1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
38 #include "diagnostic.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
45 #include "insn-attr.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
52 #include "optabs-tree.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx
, rtx
, rtx
, unsigned, unsigned,
77 HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
,
79 unsigned HOST_WIDE_INT
, bool);
80 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
81 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
82 static rtx_insn
*compress_float_constant (rtx
, rtx
);
83 static rtx
get_subtarget (rtx
);
84 static void store_constructor (tree
, rtx
, int, poly_int64
, bool);
85 static rtx
store_field (rtx
, poly_int64
, poly_int64
, poly_uint64
, poly_uint64
,
86 machine_mode
, tree
, alias_set_type
, bool, bool);
88 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
90 static int is_aligning_offset (const_tree
, const_tree
);
91 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
92 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
94 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
96 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
,
98 static rtx
const_vector_from_tree (tree
);
99 static rtx
const_scalar_mask_from_tree (scalar_int_mode
, tree
);
100 static tree
tree_expr_size (const_tree
);
101 static HOST_WIDE_INT
int_expr_size (tree
);
102 static void convert_mode_scalar (rtx
, rtx
, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
110 init_expr_target (void)
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
121 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
127 rtx_insn
*insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
128 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
129 PATTERN (insn
) = pat
;
131 for (machine_mode mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
132 mode
= (machine_mode
) ((int) mode
+ 1))
136 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
137 PUT_MODE (mem
, mode
);
138 PUT_MODE (mem1
, mode
);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
144 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
145 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
148 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
151 set_mode_and_regno (reg
, mode
, regno
);
154 SET_DEST (pat
) = reg
;
155 if (recog (pat
, insn
, &num_clobbers
) >= 0)
156 direct_load
[(int) mode
] = 1;
158 SET_SRC (pat
) = mem1
;
159 SET_DEST (pat
) = reg
;
160 if (recog (pat
, insn
, &num_clobbers
) >= 0)
161 direct_load
[(int) mode
] = 1;
164 SET_DEST (pat
) = mem
;
165 if (recog (pat
, insn
, &num_clobbers
) >= 0)
166 direct_store
[(int) mode
] = 1;
169 SET_DEST (pat
) = mem1
;
170 if (recog (pat
, insn
, &num_clobbers
) >= 0)
171 direct_store
[(int) mode
] = 1;
175 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, LAST_VIRTUAL_REGISTER
+ 1));
177 opt_scalar_float_mode mode_iter
;
178 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_FLOAT
)
180 scalar_float_mode mode
= mode_iter
.require ();
181 scalar_float_mode srcmode
;
182 FOR_EACH_MODE_UNTIL (srcmode
, mode
)
186 ic
= can_extend_p (mode
, srcmode
, 0);
187 if (ic
== CODE_FOR_nothing
)
190 PUT_MODE (mem
, srcmode
);
192 if (insn_operand_matches (ic
, 1, mem
))
193 float_extend_from_mem
[mode
][srcmode
] = true;
198 /* This is run at the start of compiling a function. */
203 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
213 convert_move (rtx to
, rtx from
, int unsignedp
)
215 machine_mode to_mode
= GET_MODE (to
);
216 machine_mode from_mode
= GET_MODE (from
);
218 gcc_assert (to_mode
!= BLKmode
);
219 gcc_assert (from_mode
!= BLKmode
);
221 /* If the source and destination are already the same, then there's
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
230 scalar_int_mode to_int_mode
;
231 if (GET_CODE (from
) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from
)
233 && is_a
<scalar_int_mode
> (to_mode
, &to_int_mode
)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from
))
235 >= GET_MODE_PRECISION (to_int_mode
))
236 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
238 from
= gen_lowpart (to_int_mode
, SUBREG_REG (from
));
239 from_mode
= to_int_mode
;
242 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
244 if (to_mode
== from_mode
245 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
247 emit_move_insn (to
, from
);
251 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
253 if (GET_MODE_UNIT_PRECISION (to_mode
)
254 > GET_MODE_UNIT_PRECISION (from_mode
))
256 optab op
= unsignedp
? zext_optab
: sext_optab
;
257 insn_code icode
= convert_optab_handler (op
, to_mode
, from_mode
);
258 if (icode
!= CODE_FOR_nothing
)
260 emit_unop_insn (icode
, to
, from
,
261 unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
);
266 if (GET_MODE_UNIT_PRECISION (to_mode
)
267 < GET_MODE_UNIT_PRECISION (from_mode
))
269 insn_code icode
= convert_optab_handler (trunc_optab
,
271 if (icode
!= CODE_FOR_nothing
)
273 emit_unop_insn (icode
, to
, from
, TRUNCATE
);
278 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode
),
279 GET_MODE_BITSIZE (to_mode
)));
281 if (VECTOR_MODE_P (to_mode
))
282 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
284 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
286 emit_move_insn (to
, from
);
290 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
292 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
293 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
297 convert_mode_scalar (to
, from
, unsignedp
);
300 /* Like convert_move, but deals only with scalar modes. */
303 convert_mode_scalar (rtx to
, rtx from
, int unsignedp
)
305 /* Both modes should be scalar types. */
306 scalar_mode from_mode
= as_a
<scalar_mode
> (GET_MODE (from
));
307 scalar_mode to_mode
= as_a
<scalar_mode
> (GET_MODE (to
));
308 bool to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
309 bool from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
313 gcc_assert (to_real
== from_real
);
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
317 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
325 gcc_assert ((GET_MODE_PRECISION (from_mode
)
326 != GET_MODE_PRECISION (to_mode
))
327 || (DECIMAL_FLOAT_MODE_P (from_mode
)
328 != DECIMAL_FLOAT_MODE_P (to_mode
)));
330 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
331 /* Conversion between decimal float and binary float, same size. */
332 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
333 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
338 /* Try converting directly if the insn is supported. */
340 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
341 if (code
!= CODE_FOR_nothing
)
343 emit_unop_insn (code
, to
, from
,
344 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
348 /* Otherwise use a libcall. */
349 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
351 /* Is this conversion implemented yet? */
352 gcc_assert (libcall
);
355 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
357 insns
= get_insns ();
359 emit_libcall_block (insns
, to
, value
,
360 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
362 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
366 /* Handle pointer conversion. */ /* SPEE 900220. */
367 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
371 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
378 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
381 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
387 /* Targets are expected to provide conversion insns between PxImode and
388 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
389 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
391 scalar_int_mode full_mode
392 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode
));
394 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
395 != CODE_FOR_nothing
);
397 if (full_mode
!= from_mode
)
398 from
= convert_to_mode (full_mode
, from
, unsignedp
);
399 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
403 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
406 scalar_int_mode full_mode
407 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode
));
408 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
409 enum insn_code icode
;
411 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
412 gcc_assert (icode
!= CODE_FOR_nothing
);
414 if (to_mode
== full_mode
)
416 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
420 new_from
= gen_reg_rtx (full_mode
);
421 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
423 /* else proceed to integer conversions below. */
424 from_mode
= full_mode
;
428 /* Make sure both are fixed-point modes or both are not. */
429 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
430 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
431 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
433 /* If we widen from_mode to to_mode and they are in the same class,
434 we won't saturate the result.
435 Otherwise, always saturate the result to play safe. */
436 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
437 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
438 expand_fixed_convert (to
, from
, 0, 0);
440 expand_fixed_convert (to
, from
, 0, 1);
444 /* Now both modes are integers. */
446 /* Handle expanding beyond a word. */
447 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
448 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
455 scalar_mode lowpart_mode
;
456 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
458 /* Try converting directly if the insn is supported. */
459 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
462 /* If FROM is a SUBREG, put it into a register. Do this
463 so that we always generate the same set of insns for
464 better cse'ing; if an intermediate assignment occurred,
465 we won't be doing the operation directly on the SUBREG. */
466 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
467 from
= force_reg (from_mode
, from
);
468 emit_unop_insn (code
, to
, from
, equiv_code
);
471 /* Next, try converting via full word. */
472 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
473 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
474 != CODE_FOR_nothing
))
476 rtx word_to
= gen_reg_rtx (word_mode
);
479 if (reg_overlap_mentioned_p (to
, from
))
480 from
= force_reg (from_mode
, from
);
483 convert_move (word_to
, from
, unsignedp
);
484 emit_unop_insn (code
, to
, word_to
, equiv_code
);
488 /* No special multiword conversion insn; do it by hand. */
491 /* Since we will turn this into a no conflict block, we must ensure
492 the source does not overlap the target so force it into an isolated
493 register when maybe so. Likewise for any MEM input, since the
494 conversion sequence might require several references to it and we
495 must ensure we're getting the same value every time. */
497 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
498 from
= force_reg (from_mode
, from
);
500 /* Get a copy of FROM widened to a word, if necessary. */
501 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
502 lowpart_mode
= word_mode
;
504 lowpart_mode
= from_mode
;
506 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
508 lowpart
= gen_lowpart (lowpart_mode
, to
);
509 emit_move_insn (lowpart
, lowfrom
);
511 /* Compute the value to put in each remaining word. */
513 fill_value
= const0_rtx
;
515 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
516 LT
, lowfrom
, const0_rtx
,
517 lowpart_mode
, 0, -1);
519 /* Fill the remaining words. */
520 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
522 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
523 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
525 gcc_assert (subword
);
527 if (fill_value
!= subword
)
528 emit_move_insn (subword
, fill_value
);
531 insns
= get_insns ();
538 /* Truncating multi-word to a word or less. */
539 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
540 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
543 && ! MEM_VOLATILE_P (from
)
544 && direct_load
[(int) to_mode
]
545 && ! mode_dependent_address_p (XEXP (from
, 0),
546 MEM_ADDR_SPACE (from
)))
548 || GET_CODE (from
) == SUBREG
))
549 from
= force_reg (from_mode
, from
);
550 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
554 /* Now follow all the conversions between integers
555 no more than a word long. */
557 /* For truncation, usually we can just refer to FROM in a narrower mode. */
558 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
559 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
562 && ! MEM_VOLATILE_P (from
)
563 && direct_load
[(int) to_mode
]
564 && ! mode_dependent_address_p (XEXP (from
, 0),
565 MEM_ADDR_SPACE (from
)))
567 || GET_CODE (from
) == SUBREG
))
568 from
= force_reg (from_mode
, from
);
569 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
570 && !targetm
.hard_regno_mode_ok (REGNO (from
), to_mode
))
571 from
= copy_to_reg (from
);
572 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
576 /* Handle extension. */
577 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
579 /* Convert directly if that works. */
580 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
583 emit_unop_insn (code
, to
, from
, equiv_code
);
591 /* Search for a mode to convert via. */
592 opt_scalar_mode intermediate_iter
;
593 FOR_EACH_MODE_FROM (intermediate_iter
, from_mode
)
595 scalar_mode intermediate
= intermediate_iter
.require ();
596 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
598 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
599 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
,
601 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
602 != CODE_FOR_nothing
))
604 convert_move (to
, convert_to_mode (intermediate
, from
,
605 unsignedp
), unsignedp
);
610 /* No suitable intermediate mode.
611 Generate what we need with shifts. */
612 shift_amount
= (GET_MODE_PRECISION (to_mode
)
613 - GET_MODE_PRECISION (from_mode
));
614 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
615 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
617 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
620 emit_move_insn (to
, tmp
);
625 /* Support special truncate insns for certain modes. */
626 if (convert_optab_handler (trunc_optab
, to_mode
,
627 from_mode
) != CODE_FOR_nothing
)
629 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
634 /* Handle truncation of volatile memrefs, and so on;
635 the things that couldn't be truncated directly,
636 and for which there was no special instruction.
638 ??? Code above formerly short-circuited this, for most integer
639 mode pairs, with a force_reg in from_mode followed by a recursive
640 call to this routine. Appears always to have been wrong. */
641 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
643 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
644 emit_move_insn (to
, temp
);
648 /* Mode combination is not recognized. */
652 /* Return an rtx for a value that would result
653 from converting X to mode MODE.
654 Both X and MODE may be floating, or both integer.
655 UNSIGNEDP is nonzero if X is an unsigned value.
656 This can be done by referring to a part of X in place
657 or by copying to a new temporary with conversion. */
660 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
662 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
665 /* Return an rtx for a value that would result
666 from converting X from mode OLDMODE to mode MODE.
667 Both modes may be floating, or both integer.
668 UNSIGNEDP is nonzero if X is an unsigned value.
670 This can be done by referring to a part of X in place
671 or by copying to a new temporary with conversion.
673 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
676 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
679 scalar_int_mode int_mode
;
681 /* If FROM is a SUBREG that indicates that we have already done at least
682 the required extension, strip it. */
684 if (GET_CODE (x
) == SUBREG
685 && SUBREG_PROMOTED_VAR_P (x
)
686 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
687 && (GET_MODE_PRECISION (subreg_promoted_mode (x
))
688 >= GET_MODE_PRECISION (int_mode
))
689 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
690 x
= gen_lowpart (int_mode
, SUBREG_REG (x
));
692 if (GET_MODE (x
) != VOIDmode
)
693 oldmode
= GET_MODE (x
);
698 if (CONST_SCALAR_INT_P (x
)
699 && is_int_mode (mode
, &int_mode
))
701 /* If the caller did not tell us the old mode, then there is not
702 much to do with respect to canonicalization. We have to
703 assume that all the bits are significant. */
704 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
705 oldmode
= MAX_MODE_INT
;
706 wide_int w
= wide_int::from (rtx_mode_t (x
, oldmode
),
707 GET_MODE_PRECISION (int_mode
),
708 unsignedp
? UNSIGNED
: SIGNED
);
709 return immed_wide_int_const (w
, int_mode
);
712 /* We can do this with a gen_lowpart if both desired and current modes
713 are integer, and this is either a constant integer, a register, or a
715 scalar_int_mode int_oldmode
;
716 if (is_int_mode (mode
, &int_mode
)
717 && is_int_mode (oldmode
, &int_oldmode
)
718 && GET_MODE_PRECISION (int_mode
) <= GET_MODE_PRECISION (int_oldmode
)
719 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) int_mode
])
720 || CONST_POLY_INT_P (x
)
722 && (!HARD_REGISTER_P (x
)
723 || targetm
.hard_regno_mode_ok (REGNO (x
), int_mode
))
724 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode
, GET_MODE (x
)))))
725 return gen_lowpart (int_mode
, x
);
727 /* Converting from integer constant into mode is always equivalent to an
729 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
731 gcc_assert (known_eq (GET_MODE_BITSIZE (mode
),
732 GET_MODE_BITSIZE (oldmode
)));
733 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
736 temp
= gen_reg_rtx (mode
);
737 convert_move (temp
, x
, unsignedp
);
741 /* Return the largest alignment we can use for doing a move (or store)
742 of MAX_PIECES. ALIGN is the largest alignment we could use. */
745 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
747 scalar_int_mode tmode
748 = int_mode_for_size (max_pieces
* BITS_PER_UNIT
, 1).require ();
750 if (align
>= GET_MODE_ALIGNMENT (tmode
))
751 align
= GET_MODE_ALIGNMENT (tmode
);
754 scalar_int_mode xmode
= NARROWEST_INT_MODE
;
755 opt_scalar_int_mode mode_iter
;
756 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
758 tmode
= mode_iter
.require ();
759 if (GET_MODE_SIZE (tmode
) > max_pieces
760 || targetm
.slow_unaligned_access (tmode
, align
))
765 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
771 /* Return the widest integer mode that is narrower than SIZE bytes. */
773 static scalar_int_mode
774 widest_int_mode_for_size (unsigned int size
)
776 scalar_int_mode result
= NARROWEST_INT_MODE
;
778 gcc_checking_assert (size
> 1);
780 opt_scalar_int_mode tmode
;
781 FOR_EACH_MODE_IN_CLASS (tmode
, MODE_INT
)
782 if (GET_MODE_SIZE (tmode
.require ()) < size
)
783 result
= tmode
.require ();
788 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
789 and should be performed piecewise. */
792 can_do_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
,
793 enum by_pieces_operation op
)
795 return targetm
.use_by_pieces_infrastructure_p (len
, align
, op
,
796 optimize_insn_for_speed_p ());
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
804 can_move_by_pieces (unsigned HOST_WIDE_INT len
, unsigned int align
)
806 return can_do_by_pieces (len
, align
, MOVE_BY_PIECES
);
809 /* Return number of insns required to perform operation OP by pieces
810 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
812 unsigned HOST_WIDE_INT
813 by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
814 unsigned int max_size
, by_pieces_operation op
)
816 unsigned HOST_WIDE_INT n_insns
= 0;
818 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
820 while (max_size
> 1 && l
> 0)
822 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
823 enum insn_code icode
;
825 unsigned int modesize
= GET_MODE_SIZE (mode
);
827 icode
= optab_handler (mov_optab
, mode
);
828 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
830 unsigned HOST_WIDE_INT n_pieces
= l
/ modesize
;
838 case COMPARE_BY_PIECES
:
839 int batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
840 int batch_ops
= 4 * batch
- 1;
841 unsigned HOST_WIDE_INT full
= n_pieces
/ batch
;
842 n_insns
+= full
* batch_ops
;
843 if (n_pieces
% batch
!= 0)
856 /* Used when performing piecewise block operations, holds information
857 about one of the memory objects involved. The member functions
858 can be used to generate code for loading from the object and
859 updating the address when iterating. */
863 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
866 /* The address of the object. Can differ from that seen in the
867 MEM rtx if we copied the address to a register. */
869 /* Nonzero if the address on the object has an autoincrement already,
870 signifies whether that was an increment or decrement. */
871 signed char m_addr_inc
;
872 /* Nonzero if we intend to use autoinc without the address already
873 having autoinc form. We will insert add insns around each memory
874 reference, expecting later passes to form autoinc addressing modes.
875 The only supported options are predecrement and postincrement. */
876 signed char m_explicit_inc
;
877 /* True if we have either of the two possible cases of using
880 /* True if this is an address to be used for load operations rather
884 /* Optionally, a function to obtain constants for any given offset into
885 the objects, and data associated with it. */
886 by_pieces_constfn m_constfn
;
889 pieces_addr (rtx
, bool, by_pieces_constfn
, void *);
890 rtx
adjust (scalar_int_mode
, HOST_WIDE_INT
);
891 void increment_address (HOST_WIDE_INT
);
892 void maybe_predec (HOST_WIDE_INT
);
893 void maybe_postinc (HOST_WIDE_INT
);
894 void decide_autoinc (machine_mode
, bool, HOST_WIDE_INT
);
901 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
902 true if the operation to be performed on this object is a load
903 rather than a store. For stores, OBJ can be NULL, in which case we
904 assume the operation is a stack push. For loads, the optional
905 CONSTFN and its associated CFNDATA can be used in place of the
908 pieces_addr::pieces_addr (rtx obj
, bool is_load
, by_pieces_constfn constfn
,
910 : m_obj (obj
), m_is_load (is_load
), m_constfn (constfn
), m_cfndata (cfndata
)
916 rtx addr
= XEXP (obj
, 0);
917 rtx_code code
= GET_CODE (addr
);
919 bool dec
= code
== PRE_DEC
|| code
== POST_DEC
;
920 bool inc
= code
== PRE_INC
|| code
== POST_INC
;
923 m_addr_inc
= dec
? -1 : 1;
925 /* While we have always looked for these codes here, the code
926 implementing the memory operation has never handled them.
