2017-02-20 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / reload1.c
blobc1ce7caeca9f1225791c44387f77008cbe4212e5
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 #ifdef SECONDARY_MEMORY_NEEDED
772 /* Initialize the secondary memory table. */
773 clear_secondary_mem ();
774 #endif
776 /* We don't have a stack slot for any spill reg yet. */
777 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
778 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780 /* Initialize the save area information for caller-save, in case some
781 are needed. */
782 init_save_areas ();
784 /* Compute which hard registers are now in use
785 as homes for pseudo registers.
786 This is done here rather than (eg) in global_alloc
787 because this point is reached even if not optimizing. */
788 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
789 mark_home_live (i);
791 /* A function that has a nonlocal label that can reach the exit
792 block via non-exceptional paths must save all call-saved
793 registers. */
794 if (cfun->has_nonlocal_label
795 && has_nonexceptional_receiver ())
796 crtl->saves_all_registers = 1;
798 if (crtl->saves_all_registers)
799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
800 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850 maybe_fix_stack_asms ();
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 int from = ep->from;
866 int can_eliminate = 0;
869 can_eliminate |= ep->can_eliminate;
870 ep++;
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880 finish_spills (global);
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
891 int something_changed;
892 HOST_WIDE_INT starting_frame_size;
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
957 if (caller_save_needed)
958 setup_save_areas ();
960 if (starting_frame_size && crtl->stack_alignment_needed)
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 if (update_eliminables_and_spill ())
976 finish_spills (0);
977 continue;
980 if (caller_save_needed)
982 save_call_clobbered_regs ();
983 /* That might have allocated new insn_chain structures. */
984 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
987 calculate_needs_all_insns (global);
989 if (! ira_conflicts_p)
990 /* Don't do it for IRA. We need this info because we don't
991 change live_throughout and dead_or_set for chains when IRA
992 is used. */
993 CLEAR_REG_SET (&spilled_pseudos);
995 something_changed = 0;
997 /* If we allocated any new memory locations, make another pass
998 since it might have changed elimination offsets. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1000 something_changed = 1;
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1009 if (update_eliminables_and_spill ())
1011 finish_spills (0);
1012 something_changed = 1;
1014 else
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1023 if (! something_changed)
1024 break;
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1029 obstack_free (&reload_obstack, reload_firstobj);
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1039 remove_init_insns ();
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1048 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050 reload_as_needed (global);
1052 gcc_assert (old_frame_size == get_frame_size ());
1054 gcc_assert (verify_initial_elim_offsets ());
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 rtx addr = 0;
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1095 if (addr)
1097 if (reg_renumber[i] < 0)
1099 rtx reg = regno_reg_rtx[i];
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1132 if (equiv == reg)
1133 continue;
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 insn = DF_REF_INSN (use);
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1145 if (DEBUG_INSN_P (insn))
1147 if (!equiv)
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1177 rtx *pnote;
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 delete_insn (insn);
1197 continue;
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1216 delete_insn (insn);
1217 continue;
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1252 free (temp_pseudo_reg_arr);
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1257 free (reg_max_ref_width);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1270 inserted = fixup_abnormal_edges ();
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1280 if (inserted)
1281 commit_edge_insertions ();
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1296 substitute_stack.release ();
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300 reload_completed = !failure;
1302 return need_dce;
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1312 static void
1313 maybe_fix_stack_asms (void)
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1357 for (;;)
1359 char c = *p;
1361 if (c == '\0' || c == ',' || c == '#')
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1377 switch (c)
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1394 p += CONSTRAINT_LEN (c, p);
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1409 #endif
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1432 something_needs_elimination = 0;
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 rtx_insn *insn = chain->insn;
1439 next = chain->next;
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1455 if (INSN_P (insn))
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1484 rtx set = single_set (insn);
1485 if (set
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1534 something_needs_operands_changed |= operands_changed;
1536 if (n_reloads != 0)
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1544 *pprev_reload = 0;
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1551 void
1552 calculate_elim_costs_all_insns (void)
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1565 FOR_EACH_BB_FN (bb, cfun)
1567 rtx_insn *insn;
1568 elim_bb = bb;
1570 FOR_BB_INSNS (bb, insn)
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1580 if (INSN_P (insn))
1582 rtx set = single_set (insn);
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 if (reg_equiv_invariant (i))
1618 if (reg_equiv_init (i))
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1627 else
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1633 ira_adjust_equiv_reg_cost (i, 0);
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694 static void
1695 count_pseudo (int reg)
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711 gcc_assert (r >= 0);
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1715 while (nregs-- > 0)
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 count_pseudo (i);
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 count_pseudo (i);
1763 CLEAR_REG_SET (&pseudos_counted);
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1789 gcc_assert (r >= 0);
1791 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1807 /* Find reload register to use for reload number ORDER. */
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1831 int other = reload_order[k];
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && HARD_REGNO_MODE_OK (regno, rl->mode))
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854 for (j = 1; j < this_nregs; j++)
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1861 if (! ok)
1862 continue;
1864 if (ira_conflicts_p)
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1884 best_reg = regno;
1885 for (j = 0;; j++)
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1892 continue;
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1912 best_reg = regno;
1913 best_cost = this_cost;
1917 if (best_reg == -1)
1918 return 0;
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1924 rl->regno = best_reg;
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 for (i = 0; i < rl->nregs; i++)
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 return 1;
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1957 int i;
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1968 int regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].regno = regno;
1970 chain->rld[i].nregs
1971 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988 /* Compute the order of preference for hard registers to spill. */
1990 order_regs_for_reload (chain);
1992 for (i = 0; i < n_reloads; i++)
1994 int r = reload_order[i];
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 static void
2017 select_reload_regs (void)
2019 struct insn_chain *chain;
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2032 struct insn_chain *c = reload_insn_chain;
2034 while (c != 0)
2036 while (c != 0 && c->is_caller_save_insn)
2038 struct insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2053 if (c != 0)
2054 c = c->next;
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "can%'t find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2073 if (dump_file)
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2078 fatal_insn ("this is the insn:", insn);
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2106 SET_INSN_DELETED (insn);
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2150 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2151 int adjust = 0;
2153 something_was_spilled = true;
2155 if (ira_conflicts_p)
2157 /* Mark the spill for IRA. */
2158 SET_REGNO_REG_SET (&spilled_pseudos, i);
2159 if (!dont_share_p)
2160 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2163 if (x)
2166 /* Each pseudo reg has an inherent size which comes from its own mode,
2167 and a total size which provides room for paradoxical subregs
2168 which refer to the pseudo reg in wider modes.
2170 We can use a slot already allocated if it provides both
2171 enough inherent space and enough total space.
2172 Otherwise, we allocate a new slot, making sure that it has no less
2173 inherent space, and no less total space, then the previous slot. */
2174 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 rtx stack_slot;
2178 /* No known place to spill from => no slot to reuse. */
2179 x = assign_stack_local (mode, total_size,
2180 min_align > inherent_align
2181 || total_size > inherent_size ? -1 : 0);
2183 stack_slot = x;
2185 /* Cancel the big-endian correction done in assign_stack_local.
2186 Get the address of the beginning of the slot. This is so we
2187 can do a big-endian correction unconditionally below. */
2188 if (BYTES_BIG_ENDIAN)
2190 adjust = inherent_size - total_size;
2191 if (adjust)
2192 stack_slot
2193 = adjust_address_nv (x, mode_for_size (total_size
2194 * BITS_PER_UNIT,
2195 MODE_INT, 1),
2196 adjust);
2199 if (! dont_share_p && ira_conflicts_p)
2200 /* Inform IRA about allocation a new stack slot. */
2201 ira_mark_new_stack_slot (stack_slot, i, total_size);
2204 /* Reuse a stack slot if possible. */
2205 else if (spill_stack_slot[from_reg] != 0
2206 && spill_stack_slot_width[from_reg] >= total_size
2207 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2208 >= inherent_size)
2209 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2210 x = spill_stack_slot[from_reg];
2212 /* Allocate a bigger slot. */
2213 else
2215 /* Compute maximum size needed, both for inherent size
2216 and for total size. */
2217 rtx stack_slot;
2219 if (spill_stack_slot[from_reg])
2221 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2222 > inherent_size)
2223 mode = GET_MODE (spill_stack_slot[from_reg]);
2224 if (spill_stack_slot_width[from_reg] > total_size)
2225 total_size = spill_stack_slot_width[from_reg];
2226 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2227 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2230 /* Make a slot with that size. */
2231 x = assign_stack_local (mode, total_size,
2232 min_align > inherent_align
2233 || total_size > inherent_size ? -1 : 0);
2234 stack_slot = x;
2236 /* Cancel the big-endian correction done in assign_stack_local.
2237 Get the address of the beginning of the slot. This is so we
2238 can do a big-endian correction unconditionally below. */
2239 if (BYTES_BIG_ENDIAN)
2241 adjust = GET_MODE_SIZE (mode) - total_size;
2242 if (adjust)
2243 stack_slot
2244 = adjust_address_nv (x, mode_for_size (total_size
2245 * BITS_PER_UNIT,
2246 MODE_INT, 1),
2247 adjust);
2250 spill_stack_slot[from_reg] = stack_slot;
2251 spill_stack_slot_width[from_reg] = total_size;
2254 /* On a big endian machine, the "address" of the slot
2255 is the address of the low part that fits its inherent mode. */
2256 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2257 adjust += (total_size - inherent_size);
2259 /* If we have any adjustment to make, or if the stack slot is the
2260 wrong mode, make a new stack slot. */
2261 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263 /* Set all of the memory attributes as appropriate for a spill. */
2264 set_mem_attrs_for_spill (x);
2266 /* Save the stack slot for later. */
2267 reg_equiv_memory_loc (i) = x;
2271 /* Mark the slots in regs_ever_live for the hard regs used by
2272 pseudo-reg number REGNO, accessed in MODE. */
2274 static void
2275 mark_home_live_1 (int regno, machine_mode mode)
2277 int i, lim;
2279 i = reg_renumber[regno];
2280 if (i < 0)
2281 return;
2282 lim = end_hard_regno (mode, i);
2283 while (i < lim)
2284 df_set_regs_ever_live (i++, true);
2287 /* Mark the slots in regs_ever_live for the hard regs
2288 used by pseudo-reg number REGNO. */
2290 void
2291 mark_home_live (int regno)
2293 if (reg_renumber[regno] >= 0)
2294 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2297 /* This function handles the tracking of elimination offsets around branches.
2299 X is a piece of RTL being scanned.
2301 INSN is the insn that it came from, if any.
2303 INITIAL_P is nonzero if we are to set the offset to be the initial
2304 offset and zero if we are setting the offset of the label to be the
2305 current offset. */
2307 static void
2308 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 enum rtx_code code = GET_CODE (x);
2311 rtx tem;
2312 unsigned int i;
2313 struct elim_table *p;
2315 switch (code)
2317 case LABEL_REF:
2318 if (LABEL_REF_NONLOCAL_P (x))
2319 return;
2321 x = label_ref_label (x);
2323 /* fall through */
2325 case CODE_LABEL:
2326 /* If we know nothing about this label, set the desired offsets. Note
2327 that this sets the offset at a label to be the offset before a label
2328 if we don't know anything about the label. This is not correct for
2329 the label after a BARRIER, but is the best guess we can make. If
2330 we guessed wrong, we will suppress an elimination that might have
2331 been possible had we been able to guess correctly. */
2333 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2336 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2337 = (initial_p ? reg_eliminate[i].initial_offset
2338 : reg_eliminate[i].offset);
2339 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2342 /* Otherwise, if this is the definition of a label and it is
2343 preceded by a BARRIER, set our offsets to the known offset of
2344 that label. */
2346 else if (x == insn
2347 && (tem = prev_nonnote_insn (insn)) != 0
2348 && BARRIER_P (tem))
2349 set_offsets_for_label (insn);
2350 else
2351 /* If neither of the above cases is true, compare each offset
2352 with those previously recorded and suppress any eliminations
2353 where the offsets disagree. */
2355 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2356 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2357 != (initial_p ? reg_eliminate[i].initial_offset
2358 : reg_eliminate[i].offset))
2359 reg_eliminate[i].can_eliminate = 0;
2361 return;
2363 case JUMP_TABLE_DATA:
2364 set_label_offsets (PATTERN (insn), insn, initial_p);
2365 return;
2367 case JUMP_INSN:
2368 set_label_offsets (PATTERN (insn), insn, initial_p);
2370 /* fall through */
2372 case INSN:
2373 case CALL_INSN:
2374 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2375 to indirectly and hence must have all eliminations at their
2376 initial offsets. */
2377 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2378 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2379 set_label_offsets (XEXP (tem, 0), insn, 1);
2380 return;
2382 case PARALLEL:
2383 case ADDR_VEC:
2384 case ADDR_DIFF_VEC:
2385 /* Each of the labels in the parallel or address vector must be
2386 at their initial offsets. We want the first field for PARALLEL
2387 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2390 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2391 insn, initial_p);
2392 return;
2394 case SET:
2395 /* We only care about setting PC. If the source is not RETURN,
2396 IF_THEN_ELSE, or a label, disable any eliminations not at
2397 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2398 isn't one of those possibilities. For branches to a label,
2399 call ourselves recursively.
2401 Note that this can disable elimination unnecessarily when we have
2402 a non-local goto since it will look like a non-constant jump to
2403 someplace in the current function. This isn't a significant
2404 problem since such jumps will normally be when all elimination
2405 pairs are back to their initial offsets. */
2407 if (SET_DEST (x) != pc_rtx)
2408 return;
2410 switch (GET_CODE (SET_SRC (x)))
2412 case PC:
2413 case RETURN:
2414 return;
2416 case LABEL_REF:
2417 set_label_offsets (SET_SRC (x), insn, initial_p);
2418 return;
2420 case IF_THEN_ELSE:
2421 tem = XEXP (SET_SRC (x), 1);
2422 if (GET_CODE (tem) == LABEL_REF)
2423 set_label_offsets (label_ref_label (tem), insn, initial_p);
2424 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2425 break;
2427 tem = XEXP (SET_SRC (x), 2);
2428 if (GET_CODE (tem) == LABEL_REF)
2429 set_label_offsets (label_ref_label (tem), insn, initial_p);
2430 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2431 break;
2432 return;
2434 default:
2435 break;
2438 /* If we reach here, all eliminations must be at their initial
2439 offset because we are doing a jump to a variable address. */
2440 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2441 if (p->offset != p->initial_offset)
2442 p->can_eliminate = 0;
2443 break;
2445 default:
2446 break;
2450 /* This function examines every reg that occurs in X and adjusts the
2451 costs for its elimination which are gathered by IRA. INSN is the
2452 insn in which X occurs. We do not recurse into MEM expressions. */
2454 static void
2455 note_reg_elim_costly (const_rtx x, rtx insn)
2457 subrtx_iterator::array_type array;
2458 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 const_rtx x = *iter;
2461 if (MEM_P (x))
2462 iter.skip_subrtxes ();
2463 else if (REG_P (x)
2464 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2465 && reg_equiv_init (REGNO (x))
2466 && reg_equiv_invariant (REGNO (x)))
2468 rtx t = reg_equiv_invariant (REGNO (x));
2469 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2470 int cost = set_src_cost (new_rtx, Pmode,
2471 optimize_bb_for_speed_p (elim_bb));
2472 int freq = REG_FREQ_FROM_BB (elim_bb);
2474 if (cost != 0)
2475 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2480 /* Scan X and replace any eliminable registers (such as fp) with a
2481 replacement (such as sp), plus an offset.
2483 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2484 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2485 MEM, we are allowed to replace a sum of a register and the constant zero
2486 with the register, which we cannot do outside a MEM. In addition, we need
2487 to record the fact that a register is referenced outside a MEM.
2489 If INSN is an insn, it is the insn containing X. If we replace a REG
2490 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2491 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2492 the REG is being modified.
2494 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2495 That's used when we eliminate in expressions stored in notes.
2496 This means, do not set ref_outside_mem even if the reference
2497 is outside of MEMs.
2499 If FOR_COSTS is true, we are being called before reload in order to
2500 estimate the costs of keeping registers with an equivalence unallocated.
2502 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2503 replacements done assuming all offsets are at their initial values. If
2504 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2505 encounter, return the actual location so that find_reloads will do
2506 the proper thing. */
2508 static rtx
2509 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2510 bool may_use_invariant, bool for_costs)
2512 enum rtx_code code = GET_CODE (x);
2513 struct elim_table *ep;
2514 int regno;
2515 rtx new_rtx;
2516 int i, j;
2517 const char *fmt;
2518 int copied = 0;
2520 if (! current_function_decl)
2521 return x;
2523 switch (code)
2525 CASE_CONST_ANY:
2526 case CONST:
2527 case SYMBOL_REF:
2528 case CODE_LABEL:
2529 case PC:
2530 case CC0:
2531 case ASM_INPUT:
2532 case ADDR_VEC:
2533 case ADDR_DIFF_VEC:
2534 case RETURN:
2535 return x;
2537 case REG:
2538 regno = REGNO (x);
2540 /* First handle the case where we encounter a bare register that
2541 is eliminable. Replace it with a PLUS. */
2542 if (regno < FIRST_PSEUDO_REGISTER)
2544 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2545 ep++)
2546 if (ep->from_rtx == x && ep->can_eliminate)
2547 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2550 else if (reg_renumber && reg_renumber[regno] < 0
2551 && reg_equivs
2552 && reg_equiv_invariant (regno))
2554 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2555 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2556 mem_mode, insn, true, for_costs);
2557 /* There exists at least one use of REGNO that cannot be
2558 eliminated. Prevent the defining insn from being deleted. */
2559 reg_equiv_init (regno) = NULL;
2560 if (!for_costs)
2561 alter_reg (regno, -1, true);
2563 return x;
2565 /* You might think handling MINUS in a manner similar to PLUS is a
2566 good idea. It is not. It has been tried multiple times and every
2567 time the change has had to have been reverted.
2569 Other parts of reload know a PLUS is special (gen_reload for example)
2570 and require special code to handle code a reloaded PLUS operand.
2572 Also consider backends where the flags register is clobbered by a
2573 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2574 lea instruction comes to mind). If we try to reload a MINUS, we
2575 may kill the flags register that was holding a useful value.
2577 So, please before trying to handle MINUS, consider reload as a
2578 whole instead of this little section as well as the backend issues. */
2579 case PLUS:
2580 /* If this is the sum of an eliminable register and a constant, rework
2581 the sum. */
2582 if (REG_P (XEXP (x, 0))
2583 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2584 && CONSTANT_P (XEXP (x, 1)))
2586 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2587 ep++)
2588 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 /* The only time we want to replace a PLUS with a REG (this
2591 occurs when the constant operand of the PLUS is the negative
2592 of the offset) is when we are inside a MEM. We won't want
2593 to do so at other times because that would change the
2594 structure of the insn in a way that reload can't handle.
2595 We special-case the commonest situation in
2596 eliminate_regs_in_insn, so just replace a PLUS with a
2597 PLUS here, unless inside a MEM. */
2598 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2599 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2600 return ep->to_rtx;
2601 else
2602 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2603 plus_constant (Pmode, XEXP (x, 1),
2604 ep->previous_offset));
2607 /* If the register is not eliminable, we are done since the other
2608 operand is a constant. */
2609 return x;
2612 /* If this is part of an address, we want to bring any constant to the
2613 outermost PLUS. We will do this by doing register replacement in
2614 our operands and seeing if a constant shows up in one of them.
2616 Note that there is no risk of modifying the structure of the insn,
2617 since we only get called for its operands, thus we are either
2618 modifying the address inside a MEM, or something like an address
2619 operand of a load-address insn. */
2622 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2623 for_costs);
2624 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2625 for_costs);
2627 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 /* If one side is a PLUS and the other side is a pseudo that
2630 didn't get a hard register but has a reg_equiv_constant,
2631 we must replace the constant here since it may no longer
2632 be in the position of any operand. */
2633 if (GET_CODE (new0) == PLUS && REG_P (new1)
2634 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2635 && reg_renumber[REGNO (new1)] < 0
2636 && reg_equivs
2637 && reg_equiv_constant (REGNO (new1)) != 0)
2638 new1 = reg_equiv_constant (REGNO (new1));
2639 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2640 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2641 && reg_renumber[REGNO (new0)] < 0
2642 && reg_equiv_constant (REGNO (new0)) != 0)
2643 new0 = reg_equiv_constant (REGNO (new0));
2645 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647 /* As above, if we are not inside a MEM we do not want to
2648 turn a PLUS into something else. We might try to do so here
2649 for an addition of 0 if we aren't optimizing. */
2650 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2651 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2652 else
2653 return new_rtx;
2656 return x;
2658 case MULT:
2659 /* If this is the product of an eliminable register and a
2660 constant, apply the distribute law and move the constant out
2661 so that we have (plus (mult ..) ..). This is needed in order
2662 to keep load-address insns valid. This case is pathological.
2663 We ignore the possibility of overflow here. */
2664 if (REG_P (XEXP (x, 0))
2665 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2666 && CONST_INT_P (XEXP (x, 1)))
2667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2668 ep++)
2669 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 if (! mem_mode
2672 /* Refs inside notes or in DEBUG_INSNs don't count for
2673 this purpose. */
2674 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2675 || GET_CODE (insn) == INSN_LIST
2676 || DEBUG_INSN_P (insn))))
2677 ep->ref_outside_mem = 1;
2679 return
2680 plus_constant (Pmode,
2681 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2682 ep->previous_offset * INTVAL (XEXP (x, 1)));
2685 /* fall through */
2687 case CALL:
2688 case COMPARE:
2689 /* See comments before PLUS about handling MINUS. */
2690 case MINUS:
2691 case DIV: case UDIV:
2692 case MOD: case UMOD:
2693 case AND: case IOR: case XOR:
2694 case ROTATERT: case ROTATE:
2695 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2696 case NE: case EQ:
2697 case GE: case GT: case GEU: case GTU:
2698 case LE: case LT: case LEU: case LTU:
2700 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2701 for_costs);
2702 rtx new1 = XEXP (x, 1)
2703 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2704 for_costs) : 0;
2706 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2707 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 return x;
2711 case EXPR_LIST:
2712 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2713 if (XEXP (x, 0))
2715 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2716 for_costs);
2717 if (new_rtx != XEXP (x, 0))
2719 /* If this is a REG_DEAD note, it is not valid anymore.
2720 Using the eliminated version could result in creating a
2721 REG_DEAD note for the stack or frame pointer. */
2722 if (REG_NOTE_KIND (x) == REG_DEAD)
2723 return (XEXP (x, 1)
2724 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2725 for_costs)
2726 : NULL_RTX);
2728 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2732 /* fall through */
2734 case INSN_LIST:
2735 case INT_LIST:
2736 /* Now do eliminations in the rest of the chain. If this was
2737 an EXPR_LIST, this might result in allocating more memory than is
2738 strictly needed, but it simplifies the code. */
2739 if (XEXP (x, 1))
2741 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2742 for_costs);
2743 if (new_rtx != XEXP (x, 1))
2744 return
2745 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 return x;
2749 case PRE_INC:
2750 case POST_INC:
2751 case PRE_DEC:
2752 case POST_DEC:
2753 /* We do not support elimination of a register that is modified.
2754 elimination_effects has already make sure that this does not
2755 happen. */
2756 return x;
2758 case PRE_MODIFY:
2759 case POST_MODIFY:
2760 /* We do not support elimination of a register that is modified.
2761 elimination_effects has already make sure that this does not
2762 happen. The only remaining case we need to consider here is
2763 that the increment value may be an eliminable register. */
2764 if (GET_CODE (XEXP (x, 1)) == PLUS
2765 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2768 insn, true, for_costs);
2770 if (new_rtx != XEXP (XEXP (x, 1), 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2772 gen_rtx_PLUS (GET_MODE (x),
2773 XEXP (x, 0), new_rtx));
2775 return x;
2777 case STRICT_LOW_PART:
2778 case NEG: case NOT:
2779 case SIGN_EXTEND: case ZERO_EXTEND:
2780 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2781 case FLOAT: case FIX:
2782 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2783 case ABS:
2784 case SQRT:
2785 case FFS:
2786 case CLZ:
2787 case CTZ:
2788 case POPCOUNT:
2789 case PARITY:
2790 case BSWAP:
2791 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2792 for_costs);
2793 if (new_rtx != XEXP (x, 0))
2794 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2795 return x;
2797 case SUBREG:
2798 /* Similar to above processing, but preserve SUBREG_BYTE.
2799 Convert (subreg (mem)) to (mem) if not paradoxical.
2800 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2801 pseudo didn't get a hard reg, we must replace this with the
2802 eliminated version of the memory location because push_reload
2803 may do the replacement in certain circumstances. */
2804 if (REG_P (SUBREG_REG (x))
2805 && !paradoxical_subreg_p (x)
2806 && reg_equivs
2807 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 new_rtx = SUBREG_REG (x);
2811 else
2812 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814 if (new_rtx != SUBREG_REG (x))
2816 int x_size = GET_MODE_SIZE (GET_MODE (x));
2817 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819 if (MEM_P (new_rtx)
2820 && ((x_size < new_size
2821 /* On RISC machines, combine can create rtl of the form
2822 (set (subreg:m1 (reg:m2 R) 0) ...)
2823 where m1 < m2, and expects something interesting to
2824 happen to the entire word. Moreover, it will use the
2825 (reg:m2 R) later, expecting all bits to be preserved.
