* ipa-devirt.c: Include gimple-pretty-print.h
[official-gcc.git] / gcc / function.c
blob84d6a107c703be70b2217e3da7e3e931f93ea44e
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Round a value to the lowest integer less than it that is a multiple of
79 the required alignment. Avoid using division in case the value is
80 negative. Assume the alignment is a power of two. */
81 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83 /* Similar, but round to the next highest integer that meets the
84 alignment. */
85 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87 /* Nonzero once virtual register instantiation has been done.
88 assign_stack_local uses frame_pointer_rtx when this is nonzero.
89 calls.c:emit_library_call_value_1 uses it to set up
90 post-instantiation libcalls. */
91 int virtuals_instantiated;
93 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
94 static GTY(()) int funcdef_no;
96 /* These variables hold pointers to functions to create and destroy
97 target specific, per-function data structures. */
98 struct machine_function * (*init_machine_status) (void);
100 /* The currently compiled function. */
101 struct function *cfun = 0;
103 /* These hashes record the prologue and epilogue insns. */
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t prologue_insn_hash;
106 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
107 htab_t epilogue_insn_hash;
110 htab_t types_used_by_vars_hash = NULL;
111 vec<tree, va_gc> *types_used_by_cur_var_decl;
113 /* Forward declarations. */
115 static struct temp_slot *find_temp_slot_from_address (rtx);
116 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
117 static void pad_below (struct args_size *, enum machine_mode, tree);
118 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
119 static int all_blocks (tree, tree *);
120 static tree *get_block_vector (tree, int *);
121 extern tree debug_find_var_in_block_tree (tree, tree);
122 /* We always define `record_insns' even if it's not used so that we
123 can always export `prologue_epilogue_contains'. */
124 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
125 static bool contains (const_rtx, htab_t);
126 static void prepare_function_start (void);
127 static void do_clobber_return_reg (rtx, void *);
128 static void do_use_return_reg (rtx, void *);
130 /* Stack of nested functions. */
131 /* Keep track of the cfun stack. */
133 typedef struct function *function_p;
135 static vec<function_p> function_context_stack;
137 /* Save the current context for compilation of a nested function.
138 This is called from language-specific code. */
140 void
141 push_function_context (void)
143 if (cfun == 0)
144 allocate_struct_function (NULL, false);
146 function_context_stack.safe_push (cfun);
147 set_cfun (NULL);
150 /* Restore the last saved context, at the end of a nested function.
151 This function is called from language-specific code. */
153 void
154 pop_function_context (void)
156 struct function *p = function_context_stack.pop ();
157 set_cfun (p);
158 current_function_decl = p->decl;
160 /* Reset variables that have known state during rtx generation. */
161 virtuals_instantiated = 0;
162 generating_concat_p = 1;
165 /* Clear out all parts of the state in F that can safely be discarded
166 after the function has been parsed, but not compiled, to let
167 garbage collection reclaim the memory. */
169 void
170 free_after_parsing (struct function *f)
172 f->language = 0;
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been compiled, to let garbage collection
177 reclaim the memory. */
179 void
180 free_after_compilation (struct function *f)
182 prologue_insn_hash = NULL;
183 epilogue_insn_hash = NULL;
185 free (crtl->emit.regno_pointer_align);
187 memset (crtl, 0, sizeof (struct rtl_data));
188 f->eh = NULL;
189 f->machine = NULL;
190 f->cfg = NULL;
192 regno_reg_rtx = NULL;
195 /* Return size needed for stack frame based on slots so far allocated.
196 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
197 the caller may have to do that. */
199 HOST_WIDE_INT
200 get_frame_size (void)
202 if (FRAME_GROWS_DOWNWARD)
203 return -frame_offset;
204 else
205 return frame_offset;
208 /* Issue an error message and return TRUE if frame OFFSET overflows in
209 the signed target pointer arithmetics for function FUNC. Otherwise
210 return FALSE. */
212 bool
213 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
215 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
217 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
218 /* Leave room for the fixed part of the frame. */
219 - 64 * UNITS_PER_WORD)
221 error_at (DECL_SOURCE_LOCATION (func),
222 "total size of local objects too large");
223 return TRUE;
226 return FALSE;
229 /* Return stack slot alignment in bits for TYPE and MODE. */
231 static unsigned int
232 get_stack_local_alignment (tree type, enum machine_mode mode)
234 unsigned int alignment;
236 if (mode == BLKmode)
237 alignment = BIGGEST_ALIGNMENT;
238 else
239 alignment = GET_MODE_ALIGNMENT (mode);
241 /* Allow the frond-end to (possibly) increase the alignment of this
242 stack slot. */
243 if (! type)
244 type = lang_hooks.types.type_for_mode (mode, 0);
246 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
249 /* Determine whether it is possible to fit a stack slot of size SIZE and
250 alignment ALIGNMENT into an area in the stack frame that starts at
251 frame offset START and has a length of LENGTH. If so, store the frame
252 offset to be used for the stack slot in *POFFSET and return true;
253 return false otherwise. This function will extend the frame size when
254 given a start/length pair that lies at the end of the frame. */
256 static bool
257 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
258 HOST_WIDE_INT size, unsigned int alignment,
259 HOST_WIDE_INT *poffset)
261 HOST_WIDE_INT this_frame_offset;
262 int frame_off, frame_alignment, frame_phase;
264 /* Calculate how many bytes the start of local variables is off from
265 stack alignment. */
266 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
267 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
268 frame_phase = frame_off ? frame_alignment - frame_off : 0;
270 /* Round the frame offset to the specified alignment. */
272 /* We must be careful here, since FRAME_OFFSET might be negative and
273 division with a negative dividend isn't as well defined as we might
274 like. So we instead assume that ALIGNMENT is a power of two and
275 use logical operations which are unambiguous. */
276 if (FRAME_GROWS_DOWNWARD)
277 this_frame_offset
278 = (FLOOR_ROUND (start + length - size - frame_phase,
279 (unsigned HOST_WIDE_INT) alignment)
280 + frame_phase);
281 else
282 this_frame_offset
283 = (CEIL_ROUND (start - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
287 /* See if it fits. If this space is at the edge of the frame,
288 consider extending the frame to make it fit. Our caller relies on
289 this when allocating a new slot. */
290 if (frame_offset == start && this_frame_offset < frame_offset)
291 frame_offset = this_frame_offset;
292 else if (this_frame_offset < start)
293 return false;
294 else if (start + length == frame_offset
295 && this_frame_offset + size > start + length)
296 frame_offset = this_frame_offset + size;
297 else if (this_frame_offset + size > start + length)
298 return false;
300 *poffset = this_frame_offset;
301 return true;
304 /* Create a new frame_space structure describing free space in the stack
305 frame beginning at START and ending at END, and chain it into the
306 function's frame_space_list. */
308 static void
309 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
311 struct frame_space *space = ggc_alloc<frame_space> ();
312 space->next = crtl->frame_space_list;
313 crtl->frame_space_list = space;
314 space->start = start;
315 space->length = end - start;
318 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
319 with machine mode MODE.
321 ALIGN controls the amount of alignment for the address of the slot:
322 0 means according to MODE,
323 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
324 -2 means use BITS_PER_UNIT,
325 positive specifies alignment boundary in bits.
327 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
328 alignment and ASLK_RECORD_PAD bit set if we should remember
329 extra space we allocated for alignment purposes. When we are
330 called from assign_stack_temp_for_type, it is not set so we don't
331 track the same stack slot in two independent lists.
333 We do not round to stack_boundary here. */
336 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
337 int align, int kind)
339 rtx x, addr;
340 int bigend_correction = 0;
341 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
342 unsigned int alignment, alignment_in_bits;
344 if (align == 0)
346 alignment = get_stack_local_alignment (NULL, mode);
347 alignment /= BITS_PER_UNIT;
349 else if (align == -1)
351 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
352 size = CEIL_ROUND (size, alignment);
354 else if (align == -2)
355 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
356 else
357 alignment = align / BITS_PER_UNIT;
359 alignment_in_bits = alignment * BITS_PER_UNIT;
361 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
362 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
364 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
365 alignment = alignment_in_bits / BITS_PER_UNIT;
368 if (SUPPORTS_STACK_ALIGNMENT)
370 if (crtl->stack_alignment_estimated < alignment_in_bits)
372 if (!crtl->stack_realign_processed)
373 crtl->stack_alignment_estimated = alignment_in_bits;
374 else
376 /* If stack is realigned and stack alignment value
377 hasn't been finalized, it is OK not to increase
378 stack_alignment_estimated. The bigger alignment
379 requirement is recorded in stack_alignment_needed
380 below. */
381 gcc_assert (!crtl->stack_realign_finalized);
382 if (!crtl->stack_realign_needed)
384 /* It is OK to reduce the alignment as long as the
385 requested size is 0 or the estimated stack
386 alignment >= mode alignment. */
387 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
388 || size == 0
389 || (crtl->stack_alignment_estimated
390 >= GET_MODE_ALIGNMENT (mode)));
391 alignment_in_bits = crtl->stack_alignment_estimated;
392 alignment = alignment_in_bits / BITS_PER_UNIT;
398 if (crtl->stack_alignment_needed < alignment_in_bits)
399 crtl->stack_alignment_needed = alignment_in_bits;
400 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
401 crtl->max_used_stack_slot_alignment = alignment_in_bits;
403 if (mode != BLKmode || size != 0)
405 if (kind & ASLK_RECORD_PAD)
407 struct frame_space **psp;
409 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
411 struct frame_space *space = *psp;
412 if (!try_fit_stack_local (space->start, space->length, size,
413 alignment, &slot_offset))
414 continue;
415 *psp = space->next;
416 if (slot_offset > space->start)
417 add_frame_space (space->start, slot_offset);
418 if (slot_offset + size < space->start + space->length)
419 add_frame_space (slot_offset + size,
420 space->start + space->length);
421 goto found_space;
425 else if (!STACK_ALIGNMENT_NEEDED)
427 slot_offset = frame_offset;
428 goto found_space;
431 old_frame_offset = frame_offset;
433 if (FRAME_GROWS_DOWNWARD)
435 frame_offset -= size;
436 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
438 if (kind & ASLK_RECORD_PAD)
440 if (slot_offset > frame_offset)
441 add_frame_space (frame_offset, slot_offset);
442 if (slot_offset + size < old_frame_offset)
443 add_frame_space (slot_offset + size, old_frame_offset);
446 else
448 frame_offset += size;
449 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
451 if (kind & ASLK_RECORD_PAD)
453 if (slot_offset > old_frame_offset)
454 add_frame_space (old_frame_offset, slot_offset);
455 if (slot_offset + size < frame_offset)
456 add_frame_space (slot_offset + size, frame_offset);
460 found_space:
461 /* On a big-endian machine, if we are allocating more space than we will use,
462 use the least significant bytes of those that are allocated. */
463 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
464 bigend_correction = size - GET_MODE_SIZE (mode);
466 /* If we have already instantiated virtual registers, return the actual
467 address relative to the frame pointer. */
468 if (virtuals_instantiated)
469 addr = plus_constant (Pmode, frame_pointer_rtx,
470 trunc_int_for_mode
471 (slot_offset + bigend_correction
472 + STARTING_FRAME_OFFSET, Pmode));
473 else
474 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction,
477 Pmode));
479 x = gen_rtx_MEM (mode, addr);
480 set_mem_align (x, alignment_in_bits);
481 MEM_NOTRAP_P (x) = 1;
483 stack_slot_list
484 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
486 if (frame_offset_overflow (frame_offset, current_function_decl))
487 frame_offset = 0;
489 return x;
492 /* Wrap up assign_stack_local_1 with last parameter as false. */
495 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
497 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
500 /* In order to evaluate some expressions, such as function calls returning
501 structures in memory, we need to temporarily allocate stack locations.
502 We record each allocated temporary in the following structure.
504 Associated with each temporary slot is a nesting level. When we pop up
505 one level, all temporaries associated with the previous level are freed.
506 Normally, all temporaries are freed after the execution of the statement
507 in which they were created. However, if we are inside a ({...}) grouping,
508 the result may be in a temporary and hence must be preserved. If the
509 result could be in a temporary, we preserve it if we can determine which
510 one it is in. If we cannot determine which temporary may contain the
511 result, all temporaries are preserved. A temporary is preserved by
512 pretending it was allocated at the previous nesting level. */
514 struct GTY(()) temp_slot {
515 /* Points to next temporary slot. */
516 struct temp_slot *next;
517 /* Points to previous temporary slot. */
518 struct temp_slot *prev;
519 /* The rtx to used to reference the slot. */
520 rtx slot;
521 /* The size, in units, of the slot. */
522 HOST_WIDE_INT size;
523 /* The type of the object in the slot, or zero if it doesn't correspond
524 to a type. We use this to determine whether a slot can be reused.
525 It can be reused if objects of the type of the new slot will always
526 conflict with objects of the type of the old slot. */
527 tree type;
528 /* The alignment (in bits) of the slot. */
529 unsigned int align;
530 /* Nonzero if this temporary is currently in use. */
531 char in_use;
532 /* Nesting level at which this slot is being used. */
533 int level;
534 /* The offset of the slot from the frame_pointer, including extra space
535 for alignment. This info is for combine_temp_slots. */
536 HOST_WIDE_INT base_offset;
537 /* The size of the slot, including extra space for alignment. This
538 info is for combine_temp_slots. */
539 HOST_WIDE_INT full_size;
542 /* A table of addresses that represent a stack slot. The table is a mapping
543 from address RTXen to a temp slot. */
544 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
545 static size_t n_temp_slots_in_use;
547 /* Entry for the above hash table. */
548 struct GTY(()) temp_slot_address_entry {
549 hashval_t hash;
550 rtx address;
551 struct temp_slot *temp_slot;
554 /* Removes temporary slot TEMP from LIST. */
556 static void
557 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
559 if (temp->next)
560 temp->next->prev = temp->prev;
561 if (temp->prev)
562 temp->prev->next = temp->next;
563 else
564 *list = temp->next;
566 temp->prev = temp->next = NULL;
569 /* Inserts temporary slot TEMP to LIST. */
571 static void
572 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
574 temp->next = *list;
575 if (*list)
576 (*list)->prev = temp;
577 temp->prev = NULL;
578 *list = temp;
581 /* Returns the list of used temp slots at LEVEL. */
583 static struct temp_slot **
584 temp_slots_at_level (int level)
586 if (level >= (int) vec_safe_length (used_temp_slots))
587 vec_safe_grow_cleared (used_temp_slots, level + 1);
589 return &(*used_temp_slots)[level];
592 /* Returns the maximal temporary slot level. */
594 static int
595 max_slot_level (void)
597 if (!used_temp_slots)
598 return -1;
600 return used_temp_slots->length () - 1;
603 /* Moves temporary slot TEMP to LEVEL. */
605 static void
606 move_slot_to_level (struct temp_slot *temp, int level)
608 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
609 insert_slot_to_list (temp, temp_slots_at_level (level));
610 temp->level = level;
613 /* Make temporary slot TEMP available. */
615 static void
616 make_slot_available (struct temp_slot *temp)
618 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
619 insert_slot_to_list (temp, &avail_temp_slots);
620 temp->in_use = 0;
621 temp->level = -1;
622 n_temp_slots_in_use--;
625 /* Compute the hash value for an address -> temp slot mapping.
626 The value is cached on the mapping entry. */
627 static hashval_t
628 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
630 int do_not_record = 0;
631 return hash_rtx (t->address, GET_MODE (t->address),
632 &do_not_record, NULL, false);
635 /* Return the hash value for an address -> temp slot mapping. */
636 static hashval_t
637 temp_slot_address_hash (const void *p)
639 const struct temp_slot_address_entry *t;
640 t = (const struct temp_slot_address_entry *) p;
641 return t->hash;
644 /* Compare two address -> temp slot mapping entries. */
645 static int
646 temp_slot_address_eq (const void *p1, const void *p2)
648 const struct temp_slot_address_entry *t1, *t2;
649 t1 = (const struct temp_slot_address_entry *) p1;
650 t2 = (const struct temp_slot_address_entry *) p2;
651 return exp_equiv_p (t1->address, t2->address, 0, true);
654 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
655 static void
656 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
658 void **slot;
659 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
660 t->address = address;
661 t->temp_slot = temp_slot;
662 t->hash = temp_slot_address_compute_hash (t);
663 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
664 *slot = t;
667 /* Remove an address -> temp slot mapping entry if the temp slot is
668 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
669 static int
670 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
672 const struct temp_slot_address_entry *t;
673 t = (const struct temp_slot_address_entry *) *slot;
674 if (! t->temp_slot->in_use)
675 htab_clear_slot (temp_slot_address_table, slot);
676 return 1;
679 /* Remove all mappings of addresses to unused temp slots. */
680 static void
681 remove_unused_temp_slot_addresses (void)
683 /* Use quicker clearing if there aren't any active temp slots. */
684 if (n_temp_slots_in_use)
685 htab_traverse (temp_slot_address_table,
686 remove_unused_temp_slot_addresses_1,
687 NULL);
688 else
689 htab_empty (temp_slot_address_table);
692 /* Find the temp slot corresponding to the object at address X. */
694 static struct temp_slot *
695 find_temp_slot_from_address (rtx x)
697 struct temp_slot *p;
698 struct temp_slot_address_entry tmp, *t;
700 /* First try the easy way:
701 See if X exists in the address -> temp slot mapping. */
702 tmp.address = x;
703 tmp.temp_slot = NULL;
704 tmp.hash = temp_slot_address_compute_hash (&tmp);
705 t = (struct temp_slot_address_entry *)
706 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
707 if (t)
708 return t->temp_slot;
710 /* If we have a sum involving a register, see if it points to a temp
711 slot. */
712 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
713 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
714 return p;
715 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
716 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
717 return p;
719 /* Last resort: Address is a virtual stack var address. */
720 if (GET_CODE (x) == PLUS
721 && XEXP (x, 0) == virtual_stack_vars_rtx
722 && CONST_INT_P (XEXP (x, 1)))
724 int i;
725 for (i = max_slot_level (); i >= 0; i--)
726 for (p = *temp_slots_at_level (i); p; p = p->next)
728 if (INTVAL (XEXP (x, 1)) >= p->base_offset
729 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
730 return p;
734 return NULL;
737 /* Allocate a temporary stack slot and record it for possible later
738 reuse.
740 MODE is the machine mode to be given to the returned rtx.
742 SIZE is the size in units of the space required. We do no rounding here
743 since assign_stack_local will do any required rounding.
745 TYPE is the type that will be used for the stack slot. */
748 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
749 tree type)
751 unsigned int align;
752 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
753 rtx slot;
755 /* If SIZE is -1 it means that somebody tried to allocate a temporary
756 of a variable size. */
757 gcc_assert (size != -1);
759 align = get_stack_local_alignment (type, mode);
761 /* Try to find an available, already-allocated temporary of the proper
762 mode which meets the size and alignment requirements. Choose the
763 smallest one with the closest alignment.
765 If assign_stack_temp is called outside of the tree->rtl expansion,
766 we cannot reuse the stack slots (that may still refer to
767 VIRTUAL_STACK_VARS_REGNUM). */
768 if (!virtuals_instantiated)
770 for (p = avail_temp_slots; p; p = p->next)
772 if (p->align >= align && p->size >= size
773 && GET_MODE (p->slot) == mode
774 && objects_must_conflict_p (p->type, type)
775 && (best_p == 0 || best_p->size > p->size
776 || (best_p->size == p->size && best_p->align > p->align)))
778 if (p->align == align && p->size == size)
780 selected = p;
781 cut_slot_from_list (selected, &avail_temp_slots);
782 best_p = 0;
783 break;
785 best_p = p;
790 /* Make our best, if any, the one to use. */
791 if (best_p)
793 selected = best_p;
794 cut_slot_from_list (selected, &avail_temp_slots);
796 /* If there are enough aligned bytes left over, make them into a new
797 temp_slot so that the extra bytes don't get wasted. Do this only
798 for BLKmode slots, so that we can be sure of the alignment. */
799 if (GET_MODE (best_p->slot) == BLKmode)
801 int alignment = best_p->align / BITS_PER_UNIT;
802 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
804 if (best_p->size - rounded_size >= alignment)
806 p = ggc_alloc<temp_slot> ();
807 p->in_use = 0;
808 p->size = best_p->size - rounded_size;
809 p->base_offset = best_p->base_offset + rounded_size;
810 p->full_size = best_p->full_size - rounded_size;
811 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
812 p->align = best_p->align;
813 p->type = best_p->type;
814 insert_slot_to_list (p, &avail_temp_slots);
816 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
817 stack_slot_list);
819 best_p->size = rounded_size;
820 best_p->full_size = rounded_size;
825 /* If we still didn't find one, make a new temporary. */
826 if (selected == 0)
828 HOST_WIDE_INT frame_offset_old = frame_offset;
830 p = ggc_alloc<temp_slot> ();
832 /* We are passing an explicit alignment request to assign_stack_local.
833 One side effect of that is assign_stack_local will not round SIZE
834 to ensure the frame offset remains suitably aligned.