927 Support could be added later if necessary or beneficial. */
928 gcc_assert (code
!= PRE_INC
&& code
!= POST_DEC
);
936 if (STACK_GROWS_DOWNWARD
)
942 gcc_assert (constfn
!= NULL
);
946 gcc_assert (is_load
);
949 /* Decide whether to use autoinc for an address involved in a memory op.
950 MODE is the mode of the accesses, REVERSE is true if we've decided to
951 perform the operation starting from the end, and LEN is the length of
952 the operation. Don't override an earlier decision to set m_auto. */
955 pieces_addr::decide_autoinc (machine_mode
ARG_UNUSED (mode
), bool reverse
,
958 if (m_auto
|| m_obj
== NULL_RTX
)
961 bool use_predec
= (m_is_load
962 ? USE_LOAD_PRE_DECREMENT (mode
)
963 : USE_STORE_PRE_DECREMENT (mode
));
964 bool use_postinc
= (m_is_load
965 ? USE_LOAD_POST_INCREMENT (mode
)
966 : USE_STORE_POST_INCREMENT (mode
));
967 machine_mode addr_mode
= get_address_mode (m_obj
);
969 if (use_predec
&& reverse
)
971 m_addr
= copy_to_mode_reg (addr_mode
,
972 plus_constant (addr_mode
,
977 else if (use_postinc
&& !reverse
)
979 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
983 else if (CONSTANT_P (m_addr
))
984 m_addr
= copy_to_mode_reg (addr_mode
, m_addr
);
987 /* Adjust the address to refer to the data at OFFSET in MODE. If we
988 are using autoincrement for this address, we don't add the offset,
989 but we still modify the MEM's properties. */
992 pieces_addr::adjust (scalar_int_mode mode
, HOST_WIDE_INT offset
)
995 return m_constfn (m_cfndata
, offset
, mode
);
996 if (m_obj
== NULL_RTX
)
999 return adjust_automodify_address (m_obj
, mode
, m_addr
, offset
);
1001 return adjust_address (m_obj
, mode
, offset
);
1004 /* Emit an add instruction to increment the address by SIZE. */
1007 pieces_addr::increment_address (HOST_WIDE_INT size
)
1009 rtx amount
= gen_int_mode (size
, GET_MODE (m_addr
));
1010 emit_insn (gen_add2_insn (m_addr
, amount
));
1013 /* If we are supposed to decrement the address after each access, emit code
1014 to do so now. Increment by SIZE (which has should have the correct sign
1018 pieces_addr::maybe_predec (HOST_WIDE_INT size
)
1020 if (m_explicit_inc
>= 0)
1022 gcc_assert (HAVE_PRE_DECREMENT
);
1023 increment_address (size
);
1026 /* If we are supposed to decrement the address after each access, emit code
1027 to do so now. Increment by SIZE. */
1030 pieces_addr::maybe_postinc (HOST_WIDE_INT size
)
1032 if (m_explicit_inc
<= 0)
1034 gcc_assert (HAVE_POST_INCREMENT
);
1035 increment_address (size
);
1038 /* This structure is used by do_op_by_pieces to describe the operation
1041 class op_by_pieces_d
1044 pieces_addr m_to
, m_from
;
1045 unsigned HOST_WIDE_INT m_len
;
1046 HOST_WIDE_INT m_offset
;
1047 unsigned int m_align
;
1048 unsigned int m_max_size
;
1051 /* Virtual functions, overriden by derived classes for the specific
1053 virtual void generate (rtx
, rtx
, machine_mode
) = 0;
1054 virtual bool prepare_mode (machine_mode
, unsigned int) = 0;
1055 virtual void finish_mode (machine_mode
)
1060 op_by_pieces_d (rtx
, bool, rtx
, bool, by_pieces_constfn
, void *,
1061 unsigned HOST_WIDE_INT
, unsigned int);
1065 /* The constructor for an op_by_pieces_d structure. We require two
1066 objects named TO and FROM, which are identified as loads or stores
1067 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1068 and its associated FROM_CFN_DATA can be used to replace loads with
1069 constant values. LEN describes the length of the operation. */
1071 op_by_pieces_d::op_by_pieces_d (rtx to
, bool to_load
,
1072 rtx from
, bool from_load
,
1073 by_pieces_constfn from_cfn
,
1074 void *from_cfn_data
,
1075 unsigned HOST_WIDE_INT len
,
1077 : m_to (to
, to_load
, NULL
, NULL
),
1078 m_from (from
, from_load
, from_cfn
, from_cfn_data
),
1079 m_len (len
), m_max_size (MOVE_MAX_PIECES
+ 1)
1081 int toi
= m_to
.get_addr_inc ();
1082 int fromi
= m_from
.get_addr_inc ();
1083 if (toi
>= 0 && fromi
>= 0)
1085 else if (toi
<= 0 && fromi
<= 0)
1090 m_offset
= m_reverse
? len
: 0;
1091 align
= MIN (to
? MEM_ALIGN (to
) : align
,
1092 from
? MEM_ALIGN (from
) : align
);
1094 /* If copying requires more than two move insns,
1095 copy addresses to registers (to make displacements shorter)
1096 and use post-increment if available. */
1097 if (by_pieces_ninsns (len
, align
, m_max_size
, MOVE_BY_PIECES
) > 2)
1099 /* Find the mode of the largest comparison. */
1100 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1102 m_from
.decide_autoinc (mode
, m_reverse
, len
);
1103 m_to
.decide_autoinc (mode
, m_reverse
, len
);
1106 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1110 /* This function contains the main loop used for expanding a block
1111 operation. First move what we can in the largest integer mode,
1112 then go to successively smaller modes. For every access, call
1113 GENFUN with the two operands and the EXTRA_DATA. */
1116 op_by_pieces_d::run ()
1118 while (m_max_size
> 1 && m_len
> 0)
1120 scalar_int_mode mode
= widest_int_mode_for_size (m_max_size
);
1122 if (prepare_mode (mode
, m_align
))
1124 unsigned int size
= GET_MODE_SIZE (mode
);
1125 rtx to1
= NULL_RTX
, from1
;
1127 while (m_len
>= size
)
1132 to1
= m_to
.adjust (mode
, m_offset
);
1133 from1
= m_from
.adjust (mode
, m_offset
);
1135 m_to
.maybe_predec (-(HOST_WIDE_INT
)size
);
1136 m_from
.maybe_predec (-(HOST_WIDE_INT
)size
);
1138 generate (to1
, from1
, mode
);
1140 m_to
.maybe_postinc (size
);
1141 m_from
.maybe_postinc (size
);
1152 m_max_size
= GET_MODE_SIZE (mode
);
1155 /* The code above should have handled everything. */
1156 gcc_assert (!m_len
);
1159 /* Derived class from op_by_pieces_d, providing support for block move
1162 class move_by_pieces_d
: public op_by_pieces_d
1164 insn_gen_fn m_gen_fun
;
1165 void generate (rtx
, rtx
, machine_mode
);
1166 bool prepare_mode (machine_mode
, unsigned int);
1169 move_by_pieces_d (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1171 : op_by_pieces_d (to
, false, from
, true, NULL
, NULL
, len
, align
)
1174 rtx
finish_retmode (memop_ret
);
1177 /* Return true if MODE can be used for a set of copies, given an
1178 alignment ALIGN. Prepare whatever data is necessary for later
1179 calls to generate. */
1182 move_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1184 insn_code icode
= optab_handler (mov_optab
, mode
);
1185 m_gen_fun
= GEN_FCN (icode
);
1186 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1189 /* A callback used when iterating for a compare_by_pieces_operation.
1190 OP0 and OP1 are the values that have been loaded and should be
1191 compared in MODE. If OP0 is NULL, this means we should generate a
1192 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1193 gen function that should be used to generate the mode. */
1196 move_by_pieces_d::generate (rtx op0
, rtx op1
,
1197 machine_mode mode ATTRIBUTE_UNUSED
)
1199 #ifdef PUSH_ROUNDING
1200 if (op0
== NULL_RTX
)
1202 emit_single_push_insn (mode
, op1
, NULL
);
1206 emit_insn (m_gen_fun (op0
, op1
));
1209 /* Perform the final adjustment at the end of a string to obtain the
1210 correct return value for the block operation.
1211 Return value is based on RETMODE argument. */
1214 move_by_pieces_d::finish_retmode (memop_ret retmode
)
1216 gcc_assert (!m_reverse
);
1217 if (retmode
== RETURN_END_MINUS_ONE
)
1219 m_to
.maybe_postinc (-1);
1222 return m_to
.adjust (QImode
, m_offset
);
1225 /* Generate several move instructions to copy LEN bytes from block FROM to
1226 block TO. (These are MEM rtx's with BLKmode).
1228 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1229 used to push FROM to the stack.
1231 ALIGN is maximum stack alignment we can assume.
1233 Return value is based on RETMODE argument. */
1236 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
1237 unsigned int align
, memop_ret retmode
)
1239 #ifndef PUSH_ROUNDING
1244 move_by_pieces_d
data (to
, from
, len
, align
);
1248 if (retmode
!= RETURN_BEGIN
)
1249 return data
.finish_retmode (retmode
);
1254 /* Derived class from op_by_pieces_d, providing support for block move
1257 class store_by_pieces_d
: public op_by_pieces_d
1259 insn_gen_fn m_gen_fun
;
1260 void generate (rtx
, rtx
, machine_mode
);
1261 bool prepare_mode (machine_mode
, unsigned int);
1264 store_by_pieces_d (rtx to
, by_pieces_constfn cfn
, void *cfn_data
,
1265 unsigned HOST_WIDE_INT len
, unsigned int align
)
1266 : op_by_pieces_d (to
, false, NULL_RTX
, true, cfn
, cfn_data
, len
, align
)
1269 rtx
finish_retmode (memop_ret
);
1272 /* Return true if MODE can be used for a set of stores, given an
1273 alignment ALIGN. Prepare whatever data is necessary for later
1274 calls to generate. */
1277 store_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1279 insn_code icode
= optab_handler (mov_optab
, mode
);
1280 m_gen_fun
= GEN_FCN (icode
);
1281 return icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
);
1284 /* A callback used when iterating for a store_by_pieces_operation.
1285 OP0 and OP1 are the values that have been loaded and should be
1286 compared in MODE. If OP0 is NULL, this means we should generate a
1287 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1288 gen function that should be used to generate the mode. */
1291 store_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode
)
1293 emit_insn (m_gen_fun (op0
, op1
));
1296 /* Perform the final adjustment at the end of a string to obtain the
1297 correct return value for the block operation.
1298 Return value is based on RETMODE argument. */
1301 store_by_pieces_d::finish_retmode (memop_ret retmode
)
1303 gcc_assert (!m_reverse
);
1304 if (retmode
== RETURN_END_MINUS_ONE
)
1306 m_to
.maybe_postinc (-1);
1309 return m_to
.adjust (QImode
, m_offset
);
1312 /* Determine whether the LEN bytes generated by CONSTFUN can be
1313 stored to memory using several move instructions. CONSTFUNDATA is
1314 a pointer which will be passed as argument in every CONSTFUN call.
1315 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1316 a memset operation and false if it's a copy of a constant string.
1317 Return nonzero if a call to store_by_pieces should succeed. */
1320 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
1321 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1322 void *constfundata
, unsigned int align
, bool memsetp
)
1324 unsigned HOST_WIDE_INT l
;
1325 unsigned int max_size
;
1326 HOST_WIDE_INT offset
= 0;
1327 enum insn_code icode
;
1329 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1330 rtx cst ATTRIBUTE_UNUSED
;
1335 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
1339 optimize_insn_for_speed_p ()))
1342 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
1344 /* We would first store what we can in the largest integer mode, then go to
1345 successively smaller modes. */
1348 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
1352 max_size
= STORE_MAX_PIECES
+ 1;
1353 while (max_size
> 1 && l
> 0)
1355 scalar_int_mode mode
= widest_int_mode_for_size (max_size
);
1357 icode
= optab_handler (mov_optab
, mode
);
1358 if (icode
!= CODE_FOR_nothing
1359 && align
>= GET_MODE_ALIGNMENT (mode
))
1361 unsigned int size
= GET_MODE_SIZE (mode
);
1368 cst
= (*constfun
) (constfundata
, offset
, mode
);
1369 if (!targetm
.legitimate_constant_p (mode
, cst
))
1379 max_size
= GET_MODE_SIZE (mode
);
1382 /* The code above should have handled everything. */
1389 /* Generate several move instructions to store LEN bytes generated by
1390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1391 pointer which will be passed as argument in every CONSTFUN call.
1392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1393 a memset operation and false if it's a copy of a constant string.
1394 Return value is based on RETMODE argument. */
1397 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
1398 rtx (*constfun
) (void *, HOST_WIDE_INT
, scalar_int_mode
),
1399 void *constfundata
, unsigned int align
, bool memsetp
,
1404 gcc_assert (retmode
!= RETURN_END_MINUS_ONE
);
1408 gcc_assert (targetm
.use_by_pieces_infrastructure_p
1410 memsetp
? SET_BY_PIECES
: STORE_BY_PIECES
,
1411 optimize_insn_for_speed_p ()));
1413 store_by_pieces_d
data (to
, constfun
, constfundata
, len
, align
);
1416 if (retmode
!= RETURN_BEGIN
)
1417 return data
.finish_retmode (retmode
);
1422 /* Callback routine for clear_by_pieces.
1423 Return const0_rtx unconditionally. */
1426 clear_by_pieces_1 (void *, HOST_WIDE_INT
, scalar_int_mode
)
1431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1435 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
1440 store_by_pieces_d
data (to
, clear_by_pieces_1
, NULL
, len
, align
);
1444 /* Context used by compare_by_pieces_genfn. It stores the fail label
1445 to jump to in case of miscomparison, and for branch ratios greater than 1,
1446 it stores an accumulator and the current and maximum counts before
1447 emitting another branch. */
1449 class compare_by_pieces_d
: public op_by_pieces_d
1451 rtx_code_label
*m_fail_label
;
1453 int m_count
, m_batch
;
1455 void generate (rtx
, rtx
, machine_mode
);
1456 bool prepare_mode (machine_mode
, unsigned int);
1457 void finish_mode (machine_mode
);
1459 compare_by_pieces_d (rtx op0
, rtx op1
, by_pieces_constfn op1_cfn
,
1460 void *op1_cfn_data
, HOST_WIDE_INT len
, int align
,
1461 rtx_code_label
*fail_label
)
1462 : op_by_pieces_d (op0
, true, op1
, true, op1_cfn
, op1_cfn_data
, len
, align
)
1464 m_fail_label
= fail_label
;
1468 /* A callback used when iterating for a compare_by_pieces_operation.
1469 OP0 and OP1 are the values that have been loaded and should be
1470 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1471 context structure. */
1474 compare_by_pieces_d::generate (rtx op0
, rtx op1
, machine_mode mode
)
1478 rtx temp
= expand_binop (mode
, sub_optab
, op0
, op1
, NULL_RTX
,
1479 true, OPTAB_LIB_WIDEN
);
1481 temp
= expand_binop (mode
, ior_optab
, m_accumulator
, temp
, temp
,
1482 true, OPTAB_LIB_WIDEN
);
1483 m_accumulator
= temp
;
1485 if (++m_count
< m_batch
)
1489 op0
= m_accumulator
;
1491 m_accumulator
= NULL_RTX
;
1493 do_compare_rtx_and_jump (op0
, op1
, NE
, true, mode
, NULL_RTX
, NULL
,
1494 m_fail_label
, profile_probability::uninitialized ());
1497 /* Return true if MODE can be used for a set of moves and comparisons,
1498 given an alignment ALIGN. Prepare whatever data is necessary for
1499 later calls to generate. */
1502 compare_by_pieces_d::prepare_mode (machine_mode mode
, unsigned int align
)
1504 insn_code icode
= optab_handler (mov_optab
, mode
);
1505 if (icode
== CODE_FOR_nothing
1506 || align
< GET_MODE_ALIGNMENT (mode
)
1507 || !can_compare_p (EQ
, mode
, ccp_jump
))
1509 m_batch
= targetm
.compare_by_pieces_branch_ratio (mode
);
1512 m_accumulator
= NULL_RTX
;
1517 /* Called after expanding a series of comparisons in MODE. If we have
1518 accumulated results for which we haven't emitted a branch yet, do
1522 compare_by_pieces_d::finish_mode (machine_mode mode
)
1524 if (m_accumulator
!= NULL_RTX
)
1525 do_compare_rtx_and_jump (m_accumulator
, const0_rtx
, NE
, true, mode
,
1526 NULL_RTX
, NULL
, m_fail_label
,
1527 profile_probability::uninitialized ());
1530 /* Generate several move instructions to compare LEN bytes from blocks
1531 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1533 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1534 used to push FROM to the stack.
1536 ALIGN is maximum stack alignment we can assume.
1538 Optionally, the caller can pass a constfn and associated data in A1_CFN
1539 and A1_CFN_DATA. describing that the second operand being compared is a
1540 known constant and how to obtain its data. */
1543 compare_by_pieces (rtx arg0
, rtx arg1
, unsigned HOST_WIDE_INT len
,
1544 rtx target
, unsigned int align
,
1545 by_pieces_constfn a1_cfn
, void *a1_cfn_data
)
1547 rtx_code_label
*fail_label
= gen_label_rtx ();
1548 rtx_code_label
*end_label
= gen_label_rtx ();
1550 if (target
== NULL_RTX
1551 || !REG_P (target
) || REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1552 target
= gen_reg_rtx (TYPE_MODE (integer_type_node
));
1554 compare_by_pieces_d
data (arg0
, arg1
, a1_cfn
, a1_cfn_data
, len
, align
,
1559 emit_move_insn (target
, const0_rtx
);
1560 emit_jump (end_label
);
1562 emit_label (fail_label
);
1563 emit_move_insn (target
, const1_rtx
);
1564 emit_label (end_label
);
1569 /* Emit code to move a block Y to a block X. This may be done with
1570 string-move instructions, with multiple scalar move instructions,
1571 or with a library call.
1573 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1574 SIZE is an rtx that says how long they are.