2826 So if the number of words is the same, preserve the
2827 subreg so that push_reload can see it. */
2828 && !(WORD_REGISTER_OPERATIONS
2829 && (x_size - 1) / UNITS_PER_WORD
2830 == (new_size -1 ) / UNITS_PER_WORD))
2831 || x_size == new_size)
2833 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2834 else
2835 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2838 return x;
2840 case MEM:
2841 /* Our only special processing is to pass the mode of the MEM to our
2842 recursive call and copy the flags. While we are here, handle this
2843 case more efficiently. */
2845 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2846 for_costs);
2847 if (for_costs
2848 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2849 && !memory_address_p (GET_MODE (x), new_rtx))
2850 note_reg_elim_costly (XEXP (x, 0), insn);
2852 return replace_equiv_address_nv (x, new_rtx);
2854 case USE:
2855 /* Handle insn_list USE that a call to a pure function may generate. */
2856 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2857 for_costs);
2858 if (new_rtx != XEXP (x, 0))
2859 return gen_rtx_USE (GET_MODE (x), new_rtx);
2860 return x;
2862 case CLOBBER:
2863 case ASM_OPERANDS:
2864 gcc_assert (insn && DEBUG_INSN_P (insn));
2865 break;
2867 case SET:
2868 gcc_unreachable ();
2870 default:
2871 break;
2874 /* Process each of our operands recursively. If any have changed, make a
2875 copy of the rtx. */
2876 fmt = GET_RTX_FORMAT (code);
2877 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2879 if (*fmt == 'e')
2881 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2882 for_costs);
2883 if (new_rtx != XEXP (x, i) && ! copied)
2885 x = shallow_copy_rtx (x);
2886 copied = 1;
2888 XEXP (x, i) = new_rtx;
2890 else if (*fmt == 'E')
2892 int copied_vec = 0;
2893 for (j = 0; j < XVECLEN (x, i); j++)
2895 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2896 for_costs);
2897 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2899 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2900 XVEC (x, i)->elem);
2901 if (! copied)
2903 x = shallow_copy_rtx (x);
2904 copied = 1;
2906 XVEC (x, i) = new_v;
2907 copied_vec = 1;
2909 XVECEXP (x, i, j) = new_rtx;
2914 return x;
2918 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2920 if (reg_eliminate == NULL)
2922 gcc_assert (targetm.no_register_allocation);
2923 return x;
2925 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2928 /* Scan rtx X for modifications of elimination target registers. Update
2929 the table of eliminables to reflect the changed state. MEM_MODE is
2930 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2932 static void
2933 elimination_effects (rtx x, machine_mode mem_mode)
2935 enum rtx_code code = GET_CODE (x);
2936 struct elim_table *ep;
2937 int regno;
2938 int i, j;
2939 const char *fmt;
2941 switch (code)
2943 CASE_CONST_ANY:
2944 case CONST:
2945 case SYMBOL_REF:
2946 case CODE_LABEL:
2947 case PC:
2948 case CC0:
2949 case ASM_INPUT:
2950 case ADDR_VEC:
2951 case ADDR_DIFF_VEC:
2952 case RETURN:
2953 return;
2955 case REG:
2956 regno = REGNO (x);
2958 /* First handle the case where we encounter a bare register that
2959 is eliminable. Replace it with a PLUS. */
2960 if (regno < FIRST_PSEUDO_REGISTER)
2962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2963 ep++)
2964 if (ep->from_rtx == x && ep->can_eliminate)
2966 if (! mem_mode)
2967 ep->ref_outside_mem = 1;
2968 return;
2972 else if (reg_renumber[regno] < 0
2973 && reg_equivs
2974 && reg_equiv_constant (regno)
2975 && ! function_invariant_p (reg_equiv_constant (regno)))
2976 elimination_effects (reg_equiv_constant (regno), mem_mode);
2977 return;
2979 case PRE_INC:
2980 case POST_INC:
2981 case PRE_DEC:
2982 case POST_DEC:
2983 case POST_MODIFY:
2984 case PRE_MODIFY:
2985 /* If we modify the source of an elimination rule, disable it. */
2986 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2987 if (ep->from_rtx == XEXP (x, 0))
2988 ep->can_eliminate = 0;
2990 /* If we modify the target of an elimination rule by adding a constant,
2991 update its offset. If we modify the target in any other way, we'll
2992 have to disable the rule as well. */
2993 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2994 if (ep->to_rtx == XEXP (x, 0))
2996 int size = GET_MODE_SIZE (mem_mode);
2998 /* If more bytes than MEM_MODE are pushed, account for them. */
2999 #ifdef PUSH_ROUNDING
3000 if (ep->to_rtx == stack_pointer_rtx)
3001 size = PUSH_ROUNDING (size);
3002 #endif
3003 if (code == PRE_DEC || code == POST_DEC)
3004 ep->offset += size;
3005 else if (code == PRE_INC || code == POST_INC)
3006 ep->offset -= size;
3007 else if (code == PRE_MODIFY || code == POST_MODIFY)
3009 if (GET_CODE (XEXP (x, 1)) == PLUS
3010 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3011 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3012 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3013 else
3014 ep->can_eliminate = 0;
3018 /* These two aren't unary operators. */
3019 if (code == POST_MODIFY || code == PRE_MODIFY)
3020 break;
3022 /* Fall through to generic unary operation case. */
3023 gcc_fallthrough ();
3024 case STRICT_LOW_PART:
3025 case NEG: case NOT:
3026 case SIGN_EXTEND: case ZERO_EXTEND:
3027 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3028 case FLOAT: case FIX:
3029 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3030 case ABS:
3031 case SQRT:
3032 case FFS:
3033 case CLZ:
3034 case CTZ:
3035 case POPCOUNT:
3036 case PARITY:
3037 case BSWAP:
3038 elimination_effects (XEXP (x, 0), mem_mode);
3039 return;
3041 case SUBREG:
3042 if (REG_P (SUBREG_REG (x))
3043 && (GET_MODE_SIZE (GET_MODE (x))
3044 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3045 && reg_equivs
3046 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3047 return;
3049 elimination_effects (SUBREG_REG (x), mem_mode);
3050 return;
3052 case USE:
3053 /* If using a register that is the source of an eliminate we still
3054 think can be performed, note it cannot be performed since we don't
3055 know how this register is used. */
3056 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3057 if (ep->from_rtx == XEXP (x, 0))
3058 ep->can_eliminate = 0;
3060 elimination_effects (XEXP (x, 0), mem_mode);
3061 return;
3063 case CLOBBER:
3064 /* If clobbering a register that is the replacement register for an
3065 elimination we still think can be performed, note that it cannot
3066 be performed. Otherwise, we need not be concerned about it. */
3067 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3068 if (ep->to_rtx == XEXP (x, 0))
3069 ep->can_eliminate = 0;
3071 elimination_effects (XEXP (x, 0), mem_mode);
3072 return;
3074 case SET:
3075 /* Check for setting a register that we know about. */
3076 if (REG_P (SET_DEST (x)))
3078 /* See if this is setting the replacement register for an
3079 elimination.
3081 If DEST is the hard frame pointer, we do nothing because we
3082 assume that all assignments to the frame pointer are for
3083 non-local gotos and are being done at a time when they are valid
3084 and do not disturb anything else. Some machines want to
3085 eliminate a fake argument pointer (or even a fake frame pointer)
3086 with either the real frame or the stack pointer. Assignments to
3087 the hard frame pointer must not prevent this elimination. */
3089 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3090 ep++)
3091 if (ep->to_rtx == SET_DEST (x)
3092 && SET_DEST (x) != hard_frame_pointer_rtx)
3094 /* If it is being incremented, adjust the offset. Otherwise,
3095 this elimination can't be done. */
3096 rtx src = SET_SRC (x);
3098 if (GET_CODE (src) == PLUS
3099 && XEXP (src, 0) == SET_DEST (x)
3100 && CONST_INT_P (XEXP (src, 1)))
3101 ep->offset -= INTVAL (XEXP (src, 1));
3102 else
3103 ep->can_eliminate = 0;
3107 elimination_effects (SET_DEST (x), VOIDmode);
3108 elimination_effects (SET_SRC (x), VOIDmode);
3109 return;
3111 case MEM:
3112 /* Our only special processing is to pass the mode of the MEM to our
3113 recursive call. */
3114 elimination_effects (XEXP (x, 0), GET_MODE (x));
3115 return;
3117 default:
3118 break;
3121 fmt = GET_RTX_FORMAT (code);
3122 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3124 if (*fmt == 'e')
3125 elimination_effects (XEXP (x, i), mem_mode);
3126 else if (*fmt == 'E')
3127 for (j = 0; j < XVECLEN (x, i); j++)
3128 elimination_effects (XVECEXP (x, i, j), mem_mode);
3132 /* Descend through rtx X and verify that no references to eliminable registers
3133 remain. If any do remain, mark the involved register as not
3134 eliminable. */
3136 static void
3137 check_eliminable_occurrences (rtx x)
3139 const char *fmt;
3140 int i;
3141 enum rtx_code code;
3143 if (x == 0)
3144 return;
3146 code = GET_CODE (x);
3148 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3150 struct elim_table *ep;
3152 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3153 if (ep->from_rtx == x)
3154 ep->can_eliminate = 0;
3155 return;
3158 fmt = GET_RTX_FORMAT (code);
3159 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3161 if (*fmt == 'e')
3162 check_eliminable_occurrences (XEXP (x, i));
3163 else if (*fmt == 'E')
3165 int j;
3166 for (j = 0; j < XVECLEN (x, i); j++)
3167 check_eliminable_occurrences (XVECEXP (x, i, j));
3172 /* Scan INSN and eliminate all eliminable registers in it.
3174 If REPLACE is nonzero, do the replacement destructively. Also
3175 delete the insn as dead it if it is setting an eliminable register.
3177 If REPLACE is zero, do all our allocations in reload_obstack.
3179 If no eliminations were done and this insn doesn't require any elimination
3180 processing (these are not identical conditions: it might be updating sp,
3181 but not referencing fp; this needs to be seen during reload_as_needed so
3182 that the offset between fp and sp can be taken into consideration), zero
3183 is returned. Otherwise, 1 is returned. */
3185 static int
3186 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3188 int icode = recog_memoized (insn);
3189 rtx old_body = PATTERN (insn);
3190 int insn_is_asm = asm_noperands (old_body) >= 0;
3191 rtx old_set = single_set (insn);
3192 rtx new_body;
3193 int val = 0;
3194 int i;
3195 rtx substed_operand[MAX_RECOG_OPERANDS];
3196 rtx orig_operand[MAX_RECOG_OPERANDS];
3197 struct elim_table *ep;
3198 rtx plus_src, plus_cst_src;
3200 if (! insn_is_asm && icode < 0)
3202 gcc_assert (DEBUG_INSN_P (insn)
3203 || GET_CODE (PATTERN (insn)) == USE
3204 || GET_CODE (PATTERN (insn)) == CLOBBER
3205 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3206 if (DEBUG_INSN_P (insn))
3207 INSN_VAR_LOCATION_LOC (insn)
3208 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3209 return 0;
3212 if (old_set != 0 && REG_P (SET_DEST (old_set))
3213 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3215 /* Check for setting an eliminable register. */
3216 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3217 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3219 /* If this is setting the frame pointer register to the
3220 hardware frame pointer register and this is an elimination
3221 that will be done (tested above), this insn is really
3222 adjusting the frame pointer downward to compensate for
3223 the adjustment done before a nonlocal goto. */
3224 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3225 && ep->from == FRAME_POINTER_REGNUM
3226 && ep->to == HARD_FRAME_POINTER_REGNUM)
3228 rtx base = SET_SRC (old_set);
3229 rtx_insn *base_insn = insn;
3230 HOST_WIDE_INT offset = 0;
3232 while (base != ep->to_rtx)
3234 rtx_insn *prev_insn;
3235 rtx prev_set;
3237 if (GET_CODE (base) == PLUS
3238 && CONST_INT_P (XEXP (base, 1)))
3240 offset += INTVAL (XEXP (base, 1));
3241 base = XEXP (base, 0);
3243 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3244 && (prev_set = single_set (prev_insn)) != 0
3245 && rtx_equal_p (SET_DEST (prev_set), base))
3247 base = SET_SRC (prev_set);
3248 base_insn = prev_insn;
3250 else
3251 break;
3254 if (base == ep->to_rtx)
3256 rtx src = plus_constant (Pmode, ep->to_rtx,
3257 offset - ep->offset);
3259 new_body = old_body;
3260 if (! replace)
3262 new_body = copy_insn (old_body);
3263 if (REG_NOTES (insn))
3264 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3266 PATTERN (insn) = new_body;
3267 old_set = single_set (insn);
3269 /* First see if this insn remains valid when we
3270 make the change. If not, keep the INSN_CODE
3271 the same and let reload fit it up. */
3272 validate_change (insn, &SET_SRC (old_set), src, 1);
3273 validate_change (insn, &SET_DEST (old_set),
3274 ep->to_rtx, 1);
3275 if (! apply_change_group ())
3277 SET_SRC (old_set) = src;
3278 SET_DEST (old_set) = ep->to_rtx;
3281 val = 1;
3282 goto done;
3286 /* In this case this insn isn't serving a useful purpose. We
3287 will delete it in reload_as_needed once we know that this
3288 elimination is, in fact, being done.
3290 If REPLACE isn't set, we can't delete this insn, but needn't
3291 process it since it won't be used unless something changes. */
3292 if (replace)
3294 delete_dead_insn (insn);
3295 return 1;
3297 val = 1;
3298 goto done;
3302 /* We allow one special case which happens to work on all machines we
3303 currently support: a single set with the source or a REG_EQUAL
3304 note being a PLUS of an eliminable register and a constant. */
3305 plus_src = plus_cst_src = 0;
3306 if (old_set && REG_P (SET_DEST (old_set)))
3308 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3309 plus_src = SET_SRC (old_set);
3310 /* First see if the source is of the form (plus (...) CST). */
3311 if (plus_src
3312 && CONST_INT_P (XEXP (plus_src, 1)))
3313 plus_cst_src = plus_src;
3314 else if (REG_P (SET_SRC (old_set))
3315 || plus_src)
3317 /* Otherwise, see if we have a REG_EQUAL note of the form
3318 (plus (...) CST). */
3319 rtx links;
3320 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3322 if ((REG_NOTE_KIND (links) == REG_EQUAL
3323 || REG_NOTE_KIND (links) == REG_EQUIV)
3324 && GET_CODE (XEXP (links, 0)) == PLUS
3325 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3327 plus_cst_src = XEXP (links, 0);
3328 break;
3333 /* Check that the first operand of the PLUS is a hard reg or
3334 the lowpart subreg of one. */
3335 if (plus_cst_src)
3337 rtx reg = XEXP (plus_cst_src, 0);
3338 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3339 reg = SUBREG_REG (reg);
3341 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3342 plus_cst_src = 0;
3345 if (plus_cst_src)
3347 rtx reg = XEXP (plus_cst_src, 0);
3348 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3350 if (GET_CODE (reg) == SUBREG)
3351 reg = SUBREG_REG (reg);
3353 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3354 if (ep->from_rtx == reg && ep->can_eliminate)
3356 rtx to_rtx = ep->to_rtx;
3357 offset += ep->offset;
3358 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3360 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3361 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3362 to_rtx);
3363 /* If we have a nonzero offset, and the source is already
3364 a simple REG, the following transformation would
3365 increase the cost of the insn by replacing a simple REG
3366 with (plus (reg sp) CST). So try only when we already
3367 had a PLUS before. */
3368 if (offset == 0 || plus_src)
3370 rtx new_src = plus_constant (GET_MODE (to_rtx),
3371 to_rtx, offset);
3373 new_body = old_body;
3374 if (! replace)
3376 new_body = copy_insn (old_body);
3377 if (REG_NOTES (insn))
3378 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3380 PATTERN (insn) = new_body;
3381 old_set = single_set (insn);
3383 /* First see if this insn remains valid when we make the
3384 change. If not, try to replace the whole pattern with
3385 a simple set (this may help if the original insn was a
3386 PARALLEL that was only recognized as single_set due to
3387 REG_UNUSED notes). If this isn't valid either, keep
3388 the INSN_CODE the same and let reload fix it up. */
3389 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3391 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3393 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3394 SET_SRC (old_set) = new_src;
3397 else
3398 break;
3400 val = 1;
3401 /* This can't have an effect on elimination offsets, so skip right
3402 to the end. */
3403 goto done;
3407 /* Determine the effects of this insn on elimination offsets. */
3408 elimination_effects (old_body, VOIDmode);
3410 /* Eliminate all eliminable registers occurring in operands that
3411 can be handled by reload. */
3412 extract_insn (insn);
3413 for (i = 0; i < recog_data.n_operands; i++)
3415 orig_operand[i] = recog_data.operand[i];
3416 substed_operand[i] = recog_data.operand[i];
3418 /* For an asm statement, every operand is eliminable. */
3419 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3421 bool is_set_src, in_plus;
3423 /* Check for setting a register that we know about. */
3424 if (recog_data.operand_type[i] != OP_IN
3425 && REG_P (orig_operand[i]))
3427 /* If we are assigning to a register that can be eliminated, it
3428 must be as part of a PARALLEL, since the code above handles
3429 single SETs. We must indicate that we can no longer
3430 eliminate this reg. */
3431 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3432 ep++)
3433 if (ep->from_rtx == orig_operand[i])
3434 ep->can_eliminate = 0;
3437 /* Companion to the above plus substitution, we can allow
3438 invariants as the source of a plain move. */
3439 is_set_src = false;
3440 if (old_set
3441 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3442 is_set_src = true;
3443 in_plus = false;
3444 if (plus_src
3445 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3446 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3447 in_plus = true;
3449 substed_operand[i]
3450 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3451 replace ? insn : NULL_RTX,
3452 is_set_src || in_plus, false);
3453 if (substed_operand[i] != orig_operand[i])
3454 val = 1;
3455 /* Terminate the search in check_eliminable_occurrences at
3456 this point. */
3457 *recog_data.operand_loc[i] = 0;
3459 /* If an output operand changed from a REG to a MEM and INSN is an
3460 insn, write a CLOBBER insn. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i])
3463 && MEM_P (substed_operand[i])
3464 && replace)
3465 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3469 for (i = 0; i < recog_data.n_dups; i++)
3470 *recog_data.dup_loc[i]
3471 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3473 /* If any eliminable remain, they aren't eliminable anymore. */
3474 check_eliminable_occurrences (old_body);
3476 /* Substitute the operands; the new values are in the substed_operand
3477 array. */
3478 for (i = 0; i < recog_data.n_operands; i++)
3479 *recog_data.operand_loc[i] = substed_operand[i];
3480 for (i = 0; i < recog_data.n_dups; i++)
3481 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3483 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3484 re-recognize the insn. We do this in case we had a simple addition
3485 but now can do this as a load-address. This saves an insn in this
3486 common case.
3487 If re-recognition fails, the old insn code number will still be used,
3488 and some register operands may have changed into PLUS expressions.
3489 These will be handled by find_reloads by loading them into a register
3490 again. */
3492 if (val)
3494 /* If we aren't replacing things permanently and we changed something,
3495 make another copy to ensure that all the RTL is new. Otherwise
3496 things can go wrong if find_reload swaps commutative operands
3497 and one is inside RTL that has been copied while the other is not. */
3498 new_body = old_body;
3499 if (! replace)
3501 new_body = copy_insn (old_body);
3502 if (REG_NOTES (insn))
3503 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3505 PATTERN (insn) = new_body;
3507 /* If we had a move insn but now we don't, rerecognize it. This will
3508 cause spurious re-recognition if the old move had a PARALLEL since
3509 the new one still will, but we can't call single_set without
3510 having put NEW_BODY into the insn and the re-recognition won't
3511 hurt in this rare case. */
3512 /* ??? Why this huge if statement - why don't we just rerecognize the
3513 thing always? */
3514 if (! insn_is_asm
3515 && old_set != 0
3516 && ((REG_P (SET_SRC (old_set))
3517 && (GET_CODE (new_body) != SET
3518 || !REG_P (SET_SRC (new_body))))
3519 /* If this was a load from or store to memory, compare
3520 the MEM in recog_data.operand to the one in the insn.
3521 If they are not equal, then rerecognize the insn. */
3522 || (old_set != 0
3523 && ((MEM_P (SET_SRC (old_set))
3524 && SET_SRC (old_set) != recog_data.operand[1])
3525 || (MEM_P (SET_DEST (old_set))
3526 && SET_DEST (old_set) != recog_data.operand[0])))
3527 /* If this was an add insn before, rerecognize. */
3528 || GET_CODE (SET_SRC (old_set)) == PLUS))
3530 int new_icode = recog (PATTERN (insn), insn, 0);
3531 if (new_icode >= 0)
3532 INSN_CODE (insn) = new_icode;
3536 /* Restore the old body. If there were any changes to it, we made a copy
3537 of it while the changes were still in place, so we'll correctly return
3538 a modified insn below. */
3539 if (! replace)
3541 /* Restore the old body. */
3542 for (i = 0; i < recog_data.n_operands; i++)
3543 /* Restoring a top-level match_parallel would clobber the new_body
3544 we installed in the insn. */
3545 if (recog_data.operand_loc[i] != &PATTERN (insn))
3546 *recog_data.operand_loc[i] = orig_operand[i];
3547 for (i = 0; i < recog_data.n_dups; i++)
3548 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3551 /* Update all elimination pairs to reflect the status after the current
3552 insn. The changes we make were determined by the earlier call to
3553 elimination_effects.
3555 We also detect cases where register elimination cannot be done,
3556 namely, if a register would be both changed and referenced outside a MEM
3557 in the resulting insn since such an insn is often undefined and, even if
3558 not, we cannot know what meaning will be given to it. Note that it is
3559 valid to have a register used in an address in an insn that changes it
3560 (presumably with a pre- or post-increment or decrement).
3562 If anything changes, return nonzero. */
3564 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3566 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3567 ep->can_eliminate = 0;
3569 ep->ref_outside_mem = 0;
3571 if (ep->previous_offset != ep->offset)
3572 val = 1;
3575 done:
3576 /* If we changed something, perform elimination in REG_NOTES. This is
3577 needed even when REPLACE is zero because a REG_DEAD note might refer
3578 to a register that we eliminate and could cause a different number
3579 of spill registers to be needed in the final reload pass than in
3580 the pre-passes. */
3581 if (val && REG_NOTES (insn) != 0)
3582 REG_NOTES (insn)
3583 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3584 false);
3586 return val;
3589 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3590 register allocator. INSN is the instruction we need to examine, we perform
3591 eliminations in its operands and record cases where eliminating a reg with
3592 an invariant equivalence would add extra cost. */
3594 #pragma GCC diagnostic push
3595 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3596 static void
3597 elimination_costs_in_insn (rtx_insn *insn)
3599 int icode = recog_memoized (insn);
3600 rtx old_body = PATTERN (insn);
3601 int insn_is_asm = asm_noperands (old_body) >= 0;
3602 rtx old_set = single_set (insn);
3603 int i;
3604 rtx orig_operand[MAX_RECOG_OPERANDS];
3605 rtx orig_dup[MAX_RECOG_OPERANDS];
3606 struct elim_table *ep;
3607 rtx plus_src, plus_cst_src;
3608 bool sets_reg_p;
3610 if (! insn_is_asm && icode < 0)
3612 gcc_assert (DEBUG_INSN_P (insn)
3613 || GET_CODE (PATTERN (insn)) == USE
3614 || GET_CODE (PATTERN (insn)) == CLOBBER
3615 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3616 return;
3619 if (old_set != 0 && REG_P (SET_DEST (old_set))
3620 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3622 /* Check for setting an eliminable register. */
3623 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3624 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3625 return;
3628 /* We allow one special case which happens to work on all machines we
3629 currently support: a single set with the source or a REG_EQUAL
3630 note being a PLUS of an eliminable register and a constant. */
3631 plus_src = plus_cst_src = 0;
3632 sets_reg_p = false;
3633 if (old_set && REG_P (SET_DEST (old_set)))
3635 sets_reg_p = true;
3636 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3637 plus_src = SET_SRC (old_set);
3638 /* First see if the source is of the form (plus (...) CST). */
3639 if (plus_src
3640 && CONST_INT_P (XEXP (plus_src, 1)))
3641 plus_cst_src = plus_src;
3642 else if (REG_P (SET_SRC (old_set))
3643 || plus_src)
3645 /* Otherwise, see if we have a REG_EQUAL note of the form
3646 (plus (...) CST). */
3647 rtx links;
3648 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3650 if ((REG_NOTE_KIND (links) == REG_EQUAL
3651 || REG_NOTE_KIND (links) == REG_EQUIV)
3652 && GET_CODE (XEXP (links, 0)) == PLUS
3653 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3655 plus_cst_src = XEXP (links, 0);
3656 break;
3662 /* Determine the effects of this insn on elimination offsets. */
3663 elimination_effects (old_body, VOIDmode);
3665 /* Eliminate all eliminable registers occurring in operands that
3666 can be handled by reload. */
3667 extract_insn (insn);
3668 int n_dups = recog_data.n_dups;
3669 for (i = 0; i < n_dups; i++)
3670 orig_dup[i] = *recog_data.dup_loc[i];
3672 int n_operands = recog_data.n_operands;
3673 for (i = 0; i < n_operands; i++)
3675 orig_operand[i] = recog_data.operand[i];
3677 /* For an asm statement, every operand is eliminable. */
3678 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3680 bool is_set_src, in_plus;
3682 /* Check for setting a register that we know about. */
3683 if (recog_data.operand_type[i] != OP_IN
3684 && REG_P (orig_operand[i]))
3686 /* If we are assigning to a register that can be eliminated, it
3687 must be as part of a PARALLEL, since the code above handles
3688 single SETs. We must indicate that we can no longer
3689 eliminate this reg. */
3690 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3691 ep++)
3692 if (ep->from_rtx == orig_operand[i])
3693 ep->can_eliminate = 0;
3696 /* Companion to the above plus substitution, we can allow
3697 invariants as the source of a plain move. */
3698 is_set_src = false;
3699 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3700 is_set_src = true;
3701 if (is_set_src && !sets_reg_p)
3702 note_reg_elim_costly (SET_SRC (old_set), insn);
3703 in_plus = false;
3704 if (plus_src && sets_reg_p
3705 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3706 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3707 in_plus = true;
3709 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3710 NULL_RTX,
3711 is_set_src || in_plus, true);
3712 /* Terminate the search in check_eliminable_occurrences at
3713 this point. */
3714 *recog_data.operand_loc[i] = 0;
3718 for (i = 0; i < n_dups; i++)
3719 *recog_data.dup_loc[i]
3720 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3722 /* If any eliminable remain, they aren't eliminable anymore. */
3723 check_eliminable_occurrences (old_body);
3725 /* Restore the old body. */
3726 for (i = 0; i < n_operands; i++)
3727 *recog_data.operand_loc[i] = orig_operand[i];
3728 for (i = 0; i < n_dups; i++)
3729 *recog_data.dup_loc[i] = orig_dup[i];
3731 /* Update all elimination pairs to reflect the status after the current
3732 insn. The changes we make were determined by the earlier call to
3733 elimination_effects. */
3735 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3737 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3738 ep->can_eliminate = 0;
3740 ep->ref_outside_mem = 0;
3743 return;
3745 #pragma GCC diagnostic pop
3747 /* Loop through all elimination pairs.