836 So for requests which depended on the rounding of SIZE, we go ahead
837 and round it now. We also make sure ALIGNMENT is at least
838 BIGGEST_ALIGNMENT. */
839 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
840 p->slot = assign_stack_local_1 (mode,
841 (mode == BLKmode
842 ? CEIL_ROUND (size,
843 (int) align
844 / BITS_PER_UNIT)
845 : size),
846 align, 0);
848 p->align = align;
850 /* The following slot size computation is necessary because we don't
851 know the actual size of the temporary slot until assign_stack_local
852 has performed all the frame alignment and size rounding for the
853 requested temporary. Note that extra space added for alignment
854 can be either above or below this stack slot depending on which
855 way the frame grows. We include the extra space if and only if it
856 is above this slot. */
857 if (FRAME_GROWS_DOWNWARD)
858 p->size = frame_offset_old - frame_offset;
859 else
860 p->size = size;
862 /* Now define the fields used by combine_temp_slots. */
863 if (FRAME_GROWS_DOWNWARD)
865 p->base_offset = frame_offset;
866 p->full_size = frame_offset_old - frame_offset;
868 else
870 p->base_offset = frame_offset_old;
871 p->full_size = frame_offset - frame_offset_old;
874 selected = p;
877 p = selected;
878 p->in_use = 1;
879 p->type = type;
880 p->level = temp_slot_level;
881 n_temp_slots_in_use++;
883 pp = temp_slots_at_level (p->level);
884 insert_slot_to_list (p, pp);
885 insert_temp_slot_address (XEXP (p->slot, 0), p);
887 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
888 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
889 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
891 /* If we know the alias set for the memory that will be used, use
892 it. If there's no TYPE, then we don't know anything about the
893 alias set for the memory. */
894 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
895 set_mem_align (slot, align);
897 /* If a type is specified, set the relevant flags. */
898 if (type != 0)
899 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
900 MEM_NOTRAP_P (slot) = 1;
902 return slot;
905 /* Allocate a temporary stack slot and record it for possible later
906 reuse. First two arguments are same as in preceding function. */
909 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
911 return assign_stack_temp_for_type (mode, size, NULL_TREE);
914 /* Assign a temporary.
915 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
916 and so that should be used in error messages. In either case, we
917 allocate of the given type.
918 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
919 it is 0 if a register is OK.
920 DONT_PROMOTE is 1 if we should not promote values in register
921 to wider modes. */
924 assign_temp (tree type_or_decl, int memory_required,
925 int dont_promote ATTRIBUTE_UNUSED)
927 tree type, decl;
928 enum machine_mode mode;
929 #ifdef PROMOTE_MODE
930 int unsignedp;
931 #endif
933 if (DECL_P (type_or_decl))
934 decl = type_or_decl, type = TREE_TYPE (decl);
935 else
936 decl = NULL, type = type_or_decl;
938 mode = TYPE_MODE (type);
939 #ifdef PROMOTE_MODE
940 unsignedp = TYPE_UNSIGNED (type);
941 #endif
943 if (mode == BLKmode || memory_required)
945 HOST_WIDE_INT size = int_size_in_bytes (type);
946 rtx tmp;
948 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
949 problems with allocating the stack space. */
950 if (size == 0)
951 size = 1;
953 /* Unfortunately, we don't yet know how to allocate variable-sized
954 temporaries. However, sometimes we can find a fixed upper limit on
955 the size, so try that instead. */
956 else if (size == -1)
957 size = max_int_size_in_bytes (type);
959 /* The size of the temporary may be too large to fit into an integer. */
960 /* ??? Not sure this should happen except for user silliness, so limit
961 this to things that aren't compiler-generated temporaries. The
962 rest of the time we'll die in assign_stack_temp_for_type. */
963 if (decl && size == -1
964 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
966 error ("size of variable %q+D is too large", decl);
967 size = 1;
970 tmp = assign_stack_temp_for_type (mode, size, type);
971 return tmp;
974 #ifdef PROMOTE_MODE
975 if (! dont_promote)
976 mode = promote_mode (type, mode, &unsignedp);
977 #endif
979 return gen_reg_rtx (mode);
982 /* Combine temporary stack slots which are adjacent on the stack.
984 This allows for better use of already allocated stack space. This is only
985 done for BLKmode slots because we can be sure that we won't have alignment
986 problems in this case. */
988 static void
989 combine_temp_slots (void)
991 struct temp_slot *p, *q, *next, *next_q;
992 int num_slots;
994 /* We can't combine slots, because the information about which slot
995 is in which alias set will be lost. */
996 if (flag_strict_aliasing)
997 return;
999 /* If there are a lot of temp slots, don't do anything unless
1000 high levels of optimization. */
1001 if (! flag_expensive_optimizations)
1002 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1003 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1004 return;
1006 for (p = avail_temp_slots; p; p = next)
1008 int delete_p = 0;
1010 next = p->next;
1012 if (GET_MODE (p->slot) != BLKmode)
1013 continue;
1015 for (q = p->next; q; q = next_q)
1017 int delete_q = 0;
1019 next_q = q->next;
1021 if (GET_MODE (q->slot) != BLKmode)
1022 continue;
1024 if (p->base_offset + p->full_size == q->base_offset)
1026 /* Q comes after P; combine Q into P. */
1027 p->size += q->size;
1028 p->full_size += q->full_size;
1029 delete_q = 1;
1031 else if (q->base_offset + q->full_size == p->base_offset)
1033 /* P comes after Q; combine P into Q. */
1034 q->size += p->size;
1035 q->full_size += p->full_size;
1036 delete_p = 1;
1037 break;
1039 if (delete_q)
1040 cut_slot_from_list (q, &avail_temp_slots);
1043 /* Either delete P or advance past it. */
1044 if (delete_p)
1045 cut_slot_from_list (p, &avail_temp_slots);
1049 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1050 slot that previously was known by OLD_RTX. */
1052 void
1053 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1055 struct temp_slot *p;
1057 if (rtx_equal_p (old_rtx, new_rtx))
1058 return;
1060 p = find_temp_slot_from_address (old_rtx);
1062 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1063 NEW_RTX is a register, see if one operand of the PLUS is a
1064 temporary location. If so, NEW_RTX points into it. Otherwise,
1065 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1066 in common between them. If so, try a recursive call on those
1067 values. */
1068 if (p == 0)
1070 if (GET_CODE (old_rtx) != PLUS)
1071 return;
1073 if (REG_P (new_rtx))
1075 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1076 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1077 return;
1079 else if (GET_CODE (new_rtx) != PLUS)
1080 return;
1082 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1085 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1086 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1088 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1089 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1091 return;
1094 /* Otherwise add an alias for the temp's address. */
1095 insert_temp_slot_address (new_rtx, p);
1098 /* If X could be a reference to a temporary slot, mark that slot as
1099 belonging to the to one level higher than the current level. If X
1100 matched one of our slots, just mark that one. Otherwise, we can't
1101 easily predict which it is, so upgrade all of them.
1103 This is called when an ({...}) construct occurs and a statement
1104 returns a value in memory. */
1106 void
1107 preserve_temp_slots (rtx x)
1109 struct temp_slot *p = 0, *next;
1111 if (x == 0)
1112 return;
1114 /* If X is a register that is being used as a pointer, see if we have
1115 a temporary slot we know it points to. */
1116 if (REG_P (x) && REG_POINTER (x))
1117 p = find_temp_slot_from_address (x);
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot. */
1121 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1122 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 if (p->level == temp_slot_level)
1131 move_slot_to_level (p, temp_slot_level - 1);
1132 return;
1135 /* Otherwise, preserve all non-kept slots at this level. */
1136 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 next = p->next;
1139 move_slot_to_level (p, temp_slot_level - 1);
1143 /* Free all temporaries used so far. This is normally called at the
1144 end of generating code for a statement. */
1146 void
1147 free_temp_slots (void)
1149 struct temp_slot *p, *next;
1150 bool some_available = false;
1152 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 next = p->next;
1155 make_slot_available (p);
1156 some_available = true;
1159 if (some_available)
1161 remove_unused_temp_slot_addresses ();
1162 combine_temp_slots ();
1166 /* Push deeper into the nesting level for stack temporaries. */
1168 void
1169 push_temp_slots (void)
1171 temp_slot_level++;
1174 /* Pop a temporary nesting level. All slots in use in the current level
1175 are freed. */
1177 void
1178 pop_temp_slots (void)
1180 free_temp_slots ();
1181 temp_slot_level--;
1184 /* Initialize temporary slots. */
1186 void
1187 init_temp_slots (void)
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots = 0;
1191 vec_alloc (used_temp_slots, 0);
1192 temp_slot_level = 0;
1193 n_temp_slots_in_use = 0;
1195 /* Set up the table to map addresses to temp slots. */
1196 if (! temp_slot_address_table)
1197 temp_slot_address_table = htab_create_ggc (32,
1198 temp_slot_address_hash,
1199 temp_slot_address_eq,
1200 NULL);
1201 else
1202 htab_empty (temp_slot_address_table);
1205 /* Functions and data structures to keep track of the values hard regs
1206 had at the start of the function. */
1208 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1209 and has_hard_reg_initial_val.. */
1210 typedef struct GTY(()) initial_value_pair {
1211 rtx hard_reg;
1212 rtx pseudo;
1213 } initial_value_pair;
1214 /* ??? This could be a VEC but there is currently no way to define an
1215 opaque VEC type. This could be worked around by defining struct
1216 initial_value_pair in function.h. */
1217 typedef struct GTY(()) initial_value_struct {
1218 int num_entries;
1219 int max_entries;
1220 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1221 } initial_value_struct;
1223 /* If a pseudo represents an initial hard reg (or expression), return
1224 it, else return NULL_RTX. */
1227 get_hard_reg_initial_reg (rtx reg)
1229 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1230 int i;
1232 if (ivs == 0)
1233 return NULL_RTX;
1235 for (i = 0; i < ivs->num_entries; i++)
1236 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1237 return ivs->entries[i].hard_reg;
1239 return NULL_RTX;
1242 /* Make sure that there's a pseudo register of mode MODE that stores the
1243 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1246 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1248 struct initial_value_struct *ivs;
1249 rtx rv;
1251 rv = has_hard_reg_initial_val (mode, regno);
1252 if (rv)
1253 return rv;
1255 ivs = crtl->hard_reg_initial_vals;
1256 if (ivs == 0)
1258 ivs = ggc_alloc<initial_value_struct> ();
1259 ivs->num_entries = 0;
1260 ivs->max_entries = 5;
1261 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1262 crtl->hard_reg_initial_vals = ivs;
1265 if (ivs->num_entries >= ivs->max_entries)
1267 ivs->max_entries += 5;
1268 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1269 ivs->max_entries);
1272 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1273 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1275 return ivs->entries[ivs->num_entries++].pseudo;
1278 /* See if get_hard_reg_initial_val has been used to create a pseudo
1279 for the initial value of hard register REGNO in mode MODE. Return
1280 the associated pseudo if so, otherwise return NULL. */
1283 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1285 struct initial_value_struct *ivs;
1286 int i;
1288 ivs = crtl->hard_reg_initial_vals;
1289 if (ivs != 0)
1290 for (i = 0; i < ivs->num_entries; i++)
1291 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1292 && REGNO (ivs->entries[i].hard_reg) == regno)
1293 return ivs->entries[i].pseudo;
1295 return NULL_RTX;
1298 unsigned int
1299 emit_initial_value_sets (void)
1301 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1302 int i;
1303 rtx seq;
1305 if (ivs == 0)
1306 return 0;
1308 start_sequence ();
1309 for (i = 0; i < ivs->num_entries; i++)
1310 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1311 seq = get_insns ();
1312 end_sequence ();
1314 emit_insn_at_entry (seq);
1315 return 0;
1318 /* Return the hardreg-pseudoreg initial values pair entry I and
1319 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1320 bool
1321 initial_value_entry (int i, rtx *hreg, rtx *preg)
1323 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1324 if (!ivs || i >= ivs->num_entries)
1325 return false;
1327 *hreg = ivs->entries[i].hard_reg;
1328 *preg = ivs->entries[i].pseudo;
1329 return true;
1332 /* These routines are responsible for converting virtual register references
1333 to the actual hard register references once RTL generation is complete.
1335 The following four variables are used for communication between the
1336 routines. They contain the offsets of the virtual registers from their
1337 respective hard registers. */
1339 static int in_arg_offset;
1340 static int var_offset;
1341 static int dynamic_offset;
1342 static int out_arg_offset;
1343 static int cfa_offset;
1345 /* In most machines, the stack pointer register is equivalent to the bottom
1346 of the stack. */
1348 #ifndef STACK_POINTER_OFFSET
1349 #define STACK_POINTER_OFFSET 0
1350 #endif
1352 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1353 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1354 #endif
1356 /* If not defined, pick an appropriate default for the offset of dynamically
1357 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1358 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360 #ifndef STACK_DYNAMIC_OFFSET
1362 /* The bottom of the stack points to the actual arguments. If
1363 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1364 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1365 stack space for register parameters is not pushed by the caller, but
1366 rather part of the fixed stack areas and hence not included in
1367 `crtl->outgoing_args_size'. Nevertheless, we must allow
1368 for it when allocating stack dynamic objects. */
1370 #ifdef INCOMING_REG_PARM_STACK_SPACE
1371 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1372 ((ACCUMULATE_OUTGOING_ARGS \
1373 ? (crtl->outgoing_args_size \
1374 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1375 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1376 : 0) + (STACK_POINTER_OFFSET))
1377 #else
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1380 + (STACK_POINTER_OFFSET))
1381 #endif
1382 #endif
1385 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1386 is a virtual register, return the equivalent hard register and set the
1387 offset indirectly through the pointer. Otherwise, return 0. */
1389 static rtx
1390 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 rtx new_rtx;
1393 HOST_WIDE_INT offset;
1395 if (x == virtual_incoming_args_rtx)
1397 if (stack_realign_drap)
1399 /* Replace virtual_incoming_args_rtx with internal arg
1400 pointer if DRAP is used to realign stack. */
1401 new_rtx = crtl->args.internal_arg_pointer;
1402 offset = 0;
1404 else
1405 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 else if (x == virtual_stack_vars_rtx)
1408 new_rtx = frame_pointer_rtx, offset = var_offset;
1409 else if (x == virtual_stack_dynamic_rtx)
1410 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1411 else if (x == virtual_outgoing_args_rtx)
1412 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1413 else if (x == virtual_cfa_rtx)
1415 #ifdef FRAME_POINTER_CFA_OFFSET
1416 new_rtx = frame_pointer_rtx;
1417 #else
1418 new_rtx = arg_pointer_rtx;
1419 #endif
1420 offset = cfa_offset;
1422 else if (x == virtual_preferred_stack_boundary_rtx)
1424 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1425 offset = 0;
1427 else
1428 return NULL_RTX;
1430 *poffset = offset;
1431 return new_rtx;
1434 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1435 Instantiate any virtual registers present inside of *LOC. The expression
1436 is simplified, as much as possible, but is not to be considered "valid"
1437 in any sense implied by the target. If any change is made, set CHANGED
1438 to true. */
1440 static int
1441 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1443 HOST_WIDE_INT offset;
1444 bool *changed = (bool *) data;
1445 rtx x, new_rtx;
1447 x = *loc;
1448 if (x == 0)
1449 return 0;
1451 switch (GET_CODE (x))
1453 case REG:
1454 new_rtx = instantiate_new_reg (x, &offset);
1455 if (new_rtx)
1457 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1458 if (changed)
1459 *changed = true;
1461 return -1;
1463 case PLUS:
1464 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1465 if (new_rtx)
1467 XEXP (x, 0) = new_rtx;
1468 *loc = plus_constant (GET_MODE (x), x, offset, true);
1469 if (changed)
1470 *changed = true;
1471 return -1;
1474 /* FIXME -- from old code */
1475 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1476 we can commute the PLUS and SUBREG because pointers into the
1477 frame are well-behaved. */
1478 break;
1480 default:
1481 break;
1484 return 0;
1487 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1488 matches the predicate for insn CODE operand OPERAND. */
1490 static int
1491 safe_insn_predicate (int code, int operand, rtx x)
1493 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1496 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1497 registers present inside of insn. The result will be a valid insn. */
1499 static void
1500 instantiate_virtual_regs_in_insn (rtx insn)
1502 HOST_WIDE_INT offset;
1503 int insn_code, i;
1504 bool any_change = false;
1505 rtx set, new_rtx, x, seq;
1507 /* There are some special cases to be handled first. */
1508 set = single_set (insn);
1509 if (set)
1511 /* We're allowed to assign to a virtual register. This is interpreted
1512 to mean that the underlying register gets assigned the inverse
1513 transformation. This is used, for example, in the handling of
1514 non-local gotos. */
1515 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1516 if (new_rtx)
1518 start_sequence ();
1520 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1521 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1522 gen_int_mode (-offset, GET_MODE (new_rtx)));
1523 x = force_operand (x, new_rtx);
1524 if (x != new_rtx)
1525 emit_move_insn (new_rtx, x);
1527 seq = get_insns ();
1528 end_sequence ();
1530 emit_insn_before (seq, insn);
1531 delete_insn (insn);
1532 return;
1535 /* Handle a straight copy from a virtual register by generating a
1536 new add insn. The difference between this and falling through
1537 to the generic case is avoiding a new pseudo and eliminating a
1538 move insn in the initial rtl stream. */
1539 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1540 if (new_rtx && offset != 0
1541 && REG_P (SET_DEST (set))
1542 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1544 start_sequence ();
1546 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1547 gen_int_mode (offset,
1548 GET_MODE (SET_DEST (set))),
1549 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1550 if (x != SET_DEST (set))
1551 emit_move_insn (SET_DEST (set), x);
1553 seq = get_insns ();
1554 end_sequence ();
1556 emit_insn_before (seq, insn);
1557 delete_insn (insn);
1558 return;
1561 extract_insn (insn);
1562 insn_code = INSN_CODE (insn);
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set)) == PLUS
1567 && recog_data.n_operands >= 3
1568 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1569 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1570 && CONST_INT_P (recog_data.operand[2])
1571 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1573 offset += INTVAL (recog_data.operand[2]);
1575 /* If the sum is zero, then replace with a plain move. */
1576 if (offset == 0
1577 && REG_P (SET_DEST (set))
1578 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1580 start_sequence ();
1581 emit_move_insn (SET_DEST (set), new_rtx);
1582 seq = get_insns ();
1583 end_sequence ();
1585 emit_insn_before (seq, insn);
1586 delete_insn (insn);
1587 return;
1590 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code, 1, new_rtx)
1596 && safe_insn_predicate (insn_code, 2, x))
1598 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1599 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1600 any_change = true;
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1607 else
1609 extract_insn (insn);
1610 insn_code = INSN_CODE (insn);
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i = 0; i < recog_data.n_operands; ++i)
1617 x = recog_data.operand[i];
1618 switch (GET_CODE (x))
1620 case MEM:
1622 rtx addr = XEXP (x, 0);
1623 bool changed = false;
1625 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1626 if (!changed)
1627 continue;
1629 start_sequence ();
1630 x = replace_equiv_address (x, addr, true);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code, i, x))
1642 addr = force_reg (GET_MODE (addr), addr);
1643 x = replace_equiv_address (x, addr, true);
1645 seq = get_insns ();
1646 end_sequence ();
1647 if (seq)
1648 emit_insn_before (seq, insn);
1650 break;
1652 case REG:
1653 new_rtx = instantiate_new_reg (x, &offset);
1654 if (new_rtx == NULL)
1655 continue;
1656 if (offset == 0)
1657 x = new_rtx;
1658 else
1660 start_sequence ();
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1669 gen_int_mode (offset, GET_MODE (x)),
1670 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1671 seq = get_insns ();
1672 end_sequence ();
1673 emit_insn_before (seq, insn);
1675 break;
1677 case SUBREG:
1678 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1679 if (new_rtx == NULL)
1680 continue;
1681 if (offset != 0)
1683 start_sequence ();
1684 new_rtx = expand_simple_binop
1685 (GET_MODE (new_rtx), PLUS, new_rtx,
1686 gen_int_mode (offset, GET_MODE (new_rtx)),
1687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1688 seq = get_insns ();
1689 end_sequence ();
1690 emit_insn_before (seq, insn);
1692 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1693 GET_MODE (new_rtx), SUBREG_BYTE (x));
1694 gcc_assert (x);
1695 break;
1697 default:
1698 continue;
1701 /* At this point, X contains the new value for the operand.