1575 ALIGN is the maximum alignment we can assume they have.
1576 METHOD describes what kind of copy this is, and what mechanisms may be used.
1577 MIN_SIZE is the minimal size of block to move
1578 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1579 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1581 Return the address of the new block, if memcpy is called and returns it,
1585 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1586 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1587 unsigned HOST_WIDE_INT min_size
,
1588 unsigned HOST_WIDE_INT max_size
,
1589 unsigned HOST_WIDE_INT probable_max_size
,
1590 bool bail_out_libcall
, bool *is_move_done
,
1598 *is_move_done
= true;
1601 if (CONST_INT_P (size
) && INTVAL (size
) == 0)
1606 case BLOCK_OP_NORMAL
:
1607 case BLOCK_OP_TAILCALL
:
1611 case BLOCK_OP_CALL_PARM
:
1612 may_use_call
= block_move_libcall_safe_for_call_parm ();
1614 /* Make inhibit_defer_pop nonzero around the library call
1615 to force it to pop the arguments right away. */
1619 case BLOCK_OP_NO_LIBCALL
:
1623 case BLOCK_OP_NO_LIBCALL_RET
:
1631 gcc_assert (MEM_P (x
) && MEM_P (y
));
1632 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1633 gcc_assert (align
>= BITS_PER_UNIT
);
1635 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1636 block copy is more efficient for other large modes, e.g. DCmode. */
1637 x
= adjust_address (x
, BLKmode
, 0);
1638 y
= adjust_address (y
, BLKmode
, 0);
1640 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1641 can be incorrect is coming from __builtin_memcpy. */
1642 poly_int64 const_size
;
1643 if (poly_int_rtx_p (size
, &const_size
))
1645 x
= shallow_copy_rtx (x
);
1646 y
= shallow_copy_rtx (y
);
1647 set_mem_size (x
, const_size
);
1648 set_mem_size (y
, const_size
);
1651 bool pieces_ok
= CONST_INT_P (size
)
1652 && can_move_by_pieces (INTVAL (size
), align
);
1653 bool pattern_ok
= false;
1655 if (!pieces_ok
|| might_overlap
)
1658 = emit_block_move_via_pattern (x
, y
, size
, align
,
1659 expected_align
, expected_size
,
1660 min_size
, max_size
, probable_max_size
,
1662 if (!pattern_ok
&& might_overlap
)
1664 /* Do not try any of the other methods below as they are not safe
1665 for overlapping moves. */
1666 *is_move_done
= false;
1674 move_by_pieces (x
, y
, INTVAL (size
), align
, RETURN_BEGIN
);
1675 else if (may_use_call
&& !might_overlap
1676 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1677 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1679 if (bail_out_libcall
)
1682 *is_move_done
= false;
1686 if (may_use_call
< 0)
1689 retval
= emit_block_copy_via_libcall (x
, y
, size
,
1690 method
== BLOCK_OP_TAILCALL
);
1692 else if (might_overlap
)
1693 *is_move_done
= false;
1695 emit_block_move_via_loop (x
, y
, size
, align
);
1697 if (method
== BLOCK_OP_CALL_PARM
)
1704 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1706 unsigned HOST_WIDE_INT max
, min
= 0;
1707 if (GET_CODE (size
) == CONST_INT
)
1708 min
= max
= UINTVAL (size
);
1710 max
= GET_MODE_MASK (GET_MODE (size
));
1711 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1715 /* A subroutine of emit_block_move. Returns true if calling the
1716 block move libcall will not clobber any parameters which may have
1717 already been placed on the stack. */
1720 block_move_libcall_safe_for_call_parm (void)
1724 /* If arguments are pushed on the stack, then they're safe. */
1728 /* If registers go on the stack anyway, any argument is sure to clobber
1729 an outgoing argument. */
1730 #if defined (REG_PARM_STACK_SPACE)
1731 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1732 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1733 depend on its argument. */
1735 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1736 && REG_PARM_STACK_SPACE (fn
) != 0)
1740 /* If any argument goes in memory, then it might clobber an outgoing
1743 CUMULATIVE_ARGS args_so_far_v
;
1744 cumulative_args_t args_so_far
;
1747 fn
= builtin_decl_implicit (BUILT_IN_MEMCPY
);
1748 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1749 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1751 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1752 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1754 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1755 function_arg_info
arg_info (mode
, /*named=*/true);
1756 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, arg_info
);
1757 if (!tmp
|| !REG_P (tmp
))
1759 if (targetm
.calls
.arg_partial_bytes (args_so_far
, arg_info
))
1761 targetm
.calls
.function_arg_advance (args_so_far
, arg_info
);
1767 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1768 return true if successful.
1770 X is the destination of the copy or move.
1771 Y is the source of the copy or move.
1772 SIZE is the size of the block to be moved.
1774 MIGHT_OVERLAP indicates this originated with expansion of a
1775 builtin_memmove() and the source and destination blocks may
1780 emit_block_move_via_pattern (rtx x
, rtx y
, rtx size
, unsigned int align
,
1781 unsigned int expected_align
,
1782 HOST_WIDE_INT expected_size
,
1783 unsigned HOST_WIDE_INT min_size
,
1784 unsigned HOST_WIDE_INT max_size
,
1785 unsigned HOST_WIDE_INT probable_max_size
,
1788 if (expected_align
< align
)
1789 expected_align
= align
;
1790 if (expected_size
!= -1)
1792 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1793 expected_size
= probable_max_size
;
1794 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1795 expected_size
= min_size
;
1798 /* Since this is a move insn, we don't care about volatility. */
1799 temporary_volatile_ok
v (true);
1801 /* Try the most limited insn first, because there's no point
1802 including more than one in the machine description unless
1803 the more limited one has some advantage. */
1805 opt_scalar_int_mode mode_iter
;
1806 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
1808 scalar_int_mode mode
= mode_iter
.require ();
1809 enum insn_code code
;
1811 code
= direct_optab_handler (movmem_optab
, mode
);
1813 code
= direct_optab_handler (cpymem_optab
, mode
);
1815 if (code
!= CODE_FOR_nothing
1816 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1817 here because if SIZE is less than the mode mask, as it is
1818 returned by the macro, it will definitely be less than the
1819 actual mode mask. Since SIZE is within the Pmode address
1820 space, we limit MODE to Pmode. */
1821 && ((CONST_INT_P (size
)
1822 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1823 <= (GET_MODE_MASK (mode
) >> 1)))
1824 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1825 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1827 class expand_operand ops
[9];
1830 /* ??? When called via emit_block_move_for_call, it'd be
1831 nice if there were some way to inform the backend, so
1832 that it doesn't fail the expansion because it thinks
1833 emitting the libcall would be more efficient. */
1834 nops
= insn_data
[(int) code
].n_generator_args
;
1835 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1837 create_fixed_operand (&ops
[0], x
);
1838 create_fixed_operand (&ops
[1], y
);
1839 /* The check above guarantees that this size conversion is valid. */
1840 create_convert_operand_to (&ops
[2], size
, mode
, true);
1841 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1844 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1845 create_integer_operand (&ops
[5], expected_size
);
1849 create_integer_operand (&ops
[6], min_size
);
1850 /* If we cannot represent the maximal size,
1851 make parameter NULL. */
1852 if ((HOST_WIDE_INT
) max_size
!= -1)
1853 create_integer_operand (&ops
[7], max_size
);
1855 create_fixed_operand (&ops
[7], NULL
);
1859 /* If we cannot represent the maximal size,
1860 make parameter NULL. */
1861 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1862 create_integer_operand (&ops
[8], probable_max_size
);
1864 create_fixed_operand (&ops
[8], NULL
);
1866 if (maybe_expand_insn (code
, nops
, ops
))
1874 /* A subroutine of emit_block_move. Copy the data via an explicit
1875 loop. This is used only when libcalls are forbidden. */
1876 /* ??? It'd be nice to copy in hunks larger than QImode. */
1879 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1880 unsigned int align ATTRIBUTE_UNUSED
)
1882 rtx_code_label
*cmp_label
, *top_label
;
1883 rtx iter
, x_addr
, y_addr
, tmp
;
1884 machine_mode x_addr_mode
= get_address_mode (x
);
1885 machine_mode y_addr_mode
= get_address_mode (y
);
1886 machine_mode iter_mode
;
1888 iter_mode
= GET_MODE (size
);
1889 if (iter_mode
== VOIDmode
)
1890 iter_mode
= word_mode
;
1892 top_label
= gen_label_rtx ();
1893 cmp_label
= gen_label_rtx ();
1894 iter
= gen_reg_rtx (iter_mode
);
1896 emit_move_insn (iter
, const0_rtx
);
1898 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1899 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1900 do_pending_stack_adjust ();
1902 emit_jump (cmp_label
);
1903 emit_label (top_label
);
1905 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1906 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1908 if (x_addr_mode
!= y_addr_mode
)
1909 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1910 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1912 x
= change_address (x
, QImode
, x_addr
);
1913 y
= change_address (y
, QImode
, y_addr
);
1915 emit_move_insn (x
, y
);
1917 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1918 true, OPTAB_LIB_WIDEN
);
1920 emit_move_insn (iter
, tmp
);
1922 emit_label (cmp_label
);
1924 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1926 profile_probability::guessed_always ()
1927 .apply_scale (9, 10));
1930 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1931 TAILCALL is true if this is a tail call. */
1934 emit_block_op_via_libcall (enum built_in_function fncode
, rtx dst
, rtx src
,
1935 rtx size
, bool tailcall
)
1937 rtx dst_addr
, src_addr
;
1938 tree call_expr
, dst_tree
, src_tree
, size_tree
;
1939 machine_mode size_mode
;
1941 /* Since dst and src are passed to a libcall, mark the corresponding
1942 tree EXPR as addressable. */
1943 tree dst_expr
= MEM_EXPR (dst
);
1944 tree src_expr
= MEM_EXPR (src
);
1946 mark_addressable (dst_expr
);
1948 mark_addressable (src_expr
);
1950 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1951 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1952 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1954 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1955 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1956 src_tree
= make_tree (ptr_type_node
, src_addr
);
1958 size_mode
= TYPE_MODE (sizetype
);
1959 size
= convert_to_mode (size_mode
, size
, 1);
1960 size
= copy_to_mode_reg (size_mode
, size
);
1961 size_tree
= make_tree (sizetype
, size
);
1963 /* It is incorrect to use the libcall calling conventions for calls to
1964 memcpy/memmove/memcmp because they can be provided by the user. */
1965 tree fn
= builtin_decl_implicit (fncode
);
1966 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1967 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1969 return expand_call (call_expr
, NULL_RTX
, false);
1972 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1973 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1974 otherwise return null. */
1977 expand_cmpstrn_or_cmpmem (insn_code icode
, rtx target
, rtx arg1_rtx
,
1978 rtx arg2_rtx
, tree arg3_type
, rtx arg3_rtx
,
1979 HOST_WIDE_INT align
)
1981 machine_mode insn_mode
= insn_data
[icode
].operand
[0].mode
;
1983 if (target
&& (!REG_P (target
) || HARD_REGISTER_P (target
)))
1986 class expand_operand ops
[5];
1987 create_output_operand (&ops
[0], target
, insn_mode
);
1988 create_fixed_operand (&ops
[1], arg1_rtx
);
1989 create_fixed_operand (&ops
[2], arg2_rtx
);
1990 create_convert_operand_from (&ops
[3], arg3_rtx
, TYPE_MODE (arg3_type
),
1991 TYPE_UNSIGNED (arg3_type
));
1992 create_integer_operand (&ops
[4], align
);
1993 if (maybe_expand_insn (icode
, 5, ops
))
1994 return ops
[0].value
;
1998 /* Expand a block compare between X and Y with length LEN using the
1999 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2000 of the expression that was used to calculate the length. ALIGN
2001 gives the known minimum common alignment. */
2004 emit_block_cmp_via_cmpmem (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2007 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2008 implementing memcmp because it will stop if it encounters two
2010 insn_code icode
= direct_optab_handler (cmpmem_optab
, SImode
);
2012 if (icode
== CODE_FOR_nothing
)
2015 return expand_cmpstrn_or_cmpmem (icode
, target
, x
, y
, len_type
, len
, align
);
2018 /* Emit code to compare a block Y to a block X. This may be done with
2019 string-compare instructions, with multiple scalar instructions,
2020 or with a library call.
2022 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2023 they are. LEN_TYPE is the type of the expression that was used to
2026 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2027 value of a normal memcmp call, instead we can just compare for equality.
2028 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2031 Optionally, the caller can pass a constfn and associated data in Y_CFN
2032 and Y_CFN_DATA. describing that the second operand being compared is a
2033 known constant and how to obtain its data.
2034 Return the result of the comparison, or NULL_RTX if we failed to
2035 perform the operation. */
2038 emit_block_cmp_hints (rtx x
, rtx y
, rtx len
, tree len_type
, rtx target
,
2039 bool equality_only
, by_pieces_constfn y_cfn
,
2044 if (CONST_INT_P (len
) && INTVAL (len
) == 0)
2047 gcc_assert (MEM_P (x
) && MEM_P (y
));
2048 unsigned int align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
2049 gcc_assert (align
>= BITS_PER_UNIT
);
2051 x
= adjust_address (x
, BLKmode
, 0);
2052 y
= adjust_address (y
, BLKmode
, 0);
2055 && CONST_INT_P (len
)
2056 && can_do_by_pieces (INTVAL (len
), align
, COMPARE_BY_PIECES
))
2057 result
= compare_by_pieces (x
, y
, INTVAL (len
), target
, align
,
2060 result
= emit_block_cmp_via_cmpmem (x
, y
, len
, len_type
, target
, align
);
2065 /* Copy all or part of a value X into registers starting at REGNO.
2066 The number of registers to be filled is NREGS. */
2069 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
2074 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
2075 x
= validize_mem (force_const_mem (mode
, x
));
2077 /* See if the machine can do this with a load multiple insn. */
2078 if (targetm
.have_load_multiple ())
2080 rtx_insn
*last
= get_last_insn ();
2081 rtx first
= gen_rtx_REG (word_mode
, regno
);
2082 if (rtx_insn
*pat
= targetm
.gen_load_multiple (first
, x
,
2089 delete_insns_since (last
);
2092 for (int i
= 0; i
< nregs
; i
++)
2093 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
2094 operand_subword_force (x
, i
, mode
));
2097 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2098 The number of registers to be filled is NREGS. */
2101 move_block_from_reg (int regno
, rtx x
, int nregs
)
2106 /* See if the machine can do this with a store multiple insn. */
2107 if (targetm
.have_store_multiple ())
2109 rtx_insn
*last
= get_last_insn ();
2110 rtx first
= gen_rtx_REG (word_mode
, regno
);
2111 if (rtx_insn
*pat
= targetm
.gen_store_multiple (x
, first
,
2118 delete_insns_since (last
);
2121 for (int i
= 0; i
< nregs
; i
++)
2123 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
2127 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
2131 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2132 ORIG, where ORIG is a non-consecutive group of registers represented by
2133 a PARALLEL. The clone is identical to the original except in that the
2134 original set of registers is replaced by a new set of pseudo registers.
2135 The new set has the same modes as the original set. */
2138 gen_group_rtx (rtx orig
)
2143 gcc_assert (GET_CODE (orig
) == PARALLEL
);
2145 length
= XVECLEN (orig
, 0);
2146 tmps
= XALLOCAVEC (rtx
, length
);
2148 /* Skip a NULL entry in first slot. */
2149 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
2154 for (; i
< length
; i
++)
2156 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
2157 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
2159 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
2162 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
2165 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2166 except that values are placed in TMPS[i], and must later be moved
2167 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2170 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
,
2175 machine_mode m
= GET_MODE (orig_src
);
2177 gcc_assert (GET_CODE (dst
) == PARALLEL
);
2180 && !SCALAR_INT_MODE_P (m
)
2181 && !MEM_P (orig_src
)
2182 && GET_CODE (orig_src
) != CONCAT
)
2184 scalar_int_mode imode
;
2185 if (int_mode_for_mode (GET_MODE (orig_src
)).exists (&imode
))
2187 src
= gen_reg_rtx (imode
);
2188 emit_move_insn (gen_lowpart (GET_MODE (orig_src
), src
), orig_src
);
2192 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
2193 emit_move_insn (src
, orig_src
);
2195 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2199 /* Check for a NULL entry, used to indicate that the parameter goes
2200 both on the stack and in registers. */
2201 if (XEXP (XVECEXP (dst
, 0, 0), 0))
2206 /* Process the pieces. */
2207 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
2209 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
2210 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (dst
, 0, i
), 1));
2211 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2212 poly_int64 shift
= 0;
2214 /* Handle trailing fragments that run over the size of the struct.
2215 It's the target's responsibility to make sure that the fragment
2216 cannot be strictly smaller in some cases and strictly larger
2218 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2219 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2221 /* Arrange to shift the fragment to where it belongs.
2222 extract_bit_field loads to the lsb of the reg. */
2224 #ifdef BLOCK_REG_PADDING
2225 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
2226 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2231 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2232 bytelen
= ssize
- bytepos
;
2233 gcc_assert (maybe_gt (bytelen
, 0));
2236 /* If we won't be loading directly from memory, protect the real source
2237 from strange tricks we might play; but make sure that the source can
2238 be loaded directly into the destination. */
2240 if (!MEM_P (orig_src
)
2241 && (!CONSTANT_P (orig_src
)
2242 || (GET_MODE (orig_src
) != mode
2243 && GET_MODE (orig_src
) != VOIDmode
)))
2245 if (GET_MODE (orig_src
) == VOIDmode
)
2246 src
= gen_reg_rtx (mode
);
2248 src
= gen_reg_rtx (GET_MODE (orig_src
));
2250 emit_move_insn (src
, orig_src
);
2253 /* Optimize the access just a bit. */
2255 && (! targetm
.slow_unaligned_access (mode
, MEM_ALIGN (src
))
2256 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
2257 && multiple_p (bytepos
* BITS_PER_UNIT
, GET_MODE_ALIGNMENT (mode
))
2258 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2260 tmps
[i
] = gen_reg_rtx (mode
);
2261 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
2263 else if (COMPLEX_MODE_P (mode
)
2264 && GET_MODE (src
) == mode
2265 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2266 /* Let emit_move_complex do the bulk of the work. */
2268 else if (GET_CODE (src
) == CONCAT
)
2270 poly_int64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2271 poly_int64 slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
2275 if (can_div_trunc_p (bytepos
, slen0
, &elt
, &subpos
)
2276 && known_le (subpos
+ bytelen
, slen0
))
2278 /* The following assumes that the concatenated objects all
2279 have the same size. In this case, a simple calculation
2280 can be used to determine the object and the bit field
2282 tmps
[i
] = XEXP (src
, elt
);
2283 if (maybe_ne (subpos
, 0)
2284 || maybe_ne (subpos
+ bytelen
, slen0
)
2285 || (!CONSTANT_P (tmps
[i
])
2286 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
)))
2287 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
2288 subpos
* BITS_PER_UNIT
,
2289 1, NULL_RTX
, mode
, mode
, false,
2296 gcc_assert (known_eq (bytepos
, 0));
2297 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2298 emit_move_insn (mem
, src
);
2299 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
2300 0, 1, NULL_RTX
, mode
, mode
, false,
2304 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2305 SIMD register, which is currently broken. While we get GCC
2306 to emit proper RTL for these cases, let's dump to memory. */
2307 else if (VECTOR_MODE_P (GET_MODE (dst
))
2310 poly_uint64 slen
= GET_MODE_SIZE (GET_MODE (src
));
2313 mem
= assign_stack_temp (GET_MODE (src
), slen
);
2314 emit_move_insn (mem
, src
);
2315 tmps
[i
] = adjust_address (mem
, mode
, bytepos
);
2317 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
2318 && XVECLEN (dst
, 0) > 1)
2319 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
2320 else if (CONSTANT_P (src
))
2322 if (known_eq (bytelen
, ssize
))
2328 /* TODO: const_wide_int can have sizes other than this... */
2329 gcc_assert (known_eq (2 * bytelen
, ssize
));
2330 split_double (src
, &first
, &second
);
2337 else if (REG_P (src
) && GET_MODE (src
) == mode
)
2340 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
2341 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
2342 mode
, mode
, false, NULL
);
2344 if (maybe_ne (shift
, 0))
2345 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
2350 /* Emit code to move a block SRC of type TYPE to a block DST,
2351 where DST is non-consecutive registers represented by a PARALLEL.