3748 Recalculate the number not at initial offset.
3750 Compute the maximum offset (minimum offset if the stack does not
3751 grow downward) for each elimination pair. */
3753 static void
3754 update_eliminable_offsets (void)
3756 struct elim_table *ep;
3758 num_not_at_initial_offset = 0;
3759 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3761 ep->previous_offset = ep->offset;
3762 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3763 num_not_at_initial_offset++;
3767 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3768 replacement we currently believe is valid, mark it as not eliminable if X
3769 modifies DEST in any way other than by adding a constant integer to it.
3771 If DEST is the frame pointer, we do nothing because we assume that
3772 all assignments to the hard frame pointer are nonlocal gotos and are being
3773 done at a time when they are valid and do not disturb anything else.
3774 Some machines want to eliminate a fake argument pointer with either the
3775 frame or stack pointer. Assignments to the hard frame pointer must not
3776 prevent this elimination.
3778 Called via note_stores from reload before starting its passes to scan
3779 the insns of the function. */
3781 static void
3782 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3784 unsigned int i;
3786 /* A SUBREG of a hard register here is just changing its mode. We should
3787 not see a SUBREG of an eliminable hard register, but check just in
3788 case. */
3789 if (GET_CODE (dest) == SUBREG)
3790 dest = SUBREG_REG (dest);
3792 if (dest == hard_frame_pointer_rtx)
3793 return;
3795 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3796 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3797 && (GET_CODE (x) != SET
3798 || GET_CODE (SET_SRC (x)) != PLUS
3799 || XEXP (SET_SRC (x), 0) != dest
3800 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3802 reg_eliminate[i].can_eliminate_previous
3803 = reg_eliminate[i].can_eliminate = 0;
3804 num_eliminable--;
3808 /* Verify that the initial elimination offsets did not change since the
3809 last call to set_initial_elim_offsets. This is used to catch cases
3810 where something illegal happened during reload_as_needed that could
3811 cause incorrect code to be generated if we did not check for it. */
3813 static bool
3814 verify_initial_elim_offsets (void)
3816 HOST_WIDE_INT t;
3817 struct elim_table *ep;
3819 if (!num_eliminable)
3820 return true;
3822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3824 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3825 if (t != ep->initial_offset)
3826 return false;
3829 return true;
3832 /* Reset all offsets on eliminable registers to their initial values. */
3834 static void
3835 set_initial_elim_offsets (void)
3837 struct elim_table *ep = reg_eliminate;
3839 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3841 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3842 ep->previous_offset = ep->offset = ep->initial_offset;
3845 num_not_at_initial_offset = 0;
3848 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3850 static void
3851 set_initial_eh_label_offset (rtx label)
3853 set_label_offsets (label, NULL, 1);
3856 /* Initialize the known label offsets.
3857 Set a known offset for each forced label to be at the initial offset
3858 of each elimination. We do this because we assume that all
3859 computed jumps occur from a location where each elimination is
3860 at its initial offset.
3861 For all other labels, show that we don't know the offsets. */
3863 static void
3864 set_initial_label_offsets (void)
3866 memset (offsets_known_at, 0, num_labels);
3868 unsigned int i;
3869 rtx_insn *insn;
3870 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3871 set_label_offsets (insn, NULL, 1);
3873 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3874 if (x->insn ())
3875 set_label_offsets (x->insn (), NULL, 1);
3877 for_each_eh_label (set_initial_eh_label_offset);
3880 /* Set all elimination offsets to the known values for the code label given
3881 by INSN. */
3883 static void
3884 set_offsets_for_label (rtx_insn *insn)
3886 unsigned int i;
3887 int label_nr = CODE_LABEL_NUMBER (insn);
3888 struct elim_table *ep;
3890 num_not_at_initial_offset = 0;
3891 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3893 ep->offset = ep->previous_offset
3894 = offsets_at[label_nr - first_label_num][i];
3895 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3896 num_not_at_initial_offset++;
3900 /* See if anything that happened changes which eliminations are valid.
3901 For example, on the SPARC, whether or not the frame pointer can
3902 be eliminated can depend on what registers have been used. We need
3903 not check some conditions again (such as flag_omit_frame_pointer)
3904 since they can't have changed. */
3906 static void
3907 update_eliminables (HARD_REG_SET *pset)
3909 int previous_frame_pointer_needed = frame_pointer_needed;
3910 struct elim_table *ep;
3912 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3913 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3914 && targetm.frame_pointer_required ())
3915 || ! targetm.can_eliminate (ep->from, ep->to)
3917 ep->can_eliminate = 0;
3919 /* Look for the case where we have discovered that we can't replace
3920 register A with register B and that means that we will now be
3921 trying to replace register A with register C. This means we can
3922 no longer replace register C with register B and we need to disable
3923 such an elimination, if it exists. This occurs often with A == ap,
3924 B == sp, and C == fp. */
3926 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3928 struct elim_table *op;
3929 int new_to = -1;
3931 if (! ep->can_eliminate && ep->can_eliminate_previous)
3933 /* Find the current elimination for ep->from, if there is a
3934 new one. */
3935 for (op = reg_eliminate;
3936 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3937 if (op->from == ep->from && op->can_eliminate)
3939 new_to = op->to;
3940 break;
3943 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3944 disable it. */
3945 for (op = reg_eliminate;
3946 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3947 if (op->from == new_to && op->to == ep->to)
3948 op->can_eliminate = 0;
3952 /* See if any registers that we thought we could eliminate the previous
3953 time are no longer eliminable. If so, something has changed and we
3954 must spill the register. Also, recompute the number of eliminable
3955 registers and see if the frame pointer is needed; it is if there is
3956 no elimination of the frame pointer that we can perform. */
3958 frame_pointer_needed = 1;
3959 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3961 if (ep->can_eliminate
3962 && ep->from == FRAME_POINTER_REGNUM
3963 && ep->to != HARD_FRAME_POINTER_REGNUM
3964 && (! SUPPORTS_STACK_ALIGNMENT
3965 || ! crtl->stack_realign_needed))
3966 frame_pointer_needed = 0;
3968 if (! ep->can_eliminate && ep->can_eliminate_previous)
3970 ep->can_eliminate_previous = 0;
3971 SET_HARD_REG_BIT (*pset, ep->from);
3972 num_eliminable--;
3976 /* If we didn't need a frame pointer last time, but we do now, spill
3977 the hard frame pointer. */
3978 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3979 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3982 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3983 Return true iff a register was spilled. */
3985 static bool
3986 update_eliminables_and_spill (void)
3988 int i;
3989 bool did_spill = false;
3990 HARD_REG_SET to_spill;
3991 CLEAR_HARD_REG_SET (to_spill);
3992 update_eliminables (&to_spill);
3993 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3995 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3996 if (TEST_HARD_REG_BIT (to_spill, i))
3998 spill_hard_reg (i, 1);
3999 did_spill = true;
4001 /* Regardless of the state of spills, if we previously had
4002 a register that we thought we could eliminate, but now can
4003 not eliminate, we must run another pass.
4005 Consider pseudos which have an entry in reg_equiv_* which
4006 reference an eliminable register. We must make another pass
4007 to update reg_equiv_* so that we do not substitute in the
4008 old value from when we thought the elimination could be
4009 performed. */
4011 return did_spill;
4014 /* Return true if X is used as the target register of an elimination. */
4016 bool
4017 elimination_target_reg_p (rtx x)
4019 struct elim_table *ep;
4021 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4022 if (ep->to_rtx == x && ep->can_eliminate)
4023 return true;
4025 return false;
4028 /* Initialize the table of registers to eliminate.
4029 Pre-condition: global flag frame_pointer_needed has been set before
4030 calling this function. */
4032 static void
4033 init_elim_table (void)
4035 struct elim_table *ep;
4036 const struct elim_table_1 *ep1;
4038 if (!reg_eliminate)
4039 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4041 num_eliminable = 0;
4043 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4044 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4046 ep->from = ep1->from;
4047 ep->to = ep1->to;
4048 ep->can_eliminate = ep->can_eliminate_previous
4049 = (targetm.can_eliminate (ep->from, ep->to)
4050 && ! (ep->to == STACK_POINTER_REGNUM
4051 && frame_pointer_needed
4052 && (! SUPPORTS_STACK_ALIGNMENT
4053 || ! stack_realign_fp)));
4056 /* Count the number of eliminable registers and build the FROM and TO
4057 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4058 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4059 We depend on this. */
4060 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4062 num_eliminable += ep->can_eliminate;
4063 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4064 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4068 /* Find all the pseudo registers that didn't get hard regs
4069 but do have known equivalent constants or memory slots.
4070 These include parameters (known equivalent to parameter slots)
4071 and cse'd or loop-moved constant memory addresses.
4073 Record constant equivalents in reg_equiv_constant
4074 so they will be substituted by find_reloads.
4075 Record memory equivalents in reg_mem_equiv so they can
4076 be substituted eventually by altering the REG-rtx's. */
4078 static void
4079 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4081 int i;
4082 rtx_insn *insn;
4084 grow_reg_equivs ();
4085 if (do_subregs)
4086 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4087 else
4088 reg_max_ref_width = NULL;
4090 num_eliminable_invariants = 0;
4092 first_label_num = get_first_label_num ();
4093 num_labels = max_label_num () - first_label_num;
4095 /* Allocate the tables used to store offset information at labels. */
4096 offsets_known_at = XNEWVEC (char, num_labels);
4097 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4099 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4100 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4101 find largest such for each pseudo. FIRST is the head of the insn
4102 list. */
4104 for (insn = first; insn; insn = NEXT_INSN (insn))
4106 rtx set = single_set (insn);
4108 /* We may introduce USEs that we want to remove at the end, so
4109 we'll mark them with QImode. Make sure there are no
4110 previously-marked insns left by say regmove. */
4111 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4112 && GET_MODE (insn) != VOIDmode)
4113 PUT_MODE (insn, VOIDmode);
4115 if (do_subregs && NONDEBUG_INSN_P (insn))
4116 scan_paradoxical_subregs (PATTERN (insn));
4118 if (set != 0 && REG_P (SET_DEST (set)))
4120 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4121 rtx x;
4123 if (! note)
4124 continue;
4126 i = REGNO (SET_DEST (set));
4127 x = XEXP (note, 0);
4129 if (i <= LAST_VIRTUAL_REGISTER)
4130 continue;
4132 /* If flag_pic and we have constant, verify it's legitimate. */
4133 if (!CONSTANT_P (x)
4134 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4136 /* It can happen that a REG_EQUIV note contains a MEM
4137 that is not a legitimate memory operand. As later
4138 stages of reload assume that all addresses found
4139 in the reg_equiv_* arrays were originally legitimate,
4140 we ignore such REG_EQUIV notes. */
4141 if (memory_operand (x, VOIDmode))
4143 /* Always unshare the equivalence, so we can
4144 substitute into this insn without touching the
4145 equivalence. */
4146 reg_equiv_memory_loc (i) = copy_rtx (x);
4148 else if (function_invariant_p (x))
4150 machine_mode mode;
4152 mode = GET_MODE (SET_DEST (set));
4153 if (GET_CODE (x) == PLUS)
4155 /* This is PLUS of frame pointer and a constant,
4156 and might be shared. Unshare it. */
4157 reg_equiv_invariant (i) = copy_rtx (x);
4158 num_eliminable_invariants++;
4160 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4162 reg_equiv_invariant (i) = x;
4163 num_eliminable_invariants++;
4165 else if (targetm.legitimate_constant_p (mode, x))
4166 reg_equiv_constant (i) = x;
4167 else
4169 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4170 if (! reg_equiv_memory_loc (i))
4171 reg_equiv_init (i) = NULL;
4174 else
4176 reg_equiv_init (i) = NULL;
4177 continue;
4180 else
4181 reg_equiv_init (i) = NULL;
4185 if (dump_file)
4186 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4187 if (reg_equiv_init (i))
4189 fprintf (dump_file, "init_insns for %u: ", i);
4190 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4191 fprintf (dump_file, "\n");
4195 /* Indicate that we no longer have known memory locations or constants.
4196 Free all data involved in tracking these. */
4198 static void
4199 free_reg_equiv (void)
4201 int i;
4203 free (offsets_known_at);
4204 free (offsets_at);
4205 offsets_at = 0;
4206 offsets_known_at = 0;
4208 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4209 if (reg_equiv_alt_mem_list (i))
4210 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4211 vec_free (reg_equivs);
4214 /* Kick all pseudos out of hard register REGNO.
4216 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4217 because we found we can't eliminate some register. In the case, no pseudos
4218 are allowed to be in the register, even if they are only in a block that
4219 doesn't require spill registers, unlike the case when we are spilling this
4220 hard reg to produce another spill register.
4222 Return nonzero if any pseudos needed to be kicked out. */
4224 static void
4225 spill_hard_reg (unsigned int regno, int cant_eliminate)
4227 int i;
4229 if (cant_eliminate)
4231 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4232 df_set_regs_ever_live (regno, true);
4235 /* Spill every pseudo reg that was allocated to this reg
4236 or to something that overlaps this reg. */
4238 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4239 if (reg_renumber[i] >= 0
4240 && (unsigned int) reg_renumber[i] <= regno
4241 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4242 SET_REGNO_REG_SET (&spilled_pseudos, i);
4245 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4246 insns that need reloads, this function is used to actually spill pseudo
4247 registers and try to reallocate them. It also sets up the spill_regs
4248 array for use by choose_reload_regs.
4250 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4251 that we displace from hard registers. */
4253 static int
4254 finish_spills (int global)
4256 struct insn_chain *chain;
4257 int something_changed = 0;
4258 unsigned i;
4259 reg_set_iterator rsi;
4261 /* Build the spill_regs array for the function. */
4262 /* If there are some registers still to eliminate and one of the spill regs
4263 wasn't ever used before, additional stack space may have to be
4264 allocated to store this register. Thus, we may have changed the offset
4265 between the stack and frame pointers, so mark that something has changed.
4267 One might think that we need only set VAL to 1 if this is a call-used
4268 register. However, the set of registers that must be saved by the
4269 prologue is not identical to the call-used set. For example, the
4270 register used by the call insn for the return PC is a call-used register,
4271 but must be saved by the prologue. */
4273 n_spills = 0;
4274 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4275 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4277 spill_reg_order[i] = n_spills;
4278 spill_regs[n_spills++] = i;
4279 if (num_eliminable && ! df_regs_ever_live_p (i))
4280 something_changed = 1;
4281 df_set_regs_ever_live (i, true);
4283 else
4284 spill_reg_order[i] = -1;
4286 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4287 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4289 /* Record the current hard register the pseudo is allocated to
4290 in pseudo_previous_regs so we avoid reallocating it to the
4291 same hard reg in a later pass. */
4292 gcc_assert (reg_renumber[i] >= 0);
4294 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4295 /* Mark it as no longer having a hard register home. */
4296 reg_renumber[i] = -1;
4297 if (ira_conflicts_p)
4298 /* Inform IRA about the change. */
4299 ira_mark_allocation_change (i);
4300 /* We will need to scan everything again. */
4301 something_changed = 1;
4304 /* Retry global register allocation if possible. */
4305 if (global && ira_conflicts_p)
4307 unsigned int n;
4309 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4310 /* For every insn that needs reloads, set the registers used as spill
4311 regs in pseudo_forbidden_regs for every pseudo live across the
4312 insn. */
4313 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4315 EXECUTE_IF_SET_IN_REG_SET
4316 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4318 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4319 chain->used_spill_regs);
4321 EXECUTE_IF_SET_IN_REG_SET
4322 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4324 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4325 chain->used_spill_regs);
4329 /* Retry allocating the pseudos spilled in IRA and the
4330 reload. For each reg, merge the various reg sets that
4331 indicate which hard regs can't be used, and call
4332 ira_reassign_pseudos. */
4333 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4334 if (reg_old_renumber[i] != reg_renumber[i])
4336 if (reg_renumber[i] < 0)
4337 temp_pseudo_reg_arr[n++] = i;
4338 else
4339 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4341 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4342 bad_spill_regs_global,
4343 pseudo_forbidden_regs, pseudo_previous_regs,
4344 &spilled_pseudos))
4345 something_changed = 1;
4347 /* Fix up the register information in the insn chain.
4348 This involves deleting those of the spilled pseudos which did not get
4349 a new hard register home from the live_{before,after} sets. */
4350 for (chain = reload_insn_chain; chain; chain = chain->next)
4352 HARD_REG_SET used_by_pseudos;
4353 HARD_REG_SET used_by_pseudos2;
4355 if (! ira_conflicts_p)
4357 /* Don't do it for IRA because IRA and the reload still can
4358 assign hard registers to the spilled pseudos on next
4359 reload iterations. */
4360 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4361 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4363 /* Mark any unallocated hard regs as available for spills. That
4364 makes inheritance work somewhat better. */
4365 if (chain->need_reload)
4367 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4368 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4369 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4371 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4372 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4373 /* Value of chain->used_spill_regs from previous iteration
4374 may be not included in the value calculated here because
4375 of possible removing caller-saves insns (see function
4376 delete_caller_save_insns. */
4377 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4378 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4382 CLEAR_REG_SET (&changed_allocation_pseudos);
4383 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4384 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4386 int regno = reg_renumber[i];
4387 if (reg_old_renumber[i] == regno)
4388 continue;
4390 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4392 alter_reg (i, reg_old_renumber[i], false);
4393 reg_old_renumber[i] = regno;
4394 if (dump_file)
4396 if (regno == -1)
4397 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4398 else
4399 fprintf (dump_file, " Register %d now in %d.\n\n",
4400 i, reg_renumber[i]);
4404 return something_changed;
4407 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4409 static void
4410 scan_paradoxical_subregs (rtx x)
4412 int i;
4413 const char *fmt;
4414 enum rtx_code code = GET_CODE (x);
4416 switch (code)
4418 case REG:
4419 case CONST:
4420 case SYMBOL_REF:
4421 case LABEL_REF:
4422 CASE_CONST_ANY:
4423 case CC0:
4424 case PC:
4425 case USE:
4426 case CLOBBER:
4427 return;
4429 case SUBREG:
4430 if (REG_P (SUBREG_REG (x))
4431 && (GET_MODE_SIZE (GET_MODE (x))
4432 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4434 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4435 = GET_MODE_SIZE (GET_MODE (x));
4436 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4438 return;
4440 default:
4441 break;
4444 fmt = GET_RTX_FORMAT (code);
4445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4447 if (fmt[i] == 'e')
4448 scan_paradoxical_subregs (XEXP (x, i));
4449 else if (fmt[i] == 'E')
4451 int j;
4452 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4453 scan_paradoxical_subregs (XVECEXP (x, i, j));
4458 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4459 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4460 and apply the corresponding narrowing subreg to *OTHER_PTR.
4461 Return true if the operands were changed, false otherwise. */
4463 static bool
4464 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4466 rtx op, inner, other, tem;
4468 op = *op_ptr;
4469 if (!paradoxical_subreg_p (op))
4470 return false;
4471 inner = SUBREG_REG (op);
4473 other = *other_ptr;
4474 tem = gen_lowpart_common (GET_MODE (inner), other);
4475 if (!tem)
4476 return false;
4478 /* If the lowpart operation turned a hard register into a subreg,
4479 rather than simplifying it to another hard register, then the
4480 mode change cannot be properly represented. For example, OTHER
4481 might be valid in its current mode, but not in the new one. */
4482 if (GET_CODE (tem) == SUBREG
4483 && REG_P (other)
4484 && HARD_REGISTER_P (other))
4485 return false;
4487 *op_ptr = inner;
4488 *other_ptr = tem;
4489 return true;
4492 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4493 examine all of the reload insns between PREV and NEXT exclusive, and
4494 annotate all that may trap. */
4496 static void
4497 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4499 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4500 if (note == NULL)
4501 return;
4502 if (!insn_could_throw_p (insn))
4503 remove_note (insn, note);
4504 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4507 /* Reload pseudo-registers into hard regs around each insn as needed.
4508 Additional register load insns are output before the insn that needs it
4509 and perhaps store insns after insns that modify the reloaded pseudo reg.
4511 reg_last_reload_reg and reg_reloaded_contents keep track of
4512 which registers are already available in reload registers.
4513 We update these for the reloads that we perform,
4514 as the insns are scanned. */
4516 static void
4517 reload_as_needed (int live_known)
4519 struct insn_chain *chain;
4520 #if AUTO_INC_DEC
4521 int i;
4522 #endif
4523 rtx_note *marker;
4525 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4526 memset (spill_reg_store, 0, sizeof spill_reg_store);
4527 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4528 INIT_REG_SET (&reg_has_output_reload);
4529 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4530 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4532 set_initial_elim_offsets ();
4534 /* Generate a marker insn that we will move around. */
4535 marker = emit_note (NOTE_INSN_DELETED);
4536 unlink_insn_chain (marker, marker);
4538 for (chain = reload_insn_chain; chain; chain = chain->next)
4540 rtx_insn *prev = 0;
4541 rtx_insn *insn = chain->insn;
4542 rtx_insn *old_next = NEXT_INSN (insn);
4543 #if AUTO_INC_DEC
4544 rtx_insn *old_prev = PREV_INSN (insn);
4545 #endif
4547 if (will_delete_init_insn_p (insn))
4548 continue;
4550 /* If we pass a label, copy the offsets from the label information
4551 into the current offsets of each elimination. */
4552 if (LABEL_P (insn))
4553 set_offsets_for_label (insn);
4555 else if (INSN_P (insn))
4557 regset_head regs_to_forget;
4558 INIT_REG_SET (&regs_to_forget);
4559 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4561 /* If this is a USE and CLOBBER of a MEM, ensure that any
4562 references to eliminable registers have been removed. */
4564 if ((GET_CODE (PATTERN (insn)) == USE
4565 || GET_CODE (PATTERN (insn)) == CLOBBER)
4566 && MEM_P (XEXP (PATTERN (insn), 0)))
4567 XEXP (XEXP (PATTERN (insn), 0), 0)
4568 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4569 GET_MODE (XEXP (PATTERN (insn), 0)),
4570 NULL_RTX);
4572 /* If we need to do register elimination processing, do so.
4573 This might delete the insn, in which case we are done. */
4574 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4576 eliminate_regs_in_insn (insn, 1);
4577 if (NOTE_P (insn))
4579 update_eliminable_offsets ();
4580 CLEAR_REG_SET (&regs_to_forget);
4581 continue;
4585 /* If need_elim is nonzero but need_reload is zero, one might think
4586 that we could simply set n_reloads to 0. However, find_reloads
4587 could have done some manipulation of the insn (such as swapping
4588 commutative operands), and these manipulations are lost during
4589 the first pass for every insn that needs register elimination.
4590 So the actions of find_reloads must be redone here. */
4592 if (! chain->need_elim && ! chain->need_reload
4593 && ! chain->need_operand_change)
4594 n_reloads = 0;
4595 /* First find the pseudo regs that must be reloaded for this insn.
4596 This info is returned in the tables reload_... (see reload.h).
4597 Also modify the body of INSN by substituting RELOAD
4598 rtx's for those pseudo regs. */
4599 else
4601 CLEAR_REG_SET (&reg_has_output_reload);
4602 CLEAR_HARD_REG_SET (reg_is_output_reload);
4604 find_reloads (insn, 1, spill_indirect_levels, live_known,
4605 spill_reg_order);
4608 if (n_reloads > 0)
4610 rtx_insn *next = NEXT_INSN (insn);
4612 /* ??? PREV can get deleted by reload inheritance.
4613 Work around this by emitting a marker note. */
4614 prev = PREV_INSN (insn);
4615 reorder_insns_nobb (marker, marker, prev);
4617 /* Now compute which reload regs to reload them into. Perhaps
4618 reusing reload regs from previous insns, or else output
4619 load insns to reload them. Maybe output store insns too.
4620 Record the choices of reload reg in reload_reg_rtx. */
4621 choose_reload_regs (chain);
4623 /* Generate the insns to reload operands into or out of
4624 their reload regs. */
4625 emit_reload_insns (chain);
4627 /* Substitute the chosen reload regs from reload_reg_rtx
4628 into the insn's body (or perhaps into the bodies of other
4629 load and store insn that we just made for reloading
4630 and that we moved the structure into). */
4631 subst_reloads (insn);
4633 prev = PREV_INSN (marker);
4634 unlink_insn_chain (marker, marker);
4636 /* Adjust the exception region notes for loads and stores. */
4637 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4638 fixup_eh_region_note (insn, prev, next);
4640 /* Adjust the location of REG_ARGS_SIZE. */
4641 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4642 if (p)
4644 remove_note (insn, p);
4645 fixup_args_size_notes (prev, PREV_INSN (next),
4646 INTVAL (XEXP (p, 0)));
4649 /* If this was an ASM, make sure that all the reload insns
4650 we have generated are valid. If not, give an error
4651 and delete them. */
4652 if (asm_noperands (PATTERN (insn)) >= 0)
4653 for (rtx_insn *p = NEXT_INSN (prev);
4654 p != next;
4655 p = NEXT_INSN (p))
4656 if (p != insn && INSN_P (p)
4657 && GET_CODE (PATTERN (p)) != USE
4658 && (recog_memoized (p) < 0
4659 || (extract_insn (p),
4660 !(constrain_operands (1,
4661 get_enabled_alternatives (p))))))
4663 error_for_asm (insn,
4664 "%<asm%> operand requires "
4665 "impossible reload");
4666 delete_insn (p);
4670 if (num_eliminable && chain->need_elim)
4671 update_eliminable_offsets ();
4673 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4674 is no longer validly lying around to save a future reload.
4675 Note that this does not detect pseudos that were reloaded
4676 for this insn in order to be stored in
4677 (obeying register constraints). That is correct; such reload
4678 registers ARE still valid. */
4679 forget_marked_reloads (&regs_to_forget);
4680 CLEAR_REG_SET (&regs_to_forget);
4682 /* There may have been CLOBBER insns placed after INSN. So scan
4683 between INSN and NEXT and use them to forget old reloads. */
4684 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4685 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4686 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4688 #if AUTO_INC_DEC
4689 /* Likewise for regs altered by auto-increment in this insn.