1702 Validate the new value vs the insn predicate. Note that
1703 asm insns will have insn_code -1 here. */
1704 if (!safe_insn_predicate (insn_code, i, x))
1706 start_sequence ();
1707 if (REG_P (x))
1709 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1710 x = copy_to_reg (x);
1712 else
1713 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1714 seq = get_insns ();
1715 end_sequence ();
1716 if (seq)
1717 emit_insn_before (seq, insn);
1720 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1721 any_change = true;
1724 if (any_change)
1726 /* Propagate operand changes into the duplicates. */
1727 for (i = 0; i < recog_data.n_dups; ++i)
1728 *recog_data.dup_loc[i]
1729 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1731 /* Force re-recognition of the instruction for validation. */
1732 INSN_CODE (insn) = -1;
1735 if (asm_noperands (PATTERN (insn)) >= 0)
1737 if (!check_asm_operands (PATTERN (insn)))
1739 error_for_asm (insn, "impossible constraint in %<asm%>");
1740 /* For asm goto, instead of fixing up all the edges
1741 just clear the template and clear input operands
1742 (asm goto doesn't have any output operands). */
1743 if (JUMP_P (insn))
1745 rtx asm_op = extract_asm_operands (PATTERN (insn));
1746 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1747 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1748 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1750 else
1751 delete_insn (insn);
1754 else
1756 if (recog_memoized (insn) < 0)
1757 fatal_insn_not_found (insn);
1761 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1762 do any instantiation required. */
1764 void
1765 instantiate_decl_rtl (rtx x)
1767 rtx addr;
1769 if (x == 0)
1770 return;
1772 /* If this is a CONCAT, recurse for the pieces. */
1773 if (GET_CODE (x) == CONCAT)
1775 instantiate_decl_rtl (XEXP (x, 0));
1776 instantiate_decl_rtl (XEXP (x, 1));
1777 return;
1780 /* If this is not a MEM, no need to do anything. Similarly if the
1781 address is a constant or a register that is not a virtual register. */
1782 if (!MEM_P (x))
1783 return;
1785 addr = XEXP (x, 0);
1786 if (CONSTANT_P (addr)
1787 || (REG_P (addr)
1788 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1789 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1790 return;
1792 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1795 /* Helper for instantiate_decls called via walk_tree: Process all decls
1796 in the given DECL_VALUE_EXPR. */
1798 static tree
1799 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1801 tree t = *tp;
1802 if (! EXPR_P (t))
1804 *walk_subtrees = 0;
1805 if (DECL_P (t))
1807 if (DECL_RTL_SET_P (t))
1808 instantiate_decl_rtl (DECL_RTL (t));
1809 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1810 && DECL_INCOMING_RTL (t))
1811 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1812 if ((TREE_CODE (t) == VAR_DECL
1813 || TREE_CODE (t) == RESULT_DECL)
1814 && DECL_HAS_VALUE_EXPR_P (t))
1816 tree v = DECL_VALUE_EXPR (t);
1817 walk_tree (&v, instantiate_expr, NULL, NULL);
1821 return NULL;
1824 /* Subroutine of instantiate_decls: Process all decls in the given
1825 BLOCK node and all its subblocks. */
1827 static void
1828 instantiate_decls_1 (tree let)
1830 tree t;
1832 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1834 if (DECL_RTL_SET_P (t))
1835 instantiate_decl_rtl (DECL_RTL (t));
1836 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1838 tree v = DECL_VALUE_EXPR (t);
1839 walk_tree (&v, instantiate_expr, NULL, NULL);
1843 /* Process all subblocks. */
1844 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1845 instantiate_decls_1 (t);
1848 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1849 all virtual registers in their DECL_RTL's. */
1851 static void
1852 instantiate_decls (tree fndecl)
1854 tree decl;
1855 unsigned ix;
1857 /* Process all parameters of the function. */
1858 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1860 instantiate_decl_rtl (DECL_RTL (decl));
1861 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1862 if (DECL_HAS_VALUE_EXPR_P (decl))
1864 tree v = DECL_VALUE_EXPR (decl);
1865 walk_tree (&v, instantiate_expr, NULL, NULL);
1869 if ((decl = DECL_RESULT (fndecl))
1870 && TREE_CODE (decl) == RESULT_DECL)
1872 if (DECL_RTL_SET_P (decl))
1873 instantiate_decl_rtl (DECL_RTL (decl));
1874 if (DECL_HAS_VALUE_EXPR_P (decl))
1876 tree v = DECL_VALUE_EXPR (decl);
1877 walk_tree (&v, instantiate_expr, NULL, NULL);
1881 /* Process the saved static chain if it exists. */
1882 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1883 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1884 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1886 /* Now process all variables defined in the function or its subblocks. */
1887 instantiate_decls_1 (DECL_INITIAL (fndecl));
1889 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1890 if (DECL_RTL_SET_P (decl))
1891 instantiate_decl_rtl (DECL_RTL (decl));
1892 vec_free (cfun->local_decls);
1895 /* Pass through the INSNS of function FNDECL and convert virtual register
1896 references to hard register references. */
1898 static unsigned int
1899 instantiate_virtual_regs (void)
1901 rtx insn;
1903 /* Compute the offsets to use for this function. */
1904 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1905 var_offset = STARTING_FRAME_OFFSET;
1906 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1907 out_arg_offset = STACK_POINTER_OFFSET;
1908 #ifdef FRAME_POINTER_CFA_OFFSET
1909 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1910 #else
1911 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1912 #endif
1914 /* Initialize recognition, indicating that volatile is OK. */
1915 init_recog ();
1917 /* Scan through all the insns, instantiating every virtual register still
1918 present. */
1919 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1920 if (INSN_P (insn))
1922 /* These patterns in the instruction stream can never be recognized.
1923 Fortunately, they shouldn't contain virtual registers either. */
1924 if (GET_CODE (PATTERN (insn)) == USE
1925 || GET_CODE (PATTERN (insn)) == CLOBBER
1926 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1927 continue;
1928 else if (DEBUG_INSN_P (insn))
1929 for_each_rtx (&INSN_VAR_LOCATION (insn),
1930 instantiate_virtual_regs_in_rtx, NULL);
1931 else
1932 instantiate_virtual_regs_in_insn (insn);
1934 if (INSN_DELETED_P (insn))
1935 continue;
1937 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1939 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1940 if (CALL_P (insn))
1941 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1942 instantiate_virtual_regs_in_rtx, NULL);
1945 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1946 instantiate_decls (current_function_decl);
1948 targetm.instantiate_decls ();
1950 /* Indicate that, from now on, assign_stack_local should use
1951 frame_pointer_rtx. */
1952 virtuals_instantiated = 1;
1954 return 0;
1957 namespace {
1959 const pass_data pass_data_instantiate_virtual_regs =
1961 RTL_PASS, /* type */
1962 "vregs", /* name */
1963 OPTGROUP_NONE, /* optinfo_flags */
1964 TV_NONE, /* tv_id */
1965 0, /* properties_required */
1966 0, /* properties_provided */
1967 0, /* properties_destroyed */
1968 0, /* todo_flags_start */
1969 0, /* todo_flags_finish */
1972 class pass_instantiate_virtual_regs : public rtl_opt_pass
1974 public:
1975 pass_instantiate_virtual_regs (gcc::context *ctxt)
1976 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1979 /* opt_pass methods: */
1980 virtual unsigned int execute (function *)
1982 return instantiate_virtual_regs ();
1985 }; // class pass_instantiate_virtual_regs
1987 } // anon namespace
1989 rtl_opt_pass *
1990 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1992 return new pass_instantiate_virtual_regs (ctxt);
1996 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1997 This means a type for which function calls must pass an address to the
1998 function or get an address back from the function.
1999 EXP may be a type node or an expression (whose type is tested). */
2002 aggregate_value_p (const_tree exp, const_tree fntype)
2004 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2005 int i, regno, nregs;
2006 rtx reg;
2008 if (fntype)
2009 switch (TREE_CODE (fntype))
2011 case CALL_EXPR:
2013 tree fndecl = get_callee_fndecl (fntype);
2014 fntype = (fndecl
2015 ? TREE_TYPE (fndecl)
2016 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2018 break;
2019 case FUNCTION_DECL:
2020 fntype = TREE_TYPE (fntype);
2021 break;
2022 case FUNCTION_TYPE:
2023 case METHOD_TYPE:
2024 break;
2025 case IDENTIFIER_NODE:
2026 fntype = NULL_TREE;
2027 break;
2028 default:
2029 /* We don't expect other tree types here. */
2030 gcc_unreachable ();
2033 if (VOID_TYPE_P (type))
2034 return 0;
2036 /* If a record should be passed the same as its first (and only) member
2037 don't pass it as an aggregate. */
2038 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2039 return aggregate_value_p (first_field (type), fntype);
2041 /* If the front end has decided that this needs to be passed by
2042 reference, do so. */
2043 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2044 && DECL_BY_REFERENCE (exp))
2045 return 1;
2047 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2048 if (fntype && TREE_ADDRESSABLE (fntype))
2049 return 1;
2051 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2052 and thus can't be returned in registers. */
2053 if (TREE_ADDRESSABLE (type))
2054 return 1;
2056 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2057 return 1;
2059 if (targetm.calls.return_in_memory (type, fntype))
2060 return 1;
2062 /* Make sure we have suitable call-clobbered regs to return
2063 the value in; if not, we must return it in memory. */
2064 reg = hard_function_value (type, 0, fntype, 0);
2066 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2067 it is OK. */
2068 if (!REG_P (reg))
2069 return 0;
2071 regno = REGNO (reg);
2072 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2073 for (i = 0; i < nregs; i++)
2074 if (! call_used_regs[regno + i])
2075 return 1;
2077 return 0;
2080 /* Return true if we should assign DECL a pseudo register; false if it
2081 should live on the local stack. */
2083 bool
2084 use_register_for_decl (const_tree decl)
2086 if (!targetm.calls.allocate_stack_slots_for_args ())
2087 return true;
2089 /* Honor volatile. */
2090 if (TREE_SIDE_EFFECTS (decl))
2091 return false;
2093 /* Honor addressability. */
2094 if (TREE_ADDRESSABLE (decl))
2095 return false;
2097 /* Only register-like things go in registers. */
2098 if (DECL_MODE (decl) == BLKmode)
2099 return false;
2101 /* If -ffloat-store specified, don't put explicit float variables
2102 into registers. */
2103 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2104 propagates values across these stores, and it probably shouldn't. */
2105 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2106 return false;
2108 /* If we're not interested in tracking debugging information for
2109 this decl, then we can certainly put it in a register. */
2110 if (DECL_IGNORED_P (decl))
2111 return true;
2113 if (optimize)
2114 return true;
2116 if (!DECL_REGISTER (decl))
2117 return false;
2119 switch (TREE_CODE (TREE_TYPE (decl)))
2121 case RECORD_TYPE:
2122 case UNION_TYPE:
2123 case QUAL_UNION_TYPE:
2124 /* When not optimizing, disregard register keyword for variables with
2125 types containing methods, otherwise the methods won't be callable
2126 from the debugger. */
2127 if (TYPE_METHODS (TREE_TYPE (decl)))
2128 return false;
2129 break;
2130 default:
2131 break;
2134 return true;
2137 /* Return true if TYPE should be passed by invisible reference. */
2139 bool
2140 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2141 tree type, bool named_arg)
2143 if (type)
2145 /* If this type contains non-trivial constructors, then it is
2146 forbidden for the middle-end to create any new copies. */
2147 if (TREE_ADDRESSABLE (type))
2148 return true;
2150 /* GCC post 3.4 passes *all* variable sized types by reference. */
2151 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2152 return true;
2154 /* If a record type should be passed the same as its first (and only)
2155 member, use the type and mode of that member. */
2156 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2158 type = TREE_TYPE (first_field (type));
2159 mode = TYPE_MODE (type);
2163 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2164 type, named_arg);
2167 /* Return true if TYPE, which is passed by reference, should be callee
2168 copied instead of caller copied. */
2170 bool
2171 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2172 tree type, bool named_arg)
2174 if (type && TREE_ADDRESSABLE (type))
2175 return false;
2176 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2177 named_arg);
2180 /* Structures to communicate between the subroutines of assign_parms.
2181 The first holds data persistent across all parameters, the second
2182 is cleared out for each parameter. */
2184 struct assign_parm_data_all
2186 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2187 should become a job of the target or otherwise encapsulated. */
2188 CUMULATIVE_ARGS args_so_far_v;
2189 cumulative_args_t args_so_far;
2190 struct args_size stack_args_size;
2191 tree function_result_decl;
2192 tree orig_fnargs;
2193 rtx first_conversion_insn;
2194 rtx last_conversion_insn;
2195 HOST_WIDE_INT pretend_args_size;
2196 HOST_WIDE_INT extra_pretend_bytes;
2197 int reg_parm_stack_space;
2200 struct assign_parm_data_one
2202 tree nominal_type;
2203 tree passed_type;
2204 rtx entry_parm;
2205 rtx stack_parm;
2206 enum machine_mode nominal_mode;
2207 enum machine_mode passed_mode;
2208 enum machine_mode promoted_mode;
2209 struct locate_and_pad_arg_data locate;
2210 int partial;
2211 BOOL_BITFIELD named_arg : 1;
2212 BOOL_BITFIELD passed_pointer : 1;
2213 BOOL_BITFIELD on_stack : 1;
2214 BOOL_BITFIELD loaded_in_reg : 1;
2217 /* A subroutine of assign_parms. Initialize ALL. */
2219 static void
2220 assign_parms_initialize_all (struct assign_parm_data_all *all)
2222 tree fntype ATTRIBUTE_UNUSED;
2224 memset (all, 0, sizeof (*all));
2226 fntype = TREE_TYPE (current_function_decl);
2228 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2229 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2230 #else
2231 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2232 current_function_decl, -1);
2233 #endif
2234 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2236 #ifdef INCOMING_REG_PARM_STACK_SPACE
2237 all->reg_parm_stack_space
2238 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2239 #endif
2242 /* If ARGS contains entries with complex types, split the entry into two
2243 entries of the component type. Return a new list of substitutions are
2244 needed, else the old list. */
2246 static void
2247 split_complex_args (vec<tree> *args)
2249 unsigned i;
2250 tree p;
2252 FOR_EACH_VEC_ELT (*args, i, p)
2254 tree type = TREE_TYPE (p);
2255 if (TREE_CODE (type) == COMPLEX_TYPE
2256 && targetm.calls.split_complex_arg (type))
2258 tree decl;
2259 tree subtype = TREE_TYPE (type);
2260 bool addressable = TREE_ADDRESSABLE (p);
2262 /* Rewrite the PARM_DECL's type with its component. */
2263 p = copy_node (p);
2264 TREE_TYPE (p) = subtype;
2265 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2266 DECL_MODE (p) = VOIDmode;
2267 DECL_SIZE (p) = NULL;
2268 DECL_SIZE_UNIT (p) = NULL;
2269 /* If this arg must go in memory, put it in a pseudo here.
2270 We can't allow it to go in memory as per normal parms,
2271 because the usual place might not have the imag part
2272 adjacent to the real part. */
2273 DECL_ARTIFICIAL (p) = addressable;
2274 DECL_IGNORED_P (p) = addressable;
2275 TREE_ADDRESSABLE (p) = 0;
2276 layout_decl (p, 0);
2277 (*args)[i] = p;
2279 /* Build a second synthetic decl. */
2280 decl = build_decl (EXPR_LOCATION (p),
2281 PARM_DECL, NULL_TREE, subtype);
2282 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2283 DECL_ARTIFICIAL (decl) = addressable;
2284 DECL_IGNORED_P (decl) = addressable;
2285 layout_decl (decl, 0);
2286 args->safe_insert (++i, decl);
2291 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2292 the hidden struct return argument, and (abi willing) complex args.
2293 Return the new parameter list. */
2295 static vec<tree>
2296 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2298 tree fndecl = current_function_decl;
2299 tree fntype = TREE_TYPE (fndecl);
2300 vec<tree> fnargs = vNULL;
2301 tree arg;
2303 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2304 fnargs.safe_push (arg);
2306 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2308 /* If struct value address is treated as the first argument, make it so. */
2309 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2310 && ! cfun->returns_pcc_struct
2311 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2313 tree type = build_pointer_type (TREE_TYPE (fntype));
2314 tree decl;
2316 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2317 PARM_DECL, get_identifier (".result_ptr"), type);
2318 DECL_ARG_TYPE (decl) = type;
2319 DECL_ARTIFICIAL (decl) = 1;
2320 DECL_NAMELESS (decl) = 1;
2321 TREE_CONSTANT (decl) = 1;
2323 DECL_CHAIN (decl) = all->orig_fnargs;
2324 all->orig_fnargs = decl;
2325 fnargs.safe_insert (0, decl);
2327 all->function_result_decl = decl;
2330 /* If the target wants to split complex arguments into scalars, do so. */
2331 if (targetm.calls.split_complex_arg)
2332 split_complex_args (&fnargs);
2334 return fnargs;
2337 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2338 data for the parameter. Incorporate ABI specifics such as pass-by-
2339 reference and type promotion. */
2341 static void
2342 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2343 struct assign_parm_data_one *data)
2345 tree nominal_type, passed_type;
2346 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2347 int unsignedp;
2349 memset (data, 0, sizeof (*data));
2351 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2352 if (!cfun->stdarg)
2353 data->named_arg = 1; /* No variadic parms. */
2354 else if (DECL_CHAIN (parm))
2355 data->named_arg = 1; /* Not the last non-variadic parm. */
2356 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2357 data->named_arg = 1; /* Only variadic ones are unnamed. */
2358 else
2359 data->named_arg = 0; /* Treat as variadic. */
2361 nominal_type = TREE_TYPE (parm);
2362 passed_type = DECL_ARG_TYPE (parm);
2364 /* Look out for errors propagating this far. Also, if the parameter's
2365 type is void then its value doesn't matter. */
2366 if (TREE_TYPE (parm) == error_mark_node
2367 /* This can happen after weird syntax errors
2368 or if an enum type is defined among the parms. */
2369 || TREE_CODE (parm) != PARM_DECL
2370 || passed_type == NULL
2371 || VOID_TYPE_P (nominal_type))
2373 nominal_type = passed_type = void_type_node;
2374 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2375 goto egress;
2378 /* Find mode of arg as it is passed, and mode of arg as it should be
2379 during execution of this function. */
2380 passed_mode = TYPE_MODE (passed_type);
2381 nominal_mode = TYPE_MODE (nominal_type);
2383 /* If the parm is to be passed as a transparent union or record, use the
2384 type of the first field for the tests below. We have already verified
2385 that the modes are the same. */
2386 if ((TREE_CODE (passed_type) == UNION_TYPE
2387 || TREE_CODE (passed_type) == RECORD_TYPE)
2388 && TYPE_TRANSPARENT_AGGR (passed_type))
2389 passed_type = TREE_TYPE (first_field (passed_type));
2391 /* See if this arg was passed by invisible reference. */
2392 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2393 passed_type, data->named_arg))
2395 passed_type = nominal_type = build_pointer_type (passed_type);
2396 data->passed_pointer = true;
2397 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2400 /* Find mode as it is passed by the ABI. */
2401 unsignedp = TYPE_UNSIGNED (passed_type);
2402 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2403 TREE_TYPE (current_function_decl), 0);
2405 egress:
2406 data->nominal_type = nominal_type;
2407 data->passed_type = passed_type;
2408 data->nominal_mode = nominal_mode;
2409 data->passed_mode = passed_mode;
2410 data->promoted_mode = promoted_mode;
2413 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2415 static void
2416 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2417 struct assign_parm_data_one *data, bool no_rtl)
2419 int varargs_pretend_bytes = 0;
2421 targetm.calls.setup_incoming_varargs (all->args_so_far,
2422 data->promoted_mode,
2423 data->passed_type,
2424 &varargs_pretend_bytes, no_rtl);
2426 /* If the back-end has requested extra stack space, record how much is
2427 needed. Do not change pretend_args_size otherwise since it may be
2428 nonzero from an earlier partial argument. */
2429 if (varargs_pretend_bytes > 0)
2430 all->pretend_args_size = varargs_pretend_bytes;
2433 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2434 the incoming location of the current parameter. */
2436 static void
2437 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2438 struct assign_parm_data_one *data)
2440 HOST_WIDE_INT pretend_bytes = 0;
2441 rtx entry_parm;
2442 bool in_regs;
2444 if (data->promoted_mode == VOIDmode)
2446 data->entry_parm = data->stack_parm = const0_rtx;
2447 return;
2450 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2451 data->promoted_mode,
2452 data->passed_type,
2453 data->named_arg);
2455 if (entry_parm == 0)
2456 data->promoted_mode = data->passed_mode;
2458 /* Determine parm's home in the stack, in case it arrives in the stack
2459 or we should pretend it did. Compute the stack position and rtx where
2460 the argument arrives and its size.
2462 There is one complexity here: If this was a parameter that would
2463 have been passed in registers, but wasn't only because it is
2464 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2465 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2466 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2467 as it was the previous time. */
2468 in_regs = entry_parm != 0;
2469 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2470 in_regs = true;
2471 #endif
2472 if (!in_regs && !data->named_arg)
2474 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2476 rtx tem;
2477 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2478 data->promoted_mode,
2479 data->passed_type, true);
2480 in_regs = tem != NULL;
2484 /* If this parameter was passed both in registers and in the stack, use
2485 the copy on the stack. */
2486 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2487 data->passed_type))
2488 entry_parm = 0;
2490 if (entry_parm)
2492 int partial;
2494 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2495 data->promoted_mode,
2496 data->passed_type,
2497 data->named_arg);
2498 data->partial = partial;
2500 /* The caller might already have allocated stack space for the
2501 register parameters. */
2502 if (partial != 0 && all->reg_parm_stack_space == 0)
2504 /* Part of this argument is passed in registers and part
2505 is passed on the stack. Ask the prologue code to extend
2506 the stack part so that we can recreate the full value.
2508 PRETEND_BYTES is the size of the registers we need to store.
2509 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2510 stack space that the prologue should allocate.