2352 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2356 emit_group_load (rtx dst
, rtx src
, tree type
, poly_int64 ssize
)
2361 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
2362 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
2364 /* Copy the extracted pieces into the proper (probable) hard regs. */
2365 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
2367 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
2370 emit_move_insn (d
, tmps
[i
]);
2374 /* Similar, but load SRC into new pseudos in a format that looks like
2375 PARALLEL. This can later be fed to emit_group_move to get things
2376 in the right place. */
2379 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, poly_int64 ssize
)
2384 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
2385 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
2387 /* Convert the vector to look just like the original PARALLEL, except
2388 with the computed values. */
2389 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
2391 rtx e
= XVECEXP (parallel
, 0, i
);
2392 rtx d
= XEXP (e
, 0);
2396 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
2397 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
2399 RTVEC_ELT (vec
, i
) = e
;
2402 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
2405 /* Emit code to move a block SRC to block DST, where SRC and DST are
2406 non-consecutive groups of registers, each represented by a PARALLEL. */
2409 emit_group_move (rtx dst
, rtx src
)
2413 gcc_assert (GET_CODE (src
) == PARALLEL
2414 && GET_CODE (dst
) == PARALLEL
2415 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
2417 /* Skip first entry if NULL. */
2418 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
2419 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
2420 XEXP (XVECEXP (src
, 0, i
), 0));
2423 /* Move a group of registers represented by a PARALLEL into pseudos. */
2426 emit_group_move_into_temps (rtx src
)
2428 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
2431 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
2433 rtx e
= XVECEXP (src
, 0, i
);
2434 rtx d
= XEXP (e
, 0);
2437 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
2438 RTVEC_ELT (vec
, i
) = e
;
2441 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
2444 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2445 where SRC is non-consecutive registers represented by a PARALLEL.
2446 SSIZE represents the total size of block ORIG_DST, or -1 if not
2450 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
,
2454 int start
, finish
, i
;
2455 machine_mode m
= GET_MODE (orig_dst
);
2457 gcc_assert (GET_CODE (src
) == PARALLEL
);
2459 if (!SCALAR_INT_MODE_P (m
)
2460 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
2462 scalar_int_mode imode
;
2463 if (int_mode_for_mode (GET_MODE (orig_dst
)).exists (&imode
))
2465 dst
= gen_reg_rtx (imode
);
2466 emit_group_store (dst
, src
, type
, ssize
);
2467 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
2471 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
2472 emit_group_store (dst
, src
, type
, ssize
);
2474 emit_move_insn (orig_dst
, dst
);
2478 /* Check for a NULL entry, used to indicate that the parameter goes
2479 both on the stack and in registers. */
2480 if (XEXP (XVECEXP (src
, 0, 0), 0))
2484 finish
= XVECLEN (src
, 0);
2486 tmps
= XALLOCAVEC (rtx
, finish
);
2488 /* Copy the (probable) hard regs into pseudos. */
2489 for (i
= start
; i
< finish
; i
++)
2491 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
2492 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
2494 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
2495 emit_move_insn (tmps
[i
], reg
);
2501 /* If we won't be storing directly into memory, protect the real destination
2502 from strange tricks we might play. */
2504 if (GET_CODE (dst
) == PARALLEL
)
2508 /* We can get a PARALLEL dst if there is a conditional expression in
2509 a return statement. In that case, the dst and src are the same,
2510 so no action is necessary. */
2511 if (rtx_equal_p (dst
, src
))
2514 /* It is unclear if we can ever reach here, but we may as well handle
2515 it. Allocate a temporary, and split this into a store/load to/from
2517 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
2518 emit_group_store (temp
, src
, type
, ssize
);
2519 emit_group_load (dst
, temp
, type
, ssize
);
2522 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
2524 machine_mode outer
= GET_MODE (dst
);
2530 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
2531 dst
= gen_reg_rtx (outer
);
2533 /* Make life a bit easier for combine. */
2534 /* If the first element of the vector is the low part
2535 of the destination mode, use a paradoxical subreg to
2536 initialize the destination. */
2539 inner
= GET_MODE (tmps
[start
]);
2540 bytepos
= subreg_lowpart_offset (inner
, outer
);
2541 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, start
), 1)),
2544 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2548 emit_move_insn (dst
, temp
);
2555 /* If the first element wasn't the low part, try the last. */
2557 && start
< finish
- 1)
2559 inner
= GET_MODE (tmps
[finish
- 1]);
2560 bytepos
= subreg_lowpart_offset (inner
, outer
);
2561 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0,
2565 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2569 emit_move_insn (dst
, temp
);
2576 /* Otherwise, simply initialize the result to zero. */
2578 emit_move_insn (dst
, CONST0_RTX (outer
));
2581 /* Process the pieces. */
2582 for (i
= start
; i
< finish
; i
++)
2584 poly_int64 bytepos
= rtx_to_poly_int64 (XEXP (XVECEXP (src
, 0, i
), 1));
2585 machine_mode mode
= GET_MODE (tmps
[i
]);
2586 poly_int64 bytelen
= GET_MODE_SIZE (mode
);
2587 poly_uint64 adj_bytelen
;
2590 /* Handle trailing fragments that run over the size of the struct.
2591 It's the target's responsibility to make sure that the fragment
2592 cannot be strictly smaller in some cases and strictly larger
2594 gcc_checking_assert (ordered_p (bytepos
+ bytelen
, ssize
));
2595 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2596 adj_bytelen
= ssize
- bytepos
;
2598 adj_bytelen
= bytelen
;
2600 if (GET_CODE (dst
) == CONCAT
)
2602 if (known_le (bytepos
+ adj_bytelen
,
2603 GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2604 dest
= XEXP (dst
, 0);
2605 else if (known_ge (bytepos
, GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)))))
2607 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2608 dest
= XEXP (dst
, 1);
2612 machine_mode dest_mode
= GET_MODE (dest
);
2613 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2615 gcc_assert (known_eq (bytepos
, 0) && XVECLEN (src
, 0));
2617 if (GET_MODE_ALIGNMENT (dest_mode
)
2618 >= GET_MODE_ALIGNMENT (tmp_mode
))
2620 dest
= assign_stack_temp (dest_mode
,
2621 GET_MODE_SIZE (dest_mode
));
2622 emit_move_insn (adjust_address (dest
,
2630 dest
= assign_stack_temp (tmp_mode
,
2631 GET_MODE_SIZE (tmp_mode
));
2632 emit_move_insn (dest
, tmps
[i
]);
2633 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2639 /* Handle trailing fragments that run over the size of the struct. */
2640 if (known_size_p (ssize
) && maybe_gt (bytepos
+ bytelen
, ssize
))
2642 /* store_bit_field always takes its value from the lsb.
2643 Move the fragment to the lsb if it's not already there. */
2645 #ifdef BLOCK_REG_PADDING
2646 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2647 == (BYTES_BIG_ENDIAN
? PAD_UPWARD
: PAD_DOWNWARD
)
2653 poly_int64 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2654 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2658 /* Make sure not to write past the end of the struct. */
2659 store_bit_field (dest
,
2660 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2661 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2662 VOIDmode
, tmps
[i
], false);
2665 /* Optimize the access just a bit. */
2666 else if (MEM_P (dest
)
2667 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (dest
))
2668 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2669 && multiple_p (bytepos
* BITS_PER_UNIT
,
2670 GET_MODE_ALIGNMENT (mode
))
2671 && known_eq (bytelen
, GET_MODE_SIZE (mode
)))
2672 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2675 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2676 0, 0, mode
, tmps
[i
], false);
2679 /* Copy from the pseudo into the (probable) hard reg. */
2680 if (orig_dst
!= dst
)
2681 emit_move_insn (orig_dst
, dst
);
2684 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2685 of the value stored in X. */
2688 maybe_emit_group_store (rtx x
, tree type
)
2690 machine_mode mode
= TYPE_MODE (type
);
2691 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2692 if (GET_CODE (x
) == PARALLEL
)
2694 rtx result
= gen_reg_rtx (mode
);
2695 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2701 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2703 This is used on targets that return BLKmode values in registers. */
2706 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2708 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2709 rtx src
= NULL
, dst
= NULL
;
2710 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2711 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2712 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2713 fixed_size_mode mode
= as_a
<fixed_size_mode
> (GET_MODE (srcreg
));
2714 fixed_size_mode tmode
= as_a
<fixed_size_mode
> (GET_MODE (target
));
2715 fixed_size_mode copy_mode
;
2717 /* BLKmode registers created in the back-end shouldn't have survived. */
2718 gcc_assert (mode
!= BLKmode
);
2720 /* If the structure doesn't take up a whole number of words, see whether
2721 SRCREG is padded on the left or on the right. If it's on the left,
2722 set PADDING_CORRECTION to the number of bits to skip.
2724 In most ABIs, the structure will be returned at the least end of
2725 the register, which translates to right padding on little-endian
2726 targets and left padding on big-endian targets. The opposite
2727 holds if the structure is returned at the most significant
2728 end of the register. */
2729 if (bytes
% UNITS_PER_WORD
!= 0
2730 && (targetm
.calls
.return_in_msb (type
)
2732 : BYTES_BIG_ENDIAN
))
2734 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2736 /* We can use a single move if we have an exact mode for the size. */
2737 else if (MEM_P (target
)
2738 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
))
2739 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2740 && bytes
== GET_MODE_SIZE (mode
))
2742 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2746 /* And if we additionally have the same mode for a register. */
2747 else if (REG_P (target
)
2748 && GET_MODE (target
) == mode
2749 && bytes
== GET_MODE_SIZE (mode
))
2751 emit_move_insn (target
, srcreg
);
2755 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2756 into a new pseudo which is a full word. */
2757 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2759 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2763 /* Copy the structure BITSIZE bits at a time. If the target lives in
2764 memory, take care of not reading/writing past its end by selecting
2765 a copy mode suited to BITSIZE. This should always be possible given
2768 If the target lives in register, make sure not to select a copy mode
2769 larger than the mode of the register.
2771 We could probably emit more efficient code for machines which do not use
2772 strict alignment, but it doesn't seem worth the effort at the current
2775 copy_mode
= word_mode
;
2778 opt_scalar_int_mode mem_mode
= int_mode_for_size (bitsize
, 1);
2779 if (mem_mode
.exists ())
2780 copy_mode
= mem_mode
.require ();
2782 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2785 for (bitpos
= 0, xbitpos
= padding_correction
;
2786 bitpos
< bytes
* BITS_PER_UNIT
;
2787 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2789 /* We need a new source operand each time xbitpos is on a
2790 word boundary and when xbitpos == padding_correction
2791 (the first time through). */
2792 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2793 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2795 /* We need a new destination operand each time bitpos is on
2797 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2799 else if (bitpos
% BITS_PER_WORD
== 0)
2800 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2802 /* Use xbitpos for the source extraction (right justified) and
2803 bitpos for the destination store (left justified). */
2804 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2805 extract_bit_field (src
, bitsize
,
2806 xbitpos
% BITS_PER_WORD
, 1,
2807 NULL_RTX
, copy_mode
, copy_mode
,
2813 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2814 register if it contains any data, otherwise return null.
2816 This is used on targets that return BLKmode values in registers. */
2819 copy_blkmode_to_reg (machine_mode mode_in
, tree src
)
2822 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2823 unsigned int bitsize
;
2824 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2825 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2826 fixed_size_mode mode
= as_a
<fixed_size_mode
> (mode_in
);
2827 fixed_size_mode dst_mode
;
2828 scalar_int_mode min_mode
;
2830 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2832 x
= expand_normal (src
);
2834 bytes
= arg_int_size_in_bytes (TREE_TYPE (src
));
2838 /* If the structure doesn't take up a whole number of words, see
2839 whether the register value should be padded on the left or on
2840 the right. Set PADDING_CORRECTION to the number of padding
2841 bits needed on the left side.
2843 In most ABIs, the structure will be returned at the least end of
2844 the register, which translates to right padding on little-endian
2845 targets and left padding on big-endian targets. The opposite
2846 holds if the structure is returned at the most significant
2847 end of the register. */
2848 if (bytes
% UNITS_PER_WORD
!= 0
2849 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2851 : BYTES_BIG_ENDIAN
))
2852 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2855 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2856 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2857 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2858 min_mode
= smallest_int_mode_for_size (bitsize
);
2860 /* Copy the structure BITSIZE bits at a time. */
2861 for (bitpos
= 0, xbitpos
= padding_correction
;
2862 bitpos
< bytes
* BITS_PER_UNIT
;
2863 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2865 /* We need a new destination pseudo each time xbitpos is
2866 on a word boundary and when xbitpos == padding_correction
2867 (the first time through). */
2868 if (xbitpos
% BITS_PER_WORD
== 0
2869 || xbitpos
== padding_correction
)
2871 /* Generate an appropriate register. */
2872 dst_word
= gen_reg_rtx (word_mode
);
2873 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2875 /* Clear the destination before we move anything into it. */
2876 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2879 /* Find the largest integer mode that can be used to copy all or as
2880 many bits as possible of the structure if the target supports larger
2881 copies. There are too many corner cases here w.r.t to alignments on
2882 the read/writes. So if there is any padding just use single byte
2884 opt_scalar_int_mode mode_iter
;
2885 if (padding_correction
== 0 && !STRICT_ALIGNMENT
)
2887 FOR_EACH_MODE_FROM (mode_iter
, min_mode
)
2889 unsigned int msize
= GET_MODE_BITSIZE (mode_iter
.require ());
2890 if (msize
<= ((bytes
* BITS_PER_UNIT
) - bitpos
)
2891 && msize
<= BITS_PER_WORD
)
2898 /* We need a new source operand each time bitpos is on a word
2900 if (bitpos
% BITS_PER_WORD
== 0)
2901 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2903 /* Use bitpos for the source extraction (left justified) and
2904 xbitpos for the destination store (right justified). */
2905 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2907 extract_bit_field (src_word
, bitsize
,
2908 bitpos
% BITS_PER_WORD
, 1,
2909 NULL_RTX
, word_mode
, word_mode
,
2914 if (mode
== BLKmode
)
2916 /* Find the smallest integer mode large enough to hold the
2917 entire structure. */
2918 opt_scalar_int_mode mode_iter
;
2919 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2920 if (GET_MODE_SIZE (mode_iter
.require ()) >= bytes
)
2923 /* A suitable mode should have been found. */
2924 mode
= mode_iter
.require ();
2927 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2928 dst_mode
= word_mode
;
2931 dst
= gen_reg_rtx (dst_mode
);
2933 for (i
= 0; i
< n_regs
; i
++)
2934 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2936 if (mode
!= dst_mode
)
2937 dst
= gen_lowpart (mode
, dst
);
2942 /* Add a USE expression for REG to the (possibly empty) list pointed
2943 to by CALL_FUSAGE. REG must denote a hard register. */
2946 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2948 gcc_assert (REG_P (reg
));
2950 if (!HARD_REGISTER_P (reg
))
2954 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2957 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2958 to by CALL_FUSAGE. REG must denote a hard register. */
2961 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2963 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2966 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2969 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2970 starting at REGNO. All of these registers must be hard registers. */
2973 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2977 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2979 for (i
= 0; i
< nregs
; i
++)
2980 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2983 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2984 PARALLEL REGS. This is for calls that pass values in multiple
2985 non-contiguous locations. The Irix 6 ABI has examples of this. */
2988 use_group_regs (rtx
*call_fusage
, rtx regs
)
2992 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2994 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2996 /* A NULL entry means the parameter goes both on the stack and in
2997 registers. This can also be a MEM for targets that pass values
2998 partially on the stack and partially in registers. */
2999 if (reg
!= 0 && REG_P (reg
))
3000 use_reg (call_fusage
, reg
);
3004 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3005 assigment and the code of the expresion on the RHS is CODE. Return
3009 get_def_for_expr (tree name
, enum tree_code code
)
3013 if (TREE_CODE (name
) != SSA_NAME
)
3016 def_stmt
= get_gimple_for_ssa_name (name
);
3018 || gimple_assign_rhs_code (def_stmt
) != code
)
3024 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3025 assigment and the class of the expresion on the RHS is CLASS. Return
3029 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
3033 if (TREE_CODE (name
) != SSA_NAME
)
3036 def_stmt
= get_gimple_for_ssa_name (name
);
3038 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
3044 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3045 its length in bytes. */
3048 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
3049 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3050 unsigned HOST_WIDE_INT min_size
,
3051 unsigned HOST_WIDE_INT max_size
,
3052 unsigned HOST_WIDE_INT probable_max_size
)
3054 machine_mode mode
= GET_MODE (object
);
3057 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
3059 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3060 just move a zero. Otherwise, do this a piece at a time. */
3061 poly_int64 size_val
;
3063 && poly_int_rtx_p (size
, &size_val
)
3064 && known_eq (size_val
, GET_MODE_SIZE (mode
)))
3066 rtx zero
= CONST0_RTX (mode
);
3069 emit_move_insn (object
, zero
);
3073 if (COMPLEX_MODE_P (mode
))
3075 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
3078 write_complex_part (object
, zero
, 0);
3079 write_complex_part (object
, zero
, 1);
3085 if (size
== const0_rtx
)
3088 align
= MEM_ALIGN (object
);
3090 if (CONST_INT_P (size
)
3091 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
3093 optimize_insn_for_speed_p ()))
3094 clear_by_pieces (object
, INTVAL (size
), align
);
3095 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
3096 expected_align
, expected_size
,
3097 min_size
, max_size
, probable_max_size
))
3099 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
3100 return set_storage_via_libcall (object
, size
, const0_rtx
,
3101 method
== BLOCK_OP_TAILCALL
);
3109 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
3111 unsigned HOST_WIDE_INT max
, min
= 0;
3112 if (GET_CODE (size
) == CONST_INT
)
3113 min
= max
= UINTVAL (size
);
3115 max
= GET_MODE_MASK (GET_MODE (size
));
3116 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
3120 /* A subroutine of clear_storage. Expand a call to memset.