4690 REG_INC notes have been changed by reloading:
4691 find_reloads_address_1 records substitutions for them,
4692 which have been performed by subst_reloads above. */
4693 for (i = n_reloads - 1; i >= 0; i--)
4695 rtx in_reg = rld[i].in_reg;
4696 if (in_reg)
4698 enum rtx_code code = GET_CODE (in_reg);
4699 /* PRE_INC / PRE_DEC will have the reload register ending up
4700 with the same value as the stack slot, but that doesn't
4701 hold true for POST_INC / POST_DEC. Either we have to
4702 convert the memory access to a true POST_INC / POST_DEC,
4703 or we can't use the reload register for inheritance. */
4704 if ((code == POST_INC || code == POST_DEC)
4705 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4706 REGNO (rld[i].reg_rtx))
4707 /* Make sure it is the inc/dec pseudo, and not
4708 some other (e.g. output operand) pseudo. */
4709 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4710 == REGNO (XEXP (in_reg, 0))))
4713 rtx reload_reg = rld[i].reg_rtx;
4714 machine_mode mode = GET_MODE (reload_reg);
4715 int n = 0;
4716 rtx_insn *p;
4718 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4720 /* We really want to ignore REG_INC notes here, so
4721 use PATTERN (p) as argument to reg_set_p . */
4722 if (reg_set_p (reload_reg, PATTERN (p)))
4723 break;
4724 n = count_occurrences (PATTERN (p), reload_reg, 0);
4725 if (! n)
4726 continue;
4727 if (n == 1)
4729 rtx replace_reg
4730 = gen_rtx_fmt_e (code, mode, reload_reg);
4732 validate_replace_rtx_group (reload_reg,
4733 replace_reg, p);
4734 n = verify_changes (0);
4736 /* We must also verify that the constraints
4737 are met after the replacement. Make sure
4738 extract_insn is only called for an insn
4739 where the replacements were found to be
4740 valid so far. */
4741 if (n)
4743 extract_insn (p);
4744 n = constrain_operands (1,
4745 get_enabled_alternatives (p));
4748 /* If the constraints were not met, then
4749 undo the replacement, else confirm it. */
4750 if (!n)
4751 cancel_changes (0);
4752 else
4753 confirm_change_group ();
4755 break;
4757 if (n == 1)
4759 add_reg_note (p, REG_INC, reload_reg);
4760 /* Mark this as having an output reload so that the
4761 REG_INC processing code below won't invalidate
4762 the reload for inheritance. */
4763 SET_HARD_REG_BIT (reg_is_output_reload,
4764 REGNO (reload_reg));
4765 SET_REGNO_REG_SET (&reg_has_output_reload,
4766 REGNO (XEXP (in_reg, 0)));
4768 else
4769 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4770 NULL);
4772 else if ((code == PRE_INC || code == PRE_DEC)
4773 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4774 REGNO (rld[i].reg_rtx))
4775 /* Make sure it is the inc/dec pseudo, and not
4776 some other (e.g. output operand) pseudo. */
4777 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4778 == REGNO (XEXP (in_reg, 0))))
4780 SET_HARD_REG_BIT (reg_is_output_reload,
4781 REGNO (rld[i].reg_rtx));
4782 SET_REGNO_REG_SET (&reg_has_output_reload,
4783 REGNO (XEXP (in_reg, 0)));
4785 else if (code == PRE_INC || code == PRE_DEC
4786 || code == POST_INC || code == POST_DEC)
4788 int in_regno = REGNO (XEXP (in_reg, 0));
4790 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4792 int in_hard_regno;
4793 bool forget_p = true;
4795 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4796 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4797 in_hard_regno))
4799 for (rtx_insn *x = (old_prev ?
4800 NEXT_INSN (old_prev) : insn);
4801 x != old_next;
4802 x = NEXT_INSN (x))
4803 if (x == reg_reloaded_insn[in_hard_regno])
4805 forget_p = false;
4806 break;
4809 /* If for some reasons, we didn't set up
4810 reg_last_reload_reg in this insn,
4811 invalidate inheritance from previous
4812 insns for the incremented/decremented
4813 register. Such registers will be not in
4814 reg_has_output_reload. Invalidate it
4815 also if the corresponding element in
4816 reg_reloaded_insn is also
4817 invalidated. */
4818 if (forget_p)
4819 forget_old_reloads_1 (XEXP (in_reg, 0),
4820 NULL_RTX, NULL);
4825 /* If a pseudo that got a hard register is auto-incremented,
4826 we must purge records of copying it into pseudos without
4827 hard registers. */
4828 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4829 if (REG_NOTE_KIND (x) == REG_INC)
4831 /* See if this pseudo reg was reloaded in this insn.
4832 If so, its last-reload info is still valid
4833 because it is based on this insn's reload. */
4834 for (i = 0; i < n_reloads; i++)
4835 if (rld[i].out == XEXP (x, 0))
4836 break;
4838 if (i == n_reloads)
4839 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4841 #endif
4843 /* A reload reg's contents are unknown after a label. */
4844 if (LABEL_P (insn))
4845 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4847 /* Don't assume a reload reg is still good after a call insn
4848 if it is a call-used reg, or if it contains a value that will
4849 be partially clobbered by the call. */
4850 else if (CALL_P (insn))
4852 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4853 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4855 /* If this is a call to a setjmp-type function, we must not
4856 reuse any reload reg contents across the call; that will
4857 just be clobbered by other uses of the register in later
4858 code, before the longjmp. */
4859 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4860 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4864 /* Clean up. */
4865 free (reg_last_reload_reg);
4866 CLEAR_REG_SET (&reg_has_output_reload);
4869 /* Discard all record of any value reloaded from X,
4870 or reloaded in X from someplace else;
4871 unless X is an output reload reg of the current insn.
4873 X may be a hard reg (the reload reg)
4874 or it may be a pseudo reg that was reloaded from.
4876 When DATA is non-NULL just mark the registers in regset
4877 to be forgotten later. */
4879 static void
4880 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4881 void *data)
4883 unsigned int regno;
4884 unsigned int nr;
4885 regset regs = (regset) data;
4887 /* note_stores does give us subregs of hard regs,
4888 subreg_regno_offset requires a hard reg. */
4889 while (GET_CODE (x) == SUBREG)
4891 /* We ignore the subreg offset when calculating the regno,
4892 because we are using the entire underlying hard register
4893 below. */
4894 x = SUBREG_REG (x);
4897 if (!REG_P (x))
4898 return;
4900 regno = REGNO (x);
4902 if (regno >= FIRST_PSEUDO_REGISTER)
4903 nr = 1;
4904 else
4906 unsigned int i;
4908 nr = hard_regno_nregs[regno][GET_MODE (x)];
4909 /* Storing into a spilled-reg invalidates its contents.
4910 This can happen if a block-local pseudo is allocated to that reg
4911 and it wasn't spilled because this block's total need is 0.
4912 Then some insn might have an optional reload and use this reg. */
4913 if (!regs)
4914 for (i = 0; i < nr; i++)
4915 /* But don't do this if the reg actually serves as an output
4916 reload reg in the current instruction. */
4917 if (n_reloads == 0
4918 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4920 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4921 spill_reg_store[regno + i] = 0;
4925 if (regs)
4926 while (nr-- > 0)
4927 SET_REGNO_REG_SET (regs, regno + nr);
4928 else
4930 /* Since value of X has changed,
4931 forget any value previously copied from it. */
4933 while (nr-- > 0)
4934 /* But don't forget a copy if this is the output reload
4935 that establishes the copy's validity. */
4936 if (n_reloads == 0
4937 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4938 reg_last_reload_reg[regno + nr] = 0;
4942 /* Forget the reloads marked in regset by previous function. */
4943 static void
4944 forget_marked_reloads (regset regs)
4946 unsigned int reg;
4947 reg_set_iterator rsi;
4948 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4950 if (reg < FIRST_PSEUDO_REGISTER
4951 /* But don't do this if the reg actually serves as an output
4952 reload reg in the current instruction. */
4953 && (n_reloads == 0
4954 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4956 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4957 spill_reg_store[reg] = 0;
4959 if (n_reloads == 0
4960 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4961 reg_last_reload_reg[reg] = 0;
4965 /* The following HARD_REG_SETs indicate when each hard register is
4966 used for a reload of various parts of the current insn. */
4968 /* If reg is unavailable for all reloads. */
4969 static HARD_REG_SET reload_reg_unavailable;
4970 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4971 static HARD_REG_SET reload_reg_used;
4972 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4973 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4974 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4975 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4976 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4977 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4978 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4979 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4980 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4981 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4982 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4983 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4984 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4985 static HARD_REG_SET reload_reg_used_in_op_addr;
4986 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4987 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4988 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4989 static HARD_REG_SET reload_reg_used_in_insn;
4990 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4991 static HARD_REG_SET reload_reg_used_in_other_addr;
4993 /* If reg is in use as a reload reg for any sort of reload. */
4994 static HARD_REG_SET reload_reg_used_at_all;
4996 /* If reg is use as an inherited reload. We just mark the first register
4997 in the group. */
4998 static HARD_REG_SET reload_reg_used_for_inherit;
5000 /* Records which hard regs are used in any way, either as explicit use or
5001 by being allocated to a pseudo during any point of the current insn. */
5002 static HARD_REG_SET reg_used_in_insn;
5004 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5005 TYPE. MODE is used to indicate how many consecutive regs are
5006 actually used. */
5008 static void
5009 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5010 machine_mode mode)
5012 switch (type)
5014 case RELOAD_OTHER:
5015 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5016 break;
5018 case RELOAD_FOR_INPUT_ADDRESS:
5019 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5020 break;
5022 case RELOAD_FOR_INPADDR_ADDRESS:
5023 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5024 break;
5026 case RELOAD_FOR_OUTPUT_ADDRESS:
5027 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5028 break;
5030 case RELOAD_FOR_OUTADDR_ADDRESS:
5031 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5032 break;
5034 case RELOAD_FOR_OPERAND_ADDRESS:
5035 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5036 break;
5038 case RELOAD_FOR_OPADDR_ADDR:
5039 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5040 break;
5042 case RELOAD_FOR_OTHER_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5044 break;
5046 case RELOAD_FOR_INPUT:
5047 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5048 break;
5050 case RELOAD_FOR_OUTPUT:
5051 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5052 break;
5054 case RELOAD_FOR_INSN:
5055 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5056 break;
5059 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5062 /* Similarly, but show REGNO is no longer in use for a reload. */
5064 static void
5065 clear_reload_reg_in_use (unsigned int regno, int opnum,
5066 enum reload_type type, machine_mode mode)
5068 unsigned int nregs = hard_regno_nregs[regno][mode];
5069 unsigned int start_regno, end_regno, r;
5070 int i;
5071 /* A complication is that for some reload types, inheritance might
5072 allow multiple reloads of the same types to share a reload register.
5073 We set check_opnum if we have to check only reloads with the same
5074 operand number, and check_any if we have to check all reloads. */
5075 int check_opnum = 0;
5076 int check_any = 0;
5077 HARD_REG_SET *used_in_set;
5079 switch (type)
5081 case RELOAD_OTHER:
5082 used_in_set = &reload_reg_used;
5083 break;
5085 case RELOAD_FOR_INPUT_ADDRESS:
5086 used_in_set = &reload_reg_used_in_input_addr[opnum];
5087 break;
5089 case RELOAD_FOR_INPADDR_ADDRESS:
5090 check_opnum = 1;
5091 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5092 break;
5094 case RELOAD_FOR_OUTPUT_ADDRESS:
5095 used_in_set = &reload_reg_used_in_output_addr[opnum];
5096 break;
5098 case RELOAD_FOR_OUTADDR_ADDRESS:
5099 check_opnum = 1;
5100 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5101 break;
5103 case RELOAD_FOR_OPERAND_ADDRESS:
5104 used_in_set = &reload_reg_used_in_op_addr;
5105 break;
5107 case RELOAD_FOR_OPADDR_ADDR:
5108 check_any = 1;
5109 used_in_set = &reload_reg_used_in_op_addr_reload;
5110 break;
5112 case RELOAD_FOR_OTHER_ADDRESS:
5113 used_in_set = &reload_reg_used_in_other_addr;
5114 check_any = 1;
5115 break;
5117 case RELOAD_FOR_INPUT:
5118 used_in_set = &reload_reg_used_in_input[opnum];
5119 break;
5121 case RELOAD_FOR_OUTPUT:
5122 used_in_set = &reload_reg_used_in_output[opnum];
5123 break;
5125 case RELOAD_FOR_INSN:
5126 used_in_set = &reload_reg_used_in_insn;
5127 break;
5128 default:
5129 gcc_unreachable ();
5131 /* We resolve conflicts with remaining reloads of the same type by
5132 excluding the intervals of reload registers by them from the
5133 interval of freed reload registers. Since we only keep track of
5134 one set of interval bounds, we might have to exclude somewhat
5135 more than what would be necessary if we used a HARD_REG_SET here.
5136 But this should only happen very infrequently, so there should
5137 be no reason to worry about it. */
5139 start_regno = regno;
5140 end_regno = regno + nregs;
5141 if (check_opnum || check_any)
5143 for (i = n_reloads - 1; i >= 0; i--)
5145 if (rld[i].when_needed == type
5146 && (check_any || rld[i].opnum == opnum)
5147 && rld[i].reg_rtx)
5149 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5150 unsigned int conflict_end
5151 = end_hard_regno (rld[i].mode, conflict_start);
5153 /* If there is an overlap with the first to-be-freed register,
5154 adjust the interval start. */
5155 if (conflict_start <= start_regno && conflict_end > start_regno)
5156 start_regno = conflict_end;
5157 /* Otherwise, if there is a conflict with one of the other
5158 to-be-freed registers, adjust the interval end. */
5159 if (conflict_start > start_regno && conflict_start < end_regno)
5160 end_regno = conflict_start;
5165 for (r = start_regno; r < end_regno; r++)
5166 CLEAR_HARD_REG_BIT (*used_in_set, r);
5169 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5170 specified by OPNUM and TYPE. */
5172 static int
5173 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5175 int i;
5177 /* In use for a RELOAD_OTHER means it's not available for anything. */
5178 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5179 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5180 return 0;
5182 switch (type)
5184 case RELOAD_OTHER:
5185 /* In use for anything means we can't use it for RELOAD_OTHER. */
5186 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5187 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5188 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5190 return 0;
5192 for (i = 0; i < reload_n_operands; i++)
5193 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5194 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5195 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5199 return 0;
5201 return 1;
5203 case RELOAD_FOR_INPUT:
5204 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5206 return 0;
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5209 return 0;
5211 /* If it is used for some other input, can't use it. */
5212 for (i = 0; i < reload_n_operands; i++)
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5214 return 0;
5216 /* If it is used in a later operand's address, can't use it. */
5217 for (i = opnum + 1; i < reload_n_operands; i++)
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5220 return 0;
5222 return 1;
5224 case RELOAD_FOR_INPUT_ADDRESS:
5225 /* Can't use a register if it is used for an input address for this
5226 operand or used as an input in an earlier one. */
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5228 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5229 return 0;
5231 for (i = 0; i < opnum; i++)
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5233 return 0;
5235 return 1;
5237 case RELOAD_FOR_INPADDR_ADDRESS:
5238 /* Can't use a register if it is used for an input address
5239 for this operand or used as an input in an earlier
5240 one. */
5241 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5242 return 0;
5244 for (i = 0; i < opnum; i++)
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5246 return 0;
5248 return 1;
5250 case RELOAD_FOR_OUTPUT_ADDRESS:
5251 /* Can't use a register if it is used for an output address for this
5252 operand or used as an output in this or a later operand. Note
5253 that multiple output operands are emitted in reverse order, so
5254 the conflicting ones are those with lower indices. */
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5256 return 0;
5258 for (i = 0; i <= opnum; i++)
5259 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5260 return 0;
5262 return 1;
5264 case RELOAD_FOR_OUTADDR_ADDRESS:
5265 /* Can't use a register if it is used for an output address
5266 for this operand or used as an output in this or a
5267 later operand. Note that multiple output operands are
5268 emitted in reverse order, so the conflicting ones are
5269 those with lower indices. */
5270 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5271 return 0;
5273 for (i = 0; i <= opnum; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5275 return 0;
5277 return 1;
5279 case RELOAD_FOR_OPERAND_ADDRESS:
5280 for (i = 0; i < reload_n_operands; i++)
5281 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5282 return 0;
5284 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5285 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5287 case RELOAD_FOR_OPADDR_ADDR:
5288 for (i = 0; i < reload_n_operands; i++)
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5290 return 0;
5292 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5294 case RELOAD_FOR_OUTPUT:
5295 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5296 outputs, or an operand address for this or an earlier output.
5297 Note that multiple output operands are emitted in reverse order,
5298 so the conflicting ones are those with higher indices. */
5299 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5300 return 0;
5302 for (i = 0; i < reload_n_operands; i++)
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5304 return 0;
5306 for (i = opnum; i < reload_n_operands; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5308 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5309 return 0;
5311 return 1;
5313 case RELOAD_FOR_INSN:
5314 for (i = 0; i < reload_n_operands; i++)
5315 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5316 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5317 return 0;
5319 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5320 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5322 case RELOAD_FOR_OTHER_ADDRESS:
5323 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5325 default:
5326 gcc_unreachable ();
5330 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5331 the number RELOADNUM, is still available in REGNO at the end of the insn.
5333 We can assume that the reload reg was already tested for availability
5334 at the time it is needed, and we should not check this again,
5335 in case the reg has already been marked in use. */
5337 static int
5338 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5340 int opnum = rld[reloadnum].opnum;
5341 enum reload_type type = rld[reloadnum].when_needed;
5342 int i;
5344 /* See if there is a reload with the same type for this operand, using
5345 the same register. This case is not handled by the code below. */
5346 for (i = reloadnum + 1; i < n_reloads; i++)
5348 rtx reg;
5349 int nregs;
5351 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5352 continue;
5353 reg = rld[i].reg_rtx;
5354 if (reg == NULL_RTX)
5355 continue;
5356 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5357 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5358 return 0;
5361 switch (type)
5363 case RELOAD_OTHER:
5364 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5365 its value must reach the end. */
5366 return 1;
5368 /* If this use is for part of the insn,
5369 its value reaches if no subsequent part uses the same register.
5370 Just like the above function, don't try to do this with lots
5371 of fallthroughs. */
5373 case RELOAD_FOR_OTHER_ADDRESS:
5374 /* Here we check for everything else, since these don't conflict
5375 with anything else and everything comes later. */
5377 for (i = 0; i < reload_n_operands; i++)
5378 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5384 return 0;
5386 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5387 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5388 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5391 case RELOAD_FOR_INPUT_ADDRESS:
5392 case RELOAD_FOR_INPADDR_ADDRESS:
5393 /* Similar, except that we check only for this and subsequent inputs
5394 and the address of only subsequent inputs and we do not need
5395 to check for RELOAD_OTHER objects since they are known not to
5396 conflict. */
5398 for (i = opnum; i < reload_n_operands; i++)
5399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5400 return 0;
5402 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5403 could be killed if the register is also used by reload with type
5404 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5405 if (type == RELOAD_FOR_INPADDR_ADDRESS
5406 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5407 return 0;
5409 for (i = opnum + 1; i < reload_n_operands; i++)
5410 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5411 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5412 return 0;
5414 for (i = 0; i < reload_n_operands; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5418 return 0;
5420 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5421 return 0;
5423 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5424 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5425 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5427 case RELOAD_FOR_INPUT:
5428 /* Similar to input address, except we start at the next operand for
5429 both input and input address and we do not check for
5430 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5431 would conflict. */
5433 for (i = opnum + 1; i < reload_n_operands; i++)
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5437 return 0;
5439 /* ... fall through ... */
5441 case RELOAD_FOR_OPERAND_ADDRESS:
5442 /* Check outputs and their addresses. */
5444 for (i = 0; i < reload_n_operands; i++)
5445 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5446 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5447 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5448 return 0;
5450 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5452 case RELOAD_FOR_OPADDR_ADDR:
5453 for (i = 0; i < reload_n_operands; i++)
5454 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5455 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5457 return 0;
5459 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5460 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5461 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5463 case RELOAD_FOR_INSN:
5464 /* These conflict with other outputs with RELOAD_OTHER. So
5465 we need only check for output addresses. */
5467 opnum = reload_n_operands;
5469 /* fall through */
5471 case RELOAD_FOR_OUTPUT:
5472 case RELOAD_FOR_OUTPUT_ADDRESS:
5473 case RELOAD_FOR_OUTADDR_ADDRESS:
5474 /* We already know these can't conflict with a later output. So the
5475 only thing to check are later output addresses.
5476 Note that multiple output operands are emitted in reverse order,
5477 so the conflicting ones are those with lower indices. */
5478 for (i = 0; i < opnum; i++)
5479 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5481 return 0;
5483 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5484 could be killed if the register is also used by reload with type
5485 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5486 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5487 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5488 return 0;
5490 return 1;
5492 default:
5493 gcc_unreachable ();
5497 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5498 every register in REG. */
5500 static bool
5501 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5503 unsigned int i;
5505 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5506 if (!reload_reg_reaches_end_p (i, reloadnum))
5507 return false;
5508 return true;
5512 /* Returns whether R1 and R2 are uniquely chained: the value of one
5513 is used by the other, and that value is not used by any other
5514 reload for this insn. This is used to partially undo the decision
5515 made in find_reloads when in the case of multiple
5516 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5517 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5518 reloads. This code tries to avoid the conflict created by that
5519 change. It might be cleaner to explicitly keep track of which
5520 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5521 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5522 this after the fact. */
5523 static bool
5524 reloads_unique_chain_p (int r1, int r2)
5526 int i;
5528 /* We only check input reloads. */
5529 if (! rld[r1].in || ! rld[r2].in)
5530 return false;
5532 /* Avoid anything with output reloads. */
5533 if (rld[r1].out || rld[r2].out)
5534 return false;
5536 /* "chained" means one reload is a component of the other reload,
5537 not the same as the other reload. */
5538 if (rld[r1].opnum != rld[r2].opnum
5539 || rtx_equal_p (rld[r1].in, rld[r2].in)
5540 || rld[r1].optional || rld[r2].optional
5541 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5542 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5543 return false;
5545 /* The following loop assumes that r1 is the reload that feeds r2. */
5546 if (r1 > r2)
5547 std::swap (r1, r2);
5549 for (i = 0; i < n_reloads; i ++)
5550 /* Look for input reloads that aren't our two */
5551 if (i != r1 && i != r2 && rld[i].in)
5553 /* If our reload is mentioned at all, it isn't a simple chain. */
5554 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5555 return false;
5557 return true;
5560 /* The recursive function change all occurrences of WHAT in *WHERE
5561 to REPL. */
5562 static void
5563 substitute (rtx *where, const_rtx what, rtx repl)
5565 const char *fmt;
5566 int i;
5567 enum rtx_code code;
5569 if (*where == 0)
5570 return;
5572 if (*where == what || rtx_equal_p (*where, what))
5574 /* Record the location of the changed rtx. */
5575 substitute_stack.safe_push (where);
5576 *where = repl;
5577 return;
5580 code = GET_CODE (*where);
5581 fmt = GET_RTX_FORMAT (code);
5582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5584 if (fmt[i] == 'E')
5586 int j;
5588 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5589 substitute (&XVECEXP (*where, i, j), what, repl);
5591 else if (fmt[i] == 'e')
5592 substitute (&XEXP (*where, i), what, repl);
5596 /* The function returns TRUE if chain of reload R1 and R2 (in any
5597 order) can be evaluated without usage of intermediate register for
5598 the reload containing another reload. It is important to see
5599 gen_reload to understand what the function is trying to do. As an
5600 example, let us have reload chain
5602 r2: const
5603 r1: <something> + const
5605 and reload R2 got reload reg HR. The function returns true if
5606 there is a correct insn HR = HR + <something>. Otherwise,
5607 gen_reload will use intermediate register (and this is the reload
5608 reg for R1) to reload <something>.
5610 We need this function to find a conflict for chain reloads. In our
5611 example, if HR = HR + <something> is incorrect insn, then we cannot
5612 use HR as a reload register for R2. If we do use it then we get a
5613 wrong code:
5615 HR = const
5616 HR = <something>
5617 HR = HR + HR
5620 static bool
5621 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5623 /* Assume other cases in gen_reload are not possible for
5624 chain reloads or do need an intermediate hard registers. */
5625 bool result = true;
5626 int regno, code;
5627 rtx out, in;
5628 rtx_insn *insn;
5629 rtx_insn *last = get_last_insn ();
5631 /* Make r2 a component of r1. */
5632 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5633 std::swap (r1, r2);
5635 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5636 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5637 gcc_assert (regno >= 0);
5638 out = gen_rtx_REG (rld[r1].mode, regno);
5639 in = rld[r1].in;
5640 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5642 /* If IN is a paradoxical SUBREG, remove it and try to put the
5643 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5644 strip_paradoxical_subreg (&in, &out);
5646 if (GET_CODE (in) == PLUS
5647 && (REG_P (XEXP (in, 0))
5648 || GET_CODE (XEXP (in, 0)) == SUBREG
5649 || MEM_P (XEXP (in, 0)))
5650 && (REG_P (XEXP (in, 1))
5651 || GET_CODE (XEXP (in, 1)) == SUBREG
5652 || CONSTANT_P (XEXP (in, 1))
5653 || MEM_P (XEXP (in, 1))))
5655 insn = emit_insn (gen_rtx_SET (out, in));
5656 code = recog_memoized (insn);
5657 result = false;
5659 if (code >= 0)
5661 extract_insn (insn);
5662 /* We want constrain operands to treat this insn strictly in
5663 its validity determination, i.e., the way it would after
5664 reload has completed. */
5665 result = constrain_operands (1, get_enabled_alternatives (insn));
5668 delete_insns_since (last);
5671 /* Restore the original value at each changed address within R1. */
5672 while (!substitute_stack.is_empty ())
5674 rtx *where = substitute_stack.pop ();
5675 *where = rld[r2].in;
5678 return result;
5681 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5682 Return 0 otherwise.