2512 Internally, gcc assumes that the argument pointer is aligned
2513 to STACK_BOUNDARY bits. This is used both for alignment
2514 optimizations (see init_emit) and to locate arguments that are
2515 aligned to more than PARM_BOUNDARY bits. We must preserve this
2516 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2517 a stack boundary. */
2519 /* We assume at most one partial arg, and it must be the first
2520 argument on the stack. */
2521 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2523 pretend_bytes = partial;
2524 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2526 /* We want to align relative to the actual stack pointer, so
2527 don't include this in the stack size until later. */
2528 all->extra_pretend_bytes = all->pretend_args_size;
2532 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2533 all->reg_parm_stack_space,
2534 entry_parm ? data->partial : 0, current_function_decl,
2535 &all->stack_args_size, &data->locate);
2537 /* Update parm_stack_boundary if this parameter is passed in the
2538 stack. */
2539 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2540 crtl->parm_stack_boundary = data->locate.boundary;
2542 /* Adjust offsets to include the pretend args. */
2543 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2544 data->locate.slot_offset.constant += pretend_bytes;
2545 data->locate.offset.constant += pretend_bytes;
2547 data->entry_parm = entry_parm;
2550 /* A subroutine of assign_parms. If there is actually space on the stack
2551 for this parm, count it in stack_args_size and return true. */
2553 static bool
2554 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2555 struct assign_parm_data_one *data)
2557 /* Trivially true if we've no incoming register. */
2558 if (data->entry_parm == NULL)
2560 /* Also true if we're partially in registers and partially not,
2561 since we've arranged to drop the entire argument on the stack. */
2562 else if (data->partial != 0)
2564 /* Also true if the target says that it's passed in both registers
2565 and on the stack. */
2566 else if (GET_CODE (data->entry_parm) == PARALLEL
2567 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2569 /* Also true if the target says that there's stack allocated for
2570 all register parameters. */
2571 else if (all->reg_parm_stack_space > 0)
2573 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2574 else
2575 return false;
2577 all->stack_args_size.constant += data->locate.size.constant;
2578 if (data->locate.size.var)
2579 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2581 return true;
2584 /* A subroutine of assign_parms. Given that this parameter is allocated
2585 stack space by the ABI, find it. */
2587 static void
2588 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2590 rtx offset_rtx, stack_parm;
2591 unsigned int align, boundary;
2593 /* If we're passing this arg using a reg, make its stack home the
2594 aligned stack slot. */
2595 if (data->entry_parm)
2596 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2597 else
2598 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2600 stack_parm = crtl->args.internal_arg_pointer;
2601 if (offset_rtx != const0_rtx)
2602 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2603 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2605 if (!data->passed_pointer)
2607 set_mem_attributes (stack_parm, parm, 1);
2608 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2609 while promoted mode's size is needed. */
2610 if (data->promoted_mode != BLKmode
2611 && data->promoted_mode != DECL_MODE (parm))
2613 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2614 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2616 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2617 data->promoted_mode);
2618 if (offset)
2619 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2624 boundary = data->locate.boundary;
2625 align = BITS_PER_UNIT;
2627 /* If we're padding upward, we know that the alignment of the slot
2628 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2629 intentionally forcing upward padding. Otherwise we have to come
2630 up with a guess at the alignment based on OFFSET_RTX. */
2631 if (data->locate.where_pad != downward || data->entry_parm)
2632 align = boundary;
2633 else if (CONST_INT_P (offset_rtx))
2635 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2636 align = align & -align;
2638 set_mem_align (stack_parm, align);
2640 if (data->entry_parm)
2641 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2643 data->stack_parm = stack_parm;
2646 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2647 always valid and contiguous. */
2649 static void
2650 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2652 rtx entry_parm = data->entry_parm;
2653 rtx stack_parm = data->stack_parm;
2655 /* If this parm was passed part in regs and part in memory, pretend it
2656 arrived entirely in memory by pushing the register-part onto the stack.
2657 In the special case of a DImode or DFmode that is split, we could put
2658 it together in a pseudoreg directly, but for now that's not worth
2659 bothering with. */
2660 if (data->partial != 0)
2662 /* Handle calls that pass values in multiple non-contiguous
2663 locations. The Irix 6 ABI has examples of this. */
2664 if (GET_CODE (entry_parm) == PARALLEL)
2665 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2666 data->passed_type,
2667 int_size_in_bytes (data->passed_type));
2668 else
2670 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2671 move_block_from_reg (REGNO (entry_parm),
2672 validize_mem (copy_rtx (stack_parm)),
2673 data->partial / UNITS_PER_WORD);
2676 entry_parm = stack_parm;
2679 /* If we didn't decide this parm came in a register, by default it came
2680 on the stack. */
2681 else if (entry_parm == NULL)
2682 entry_parm = stack_parm;
2684 /* When an argument is passed in multiple locations, we can't make use
2685 of this information, but we can save some copying if the whole argument
2686 is passed in a single register. */
2687 else if (GET_CODE (entry_parm) == PARALLEL
2688 && data->nominal_mode != BLKmode
2689 && data->passed_mode != BLKmode)
2691 size_t i, len = XVECLEN (entry_parm, 0);
2693 for (i = 0; i < len; i++)
2694 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2695 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2696 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2697 == data->passed_mode)
2698 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2700 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2701 break;
2705 data->entry_parm = entry_parm;
2708 /* A subroutine of assign_parms. Reconstitute any values which were
2709 passed in multiple registers and would fit in a single register. */
2711 static void
2712 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2714 rtx entry_parm = data->entry_parm;
2716 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2717 This can be done with register operations rather than on the
2718 stack, even if we will store the reconstituted parameter on the
2719 stack later. */
2720 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2722 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2723 emit_group_store (parmreg, entry_parm, data->passed_type,
2724 GET_MODE_SIZE (GET_MODE (entry_parm)));
2725 entry_parm = parmreg;
2728 data->entry_parm = entry_parm;
2731 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2732 always valid and properly aligned. */
2734 static void
2735 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2737 rtx stack_parm = data->stack_parm;
2739 /* If we can't trust the parm stack slot to be aligned enough for its
2740 ultimate type, don't use that slot after entry. We'll make another
2741 stack slot, if we need one. */
2742 if (stack_parm
2743 && ((STRICT_ALIGNMENT
2744 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2745 || (data->nominal_type
2746 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2747 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2748 stack_parm = NULL;
2750 /* If parm was passed in memory, and we need to convert it on entry,
2751 don't store it back in that same slot. */
2752 else if (data->entry_parm == stack_parm
2753 && data->nominal_mode != BLKmode
2754 && data->nominal_mode != data->passed_mode)
2755 stack_parm = NULL;
2757 /* If stack protection is in effect for this function, don't leave any
2758 pointers in their passed stack slots. */
2759 else if (crtl->stack_protect_guard
2760 && (flag_stack_protect == 2
2761 || data->passed_pointer
2762 || POINTER_TYPE_P (data->nominal_type)))
2763 stack_parm = NULL;
2765 data->stack_parm = stack_parm;
2768 /* A subroutine of assign_parms. Return true if the current parameter
2769 should be stored as a BLKmode in the current frame. */
2771 static bool
2772 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2774 if (data->nominal_mode == BLKmode)
2775 return true;
2776 if (GET_MODE (data->entry_parm) == BLKmode)
2777 return true;
2779 #ifdef BLOCK_REG_PADDING
2780 /* Only assign_parm_setup_block knows how to deal with register arguments
2781 that are padded at the least significant end. */
2782 if (REG_P (data->entry_parm)
2783 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2784 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2785 == (BYTES_BIG_ENDIAN ? upward : downward)))
2786 return true;
2787 #endif
2789 return false;
2792 /* A subroutine of assign_parms. Arrange for the parameter to be
2793 present and valid in DATA->STACK_RTL. */
2795 static void
2796 assign_parm_setup_block (struct assign_parm_data_all *all,
2797 tree parm, struct assign_parm_data_one *data)
2799 rtx entry_parm = data->entry_parm;
2800 rtx stack_parm = data->stack_parm;
2801 HOST_WIDE_INT size;
2802 HOST_WIDE_INT size_stored;
2804 if (GET_CODE (entry_parm) == PARALLEL)
2805 entry_parm = emit_group_move_into_temps (entry_parm);
2807 size = int_size_in_bytes (data->passed_type);
2808 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2809 if (stack_parm == 0)
2811 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2812 stack_parm = assign_stack_local (BLKmode, size_stored,
2813 DECL_ALIGN (parm));
2814 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2815 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2816 set_mem_attributes (stack_parm, parm, 1);
2819 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2820 calls that pass values in multiple non-contiguous locations. */
2821 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2823 rtx mem;
2825 /* Note that we will be storing an integral number of words.
2826 So we have to be careful to ensure that we allocate an
2827 integral number of words. We do this above when we call
2828 assign_stack_local if space was not allocated in the argument
2829 list. If it was, this will not work if PARM_BOUNDARY is not
2830 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2831 if it becomes a problem. Exception is when BLKmode arrives
2832 with arguments not conforming to word_mode. */
2834 if (data->stack_parm == 0)
2836 else if (GET_CODE (entry_parm) == PARALLEL)
2838 else
2839 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2841 mem = validize_mem (copy_rtx (stack_parm));
2843 /* Handle values in multiple non-contiguous locations. */
2844 if (GET_CODE (entry_parm) == PARALLEL)
2846 push_to_sequence2 (all->first_conversion_insn,
2847 all->last_conversion_insn);
2848 emit_group_store (mem, entry_parm, data->passed_type, size);
2849 all->first_conversion_insn = get_insns ();
2850 all->last_conversion_insn = get_last_insn ();
2851 end_sequence ();
2854 else if (size == 0)
2857 /* If SIZE is that of a mode no bigger than a word, just use
2858 that mode's store operation. */
2859 else if (size <= UNITS_PER_WORD)
2861 enum machine_mode mode
2862 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2864 if (mode != BLKmode
2865 #ifdef BLOCK_REG_PADDING
2866 && (size == UNITS_PER_WORD
2867 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2868 != (BYTES_BIG_ENDIAN ? upward : downward)))
2869 #endif
2872 rtx reg;
2874 /* We are really truncating a word_mode value containing
2875 SIZE bytes into a value of mode MODE. If such an
2876 operation requires no actual instructions, we can refer
2877 to the value directly in mode MODE, otherwise we must
2878 start with the register in word_mode and explicitly
2879 convert it. */
2880 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2881 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2882 else
2884 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2885 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2887 emit_move_insn (change_address (mem, mode, 0), reg);
2890 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2891 machine must be aligned to the left before storing
2892 to memory. Note that the previous test doesn't
2893 handle all cases (e.g. SIZE == 3). */
2894 else if (size != UNITS_PER_WORD
2895 #ifdef BLOCK_REG_PADDING
2896 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2897 == downward)
2898 #else
2899 && BYTES_BIG_ENDIAN
2900 #endif
2903 rtx tem, x;
2904 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2905 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2907 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2908 tem = change_address (mem, word_mode, 0);
2909 emit_move_insn (tem, x);
2911 else
2912 move_block_from_reg (REGNO (entry_parm), mem,
2913 size_stored / UNITS_PER_WORD);
2915 else
2916 move_block_from_reg (REGNO (entry_parm), mem,
2917 size_stored / UNITS_PER_WORD);
2919 else if (data->stack_parm == 0)
2921 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2922 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2923 BLOCK_OP_NORMAL);
2924 all->first_conversion_insn = get_insns ();
2925 all->last_conversion_insn = get_last_insn ();
2926 end_sequence ();
2929 data->stack_parm = stack_parm;
2930 SET_DECL_RTL (parm, stack_parm);
2933 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2934 parameter. Get it there. Perform all ABI specified conversions. */
2936 static void
2937 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2938 struct assign_parm_data_one *data)
2940 rtx parmreg, validated_mem;
2941 rtx equiv_stack_parm;
2942 enum machine_mode promoted_nominal_mode;
2943 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2944 bool did_conversion = false;
2945 bool need_conversion, moved;
2947 /* Store the parm in a pseudoregister during the function, but we may
2948 need to do it in a wider mode. Using 2 here makes the result
2949 consistent with promote_decl_mode and thus expand_expr_real_1. */
2950 promoted_nominal_mode
2951 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2952 TREE_TYPE (current_function_decl), 2);
2954 parmreg = gen_reg_rtx (promoted_nominal_mode);
2956 if (!DECL_ARTIFICIAL (parm))
2957 mark_user_reg (parmreg);
2959 /* If this was an item that we received a pointer to,
2960 set DECL_RTL appropriately. */
2961 if (data->passed_pointer)
2963 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2964 set_mem_attributes (x, parm, 1);
2965 SET_DECL_RTL (parm, x);
2967 else
2968 SET_DECL_RTL (parm, parmreg);
2970 assign_parm_remove_parallels (data);
2972 /* Copy the value into the register, thus bridging between
2973 assign_parm_find_data_types and expand_expr_real_1. */
2975 equiv_stack_parm = data->stack_parm;
2976 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2978 need_conversion = (data->nominal_mode != data->passed_mode
2979 || promoted_nominal_mode != data->promoted_mode);
2980 moved = false;
2982 if (need_conversion
2983 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2984 && data->nominal_mode == data->passed_mode
2985 && data->nominal_mode == GET_MODE (data->entry_parm))
2987 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2988 mode, by the caller. We now have to convert it to
2989 NOMINAL_MODE, if different. However, PARMREG may be in
2990 a different mode than NOMINAL_MODE if it is being stored
2991 promoted.
2993 If ENTRY_PARM is a hard register, it might be in a register
2994 not valid for operating in its mode (e.g., an odd-numbered
2995 register for a DFmode). In that case, moves are the only
2996 thing valid, so we can't do a convert from there. This
2997 occurs when the calling sequence allow such misaligned
2998 usages.
3000 In addition, the conversion may involve a call, which could
3001 clobber parameters which haven't been copied to pseudo
3002 registers yet.
3004 First, we try to emit an insn which performs the necessary
3005 conversion. We verify that this insn does not clobber any
3006 hard registers. */
3008 enum insn_code icode;
3009 rtx op0, op1;
3011 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3012 unsignedp);
3014 op0 = parmreg;
3015 op1 = validated_mem;
3016 if (icode != CODE_FOR_nothing
3017 && insn_operand_matches (icode, 0, op0)
3018 && insn_operand_matches (icode, 1, op1))
3020 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3021 rtx insn, insns, t = op1;
3022 HARD_REG_SET hardregs;
3024 start_sequence ();
3025 /* If op1 is a hard register that is likely spilled, first
3026 force it into a pseudo, otherwise combiner might extend
3027 its lifetime too much. */
3028 if (GET_CODE (t) == SUBREG)
3029 t = SUBREG_REG (t);
3030 if (REG_P (t)
3031 && HARD_REGISTER_P (t)
3032 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3033 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3035 t = gen_reg_rtx (GET_MODE (op1));
3036 emit_move_insn (t, op1);
3038 else
3039 t = op1;
3040 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3041 data->passed_mode, unsignedp);
3042 emit_insn (insn);
3043 insns = get_insns ();
3045 moved = true;
3046 CLEAR_HARD_REG_SET (hardregs);
3047 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3049 if (INSN_P (insn))
3050 note_stores (PATTERN (insn), record_hard_reg_sets,
3051 &hardregs);
3052 if (!hard_reg_set_empty_p (hardregs))
3053 moved = false;
3056 end_sequence ();
3058 if (moved)
3060 emit_insn (insns);
3061 if (equiv_stack_parm != NULL_RTX)
3062 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3063 equiv_stack_parm);
3068 if (moved)
3069 /* Nothing to do. */
3071 else if (need_conversion)
3073 /* We did not have an insn to convert directly, or the sequence
3074 generated appeared unsafe. We must first copy the parm to a
3075 pseudo reg, and save the conversion until after all
3076 parameters have been moved. */
3078 int save_tree_used;
3079 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3081 emit_move_insn (tempreg, validated_mem);
3083 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3084 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3086 if (GET_CODE (tempreg) == SUBREG
3087 && GET_MODE (tempreg) == data->nominal_mode
3088 && REG_P (SUBREG_REG (tempreg))
3089 && data->nominal_mode == data->passed_mode
3090 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3091 && GET_MODE_SIZE (GET_MODE (tempreg))
3092 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3094 /* The argument is already sign/zero extended, so note it
3095 into the subreg. */
3096 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3097 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3100 /* TREE_USED gets set erroneously during expand_assignment. */
3101 save_tree_used = TREE_USED (parm);
3102 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3103 TREE_USED (parm) = save_tree_used;
3104 all->first_conversion_insn = get_insns ();
3105 all->last_conversion_insn = get_last_insn ();
3106 end_sequence ();
3108 did_conversion = true;
3110 else
3111 emit_move_insn (parmreg, validated_mem);
3113 /* If we were passed a pointer but the actual value can safely live
3114 in a register, retrieve it and use it directly. */
3115 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3117 /* We can't use nominal_mode, because it will have been set to
3118 Pmode above. We must use the actual mode of the parm. */
3119 if (use_register_for_decl (parm))
3121 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3122 mark_user_reg (parmreg);
3124 else
3126 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3127 TYPE_MODE (TREE_TYPE (parm)),
3128 TYPE_ALIGN (TREE_TYPE (parm)));
3129 parmreg
3130 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3131 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3132 align);
3133 set_mem_attributes (parmreg, parm, 1);
3136 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3138 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3139 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3141 push_to_sequence2 (all->first_conversion_insn,
3142 all->last_conversion_insn);
3143 emit_move_insn (tempreg, DECL_RTL (parm));
3144 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3145 emit_move_insn (parmreg, tempreg);
3146 all->first_conversion_insn = get_insns ();
3147 all->last_conversion_insn = get_last_insn ();
3148 end_sequence ();
3150 did_conversion = true;
3152 else
3153 emit_move_insn (parmreg, DECL_RTL (parm));
3155 SET_DECL_RTL (parm, parmreg);
3157 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3158 now the parm. */
3159 data->stack_parm = NULL;
3162 /* Mark the register as eliminable if we did no conversion and it was
3163 copied from memory at a fixed offset, and the arg pointer was not
3164 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3165 offset formed an invalid address, such memory-equivalences as we
3166 make here would screw up life analysis for it. */
3167 if (data->nominal_mode == data->passed_mode
3168 && !did_conversion
3169 && data->stack_parm != 0
3170 && MEM_P (data->stack_parm)
3171 && data->locate.offset.var == 0
3172 && reg_mentioned_p (virtual_incoming_args_rtx,
3173 XEXP (data->stack_parm, 0)))
3175 rtx linsn = get_last_insn ();
3176 rtx sinsn, set;
3178 /* Mark complex types separately. */
3179 if (GET_CODE (parmreg) == CONCAT)
3181 enum machine_mode submode
3182 = GET_MODE_INNER (GET_MODE (parmreg));
3183 int regnor = REGNO (XEXP (parmreg, 0));
3184 int regnoi = REGNO (XEXP (parmreg, 1));
3185 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3186 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3187 GET_MODE_SIZE (submode));
3189 /* Scan backwards for the set of the real and
3190 imaginary parts. */
3191 for (sinsn = linsn; sinsn != 0;
3192 sinsn = prev_nonnote_insn (sinsn))
3194 set = single_set (sinsn);
3195 if (set == 0)
3196 continue;
3198 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3199 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3200 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3201 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3204 else
3205 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3208 /* For pointer data type, suggest pointer register. */
3209 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3210 mark_reg_pointer (parmreg,
3211 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3214 /* A subroutine of assign_parms. Allocate stack space to hold the current
3215 parameter. Get it there. Perform all ABI specified conversions. */
3217 static void
3218 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3219 struct assign_parm_data_one *data)
3221 /* Value must be stored in the stack slot STACK_PARM during function
3222 execution. */
3223 bool to_conversion = false;
3225 assign_parm_remove_parallels (data);
3227 if (data->promoted_mode != data->nominal_mode)
3229 /* Conversion is required. */
3230 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3232 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3234 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3235 to_conversion = true;
3237 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3238 TYPE_UNSIGNED (TREE_TYPE (parm)));
3240 if (data->stack_parm)
3242 int offset = subreg_lowpart_offset (data->nominal_mode,
3243 GET_MODE (data->stack_parm));
3244 /* ??? This may need a big-endian conversion on sparc64. */
3245 data->stack_parm
3246 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3247 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3248 set_mem_offset (data->stack_parm,
3249 MEM_OFFSET (data->stack_parm) + offset);
3253 if (data->entry_parm != data->stack_parm)
3255 rtx src, dest;
3257 if (data->stack_parm == 0)
3259 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3260 GET_MODE (data->entry_parm),
3261 TYPE_ALIGN (data->passed_type));
3262 data->stack_parm
3263 = assign_stack_local (GET_MODE (data->entry_parm),
3264 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3265 align);
3266 set_mem_attributes (data->stack_parm, parm, 1);
3269 dest = validize_mem (copy_rtx (data->stack_parm));
3270 src = validize_mem (copy_rtx (data->entry_parm));
3272 if (MEM_P (src))
3274 /* Use a block move to handle potentially misaligned entry_parm. */
3275 if (!to_conversion)
3276 push_to_sequence2 (all->first_conversion_insn,
3277 all->last_conversion_insn);
3278 to_conversion = true;
3280 emit_block_move (dest, src,
3281 GEN_INT (int_size_in_bytes (data->passed_type)),
3282 BLOCK_OP_NORMAL);