3121 Return the return value of memset, 0 otherwise. */
3124 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
3126 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
3127 machine_mode size_mode
;
3129 object
= copy_addr_to_reg (XEXP (object
, 0));
3130 object_tree
= make_tree (ptr_type_node
, object
);
3132 if (!CONST_INT_P (val
))
3133 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
3134 val_tree
= make_tree (integer_type_node
, val
);
3136 size_mode
= TYPE_MODE (sizetype
);
3137 size
= convert_to_mode (size_mode
, size
, 1);
3138 size
= copy_to_mode_reg (size_mode
, size
);
3139 size_tree
= make_tree (sizetype
, size
);
3141 /* It is incorrect to use the libcall calling conventions for calls to
3142 memset because it can be provided by the user. */
3143 fn
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3144 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
3145 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
3147 return expand_call (call_expr
, NULL_RTX
, false);
3150 /* Expand a setmem pattern; return true if successful. */
3153 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
3154 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
3155 unsigned HOST_WIDE_INT min_size
,
3156 unsigned HOST_WIDE_INT max_size
,
3157 unsigned HOST_WIDE_INT probable_max_size
)
3159 /* Try the most limited insn first, because there's no point
3160 including more than one in the machine description unless
3161 the more limited one has some advantage. */
3163 if (expected_align
< align
)
3164 expected_align
= align
;
3165 if (expected_size
!= -1)
3167 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
3168 expected_size
= max_size
;
3169 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
3170 expected_size
= min_size
;
3173 opt_scalar_int_mode mode_iter
;
3174 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
3176 scalar_int_mode mode
= mode_iter
.require ();
3177 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
3179 if (code
!= CODE_FOR_nothing
3180 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3181 here because if SIZE is less than the mode mask, as it is
3182 returned by the macro, it will definitely be less than the
3183 actual mode mask. Since SIZE is within the Pmode address
3184 space, we limit MODE to Pmode. */
3185 && ((CONST_INT_P (size
)
3186 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
3187 <= (GET_MODE_MASK (mode
) >> 1)))
3188 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
3189 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
3191 class expand_operand ops
[9];
3194 nops
= insn_data
[(int) code
].n_generator_args
;
3195 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
3197 create_fixed_operand (&ops
[0], object
);
3198 /* The check above guarantees that this size conversion is valid. */
3199 create_convert_operand_to (&ops
[1], size
, mode
, true);
3200 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
3201 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
3204 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
3205 create_integer_operand (&ops
[5], expected_size
);
3209 create_integer_operand (&ops
[6], min_size
);
3210 /* If we cannot represent the maximal size,
3211 make parameter NULL. */
3212 if ((HOST_WIDE_INT
) max_size
!= -1)
3213 create_integer_operand (&ops
[7], max_size
);
3215 create_fixed_operand (&ops
[7], NULL
);
3219 /* If we cannot represent the maximal size,
3220 make parameter NULL. */
3221 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
3222 create_integer_operand (&ops
[8], probable_max_size
);
3224 create_fixed_operand (&ops
[8], NULL
);
3226 if (maybe_expand_insn (code
, nops
, ops
))
3235 /* Write to one of the components of the complex value CPLX. Write VAL to
3236 the real part if IMAG_P is false, and the imaginary part if its true. */
3239 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3245 if (GET_CODE (cplx
) == CONCAT
)
3247 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3251 cmode
= GET_MODE (cplx
);
3252 imode
= GET_MODE_INNER (cmode
);
3253 ibitsize
= GET_MODE_BITSIZE (imode
);
3255 /* For MEMs simplify_gen_subreg may generate an invalid new address
3256 because, e.g., the original address is considered mode-dependent
3257 by the target, which restricts simplify_subreg from invoking
3258 adjust_address_nv. Instead of preparing fallback support for an
3259 invalid address, we call adjust_address_nv directly. */
3262 emit_move_insn (adjust_address_nv (cplx
, imode
,
3263 imag_p
? GET_MODE_SIZE (imode
) : 0),
3268 /* If the sub-object is at least word sized, then we know that subregging
3269 will work. This special case is important, since store_bit_field
3270 wants to operate on integer modes, and there's rarely an OImode to
3271 correspond to TCmode. */
3272 if (ibitsize
>= BITS_PER_WORD
3273 /* For hard regs we have exact predicates. Assume we can split
3274 the original object if it spans an even number of hard regs.
3275 This special case is important for SCmode on 64-bit platforms
3276 where the natural size of floating-point regs is 32-bit. */
3278 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3279 && REG_NREGS (cplx
) % 2 == 0))
3281 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3282 imag_p
? GET_MODE_SIZE (imode
) : 0);
3285 emit_move_insn (part
, val
);
3289 /* simplify_gen_subreg may fail for sub-word MEMs. */
3290 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3293 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
,
3297 /* Extract one of the components of the complex value CPLX. Extract the
3298 real part if IMAG_P is false, and the imaginary part if it's true. */
3301 read_complex_part (rtx cplx
, bool imag_p
)
3307 if (GET_CODE (cplx
) == CONCAT
)
3308 return XEXP (cplx
, imag_p
);
3310 cmode
= GET_MODE (cplx
);
3311 imode
= GET_MODE_INNER (cmode
);
3312 ibitsize
= GET_MODE_BITSIZE (imode
);
3314 /* Special case reads from complex constants that got spilled to memory. */
3315 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3317 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3318 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3320 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3321 if (CONSTANT_CLASS_P (part
))
3322 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3326 /* For MEMs simplify_gen_subreg may generate an invalid new address
3327 because, e.g., the original address is considered mode-dependent
3328 by the target, which restricts simplify_subreg from invoking
3329 adjust_address_nv. Instead of preparing fallback support for an
3330 invalid address, we call adjust_address_nv directly. */
3332 return adjust_address_nv (cplx
, imode
,
3333 imag_p
? GET_MODE_SIZE (imode
) : 0);
3335 /* If the sub-object is at least word sized, then we know that subregging
3336 will work. This special case is important, since extract_bit_field
3337 wants to operate on integer modes, and there's rarely an OImode to
3338 correspond to TCmode. */
3339 if (ibitsize
>= BITS_PER_WORD
3340 /* For hard regs we have exact predicates. Assume we can split
3341 the original object if it spans an even number of hard regs.
3342 This special case is important for SCmode on 64-bit platforms
3343 where the natural size of floating-point regs is 32-bit. */
3345 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3346 && REG_NREGS (cplx
) % 2 == 0))
3348 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3349 imag_p
? GET_MODE_SIZE (imode
) : 0);
3353 /* simplify_gen_subreg may fail for sub-word MEMs. */
3354 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3357 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3358 true, NULL_RTX
, imode
, imode
, false, NULL
);
3361 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3362 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3363 represented in NEW_MODE. If FORCE is true, this will never happen, as
3364 we'll force-create a SUBREG if needed. */
3367 emit_move_change_mode (machine_mode new_mode
,
3368 machine_mode old_mode
, rtx x
, bool force
)
3372 if (push_operand (x
, GET_MODE (x
)))
3374 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3375 MEM_COPY_ATTRIBUTES (ret
, x
);
3379 /* We don't have to worry about changing the address since the
3380 size in bytes is supposed to be the same. */
3381 if (reload_in_progress
)
3383 /* Copy the MEM to change the mode and move any
3384 substitutions from the old MEM to the new one. */
3385 ret
= adjust_address_nv (x
, new_mode
, 0);
3386 copy_replacements (x
, ret
);
3389 ret
= adjust_address (x
, new_mode
, 0);
3393 /* Note that we do want simplify_subreg's behavior of validating
3394 that the new mode is ok for a hard register. If we were to use
3395 simplify_gen_subreg, we would create the subreg, but would
3396 probably run into the target not being able to implement it. */
3397 /* Except, of course, when FORCE is true, when this is exactly what
3398 we want. Which is needed for CCmodes on some targets. */
3400 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3402 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3408 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3409 an integer mode of the same size as MODE. Returns the instruction
3410 emitted, or NULL if such a move could not be generated. */
3413 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3415 scalar_int_mode imode
;
3416 enum insn_code code
;
3418 /* There must exist a mode of the exact size we require. */
3419 if (!int_mode_for_mode (mode
).exists (&imode
))
3422 /* The target must support moves in this mode. */
3423 code
= optab_handler (mov_optab
, imode
);
3424 if (code
== CODE_FOR_nothing
)
3427 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3430 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3433 return emit_insn (GEN_FCN (code
) (x
, y
));
3436 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3437 Return an equivalent MEM that does not use an auto-increment. */
3440 emit_move_resolve_push (machine_mode mode
, rtx x
)
3442 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3445 poly_int64 adjust
= GET_MODE_SIZE (mode
);
3446 #ifdef PUSH_ROUNDING
3447 adjust
= PUSH_ROUNDING (adjust
);
3449 if (code
== PRE_DEC
|| code
== POST_DEC
)
3451 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3453 rtx expr
= XEXP (XEXP (x
, 0), 1);
3455 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3456 poly_int64 val
= rtx_to_poly_int64 (XEXP (expr
, 1));
3457 if (GET_CODE (expr
) == MINUS
)
3459 gcc_assert (known_eq (adjust
, val
) || known_eq (adjust
, -val
));
3463 /* Do not use anti_adjust_stack, since we don't want to update
3464 stack_pointer_delta. */
3465 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3466 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3467 0, OPTAB_LIB_WIDEN
);
3468 if (temp
!= stack_pointer_rtx
)
3469 emit_move_insn (stack_pointer_rtx
, temp
);
3476 temp
= stack_pointer_rtx
;
3481 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3487 return replace_equiv_address (x
, temp
);
3490 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3491 X is known to satisfy push_operand, and MODE is known to be complex.
3492 Returns the last instruction emitted. */
3495 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3497 scalar_mode submode
= GET_MODE_INNER (mode
);
3500 #ifdef PUSH_ROUNDING
3501 poly_int64 submodesize
= GET_MODE_SIZE (submode
);
3503 /* In case we output to the stack, but the size is smaller than the
3504 machine can push exactly, we need to use move instructions. */
3505 if (maybe_ne (PUSH_ROUNDING (submodesize
), submodesize
))
3507 x
= emit_move_resolve_push (mode
, x
);
3508 return emit_move_insn (x
, y
);
3512 /* Note that the real part always precedes the imag part in memory
3513 regardless of machine's endianness. */
3514 switch (GET_CODE (XEXP (x
, 0)))
3528 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3529 read_complex_part (y
, imag_first
));
3530 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3531 read_complex_part (y
, !imag_first
));
3534 /* A subroutine of emit_move_complex. Perform the move from Y to X
3535 via two moves of the parts. Returns the last instruction emitted. */
3538 emit_move_complex_parts (rtx x
, rtx y
)
3540 /* Show the output dies here. This is necessary for SUBREGs
3541 of pseudos since we cannot track their lifetimes correctly;
3542 hard regs shouldn't appear here except as return values. */
3543 if (!reload_completed
&& !reload_in_progress
3544 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3547 write_complex_part (x
, read_complex_part (y
, false), false);
3548 write_complex_part (x
, read_complex_part (y
, true), true);
3550 return get_last_insn ();
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be complex. Returns the last instruction emitted. */
3557 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3561 /* Need to take special care for pushes, to maintain proper ordering
3562 of the data, and possibly extra padding. */
3563 if (push_operand (x
, mode
))
3564 return emit_move_complex_push (mode
, x
, y
);
3566 /* See if we can coerce the target into moving both values at once, except
3567 for floating point where we favor moving as parts if this is easy. */
3568 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3569 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3571 && HARD_REGISTER_P (x
)
3572 && REG_NREGS (x
) == 1)
3574 && HARD_REGISTER_P (y
)
3575 && REG_NREGS (y
) == 1))
3577 /* Not possible if the values are inherently not adjacent. */
3578 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3580 /* Is possible if both are registers (or subregs of registers). */
3581 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3583 /* If one of the operands is a memory, and alignment constraints
3584 are friendly enough, we may be able to do combined memory operations.
3585 We do not attempt this if Y is a constant because that combination is
3586 usually better with the by-parts thing below. */
3587 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3588 && (!STRICT_ALIGNMENT
3589 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3598 /* For memory to memory moves, optimal behavior can be had with the
3599 existing block move logic. But use normal expansion if optimizing
3601 if (MEM_P (x
) && MEM_P (y
))
3603 emit_block_move (x
, y
, gen_int_mode (GET_MODE_SIZE (mode
), Pmode
),
3604 (optimize_insn_for_speed_p()
3605 ? BLOCK_OP_NO_LIBCALL
: BLOCK_OP_NORMAL
));
3606 return get_last_insn ();
3609 ret
= emit_move_via_integer (mode
, x
, y
, true);
3614 return emit_move_complex_parts (x
, y
);
3617 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3618 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3621 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3625 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3628 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3629 if (code
!= CODE_FOR_nothing
)
3631 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3632 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3633 return emit_insn (GEN_FCN (code
) (x
, y
));
3637 /* Otherwise, find the MODE_INT mode of the same width. */
3638 ret
= emit_move_via_integer (mode
, x
, y
, false);
3639 gcc_assert (ret
!= NULL
);
3643 /* Return true if word I of OP lies entirely in the
3644 undefined bits of a paradoxical subreg. */
3647 undefined_operand_subword_p (const_rtx op
, int i
)
3649 if (GET_CODE (op
) != SUBREG
)
3651 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
3652 poly_int64 offset
= i
* UNITS_PER_WORD
+ subreg_memory_offset (op
);
3653 return (known_ge (offset
, GET_MODE_SIZE (innermostmode
))
3654 || known_le (offset
, -UNITS_PER_WORD
));
3657 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3658 MODE is any multi-word or full-word mode that lacks a move_insn
3659 pattern. Note that you will get better code if you define such
3660 patterns, even if they must turn into multiple assembler instructions. */
3663 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3665 rtx_insn
*last_insn
= 0;
3671 /* This function can only handle cases where the number of words is
3672 known at compile time. */
3673 mode_size
= GET_MODE_SIZE (mode
).to_constant ();
3674 gcc_assert (mode_size
>= UNITS_PER_WORD
);
3676 /* If X is a push on the stack, do the push now and replace
3677 X with a reference to the stack pointer. */
3678 if (push_operand (x
, mode
))
3679 x
= emit_move_resolve_push (mode
, x
);
3681 /* If we are in reload, see if either operand is a MEM whose address
3682 is scheduled for replacement. */
3683 if (reload_in_progress
&& MEM_P (x
)
3684 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3685 x
= replace_equiv_address_nv (x
, inner
);
3686 if (reload_in_progress
&& MEM_P (y
)
3687 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3688 y
= replace_equiv_address_nv (y
, inner
);
3692 need_clobber
= false;
3693 for (i
= 0; i
< CEIL (mode_size
, UNITS_PER_WORD
); i
++)
3695 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3698 /* Do not generate code for a move if it would come entirely
3699 from the undefined bits of a paradoxical subreg. */
3700 if (undefined_operand_subword_p (y
, i
))
3703 ypart
= operand_subword (y
, i
, 1, mode
);
3705 /* If we can't get a part of Y, put Y into memory if it is a
3706 constant. Otherwise, force it into a register. Then we must
3707 be able to get a part of Y. */
3708 if (ypart
== 0 && CONSTANT_P (y
))
3710 y
= use_anchored_address (force_const_mem (mode
, y
));
3711 ypart
= operand_subword (y
, i
, 1, mode
);
3713 else if (ypart
== 0)
3714 ypart
= operand_subword_force (y
, i
, mode
);
3716 gcc_assert (xpart
&& ypart
);
3718 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3720 last_insn
= emit_move_insn (xpart
, ypart
);
3726 /* Show the output dies here. This is necessary for SUBREGs
3727 of pseudos since we cannot track their lifetimes correctly;
3728 hard regs shouldn't appear here except as return values.
3729 We never want to emit such a clobber after reload. */
3731 && ! (reload_in_progress
|| reload_completed
)
3732 && need_clobber
!= 0)
3740 /* Low level part of emit_move_insn.
3741 Called just like emit_move_insn, but assumes X and Y
3742 are basically valid. */
3745 emit_move_insn_1 (rtx x
, rtx y
)
3747 machine_mode mode
= GET_MODE (x
);
3748 enum insn_code code
;
3750 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3752 code
= optab_handler (mov_optab
, mode
);
3753 if (code
!= CODE_FOR_nothing
)
3754 return emit_insn (GEN_FCN (code
) (x
, y
));
3756 /* Expand complex moves by moving real part and imag part. */
3757 if (COMPLEX_MODE_P (mode
))
3758 return emit_move_complex (mode
, x
, y
);
3760 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3761 || ALL_FIXED_POINT_MODE_P (mode
))
3763 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3765 /* If we can't find an integer mode, use multi words. */
3769 return emit_move_multi_word (mode
, x
, y
);
3772 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3773 return emit_move_ccmode (mode
, x
, y
);
3775 /* Try using a move pattern for the corresponding integer mode. This is
3776 only safe when simplify_subreg can convert MODE constants into integer
3777 constants. At present, it can only do this reliably if the value
3778 fits within a HOST_WIDE_INT. */
3780 || known_le (GET_MODE_BITSIZE (mode
), HOST_BITS_PER_WIDE_INT
))
3782 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3786 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3791 return emit_move_multi_word (mode
, x
, y
);
3794 /* Generate code to copy Y into X.
3795 Both Y and X must have the same mode, except that
3796 Y can be a constant with VOIDmode.
3797 This mode cannot be BLKmode; use emit_block_move for that.
3799 Return the last instruction emitted. */
3802 emit_move_insn (rtx x
, rtx y
)
3804 machine_mode mode
= GET_MODE (x
);
3805 rtx y_cst
= NULL_RTX
;
3806 rtx_insn
*last_insn
;
3809 gcc_assert (mode
!= BLKmode
3810 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3815 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3816 && (last_insn
= compress_float_constant (x
, y
)))
3821 if (!targetm
.legitimate_constant_p (mode
, y
))
3823 y
= force_const_mem (mode
, y
);
3825 /* If the target's cannot_force_const_mem prevented the spill,
3826 assume that the target's move expanders will also take care
3827 of the non-legitimate constant. */
3831 y
= use_anchored_address (y
);
3835 /* If X or Y are memory references, verify that their addresses are valid
3838 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3840 && ! push_operand (x
, GET_MODE (x
))))
3841 x
= validize_mem (x
);
3844 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3845 MEM_ADDR_SPACE (y
)))
3846 y
= validize_mem (y
);
3848 gcc_assert (mode
!= BLKmode
);
3850 last_insn
= emit_move_insn_1 (x
, y
);
3852 if (y_cst
&& REG_P (x
)
3853 && (set
= single_set (last_insn
)) != NULL_RTX
3854 && SET_DEST (set
) == x
3855 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3856 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3861 /* Generate the body of an instruction to copy Y into X.