5684 This function uses the same algorithm as reload_reg_free_p above. */
5686 static int
5687 reloads_conflict (int r1, int r2)
5689 enum reload_type r1_type = rld[r1].when_needed;
5690 enum reload_type r2_type = rld[r2].when_needed;
5691 int r1_opnum = rld[r1].opnum;
5692 int r2_opnum = rld[r2].opnum;
5694 /* RELOAD_OTHER conflicts with everything. */
5695 if (r2_type == RELOAD_OTHER)
5696 return 1;
5698 /* Otherwise, check conflicts differently for each type. */
5700 switch (r1_type)
5702 case RELOAD_FOR_INPUT:
5703 return (r2_type == RELOAD_FOR_INSN
5704 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5705 || r2_type == RELOAD_FOR_OPADDR_ADDR
5706 || r2_type == RELOAD_FOR_INPUT
5707 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5708 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5709 && r2_opnum > r1_opnum));
5711 case RELOAD_FOR_INPUT_ADDRESS:
5712 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5713 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5715 case RELOAD_FOR_INPADDR_ADDRESS:
5716 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5717 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5719 case RELOAD_FOR_OUTPUT_ADDRESS:
5720 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5721 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5723 case RELOAD_FOR_OUTADDR_ADDRESS:
5724 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5725 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5727 case RELOAD_FOR_OPERAND_ADDRESS:
5728 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5729 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5730 && (!reloads_unique_chain_p (r1, r2)
5731 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5733 case RELOAD_FOR_OPADDR_ADDR:
5734 return (r2_type == RELOAD_FOR_INPUT
5735 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5737 case RELOAD_FOR_OUTPUT:
5738 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5739 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5740 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5741 && r2_opnum >= r1_opnum));
5743 case RELOAD_FOR_INSN:
5744 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5745 || r2_type == RELOAD_FOR_INSN
5746 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5748 case RELOAD_FOR_OTHER_ADDRESS:
5749 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5751 case RELOAD_OTHER:
5752 return 1;
5754 default:
5755 gcc_unreachable ();
5759 /* Indexed by reload number, 1 if incoming value
5760 inherited from previous insns. */
5761 static char reload_inherited[MAX_RELOADS];
5763 /* For an inherited reload, this is the insn the reload was inherited from,
5764 if we know it. Otherwise, this is 0. */
5765 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5767 /* If nonzero, this is a place to get the value of the reload,
5768 rather than using reload_in. */
5769 static rtx reload_override_in[MAX_RELOADS];
5771 /* For each reload, the hard register number of the register used,
5772 or -1 if we did not need a register for this reload. */
5773 static int reload_spill_index[MAX_RELOADS];
5775 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5776 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5778 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5779 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5781 /* Subroutine of free_for_value_p, used to check a single register.
5782 START_REGNO is the starting regno of the full reload register
5783 (possibly comprising multiple hard registers) that we are considering. */
5785 static int
5786 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5787 enum reload_type type, rtx value, rtx out,
5788 int reloadnum, int ignore_address_reloads)
5790 int time1;
5791 /* Set if we see an input reload that must not share its reload register
5792 with any new earlyclobber, but might otherwise share the reload
5793 register with an output or input-output reload. */
5794 int check_earlyclobber = 0;
5795 int i;
5796 int copy = 0;
5798 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5799 return 0;
5801 if (out == const0_rtx)
5803 copy = 1;
5804 out = NULL_RTX;
5807 /* We use some pseudo 'time' value to check if the lifetimes of the
5808 new register use would overlap with the one of a previous reload
5809 that is not read-only or uses a different value.
5810 The 'time' used doesn't have to be linear in any shape or form, just
5811 monotonic.
5812 Some reload types use different 'buckets' for each operand.
5813 So there are MAX_RECOG_OPERANDS different time values for each
5814 such reload type.
5815 We compute TIME1 as the time when the register for the prospective
5816 new reload ceases to be live, and TIME2 for each existing
5817 reload as the time when that the reload register of that reload
5818 becomes live.
5819 Where there is little to be gained by exact lifetime calculations,
5820 we just make conservative assumptions, i.e. a longer lifetime;
5821 this is done in the 'default:' cases. */
5822 switch (type)
5824 case RELOAD_FOR_OTHER_ADDRESS:
5825 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5826 time1 = copy ? 0 : 1;
5827 break;
5828 case RELOAD_OTHER:
5829 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5830 break;
5831 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5832 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5833 respectively, to the time values for these, we get distinct time
5834 values. To get distinct time values for each operand, we have to
5835 multiply opnum by at least three. We round that up to four because
5836 multiply by four is often cheaper. */
5837 case RELOAD_FOR_INPADDR_ADDRESS:
5838 time1 = opnum * 4 + 2;
5839 break;
5840 case RELOAD_FOR_INPUT_ADDRESS:
5841 time1 = opnum * 4 + 3;
5842 break;
5843 case RELOAD_FOR_INPUT:
5844 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5845 executes (inclusive). */
5846 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5847 break;
5848 case RELOAD_FOR_OPADDR_ADDR:
5849 /* opnum * 4 + 4
5850 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5851 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5852 break;
5853 case RELOAD_FOR_OPERAND_ADDRESS:
5854 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5855 is executed. */
5856 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5857 break;
5858 case RELOAD_FOR_OUTADDR_ADDRESS:
5859 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5860 break;
5861 case RELOAD_FOR_OUTPUT_ADDRESS:
5862 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5863 break;
5864 default:
5865 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5868 for (i = 0; i < n_reloads; i++)
5870 rtx reg = rld[i].reg_rtx;
5871 if (reg && REG_P (reg)
5872 && ((unsigned) regno - true_regnum (reg)
5873 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5874 && i != reloadnum)
5876 rtx other_input = rld[i].in;
5878 /* If the other reload loads the same input value, that
5879 will not cause a conflict only if it's loading it into
5880 the same register. */
5881 if (true_regnum (reg) != start_regno)
5882 other_input = NULL_RTX;
5883 if (! other_input || ! rtx_equal_p (other_input, value)
5884 || rld[i].out || out)
5886 int time2;
5887 switch (rld[i].when_needed)
5889 case RELOAD_FOR_OTHER_ADDRESS:
5890 time2 = 0;
5891 break;
5892 case RELOAD_FOR_INPADDR_ADDRESS:
5893 /* find_reloads makes sure that a
5894 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5895 by at most one - the first -
5896 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5897 address reload is inherited, the address address reload
5898 goes away, so we can ignore this conflict. */
5899 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5900 && ignore_address_reloads
5901 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5902 Then the address address is still needed to store
5903 back the new address. */
5904 && ! rld[reloadnum].out)
5905 continue;
5906 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5907 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5908 reloads go away. */
5909 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5910 && ignore_address_reloads
5911 /* Unless we are reloading an auto_inc expression. */
5912 && ! rld[reloadnum].out)
5913 continue;
5914 time2 = rld[i].opnum * 4 + 2;
5915 break;
5916 case RELOAD_FOR_INPUT_ADDRESS:
5917 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5918 && ignore_address_reloads
5919 && ! rld[reloadnum].out)
5920 continue;
5921 time2 = rld[i].opnum * 4 + 3;
5922 break;
5923 case RELOAD_FOR_INPUT:
5924 time2 = rld[i].opnum * 4 + 4;
5925 check_earlyclobber = 1;
5926 break;
5927 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5928 == MAX_RECOG_OPERAND * 4 */
5929 case RELOAD_FOR_OPADDR_ADDR:
5930 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5931 && ignore_address_reloads
5932 && ! rld[reloadnum].out)
5933 continue;
5934 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5935 break;
5936 case RELOAD_FOR_OPERAND_ADDRESS:
5937 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5938 check_earlyclobber = 1;
5939 break;
5940 case RELOAD_FOR_INSN:
5941 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5942 break;
5943 case RELOAD_FOR_OUTPUT:
5944 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5945 instruction is executed. */
5946 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5947 break;
5948 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5949 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5950 value. */
5951 case RELOAD_FOR_OUTADDR_ADDRESS:
5952 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5953 && ignore_address_reloads
5954 && ! rld[reloadnum].out)
5955 continue;
5956 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5957 break;
5958 case RELOAD_FOR_OUTPUT_ADDRESS:
5959 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5960 break;
5961 case RELOAD_OTHER:
5962 /* If there is no conflict in the input part, handle this
5963 like an output reload. */
5964 if (! rld[i].in || rtx_equal_p (other_input, value))
5966 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5967 /* Earlyclobbered outputs must conflict with inputs. */
5968 if (earlyclobber_operand_p (rld[i].out))
5969 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5971 break;
5973 time2 = 1;
5974 /* RELOAD_OTHER might be live beyond instruction execution,
5975 but this is not obvious when we set time2 = 1. So check
5976 here if there might be a problem with the new reload
5977 clobbering the register used by the RELOAD_OTHER. */
5978 if (out)
5979 return 0;
5980 break;
5981 default:
5982 return 0;
5984 if ((time1 >= time2
5985 && (! rld[i].in || rld[i].out
5986 || ! rtx_equal_p (other_input, value)))
5987 || (out && rld[reloadnum].out_reg
5988 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5989 return 0;
5994 /* Earlyclobbered outputs must conflict with inputs. */
5995 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5996 return 0;
5998 return 1;
6001 /* Return 1 if the value in reload reg REGNO, as used by a reload
6002 needed for the part of the insn specified by OPNUM and TYPE,
6003 may be used to load VALUE into it.
6005 MODE is the mode in which the register is used, this is needed to
6006 determine how many hard regs to test.
6008 Other read-only reloads with the same value do not conflict
6009 unless OUT is nonzero and these other reloads have to live while
6010 output reloads live.
6011 If OUT is CONST0_RTX, this is a special case: it means that the
6012 test should not be for using register REGNO as reload register, but
6013 for copying from register REGNO into the reload register.
6015 RELOADNUM is the number of the reload we want to load this value for;
6016 a reload does not conflict with itself.
6018 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6019 reloads that load an address for the very reload we are considering.
6021 The caller has to make sure that there is no conflict with the return
6022 register. */
6024 static int
6025 free_for_value_p (int regno, machine_mode mode, int opnum,
6026 enum reload_type type, rtx value, rtx out, int reloadnum,
6027 int ignore_address_reloads)
6029 int nregs = hard_regno_nregs[regno][mode];
6030 while (nregs-- > 0)
6031 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6032 value, out, reloadnum,
6033 ignore_address_reloads))
6034 return 0;
6035 return 1;
6038 /* Return nonzero if the rtx X is invariant over the current function. */
6039 /* ??? Actually, the places where we use this expect exactly what is
6040 tested here, and not everything that is function invariant. In
6041 particular, the frame pointer and arg pointer are special cased;
6042 pic_offset_table_rtx is not, and we must not spill these things to
6043 memory. */
6046 function_invariant_p (const_rtx x)
6048 if (CONSTANT_P (x))
6049 return 1;
6050 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6051 return 1;
6052 if (GET_CODE (x) == PLUS
6053 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6054 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6055 return 1;
6056 return 0;
6059 /* Determine whether the reload reg X overlaps any rtx'es used for
6060 overriding inheritance. Return nonzero if so. */
6062 static int
6063 conflicts_with_override (rtx x)
6065 int i;
6066 for (i = 0; i < n_reloads; i++)
6067 if (reload_override_in[i]
6068 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6069 return 1;
6070 return 0;
6073 /* Give an error message saying we failed to find a reload for INSN,
6074 and clear out reload R. */
6075 static void
6076 failed_reload (rtx_insn *insn, int r)
6078 if (asm_noperands (PATTERN (insn)) < 0)
6079 /* It's the compiler's fault. */
6080 fatal_insn ("could not find a spill register", insn);
6082 /* It's the user's fault; the operand's mode and constraint
6083 don't match. Disable this reload so we don't crash in final. */
6084 error_for_asm (insn,
6085 "%<asm%> operand constraint incompatible with operand size");
6086 rld[r].in = 0;
6087 rld[r].out = 0;
6088 rld[r].reg_rtx = 0;
6089 rld[r].optional = 1;
6090 rld[r].secondary_p = 1;
6093 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6094 for reload R. If it's valid, get an rtx for it. Return nonzero if
6095 successful. */
6096 static int
6097 set_reload_reg (int i, int r)
6099 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6100 parameter. */
6101 int regno ATTRIBUTE_UNUSED;
6102 rtx reg = spill_reg_rtx[i];
6104 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6105 spill_reg_rtx[i] = reg
6106 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6108 regno = true_regnum (reg);
6110 /* Detect when the reload reg can't hold the reload mode.
6111 This used to be one `if', but Sequent compiler can't handle that. */
6112 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6114 machine_mode test_mode = VOIDmode;
6115 if (rld[r].in)
6116 test_mode = GET_MODE (rld[r].in);
6117 /* If rld[r].in has VOIDmode, it means we will load it
6118 in whatever mode the reload reg has: to wit, rld[r].mode.
6119 We have already tested that for validity. */
6120 /* Aside from that, we need to test that the expressions
6121 to reload from or into have modes which are valid for this
6122 reload register. Otherwise the reload insns would be invalid. */
6123 if (! (rld[r].in != 0 && test_mode != VOIDmode
6124 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6125 if (! (rld[r].out != 0
6126 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6128 /* The reg is OK. */
6129 last_spill_reg = i;
6131 /* Mark as in use for this insn the reload regs we use
6132 for this. */
6133 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6134 rld[r].when_needed, rld[r].mode);
6136 rld[r].reg_rtx = reg;
6137 reload_spill_index[r] = spill_regs[i];
6138 return 1;
6141 return 0;
6144 /* Find a spill register to use as a reload register for reload R.
6145 LAST_RELOAD is nonzero if this is the last reload for the insn being
6146 processed.
6148 Set rld[R].reg_rtx to the register allocated.
6150 We return 1 if successful, or 0 if we couldn't find a spill reg and
6151 we didn't change anything. */
6153 static int
6154 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6155 int last_reload)
6157 int i, pass, count;
6159 /* If we put this reload ahead, thinking it is a group,
6160 then insist on finding a group. Otherwise we can grab a
6161 reg that some other reload needs.
6162 (That can happen when we have a 68000 DATA_OR_FP_REG
6163 which is a group of data regs or one fp reg.)
6164 We need not be so restrictive if there are no more reloads
6165 for this insn.
6167 ??? Really it would be nicer to have smarter handling
6168 for that kind of reg class, where a problem like this is normal.
6169 Perhaps those classes should be avoided for reloading
6170 by use of more alternatives. */
6172 int force_group = rld[r].nregs > 1 && ! last_reload;
6174 /* If we want a single register and haven't yet found one,
6175 take any reg in the right class and not in use.
6176 If we want a consecutive group, here is where we look for it.
6178 We use three passes so we can first look for reload regs to
6179 reuse, which are already in use for other reloads in this insn,
6180 and only then use additional registers which are not "bad", then
6181 finally any register.
6183 I think that maximizing reuse is needed to make sure we don't
6184 run out of reload regs. Suppose we have three reloads, and
6185 reloads A and B can share regs. These need two regs.
6186 Suppose A and B are given different regs.
6187 That leaves none for C. */
6188 for (pass = 0; pass < 3; pass++)
6190 /* I is the index in spill_regs.
6191 We advance it round-robin between insns to use all spill regs
6192 equally, so that inherited reloads have a chance
6193 of leapfrogging each other. */
6195 i = last_spill_reg;
6197 for (count = 0; count < n_spills; count++)
6199 int rclass = (int) rld[r].rclass;
6200 int regnum;
6202 i++;
6203 if (i >= n_spills)
6204 i -= n_spills;
6205 regnum = spill_regs[i];
6207 if ((reload_reg_free_p (regnum, rld[r].opnum,
6208 rld[r].when_needed)
6209 || (rld[r].in
6210 /* We check reload_reg_used to make sure we
6211 don't clobber the return register. */
6212 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6213 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6214 rld[r].when_needed, rld[r].in,
6215 rld[r].out, r, 1)))
6216 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6217 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6218 /* Look first for regs to share, then for unshared. But
6219 don't share regs used for inherited reloads; they are
6220 the ones we want to preserve. */
6221 && (pass
6222 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6223 regnum)
6224 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6225 regnum))))
6227 int nr = hard_regno_nregs[regnum][rld[r].mode];
6229 /* During the second pass we want to avoid reload registers
6230 which are "bad" for this reload. */
6231 if (pass == 1
6232 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6233 continue;
6235 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6236 (on 68000) got us two FP regs. If NR is 1,
6237 we would reject both of them. */
6238 if (force_group)
6239 nr = rld[r].nregs;
6240 /* If we need only one reg, we have already won. */
6241 if (nr == 1)
6243 /* But reject a single reg if we demand a group. */
6244 if (force_group)
6245 continue;
6246 break;
6248 /* Otherwise check that as many consecutive regs as we need
6249 are available here. */
6250 while (nr > 1)
6252 int regno = regnum + nr - 1;
6253 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6254 && spill_reg_order[regno] >= 0
6255 && reload_reg_free_p (regno, rld[r].opnum,
6256 rld[r].when_needed)))
6257 break;
6258 nr--;
6260 if (nr == 1)
6261 break;
6265 /* If we found something on the current pass, omit later passes. */
6266 if (count < n_spills)
6267 break;
6270 /* We should have found a spill register by now. */
6271 if (count >= n_spills)
6272 return 0;
6274 /* I is the index in SPILL_REG_RTX of the reload register we are to
6275 allocate. Get an rtx for it and find its register number. */
6277 return set_reload_reg (i, r);
6280 /* Initialize all the tables needed to allocate reload registers.
6281 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6282 is the array we use to restore the reg_rtx field for every reload. */
6284 static void
6285 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6287 int i;
6289 for (i = 0; i < n_reloads; i++)
6290 rld[i].reg_rtx = save_reload_reg_rtx[i];
6292 memset (reload_inherited, 0, MAX_RELOADS);
6293 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6294 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6296 CLEAR_HARD_REG_SET (reload_reg_used);
6297 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6298 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6299 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6300 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6301 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6303 CLEAR_HARD_REG_SET (reg_used_in_insn);
6305 HARD_REG_SET tmp;
6306 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6307 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6308 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6309 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6310 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6311 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6314 for (i = 0; i < reload_n_operands; i++)
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6324 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6326 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6328 for (i = 0; i < n_reloads; i++)
6329 /* If we have already decided to use a certain register,
6330 don't use it in another way. */
6331 if (rld[i].reg_rtx)
6332 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6333 rld[i].when_needed, rld[i].mode);
6336 #ifdef SECONDARY_MEMORY_NEEDED
6337 /* If X is not a subreg, return it unmodified. If it is a subreg,
6338 look up whether we made a replacement for the SUBREG_REG. Return
6339 either the replacement or the SUBREG_REG. */
6341 static rtx
6342 replaced_subreg (rtx x)
6344 if (GET_CODE (x) == SUBREG)
6345 return find_replacement (&SUBREG_REG (x));
6346 return x;
6348 #endif
6350 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6351 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6352 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6353 otherwise it is NULL. */
6355 static int
6356 compute_reload_subreg_offset (machine_mode outermode,
6357 rtx subreg,
6358 machine_mode innermode)
6360 int outer_offset;
6361 machine_mode middlemode;
6363 if (!subreg)
6364 return subreg_lowpart_offset (outermode, innermode);
6366 outer_offset = SUBREG_BYTE (subreg);
6367 middlemode = GET_MODE (SUBREG_REG (subreg));
6369 /* If SUBREG is paradoxical then return the normal lowpart offset
6370 for OUTERMODE and INNERMODE. Our caller has already checked
6371 that OUTERMODE fits in INNERMODE. */
6372 if (outer_offset == 0
6373 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6374 return subreg_lowpart_offset (outermode, innermode);
6376 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6377 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6378 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6381 /* Assign hard reg targets for the pseudo-registers we must reload
6382 into hard regs for this insn.
6383 Also output the instructions to copy them in and out of the hard regs.
6385 For machines with register classes, we are responsible for
6386 finding a reload reg in the proper class. */
6388 static void
6389 choose_reload_regs (struct insn_chain *chain)
6391 rtx_insn *insn = chain->insn;
6392 int i, j;
6393 unsigned int max_group_size = 1;
6394 enum reg_class group_class = NO_REGS;
6395 int pass, win, inheritance;
6397 rtx save_reload_reg_rtx[MAX_RELOADS];
6399 /* In order to be certain of getting the registers we need,
6400 we must sort the reloads into order of increasing register class.
6401 Then our grabbing of reload registers will parallel the process
6402 that provided the reload registers.
6404 Also note whether any of the reloads wants a consecutive group of regs.
6405 If so, record the maximum size of the group desired and what
6406 register class contains all the groups needed by this insn. */
6408 for (j = 0; j < n_reloads; j++)
6410 reload_order[j] = j;
6411 if (rld[j].reg_rtx != NULL_RTX)
6413 gcc_assert (REG_P (rld[j].reg_rtx)
6414 && HARD_REGISTER_P (rld[j].reg_rtx));
6415 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6417 else
6418 reload_spill_index[j] = -1;
6420 if (rld[j].nregs > 1)
6422 max_group_size = MAX (rld[j].nregs, max_group_size);
6423 group_class
6424 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6427 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6430 if (n_reloads > 1)
6431 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6433 /* If -O, try first with inheritance, then turning it off.
6434 If not -O, don't do inheritance.
6435 Using inheritance when not optimizing leads to paradoxes
6436 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6437 because one side of the comparison might be inherited. */
6438 win = 0;
6439 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6441 choose_reload_regs_init (chain, save_reload_reg_rtx);
6443 /* Process the reloads in order of preference just found.
6444 Beyond this point, subregs can be found in reload_reg_rtx.
6446 This used to look for an existing reloaded home for all of the
6447 reloads, and only then perform any new reloads. But that could lose
6448 if the reloads were done out of reg-class order because a later
6449 reload with a looser constraint might have an old home in a register
6450 needed by an earlier reload with a tighter constraint.
6452 To solve this, we make two passes over the reloads, in the order
6453 described above. In the first pass we try to inherit a reload
6454 from a previous insn. If there is a later reload that needs a
6455 class that is a proper subset of the class being processed, we must
6456 also allocate a spill register during the first pass.
6458 Then make a second pass over the reloads to allocate any reloads
6459 that haven't been given registers yet. */
6461 for (j = 0; j < n_reloads; j++)
6463 int r = reload_order[j];
6464 rtx search_equiv = NULL_RTX;
6466 /* Ignore reloads that got marked inoperative. */
6467 if (rld[r].out == 0 && rld[r].in == 0
6468 && ! rld[r].secondary_p)
6469 continue;
6471 /* If find_reloads chose to use reload_in or reload_out as a reload
6472 register, we don't need to chose one. Otherwise, try even if it
6473 found one since we might save an insn if we find the value lying
6474 around.
6475 Try also when reload_in is a pseudo without a hard reg. */
6476 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6477 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6478 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6479 && !MEM_P (rld[r].in)
6480 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6481 continue;
6483 #if 0 /* No longer needed for correct operation.
6484 It might give better code, or might not; worth an experiment? */
6485 /* If this is an optional reload, we can't inherit from earlier insns
6486 until we are sure that any non-optional reloads have been allocated.
6487 The following code takes advantage of the fact that optional reloads
6488 are at the end of reload_order. */
6489 if (rld[r].optional != 0)
6490 for (i = 0; i < j; i++)
6491 if ((rld[reload_order[i]].out != 0
6492 || rld[reload_order[i]].in != 0
6493 || rld[reload_order[i]].secondary_p)
6494 && ! rld[reload_order[i]].optional
6495 && rld[reload_order[i]].reg_rtx == 0)
6496 allocate_reload_reg (chain, reload_order[i], 0);
6497 #endif
6499 /* First see if this pseudo is already available as reloaded
6500 for a previous insn. We cannot try to inherit for reloads
6501 that are smaller than the maximum number of registers needed
6502 for groups unless the register we would allocate cannot be used
6503 for the groups.
6505 We could check here to see if this is a secondary reload for
6506 an object that is already in a register of the desired class.
6507 This would avoid the need for the secondary reload register.
6508 But this is complex because we can't easily determine what
6509 objects might want to be loaded via this reload. So let a
6510 register be allocated here. In `emit_reload_insns' we suppress
6511 one of the loads in the case described above. */
6513 if (inheritance)
6515 int byte = 0;
6516 int regno = -1;
6517 machine_mode mode = VOIDmode;
6518 rtx subreg = NULL_RTX;
6520 if (rld[r].in == 0)
6522 else if (REG_P (rld[r].in))
6524 regno = REGNO (rld[r].in);
6525 mode = GET_MODE (rld[r].in);
6527 else if (REG_P (rld[r].in_reg))
6529 regno = REGNO (rld[r].in_reg);
6530 mode = GET_MODE (rld[r].in_reg);
6532 else if (GET_CODE (rld[r].in_reg) == SUBREG
6533 && REG_P (SUBREG_REG (rld[r].in_reg)))
6535 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6536 if (regno < FIRST_PSEUDO_REGISTER)
6537 regno = subreg_regno (rld[r].in_reg);
6538 else
6540 subreg = rld[r].in_reg;
6541 byte = SUBREG_BYTE (subreg);
6543 mode = GET_MODE (rld[r].in_reg);
6545 #if AUTO_INC_DEC
6546 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6547 && REG_P (XEXP (rld[r].in_reg, 0)))
6549 regno = REGNO (XEXP (rld[r].in_reg, 0));
6550 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6551 rld[r].out = rld[r].in;
6553 #endif
6554 #if 0
6555 /* This won't work, since REGNO can be a pseudo reg number.