3284 else
3285 emit_move_insn (dest, src);
3288 if (to_conversion)
3290 all->first_conversion_insn = get_insns ();
3291 all->last_conversion_insn = get_last_insn ();
3292 end_sequence ();
3295 SET_DECL_RTL (parm, data->stack_parm);
3298 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3299 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3301 static void
3302 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3303 vec<tree> fnargs)
3305 tree parm;
3306 tree orig_fnargs = all->orig_fnargs;
3307 unsigned i = 0;
3309 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3311 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3312 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3314 rtx tmp, real, imag;
3315 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3317 real = DECL_RTL (fnargs[i]);
3318 imag = DECL_RTL (fnargs[i + 1]);
3319 if (inner != GET_MODE (real))
3321 real = gen_lowpart_SUBREG (inner, real);
3322 imag = gen_lowpart_SUBREG (inner, imag);
3325 if (TREE_ADDRESSABLE (parm))
3327 rtx rmem, imem;
3328 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3329 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3330 DECL_MODE (parm),
3331 TYPE_ALIGN (TREE_TYPE (parm)));
3333 /* split_complex_arg put the real and imag parts in
3334 pseudos. Move them to memory. */
3335 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3336 set_mem_attributes (tmp, parm, 1);
3337 rmem = adjust_address_nv (tmp, inner, 0);
3338 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3339 push_to_sequence2 (all->first_conversion_insn,
3340 all->last_conversion_insn);
3341 emit_move_insn (rmem, real);
3342 emit_move_insn (imem, imag);
3343 all->first_conversion_insn = get_insns ();
3344 all->last_conversion_insn = get_last_insn ();
3345 end_sequence ();
3347 else
3348 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3349 SET_DECL_RTL (parm, tmp);
3351 real = DECL_INCOMING_RTL (fnargs[i]);
3352 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3353 if (inner != GET_MODE (real))
3355 real = gen_lowpart_SUBREG (inner, real);
3356 imag = gen_lowpart_SUBREG (inner, imag);
3358 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3359 set_decl_incoming_rtl (parm, tmp, false);
3360 i++;
3365 /* Assign RTL expressions to the function's parameters. This may involve
3366 copying them into registers and using those registers as the DECL_RTL. */
3368 static void
3369 assign_parms (tree fndecl)
3371 struct assign_parm_data_all all;
3372 tree parm;
3373 vec<tree> fnargs;
3374 unsigned i;
3376 crtl->args.internal_arg_pointer
3377 = targetm.calls.internal_arg_pointer ();
3379 assign_parms_initialize_all (&all);
3380 fnargs = assign_parms_augmented_arg_list (&all);
3382 FOR_EACH_VEC_ELT (fnargs, i, parm)
3384 struct assign_parm_data_one data;
3386 /* Extract the type of PARM; adjust it according to ABI. */
3387 assign_parm_find_data_types (&all, parm, &data);
3389 /* Early out for errors and void parameters. */
3390 if (data.passed_mode == VOIDmode)
3392 SET_DECL_RTL (parm, const0_rtx);
3393 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3394 continue;
3397 /* Estimate stack alignment from parameter alignment. */
3398 if (SUPPORTS_STACK_ALIGNMENT)
3400 unsigned int align
3401 = targetm.calls.function_arg_boundary (data.promoted_mode,
3402 data.passed_type);
3403 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3404 align);
3405 if (TYPE_ALIGN (data.nominal_type) > align)
3406 align = MINIMUM_ALIGNMENT (data.nominal_type,
3407 TYPE_MODE (data.nominal_type),
3408 TYPE_ALIGN (data.nominal_type));
3409 if (crtl->stack_alignment_estimated < align)
3411 gcc_assert (!crtl->stack_realign_processed);
3412 crtl->stack_alignment_estimated = align;
3416 if (cfun->stdarg && !DECL_CHAIN (parm))
3417 assign_parms_setup_varargs (&all, &data, false);
3419 /* Find out where the parameter arrives in this function. */
3420 assign_parm_find_entry_rtl (&all, &data);
3422 /* Find out where stack space for this parameter might be. */
3423 if (assign_parm_is_stack_parm (&all, &data))
3425 assign_parm_find_stack_rtl (parm, &data);
3426 assign_parm_adjust_entry_rtl (&data);
3429 /* Record permanently how this parm was passed. */
3430 if (data.passed_pointer)
3432 rtx incoming_rtl
3433 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3434 data.entry_parm);
3435 set_decl_incoming_rtl (parm, incoming_rtl, true);
3437 else
3438 set_decl_incoming_rtl (parm, data.entry_parm, false);
3440 /* Update info on where next arg arrives in registers. */
3441 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3442 data.passed_type, data.named_arg);
3444 assign_parm_adjust_stack_rtl (&data);
3446 if (assign_parm_setup_block_p (&data))
3447 assign_parm_setup_block (&all, parm, &data);
3448 else if (data.passed_pointer || use_register_for_decl (parm))
3449 assign_parm_setup_reg (&all, parm, &data);
3450 else
3451 assign_parm_setup_stack (&all, parm, &data);
3454 if (targetm.calls.split_complex_arg)
3455 assign_parms_unsplit_complex (&all, fnargs);
3457 fnargs.release ();
3459 /* Output all parameter conversion instructions (possibly including calls)
3460 now that all parameters have been copied out of hard registers. */
3461 emit_insn (all.first_conversion_insn);
3463 /* Estimate reload stack alignment from scalar return mode. */
3464 if (SUPPORTS_STACK_ALIGNMENT)
3466 if (DECL_RESULT (fndecl))
3468 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3469 enum machine_mode mode = TYPE_MODE (type);
3471 if (mode != BLKmode
3472 && mode != VOIDmode
3473 && !AGGREGATE_TYPE_P (type))
3475 unsigned int align = GET_MODE_ALIGNMENT (mode);
3476 if (crtl->stack_alignment_estimated < align)
3478 gcc_assert (!crtl->stack_realign_processed);
3479 crtl->stack_alignment_estimated = align;
3485 /* If we are receiving a struct value address as the first argument, set up
3486 the RTL for the function result. As this might require code to convert
3487 the transmitted address to Pmode, we do this here to ensure that possible
3488 preliminary conversions of the address have been emitted already. */
3489 if (all.function_result_decl)
3491 tree result = DECL_RESULT (current_function_decl);
3492 rtx addr = DECL_RTL (all.function_result_decl);
3493 rtx x;
3495 if (DECL_BY_REFERENCE (result))
3497 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3498 x = addr;
3500 else
3502 SET_DECL_VALUE_EXPR (result,
3503 build1 (INDIRECT_REF, TREE_TYPE (result),
3504 all.function_result_decl));
3505 addr = convert_memory_address (Pmode, addr);
3506 x = gen_rtx_MEM (DECL_MODE (result), addr);
3507 set_mem_attributes (x, result, 1);
3510 DECL_HAS_VALUE_EXPR_P (result) = 1;
3512 SET_DECL_RTL (result, x);
3515 /* We have aligned all the args, so add space for the pretend args. */
3516 crtl->args.pretend_args_size = all.pretend_args_size;
3517 all.stack_args_size.constant += all.extra_pretend_bytes;
3518 crtl->args.size = all.stack_args_size.constant;
3520 /* Adjust function incoming argument size for alignment and
3521 minimum length. */
3523 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3524 crtl->args.size = CEIL_ROUND (crtl->args.size,
3525 PARM_BOUNDARY / BITS_PER_UNIT);
3527 #ifdef ARGS_GROW_DOWNWARD
3528 crtl->args.arg_offset_rtx
3529 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3530 : expand_expr (size_diffop (all.stack_args_size.var,
3531 size_int (-all.stack_args_size.constant)),
3532 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3533 #else
3534 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3535 #endif
3537 /* See how many bytes, if any, of its args a function should try to pop
3538 on return. */
3540 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3541 TREE_TYPE (fndecl),
3542 crtl->args.size);
3544 /* For stdarg.h function, save info about
3545 regs and stack space used by the named args. */
3547 crtl->args.info = all.args_so_far_v;
3549 /* Set the rtx used for the function return value. Put this in its
3550 own variable so any optimizers that need this information don't have
3551 to include tree.h. Do this here so it gets done when an inlined
3552 function gets output. */
3554 crtl->return_rtx
3555 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3556 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3558 /* If scalar return value was computed in a pseudo-reg, or was a named
3559 return value that got dumped to the stack, copy that to the hard
3560 return register. */
3561 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3563 tree decl_result = DECL_RESULT (fndecl);
3564 rtx decl_rtl = DECL_RTL (decl_result);
3566 if (REG_P (decl_rtl)
3567 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3568 : DECL_REGISTER (decl_result))
3570 rtx real_decl_rtl;
3572 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3573 fndecl, true);
3574 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3575 /* The delay slot scheduler assumes that crtl->return_rtx
3576 holds the hard register containing the return value, not a
3577 temporary pseudo. */
3578 crtl->return_rtx = real_decl_rtl;
3583 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3584 For all seen types, gimplify their sizes. */
3586 static tree
3587 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3589 tree t = *tp;
3591 *walk_subtrees = 0;
3592 if (TYPE_P (t))
3594 if (POINTER_TYPE_P (t))
3595 *walk_subtrees = 1;
3596 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3597 && !TYPE_SIZES_GIMPLIFIED (t))
3599 gimplify_type_sizes (t, (gimple_seq *) data);
3600 *walk_subtrees = 1;
3604 return NULL;
3607 /* Gimplify the parameter list for current_function_decl. This involves
3608 evaluating SAVE_EXPRs of variable sized parameters and generating code
3609 to implement callee-copies reference parameters. Returns a sequence of
3610 statements to add to the beginning of the function. */
3612 gimple_seq
3613 gimplify_parameters (void)
3615 struct assign_parm_data_all all;
3616 tree parm;
3617 gimple_seq stmts = NULL;
3618 vec<tree> fnargs;
3619 unsigned i;
3621 assign_parms_initialize_all (&all);
3622 fnargs = assign_parms_augmented_arg_list (&all);
3624 FOR_EACH_VEC_ELT (fnargs, i, parm)
3626 struct assign_parm_data_one data;
3628 /* Extract the type of PARM; adjust it according to ABI. */
3629 assign_parm_find_data_types (&all, parm, &data);
3631 /* Early out for errors and void parameters. */
3632 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3633 continue;
3635 /* Update info on where next arg arrives in registers. */
3636 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3637 data.passed_type, data.named_arg);
3639 /* ??? Once upon a time variable_size stuffed parameter list
3640 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3641 turned out to be less than manageable in the gimple world.
3642 Now we have to hunt them down ourselves. */
3643 walk_tree_without_duplicates (&data.passed_type,
3644 gimplify_parm_type, &stmts);
3646 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3648 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3649 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3652 if (data.passed_pointer)
3654 tree type = TREE_TYPE (data.passed_type);
3655 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3656 type, data.named_arg))
3658 tree local, t;
3660 /* For constant-sized objects, this is trivial; for
3661 variable-sized objects, we have to play games. */
3662 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3663 && !(flag_stack_check == GENERIC_STACK_CHECK
3664 && compare_tree_int (DECL_SIZE_UNIT (parm),
3665 STACK_CHECK_MAX_VAR_SIZE) > 0))
3667 local = create_tmp_var (type, get_name (parm));
3668 DECL_IGNORED_P (local) = 0;
3669 /* If PARM was addressable, move that flag over
3670 to the local copy, as its address will be taken,
3671 not the PARMs. Keep the parms address taken
3672 as we'll query that flag during gimplification. */
3673 if (TREE_ADDRESSABLE (parm))
3674 TREE_ADDRESSABLE (local) = 1;
3675 else if (TREE_CODE (type) == COMPLEX_TYPE
3676 || TREE_CODE (type) == VECTOR_TYPE)
3677 DECL_GIMPLE_REG_P (local) = 1;
3679 else
3681 tree ptr_type, addr;
3683 ptr_type = build_pointer_type (type);
3684 addr = create_tmp_reg (ptr_type, get_name (parm));
3685 DECL_IGNORED_P (addr) = 0;
3686 local = build_fold_indirect_ref (addr);
3688 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3689 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3690 size_int (DECL_ALIGN (parm)));
3692 /* The call has been built for a variable-sized object. */
3693 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3694 t = fold_convert (ptr_type, t);
3695 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3696 gimplify_and_add (t, &stmts);
3699 gimplify_assign (local, parm, &stmts);
3701 SET_DECL_VALUE_EXPR (parm, local);
3702 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3707 fnargs.release ();
3709 return stmts;
3712 /* Compute the size and offset from the start of the stacked arguments for a
3713 parm passed in mode PASSED_MODE and with type TYPE.
3715 INITIAL_OFFSET_PTR points to the current offset into the stacked
3716 arguments.
3718 The starting offset and size for this parm are returned in
3719 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3720 nonzero, the offset is that of stack slot, which is returned in
3721 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3722 padding required from the initial offset ptr to the stack slot.
3724 IN_REGS is nonzero if the argument will be passed in registers. It will
3725 never be set if REG_PARM_STACK_SPACE is not defined.
3727 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3728 for arguments which are passed in registers.
3730 FNDECL is the function in which the argument was defined.
3732 There are two types of rounding that are done. The first, controlled by
3733 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3734 argument list to be aligned to the specific boundary (in bits). This
3735 rounding affects the initial and starting offsets, but not the argument
3736 size.
3738 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3739 optionally rounds the size of the parm to PARM_BOUNDARY. The
3740 initial offset is not affected by this rounding, while the size always
3741 is and the starting offset may be. */
3743 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3744 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3745 callers pass in the total size of args so far as
3746 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3748 void
3749 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3750 int reg_parm_stack_space, int partial,
3751 tree fndecl ATTRIBUTE_UNUSED,
3752 struct args_size *initial_offset_ptr,
3753 struct locate_and_pad_arg_data *locate)
3755 tree sizetree;
3756 enum direction where_pad;
3757 unsigned int boundary, round_boundary;
3758 int part_size_in_regs;
3760 /* If we have found a stack parm before we reach the end of the
3761 area reserved for registers, skip that area. */
3762 if (! in_regs)
3764 if (reg_parm_stack_space > 0)
3766 if (initial_offset_ptr->var)
3768 initial_offset_ptr->var
3769 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3770 ssize_int (reg_parm_stack_space));
3771 initial_offset_ptr->constant = 0;
3773 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3774 initial_offset_ptr->constant = reg_parm_stack_space;
3778 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3780 sizetree
3781 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3782 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3783 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3784 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3785 type);
3786 locate->where_pad = where_pad;
3788 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3789 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3790 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3792 locate->boundary = boundary;
3794 if (SUPPORTS_STACK_ALIGNMENT)
3796 /* stack_alignment_estimated can't change after stack has been
3797 realigned. */
3798 if (crtl->stack_alignment_estimated < boundary)
3800 if (!crtl->stack_realign_processed)
3801 crtl->stack_alignment_estimated = boundary;
3802 else
3804 /* If stack is realigned and stack alignment value
3805 hasn't been finalized, it is OK not to increase
3806 stack_alignment_estimated. The bigger alignment
3807 requirement is recorded in stack_alignment_needed
3808 below. */
3809 gcc_assert (!crtl->stack_realign_finalized
3810 && crtl->stack_realign_needed);
3815 /* Remember if the outgoing parameter requires extra alignment on the
3816 calling function side. */
3817 if (crtl->stack_alignment_needed < boundary)
3818 crtl->stack_alignment_needed = boundary;
3819 if (crtl->preferred_stack_boundary < boundary)
3820 crtl->preferred_stack_boundary = boundary;
3822 #ifdef ARGS_GROW_DOWNWARD
3823 locate->slot_offset.constant = -initial_offset_ptr->constant;
3824 if (initial_offset_ptr->var)
3825 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3826 initial_offset_ptr->var);
3829 tree s2 = sizetree;
3830 if (where_pad != none
3831 && (!tree_fits_uhwi_p (sizetree)
3832 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3833 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3834 SUB_PARM_SIZE (locate->slot_offset, s2);
3837 locate->slot_offset.constant += part_size_in_regs;
3839 if (!in_regs || reg_parm_stack_space > 0)
3840 pad_to_arg_alignment (&locate->slot_offset, boundary,
3841 &locate->alignment_pad);
3843 locate->size.constant = (-initial_offset_ptr->constant
3844 - locate->slot_offset.constant);
3845 if (initial_offset_ptr->var)
3846 locate->size.var = size_binop (MINUS_EXPR,
3847 size_binop (MINUS_EXPR,
3848 ssize_int (0),
3849 initial_offset_ptr->var),
3850 locate->slot_offset.var);
3852 /* Pad_below needs the pre-rounded size to know how much to pad
3853 below. */
3854 locate->offset = locate->slot_offset;
3855 if (where_pad == downward)
3856 pad_below (&locate->offset, passed_mode, sizetree);
3858 #else /* !ARGS_GROW_DOWNWARD */
3859 if (!in_regs || reg_parm_stack_space > 0)
3860 pad_to_arg_alignment (initial_offset_ptr, boundary,
3861 &locate->alignment_pad);
3862 locate->slot_offset = *initial_offset_ptr;
3864 #ifdef PUSH_ROUNDING
3865 if (passed_mode != BLKmode)
3866 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3867 #endif
3869 /* Pad_below needs the pre-rounded size to know how much to pad below
3870 so this must be done before rounding up. */
3871 locate->offset = locate->slot_offset;
3872 if (where_pad == downward)
3873 pad_below (&locate->offset, passed_mode, sizetree);
3875 if (where_pad != none
3876 && (!tree_fits_uhwi_p (sizetree)
3877 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3878 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3880 ADD_PARM_SIZE (locate->size, sizetree);
3882 locate->size.constant -= part_size_in_regs;
3883 #endif /* ARGS_GROW_DOWNWARD */
3885 #ifdef FUNCTION_ARG_OFFSET
3886 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3887 #endif
3890 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3891 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3893 static void
3894 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3895 struct args_size *alignment_pad)
3897 tree save_var = NULL_TREE;
3898 HOST_WIDE_INT save_constant = 0;
3899 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3900 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3902 #ifdef SPARC_STACK_BOUNDARY_HACK
3903 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3904 the real alignment of %sp. However, when it does this, the
3905 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3906 if (SPARC_STACK_BOUNDARY_HACK)
3907 sp_offset = 0;
3908 #endif
3910 if (boundary > PARM_BOUNDARY)
3912 save_var = offset_ptr->var;
3913 save_constant = offset_ptr->constant;
3916 alignment_pad->var = NULL_TREE;
3917 alignment_pad->constant = 0;
3919 if (boundary > BITS_PER_UNIT)
3921 if (offset_ptr->var)
3923 tree sp_offset_tree = ssize_int (sp_offset);
3924 tree offset = size_binop (PLUS_EXPR,
3925 ARGS_SIZE_TREE (*offset_ptr),
3926 sp_offset_tree);
3927 #ifdef ARGS_GROW_DOWNWARD
3928 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3929 #else
3930 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3931 #endif
3933 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3934 /* ARGS_SIZE_TREE includes constant term. */
3935 offset_ptr->constant = 0;
3936 if (boundary > PARM_BOUNDARY)
3937 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3938 save_var);
3940 else
3942 offset_ptr->constant = -sp_offset +
3943 #ifdef ARGS_GROW_DOWNWARD
3944 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3945 #else
3946 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3947 #endif
3948 if (boundary > PARM_BOUNDARY)
3949 alignment_pad->constant = offset_ptr->constant - save_constant;
3954 static void
3955 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3957 if (passed_mode != BLKmode)
3959 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3960 offset_ptr->constant
3961 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3962 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3963 - GET_MODE_SIZE (passed_mode));
3965 else
3967 if (TREE_CODE (sizetree) != INTEGER_CST
3968 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3970 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3971 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3972 /* Add it in. */
3973 ADD_PARM_SIZE (*offset_ptr, s2);
3974 SUB_PARM_SIZE (*offset_ptr, sizetree);
3980 /* True if register REGNO was alive at a place where `setjmp' was
3981 called and was set more than once or is an argument. Such regs may
3982 be clobbered by `longjmp'. */
3984 static bool
3985 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3987 /* There appear to be cases where some local vars never reach the
3988 backend but have bogus regnos. */
3989 if (regno >= max_reg_num ())
3990 return false;
3992 return ((REG_N_SETS (regno) > 1
3993 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3994 regno))
3995 && REGNO_REG_SET_P (setjmp_crosses, regno));
3998 /* Walk the tree of blocks describing the binding levels within a
3999 function and warn about variables the might be killed by setjmp or
4000 vfork. This is done after calling flow_analysis before register
4001 allocation since that will clobber the pseudo-regs to hard
4002 regs. */
4004 static void
4005 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4007 tree decl, sub;
4009 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4011 if (TREE_CODE (decl) == VAR_DECL
4012 && DECL_RTL_SET_P (decl)
4013 && REG_P (DECL_RTL (decl))
4014 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4015 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4016 " %<longjmp%> or %<vfork%>", decl);
4019 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4020 setjmp_vars_warning (setjmp_crosses, sub);
4023 /* Do the appropriate part of setjmp_vars_warning
4024 but for arguments instead of local variables. */
4026 static void
4027 setjmp_args_warning (bitmap setjmp_crosses)
4029 tree decl;
4030 for (decl = DECL_ARGUMENTS (current_function_decl);
4031 decl; decl = DECL_CHAIN (decl))
4032 if (DECL_RTL (decl) != 0
4033 && REG_P (DECL_RTL (decl))
4034 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4035 warning (OPT_Wclobbered,
4036 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4037 decl);
4040 /* Generate warning messages for variables live across setjmp. */
4042 void
4043 generate_setjmp_warnings (void)
4045 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4047 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4048 || bitmap_empty_p (setjmp_crosses))
4049 return;
4051 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4052 setjmp_args_warning (setjmp_crosses);
4056 /* Reverse the order of elements in the fragment chain T of blocks,
4057 and return the new head of the chain (old last element).
4058 In addition to that clear BLOCK_SAME_RANGE flags when needed
4059 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4060 its super fragment origin. */
4062 static tree
4063 block_fragments_nreverse (tree t)
4065 tree prev = 0, block, next, prev_super = 0;
4066 tree super = BLOCK_SUPERCONTEXT (t);
4067 if (BLOCK_FRAGMENT_ORIGIN (super))
4068 super = BLOCK_FRAGMENT_ORIGIN (super);
4069 for (block = t; block; block = next)
4071 next = BLOCK_FRAGMENT_CHAIN (block);
4072 BLOCK_FRAGMENT_CHAIN (block) = prev;
4073 if ((prev && !BLOCK_SAME_RANGE (prev))
4074 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4075 != prev_super))
4076 BLOCK_SAME_RANGE (block) = 0;
4077 prev_super = BLOCK_SUPERCONTEXT (block);
4078 BLOCK_SUPERCONTEXT (block) = super;
4079 prev = block;
4081 t = BLOCK_FRAGMENT_ORIGIN (t);
4082 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4083 != prev_super)
4084 BLOCK_SAME_RANGE (t) = 0;
4085 BLOCK_SUPERCONTEXT (t) = super;
4086 return prev;
4089 /* Reverse the order of elements in the chain T of blocks,
4090 and return the new head of the chain (old last element).