3862 It may be a list of insns, if one insn isn't enough. */
3865 gen_move_insn (rtx x
, rtx y
)
3870 emit_move_insn_1 (x
, y
);
3876 /* If Y is representable exactly in a narrower mode, and the target can
3877 perform the extension directly from constant or memory, then emit the
3878 move as an extension. */
3881 compress_float_constant (rtx x
, rtx y
)
3883 machine_mode dstmode
= GET_MODE (x
);
3884 machine_mode orig_srcmode
= GET_MODE (y
);
3885 machine_mode srcmode
;
3886 const REAL_VALUE_TYPE
*r
;
3887 int oldcost
, newcost
;
3888 bool speed
= optimize_insn_for_speed_p ();
3890 r
= CONST_DOUBLE_REAL_VALUE (y
);
3892 if (targetm
.legitimate_constant_p (dstmode
, y
))
3893 oldcost
= set_src_cost (y
, orig_srcmode
, speed
);
3895 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), dstmode
, speed
);
3897 FOR_EACH_MODE_UNTIL (srcmode
, orig_srcmode
)
3901 rtx_insn
*last_insn
;
3903 /* Skip if the target can't extend this way. */
3904 ic
= can_extend_p (dstmode
, srcmode
, 0);
3905 if (ic
== CODE_FOR_nothing
)
3908 /* Skip if the narrowed value isn't exact. */
3909 if (! exact_real_truncate (srcmode
, r
))
3912 trunc_y
= const_double_from_real_value (*r
, srcmode
);
3914 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3916 /* Skip if the target needs extra instructions to perform
3918 if (!insn_operand_matches (ic
, 1, trunc_y
))
3920 /* This is valid, but may not be cheaper than the original. */
3921 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3923 if (oldcost
< newcost
)
3926 else if (float_extend_from_mem
[dstmode
][srcmode
])
3928 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3929 /* This is valid, but may not be cheaper than the original. */
3930 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3932 if (oldcost
< newcost
)
3934 trunc_y
= validize_mem (trunc_y
);
3939 /* For CSE's benefit, force the compressed constant pool entry
3940 into a new pseudo. This constant may be used in different modes,
3941 and if not, combine will put things back together for us. */
3942 trunc_y
= force_reg (srcmode
, trunc_y
);
3944 /* If x is a hard register, perform the extension into a pseudo,
3945 so that e.g. stack realignment code is aware of it. */
3947 if (REG_P (x
) && HARD_REGISTER_P (x
))
3948 target
= gen_reg_rtx (dstmode
);
3950 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3951 last_insn
= get_last_insn ();
3954 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3957 return emit_move_insn (x
, target
);
3964 /* Pushing data onto the stack. */
3966 /* Push a block of length SIZE (perhaps variable)
3967 and return an rtx to address the beginning of the block.
3968 The value may be virtual_outgoing_args_rtx.
3970 EXTRA is the number of bytes of padding to push in addition to SIZE.
3971 BELOW nonzero means this padding comes at low addresses;
3972 otherwise, the padding comes at high addresses. */
3975 push_block (rtx size
, poly_int64 extra
, int below
)
3979 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3980 if (CONSTANT_P (size
))
3981 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3982 else if (REG_P (size
) && known_eq (extra
, 0))
3983 anti_adjust_stack (size
);
3986 temp
= copy_to_mode_reg (Pmode
, size
);
3987 if (maybe_ne (extra
, 0))
3988 temp
= expand_binop (Pmode
, add_optab
, temp
,
3989 gen_int_mode (extra
, Pmode
),
3990 temp
, 0, OPTAB_LIB_WIDEN
);
3991 anti_adjust_stack (temp
);
3994 if (STACK_GROWS_DOWNWARD
)
3996 temp
= virtual_outgoing_args_rtx
;
3997 if (maybe_ne (extra
, 0) && below
)
3998 temp
= plus_constant (Pmode
, temp
, extra
);
4003 if (poly_int_rtx_p (size
, &csize
))
4004 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
4005 -csize
- (below
? 0 : extra
));
4006 else if (maybe_ne (extra
, 0) && !below
)
4007 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4008 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
4011 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
4012 negate_rtx (Pmode
, size
));
4015 return memory_address (NARROWEST_INT_MODE
, temp
);
4018 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4021 mem_autoinc_base (rtx mem
)
4025 rtx addr
= XEXP (mem
, 0);
4026 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
4027 return XEXP (addr
, 0);
4032 /* A utility routine used here, in reload, and in try_split. The insns
4033 after PREV up to and including LAST are known to adjust the stack,
4034 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4035 placing notes as appropriate. PREV may be NULL, indicating the
4036 entire insn sequence prior to LAST should be scanned.
4038 The set of allowed stack pointer modifications is small:
4039 (1) One or more auto-inc style memory references (aka pushes),
4040 (2) One or more addition/subtraction with the SP as destination,
4041 (3) A single move insn with the SP as destination,
4042 (4) A call_pop insn,
4043 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4045 Insns in the sequence that do not modify the SP are ignored,
4046 except for noreturn calls.
4048 The return value is the amount of adjustment that can be trivially
4049 verified, via immediate operand or auto-inc. If the adjustment
4050 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4053 find_args_size_adjust (rtx_insn
*insn
)
4058 pat
= PATTERN (insn
);
4061 /* Look for a call_pop pattern. */
4064 /* We have to allow non-call_pop patterns for the case
4065 of emit_single_push_insn of a TLS address. */
4066 if (GET_CODE (pat
) != PARALLEL
)
4069 /* All call_pop have a stack pointer adjust in the parallel.
4070 The call itself is always first, and the stack adjust is
4071 usually last, so search from the end. */
4072 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
4074 set
= XVECEXP (pat
, 0, i
);
4075 if (GET_CODE (set
) != SET
)
4077 dest
= SET_DEST (set
);
4078 if (dest
== stack_pointer_rtx
)
4081 /* We'd better have found the stack pointer adjust. */
4084 /* Fall through to process the extracted SET and DEST
4085 as if it was a standalone insn. */
4087 else if (GET_CODE (pat
) == SET
)
4089 else if ((set
= single_set (insn
)) != NULL
)
4091 else if (GET_CODE (pat
) == PARALLEL
)
4093 /* ??? Some older ports use a parallel with a stack adjust
4094 and a store for a PUSH_ROUNDING pattern, rather than a
4095 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4096 /* ??? See h8300 and m68k, pushqi1. */
4097 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
4099 set
= XVECEXP (pat
, 0, i
);
4100 if (GET_CODE (set
) != SET
)
4102 dest
= SET_DEST (set
);
4103 if (dest
== stack_pointer_rtx
)
4106 /* We do not expect an auto-inc of the sp in the parallel. */
4107 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
4108 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4109 != stack_pointer_rtx
);
4117 dest
= SET_DEST (set
);
4119 /* Look for direct modifications of the stack pointer. */
4120 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
4122 /* Look for a trivial adjustment, otherwise assume nothing. */
4123 /* Note that the SPU restore_stack_block pattern refers to
4124 the stack pointer in V4SImode. Consider that non-trivial. */
4126 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
4127 && strip_offset (SET_SRC (set
), &offset
) == stack_pointer_rtx
)
4129 /* ??? Reload can generate no-op moves, which will be cleaned
4130 up later. Recognize it and continue searching. */
4131 else if (rtx_equal_p (dest
, SET_SRC (set
)))
4134 return HOST_WIDE_INT_MIN
;
4140 /* Otherwise only think about autoinc patterns. */
4141 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
4144 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
4145 != stack_pointer_rtx
);
4147 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
4148 mem
= SET_SRC (set
);
4152 addr
= XEXP (mem
, 0);
4153 switch (GET_CODE (addr
))
4157 return GET_MODE_SIZE (GET_MODE (mem
));
4160 return -GET_MODE_SIZE (GET_MODE (mem
));
4163 addr
= XEXP (addr
, 1);
4164 gcc_assert (GET_CODE (addr
) == PLUS
);
4165 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
4166 return rtx_to_poly_int64 (XEXP (addr
, 1));
4174 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
,
4175 poly_int64 end_args_size
)
4177 poly_int64 args_size
= end_args_size
;
4178 bool saw_unknown
= false;
4181 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
4183 if (!NONDEBUG_INSN_P (insn
))
4186 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4187 a call argument containing a TLS address that itself requires
4188 a call to __tls_get_addr. The handling of stack_pointer_delta
4189 in emit_single_push_insn is supposed to ensure that any such
4190 notes are already correct. */
4191 rtx note
= find_reg_note (insn
, REG_ARGS_SIZE
, NULL_RTX
);
4192 gcc_assert (!note
|| known_eq (args_size
, get_args_size (note
)));
4194 poly_int64 this_delta
= find_args_size_adjust (insn
);
4195 if (known_eq (this_delta
, 0))
4198 || ACCUMULATE_OUTGOING_ARGS
4199 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
4203 gcc_assert (!saw_unknown
);
4204 if (known_eq (this_delta
, HOST_WIDE_INT_MIN
))
4208 add_args_size_note (insn
, args_size
);
4209 if (STACK_GROWS_DOWNWARD
)
4210 this_delta
= -poly_uint64 (this_delta
);
4213 args_size
= HOST_WIDE_INT_MIN
;
4215 args_size
-= this_delta
;
4221 #ifdef PUSH_ROUNDING
4222 /* Emit single push insn. */
4225 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4228 poly_int64 rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4230 enum insn_code icode
;
4232 /* If there is push pattern, use it. Otherwise try old way of throwing
4233 MEM representing push operation to move expander. */
4234 icode
= optab_handler (push_optab
, mode
);
4235 if (icode
!= CODE_FOR_nothing
)
4237 class expand_operand ops
[1];
4239 create_input_operand (&ops
[0], x
, mode
);
4240 if (maybe_expand_insn (icode
, 1, ops
))
4243 if (known_eq (GET_MODE_SIZE (mode
), rounded_size
))
4244 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4245 /* If we are to pad downward, adjust the stack pointer first and
4246 then store X into the stack location using an offset. This is
4247 because emit_move_insn does not know how to pad; it does not have
4249 else if (targetm
.calls
.function_arg_padding (mode
, type
) == PAD_DOWNWARD
)
4251 emit_move_insn (stack_pointer_rtx
,
4252 expand_binop (Pmode
,
4253 STACK_GROWS_DOWNWARD
? sub_optab
4256 gen_int_mode (rounded_size
, Pmode
),
4257 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4259 poly_int64 offset
= rounded_size
- GET_MODE_SIZE (mode
);
4260 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4261 /* We have already decremented the stack pointer, so get the
4263 offset
+= rounded_size
;
4265 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4266 /* We have already incremented the stack pointer, so get the
4268 offset
-= rounded_size
;
4270 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, offset
);
4274 if (STACK_GROWS_DOWNWARD
)
4275 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4276 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, -rounded_size
);
4278 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4279 dest_addr
= plus_constant (Pmode
, stack_pointer_rtx
, rounded_size
);
4281 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4284 dest
= gen_rtx_MEM (mode
, dest_addr
);
4288 set_mem_attributes (dest
, type
, 1);
4290 if (cfun
->tail_call_marked
)
4291 /* Function incoming arguments may overlap with sibling call
4292 outgoing arguments and we cannot allow reordering of reads
4293 from function arguments with stores to outgoing arguments
4294 of sibling calls. */
4295 set_mem_alias_set (dest
, 0);
4297 emit_move_insn (dest
, x
);
4300 /* Emit and annotate a single push insn. */
4303 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4305 poly_int64 delta
, old_delta
= stack_pointer_delta
;
4306 rtx_insn
*prev
= get_last_insn ();
4309 emit_single_push_insn_1 (mode
, x
, type
);
4311 /* Adjust stack_pointer_delta to describe the situation after the push
4312 we just performed. Note that we must do this after the push rather
4313 than before the push in case calculating X needs pushes and pops of
4314 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4315 for such pushes and pops must not include the effect of the future
4317 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4319 last
= get_last_insn ();
4321 /* Notice the common case where we emitted exactly one insn. */
4322 if (PREV_INSN (last
) == prev
)
4324 add_args_size_note (last
, stack_pointer_delta
);
4328 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4329 gcc_assert (known_eq (delta
, HOST_WIDE_INT_MIN
)
4330 || known_eq (delta
, old_delta
));
4334 /* If reading SIZE bytes from X will end up reading from
4335 Y return the number of bytes that overlap. Return -1
4336 if there is no overlap or -2 if we can't determine
4337 (for example when X and Y have different base registers). */
4340 memory_load_overlap (rtx x
, rtx y
, HOST_WIDE_INT size
)
4342 rtx tmp
= plus_constant (Pmode
, x
, size
);
4343 rtx sub
= simplify_gen_binary (MINUS
, Pmode
, tmp
, y
);
4345 if (!CONST_INT_P (sub
))
4348 HOST_WIDE_INT val
= INTVAL (sub
);
4350 return IN_RANGE (val
, 1, size
) ? val
: -1;
4353 /* Generate code to push X onto the stack, assuming it has mode MODE and
4355 MODE is redundant except when X is a CONST_INT (since they don't
4357 SIZE is an rtx for the size of data to be copied (in bytes),
4358 needed only if X is BLKmode.
4359 Return true if successful. May return false if asked to push a
4360 partial argument during a sibcall optimization (as specified by
4361 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4364 ALIGN (in bits) is maximum alignment we can assume.
4366 If PARTIAL and REG are both nonzero, then copy that many of the first
4367 bytes of X into registers starting with REG, and push the rest of X.
4368 The amount of space pushed is decreased by PARTIAL bytes.
4369 REG must be a hard register in this case.
4370 If REG is zero but PARTIAL is not, take any all others actions for an
4371 argument partially in registers, but do not actually load any
4374 EXTRA is the amount in bytes of extra space to leave next to this arg.
4375 This is ignored if an argument block has already been allocated.
4377 On a machine that lacks real push insns, ARGS_ADDR is the address of
4378 the bottom of the argument block for this call. We use indexing off there
4379 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4380 argument block has not been preallocated.
4382 ARGS_SO_FAR is the size of args previously pushed for this call.
4384 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4385 for arguments passed in registers. If nonzero, it will be the number
4386 of bytes required. */
4389 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4390 unsigned int align
, int partial
, rtx reg
, poly_int64 extra
,
4391 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4392 rtx alignment_pad
, bool sibcall_p
)
4395 pad_direction stack_direction
4396 = STACK_GROWS_DOWNWARD
? PAD_DOWNWARD
: PAD_UPWARD
;
4398 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4399 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4400 Default is below for small data on big-endian machines; else above. */
4401 pad_direction where_pad
= targetm
.calls
.function_arg_padding (mode
, type
);
4403 /* Invert direction if stack is post-decrement.
4405 if (STACK_PUSH_CODE
== POST_DEC
)
4406 if (where_pad
!= PAD_NONE
)
4407 where_pad
= (where_pad
== PAD_DOWNWARD
? PAD_UPWARD
: PAD_DOWNWARD
);
4411 int nregs
= partial
/ UNITS_PER_WORD
;
4412 rtx
*tmp_regs
= NULL
;
4413 int overlapping
= 0;
4416 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4418 /* Copy a block into the stack, entirely or partially. */
4425 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4426 used
= partial
- offset
;
4428 if (mode
!= BLKmode
)
4430 /* A value is to be stored in an insufficiently aligned
4431 stack slot; copy via a suitably aligned slot if
4433 size
= gen_int_mode (GET_MODE_SIZE (mode
), Pmode
);
4434 if (!MEM_P (xinner
))
4436 temp
= assign_temp (type
, 1, 1);
4437 emit_move_insn (temp
, xinner
);
4444 /* USED is now the # of bytes we need not copy to the stack
4445 because registers will take care of them. */
4448 xinner
= adjust_address (xinner
, BLKmode
, used
);
4450 /* If the partial register-part of the arg counts in its stack size,
4451 skip the part of stack space corresponding to the registers.
4452 Otherwise, start copying to the beginning of the stack space,
4453 by setting SKIP to 0. */
4454 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4456 #ifdef PUSH_ROUNDING
4457 /* Do it with several push insns if that doesn't take lots of insns
4458 and if there is no difficulty with push insns that skip bytes
4459 on the stack for alignment purposes. */
4462 && CONST_INT_P (size
)
4464 && MEM_ALIGN (xinner
) >= align
4465 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4466 /* Here we avoid the case of a structure whose weak alignment
4467 forces many pushes of a small amount of data,
4468 and such small pushes do rounding that causes trouble. */
4469 && ((!targetm
.slow_unaligned_access (word_mode
, align
))
4470 || align
>= BIGGEST_ALIGNMENT
4471 || known_eq (PUSH_ROUNDING (align
/ BITS_PER_UNIT
),
4472 align
/ BITS_PER_UNIT
))
4473 && known_eq (PUSH_ROUNDING (INTVAL (size
)), INTVAL (size
)))
4475 /* Push padding now if padding above and stack grows down,
4476 or if padding below and stack grows up.
4477 But if space already allocated, this has already been done. */
4478 if (maybe_ne (extra
, 0)
4480 && where_pad
!= PAD_NONE
4481 && where_pad
!= stack_direction
)
4482 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4484 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
,
4488 #endif /* PUSH_ROUNDING */
4492 /* Otherwise make space on the stack and copy the data
4493 to the address of that space. */
4495 /* Deduct words put into registers from the size we must copy. */
4498 if (CONST_INT_P (size
))
4499 size
= GEN_INT (INTVAL (size
) - used
);
4501 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4502 gen_int_mode (used
, GET_MODE (size
)),
4503 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4506 /* Get the address of the stack space.
4507 In this case, we do not deal with EXTRA separately.
4508 A single stack adjust will do. */
4509 poly_int64 const_args_so_far
;
4512 temp
= push_block (size
, extra
, where_pad
== PAD_DOWNWARD
);
4515 else if (poly_int_rtx_p (args_so_far
, &const_args_so_far
))
4516 temp
= memory_address (BLKmode
,
4517 plus_constant (Pmode
, args_addr
,
4518 skip
+ const_args_so_far
));
4520 temp
= memory_address (BLKmode
,
4521 plus_constant (Pmode
,
4522 gen_rtx_PLUS (Pmode
,
4527 if (!ACCUMULATE_OUTGOING_ARGS
)
4529 /* If the source is referenced relative to the stack pointer,
4530 copy it to another register to stabilize it. We do not need
4531 to do this if we know that we won't be changing sp. */
4533 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4534 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4535 temp
= copy_to_reg (temp
);
4538 target
= gen_rtx_MEM (BLKmode
, temp
);
4540 /* We do *not* set_mem_attributes here, because incoming arguments
4541 may overlap with sibling call outgoing arguments and we cannot
4542 allow reordering of reads from function arguments with stores
4543 to outgoing arguments of sibling calls. We do, however, want
4544 to record the alignment of the stack slot. */
4545 /* ALIGN may well be better aligned than TYPE, e.g. due to
4546 PARM_BOUNDARY. Assume the caller isn't lying. */
4547 set_mem_align (target
, align
);
4549 /* If part should go in registers and pushing to that part would
4550 overwrite some of the values that need to go into regs, load the
4551 overlapping values into temporary pseudos to be moved into the hard
4552 regs at the end after the stack pushing has completed.