6556 Also, it takes much more hair to keep track of all the things
6557 that can invalidate an inherited reload of part of a pseudoreg. */
6558 else if (GET_CODE (rld[r].in) == SUBREG
6559 && REG_P (SUBREG_REG (rld[r].in)))
6560 regno = subreg_regno (rld[r].in);
6561 #endif
6563 if (regno >= 0
6564 && reg_last_reload_reg[regno] != 0
6565 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6566 >= GET_MODE_SIZE (mode) + byte)
6567 #ifdef CANNOT_CHANGE_MODE_CLASS
6568 /* Verify that the register it's in can be used in
6569 mode MODE. */
6570 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6571 GET_MODE (reg_last_reload_reg[regno]),
6572 mode)
6573 #endif
6576 enum reg_class rclass = rld[r].rclass, last_class;
6577 rtx last_reg = reg_last_reload_reg[regno];
6579 i = REGNO (last_reg);
6580 byte = compute_reload_subreg_offset (mode,
6581 subreg,
6582 GET_MODE (last_reg));
6583 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6584 last_class = REGNO_REG_CLASS (i);
6586 if (reg_reloaded_contents[i] == regno
6587 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6588 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6589 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6590 /* Even if we can't use this register as a reload
6591 register, we might use it for reload_override_in,
6592 if copying it to the desired class is cheap
6593 enough. */
6594 || ((register_move_cost (mode, last_class, rclass)
6595 < memory_move_cost (mode, rclass, true))
6596 && (secondary_reload_class (1, rclass, mode,
6597 last_reg)
6598 == NO_REGS)
6599 #ifdef SECONDARY_MEMORY_NEEDED
6600 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6601 mode)
6602 #endif
6605 && (rld[r].nregs == max_group_size
6606 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6608 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6609 rld[r].when_needed, rld[r].in,
6610 const0_rtx, r, 1))
6612 /* If a group is needed, verify that all the subsequent
6613 registers still have their values intact. */
6614 int nr = hard_regno_nregs[i][rld[r].mode];
6615 int k;
6617 for (k = 1; k < nr; k++)
6618 if (reg_reloaded_contents[i + k] != regno
6619 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6620 break;
6622 if (k == nr)
6624 int i1;
6625 int bad_for_class;
6627 last_reg = (GET_MODE (last_reg) == mode
6628 ? last_reg : gen_rtx_REG (mode, i));
6630 bad_for_class = 0;
6631 for (k = 0; k < nr; k++)
6632 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6633 i+k);
6635 /* We found a register that contains the
6636 value we need. If this register is the
6637 same as an `earlyclobber' operand of the
6638 current insn, just mark it as a place to
6639 reload from since we can't use it as the
6640 reload register itself. */
6642 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6643 if (reg_overlap_mentioned_for_reload_p
6644 (reg_last_reload_reg[regno],
6645 reload_earlyclobbers[i1]))
6646 break;
6648 if (i1 != n_earlyclobbers
6649 || ! (free_for_value_p (i, rld[r].mode,
6650 rld[r].opnum,
6651 rld[r].when_needed, rld[r].in,
6652 rld[r].out, r, 1))
6653 /* Don't use it if we'd clobber a pseudo reg. */
6654 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6655 && rld[r].out
6656 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6657 /* Don't clobber the frame pointer. */
6658 || (i == HARD_FRAME_POINTER_REGNUM
6659 && frame_pointer_needed
6660 && rld[r].out)
6661 /* Don't really use the inherited spill reg
6662 if we need it wider than we've got it. */
6663 || (GET_MODE_SIZE (rld[r].mode)
6664 > GET_MODE_SIZE (mode))
6665 || bad_for_class
6667 /* If find_reloads chose reload_out as reload
6668 register, stay with it - that leaves the
6669 inherited register for subsequent reloads. */
6670 || (rld[r].out && rld[r].reg_rtx
6671 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6673 if (! rld[r].optional)
6675 reload_override_in[r] = last_reg;
6676 reload_inheritance_insn[r]
6677 = reg_reloaded_insn[i];
6680 else
6682 int k;
6683 /* We can use this as a reload reg. */
6684 /* Mark the register as in use for this part of
6685 the insn. */
6686 mark_reload_reg_in_use (i,
6687 rld[r].opnum,
6688 rld[r].when_needed,
6689 rld[r].mode);
6690 rld[r].reg_rtx = last_reg;
6691 reload_inherited[r] = 1;
6692 reload_inheritance_insn[r]
6693 = reg_reloaded_insn[i];
6694 reload_spill_index[r] = i;
6695 for (k = 0; k < nr; k++)
6696 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6697 i + k);
6704 /* Here's another way to see if the value is already lying around. */
6705 if (inheritance
6706 && rld[r].in != 0
6707 && ! reload_inherited[r]
6708 && rld[r].out == 0
6709 && (CONSTANT_P (rld[r].in)
6710 || GET_CODE (rld[r].in) == PLUS
6711 || REG_P (rld[r].in)
6712 || MEM_P (rld[r].in))
6713 && (rld[r].nregs == max_group_size
6714 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6715 search_equiv = rld[r].in;
6717 if (search_equiv)
6719 rtx equiv
6720 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6721 -1, NULL, 0, rld[r].mode);
6722 int regno = 0;
6724 if (equiv != 0)
6726 if (REG_P (equiv))
6727 regno = REGNO (equiv);
6728 else
6730 /* This must be a SUBREG of a hard register.
6731 Make a new REG since this might be used in an
6732 address and not all machines support SUBREGs
6733 there. */
6734 gcc_assert (GET_CODE (equiv) == SUBREG);
6735 regno = subreg_regno (equiv);
6736 equiv = gen_rtx_REG (rld[r].mode, regno);
6737 /* If we choose EQUIV as the reload register, but the
6738 loop below decides to cancel the inheritance, we'll
6739 end up reloading EQUIV in rld[r].mode, not the mode
6740 it had originally. That isn't safe when EQUIV isn't
6741 available as a spill register since its value might
6742 still be live at this point. */
6743 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6744 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6745 equiv = 0;
6749 /* If we found a spill reg, reject it unless it is free
6750 and of the desired class. */
6751 if (equiv != 0)
6753 int regs_used = 0;
6754 int bad_for_class = 0;
6755 int max_regno = regno + rld[r].nregs;
6757 for (i = regno; i < max_regno; i++)
6759 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6761 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6765 if ((regs_used
6766 && ! free_for_value_p (regno, rld[r].mode,
6767 rld[r].opnum, rld[r].when_needed,
6768 rld[r].in, rld[r].out, r, 1))
6769 || bad_for_class)
6770 equiv = 0;
6773 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6774 equiv = 0;
6776 /* We found a register that contains the value we need.
6777 If this register is the same as an `earlyclobber' operand
6778 of the current insn, just mark it as a place to reload from
6779 since we can't use it as the reload register itself. */
6781 if (equiv != 0)
6782 for (i = 0; i < n_earlyclobbers; i++)
6783 if (reg_overlap_mentioned_for_reload_p (equiv,
6784 reload_earlyclobbers[i]))
6786 if (! rld[r].optional)
6787 reload_override_in[r] = equiv;
6788 equiv = 0;
6789 break;
6792 /* If the equiv register we have found is explicitly clobbered
6793 in the current insn, it depends on the reload type if we
6794 can use it, use it for reload_override_in, or not at all.
6795 In particular, we then can't use EQUIV for a
6796 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6798 if (equiv != 0)
6800 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6801 switch (rld[r].when_needed)
6803 case RELOAD_FOR_OTHER_ADDRESS:
6804 case RELOAD_FOR_INPADDR_ADDRESS:
6805 case RELOAD_FOR_INPUT_ADDRESS:
6806 case RELOAD_FOR_OPADDR_ADDR:
6807 break;
6808 case RELOAD_OTHER:
6809 case RELOAD_FOR_INPUT:
6810 case RELOAD_FOR_OPERAND_ADDRESS:
6811 if (! rld[r].optional)
6812 reload_override_in[r] = equiv;
6813 /* Fall through. */
6814 default:
6815 equiv = 0;
6816 break;
6818 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6819 switch (rld[r].when_needed)
6821 case RELOAD_FOR_OTHER_ADDRESS:
6822 case RELOAD_FOR_INPADDR_ADDRESS:
6823 case RELOAD_FOR_INPUT_ADDRESS:
6824 case RELOAD_FOR_OPADDR_ADDR:
6825 case RELOAD_FOR_OPERAND_ADDRESS:
6826 case RELOAD_FOR_INPUT:
6827 break;
6828 case RELOAD_OTHER:
6829 if (! rld[r].optional)
6830 reload_override_in[r] = equiv;
6831 /* Fall through. */
6832 default:
6833 equiv = 0;
6834 break;
6838 /* If we found an equivalent reg, say no code need be generated
6839 to load it, and use it as our reload reg. */
6840 if (equiv != 0
6841 && (regno != HARD_FRAME_POINTER_REGNUM
6842 || !frame_pointer_needed))
6844 int nr = hard_regno_nregs[regno][rld[r].mode];
6845 int k;
6846 rld[r].reg_rtx = equiv;
6847 reload_spill_index[r] = regno;
6848 reload_inherited[r] = 1;
6850 /* If reg_reloaded_valid is not set for this register,
6851 there might be a stale spill_reg_store lying around.
6852 We must clear it, since otherwise emit_reload_insns
6853 might delete the store. */
6854 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6855 spill_reg_store[regno] = NULL;
6856 /* If any of the hard registers in EQUIV are spill
6857 registers, mark them as in use for this insn. */
6858 for (k = 0; k < nr; k++)
6860 i = spill_reg_order[regno + k];
6861 if (i >= 0)
6863 mark_reload_reg_in_use (regno, rld[r].opnum,
6864 rld[r].when_needed,
6865 rld[r].mode);
6866 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6867 regno + k);
6873 /* If we found a register to use already, or if this is an optional
6874 reload, we are done. */
6875 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6876 continue;
6878 #if 0
6879 /* No longer needed for correct operation. Might or might
6880 not give better code on the average. Want to experiment? */
6882 /* See if there is a later reload that has a class different from our
6883 class that intersects our class or that requires less register
6884 than our reload. If so, we must allocate a register to this
6885 reload now, since that reload might inherit a previous reload
6886 and take the only available register in our class. Don't do this
6887 for optional reloads since they will force all previous reloads
6888 to be allocated. Also don't do this for reloads that have been
6889 turned off. */
6891 for (i = j + 1; i < n_reloads; i++)
6893 int s = reload_order[i];
6895 if ((rld[s].in == 0 && rld[s].out == 0
6896 && ! rld[s].secondary_p)
6897 || rld[s].optional)
6898 continue;
6900 if ((rld[s].rclass != rld[r].rclass
6901 && reg_classes_intersect_p (rld[r].rclass,
6902 rld[s].rclass))
6903 || rld[s].nregs < rld[r].nregs)
6904 break;
6907 if (i == n_reloads)
6908 continue;
6910 allocate_reload_reg (chain, r, j == n_reloads - 1);
6911 #endif
6914 /* Now allocate reload registers for anything non-optional that
6915 didn't get one yet. */
6916 for (j = 0; j < n_reloads; j++)
6918 int r = reload_order[j];
6920 /* Ignore reloads that got marked inoperative. */
6921 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6922 continue;
6924 /* Skip reloads that already have a register allocated or are
6925 optional. */
6926 if (rld[r].reg_rtx != 0 || rld[r].optional)
6927 continue;
6929 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6930 break;
6933 /* If that loop got all the way, we have won. */
6934 if (j == n_reloads)
6936 win = 1;
6937 break;
6940 /* Loop around and try without any inheritance. */
6943 if (! win)
6945 /* First undo everything done by the failed attempt
6946 to allocate with inheritance. */
6947 choose_reload_regs_init (chain, save_reload_reg_rtx);
6949 /* Some sanity tests to verify that the reloads found in the first
6950 pass are identical to the ones we have now. */
6951 gcc_assert (chain->n_reloads == n_reloads);
6953 for (i = 0; i < n_reloads; i++)
6955 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6956 continue;
6957 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6958 for (j = 0; j < n_spills; j++)
6959 if (spill_regs[j] == chain->rld[i].regno)
6960 if (! set_reload_reg (j, i))
6961 failed_reload (chain->insn, i);
6965 /* If we thought we could inherit a reload, because it seemed that
6966 nothing else wanted the same reload register earlier in the insn,
6967 verify that assumption, now that all reloads have been assigned.
6968 Likewise for reloads where reload_override_in has been set. */
6970 /* If doing expensive optimizations, do one preliminary pass that doesn't
6971 cancel any inheritance, but removes reloads that have been needed only
6972 for reloads that we know can be inherited. */
6973 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6975 for (j = 0; j < n_reloads; j++)
6977 int r = reload_order[j];
6978 rtx check_reg;
6979 #ifdef SECONDARY_MEMORY_NEEDED
6980 rtx tem;
6981 #endif
6982 if (reload_inherited[r] && rld[r].reg_rtx)
6983 check_reg = rld[r].reg_rtx;
6984 else if (reload_override_in[r]
6985 && (REG_P (reload_override_in[r])
6986 || GET_CODE (reload_override_in[r]) == SUBREG))
6987 check_reg = reload_override_in[r];
6988 else
6989 continue;
6990 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6991 rld[r].opnum, rld[r].when_needed, rld[r].in,
6992 (reload_inherited[r]
6993 ? rld[r].out : const0_rtx),
6994 r, 1))
6996 if (pass)
6997 continue;
6998 reload_inherited[r] = 0;
6999 reload_override_in[r] = 0;
7001 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7002 reload_override_in, then we do not need its related
7003 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7004 likewise for other reload types.
7005 We handle this by removing a reload when its only replacement
7006 is mentioned in reload_in of the reload we are going to inherit.
7007 A special case are auto_inc expressions; even if the input is
7008 inherited, we still need the address for the output. We can
7009 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7010 If we succeeded removing some reload and we are doing a preliminary
7011 pass just to remove such reloads, make another pass, since the
7012 removal of one reload might allow us to inherit another one. */
7013 else if (rld[r].in
7014 && rld[r].out != rld[r].in
7015 && remove_address_replacements (rld[r].in))
7017 if (pass)
7018 pass = 2;
7020 #ifdef SECONDARY_MEMORY_NEEDED
7021 /* If we needed a memory location for the reload, we also have to
7022 remove its related reloads. */
7023 else if (rld[r].in
7024 && rld[r].out != rld[r].in
7025 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7026 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7027 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7028 rld[r].rclass, rld[r].inmode)
7029 && remove_address_replacements
7030 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7031 rld[r].when_needed)))
7033 if (pass)
7034 pass = 2;
7036 #endif
7040 /* Now that reload_override_in is known valid,
7041 actually override reload_in. */
7042 for (j = 0; j < n_reloads; j++)
7043 if (reload_override_in[j])
7044 rld[j].in = reload_override_in[j];
7046 /* If this reload won't be done because it has been canceled or is
7047 optional and not inherited, clear reload_reg_rtx so other
7048 routines (such as subst_reloads) don't get confused. */
7049 for (j = 0; j < n_reloads; j++)
7050 if (rld[j].reg_rtx != 0
7051 && ((rld[j].optional && ! reload_inherited[j])
7052 || (rld[j].in == 0 && rld[j].out == 0
7053 && ! rld[j].secondary_p)))
7055 int regno = true_regnum (rld[j].reg_rtx);
7057 if (spill_reg_order[regno] >= 0)
7058 clear_reload_reg_in_use (regno, rld[j].opnum,
7059 rld[j].when_needed, rld[j].mode);
7060 rld[j].reg_rtx = 0;
7061 reload_spill_index[j] = -1;
7064 /* Record which pseudos and which spill regs have output reloads. */
7065 for (j = 0; j < n_reloads; j++)
7067 int r = reload_order[j];
7069 i = reload_spill_index[r];
7071 /* I is nonneg if this reload uses a register.
7072 If rld[r].reg_rtx is 0, this is an optional reload
7073 that we opted to ignore. */
7074 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7075 && rld[r].reg_rtx != 0)
7077 int nregno = REGNO (rld[r].out_reg);
7078 int nr = 1;
7080 if (nregno < FIRST_PSEUDO_REGISTER)
7081 nr = hard_regno_nregs[nregno][rld[r].mode];
7083 while (--nr >= 0)
7084 SET_REGNO_REG_SET (&reg_has_output_reload,
7085 nregno + nr);
7087 if (i >= 0)
7088 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7090 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7091 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7092 || rld[r].when_needed == RELOAD_FOR_INSN);
7097 /* Deallocate the reload register for reload R. This is called from
7098 remove_address_replacements. */
7100 void
7101 deallocate_reload_reg (int r)
7103 int regno;
7105 if (! rld[r].reg_rtx)
7106 return;
7107 regno = true_regnum (rld[r].reg_rtx);
7108 rld[r].reg_rtx = 0;
7109 if (spill_reg_order[regno] >= 0)
7110 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7111 rld[r].mode);
7112 reload_spill_index[r] = -1;
7115 /* These arrays are filled by emit_reload_insns and its subroutines. */
7116 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7117 static rtx_insn *other_input_address_reload_insns = 0;
7118 static rtx_insn *other_input_reload_insns = 0;
7119 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7120 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7121 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7122 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *operand_reload_insns = 0;
7125 static rtx_insn *other_operand_reload_insns = 0;
7126 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7128 /* Values to be put in spill_reg_store are put here first. Instructions
7129 must only be placed here if the associated reload register reaches
7130 the end of the instruction's reload sequence. */
7131 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7132 static HARD_REG_SET reg_reloaded_died;
7134 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7135 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7136 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7137 adjusted register, and return true. Otherwise, return false. */
7138 static bool
7139 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7140 enum reg_class new_class,
7141 machine_mode new_mode)
7144 rtx reg;
7146 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7148 unsigned regno = REGNO (reg);
7150 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7151 continue;
7152 if (GET_MODE (reg) != new_mode)
7154 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7155 continue;
7156 if (hard_regno_nregs[regno][new_mode]
7157 > hard_regno_nregs[regno][GET_MODE (reg)])
7158 continue;
7159 reg = reload_adjust_reg_for_mode (reg, new_mode);
7161 *reload_reg = reg;
7162 return true;
7164 return false;
7167 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7168 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7169 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7170 adjusted register, and return true. Otherwise, return false. */
7171 static bool
7172 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7173 enum insn_code icode)
7176 enum reg_class new_class = scratch_reload_class (icode);
7177 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7179 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7180 new_class, new_mode);
7183 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7184 has the number J. OLD contains the value to be used as input. */
7186 static void
7187 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7188 rtx old, int j)
7190 rtx_insn *insn = chain->insn;
7191 rtx reloadreg;
7192 rtx oldequiv_reg = 0;
7193 rtx oldequiv = 0;
7194 int special = 0;
7195 machine_mode mode;
7196 rtx_insn **where;
7198 /* delete_output_reload is only invoked properly if old contains
7199 the original pseudo register. Since this is replaced with a
7200 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7201 find the pseudo in RELOAD_IN_REG. This is also used to
7202 determine whether a secondary reload is needed. */
7203 if (reload_override_in[j]
7204 && (REG_P (rl->in_reg)
7205 || (GET_CODE (rl->in_reg) == SUBREG
7206 && REG_P (SUBREG_REG (rl->in_reg)))))
7208 oldequiv = old;
7209 old = rl->in_reg;
7211 if (oldequiv == 0)
7212 oldequiv = old;
7213 else if (REG_P (oldequiv))
7214 oldequiv_reg = oldequiv;
7215 else if (GET_CODE (oldequiv) == SUBREG)
7216 oldequiv_reg = SUBREG_REG (oldequiv);
7218 reloadreg = reload_reg_rtx_for_input[j];
7219 mode = GET_MODE (reloadreg);
7221 /* If we are reloading from a register that was recently stored in
7222 with an output-reload, see if we can prove there was
7223 actually no need to store the old value in it. */
7225 if (optimize && REG_P (oldequiv)
7226 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7227 && spill_reg_store[REGNO (oldequiv)]
7228 && REG_P (old)
7229 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7230 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7231 rl->out_reg)))
7232 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7234 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7235 OLDEQUIV. */
7237 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7238 oldequiv = SUBREG_REG (oldequiv);
7239 if (GET_MODE (oldequiv) != VOIDmode
7240 && mode != GET_MODE (oldequiv))
7241 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7243 /* Switch to the right place to emit the reload insns. */
7244 switch (rl->when_needed)
7246 case RELOAD_OTHER:
7247 where = &other_input_reload_insns;
7248 break;
7249 case RELOAD_FOR_INPUT:
7250 where = &input_reload_insns[rl->opnum];
7251 break;
7252 case RELOAD_FOR_INPUT_ADDRESS:
7253 where = &input_address_reload_insns[rl->opnum];
7254 break;
7255 case RELOAD_FOR_INPADDR_ADDRESS:
7256 where = &inpaddr_address_reload_insns[rl->opnum];
7257 break;
7258 case RELOAD_FOR_OUTPUT_ADDRESS:
7259 where = &output_address_reload_insns[rl->opnum];
7260 break;
7261 case RELOAD_FOR_OUTADDR_ADDRESS:
7262 where = &outaddr_address_reload_insns[rl->opnum];
7263 break;
7264 case RELOAD_FOR_OPERAND_ADDRESS:
7265 where = &operand_reload_insns;
7266 break;
7267 case RELOAD_FOR_OPADDR_ADDR:
7268 where = &other_operand_reload_insns;
7269 break;
7270 case RELOAD_FOR_OTHER_ADDRESS:
7271 where = &other_input_address_reload_insns;
7272 break;
7273 default:
7274 gcc_unreachable ();
7277 push_to_sequence (*where);
7279 /* Auto-increment addresses must be reloaded in a special way. */
7280 if (rl->out && ! rl->out_reg)
7282 /* We are not going to bother supporting the case where a
7283 incremented register can't be copied directly from
7284 OLDEQUIV since this seems highly unlikely. */
7285 gcc_assert (rl->secondary_in_reload < 0);
7287 if (reload_inherited[j])
7288 oldequiv = reloadreg;
7290 old = XEXP (rl->in_reg, 0);
7292 /* Prevent normal processing of this reload. */
7293 special = 1;
7294 /* Output a special code sequence for this case. */
7295 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7298 /* If we are reloading a pseudo-register that was set by the previous
7299 insn, see if we can get rid of that pseudo-register entirely
7300 by redirecting the previous insn into our reload register. */
7302 else if (optimize && REG_P (old)
7303 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7304 && dead_or_set_p (insn, old)
7305 /* This is unsafe if some other reload
7306 uses the same reg first. */
7307 && ! conflicts_with_override (reloadreg)
7308 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7309 rl->when_needed, old, rl->out, j, 0))
7311 rtx_insn *temp = PREV_INSN (insn);
7312 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7313 temp = PREV_INSN (temp);
7314 if (temp
7315 && NONJUMP_INSN_P (temp)
7316 && GET_CODE (PATTERN (temp)) == SET
7317 && SET_DEST (PATTERN (temp)) == old
7318 /* Make sure we can access insn_operand_constraint. */
7319 && asm_noperands (PATTERN (temp)) < 0
7320 /* This is unsafe if operand occurs more than once in current
7321 insn. Perhaps some occurrences aren't reloaded. */
7322 && count_occurrences (PATTERN (insn), old, 0) == 1)
7324 rtx old = SET_DEST (PATTERN (temp));
7325 /* Store into the reload register instead of the pseudo. */
7326 SET_DEST (PATTERN (temp)) = reloadreg;
7328 /* Verify that resulting insn is valid.
7330 Note that we have replaced the destination of TEMP with
7331 RELOADREG. If TEMP references RELOADREG within an
7332 autoincrement addressing mode, then the resulting insn
7333 is ill-formed and we must reject this optimization. */
7334 extract_insn (temp);
7335 if (constrain_operands (1, get_enabled_alternatives (temp))
7336 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7338 /* If the previous insn is an output reload, the source is
7339 a reload register, and its spill_reg_store entry will
7340 contain the previous destination. This is now
7341 invalid. */
7342 if (REG_P (SET_SRC (PATTERN (temp)))
7343 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7345 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7346 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7349 /* If these are the only uses of the pseudo reg,
7350 pretend for GDB it lives in the reload reg we used. */
7351 if (REG_N_DEATHS (REGNO (old)) == 1
7352 && REG_N_SETS (REGNO (old)) == 1)
7354 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7355 if (ira_conflicts_p)
7356 /* Inform IRA about the change. */
7357 ira_mark_allocation_change (REGNO (old));
7358 alter_reg (REGNO (old), -1, false);
7360 special = 1;
7362 /* Adjust any debug insns between temp and insn. */
7363 while ((temp = NEXT_INSN (temp)) != insn)
7364 if (DEBUG_INSN_P (temp))
7365 INSN_VAR_LOCATION_LOC (temp)
7366 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7367 old, reloadreg);
7368 else
7369 gcc_assert (NOTE_P (temp));
7371 else
7373 SET_DEST (PATTERN (temp)) = old;
7378 /* We can't do that, so output an insn to load RELOADREG. */
7380 /* If we have a secondary reload, pick up the secondary register
7381 and icode, if any. If OLDEQUIV and OLD are different or
7382 if this is an in-out reload, recompute whether or not we
7383 still need a secondary register and what the icode should
7384 be. If we still need a secondary register and the class or
7385 icode is different, go back to reloading from OLD if using
7386 OLDEQUIV means that we got the wrong type of register. We
7387 cannot have different class or icode due to an in-out reload
7388 because we don't make such reloads when both the input and
7389 output need secondary reload registers. */
7391 if (! special && rl->secondary_in_reload >= 0)
7393 rtx second_reload_reg = 0;
7394 rtx third_reload_reg = 0;
7395 int secondary_reload = rl->secondary_in_reload;
7396 rtx real_oldequiv = oldequiv;
7397 rtx real_old = old;
7398 rtx tmp;
7399 enum insn_code icode;
7400 enum insn_code tertiary_icode = CODE_FOR_nothing;
7402 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7403 and similarly for OLD.
7404 See comments in get_secondary_reload in reload.c. */
7405 /* If it is a pseudo that cannot be replaced with its
7406 equivalent MEM, we must fall back to reload_in, which
7407 will have all the necessary substitutions registered.
7408 Likewise for a pseudo that can't be replaced with its
7409 equivalent constant.