4091 Also do the same on subblocks and reverse the order of elements
4092 in BLOCK_FRAGMENT_CHAIN as well. */
4094 static tree
4095 blocks_nreverse_all (tree t)
4097 tree prev = 0, block, next;
4098 for (block = t; block; block = next)
4100 next = BLOCK_CHAIN (block);
4101 BLOCK_CHAIN (block) = prev;
4102 if (BLOCK_FRAGMENT_CHAIN (block)
4103 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4105 BLOCK_FRAGMENT_CHAIN (block)
4106 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4107 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4108 BLOCK_SAME_RANGE (block) = 0;
4110 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4111 prev = block;
4113 return prev;
4117 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4118 and create duplicate blocks. */
4119 /* ??? Need an option to either create block fragments or to create
4120 abstract origin duplicates of a source block. It really depends
4121 on what optimization has been performed. */
4123 void
4124 reorder_blocks (void)
4126 tree block = DECL_INITIAL (current_function_decl);
4128 if (block == NULL_TREE)
4129 return;
4131 auto_vec<tree, 10> block_stack;
4133 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4134 clear_block_marks (block);
4136 /* Prune the old trees away, so that they don't get in the way. */
4137 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4138 BLOCK_CHAIN (block) = NULL_TREE;
4140 /* Recreate the block tree from the note nesting. */
4141 reorder_blocks_1 (get_insns (), block, &block_stack);
4142 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4145 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4147 void
4148 clear_block_marks (tree block)
4150 while (block)
4152 TREE_ASM_WRITTEN (block) = 0;
4153 clear_block_marks (BLOCK_SUBBLOCKS (block));
4154 block = BLOCK_CHAIN (block);
4158 static void
4159 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4161 rtx insn;
4162 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4164 for (insn = insns; insn; insn = NEXT_INSN (insn))
4166 if (NOTE_P (insn))
4168 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4170 tree block = NOTE_BLOCK (insn);
4171 tree origin;
4173 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4174 origin = block;
4176 if (prev_end)
4177 BLOCK_SAME_RANGE (prev_end) = 0;
4178 prev_end = NULL_TREE;
4180 /* If we have seen this block before, that means it now
4181 spans multiple address regions. Create a new fragment. */
4182 if (TREE_ASM_WRITTEN (block))
4184 tree new_block = copy_node (block);
4186 BLOCK_SAME_RANGE (new_block) = 0;
4187 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4188 BLOCK_FRAGMENT_CHAIN (new_block)
4189 = BLOCK_FRAGMENT_CHAIN (origin);
4190 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4192 NOTE_BLOCK (insn) = new_block;
4193 block = new_block;
4196 if (prev_beg == current_block && prev_beg)
4197 BLOCK_SAME_RANGE (block) = 1;
4199 prev_beg = origin;
4201 BLOCK_SUBBLOCKS (block) = 0;
4202 TREE_ASM_WRITTEN (block) = 1;
4203 /* When there's only one block for the entire function,
4204 current_block == block and we mustn't do this, it
4205 will cause infinite recursion. */
4206 if (block != current_block)
4208 tree super;
4209 if (block != origin)
4210 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4211 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4212 (origin))
4213 == current_block);
4214 if (p_block_stack->is_empty ())
4215 super = current_block;
4216 else
4218 super = p_block_stack->last ();
4219 gcc_assert (super == current_block
4220 || BLOCK_FRAGMENT_ORIGIN (super)
4221 == current_block);
4223 BLOCK_SUPERCONTEXT (block) = super;
4224 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4225 BLOCK_SUBBLOCKS (current_block) = block;
4226 current_block = origin;
4228 p_block_stack->safe_push (block);
4230 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4232 NOTE_BLOCK (insn) = p_block_stack->pop ();
4233 current_block = BLOCK_SUPERCONTEXT (current_block);
4234 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4235 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4236 prev_beg = NULL_TREE;
4237 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4238 ? NOTE_BLOCK (insn) : NULL_TREE;
4241 else
4243 prev_beg = NULL_TREE;
4244 if (prev_end)
4245 BLOCK_SAME_RANGE (prev_end) = 0;
4246 prev_end = NULL_TREE;
4251 /* Reverse the order of elements in the chain T of blocks,
4252 and return the new head of the chain (old last element). */
4254 tree
4255 blocks_nreverse (tree t)
4257 tree prev = 0, block, next;
4258 for (block = t; block; block = next)
4260 next = BLOCK_CHAIN (block);
4261 BLOCK_CHAIN (block) = prev;
4262 prev = block;
4264 return prev;
4267 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4268 by modifying the last node in chain 1 to point to chain 2. */
4270 tree
4271 block_chainon (tree op1, tree op2)
4273 tree t1;
4275 if (!op1)
4276 return op2;
4277 if (!op2)
4278 return op1;
4280 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4281 continue;
4282 BLOCK_CHAIN (t1) = op2;
4284 #ifdef ENABLE_TREE_CHECKING
4286 tree t2;
4287 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4288 gcc_assert (t2 != t1);
4290 #endif
4292 return op1;
4295 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4296 non-NULL, list them all into VECTOR, in a depth-first preorder
4297 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4298 blocks. */
4300 static int
4301 all_blocks (tree block, tree *vector)
4303 int n_blocks = 0;
4305 while (block)
4307 TREE_ASM_WRITTEN (block) = 0;
4309 /* Record this block. */
4310 if (vector)
4311 vector[n_blocks] = block;
4313 ++n_blocks;
4315 /* Record the subblocks, and their subblocks... */
4316 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4317 vector ? vector + n_blocks : 0);
4318 block = BLOCK_CHAIN (block);
4321 return n_blocks;
4324 /* Return a vector containing all the blocks rooted at BLOCK. The
4325 number of elements in the vector is stored in N_BLOCKS_P. The
4326 vector is dynamically allocated; it is the caller's responsibility
4327 to call `free' on the pointer returned. */
4329 static tree *
4330 get_block_vector (tree block, int *n_blocks_p)
4332 tree *block_vector;
4334 *n_blocks_p = all_blocks (block, NULL);
4335 block_vector = XNEWVEC (tree, *n_blocks_p);
4336 all_blocks (block, block_vector);
4338 return block_vector;
4341 static GTY(()) int next_block_index = 2;
4343 /* Set BLOCK_NUMBER for all the blocks in FN. */
4345 void
4346 number_blocks (tree fn)
4348 int i;
4349 int n_blocks;
4350 tree *block_vector;
4352 /* For SDB and XCOFF debugging output, we start numbering the blocks
4353 from 1 within each function, rather than keeping a running
4354 count. */
4355 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4356 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4357 next_block_index = 1;
4358 #endif
4360 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4362 /* The top-level BLOCK isn't numbered at all. */
4363 for (i = 1; i < n_blocks; ++i)
4364 /* We number the blocks from two. */
4365 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4367 free (block_vector);
4369 return;
4372 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4374 DEBUG_FUNCTION tree
4375 debug_find_var_in_block_tree (tree var, tree block)
4377 tree t;
4379 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4380 if (t == var)
4381 return block;
4383 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4385 tree ret = debug_find_var_in_block_tree (var, t);
4386 if (ret)
4387 return ret;
4390 return NULL_TREE;
4393 /* Keep track of whether we're in a dummy function context. If we are,
4394 we don't want to invoke the set_current_function hook, because we'll
4395 get into trouble if the hook calls target_reinit () recursively or
4396 when the initial initialization is not yet complete. */
4398 static bool in_dummy_function;
4400 /* Invoke the target hook when setting cfun. Update the optimization options
4401 if the function uses different options than the default. */
4403 static void
4404 invoke_set_current_function_hook (tree fndecl)
4406 if (!in_dummy_function)
4408 tree opts = ((fndecl)
4409 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4410 : optimization_default_node);
4412 if (!opts)
4413 opts = optimization_default_node;
4415 /* Change optimization options if needed. */
4416 if (optimization_current_node != opts)
4418 optimization_current_node = opts;
4419 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4422 targetm.set_current_function (fndecl);
4423 this_fn_optabs = this_target_optabs;
4425 if (opts != optimization_default_node)
4427 init_tree_optimization_optabs (opts);
4428 if (TREE_OPTIMIZATION_OPTABS (opts))
4429 this_fn_optabs = (struct target_optabs *)
4430 TREE_OPTIMIZATION_OPTABS (opts);
4435 /* cfun should never be set directly; use this function. */
4437 void
4438 set_cfun (struct function *new_cfun)
4440 if (cfun != new_cfun)
4442 cfun = new_cfun;
4443 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4447 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4449 static vec<function_p> cfun_stack;
4451 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4452 current_function_decl accordingly. */
4454 void
4455 push_cfun (struct function *new_cfun)
4457 gcc_assert ((!cfun && !current_function_decl)
4458 || (cfun && current_function_decl == cfun->decl));
4459 cfun_stack.safe_push (cfun);
4460 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4461 set_cfun (new_cfun);
4464 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4466 void
4467 pop_cfun (void)
4469 struct function *new_cfun = cfun_stack.pop ();
4470 /* When in_dummy_function, we do have a cfun but current_function_decl is
4471 NULL. We also allow pushing NULL cfun and subsequently changing
4472 current_function_decl to something else and have both restored by
4473 pop_cfun. */
4474 gcc_checking_assert (in_dummy_function
4475 || !cfun
4476 || current_function_decl == cfun->decl);
4477 set_cfun (new_cfun);
4478 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4481 /* Return value of funcdef and increase it. */
4483 get_next_funcdef_no (void)
4485 return funcdef_no++;
4488 /* Return value of funcdef. */
4490 get_last_funcdef_no (void)
4492 return funcdef_no;
4495 /* Allocate a function structure for FNDECL and set its contents
4496 to the defaults. Set cfun to the newly-allocated object.
4497 Some of the helper functions invoked during initialization assume
4498 that cfun has already been set. Therefore, assign the new object
4499 directly into cfun and invoke the back end hook explicitly at the
4500 very end, rather than initializing a temporary and calling set_cfun
4501 on it.
4503 ABSTRACT_P is true if this is a function that will never be seen by
4504 the middle-end. Such functions are front-end concepts (like C++
4505 function templates) that do not correspond directly to functions
4506 placed in object files. */
4508 void
4509 allocate_struct_function (tree fndecl, bool abstract_p)
4511 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4513 cfun = ggc_cleared_alloc<function> ();
4515 init_eh_for_function ();
4517 if (init_machine_status)
4518 cfun->machine = (*init_machine_status) ();
4520 #ifdef OVERRIDE_ABI_FORMAT
4521 OVERRIDE_ABI_FORMAT (fndecl);
4522 #endif
4524 if (fndecl != NULL_TREE)
4526 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4527 cfun->decl = fndecl;
4528 current_function_funcdef_no = get_next_funcdef_no ();
4531 invoke_set_current_function_hook (fndecl);
4533 if (fndecl != NULL_TREE)
4535 tree result = DECL_RESULT (fndecl);
4536 if (!abstract_p && aggregate_value_p (result, fndecl))
4538 #ifdef PCC_STATIC_STRUCT_RETURN
4539 cfun->returns_pcc_struct = 1;
4540 #endif
4541 cfun->returns_struct = 1;
4544 cfun->stdarg = stdarg_p (fntype);
4546 /* Assume all registers in stdarg functions need to be saved. */
4547 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4548 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4550 /* ??? This could be set on a per-function basis by the front-end
4551 but is this worth the hassle? */
4552 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4553 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4557 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4558 instead of just setting it. */
4560 void
4561 push_struct_function (tree fndecl)
4563 /* When in_dummy_function we might be in the middle of a pop_cfun and
4564 current_function_decl and cfun may not match. */
4565 gcc_assert (in_dummy_function
4566 || (!cfun && !current_function_decl)
4567 || (cfun && current_function_decl == cfun->decl));
4568 cfun_stack.safe_push (cfun);
4569 current_function_decl = fndecl;
4570 allocate_struct_function (fndecl, false);
4573 /* Reset crtl and other non-struct-function variables to defaults as
4574 appropriate for emitting rtl at the start of a function. */
4576 static void
4577 prepare_function_start (void)
4579 gcc_assert (!crtl->emit.x_last_insn);
4580 init_temp_slots ();
4581 init_emit ();
4582 init_varasm_status ();
4583 init_expr ();
4584 default_rtl_profile ();
4586 if (flag_stack_usage_info)
4588 cfun->su = ggc_cleared_alloc<stack_usage> ();
4589 cfun->su->static_stack_size = -1;
4592 cse_not_expected = ! optimize;
4594 /* Caller save not needed yet. */
4595 caller_save_needed = 0;
4597 /* We haven't done register allocation yet. */
4598 reg_renumber = 0;
4600 /* Indicate that we have not instantiated virtual registers yet. */
4601 virtuals_instantiated = 0;
4603 /* Indicate that we want CONCATs now. */
4604 generating_concat_p = 1;
4606 /* Indicate we have no need of a frame pointer yet. */
4607 frame_pointer_needed = 0;
4610 /* Initialize the rtl expansion mechanism so that we can do simple things
4611 like generate sequences. This is used to provide a context during global
4612 initialization of some passes. You must call expand_dummy_function_end
4613 to exit this context. */
4615 void
4616 init_dummy_function_start (void)
4618 gcc_assert (!in_dummy_function);
4619 in_dummy_function = true;
4620 push_struct_function (NULL_TREE);
4621 prepare_function_start ();
4624 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4625 and initialize static variables for generating RTL for the statements
4626 of the function. */
4628 void
4629 init_function_start (tree subr)
4631 if (subr && DECL_STRUCT_FUNCTION (subr))
4632 set_cfun (DECL_STRUCT_FUNCTION (subr));
4633 else
4634 allocate_struct_function (subr, false);
4636 /* Initialize backend, if needed. */
4637 initialize_rtl ();
4639 prepare_function_start ();
4640 decide_function_section (subr);
4642 /* Warn if this value is an aggregate type,
4643 regardless of which calling convention we are using for it. */
4644 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4645 warning (OPT_Waggregate_return, "function returns an aggregate");
4648 /* Expand code to verify the stack_protect_guard. This is invoked at
4649 the end of a function to be protected. */
4651 #ifndef HAVE_stack_protect_test
4652 # define HAVE_stack_protect_test 0
4653 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4654 #endif
4656 void
4657 stack_protect_epilogue (void)
4659 tree guard_decl = targetm.stack_protect_guard ();
4660 rtx label = gen_label_rtx ();
4661 rtx x, y, tmp;
4663 x = expand_normal (crtl->stack_protect_guard);
4664 y = expand_normal (guard_decl);
4666 /* Allow the target to compare Y with X without leaking either into
4667 a register. */
4668 switch ((int) (HAVE_stack_protect_test != 0))
4670 case 1:
4671 tmp = gen_stack_protect_test (x, y, label);
4672 if (tmp)
4674 emit_insn (tmp);
4675 break;
4677 /* FALLTHRU */
4679 default:
4680 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4681 break;
4684 /* The noreturn predictor has been moved to the tree level. The rtl-level
4685 predictors estimate this branch about 20%, which isn't enough to get
4686 things moved out of line. Since this is the only extant case of adding
4687 a noreturn function at the rtl level, it doesn't seem worth doing ought
4688 except adding the prediction by hand. */
4689 tmp = get_last_insn ();
4690 if (JUMP_P (tmp))
4691 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4693 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4694 free_temp_slots ();
4695 emit_label (label);
4698 /* Start the RTL for a new function, and set variables used for
4699 emitting RTL.
4700 SUBR is the FUNCTION_DECL node.
4701 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4702 the function's parameters, which must be run at any return statement. */
4704 void
4705 expand_function_start (tree subr)
4707 /* Make sure volatile mem refs aren't considered
4708 valid operands of arithmetic insns. */
4709 init_recog_no_volatile ();
4711 crtl->profile
4712 = (profile_flag
4713 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4715 crtl->limit_stack
4716 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4718 /* Make the label for return statements to jump to. Do not special
4719 case machines with special return instructions -- they will be
4720 handled later during jump, ifcvt, or epilogue creation. */
4721 return_label = gen_label_rtx ();
4723 /* Initialize rtx used to return the value. */
4724 /* Do this before assign_parms so that we copy the struct value address
4725 before any library calls that assign parms might generate. */
4727 /* Decide whether to return the value in memory or in a register. */
4728 if (aggregate_value_p (DECL_RESULT (subr), subr))
4730 /* Returning something that won't go in a register. */
4731 rtx value_address = 0;
4733 #ifdef PCC_STATIC_STRUCT_RETURN
4734 if (cfun->returns_pcc_struct)
4736 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4737 value_address = assemble_static_space (size);
4739 else
4740 #endif
4742 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4743 /* Expect to be passed the address of a place to store the value.
4744 If it is passed as an argument, assign_parms will take care of
4745 it. */
4746 if (sv)
4748 value_address = gen_reg_rtx (Pmode);
4749 emit_move_insn (value_address, sv);
4752 if (value_address)
4754 rtx x = value_address;
4755 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4757 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4758 set_mem_attributes (x, DECL_RESULT (subr), 1);
4760 SET_DECL_RTL (DECL_RESULT (subr), x);
4763 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4764 /* If return mode is void, this decl rtl should not be used. */
4765 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4766 else
4768 /* Compute the return values into a pseudo reg, which we will copy
4769 into the true return register after the cleanups are done. */
4770 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4771 if (TYPE_MODE (return_type) != BLKmode
4772 && targetm.calls.return_in_msb (return_type))
4773 /* expand_function_end will insert the appropriate padding in
4774 this case. Use the return value's natural (unpadded) mode
4775 within the function proper. */
4776 SET_DECL_RTL (DECL_RESULT (subr),
4777 gen_reg_rtx (TYPE_MODE (return_type)));
4778 else
4780 /* In order to figure out what mode to use for the pseudo, we
4781 figure out what the mode of the eventual return register will
4782 actually be, and use that. */
4783 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4785 /* Structures that are returned in registers are not
4786 aggregate_value_p, so we may see a PARALLEL or a REG. */
4787 if (REG_P (hard_reg))
4788 SET_DECL_RTL (DECL_RESULT (subr),
4789 gen_reg_rtx (GET_MODE (hard_reg)));
4790 else
4792 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4793 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4797 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4798 result to the real return register(s). */
4799 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4802 /* Initialize rtx for parameters and local variables.
4803 In some cases this requires emitting insns. */
4804 assign_parms (subr);
4806 /* If function gets a static chain arg, store it. */
4807 if (cfun->static_chain_decl)
4809 tree parm = cfun->static_chain_decl;
4810 rtx local, chain, insn;
4812 local = gen_reg_rtx (Pmode);
4813 chain = targetm.calls.static_chain (current_function_decl, true);
4815 set_decl_incoming_rtl (parm, chain, false);
4816 SET_DECL_RTL (parm, local);
4817 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4819 insn = emit_move_insn (local, chain);
4821 /* Mark the register as eliminable, similar to parameters. */
4822 if (MEM_P (chain)
4823 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4824 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4826 /* If we aren't optimizing, save the static chain onto the stack. */
4827 if (!optimize)
4829 tree saved_static_chain_decl
4830 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4831 DECL_NAME (parm), TREE_TYPE (parm));
4832 rtx saved_static_chain_rtx
4833 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4834 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4835 emit_move_insn (saved_static_chain_rtx, chain);
4836 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4837 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4841 /* If the function receives a non-local goto, then store the
4842 bits we need to restore the frame pointer. */
4843 if (cfun->nonlocal_goto_save_area)
4845 tree t_save;
4846 rtx r_save;
4848 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4849 gcc_assert (DECL_RTL_SET_P (var));
4851 t_save = build4 (ARRAY_REF,
4852 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4853 cfun->nonlocal_goto_save_area,
4854 integer_zero_node, NULL_TREE, NULL_TREE);
4855 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4856 gcc_assert (GET_MODE (r_save) == Pmode);
4858 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4859 update_nonlocal_goto_save_area ();
4862 /* The following was moved from init_function_start.