4553 We cannot load them directly into the hard regs here because
4554 they can be clobbered by the block move expansions.
4557 if (partial
> 0 && reg
!= 0 && mode
== BLKmode
4558 && GET_CODE (reg
) != PARALLEL
)
4560 overlapping
= memory_load_overlap (XEXP (x
, 0), temp
, partial
);
4561 if (overlapping
> 0)
4563 gcc_assert (overlapping
% UNITS_PER_WORD
== 0);
4564 overlapping
/= UNITS_PER_WORD
;
4566 tmp_regs
= XALLOCAVEC (rtx
, overlapping
);
4568 for (int i
= 0; i
< overlapping
; i
++)
4569 tmp_regs
[i
] = gen_reg_rtx (word_mode
);
4571 for (int i
= 0; i
< overlapping
; i
++)
4572 emit_move_insn (tmp_regs
[i
],
4573 operand_subword_force (target
, i
, mode
));
4575 else if (overlapping
== -1)
4577 /* Could not determine whether there is overlap.
4578 Fail the sibcall. */
4586 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4589 else if (partial
> 0)
4591 /* Scalar partly in registers. This case is only supported
4592 for fixed-wdth modes. */
4593 int num_words
= GET_MODE_SIZE (mode
).to_constant ();
4594 num_words
/= UNITS_PER_WORD
;
4597 /* # bytes of start of argument
4598 that we must make space for but need not store. */
4599 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4600 int args_offset
= INTVAL (args_so_far
);
4603 /* Push padding now if padding above and stack grows down,
4604 or if padding below and stack grows up.
4605 But if space already allocated, this has already been done. */
4606 if (maybe_ne (extra
, 0)
4608 && where_pad
!= PAD_NONE
4609 && where_pad
!= stack_direction
)
4610 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4612 /* If we make space by pushing it, we might as well push
4613 the real data. Otherwise, we can leave OFFSET nonzero
4614 and leave the space uninitialized. */
4618 /* Now NOT_STACK gets the number of words that we don't need to
4619 allocate on the stack. Convert OFFSET to words too. */
4620 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4621 offset
/= UNITS_PER_WORD
;
4623 /* If the partial register-part of the arg counts in its stack size,
4624 skip the part of stack space corresponding to the registers.
4625 Otherwise, start copying to the beginning of the stack space,
4626 by setting SKIP to 0. */
4627 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4629 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4630 x
= validize_mem (force_const_mem (mode
, x
));
4632 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4633 SUBREGs of such registers are not allowed. */
4634 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4635 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4636 x
= copy_to_reg (x
);
4638 /* Loop over all the words allocated on the stack for this arg. */
4639 /* We can do it by words, because any scalar bigger than a word
4640 has a size a multiple of a word. */
4641 for (i
= num_words
- 1; i
>= not_stack
; i
--)
4642 if (i
>= not_stack
+ offset
)
4643 if (!emit_push_insn (operand_subword_force (x
, i
, mode
),
4644 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4646 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4648 reg_parm_stack_space
, alignment_pad
, sibcall_p
))
4656 /* Push padding now if padding above and stack grows down,
4657 or if padding below and stack grows up.
4658 But if space already allocated, this has already been done. */
4659 if (maybe_ne (extra
, 0)
4661 && where_pad
!= PAD_NONE
4662 && where_pad
!= stack_direction
)
4663 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4665 #ifdef PUSH_ROUNDING
4666 if (args_addr
== 0 && PUSH_ARGS
)
4667 emit_single_push_insn (mode
, x
, type
);
4671 addr
= simplify_gen_binary (PLUS
, Pmode
, args_addr
, args_so_far
);
4672 dest
= gen_rtx_MEM (mode
, memory_address (mode
, addr
));
4674 /* We do *not* set_mem_attributes here, because incoming arguments
4675 may overlap with sibling call outgoing arguments and we cannot
4676 allow reordering of reads from function arguments with stores
4677 to outgoing arguments of sibling calls. We do, however, want
4678 to record the alignment of the stack slot. */
4679 /* ALIGN may well be better aligned than TYPE, e.g. due to
4680 PARM_BOUNDARY. Assume the caller isn't lying. */
4681 set_mem_align (dest
, align
);
4683 emit_move_insn (dest
, x
);
4687 /* Move the partial arguments into the registers and any overlapping
4688 values that we moved into the pseudos in tmp_regs. */
4689 if (partial
> 0 && reg
!= 0)
4691 /* Handle calls that pass values in multiple non-contiguous locations.
4692 The Irix 6 ABI has examples of this. */
4693 if (GET_CODE (reg
) == PARALLEL
)
4694 emit_group_load (reg
, x
, type
, -1);
4697 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4698 move_block_to_reg (REGNO (reg
), x
, nregs
- overlapping
, mode
);
4700 for (int i
= 0; i
< overlapping
; i
++)
4701 emit_move_insn (gen_rtx_REG (word_mode
, REGNO (reg
)
4702 + nregs
- overlapping
+ i
),
4708 if (maybe_ne (extra
, 0) && args_addr
== 0 && where_pad
== stack_direction
)
4709 anti_adjust_stack (gen_int_mode (extra
, Pmode
));
4711 if (alignment_pad
&& args_addr
== 0)
4712 anti_adjust_stack (alignment_pad
);
4717 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4721 get_subtarget (rtx x
)
4725 /* Only registers can be subtargets. */
4727 /* Don't use hard regs to avoid extending their life. */
4728 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4732 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4733 FIELD is a bitfield. Returns true if the optimization was successful,
4734 and there's nothing else to do. */
4737 optimize_bitfield_assignment_op (poly_uint64 pbitsize
,
4738 poly_uint64 pbitpos
,
4739 poly_uint64 pbitregion_start
,
4740 poly_uint64 pbitregion_end
,
4741 machine_mode mode1
, rtx str_rtx
,
4742 tree to
, tree src
, bool reverse
)
4744 /* str_mode is not guaranteed to be a scalar type. */
4745 machine_mode str_mode
= GET_MODE (str_rtx
);
4746 unsigned int str_bitsize
;
4751 enum tree_code code
;
4753 unsigned HOST_WIDE_INT bitsize
, bitpos
, bitregion_start
, bitregion_end
;
4754 if (mode1
!= VOIDmode
4755 || !pbitsize
.is_constant (&bitsize
)
4756 || !pbitpos
.is_constant (&bitpos
)
4757 || !pbitregion_start
.is_constant (&bitregion_start
)
4758 || !pbitregion_end
.is_constant (&bitregion_end
)
4759 || bitsize
>= BITS_PER_WORD
4760 || !GET_MODE_BITSIZE (str_mode
).is_constant (&str_bitsize
)
4761 || str_bitsize
> BITS_PER_WORD
4762 || TREE_SIDE_EFFECTS (to
)
4763 || TREE_THIS_VOLATILE (to
))
4767 if (TREE_CODE (src
) != SSA_NAME
)
4769 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4772 srcstmt
= get_gimple_for_ssa_name (src
);
4774 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4777 code
= gimple_assign_rhs_code (srcstmt
);
4779 op0
= gimple_assign_rhs1 (srcstmt
);
4781 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4782 to find its initialization. Hopefully the initialization will
4783 be from a bitfield load. */
4784 if (TREE_CODE (op0
) == SSA_NAME
)
4786 gimple
*op0stmt
= get_gimple_for_ssa_name (op0
);
4788 /* We want to eventually have OP0 be the same as TO, which
4789 should be a bitfield. */
4791 || !is_gimple_assign (op0stmt
)
4792 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4794 op0
= gimple_assign_rhs1 (op0stmt
);
4797 op1
= gimple_assign_rhs2 (srcstmt
);
4799 if (!operand_equal_p (to
, op0
, 0))
4802 if (MEM_P (str_rtx
))
4804 unsigned HOST_WIDE_INT offset1
;
4806 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4807 str_bitsize
= BITS_PER_WORD
;
4809 scalar_int_mode best_mode
;
4810 if (!get_best_mode (bitsize
, bitpos
, bitregion_start
, bitregion_end
,
4811 MEM_ALIGN (str_rtx
), str_bitsize
, false, &best_mode
))
4813 str_mode
= best_mode
;
4814 str_bitsize
= GET_MODE_BITSIZE (best_mode
);
4817 bitpos
%= str_bitsize
;
4818 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4819 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4821 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4824 /* If the bit field covers the whole REG/MEM, store_field
4825 will likely generate better code. */
4826 if (bitsize
>= str_bitsize
)
4829 /* We can't handle fields split across multiple entities. */
4830 if (bitpos
+ bitsize
> str_bitsize
)
4833 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4834 bitpos
= str_bitsize
- bitpos
- bitsize
;
4840 /* For now, just optimize the case of the topmost bitfield
4841 where we don't need to do any masking and also
4842 1 bit bitfields where xor can be used.
4843 We might win by one instruction for the other bitfields
4844 too if insv/extv instructions aren't used, so that
4845 can be added later. */
4846 if ((reverse
|| bitpos
+ bitsize
!= str_bitsize
)
4847 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4850 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4851 value
= convert_modes (str_mode
,
4852 TYPE_MODE (TREE_TYPE (op1
)), value
,
4853 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4855 /* We may be accessing data outside the field, which means
4856 we can alias adjacent data. */
4857 if (MEM_P (str_rtx
))
4859 str_rtx
= shallow_copy_rtx (str_rtx
);
4860 set_mem_alias_set (str_rtx
, 0);
4861 set_mem_expr (str_rtx
, 0);
4864 if (bitsize
== 1 && (reverse
|| bitpos
+ bitsize
!= str_bitsize
))
4866 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4870 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4872 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4874 value
= flip_storage_order (str_mode
, value
);
4875 result
= expand_binop (str_mode
, binop
, str_rtx
,
4876 value
, str_rtx
, 1, OPTAB_WIDEN
);
4877 if (result
!= str_rtx
)
4878 emit_move_insn (str_rtx
, result
);
4883 if (TREE_CODE (op1
) != INTEGER_CST
)
4885 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4886 value
= convert_modes (str_mode
,
4887 TYPE_MODE (TREE_TYPE (op1
)), value
,
4888 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4890 /* We may be accessing data outside the field, which means
4891 we can alias adjacent data. */
4892 if (MEM_P (str_rtx
))
4894 str_rtx
= shallow_copy_rtx (str_rtx
);
4895 set_mem_alias_set (str_rtx
, 0);
4896 set_mem_expr (str_rtx
, 0);
4899 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4900 if (bitpos
+ bitsize
!= str_bitsize
)
4902 rtx mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< bitsize
) - 1,
4904 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4906 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4908 value
= flip_storage_order (str_mode
, value
);
4909 result
= expand_binop (str_mode
, binop
, str_rtx
,
4910 value
, str_rtx
, 1, OPTAB_WIDEN
);
4911 if (result
!= str_rtx
)
4912 emit_move_insn (str_rtx
, result
);
4922 /* In the C++ memory model, consecutive bit fields in a structure are
4923 considered one memory location.
4925 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4926 returns the bit range of consecutive bits in which this COMPONENT_REF
4927 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4928 and *OFFSET may be adjusted in the process.
4930 If the access does not need to be restricted, 0 is returned in both
4931 *BITSTART and *BITEND. */
4934 get_bit_range (poly_uint64_pod
*bitstart
, poly_uint64_pod
*bitend
, tree exp
,
4935 poly_int64_pod
*bitpos
, tree
*offset
)
4937 poly_int64 bitoffset
;
4940 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4942 field
= TREE_OPERAND (exp
, 1);
4943 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4944 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4945 need to limit the range we can access. */
4948 *bitstart
= *bitend
= 0;
4952 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4953 part of a larger bit field, then the representative does not serve any
4954 useful purpose. This can occur in Ada. */
4955 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4958 poly_int64 rbitsize
, rbitpos
;
4960 int unsignedp
, reversep
, volatilep
= 0;
4961 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4962 &roffset
, &rmode
, &unsignedp
, &reversep
,
4964 if (!multiple_p (rbitpos
, BITS_PER_UNIT
))
4966 *bitstart
= *bitend
= 0;
4971 /* Compute the adjustment to bitpos from the offset of the field
4972 relative to the representative. DECL_FIELD_OFFSET of field and
4973 repr are the same by construction if they are not constants,
4974 see finish_bitfield_layout. */
4975 poly_uint64 field_offset
, repr_offset
;
4976 if (poly_int_tree_p (DECL_FIELD_OFFSET (field
), &field_offset
)
4977 && poly_int_tree_p (DECL_FIELD_OFFSET (repr
), &repr_offset
))
4978 bitoffset
= (field_offset
- repr_offset
) * BITS_PER_UNIT
;
4981 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4982 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4984 /* If the adjustment is larger than bitpos, we would have a negative bit
4985 position for the lower bound and this may wreak havoc later. Adjust
4986 offset and bitpos to make the lower bound non-negative in that case. */
4987 if (maybe_gt (bitoffset
, *bitpos
))
4989 poly_int64 adjust_bits
= upper_bound (bitoffset
, *bitpos
) - *bitpos
;
4990 poly_int64 adjust_bytes
= exact_div (adjust_bits
, BITS_PER_UNIT
);
4992 *bitpos
+= adjust_bits
;
4993 if (*offset
== NULL_TREE
)
4994 *offset
= size_int (-adjust_bytes
);
4996 *offset
= size_binop (MINUS_EXPR
, *offset
, size_int (adjust_bytes
));
5000 *bitstart
= *bitpos
- bitoffset
;
5002 *bitend
= *bitstart
+ tree_to_poly_uint64 (DECL_SIZE (repr
)) - 1;
5005 /* Returns true if BASE is a DECL that does not reside in memory and
5006 has non-BLKmode. DECL_RTL must not be a MEM; if
5007 DECL_RTL was not set yet, return false. */
5010 non_mem_decl_p (tree base
)
5013 || TREE_ADDRESSABLE (base
)
5014 || DECL_MODE (base
) == BLKmode
)
5017 if (!DECL_RTL_SET_P (base
))
5020 return (!MEM_P (DECL_RTL (base
)));
5023 /* Returns true if REF refers to an object that does not
5024 reside in memory and has non-BLKmode. */
5027 mem_ref_refers_to_non_mem_p (tree ref
)
5031 if (TREE_CODE (ref
) == MEM_REF
5032 || TREE_CODE (ref
) == TARGET_MEM_REF
)
5034 tree addr
= TREE_OPERAND (ref
, 0);
5036 if (TREE_CODE (addr
) != ADDR_EXPR
)
5039 base
= TREE_OPERAND (addr
, 0);
5044 return non_mem_decl_p (base
);
5047 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5048 is true, try generating a nontemporal store. */
5051 expand_assignment (tree to
, tree from
, bool nontemporal
)
5057 enum insn_code icode
;
5059 /* Don't crash if the lhs of the assignment was erroneous. */
5060 if (TREE_CODE (to
) == ERROR_MARK
)
5062 expand_normal (from
);
5066 /* Optimize away no-op moves without side-effects. */
5067 if (operand_equal_p (to
, from
, 0))
5070 /* Handle misaligned stores. */
5071 mode
= TYPE_MODE (TREE_TYPE (to
));
5072 if ((TREE_CODE (to
) == MEM_REF
5073 || TREE_CODE (to
) == TARGET_MEM_REF
5076 && !mem_ref_refers_to_non_mem_p (to
)
5077 && ((align
= get_object_alignment (to
))
5078 < GET_MODE_ALIGNMENT (mode
))
5079 && (((icode
= optab_handler (movmisalign_optab
, mode
))
5080 != CODE_FOR_nothing
)
5081 || targetm
.slow_unaligned_access (mode
, align
)))
5085 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
5086 reg
= force_not_mem (reg
);
5087 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5088 if (TREE_CODE (to
) == MEM_REF
&& REF_REVERSE_STORAGE_ORDER (to
))
5089 reg
= flip_storage_order (mode
, reg
);
5091 if (icode
!= CODE_FOR_nothing
)
5093 class expand_operand ops
[2];
5095 create_fixed_operand (&ops
[0], mem
);
5096 create_input_operand (&ops
[1], reg
, mode
);
5097 /* The movmisalign<mode> pattern cannot fail, else the assignment
5098 would silently be omitted. */
5099 expand_insn (icode
, 2, ops
);
5102 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
,
5107 /* Assignment of a structure component needs special treatment
5108 if the structure component's rtx is not simply a MEM.
5109 Assignment of an array element at a constant index, and assignment of
5110 an array element in an unaligned packed structure field, has the same
5111 problem. Same for (partially) storing into a non-memory object. */
5112 if (handled_component_p (to
)
5113 || (TREE_CODE (to
) == MEM_REF
5114 && (REF_REVERSE_STORAGE_ORDER (to
)
5115 || mem_ref_refers_to_non_mem_p (to
)))
5116 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
5119 poly_int64 bitsize
, bitpos
;
5120 poly_uint64 bitregion_start
= 0;
5121 poly_uint64 bitregion_end
= 0;
5123 int unsignedp
, reversep
, volatilep
= 0;
5127 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
5128 &unsignedp
, &reversep
, &volatilep
);
5130 /* Make sure bitpos is not negative, it can wreak havoc later. */
5131 if (maybe_lt (bitpos
, 0))
5133 gcc_assert (offset
== NULL_TREE
);
5134 offset
= size_int (bits_to_bytes_round_down (bitpos
));
5135 bitpos
= num_trailing_bits (bitpos
);
5138 if (TREE_CODE (to
) == COMPONENT_REF
5139 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
5140 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
5141 /* The C++ memory model naturally applies to byte-aligned fields.
5142 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5143 BITSIZE are not byte-aligned, there is no need to limit the range
5144 we can access. This can occur with packed structures in Ada. */
5145 else if (maybe_gt (bitsize
, 0)
5146 && multiple_p (bitsize
, BITS_PER_UNIT
)
5147 && multiple_p (bitpos
, BITS_PER_UNIT
))
5149 bitregion_start
= bitpos
;
5150 bitregion_end
= bitpos
+ bitsize
- 1;
5153 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5155 /* If the field has a mode, we want to access it in the
5156 field's mode, not the computed mode.