7411 Take extra care for subregs of such pseudos. Note that
7412 we cannot use reg_equiv_mem in this case because it is
7413 not in the right mode. */
7415 tmp = oldequiv;
7416 if (GET_CODE (tmp) == SUBREG)
7417 tmp = SUBREG_REG (tmp);
7418 if (REG_P (tmp)
7419 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7420 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7421 || reg_equiv_constant (REGNO (tmp)) != 0))
7423 if (! reg_equiv_mem (REGNO (tmp))
7424 || num_not_at_initial_offset
7425 || GET_CODE (oldequiv) == SUBREG)
7426 real_oldequiv = rl->in;
7427 else
7428 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7431 tmp = old;
7432 if (GET_CODE (tmp) == SUBREG)
7433 tmp = SUBREG_REG (tmp);
7434 if (REG_P (tmp)
7435 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7436 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7437 || reg_equiv_constant (REGNO (tmp)) != 0))
7439 if (! reg_equiv_mem (REGNO (tmp))
7440 || num_not_at_initial_offset
7441 || GET_CODE (old) == SUBREG)
7442 real_old = rl->in;
7443 else
7444 real_old = reg_equiv_mem (REGNO (tmp));
7447 second_reload_reg = rld[secondary_reload].reg_rtx;
7448 if (rld[secondary_reload].secondary_in_reload >= 0)
7450 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7452 third_reload_reg = rld[tertiary_reload].reg_rtx;
7453 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7454 /* We'd have to add more code for quartary reloads. */
7455 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7457 icode = rl->secondary_in_icode;
7459 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7460 || (rl->in != 0 && rl->out != 0))
7462 secondary_reload_info sri, sri2;
7463 enum reg_class new_class, new_t_class;
7465 sri.icode = CODE_FOR_nothing;
7466 sri.prev_sri = NULL;
7467 new_class
7468 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7469 rl->rclass, mode,
7470 &sri);
7472 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7473 second_reload_reg = 0;
7474 else if (new_class == NO_REGS)
7476 if (reload_adjust_reg_for_icode (&second_reload_reg,
7477 third_reload_reg,
7478 (enum insn_code) sri.icode))
7480 icode = (enum insn_code) sri.icode;
7481 third_reload_reg = 0;
7483 else
7485 oldequiv = old;
7486 real_oldequiv = real_old;
7489 else if (sri.icode != CODE_FOR_nothing)
7490 /* We currently lack a way to express this in reloads. */
7491 gcc_unreachable ();
7492 else
7494 sri2.icode = CODE_FOR_nothing;
7495 sri2.prev_sri = &sri;
7496 new_t_class
7497 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7498 new_class, mode,
7499 &sri);
7500 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7502 if (reload_adjust_reg_for_temp (&second_reload_reg,
7503 third_reload_reg,
7504 new_class, mode))
7506 third_reload_reg = 0;
7507 tertiary_icode = (enum insn_code) sri2.icode;
7509 else
7511 oldequiv = old;
7512 real_oldequiv = real_old;
7515 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7517 rtx intermediate = second_reload_reg;
7519 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7520 new_class, mode)
7521 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7522 ((enum insn_code)
7523 sri2.icode)))
7525 second_reload_reg = intermediate;
7526 tertiary_icode = (enum insn_code) sri2.icode;
7528 else
7530 oldequiv = old;
7531 real_oldequiv = real_old;
7534 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7536 rtx intermediate = second_reload_reg;
7538 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7539 new_class, mode)
7540 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7541 new_t_class, mode))
7543 second_reload_reg = intermediate;
7544 tertiary_icode = (enum insn_code) sri2.icode;
7546 else
7548 oldequiv = old;
7549 real_oldequiv = real_old;
7552 else
7554 /* This could be handled more intelligently too. */
7555 oldequiv = old;
7556 real_oldequiv = real_old;
7561 /* If we still need a secondary reload register, check
7562 to see if it is being used as a scratch or intermediate
7563 register and generate code appropriately. If we need
7564 a scratch register, use REAL_OLDEQUIV since the form of
7565 the insn may depend on the actual address if it is
7566 a MEM. */
7568 if (second_reload_reg)
7570 if (icode != CODE_FOR_nothing)
7572 /* We'd have to add extra code to handle this case. */
7573 gcc_assert (!third_reload_reg);
7575 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7576 second_reload_reg));
7577 special = 1;
7579 else
7581 /* See if we need a scratch register to load the
7582 intermediate register (a tertiary reload). */
7583 if (tertiary_icode != CODE_FOR_nothing)
7585 emit_insn ((GEN_FCN (tertiary_icode)
7586 (second_reload_reg, real_oldequiv,
7587 third_reload_reg)));
7589 else if (third_reload_reg)
7591 gen_reload (third_reload_reg, real_oldequiv,
7592 rl->opnum,
7593 rl->when_needed);
7594 gen_reload (second_reload_reg, third_reload_reg,
7595 rl->opnum,
7596 rl->when_needed);
7598 else
7599 gen_reload (second_reload_reg, real_oldequiv,
7600 rl->opnum,
7601 rl->when_needed);
7603 oldequiv = second_reload_reg;
7608 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7610 rtx real_oldequiv = oldequiv;
7612 if ((REG_P (oldequiv)
7613 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7614 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7615 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7616 || (GET_CODE (oldequiv) == SUBREG
7617 && REG_P (SUBREG_REG (oldequiv))
7618 && (REGNO (SUBREG_REG (oldequiv))
7619 >= FIRST_PSEUDO_REGISTER)
7620 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7621 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7622 || (CONSTANT_P (oldequiv)
7623 && (targetm.preferred_reload_class (oldequiv,
7624 REGNO_REG_CLASS (REGNO (reloadreg)))
7625 == NO_REGS)))
7626 real_oldequiv = rl->in;
7627 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7628 rl->when_needed);
7631 if (cfun->can_throw_non_call_exceptions)
7632 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7634 /* End this sequence. */
7635 *where = get_insns ();
7636 end_sequence ();
7638 /* Update reload_override_in so that delete_address_reloads_1
7639 can see the actual register usage. */
7640 if (oldequiv_reg)
7641 reload_override_in[j] = oldequiv;
7644 /* Generate insns to for the output reload RL, which is for the insn described
7645 by CHAIN and has the number J. */
7646 static void
7647 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7648 int j)
7650 rtx reloadreg;
7651 rtx_insn *insn = chain->insn;
7652 int special = 0;
7653 rtx old = rl->out;
7654 machine_mode mode;
7655 rtx_insn *p;
7656 rtx rl_reg_rtx;
7658 if (rl->when_needed == RELOAD_OTHER)
7659 start_sequence ();
7660 else
7661 push_to_sequence (output_reload_insns[rl->opnum]);
7663 rl_reg_rtx = reload_reg_rtx_for_output[j];
7664 mode = GET_MODE (rl_reg_rtx);
7666 reloadreg = rl_reg_rtx;
7668 /* If we need two reload regs, set RELOADREG to the intermediate
7669 one, since it will be stored into OLD. We might need a secondary
7670 register only for an input reload, so check again here. */
7672 if (rl->secondary_out_reload >= 0)
7674 rtx real_old = old;
7675 int secondary_reload = rl->secondary_out_reload;
7676 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7678 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7679 && reg_equiv_mem (REGNO (old)) != 0)
7680 real_old = reg_equiv_mem (REGNO (old));
7682 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7684 rtx second_reloadreg = reloadreg;
7685 reloadreg = rld[secondary_reload].reg_rtx;
7687 /* See if RELOADREG is to be used as a scratch register
7688 or as an intermediate register. */
7689 if (rl->secondary_out_icode != CODE_FOR_nothing)
7691 /* We'd have to add extra code to handle this case. */
7692 gcc_assert (tertiary_reload < 0);
7694 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7695 (real_old, second_reloadreg, reloadreg)));
7696 special = 1;
7698 else
7700 /* See if we need both a scratch and intermediate reload
7701 register. */
7703 enum insn_code tertiary_icode
7704 = rld[secondary_reload].secondary_out_icode;
7706 /* We'd have to add more code for quartary reloads. */
7707 gcc_assert (tertiary_reload < 0
7708 || rld[tertiary_reload].secondary_out_reload < 0);
7710 if (GET_MODE (reloadreg) != mode)
7711 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7713 if (tertiary_icode != CODE_FOR_nothing)
7715 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7717 /* Copy primary reload reg to secondary reload reg.
7718 (Note that these have been swapped above, then
7719 secondary reload reg to OLD using our insn.) */
7721 /* If REAL_OLD is a paradoxical SUBREG, remove it
7722 and try to put the opposite SUBREG on
7723 RELOADREG. */
7724 strip_paradoxical_subreg (&real_old, &reloadreg);
7726 gen_reload (reloadreg, second_reloadreg,
7727 rl->opnum, rl->when_needed);
7728 emit_insn ((GEN_FCN (tertiary_icode)
7729 (real_old, reloadreg, third_reloadreg)));
7730 special = 1;
7733 else
7735 /* Copy between the reload regs here and then to
7736 OUT later. */
7738 gen_reload (reloadreg, second_reloadreg,
7739 rl->opnum, rl->when_needed);
7740 if (tertiary_reload >= 0)
7742 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7744 gen_reload (third_reloadreg, reloadreg,
7745 rl->opnum, rl->when_needed);
7746 reloadreg = third_reloadreg;
7753 /* Output the last reload insn. */
7754 if (! special)
7756 rtx set;
7758 /* Don't output the last reload if OLD is not the dest of
7759 INSN and is in the src and is clobbered by INSN. */
7760 if (! flag_expensive_optimizations
7761 || !REG_P (old)
7762 || !(set = single_set (insn))
7763 || rtx_equal_p (old, SET_DEST (set))
7764 || !reg_mentioned_p (old, SET_SRC (set))
7765 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7766 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7767 gen_reload (old, reloadreg, rl->opnum,
7768 rl->when_needed);
7771 /* Look at all insns we emitted, just to be safe. */
7772 for (p = get_insns (); p; p = NEXT_INSN (p))
7773 if (INSN_P (p))
7775 rtx pat = PATTERN (p);
7777 /* If this output reload doesn't come from a spill reg,
7778 clear any memory of reloaded copies of the pseudo reg.
7779 If this output reload comes from a spill reg,
7780 reg_has_output_reload will make this do nothing. */
7781 note_stores (pat, forget_old_reloads_1, NULL);
7783 if (reg_mentioned_p (rl_reg_rtx, pat))
7785 rtx set = single_set (insn);
7786 if (reload_spill_index[j] < 0
7787 && set
7788 && SET_SRC (set) == rl_reg_rtx)
7790 int src = REGNO (SET_SRC (set));
7792 reload_spill_index[j] = src;
7793 SET_HARD_REG_BIT (reg_is_output_reload, src);
7794 if (find_regno_note (insn, REG_DEAD, src))
7795 SET_HARD_REG_BIT (reg_reloaded_died, src);
7797 if (HARD_REGISTER_P (rl_reg_rtx))
7799 int s = rl->secondary_out_reload;
7800 set = single_set (p);
7801 /* If this reload copies only to the secondary reload
7802 register, the secondary reload does the actual
7803 store. */
7804 if (s >= 0 && set == NULL_RTX)
7805 /* We can't tell what function the secondary reload
7806 has and where the actual store to the pseudo is
7807 made; leave new_spill_reg_store alone. */
7809 else if (s >= 0
7810 && SET_SRC (set) == rl_reg_rtx
7811 && SET_DEST (set) == rld[s].reg_rtx)
7813 /* Usually the next instruction will be the
7814 secondary reload insn; if we can confirm
7815 that it is, setting new_spill_reg_store to
7816 that insn will allow an extra optimization. */
7817 rtx s_reg = rld[s].reg_rtx;
7818 rtx_insn *next = NEXT_INSN (p);
7819 rld[s].out = rl->out;
7820 rld[s].out_reg = rl->out_reg;
7821 set = single_set (next);
7822 if (set && SET_SRC (set) == s_reg
7823 && reload_reg_rtx_reaches_end_p (s_reg, s))
7825 SET_HARD_REG_BIT (reg_is_output_reload,
7826 REGNO (s_reg));
7827 new_spill_reg_store[REGNO (s_reg)] = next;
7830 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7831 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7836 if (rl->when_needed == RELOAD_OTHER)
7838 emit_insn (other_output_reload_insns[rl->opnum]);
7839 other_output_reload_insns[rl->opnum] = get_insns ();
7841 else
7842 output_reload_insns[rl->opnum] = get_insns ();
7844 if (cfun->can_throw_non_call_exceptions)
7845 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7847 end_sequence ();
7850 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7851 and has the number J. */
7852 static void
7853 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7855 rtx_insn *insn = chain->insn;
7856 rtx old = (rl->in && MEM_P (rl->in)
7857 ? rl->in_reg : rl->in);
7858 rtx reg_rtx = rl->reg_rtx;
7860 if (old && reg_rtx)
7862 machine_mode mode;
7864 /* Determine the mode to reload in.
7865 This is very tricky because we have three to choose from.
7866 There is the mode the insn operand wants (rl->inmode).
7867 There is the mode of the reload register RELOADREG.
7868 There is the intrinsic mode of the operand, which we could find
7869 by stripping some SUBREGs.
7870 It turns out that RELOADREG's mode is irrelevant:
7871 we can change that arbitrarily.
7873 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7874 then the reload reg may not support QImode moves, so use SImode.
7875 If foo is in memory due to spilling a pseudo reg, this is safe,
7876 because the QImode value is in the least significant part of a
7877 slot big enough for a SImode. If foo is some other sort of
7878 memory reference, then it is impossible to reload this case,
7879 so previous passes had better make sure this never happens.
7881 Then consider a one-word union which has SImode and one of its
7882 members is a float, being fetched as (SUBREG:SF union:SI).
7883 We must fetch that as SFmode because we could be loading into
7884 a float-only register. In this case OLD's mode is correct.
7886 Consider an immediate integer: it has VOIDmode. Here we need
7887 to get a mode from something else.
7889 In some cases, there is a fourth mode, the operand's
7890 containing mode. If the insn specifies a containing mode for
7891 this operand, it overrides all others.
7893 I am not sure whether the algorithm here is always right,
7894 but it does the right things in those cases. */
7896 mode = GET_MODE (old);
7897 if (mode == VOIDmode)
7898 mode = rl->inmode;
7900 /* We cannot use gen_lowpart_common since it can do the wrong thing
7901 when REG_RTX has a multi-word mode. Note that REG_RTX must
7902 always be a REG here. */
7903 if (GET_MODE (reg_rtx) != mode)
7904 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7906 reload_reg_rtx_for_input[j] = reg_rtx;
7908 if (old != 0
7909 /* AUTO_INC reloads need to be handled even if inherited. We got an
7910 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7911 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7912 && ! rtx_equal_p (reg_rtx, old)
7913 && reg_rtx != 0)
7914 emit_input_reload_insns (chain, rld + j, old, j);
7916 /* When inheriting a wider reload, we have a MEM in rl->in,
7917 e.g. inheriting a SImode output reload for
7918 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7919 if (optimize && reload_inherited[j] && rl->in
7920 && MEM_P (rl->in)
7921 && MEM_P (rl->in_reg)
7922 && reload_spill_index[j] >= 0
7923 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7924 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7926 /* If we are reloading a register that was recently stored in with an
7927 output-reload, see if we can prove there was
7928 actually no need to store the old value in it. */
7930 if (optimize
7931 && (reload_inherited[j] || reload_override_in[j])
7932 && reg_rtx
7933 && REG_P (reg_rtx)
7934 && spill_reg_store[REGNO (reg_rtx)] != 0
7935 #if 0
7936 /* There doesn't seem to be any reason to restrict this to pseudos
7937 and doing so loses in the case where we are copying from a
7938 register of the wrong class. */
7939 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7940 #endif
7941 /* The insn might have already some references to stackslots
7942 replaced by MEMs, while reload_out_reg still names the
7943 original pseudo. */
7944 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7945 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7946 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7949 /* Do output reloading for reload RL, which is for the insn described by
7950 CHAIN and has the number J.
7951 ??? At some point we need to support handling output reloads of
7952 JUMP_INSNs or insns that set cc0. */
7953 static void
7954 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7956 rtx note, old;
7957 rtx_insn *insn = chain->insn;
7958 /* If this is an output reload that stores something that is
7959 not loaded in this same reload, see if we can eliminate a previous
7960 store. */
7961 rtx pseudo = rl->out_reg;
7962 rtx reg_rtx = rl->reg_rtx;
7964 if (rl->out && reg_rtx)
7966 machine_mode mode;
7968 /* Determine the mode to reload in.
7969 See comments above (for input reloading). */
7970 mode = GET_MODE (rl->out);
7971 if (mode == VOIDmode)
7973 /* VOIDmode should never happen for an output. */
7974 if (asm_noperands (PATTERN (insn)) < 0)
7975 /* It's the compiler's fault. */
7976 fatal_insn ("VOIDmode on an output", insn);
7977 error_for_asm (insn, "output operand is constant in %<asm%>");
7978 /* Prevent crash--use something we know is valid. */
7979 mode = word_mode;
7980 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7982 if (GET_MODE (reg_rtx) != mode)
7983 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7985 reload_reg_rtx_for_output[j] = reg_rtx;
7987 if (pseudo
7988 && optimize
7989 && REG_P (pseudo)
7990 && ! rtx_equal_p (rl->in_reg, pseudo)
7991 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7992 && reg_last_reload_reg[REGNO (pseudo)])
7994 int pseudo_no = REGNO (pseudo);
7995 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7997 /* We don't need to test full validity of last_regno for
7998 inherit here; we only want to know if the store actually
7999 matches the pseudo. */
8000 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8001 && reg_reloaded_contents[last_regno] == pseudo_no
8002 && spill_reg_store[last_regno]
8003 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8004 delete_output_reload (insn, j, last_regno, reg_rtx);
8007 old = rl->out_reg;
8008 if (old == 0
8009 || reg_rtx == 0
8010 || rtx_equal_p (old, reg_rtx))
8011 return;
8013 /* An output operand that dies right away does need a reload,
8014 but need not be copied from it. Show the new location in the
8015 REG_UNUSED note. */
8016 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8017 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8019 XEXP (note, 0) = reg_rtx;
8020 return;
8022 /* Likewise for a SUBREG of an operand that dies. */
8023 else if (GET_CODE (old) == SUBREG
8024 && REG_P (SUBREG_REG (old))
8025 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8026 SUBREG_REG (old))))
8028 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8029 return;
8031 else if (GET_CODE (old) == SCRATCH)
8032 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8033 but we don't want to make an output reload. */
8034 return;
8036 /* If is a JUMP_INSN, we can't support output reloads yet. */
8037 gcc_assert (NONJUMP_INSN_P (insn));
8039 emit_output_reload_insns (chain, rld + j, j);
8042 /* A reload copies values of MODE from register SRC to register DEST.
8043 Return true if it can be treated for inheritance purposes like a
8044 group of reloads, each one reloading a single hard register. The
8045 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8046 occupy the same number of hard registers. */
8048 static bool
8049 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8050 int src ATTRIBUTE_UNUSED,
8051 machine_mode mode ATTRIBUTE_UNUSED)
8053 #ifdef CANNOT_CHANGE_MODE_CLASS
8054 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8055 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8056 #else
8057 return true;
8058 #endif
8061 /* Output insns to reload values in and out of the chosen reload regs. */
8063 static void
8064 emit_reload_insns (struct insn_chain *chain)
8066 rtx_insn *insn = chain->insn;
8068 int j;
8070 CLEAR_HARD_REG_SET (reg_reloaded_died);
8072 for (j = 0; j < reload_n_operands; j++)
8073 input_reload_insns[j] = input_address_reload_insns[j]
8074 = inpaddr_address_reload_insns[j]
8075 = output_reload_insns[j] = output_address_reload_insns[j]
8076 = outaddr_address_reload_insns[j]
8077 = other_output_reload_insns[j] = 0;
8078 other_input_address_reload_insns = 0;
8079 other_input_reload_insns = 0;
8080 operand_reload_insns = 0;
8081 other_operand_reload_insns = 0;
8083 /* Dump reloads into the dump file. */
8084 if (dump_file)
8086 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8087 debug_reload_to_stream (dump_file);
8090 for (j = 0; j < n_reloads; j++)
8091 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8093 unsigned int i;
8095 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8096 new_spill_reg_store[i] = 0;
8099 /* Now output the instructions to copy the data into and out of the
8100 reload registers. Do these in the order that the reloads were reported,
8101 since reloads of base and index registers precede reloads of operands
8102 and the operands may need the base and index registers reloaded. */
8104 for (j = 0; j < n_reloads; j++)
8106 do_input_reload (chain, rld + j, j);
8107 do_output_reload (chain, rld + j, j);
8110 /* Now write all the insns we made for reloads in the order expected by
8111 the allocation functions. Prior to the insn being reloaded, we write
8112 the following reloads:
8114 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8116 RELOAD_OTHER reloads.
8118 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8119 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8120 RELOAD_FOR_INPUT reload for the operand.
8122 RELOAD_FOR_OPADDR_ADDRS reloads.
8124 RELOAD_FOR_OPERAND_ADDRESS reloads.
8126 After the insn being reloaded, we write the following:
8128 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8129 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8130 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8131 reloads for the operand. The RELOAD_OTHER output reloads are
8132 output in descending order by reload number. */
8134 emit_insn_before (other_input_address_reload_insns, insn);
8135 emit_insn_before (other_input_reload_insns, insn);
8137 for (j = 0; j < reload_n_operands; j++)
8139 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8140 emit_insn_before (input_address_reload_insns[j], insn);
8141 emit_insn_before (input_reload_insns[j], insn);
8144 emit_insn_before (other_operand_reload_insns, insn);
8145 emit_insn_before (operand_reload_insns, insn);
8147 for (j = 0; j < reload_n_operands; j++)
8149 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8150 x = emit_insn_after (output_address_reload_insns[j], x);
8151 x = emit_insn_after (output_reload_insns[j], x);
8152 emit_insn_after (other_output_reload_insns[j], x);
8155 /* For all the spill regs newly reloaded in this instruction,
8156 record what they were reloaded from, so subsequent instructions
8157 can inherit the reloads.
8159 Update spill_reg_store for the reloads of this insn.
8160 Copy the elements that were updated in the loop above. */
8162 for (j = 0; j < n_reloads; j++)
8164 int r = reload_order[j];
8165 int i = reload_spill_index[r];
8167 /* If this is a non-inherited input reload from a pseudo, we must
8168 clear any memory of a previous store to the same pseudo. Only do
8169 something if there will not be an output reload for the pseudo
8170 being reloaded. */
8171 if (rld[r].in_reg != 0
8172 && ! (reload_inherited[r] || reload_override_in[r]))
8174 rtx reg = rld[r].in_reg;
8176 if (GET_CODE (reg) == SUBREG)
8177 reg = SUBREG_REG (reg);
8179 if (REG_P (reg)
8180 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8181 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8183 int nregno = REGNO (reg);
8185 if (reg_last_reload_reg[nregno])
8187 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8189 if (reg_reloaded_contents[last_regno] == nregno)
8190 spill_reg_store[last_regno] = 0;
8195 /* I is nonneg if this reload used a register.
8196 If rld[r].reg_rtx is 0, this is an optional reload
8197 that we opted to ignore. */
8199 if (i >= 0 && rld[r].reg_rtx != 0)
8201 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8202 int k;
8204 /* For a multi register reload, we need to check if all or part
8205 of the value lives to the end. */
8206 for (k = 0; k < nr; k++)
8207 if (reload_reg_reaches_end_p (i + k, r))
8208 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8210 /* Maybe the spill reg contains a copy of reload_out. */
8211 if (rld[r].out != 0
8212 && (REG_P (rld[r].out)
8213 || (rld[r].out_reg
8214 ? REG_P (rld[r].out_reg)
8215 /* The reload value is an auto-modification of
8216 some kind. For PRE_INC, POST_INC, PRE_DEC
8217 and POST_DEC, we record an equivalence
8218 between the reload register and the operand
8219 on the optimistic assumption that we can make
8220 the equivalence hold. reload_as_needed must
8221 then either make it hold or invalidate the
8222 equivalence.
8224 PRE_MODIFY and POST_MODIFY addresses are reloaded
8225 somewhat differently, and allowing them here leads
8226 to problems. */
8227 : (GET_CODE (rld[r].out) != POST_MODIFY
8228 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8230 rtx reg;
8232 reg = reload_reg_rtx_for_output[r];
8233 if (reload_reg_rtx_reaches_end_p (reg, r))
8235 machine_mode mode = GET_MODE (reg);
8236 int regno = REGNO (reg);
8237 int nregs = hard_regno_nregs[regno][mode];
8238 rtx out = (REG_P (rld[r].out)
8239 ? rld[r].out
8240 : rld[r].out_reg
8241 ? rld[r].out_reg
8242 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8243 int out_regno = REGNO (out);
8244 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8245 : hard_regno_nregs[out_regno][mode]);
8246 bool piecemeal;
8248 spill_reg_store[regno] = new_spill_reg_store[regno];
8249 spill_reg_stored_to[regno] = out;
8250 reg_last_reload_reg[out_regno] = reg;
8252 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8253 && nregs == out_nregs
8254 && inherit_piecemeal_p (out_regno, regno, mode));
8256 /* If OUT_REGNO is a hard register, it may occupy more than
8257 one register. If it does, say what is in the
8258 rest of the registers assuming that both registers
8259 agree on how many words the object takes. If not,
8260 invalidate the subsequent registers. */
8262 if (HARD_REGISTER_NUM_P (out_regno))
8263 for (k = 1; k < out_nregs; k++)
8264 reg_last_reload_reg[out_regno + k]
8265 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8267 /* Now do the inverse operation. */
8268 for (k = 0; k < nregs; k++)
8270 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8271 reg_reloaded_contents[regno + k]
8272 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8273 ? out_regno
8274 : out_regno + k);
8275 reg_reloaded_insn[regno + k] = insn;
8276 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8277 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8278 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8279 regno + k);
8280 else
8281 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8286 /* Maybe the spill reg contains a copy of reload_in. Only do
8287 something if there will not be an output reload for
8288 the register being reloaded. */
8289 else if (rld[r].out_reg == 0
8290 && rld[r].in != 0
8291 && ((REG_P (rld[r].in)
8292 && !HARD_REGISTER_P (rld[r].in)
8293 && !REGNO_REG_SET_P (&reg_has_output_reload,
8294 REGNO (rld[r].in)))
8295 || (REG_P (rld[r].in_reg)
8296 && !REGNO_REG_SET_P (&reg_has_output_reload,
8297 REGNO (rld[r].in_reg))))
8298 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8300 rtx reg;
8302 reg = reload_reg_rtx_for_input[r];
8303 if (reload_reg_rtx_reaches_end_p (reg, r))
8305 machine_mode mode;
8306 int regno;
8307 int nregs;
8308 int in_regno;
8309 int in_nregs;
8310 rtx in;
8311 bool piecemeal;
8313 mode = GET_MODE (reg);
8314 regno = REGNO (reg);
8315 nregs = hard_regno_nregs[regno][mode];
8316 if (REG_P (rld[r].in)
8317 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8318 in = rld[r].in;
8319 else if (REG_P (rld[r].in_reg))
8320 in = rld[r].in_reg;
8321 else
8322 in = XEXP (rld[r].in_reg, 0);
8323 in_regno = REGNO (in);
8325 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8326 : hard_regno_nregs[in_regno][mode]);
8328 reg_last_reload_reg[in_regno] = reg;
8330 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8331 && nregs == in_nregs
8332 && inherit_piecemeal_p (regno, in_regno, mode));
8334 if (HARD_REGISTER_NUM_P (in_regno))
8335 for (k = 1; k < in_nregs; k++)
8336 reg_last_reload_reg[in_regno + k]
8337 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8339 /* Unless we inherited this reload, show we haven't
8340 recently done a store.