4863 The move is supposed to make sdb output more accurate. */
4864 /* Indicate the beginning of the function body,
4865 as opposed to parm setup. */
4866 emit_note (NOTE_INSN_FUNCTION_BEG);
4868 gcc_assert (NOTE_P (get_last_insn ()));
4870 parm_birth_insn = get_last_insn ();
4872 if (crtl->profile)
4874 #ifdef PROFILE_HOOK
4875 PROFILE_HOOK (current_function_funcdef_no);
4876 #endif
4879 /* If we are doing generic stack checking, the probe should go here. */
4880 if (flag_stack_check == GENERIC_STACK_CHECK)
4881 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4884 /* Undo the effects of init_dummy_function_start. */
4885 void
4886 expand_dummy_function_end (void)
4888 gcc_assert (in_dummy_function);
4890 /* End any sequences that failed to be closed due to syntax errors. */
4891 while (in_sequence_p ())
4892 end_sequence ();
4894 /* Outside function body, can't compute type's actual size
4895 until next function's body starts. */
4897 free_after_parsing (cfun);
4898 free_after_compilation (cfun);
4899 pop_cfun ();
4900 in_dummy_function = false;
4903 /* Call DOIT for each hard register used as a return value from
4904 the current function. */
4906 void
4907 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4909 rtx outgoing = crtl->return_rtx;
4911 if (! outgoing)
4912 return;
4914 if (REG_P (outgoing))
4915 (*doit) (outgoing, arg);
4916 else if (GET_CODE (outgoing) == PARALLEL)
4918 int i;
4920 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4922 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4924 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4925 (*doit) (x, arg);
4930 static void
4931 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4933 emit_clobber (reg);
4936 void
4937 clobber_return_register (void)
4939 diddle_return_value (do_clobber_return_reg, NULL);
4941 /* In case we do use pseudo to return value, clobber it too. */
4942 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4944 tree decl_result = DECL_RESULT (current_function_decl);
4945 rtx decl_rtl = DECL_RTL (decl_result);
4946 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4948 do_clobber_return_reg (decl_rtl, NULL);
4953 static void
4954 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4956 emit_use (reg);
4959 static void
4960 use_return_register (void)
4962 diddle_return_value (do_use_return_reg, NULL);
4965 /* Possibly warn about unused parameters. */
4966 void
4967 do_warn_unused_parameter (tree fn)
4969 tree decl;
4971 for (decl = DECL_ARGUMENTS (fn);
4972 decl; decl = DECL_CHAIN (decl))
4973 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4974 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4975 && !TREE_NO_WARNING (decl))
4976 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4979 /* Set the location of the insn chain starting at INSN to LOC. */
4981 static void
4982 set_insn_locations (rtx insn, int loc)
4984 while (insn != NULL_RTX)
4986 if (INSN_P (insn))
4987 INSN_LOCATION (insn) = loc;
4988 insn = NEXT_INSN (insn);
4992 /* Generate RTL for the end of the current function. */
4994 void
4995 expand_function_end (void)
4997 rtx clobber_after;
4999 /* If arg_pointer_save_area was referenced only from a nested
5000 function, we will not have initialized it yet. Do that now. */
5001 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5002 get_arg_pointer_save_area ();
5004 /* If we are doing generic stack checking and this function makes calls,
5005 do a stack probe at the start of the function to ensure we have enough
5006 space for another stack frame. */
5007 if (flag_stack_check == GENERIC_STACK_CHECK)
5009 rtx insn, seq;
5011 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5012 if (CALL_P (insn))
5014 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5015 start_sequence ();
5016 if (STACK_CHECK_MOVING_SP)
5017 anti_adjust_stack_and_probe (max_frame_size, true);
5018 else
5019 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5020 seq = get_insns ();
5021 end_sequence ();
5022 set_insn_locations (seq, prologue_location);
5023 emit_insn_before (seq, stack_check_probe_note);
5024 break;
5028 /* End any sequences that failed to be closed due to syntax errors. */
5029 while (in_sequence_p ())
5030 end_sequence ();
5032 clear_pending_stack_adjust ();
5033 do_pending_stack_adjust ();
5035 /* Output a linenumber for the end of the function.
5036 SDB depends on this. */
5037 set_curr_insn_location (input_location);
5039 /* Before the return label (if any), clobber the return
5040 registers so that they are not propagated live to the rest of
5041 the function. This can only happen with functions that drop
5042 through; if there had been a return statement, there would
5043 have either been a return rtx, or a jump to the return label.
5045 We delay actual code generation after the current_function_value_rtx
5046 is computed. */
5047 clobber_after = get_last_insn ();
5049 /* Output the label for the actual return from the function. */
5050 emit_label (return_label);
5052 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5054 /* Let except.c know where it should emit the call to unregister
5055 the function context for sjlj exceptions. */
5056 if (flag_exceptions)
5057 sjlj_emit_function_exit_after (get_last_insn ());
5059 else
5061 /* We want to ensure that instructions that may trap are not
5062 moved into the epilogue by scheduling, because we don't
5063 always emit unwind information for the epilogue. */
5064 if (cfun->can_throw_non_call_exceptions)
5065 emit_insn (gen_blockage ());
5068 /* If this is an implementation of throw, do what's necessary to
5069 communicate between __builtin_eh_return and the epilogue. */
5070 expand_eh_return ();
5072 /* If scalar return value was computed in a pseudo-reg, or was a named
5073 return value that got dumped to the stack, copy that to the hard
5074 return register. */
5075 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5077 tree decl_result = DECL_RESULT (current_function_decl);
5078 rtx decl_rtl = DECL_RTL (decl_result);
5080 if (REG_P (decl_rtl)
5081 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5082 : DECL_REGISTER (decl_result))
5084 rtx real_decl_rtl = crtl->return_rtx;
5086 /* This should be set in assign_parms. */
5087 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5089 /* If this is a BLKmode structure being returned in registers,
5090 then use the mode computed in expand_return. Note that if
5091 decl_rtl is memory, then its mode may have been changed,
5092 but that crtl->return_rtx has not. */
5093 if (GET_MODE (real_decl_rtl) == BLKmode)
5094 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5096 /* If a non-BLKmode return value should be padded at the least
5097 significant end of the register, shift it left by the appropriate
5098 amount. BLKmode results are handled using the group load/store
5099 machinery. */
5100 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5101 && REG_P (real_decl_rtl)
5102 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5104 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5105 REGNO (real_decl_rtl)),
5106 decl_rtl);
5107 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5109 /* If a named return value dumped decl_return to memory, then
5110 we may need to re-do the PROMOTE_MODE signed/unsigned
5111 extension. */
5112 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5114 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5115 promote_function_mode (TREE_TYPE (decl_result),
5116 GET_MODE (decl_rtl), &unsignedp,
5117 TREE_TYPE (current_function_decl), 1);
5119 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5121 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5123 /* If expand_function_start has created a PARALLEL for decl_rtl,
5124 move the result to the real return registers. Otherwise, do
5125 a group load from decl_rtl for a named return. */
5126 if (GET_CODE (decl_rtl) == PARALLEL)
5127 emit_group_move (real_decl_rtl, decl_rtl);
5128 else
5129 emit_group_load (real_decl_rtl, decl_rtl,
5130 TREE_TYPE (decl_result),
5131 int_size_in_bytes (TREE_TYPE (decl_result)));
5133 /* In the case of complex integer modes smaller than a word, we'll
5134 need to generate some non-trivial bitfield insertions. Do that
5135 on a pseudo and not the hard register. */
5136 else if (GET_CODE (decl_rtl) == CONCAT
5137 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5138 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5140 int old_generating_concat_p;
5141 rtx tmp;
5143 old_generating_concat_p = generating_concat_p;
5144 generating_concat_p = 0;
5145 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5146 generating_concat_p = old_generating_concat_p;
5148 emit_move_insn (tmp, decl_rtl);
5149 emit_move_insn (real_decl_rtl, tmp);
5151 else
5152 emit_move_insn (real_decl_rtl, decl_rtl);
5156 /* If returning a structure, arrange to return the address of the value
5157 in a place where debuggers expect to find it.
5159 If returning a structure PCC style,
5160 the caller also depends on this value.
5161 And cfun->returns_pcc_struct is not necessarily set. */
5162 if (cfun->returns_struct
5163 || cfun->returns_pcc_struct)
5165 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5166 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5167 rtx outgoing;
5169 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5170 type = TREE_TYPE (type);
5171 else
5172 value_address = XEXP (value_address, 0);
5174 outgoing = targetm.calls.function_value (build_pointer_type (type),
5175 current_function_decl, true);
5177 /* Mark this as a function return value so integrate will delete the
5178 assignment and USE below when inlining this function. */
5179 REG_FUNCTION_VALUE_P (outgoing) = 1;
5181 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5182 value_address = convert_memory_address (GET_MODE (outgoing),
5183 value_address);
5185 emit_move_insn (outgoing, value_address);
5187 /* Show return register used to hold result (in this case the address
5188 of the result. */
5189 crtl->return_rtx = outgoing;
5192 /* Emit the actual code to clobber return register. Don't emit
5193 it if clobber_after is a barrier, then the previous basic block
5194 certainly doesn't fall thru into the exit block. */
5195 if (!BARRIER_P (clobber_after))
5197 rtx seq;
5199 start_sequence ();
5200 clobber_return_register ();
5201 seq = get_insns ();
5202 end_sequence ();
5204 emit_insn_after (seq, clobber_after);
5207 /* Output the label for the naked return from the function. */
5208 if (naked_return_label)
5209 emit_label (naked_return_label);
5211 /* @@@ This is a kludge. We want to ensure that instructions that
5212 may trap are not moved into the epilogue by scheduling, because
5213 we don't always emit unwind information for the epilogue. */
5214 if (cfun->can_throw_non_call_exceptions
5215 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5216 emit_insn (gen_blockage ());
5218 /* If stack protection is enabled for this function, check the guard. */
5219 if (crtl->stack_protect_guard)
5220 stack_protect_epilogue ();
5222 /* If we had calls to alloca, and this machine needs
5223 an accurate stack pointer to exit the function,
5224 insert some code to save and restore the stack pointer. */
5225 if (! EXIT_IGNORE_STACK
5226 && cfun->calls_alloca)
5228 rtx tem = 0, seq;
5230 start_sequence ();
5231 emit_stack_save (SAVE_FUNCTION, &tem);
5232 seq = get_insns ();
5233 end_sequence ();
5234 emit_insn_before (seq, parm_birth_insn);
5236 emit_stack_restore (SAVE_FUNCTION, tem);
5239 /* ??? This should no longer be necessary since stupid is no longer with
5240 us, but there are some parts of the compiler (eg reload_combine, and
5241 sh mach_dep_reorg) that still try and compute their own lifetime info
5242 instead of using the general framework. */
5243 use_return_register ();
5247 get_arg_pointer_save_area (void)
5249 rtx ret = arg_pointer_save_area;
5251 if (! ret)
5253 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5254 arg_pointer_save_area = ret;
5257 if (! crtl->arg_pointer_save_area_init)
5259 rtx seq;
5261 /* Save the arg pointer at the beginning of the function. The
5262 generated stack slot may not be a valid memory address, so we
5263 have to check it and fix it if necessary. */
5264 start_sequence ();
5265 emit_move_insn (validize_mem (copy_rtx (ret)),
5266 crtl->args.internal_arg_pointer);
5267 seq = get_insns ();
5268 end_sequence ();
5270 push_topmost_sequence ();
5271 emit_insn_after (seq, entry_of_function ());
5272 pop_topmost_sequence ();
5274 crtl->arg_pointer_save_area_init = true;
5277 return ret;
5280 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5281 for the first time. */
5283 static void
5284 record_insns (rtx insns, rtx end, htab_t *hashp)
5286 rtx tmp;
5287 htab_t hash = *hashp;
5289 if (hash == NULL)
5290 *hashp = hash
5291 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5293 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5295 void **slot = htab_find_slot (hash, tmp, INSERT);
5296 gcc_assert (*slot == NULL);
5297 *slot = tmp;
5301 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5302 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5303 insn, then record COPY as well. */
5305 void
5306 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5308 htab_t hash;
5309 void **slot;
5311 hash = epilogue_insn_hash;
5312 if (!hash || !htab_find (hash, insn))
5314 hash = prologue_insn_hash;
5315 if (!hash || !htab_find (hash, insn))
5316 return;
5319 slot = htab_find_slot (hash, copy, INSERT);
5320 gcc_assert (*slot == NULL);
5321 *slot = copy;
5324 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5325 we can be running after reorg, SEQUENCE rtl is possible. */
5327 static bool
5328 contains (const_rtx insn, htab_t hash)
5330 if (hash == NULL)
5331 return false;
5333 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5335 int i;
5336 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5337 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5338 return true;
5339 return false;
5342 return htab_find (hash, insn) != NULL;
5346 prologue_epilogue_contains (const_rtx insn)
5348 if (contains (insn, prologue_insn_hash))
5349 return 1;
5350 if (contains (insn, epilogue_insn_hash))
5351 return 1;
5352 return 0;
5355 #ifdef HAVE_return
5356 /* Insert use of return register before the end of BB. */
5358 static void
5359 emit_use_return_register_into_block (basic_block bb)
5361 rtx seq, insn;
5362 start_sequence ();
5363 use_return_register ();
5364 seq = get_insns ();
5365 end_sequence ();
5366 insn = BB_END (bb);
5367 #ifdef HAVE_cc0
5368 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5369 insn = prev_cc0_setter (insn);
5370 #endif
5371 emit_insn_before (seq, insn);
5375 /* Create a return pattern, either simple_return or return, depending on
5376 simple_p. */
5378 static rtx
5379 gen_return_pattern (bool simple_p)
5381 #ifdef HAVE_simple_return
5382 return simple_p ? gen_simple_return () : gen_return ();
5383 #else
5384 gcc_assert (!simple_p);
5385 return gen_return ();
5386 #endif
5389 /* Insert an appropriate return pattern at the end of block BB. This
5390 also means updating block_for_insn appropriately. SIMPLE_P is
5391 the same as in gen_return_pattern and passed to it. */
5393 void
5394 emit_return_into_block (bool simple_p, basic_block bb)
5396 rtx jump, pat;
5397 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5398 pat = PATTERN (jump);
5399 if (GET_CODE (pat) == PARALLEL)
5400 pat = XVECEXP (pat, 0, 0);
5401 gcc_assert (ANY_RETURN_P (pat));
5402 JUMP_LABEL (jump) = pat;
5404 #endif
5406 /* Set JUMP_LABEL for a return insn. */
5408 void
5409 set_return_jump_label (rtx returnjump)
5411 rtx pat = PATTERN (returnjump);
5412 if (GET_CODE (pat) == PARALLEL)
5413 pat = XVECEXP (pat, 0, 0);
5414 if (ANY_RETURN_P (pat))
5415 JUMP_LABEL (returnjump) = pat;
5416 else
5417 JUMP_LABEL (returnjump) = ret_rtx;
5420 #if defined (HAVE_return) || defined (HAVE_simple_return)
5421 /* Return true if there are any active insns between HEAD and TAIL. */
5422 bool
5423 active_insn_between (rtx head, rtx tail)
5425 while (tail)
5427 if (active_insn_p (tail))
5428 return true;
5429 if (tail == head)
5430 return false;
5431 tail = PREV_INSN (tail);
5433 return false;
5436 /* LAST_BB is a block that exits, and empty of active instructions.
5437 Examine its predecessors for jumps that can be converted to
5438 (conditional) returns. */
5439 vec<edge>
5440 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5441 vec<edge> unconverted ATTRIBUTE_UNUSED)
5443 int i;
5444 basic_block bb;
5445 rtx label;
5446 edge_iterator ei;
5447 edge e;
5448 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5450 FOR_EACH_EDGE (e, ei, last_bb->preds)
5451 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5452 src_bbs.quick_push (e->src);
5454 label = BB_HEAD (last_bb);
5456 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5458 rtx jump = BB_END (bb);
5460 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5461 continue;
5463 e = find_edge (bb, last_bb);
5465 /* If we have an unconditional jump, we can replace that
5466 with a simple return instruction. */
5467 if (simplejump_p (jump))
5469 /* The use of the return register might be present in the exit
5470 fallthru block. Either:
5471 - removing the use is safe, and we should remove the use in
5472 the exit fallthru block, or
5473 - removing the use is not safe, and we should add it here.
5474 For now, we conservatively choose the latter. Either of the
5475 2 helps in crossjumping. */
5476 emit_use_return_register_into_block (bb);
5478 emit_return_into_block (simple_p, bb);
5479 delete_insn (jump);
5482 /* If we have a conditional jump branching to the last
5483 block, we can try to replace that with a conditional
5484 return instruction. */
5485 else if (condjump_p (jump))
5487 rtx dest;
5489 if (simple_p)
5490 dest = simple_return_rtx;
5491 else
5492 dest = ret_rtx;
5493 if (!redirect_jump (jump, dest, 0))
5495 #ifdef HAVE_simple_return
5496 if (simple_p)
5498 if (dump_file)
5499 fprintf (dump_file,
5500 "Failed to redirect bb %d branch.\n", bb->index);
5501 unconverted.safe_push (e);
5503 #endif
5504 continue;
5507 /* See comment in simplejump_p case above. */
5508 emit_use_return_register_into_block (bb);
5510 /* If this block has only one successor, it both jumps
5511 and falls through to the fallthru block, so we can't
5512 delete the edge. */
5513 if (single_succ_p (bb))
5514 continue;
5516 else
5518 #ifdef HAVE_simple_return
5519 if (simple_p)
5521 if (dump_file)
5522 fprintf (dump_file,
5523 "Failed to redirect bb %d branch.\n", bb->index);
5524 unconverted.safe_push (e);
5526 #endif
5527 continue;
5530 /* Fix up the CFG for the successful change we just made. */
5531 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5532 e->flags &= ~EDGE_CROSSING;
5534 src_bbs.release ();
5535 return unconverted;
5538 /* Emit a return insn for the exit fallthru block. */
5539 basic_block
5540 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5542 basic_block last_bb = exit_fallthru_edge->src;
5544 if (JUMP_P (BB_END (last_bb)))
5546 last_bb = split_edge (exit_fallthru_edge);
5547 exit_fallthru_edge = single_succ_edge (last_bb);
5549 emit_barrier_after (BB_END (last_bb));
5550 emit_return_into_block (simple_p, last_bb);
5551 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5552 return last_bb;
5554 #endif
5557 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5558 this into place with notes indicating where the prologue ends and where
5559 the epilogue begins. Update the basic block information when possible.
5561 Notes on epilogue placement:
5562 There are several kinds of edges to the exit block:
5563 * a single fallthru edge from LAST_BB
5564 * possibly, edges from blocks containing sibcalls
5565 * possibly, fake edges from infinite loops
5567 The epilogue is always emitted on the fallthru edge from the last basic
5568 block in the function, LAST_BB, into the exit block.
5570 If LAST_BB is empty except for a label, it is the target of every
5571 other basic block in the function that ends in a return. If a
5572 target has a return or simple_return pattern (possibly with
5573 conditional variants), these basic blocks can be changed so that a
5574 return insn is emitted into them, and their target is adjusted to
5575 the real exit block.
5577 Notes on shrink wrapping: We implement a fairly conservative
5578 version of shrink-wrapping rather than the textbook one. We only
5579 generate a single prologue and a single epilogue. This is
5580 sufficient to catch a number of interesting cases involving early
5581 exits.
5583 First, we identify the blocks that require the prologue to occur before
5584 them. These are the ones that modify a call-saved register, or reference
5585 any of the stack or frame pointer registers. To simplify things, we then
5586 mark everything reachable from these blocks as also requiring a prologue.
5587 This takes care of loops automatically, and avoids the need to examine
5588 whether MEMs reference the frame, since it is sufficient to check for
5589 occurrences of the stack or frame pointer.
5591 We then compute the set of blocks for which the need for a prologue
5592 is anticipatable (borrowing terminology from the shrink-wrapping
5593 description in Muchnick's book). These are the blocks which either
5594 require a prologue themselves, or those that have only successors
5595 where the prologue is anticipatable. The prologue needs to be
5596 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5597 is not. For the moment, we ensure that only one such edge exists.
5599 The epilogue is placed as described above, but we make a
5600 distinction between inserting return and simple_return patterns
5601 when modifying other blocks that end in a return. Blocks that end
5602 in a sibcall omit the sibcall_epilogue if the block is not in
5603 ANTIC. */
5605 static void
5606 thread_prologue_and_epilogue_insns (void)
5608 bool inserted;
5609 #ifdef HAVE_simple_return
5610 vec<edge> unconverted_simple_returns = vNULL;
5611 bitmap_head bb_flags;
5612 #endif
5613 rtx returnjump;
5614 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5615 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5616 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5617 edge_iterator ei;
5619 df_analyze ();
5621 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5623 inserted = false;
5624 seq = NULL_RTX;
5625 epilogue_end = NULL_RTX;
5626 returnjump = NULL_RTX;
5628 /* Can't deal with multiple successors of the entry block at the
5629 moment. Function should always have at least one entry
5630 point. */
5631 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5632 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5633 orig_entry_edge = entry_edge;
5635 split_prologue_seq = NULL_RTX;
5636 if (flag_split_stack
5637 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5638 == NULL))
5640 #ifndef HAVE_split_stack_prologue
5641 gcc_unreachable ();
5642 #else
5643 gcc_assert (HAVE_split_stack_prologue);
5645 start_sequence ();
5646 emit_insn (gen_split_stack_prologue ());
5647 split_prologue_seq = get_insns ();
5648 end_sequence ();
5650 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5651 set_insn_locations (split_prologue_seq, prologue_location);
5652 #endif
5655 prologue_seq = NULL_RTX;
5656 #ifdef HAVE_prologue
5657 if (HAVE_prologue)
5659 start_sequence ();
5660 seq = gen_prologue ();
5661 emit_insn (seq);
5663 /* Insert an explicit USE for the frame pointer
5664 if the profiling is on and the frame pointer is required. */
5665 if (crtl->profile && frame_pointer_needed)
5666 emit_use (hard_frame_pointer_rtx);
5668 /* Retain a map of the prologue insns. */
5669 record_insns (seq, NULL, &prologue_insn_hash);
5670 emit_note (NOTE_INSN_PROLOGUE_END);
5672 /* Ensure that instructions are not moved into the prologue when
5673 profiling is on. The call to the profiling routine can be
5674 emitted within the live range of a call-clobbered register. */
5675 if (!targetm.profile_before_prologue () && crtl->profile)
5676 emit_insn (gen_blockage ());
5678 prologue_seq = get_insns ();
5679 end_sequence ();
5680 set_insn_locations (prologue_seq, prologue_location);
5682 #endif
5684 #ifdef HAVE_simple_return
5685 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5687 /* Try to perform a kind of shrink-wrapping, making sure the
5688 prologue/epilogue is emitted only around those parts of the
5689 function that require it. */
5691 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5692 #endif
5694 if (split_prologue_seq != NULL_RTX)
5696 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5697 inserted = true;
5699 if (prologue_seq != NULL_RTX)
5701 insert_insn_on_edge (prologue_seq, entry_edge);
5702 inserted = true;
5705 /* If the exit block has no non-fake predecessors, we don't need
5706 an epilogue. */
5707 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5708 if ((e->flags & EDGE_FAKE) == 0)
5709 break;
5710 if (e == NULL)
5711 goto epilogue_done;
5713 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5715 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5717 #ifdef HAVE_simple_return
5718 if (entry_edge != orig_entry_edge)
5719 exit_fallthru_edge
5720 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5721 &unconverted_simple_returns,
5722 &returnjump);
5723 #endif
5724 #ifdef HAVE_return
5725 if (HAVE_return)
5727 if (exit_fallthru_edge == NULL)
5728 goto epilogue_done;
5730 if (optimize)
5732 basic_block last_bb = exit_fallthru_edge->src;
5734 if (LABEL_P (BB_HEAD (last_bb))
5735 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5736 convert_jumps_to_returns (last_bb, false, vNULL);
5738 if (EDGE_COUNT (last_bb->preds) != 0
5739 && single_succ_p (last_bb))
5741 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5742 epilogue_end = returnjump = BB_END (last_bb);
5743 #ifdef HAVE_simple_return
5744 /* Emitting the return may add a basic block.
