab_delete (opt_info
->insns_with_var_to_expand
);