8341 Previous stores of inherited auto_inc expressions
8342 also have to be discarded. */
8343 if (! reload_inherited[r]
8344 || (rld[r].out && ! rld[r].out_reg))
8345 spill_reg_store[regno] = 0;
8347 for (k = 0; k < nregs; k++)
8349 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8350 reg_reloaded_contents[regno + k]
8351 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8352 ? in_regno
8353 : in_regno + k);
8354 reg_reloaded_insn[regno + k] = insn;
8355 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8356 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8357 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8358 regno + k);
8359 else
8360 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8361 regno + k);
8367 /* The following if-statement was #if 0'd in 1.34 (or before...).
8368 It's reenabled in 1.35 because supposedly nothing else
8369 deals with this problem. */
8371 /* If a register gets output-reloaded from a non-spill register,
8372 that invalidates any previous reloaded copy of it.
8373 But forget_old_reloads_1 won't get to see it, because
8374 it thinks only about the original insn. So invalidate it here.
8375 Also do the same thing for RELOAD_OTHER constraints where the
8376 output is discarded. */
8377 if (i < 0
8378 && ((rld[r].out != 0
8379 && (REG_P (rld[r].out)
8380 || (MEM_P (rld[r].out)
8381 && REG_P (rld[r].out_reg))))
8382 || (rld[r].out == 0 && rld[r].out_reg
8383 && REG_P (rld[r].out_reg))))
8385 rtx out = ((rld[r].out && REG_P (rld[r].out))
8386 ? rld[r].out : rld[r].out_reg);
8387 int out_regno = REGNO (out);
8388 machine_mode mode = GET_MODE (out);
8390 /* REG_RTX is now set or clobbered by the main instruction.
8391 As the comment above explains, forget_old_reloads_1 only
8392 sees the original instruction, and there is no guarantee
8393 that the original instruction also clobbered REG_RTX.
8394 For example, if find_reloads sees that the input side of
8395 a matched operand pair dies in this instruction, it may
8396 use the input register as the reload register.
8398 Calling forget_old_reloads_1 is a waste of effort if
8399 REG_RTX is also the output register.
8401 If we know that REG_RTX holds the value of a pseudo
8402 register, the code after the call will record that fact. */
8403 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8404 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8406 if (!HARD_REGISTER_NUM_P (out_regno))
8408 rtx src_reg;
8409 rtx_insn *store_insn = NULL;
8411 reg_last_reload_reg[out_regno] = 0;
8413 /* If we can find a hard register that is stored, record
8414 the storing insn so that we may delete this insn with
8415 delete_output_reload. */
8416 src_reg = reload_reg_rtx_for_output[r];
8418 if (src_reg)
8420 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8421 store_insn = new_spill_reg_store[REGNO (src_reg)];
8422 else
8423 src_reg = NULL_RTX;
8425 else
8427 /* If this is an optional reload, try to find the
8428 source reg from an input reload. */
8429 rtx set = single_set (insn);
8430 if (set && SET_DEST (set) == rld[r].out)
8432 int k;
8434 src_reg = SET_SRC (set);
8435 store_insn = insn;
8436 for (k = 0; k < n_reloads; k++)
8438 if (rld[k].in == src_reg)
8440 src_reg = reload_reg_rtx_for_input[k];
8441 break;
8446 if (src_reg && REG_P (src_reg)
8447 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8449 int src_regno, src_nregs, k;
8450 rtx note;
8452 gcc_assert (GET_MODE (src_reg) == mode);
8453 src_regno = REGNO (src_reg);
8454 src_nregs = hard_regno_nregs[src_regno][mode];
8455 /* The place where to find a death note varies with
8456 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8457 necessarily checked exactly in the code that moves
8458 notes, so just check both locations. */
8459 note = find_regno_note (insn, REG_DEAD, src_regno);
8460 if (! note && store_insn)
8461 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8462 for (k = 0; k < src_nregs; k++)
8464 spill_reg_store[src_regno + k] = store_insn;
8465 spill_reg_stored_to[src_regno + k] = out;
8466 reg_reloaded_contents[src_regno + k] = out_regno;
8467 reg_reloaded_insn[src_regno + k] = store_insn;
8468 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8469 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8470 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8471 mode))
8472 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8473 src_regno + k);
8474 else
8475 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8476 src_regno + k);
8477 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8478 if (note)
8479 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8480 else
8481 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8483 reg_last_reload_reg[out_regno] = src_reg;
8484 /* We have to set reg_has_output_reload here, or else
8485 forget_old_reloads_1 will clear reg_last_reload_reg
8486 right away. */
8487 SET_REGNO_REG_SET (&reg_has_output_reload,
8488 out_regno);
8491 else
8493 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8495 for (k = 0; k < out_nregs; k++)
8496 reg_last_reload_reg[out_regno + k] = 0;
8500 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8503 /* Go through the motions to emit INSN and test if it is strictly valid.
8504 Return the emitted insn if valid, else return NULL. */
8506 static rtx_insn *
8507 emit_insn_if_valid_for_reload (rtx pat)
8509 rtx_insn *last = get_last_insn ();
8510 int code;
8512 rtx_insn *insn = emit_insn (pat);
8513 code = recog_memoized (insn);
8515 if (code >= 0)
8517 extract_insn (insn);
8518 /* We want constrain operands to treat this insn strictly in its
8519 validity determination, i.e., the way it would after reload has
8520 completed. */
8521 if (constrain_operands (1, get_enabled_alternatives (insn)))
8522 return insn;
8525 delete_insns_since (last);
8526 return NULL;
8529 /* Emit code to perform a reload from IN (which may be a reload register) to
8530 OUT (which may also be a reload register). IN or OUT is from operand
8531 OPNUM with reload type TYPE.
8533 Returns first insn emitted. */
8535 static rtx_insn *
8536 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8538 rtx_insn *last = get_last_insn ();
8539 rtx_insn *tem;
8540 #ifdef SECONDARY_MEMORY_NEEDED
8541 rtx tem1, tem2;
8542 #endif
8544 /* If IN is a paradoxical SUBREG, remove it and try to put the
8545 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8546 if (!strip_paradoxical_subreg (&in, &out))
8547 strip_paradoxical_subreg (&out, &in);
8549 /* How to do this reload can get quite tricky. Normally, we are being
8550 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8551 register that didn't get a hard register. In that case we can just
8552 call emit_move_insn.
8554 We can also be asked to reload a PLUS that adds a register or a MEM to
8555 another register, constant or MEM. This can occur during frame pointer
8556 elimination and while reloading addresses. This case is handled by
8557 trying to emit a single insn to perform the add. If it is not valid,
8558 we use a two insn sequence.
8560 Or we can be asked to reload an unary operand that was a fragment of
8561 an addressing mode, into a register. If it isn't recognized as-is,
8562 we try making the unop operand and the reload-register the same:
8563 (set reg:X (unop:X expr:Y))
8564 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8566 Finally, we could be called to handle an 'o' constraint by putting
8567 an address into a register. In that case, we first try to do this
8568 with a named pattern of "reload_load_address". If no such pattern
8569 exists, we just emit a SET insn and hope for the best (it will normally
8570 be valid on machines that use 'o').
8572 This entire process is made complex because reload will never
8573 process the insns we generate here and so we must ensure that
8574 they will fit their constraints and also by the fact that parts of
8575 IN might be being reloaded separately and replaced with spill registers.
8576 Because of this, we are, in some sense, just guessing the right approach
8577 here. The one listed above seems to work.
8579 ??? At some point, this whole thing needs to be rethought. */
8581 if (GET_CODE (in) == PLUS
8582 && (REG_P (XEXP (in, 0))
8583 || GET_CODE (XEXP (in, 0)) == SUBREG
8584 || MEM_P (XEXP (in, 0)))
8585 && (REG_P (XEXP (in, 1))
8586 || GET_CODE (XEXP (in, 1)) == SUBREG
8587 || CONSTANT_P (XEXP (in, 1))
8588 || MEM_P (XEXP (in, 1))))
8590 /* We need to compute the sum of a register or a MEM and another
8591 register, constant, or MEM, and put it into the reload
8592 register. The best possible way of doing this is if the machine
8593 has a three-operand ADD insn that accepts the required operands.
8595 The simplest approach is to try to generate such an insn and see if it
8596 is recognized and matches its constraints. If so, it can be used.
8598 It might be better not to actually emit the insn unless it is valid,
8599 but we need to pass the insn as an operand to `recog' and
8600 `extract_insn' and it is simpler to emit and then delete the insn if
8601 not valid than to dummy things up. */
8603 rtx op0, op1, tem;
8604 rtx_insn *insn;
8605 enum insn_code code;
8607 op0 = find_replacement (&XEXP (in, 0));
8608 op1 = find_replacement (&XEXP (in, 1));
8610 /* Since constraint checking is strict, commutativity won't be
8611 checked, so we need to do that here to avoid spurious failure
8612 if the add instruction is two-address and the second operand
8613 of the add is the same as the reload reg, which is frequently
8614 the case. If the insn would be A = B + A, rearrange it so
8615 it will be A = A + B as constrain_operands expects. */
8617 if (REG_P (XEXP (in, 1))
8618 && REGNO (out) == REGNO (XEXP (in, 1)))
8619 tem = op0, op0 = op1, op1 = tem;
8621 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8622 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8624 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8625 if (insn)
8626 return insn;
8628 /* If that failed, we must use a conservative two-insn sequence.
8630 Use a move to copy one operand into the reload register. Prefer
8631 to reload a constant, MEM or pseudo since the move patterns can
8632 handle an arbitrary operand. If OP1 is not a constant, MEM or
8633 pseudo and OP1 is not a valid operand for an add instruction, then
8634 reload OP1.
8636 After reloading one of the operands into the reload register, add
8637 the reload register to the output register.
8639 If there is another way to do this for a specific machine, a
8640 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8641 we emit below. */
8643 code = optab_handler (add_optab, GET_MODE (out));
8645 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8646 || (REG_P (op1)
8647 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8648 || (code != CODE_FOR_nothing
8649 && !insn_operand_matches (code, 2, op1)))
8650 tem = op0, op0 = op1, op1 = tem;
8652 gen_reload (out, op0, opnum, type);
8654 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8655 This fixes a problem on the 32K where the stack pointer cannot
8656 be used as an operand of an add insn. */
8658 if (rtx_equal_p (op0, op1))
8659 op1 = out;
8661 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8662 if (insn)
8664 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8665 set_dst_reg_note (insn, REG_EQUIV, in, out);
8666 return insn;
8669 /* If that failed, copy the address register to the reload register.
8670 Then add the constant to the reload register. */
8672 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8673 gen_reload (out, op1, opnum, type);
8674 insn = emit_insn (gen_add2_insn (out, op0));
8675 set_dst_reg_note (insn, REG_EQUIV, in, out);
8678 #ifdef SECONDARY_MEMORY_NEEDED
8679 /* If we need a memory location to do the move, do it that way. */
8680 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8681 (REG_P (tem1) && REG_P (tem2)))
8682 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8683 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8684 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8685 REGNO_REG_CLASS (REGNO (tem2)),
8686 GET_MODE (out)))
8688 /* Get the memory to use and rewrite both registers to its mode. */
8689 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8691 if (GET_MODE (loc) != GET_MODE (out))
8692 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8694 if (GET_MODE (loc) != GET_MODE (in))
8695 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8697 gen_reload (loc, in, opnum, type);
8698 gen_reload (out, loc, opnum, type);
8700 #endif
8701 else if (REG_P (out) && UNARY_P (in))
8703 rtx op1;
8704 rtx out_moded;
8705 rtx_insn *set;
8707 op1 = find_replacement (&XEXP (in, 0));
8708 if (op1 != XEXP (in, 0))
8709 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8711 /* First, try a plain SET. */
8712 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8713 if (set)
8714 return set;
8716 /* If that failed, move the inner operand to the reload
8717 register, and try the same unop with the inner expression
8718 replaced with the reload register. */
8720 if (GET_MODE (op1) != GET_MODE (out))
8721 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8722 else
8723 out_moded = out;
8725 gen_reload (out_moded, op1, opnum, type);
8727 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8728 out_moded));
8729 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8730 if (insn)
8732 set_unique_reg_note (insn, REG_EQUIV, in);
8733 return insn;
8736 fatal_insn ("failure trying to reload:", set);
8738 /* If IN is a simple operand, use gen_move_insn. */
8739 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8741 tem = emit_insn (gen_move_insn (out, in));
8742 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8743 mark_jump_label (in, tem, 0);
8746 else if (targetm.have_reload_load_address ())
8747 emit_insn (targetm.gen_reload_load_address (out, in));
8749 /* Otherwise, just write (set OUT IN) and hope for the best. */
8750 else
8751 emit_insn (gen_rtx_SET (out, in));
8753 /* Return the first insn emitted.
8754 We can not just return get_last_insn, because there may have
8755 been multiple instructions emitted. Also note that gen_move_insn may
8756 emit more than one insn itself, so we can not assume that there is one
8757 insn emitted per emit_insn_before call. */
8759 return last ? NEXT_INSN (last) : get_insns ();
8762 /* Delete a previously made output-reload whose result we now believe
8763 is not needed. First we double-check.
8765 INSN is the insn now being processed.
8766 LAST_RELOAD_REG is the hard register number for which we want to delete
8767 the last output reload.
8768 J is the reload-number that originally used REG. The caller has made
8769 certain that reload J doesn't use REG any longer for input.
8770 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8772 static void
8773 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8774 rtx new_reload_reg)
8776 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8777 rtx reg = spill_reg_stored_to[last_reload_reg];
8778 int k;
8779 int n_occurrences;
8780 int n_inherited = 0;
8781 rtx substed;
8782 unsigned regno;
8783 int nregs;
8785 /* It is possible that this reload has been only used to set another reload
8786 we eliminated earlier and thus deleted this instruction too. */
8787 if (output_reload_insn->deleted ())
8788 return;
8790 /* Get the raw pseudo-register referred to. */
8792 while (GET_CODE (reg) == SUBREG)
8793 reg = SUBREG_REG (reg);
8794 substed = reg_equiv_memory_loc (REGNO (reg));
8796 /* This is unsafe if the operand occurs more often in the current
8797 insn than it is inherited. */
8798 for (k = n_reloads - 1; k >= 0; k--)
8800 rtx reg2 = rld[k].in;
8801 if (! reg2)
8802 continue;
8803 if (MEM_P (reg2) || reload_override_in[k])
8804 reg2 = rld[k].in_reg;
8806 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8807 reg2 = XEXP (rld[k].in_reg, 0);
8809 while (GET_CODE (reg2) == SUBREG)
8810 reg2 = SUBREG_REG (reg2);
8811 if (rtx_equal_p (reg2, reg))
8813 if (reload_inherited[k] || reload_override_in[k] || k == j)
8814 n_inherited++;
8815 else
8816 return;
8819 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8820 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8821 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8822 reg, 0);
8823 if (substed)
8824 n_occurrences += count_occurrences (PATTERN (insn),
8825 eliminate_regs (substed, VOIDmode,
8826 NULL_RTX), 0);
8827 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8829 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8830 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8832 if (n_occurrences > n_inherited)
8833 return;
8835 regno = REGNO (reg);
8836 if (regno >= FIRST_PSEUDO_REGISTER)
8837 nregs = 1;
8838 else
8839 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8841 /* If the pseudo-reg we are reloading is no longer referenced
8842 anywhere between the store into it and here,
8843 and we're within the same basic block, then the value can only
8844 pass through the reload reg and end up here.
8845 Otherwise, give up--return. */
8846 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8847 i1 != insn; i1 = NEXT_INSN (i1))
8849 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8850 return;
8851 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8852 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8854 /* If this is USE in front of INSN, we only have to check that
8855 there are no more references than accounted for by inheritance. */
8856 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8858 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8859 i1 = NEXT_INSN (i1);
8861 if (n_occurrences <= n_inherited && i1 == insn)
8862 break;
8863 return;
8867 /* We will be deleting the insn. Remove the spill reg information. */
8868 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8870 spill_reg_store[last_reload_reg + k] = 0;
8871 spill_reg_stored_to[last_reload_reg + k] = 0;
8874 /* The caller has already checked that REG dies or is set in INSN.
8875 It has also checked that we are optimizing, and thus some
8876 inaccuracies in the debugging information are acceptable.
8877 So we could just delete output_reload_insn. But in some cases
8878 we can improve the debugging information without sacrificing
8879 optimization - maybe even improving the code: See if the pseudo
8880 reg has been completely replaced with reload regs. If so, delete
8881 the store insn and forget we had a stack slot for the pseudo. */
8882 if (rld[j].out != rld[j].in
8883 && REG_N_DEATHS (REGNO (reg)) == 1
8884 && REG_N_SETS (REGNO (reg)) == 1
8885 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8886 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8888 rtx_insn *i2;
8890 /* We know that it was used only between here and the beginning of
8891 the current basic block. (We also know that the last use before
8892 INSN was the output reload we are thinking of deleting, but never
8893 mind that.) Search that range; see if any ref remains. */
8894 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8896 rtx set = single_set (i2);
8898 /* Uses which just store in the pseudo don't count,
8899 since if they are the only uses, they are dead. */
8900 if (set != 0 && SET_DEST (set) == reg)
8901 continue;
8902 if (LABEL_P (i2) || JUMP_P (i2))
8903 break;
8904 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8905 && reg_mentioned_p (reg, PATTERN (i2)))
8907 /* Some other ref remains; just delete the output reload we
8908 know to be dead. */
8909 delete_address_reloads (output_reload_insn, insn);
8910 delete_insn (output_reload_insn);
8911 return;
8915 /* Delete the now-dead stores into this pseudo. Note that this
8916 loop also takes care of deleting output_reload_insn. */
8917 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8919 rtx set = single_set (i2);
8921 if (set != 0 && SET_DEST (set) == reg)
8923 delete_address_reloads (i2, insn);
8924 delete_insn (i2);
8926 if (LABEL_P (i2) || JUMP_P (i2))
8927 break;
8930 /* For the debugging info, say the pseudo lives in this reload reg. */
8931 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8932 if (ira_conflicts_p)
8933 /* Inform IRA about the change. */
8934 ira_mark_allocation_change (REGNO (reg));
8935 alter_reg (REGNO (reg), -1, false);
8937 else
8939 delete_address_reloads (output_reload_insn, insn);
8940 delete_insn (output_reload_insn);
8944 /* We are going to delete DEAD_INSN. Recursively delete loads of
8945 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8946 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8947 static void
8948 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8950 rtx set = single_set (dead_insn);
8951 rtx set2, dst;
8952 rtx_insn *prev, *next;
8953 if (set)
8955 rtx dst = SET_DEST (set);
8956 if (MEM_P (dst))
8957 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8959 /* If we deleted the store from a reloaded post_{in,de}c expression,
8960 we can delete the matching adds. */
8961 prev = PREV_INSN (dead_insn);
8962 next = NEXT_INSN (dead_insn);
8963 if (! prev || ! next)
8964 return;
8965 set = single_set (next);
8966 set2 = single_set (prev);
8967 if (! set || ! set2
8968 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8969 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8970 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8971 return;
8972 dst = SET_DEST (set);
8973 if (! rtx_equal_p (dst, SET_DEST (set2))
8974 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8975 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8976 || (INTVAL (XEXP (SET_SRC (set), 1))
8977 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8978 return;
8979 delete_related_insns (prev);
8980 delete_related_insns (next);
8983 /* Subfunction of delete_address_reloads: process registers found in X. */
8984 static void
8985 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8987 rtx_insn *prev, *i2;
8988 rtx set, dst;
8989 int i, j;
8990 enum rtx_code code = GET_CODE (x);
8992 if (code != REG)
8994 const char *fmt = GET_RTX_FORMAT (code);
8995 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8997 if (fmt[i] == 'e')
8998 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8999 else if (fmt[i] == 'E')
9001 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9002 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9003 current_insn);
9006 return;
9009 if (spill_reg_order[REGNO (x)] < 0)
9010 return;
9012 /* Scan backwards for the insn that sets x. This might be a way back due
9013 to inheritance. */
9014 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9016 code = GET_CODE (prev);
9017 if (code == CODE_LABEL || code == JUMP_INSN)
9018 return;
9019 if (!INSN_P (prev))
9020 continue;
9021 if (reg_set_p (x, PATTERN (prev)))
9022 break;
9023 if (reg_referenced_p (x, PATTERN (prev)))
9024 return;
9026 if (! prev || INSN_UID (prev) < reload_first_uid)
9027 return;
9028 /* Check that PREV only sets the reload register. */
9029 set = single_set (prev);
9030 if (! set)
9031 return;
9032 dst = SET_DEST (set);
9033 if (!REG_P (dst)
9034 || ! rtx_equal_p (dst, x))
9035 return;
9036 if (! reg_set_p (dst, PATTERN (dead_insn)))
9038 /* Check if DST was used in a later insn -
9039 it might have been inherited. */
9040 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9042 if (LABEL_P (i2))
9043 break;
9044 if (! INSN_P (i2))
9045 continue;
9046 if (reg_referenced_p (dst, PATTERN (i2)))
9048 /* If there is a reference to the register in the current insn,
9049 it might be loaded in a non-inherited reload. If no other
9050 reload uses it, that means the register is set before
9051 referenced. */
9052 if (i2 == current_insn)
9054 for (j = n_reloads - 1; j >= 0; j--)
9055 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9056 || reload_override_in[j] == dst)
9057 return;
9058 for (j = n_reloads - 1; j >= 0; j--)
9059 if (rld[j].in && rld[j].reg_rtx == dst)
9060 break;
9061 if (j >= 0)
9062 break;
9064 return;
9066 if (JUMP_P (i2))
9067 break;
9068 /* If DST is still live at CURRENT_INSN, check if it is used for
9069 any reload. Note that even if CURRENT_INSN sets DST, we still
9070 have to check the reloads. */
9071 if (i2 == current_insn)
9073 for (j = n_reloads - 1; j >= 0; j--)
9074 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9075 || reload_override_in[j] == dst)
9076 return;
9077 /* ??? We can't finish the loop here, because dst might be
9078 allocated to a pseudo in this block if no reload in this
9079 block needs any of the classes containing DST - see
9080 spill_hard_reg. There is no easy way to tell this, so we
9081 have to scan till the end of the basic block. */
9083 if (reg_set_p (dst, PATTERN (i2)))
9084 break;
9087 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9088 reg_reloaded_contents[REGNO (dst)] = -1;
9089 delete_insn (prev);
9092 /* Output reload-insns to reload VALUE into RELOADREG.
9093 VALUE is an autoincrement or autodecrement RTX whose operand
9094 is a register or memory location;
9095 so reloading involves incrementing that location.
9096 IN is either identical to VALUE, or some cheaper place to reload from.
9098 INC_AMOUNT is the number to increment or decrement by (always positive).
9099 This cannot be deduced from VALUE. */
9101 static void
9102 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9104 /* REG or MEM to be copied and incremented. */
9105 rtx incloc = find_replacement (&XEXP (value, 0));
9106 /* Nonzero if increment after copying. */
9107 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9108 || GET_CODE (value) == POST_MODIFY);
9109 rtx_insn *last;
9110 rtx inc;
9111 rtx_insn *add_insn;
9112 int code;
9113 rtx real_in = in == value ? incloc : in;
9115 /* No hard register is equivalent to this register after
9116 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9117 we could inc/dec that register as well (maybe even using it for
9118 the source), but I'm not sure it's worth worrying about. */
9119 if (REG_P (incloc))
9120 reg_last_reload_reg[REGNO (incloc)] = 0;
9122 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9124 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9125 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9127 else
9129 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9130 inc_amount = -inc_amount;
9132 inc = GEN_INT (inc_amount);
9135 /* If this is post-increment, first copy the location to the reload reg. */
9136 if (post && real_in != reloadreg)
9137 emit_insn (gen_move_insn (reloadreg, real_in));
9139 if (in == value)
9141 /* See if we can directly increment INCLOC. Use a method similar to
9142 that in gen_reload. */
9144 last = get_last_insn ();
9145 add_insn = emit_insn (gen_rtx_SET (incloc,
9146 gen_rtx_PLUS (GET_MODE (incloc),
9147 incloc, inc)));
9149 code = recog_memoized (add_insn);
9150 if (code >= 0)
9152 extract_insn (add_insn);
9153 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9155 /* If this is a pre-increment and we have incremented the value
9156 where it lives, copy the incremented value to RELOADREG to
9157 be used as an address. */
9159 if (! post)
9160 emit_insn (gen_move_insn (reloadreg, incloc));
9161 return;
9164 delete_insns_since (last);
9167 /* If couldn't do the increment directly, must increment in RELOADREG.
9168 The way we do this depends on whether this is pre- or post-increment.
9169 For pre-increment, copy INCLOC to the reload register, increment it
9170 there, then save back. */
9172 if (! post)
9174 if (in != reloadreg)
9175 emit_insn (gen_move_insn (reloadreg, real_in));
9176 emit_insn (gen_add2_insn (reloadreg, inc));
9177 emit_insn (gen_move_insn (incloc, reloadreg));
9179 else
9181 /* Postincrement.
9182 Because this might be a jump insn or a compare, and because RELOADREG
9183 may not be available after the insn in an input reload, we must do
9184 the incrementation before the insn being reloaded for.
9186 We have already copied IN to RELOADREG. Increment the copy in
9187 RELOADREG, save that back, then decrement RELOADREG so it has
9188 the original value. */
9190 emit_insn (gen_add2_insn (reloadreg, inc));
9191 emit_insn (gen_move_insn (incloc, reloadreg));
9192 if (CONST_INT_P (inc))
9193 emit_insn (gen_add2_insn (reloadreg,
9194 gen_int_mode (-INTVAL (inc),
9195 GET_MODE (reloadreg))));
9196 else
9197 emit_insn (gen_sub2_insn (reloadreg, inc));
9201 static void
9202 add_auto_inc_notes (rtx_insn *insn, rtx x)
9204 enum rtx_code code = GET_CODE (x);
9205 const char *fmt;
9206 int i, j;
9208 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9210 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9211 return;
9214 /* Scan all the operand sub-expressions. */
9215 fmt = GET_RTX_FORMAT (code);
9216 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9218 if (fmt[i] == 'e')
9219 add_auto_inc_notes (insn, XEXP (x, i));
9220 else if (fmt[i] == 'E')
9221 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9222 add_auto_inc_notes (insn, XVECEXP (x, i, j));