5745 Fix bb_flags for the added block. */
5746 if (last_bb != exit_fallthru_edge->src)
5747 bitmap_set_bit (&bb_flags, last_bb->index);
5748 #endif
5749 goto epilogue_done;
5753 #endif
5755 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5756 this marker for the splits of EH_RETURN patterns, and nothing else
5757 uses the flag in the meantime. */
5758 epilogue_completed = 1;
5760 #ifdef HAVE_eh_return
5761 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5762 some targets, these get split to a special version of the epilogue
5763 code. In order to be able to properly annotate these with unwind
5764 info, try to split them now. If we get a valid split, drop an
5765 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5766 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5768 rtx prev, last, trial;
5770 if (e->flags & EDGE_FALLTHRU)
5771 continue;
5772 last = BB_END (e->src);
5773 if (!eh_returnjump_p (last))
5774 continue;
5776 prev = PREV_INSN (last);
5777 trial = try_split (PATTERN (last), last, 1);
5778 if (trial == last)
5779 continue;
5781 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5782 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5784 #endif
5786 /* If nothing falls through into the exit block, we don't need an
5787 epilogue. */
5789 if (exit_fallthru_edge == NULL)
5790 goto epilogue_done;
5792 #ifdef HAVE_epilogue
5793 if (HAVE_epilogue)
5795 start_sequence ();
5796 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5797 seq = gen_epilogue ();
5798 if (seq)
5799 emit_jump_insn (seq);
5801 /* Retain a map of the epilogue insns. */
5802 record_insns (seq, NULL, &epilogue_insn_hash);
5803 set_insn_locations (seq, epilogue_location);
5805 seq = get_insns ();
5806 returnjump = get_last_insn ();
5807 end_sequence ();
5809 insert_insn_on_edge (seq, exit_fallthru_edge);
5810 inserted = true;
5812 if (JUMP_P (returnjump))
5813 set_return_jump_label (returnjump);
5815 else
5816 #endif
5818 basic_block cur_bb;
5820 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5821 goto epilogue_done;
5822 /* We have a fall-through edge to the exit block, the source is not
5823 at the end of the function, and there will be an assembler epilogue
5824 at the end of the function.
5825 We can't use force_nonfallthru here, because that would try to
5826 use return. Inserting a jump 'by hand' is extremely messy, so
5827 we take advantage of cfg_layout_finalize using
5828 fixup_fallthru_exit_predecessor. */
5829 cfg_layout_initialize (0);
5830 FOR_EACH_BB_FN (cur_bb, cfun)
5831 if (cur_bb->index >= NUM_FIXED_BLOCKS
5832 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5833 cur_bb->aux = cur_bb->next_bb;
5834 cfg_layout_finalize ();
5837 epilogue_done:
5839 default_rtl_profile ();
5841 if (inserted)
5843 sbitmap blocks;
5845 commit_edge_insertions ();
5847 /* Look for basic blocks within the prologue insns. */
5848 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5849 bitmap_clear (blocks);
5850 bitmap_set_bit (blocks, entry_edge->dest->index);
5851 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5852 find_many_sub_basic_blocks (blocks);
5853 sbitmap_free (blocks);
5855 /* The epilogue insns we inserted may cause the exit edge to no longer
5856 be fallthru. */
5857 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5859 if (((e->flags & EDGE_FALLTHRU) != 0)
5860 && returnjump_p (BB_END (e->src)))
5861 e->flags &= ~EDGE_FALLTHRU;
5865 #ifdef HAVE_simple_return
5866 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5867 unconverted_simple_returns);
5868 #endif
5870 #ifdef HAVE_sibcall_epilogue
5871 /* Emit sibling epilogues before any sibling call sites. */
5872 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5873 ei_safe_edge (ei));
5876 basic_block bb = e->src;
5877 rtx insn = BB_END (bb);
5878 rtx ep_seq;
5880 if (!CALL_P (insn)
5881 || ! SIBLING_CALL_P (insn)
5882 #ifdef HAVE_simple_return
5883 || (entry_edge != orig_entry_edge
5884 && !bitmap_bit_p (&bb_flags, bb->index))
5885 #endif
5888 ei_next (&ei);
5889 continue;
5892 ep_seq = gen_sibcall_epilogue ();
5893 if (ep_seq)
5895 start_sequence ();
5896 emit_note (NOTE_INSN_EPILOGUE_BEG);
5897 emit_insn (ep_seq);
5898 seq = get_insns ();
5899 end_sequence ();
5901 /* Retain a map of the epilogue insns. Used in life analysis to
5902 avoid getting rid of sibcall epilogue insns. Do this before we
5903 actually emit the sequence. */
5904 record_insns (seq, NULL, &epilogue_insn_hash);
5905 set_insn_locations (seq, epilogue_location);
5907 emit_insn_before (seq, insn);
5909 ei_next (&ei);
5911 #endif
5913 #ifdef HAVE_epilogue
5914 if (epilogue_end)
5916 rtx insn, next;
5918 /* Similarly, move any line notes that appear after the epilogue.
5919 There is no need, however, to be quite so anal about the existence
5920 of such a note. Also possibly move
5921 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5922 info generation. */
5923 for (insn = epilogue_end; insn; insn = next)
5925 next = NEXT_INSN (insn);
5926 if (NOTE_P (insn)
5927 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5928 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5931 #endif
5933 #ifdef HAVE_simple_return
5934 bitmap_clear (&bb_flags);
5935 #endif
5937 /* Threading the prologue and epilogue changes the artificial refs
5938 in the entry and exit blocks. */
5939 epilogue_completed = 1;
5940 df_update_entry_exit_and_calls ();
5943 /* Reposition the prologue-end and epilogue-begin notes after
5944 instruction scheduling. */
5946 void
5947 reposition_prologue_and_epilogue_notes (void)
5949 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5950 || defined (HAVE_sibcall_epilogue)
5951 /* Since the hash table is created on demand, the fact that it is
5952 non-null is a signal that it is non-empty. */
5953 if (prologue_insn_hash != NULL)
5955 size_t len = htab_elements (prologue_insn_hash);
5956 rtx insn, last = NULL, note = NULL;
5958 /* Scan from the beginning until we reach the last prologue insn. */
5959 /* ??? While we do have the CFG intact, there are two problems:
5960 (1) The prologue can contain loops (typically probing the stack),
5961 which means that the end of the prologue isn't in the first bb.
5962 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5963 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5965 if (NOTE_P (insn))
5967 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5968 note = insn;
5970 else if (contains (insn, prologue_insn_hash))
5972 last = insn;
5973 if (--len == 0)
5974 break;
5978 if (last)
5980 if (note == NULL)
5982 /* Scan forward looking for the PROLOGUE_END note. It should
5983 be right at the beginning of the block, possibly with other
5984 insn notes that got moved there. */
5985 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5987 if (NOTE_P (note)
5988 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5989 break;
5993 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5994 if (LABEL_P (last))
5995 last = NEXT_INSN (last);
5996 reorder_insns (note, note, last);
6000 if (epilogue_insn_hash != NULL)
6002 edge_iterator ei;
6003 edge e;
6005 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6007 rtx insn, first = NULL, note = NULL;
6008 basic_block bb = e->src;
6010 /* Scan from the beginning until we reach the first epilogue insn. */
6011 FOR_BB_INSNS (bb, insn)
6013 if (NOTE_P (insn))
6015 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6017 note = insn;
6018 if (first != NULL)
6019 break;
6022 else if (first == NULL && contains (insn, epilogue_insn_hash))
6024 first = insn;
6025 if (note != NULL)
6026 break;
6030 if (note)
6032 /* If the function has a single basic block, and no real
6033 epilogue insns (e.g. sibcall with no cleanup), the
6034 epilogue note can get scheduled before the prologue
6035 note. If we have frame related prologue insns, having
6036 them scanned during the epilogue will result in a crash.
6037 In this case re-order the epilogue note to just before
6038 the last insn in the block. */
6039 if (first == NULL)
6040 first = BB_END (bb);
6042 if (PREV_INSN (first) != note)
6043 reorder_insns (note, note, PREV_INSN (first));
6047 #endif /* HAVE_prologue or HAVE_epilogue */
6050 /* Returns the name of function declared by FNDECL. */
6051 const char *
6052 fndecl_name (tree fndecl)
6054 if (fndecl == NULL)
6055 return "(nofn)";
6056 return lang_hooks.decl_printable_name (fndecl, 2);
6059 /* Returns the name of function FN. */
6060 const char *
6061 function_name (struct function *fn)
6063 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6064 return fndecl_name (fndecl);
6067 /* Returns the name of the current function. */
6068 const char *
6069 current_function_name (void)
6071 return function_name (cfun);
6075 static unsigned int
6076 rest_of_handle_check_leaf_regs (void)
6078 #ifdef LEAF_REGISTERS
6079 crtl->uses_only_leaf_regs
6080 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6081 #endif
6082 return 0;
6085 /* Insert a TYPE into the used types hash table of CFUN. */
6087 static void
6088 used_types_insert_helper (tree type, struct function *func)
6090 if (type != NULL && func != NULL)
6092 void **slot;
6094 if (func->used_types_hash == NULL)
6095 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6096 htab_eq_pointer, NULL);
6097 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6098 if (*slot == NULL)
6099 *slot = type;
6103 /* Given a type, insert it into the used hash table in cfun. */
6104 void
6105 used_types_insert (tree t)
6107 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6108 if (TYPE_NAME (t))
6109 break;
6110 else
6111 t = TREE_TYPE (t);
6112 if (TREE_CODE (t) == ERROR_MARK)
6113 return;
6114 if (TYPE_NAME (t) == NULL_TREE
6115 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6116 t = TYPE_MAIN_VARIANT (t);
6117 if (debug_info_level > DINFO_LEVEL_NONE)
6119 if (cfun)
6120 used_types_insert_helper (t, cfun);
6121 else
6123 /* So this might be a type referenced by a global variable.
6124 Record that type so that we can later decide to emit its
6125 debug information. */
6126 vec_safe_push (types_used_by_cur_var_decl, t);
6131 /* Helper to Hash a struct types_used_by_vars_entry. */
6133 static hashval_t
6134 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6136 gcc_assert (entry && entry->var_decl && entry->type);
6138 return iterative_hash_object (entry->type,
6139 iterative_hash_object (entry->var_decl, 0));
6142 /* Hash function of the types_used_by_vars_entry hash table. */
6144 hashval_t
6145 types_used_by_vars_do_hash (const void *x)
6147 const struct types_used_by_vars_entry *entry =
6148 (const struct types_used_by_vars_entry *) x;
6150 return hash_types_used_by_vars_entry (entry);
6153 /*Equality function of the types_used_by_vars_entry hash table. */
6156 types_used_by_vars_eq (const void *x1, const void *x2)
6158 const struct types_used_by_vars_entry *e1 =
6159 (const struct types_used_by_vars_entry *) x1;
6160 const struct types_used_by_vars_entry *e2 =
6161 (const struct types_used_by_vars_entry *)x2;
6163 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6166 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6168 void
6169 types_used_by_var_decl_insert (tree type, tree var_decl)
6171 if (type != NULL && var_decl != NULL)
6173 void **slot;
6174 struct types_used_by_vars_entry e;
6175 e.var_decl = var_decl;
6176 e.type = type;
6177 if (types_used_by_vars_hash == NULL)
6178 types_used_by_vars_hash =
6179 htab_create_ggc (37, types_used_by_vars_do_hash,
6180 types_used_by_vars_eq, NULL);
6181 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6182 hash_types_used_by_vars_entry (&e), INSERT);
6183 if (*slot == NULL)
6185 struct types_used_by_vars_entry *entry;
6186 entry = ggc_alloc<types_used_by_vars_entry> ();
6187 entry->type = type;
6188 entry->var_decl = var_decl;
6189 *slot = entry;
6194 namespace {
6196 const pass_data pass_data_leaf_regs =
6198 RTL_PASS, /* type */
6199 "*leaf_regs", /* name */
6200 OPTGROUP_NONE, /* optinfo_flags */
6201 TV_NONE, /* tv_id */
6202 0, /* properties_required */
6203 0, /* properties_provided */
6204 0, /* properties_destroyed */
6205 0, /* todo_flags_start */
6206 0, /* todo_flags_finish */
6209 class pass_leaf_regs : public rtl_opt_pass
6211 public:
6212 pass_leaf_regs (gcc::context *ctxt)
6213 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6216 /* opt_pass methods: */
6217 virtual unsigned int execute (function *)
6219 return rest_of_handle_check_leaf_regs ();
6222 }; // class pass_leaf_regs
6224 } // anon namespace
6226 rtl_opt_pass *
6227 make_pass_leaf_regs (gcc::context *ctxt)
6229 return new pass_leaf_regs (ctxt);
6232 static unsigned int
6233 rest_of_handle_thread_prologue_and_epilogue (void)
6235 if (optimize)
6236 cleanup_cfg (CLEANUP_EXPENSIVE);
6238 /* On some machines, the prologue and epilogue code, or parts thereof,
6239 can be represented as RTL. Doing so lets us schedule insns between
6240 it and the rest of the code and also allows delayed branch
6241 scheduling to operate in the epilogue. */
6242 thread_prologue_and_epilogue_insns ();
6244 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6245 see PR57320. */
6246 cleanup_cfg (0);
6248 /* The stack usage info is finalized during prologue expansion. */
6249 if (flag_stack_usage_info)
6250 output_stack_usage ();
6252 return 0;
6255 namespace {
6257 const pass_data pass_data_thread_prologue_and_epilogue =
6259 RTL_PASS, /* type */
6260 "pro_and_epilogue", /* name */
6261 OPTGROUP_NONE, /* optinfo_flags */
6262 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6263 0, /* properties_required */
6264 0, /* properties_provided */
6265 0, /* properties_destroyed */
6266 0, /* todo_flags_start */
6267 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6270 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6272 public:
6273 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6274 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6277 /* opt_pass methods: */
6278 virtual unsigned int execute (function *)
6280 return rest_of_handle_thread_prologue_and_epilogue ();
6283 }; // class pass_thread_prologue_and_epilogue
6285 } // anon namespace
6287 rtl_opt_pass *
6288 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6290 return new pass_thread_prologue_and_epilogue (ctxt);
6294 /* This mini-pass fixes fall-out from SSA in asm statements that have
6295 in-out constraints. Say you start with
6297 orig = inout;
6298 asm ("": "+mr" (inout));
6299 use (orig);
6301 which is transformed very early to use explicit output and match operands:
6303 orig = inout;
6304 asm ("": "=mr" (inout) : "0" (inout));
6305 use (orig);
6307 Or, after SSA and copyprop,
6309 asm ("": "=mr" (inout_2) : "0" (inout_1));
6310 use (inout_1);
6312 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6313 they represent two separate values, so they will get different pseudo
6314 registers during expansion. Then, since the two operands need to match
6315 per the constraints, but use different pseudo registers, reload can
6316 only register a reload for these operands. But reloads can only be
6317 satisfied by hardregs, not by memory, so we need a register for this
6318 reload, just because we are presented with non-matching operands.
6319 So, even though we allow memory for this operand, no memory can be
6320 used for it, just because the two operands don't match. This can
6321 cause reload failures on register-starved targets.
6323 So it's a symptom of reload not being able to use memory for reloads
6324 or, alternatively it's also a symptom of both operands not coming into
6325 reload as matching (in which case the pseudo could go to memory just
6326 fine, as the alternative allows it, and no reload would be necessary).
6327 We fix the latter problem here, by transforming
6329 asm ("": "=mr" (inout_2) : "0" (inout_1));
6331 back to
6333 inout_2 = inout_1;
6334 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6336 static void
6337 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6339 int i;
6340 bool changed = false;
6341 rtx op = SET_SRC (p_sets[0]);
6342 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6343 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6344 bool *output_matched = XALLOCAVEC (bool, noutputs);
6346 memset (output_matched, 0, noutputs * sizeof (bool));
6347 for (i = 0; i < ninputs; i++)
6349 rtx input, output, insns;
6350 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6351 char *end;
6352 int match, j;
6354 if (*constraint == '%')
6355 constraint++;
6357 match = strtoul (constraint, &end, 10);
6358 if (end == constraint)
6359 continue;
6361 gcc_assert (match < noutputs);
6362 output = SET_DEST (p_sets[match]);
6363 input = RTVEC_ELT (inputs, i);
6364 /* Only do the transformation for pseudos. */
6365 if (! REG_P (output)
6366 || rtx_equal_p (output, input)
6367 || (GET_MODE (input) != VOIDmode
6368 && GET_MODE (input) != GET_MODE (output)))
6369 continue;
6371 /* We can't do anything if the output is also used as input,
6372 as we're going to overwrite it. */
6373 for (j = 0; j < ninputs; j++)
6374 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6375 break;
6376 if (j != ninputs)
6377 continue;
6379 /* Avoid changing the same input several times. For
6380 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6381 only change in once (to out1), rather than changing it
6382 first to out1 and afterwards to out2. */
6383 if (i > 0)
6385 for (j = 0; j < noutputs; j++)
6386 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6387 break;
6388 if (j != noutputs)
6389 continue;
6391 output_matched[match] = true;
6393 start_sequence ();
6394 emit_move_insn (output, input);
6395 insns = get_insns ();
6396 end_sequence ();
6397 emit_insn_before (insns, insn);
6399 /* Now replace all mentions of the input with output. We can't
6400 just replace the occurrence in inputs[i], as the register might
6401 also be used in some other input (or even in an address of an
6402 output), which would mean possibly increasing the number of
6403 inputs by one (namely 'output' in addition), which might pose
6404 a too complicated problem for reload to solve. E.g. this situation:
6406 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6408 Here 'input' is used in two occurrences as input (once for the
6409 input operand, once for the address in the second output operand).
6410 If we would replace only the occurrence of the input operand (to
6411 make the matching) we would be left with this:
6413 output = input
6414 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6416 Now we suddenly have two different input values (containing the same
6417 value, but different pseudos) where we formerly had only one.
6418 With more complicated asms this might lead to reload failures
6419 which wouldn't have happen without this pass. So, iterate over
6420 all operands and replace all occurrences of the register used. */
6421 for (j = 0; j < noutputs; j++)
6422 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6423 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6424 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6425 input, output);
6426 for (j = 0; j < ninputs; j++)
6427 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6428 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6429 input, output);
6431 changed = true;
6434 if (changed)
6435 df_insn_rescan (insn);
6438 namespace {
6440 const pass_data pass_data_match_asm_constraints =
6442 RTL_PASS, /* type */
6443 "asmcons", /* name */
6444 OPTGROUP_NONE, /* optinfo_flags */
6445 TV_NONE, /* tv_id */
6446 0, /* properties_required */
6447 0, /* properties_provided */
6448 0, /* properties_destroyed */
6449 0, /* todo_flags_start */
6450 0, /* todo_flags_finish */
6453 class pass_match_asm_constraints : public rtl_opt_pass
6455 public:
6456 pass_match_asm_constraints (gcc::context *ctxt)
6457 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6460 /* opt_pass methods: */
6461 virtual unsigned int execute (function *);
6463 }; // class pass_match_asm_constraints
6465 unsigned
6466 pass_match_asm_constraints::execute (function *fun)
6468 basic_block bb;
6469 rtx insn, pat, *p_sets;
6470 int noutputs;
6472 if (!crtl->has_asm_statement)
6473 return 0;
6475 df_set_flags (DF_DEFER_INSN_RESCAN);
6476 FOR_EACH_BB_FN (bb, fun)
6478 FOR_BB_INSNS (bb, insn)
6480 if (!INSN_P (insn))
6481 continue;
6483 pat = PATTERN (insn);
6484 if (GET_CODE (pat) == PARALLEL)
6485 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6486 else if (GET_CODE (pat) == SET)
6487 p_sets = &PATTERN (insn), noutputs = 1;
6488 else
6489 continue;
6491 if (GET_CODE (*p_sets) == SET
6492 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6493 match_asm_constraints_1 (insn, p_sets, noutputs);
6497 return TODO_df_finish;
6500 } // anon namespace
6502 rtl_opt_pass *
6503 make_pass_match_asm_constraints (gcc::context *ctxt)
6505 return new pass_match_asm_constraints (ctxt);
6509 #include "gt-function.h"