5157 If a MEM has VOIDmode (external with incomplete type),
5158 use BLKmode for it instead. */
5161 if (mode1
!= VOIDmode
)
5162 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
5163 else if (GET_MODE (to_rtx
) == VOIDmode
)
5164 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
5169 machine_mode address_mode
;
5172 if (!MEM_P (to_rtx
))
5174 /* We can get constant negative offsets into arrays with broken
5175 user code. Translate this to a trap instead of ICEing. */
5176 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
5177 expand_builtin_trap ();
5178 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
5181 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
5182 address_mode
= get_address_mode (to_rtx
);
5183 if (GET_MODE (offset_rtx
) != address_mode
)
5185 /* We cannot be sure that the RTL in offset_rtx is valid outside
5186 of a memory address context, so force it into a register
5187 before attempting to convert it to the desired mode. */
5188 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
5189 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5192 /* If we have an expression in OFFSET_RTX and a non-zero
5193 byte offset in BITPOS, adding the byte offset before the
5194 OFFSET_RTX results in better intermediate code, which makes
5195 later rtl optimization passes perform better.
5197 We prefer intermediate code like this:
5199 r124:DI=r123:DI+0x18
5204 r124:DI=r123:DI+0x10
5205 [r124:DI+0x8]=r121:DI
5207 This is only done for aligned data values, as these can
5208 be expected to result in single move instructions. */
5210 if (mode1
!= VOIDmode
5211 && maybe_ne (bitpos
, 0)
5212 && maybe_gt (bitsize
, 0)
5213 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
5214 && multiple_p (bitpos
, bitsize
)
5215 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
5216 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
5218 to_rtx
= adjust_address (to_rtx
, mode1
, bytepos
);
5219 bitregion_start
= 0;
5220 if (known_ge (bitregion_end
, poly_uint64 (bitpos
)))
5221 bitregion_end
-= bitpos
;
5225 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5226 highest_pow2_factor_for_target (to
,
5230 /* No action is needed if the target is not a memory and the field
5231 lies completely outside that target. This can occur if the source
5232 code contains an out-of-bounds access to a small array. */
5234 && GET_MODE (to_rtx
) != BLKmode
5235 && known_ge (bitpos
, GET_MODE_PRECISION (GET_MODE (to_rtx
))))
5237 expand_normal (from
);
5240 /* Handle expand_expr of a complex value returning a CONCAT. */
5241 else if (GET_CODE (to_rtx
) == CONCAT
)
5243 machine_mode to_mode
= GET_MODE (to_rtx
);
5244 gcc_checking_assert (COMPLEX_MODE_P (to_mode
));
5245 poly_int64 mode_bitsize
= GET_MODE_BITSIZE (to_mode
);
5246 unsigned short inner_bitsize
= GET_MODE_UNIT_BITSIZE (to_mode
);
5247 if (TYPE_MODE (TREE_TYPE (from
)) == to_mode
5248 && known_eq (bitpos
, 0)
5249 && known_eq (bitsize
, mode_bitsize
))
5250 result
= store_expr (from
, to_rtx
, false, nontemporal
, reversep
);
5251 else if (TYPE_MODE (TREE_TYPE (from
)) == GET_MODE_INNER (to_mode
)
5252 && known_eq (bitsize
, inner_bitsize
)
5253 && (known_eq (bitpos
, 0)
5254 || known_eq (bitpos
, inner_bitsize
)))
5255 result
= store_expr (from
, XEXP (to_rtx
, maybe_ne (bitpos
, 0)),
5256 false, nontemporal
, reversep
);
5257 else if (known_le (bitpos
+ bitsize
, inner_bitsize
))
5258 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
5259 bitregion_start
, bitregion_end
,
5260 mode1
, from
, get_alias_set (to
),
5261 nontemporal
, reversep
);
5262 else if (known_ge (bitpos
, inner_bitsize
))
5263 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
5264 bitpos
- inner_bitsize
,
5265 bitregion_start
, bitregion_end
,
5266 mode1
, from
, get_alias_set (to
),
5267 nontemporal
, reversep
);
5268 else if (known_eq (bitpos
, 0) && known_eq (bitsize
, mode_bitsize
))
5270 result
= expand_normal (from
);
5271 if (GET_CODE (result
) == CONCAT
)
5273 to_mode
= GET_MODE_INNER (to_mode
);
5274 machine_mode from_mode
= GET_MODE_INNER (GET_MODE (result
));
5276 = simplify_gen_subreg (to_mode
, XEXP (result
, 0),
5279 = simplify_gen_subreg (to_mode
, XEXP (result
, 1),
5281 if (!from_real
|| !from_imag
)
5282 goto concat_store_slow
;
5283 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5284 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5288 machine_mode from_mode
5289 = GET_MODE (result
) == VOIDmode
5290 ? TYPE_MODE (TREE_TYPE (from
))
5291 : GET_MODE (result
);
5294 from_rtx
= change_address (result
, to_mode
, NULL_RTX
);
5297 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
5300 emit_move_insn (XEXP (to_rtx
, 0),
5301 read_complex_part (from_rtx
, false));
5302 emit_move_insn (XEXP (to_rtx
, 1),
5303 read_complex_part (from_rtx
, true));
5307 to_mode
= GET_MODE_INNER (to_mode
);
5309 = simplify_gen_subreg (to_mode
, result
, from_mode
, 0);
5311 = simplify_gen_subreg (to_mode
, result
, from_mode
,
5312 GET_MODE_SIZE (to_mode
));
5313 if (!from_real
|| !from_imag
)
5314 goto concat_store_slow
;
5315 emit_move_insn (XEXP (to_rtx
, 0), from_real
);
5316 emit_move_insn (XEXP (to_rtx
, 1), from_imag
);
5323 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
5324 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5325 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
5326 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
5327 result
= store_field (temp
, bitsize
, bitpos
,
5328 bitregion_start
, bitregion_end
,
5329 mode1
, from
, get_alias_set (to
),
5330 nontemporal
, reversep
);
5331 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
5332 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
5335 /* For calls to functions returning variable length structures, if TO_RTX
5336 is not a MEM, go through a MEM because we must not create temporaries
5338 else if (!MEM_P (to_rtx
)
5339 && TREE_CODE (from
) == CALL_EXPR
5340 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5341 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) != INTEGER_CST
)
5343 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
5344 GET_MODE_SIZE (GET_MODE (to_rtx
)));
5345 result
= store_field (temp
, bitsize
, bitpos
, bitregion_start
,
5346 bitregion_end
, mode1
, from
, get_alias_set (to
),
5347 nontemporal
, reversep
);
5348 emit_move_insn (to_rtx
, temp
);
5354 /* If the field is at offset zero, we could have been given the
5355 DECL_RTX of the parent struct. Don't munge it. */
5356 to_rtx
= shallow_copy_rtx (to_rtx
);
5357 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
5359 MEM_VOLATILE_P (to_rtx
) = 1;
5362 gcc_checking_assert (known_ge (bitpos
, 0));
5363 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
5364 bitregion_start
, bitregion_end
,
5365 mode1
, to_rtx
, to
, from
,
5369 result
= store_field (to_rtx
, bitsize
, bitpos
,
5370 bitregion_start
, bitregion_end
,
5371 mode1
, from
, get_alias_set (to
),
5372 nontemporal
, reversep
);
5376 preserve_temp_slots (result
);
5381 /* If the rhs is a function call and its value is not an aggregate,
5382 call the function before we start to compute the lhs.
5383 This is needed for correct code for cases such as
5384 val = setjmp (buf) on machines where reference to val
5385 requires loading up part of an address in a separate insn.
5387 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5388 since it might be a promoted variable where the zero- or sign- extension
5389 needs to be done. Handling this in the normal way is safe because no
5390 computation is done before the call. The same is true for SSA names. */
5391 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5392 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5393 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5395 || TREE_CODE (to
) == PARM_DECL
5396 || TREE_CODE (to
) == RESULT_DECL
)
5397 && REG_P (DECL_RTL (to
)))
5398 || TREE_CODE (to
) == SSA_NAME
))
5403 value
= expand_normal (from
);
5406 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5408 /* Handle calls that return values in multiple non-contiguous locations.
5409 The Irix 6 ABI has examples of this. */
5410 if (GET_CODE (to_rtx
) == PARALLEL
)
5412 if (GET_CODE (value
) == PARALLEL
)
5413 emit_group_move (to_rtx
, value
);
5415 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5416 int_size_in_bytes (TREE_TYPE (from
)));
5418 else if (GET_CODE (value
) == PARALLEL
)
5419 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5420 int_size_in_bytes (TREE_TYPE (from
)));
5421 else if (GET_MODE (to_rtx
) == BLKmode
)
5423 /* Handle calls that return BLKmode values in registers. */
5425 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5427 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5431 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5432 value
= convert_memory_address_addr_space
5433 (as_a
<scalar_int_mode
> (GET_MODE (to_rtx
)), value
,
5434 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5436 emit_move_insn (to_rtx
, value
);
5439 preserve_temp_slots (to_rtx
);
5444 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5445 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5447 /* Don't move directly into a return register. */
5448 if (TREE_CODE (to
) == RESULT_DECL
5449 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5455 /* If the source is itself a return value, it still is in a pseudo at
5456 this point so we can move it back to the return register directly. */
5458 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5459 && TREE_CODE (from
) != CALL_EXPR
)
5460 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5462 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5464 /* Handle calls that return values in multiple non-contiguous locations.
5465 The Irix 6 ABI has examples of this. */
5466 if (GET_CODE (to_rtx
) == PARALLEL
)
5468 if (GET_CODE (temp
) == PARALLEL
)
5469 emit_group_move (to_rtx
, temp
);
5471 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5472 int_size_in_bytes (TREE_TYPE (from
)));
5475 emit_move_insn (to_rtx
, temp
);
5477 preserve_temp_slots (to_rtx
);
5482 /* In case we are returning the contents of an object which overlaps
5483 the place the value is being stored, use a safe function when copying
5484 a value through a pointer into a structure value return block. */
5485 if (TREE_CODE (to
) == RESULT_DECL
5486 && TREE_CODE (from
) == INDIRECT_REF
5487 && ADDR_SPACE_GENERIC_P
5488 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5489 && refs_may_alias_p (to
, from
)
5490 && cfun
->returns_struct
5491 && !cfun
->returns_pcc_struct
)
5496 size
= expr_size (from
);
5497 from_rtx
= expand_normal (from
);
5499 emit_block_move_via_libcall (XEXP (to_rtx
, 0), XEXP (from_rtx
, 0), size
);
5501 preserve_temp_slots (to_rtx
);
5506 /* Compute FROM and store the value in the rtx we got. */
5509 result
= store_expr (from
, to_rtx
, 0, nontemporal
, false);
5510 preserve_temp_slots (result
);
5515 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5516 succeeded, false otherwise. */
5519 emit_storent_insn (rtx to
, rtx from
)
5521 class expand_operand ops
[2];
5522 machine_mode mode
= GET_MODE (to
);
5523 enum insn_code code
= optab_handler (storent_optab
, mode
);
5525 if (code
== CODE_FOR_nothing
)
5528 create_fixed_operand (&ops
[0], to
);
5529 create_input_operand (&ops
[1], from
, mode
);
5530 return maybe_expand_insn (code
, 2, ops
);
5533 /* Helper function for store_expr storing of STRING_CST. */
5536 string_cst_read_str (void *data
, HOST_WIDE_INT offset
, scalar_int_mode mode
)
5538 tree str
= (tree
) data
;
5540 gcc_assert (offset
>= 0);
5541 if (offset
>= TREE_STRING_LENGTH (str
))
5544 if ((unsigned HOST_WIDE_INT
) offset
+ GET_MODE_SIZE (mode
)
5545 > (unsigned HOST_WIDE_INT
) TREE_STRING_LENGTH (str
))
5547 char *p
= XALLOCAVEC (char, GET_MODE_SIZE (mode
));
5548 size_t l
= TREE_STRING_LENGTH (str
) - offset
;
5549 memcpy (p
, TREE_STRING_POINTER (str
) + offset
, l
);
5550 memset (p
+ l
, '\0', GET_MODE_SIZE (mode
) - l
);
5551 return c_readstr (p
, mode
, false);
5554 return c_readstr (TREE_STRING_POINTER (str
) + offset
, mode
, false);
5557 /* Generate code for computing expression EXP,
5558 and storing the value into TARGET.
5560 If the mode is BLKmode then we may return TARGET itself.
5561 It turns out that in BLKmode it doesn't cause a problem.
5562 because C has no operators that could combine two different
5563 assignments into the same BLKmode object with different values
5564 with no sequence point. Will other languages need this to
5567 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5568 stack, and block moves may need to be treated specially.
5570 If NONTEMPORAL is true, try using a nontemporal store instruction.
5572 If REVERSE is true, the store is to be done in reverse order. */
5575 store_expr (tree exp
, rtx target
, int call_param_p
,
5576 bool nontemporal
, bool reverse
)
5579 rtx alt_rtl
= NULL_RTX
;
5580 location_t loc
= curr_insn_location ();
5582 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5584 /* C++ can generate ?: expressions with a throw expression in one
5585 branch and an rvalue in the other. Here, we resolve attempts to
5586 store the throw expression's nonexistent result. */
5587 gcc_assert (!call_param_p
);
5588 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5591 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5593 /* Perform first part of compound expression, then assign from second
5595 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5596 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5597 return store_expr (TREE_OPERAND (exp
, 1), target
,
5598 call_param_p
, nontemporal
, reverse
);
5600 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5602 /* For conditional expression, get safe form of the target. Then
5603 test the condition, doing the appropriate assignment on either
5604 side. This avoids the creation of unnecessary temporaries.
5605 For non-BLKmode, it is more efficient not to do this. */
5607 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5609 do_pending_stack_adjust ();
5611 jumpifnot (TREE_OPERAND (exp
, 0), lab1
,
5612 profile_probability::uninitialized ());
5613 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5614 nontemporal
, reverse
);
5615 emit_jump_insn (targetm
.gen_jump (lab2
));
5618 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5619 nontemporal
, reverse
);
5625 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5626 /* If this is a scalar in a register that is stored in a wider mode
5627 than the declared mode, compute the result into its declared mode
5628 and then convert to the wider mode. Our value is the computed
5631 rtx inner_target
= 0;
5632 scalar_int_mode outer_mode
= subreg_unpromoted_mode (target
);
5633 scalar_int_mode inner_mode
= subreg_promoted_mode (target
);
5635 /* We can do the conversion inside EXP, which will often result
5636 in some optimizations. Do the conversion in two steps: first
5637 change the signedness, if needed, then the extend. But don't
5638 do this if the type of EXP is a subtype of something else
5639 since then the conversion might involve more than just
5640 converting modes. */
5641 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5642 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5643 && GET_MODE_PRECISION (outer_mode
)
5644 == TYPE_PRECISION (TREE_TYPE (exp
)))
5646 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5647 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5649 /* Some types, e.g. Fortran's logical*4, won't have a signed
5650 version, so use the mode instead. */
5652 = (signed_or_unsigned_type_for
5653 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5655 ntype
= lang_hooks
.types
.type_for_mode
5656 (TYPE_MODE (TREE_TYPE (exp
)),
5657 SUBREG_PROMOTED_SIGN (target
));
5659 exp
= fold_convert_loc (loc
, ntype
, exp
);
5662 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5663 (inner_mode
, SUBREG_PROMOTED_SIGN (target
)),
5666 inner_target
= SUBREG_REG (target
);
5669 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5670 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5673 /* If TEMP is a VOIDmode constant, use convert_modes to make
5674 sure that we properly convert it. */
5675 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5677 temp
= convert_modes (outer_mode
, TYPE_MODE (TREE_TYPE (exp
)),
5678 temp
, SUBREG_PROMOTED_SIGN (target
));
5679 temp
= convert_modes (inner_mode
, outer_mode
, temp
,
5680 SUBREG_PROMOTED_SIGN (target
));
5683 convert_move (SUBREG_REG (target
), temp
,
5684 SUBREG_PROMOTED_SIGN (target
));
5688 else if ((TREE_CODE (exp
) == STRING_CST
5689 || (TREE_CODE (exp
) == MEM_REF
5690 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5691 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5693 && integer_zerop (TREE_OPERAND (exp
, 1))))
5694 && !nontemporal
&& !call_param_p
5697 /* Optimize initialization of an array with a STRING_CST. */
5698 HOST_WIDE_INT exp_len
, str_copy_len
;
5700 tree str
= TREE_CODE (exp
) == STRING_CST
5701 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5703 exp_len
= int_expr_size (exp
);
5707 if (TREE_STRING_LENGTH (str
) <= 0)
5710 if (can_store_by_pieces (exp_len
, string_cst_read_str
, (void *) str
,
5711 MEM_ALIGN (target
), false))
5713 store_by_pieces (target
, exp_len
, string_cst_read_str
, (void *) str
,
5714 MEM_ALIGN (target
), false, RETURN_BEGIN
);
5718 str_copy_len
= TREE_STRING_LENGTH (str
);
5719 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
5721 str_copy_len
+= STORE_MAX_PIECES
- 1;
5722 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5724 if (str_copy_len
>= exp_len
)
5727 if (!can_store_by_pieces (str_copy_len
, string_cst_read_str
,
5728 (void *) str
, MEM_ALIGN (target
), false))
5731 dest_mem
= store_by_pieces (target
, str_copy_len
, string_cst_read_str
,
5732 (void *) str
, MEM_ALIGN (target
), false,
5734 clear_storage (adjust_address_1 (dest_mem
, BLKmode
, 0, 1, 1, 0,
5735 exp_len
- str_copy_len
),
5736 GEN_INT (exp_len
- str_copy_len
), BLOCK_OP_NORMAL
);
5744 /* If we want to use a nontemporal or a reverse order store, force the
5745 value into a register first. */
5746 tmp_target
= nontemporal
|| reverse
? NULL_RTX
: target
;
5747 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5749 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5753 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5754 the same as that of TARGET, adjust the constant. This is needed, for
5755 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5756 only a word-sized value. */
5757 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5758 && TREE_CODE (exp
) != ERROR_MARK
5759 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5761 if (GET_MODE_CLASS (GET_MODE (target
))
5762 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp
)))
5763 && known_eq (GET_MODE_BITSIZE (GET_MODE (target
)),
5764 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)))))
5766 rtx t
= simplify_gen_subreg (GET_MODE (target
), temp
,
5767 TYPE_MODE (TREE_TYPE (exp
)), 0);
5771 if (GET_MODE (temp
) == VOIDmode
)
5772 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5773 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5776 /* If value was not generated in the target, store it there.
5777 Convert the value to TARGET's type first if necessary and emit the
5778 pending incrementations that have been queued when expanding EXP.
5779 Note that we cannot emit the whole queue blindly because this will
5780 effectively disable the POST_INC optimization later.
5782 If TEMP and TARGET compare equal according to rtx_equal_p, but
5783 one or both of them are volatile memory refs, we have to distinguish
5785 - expand_expr has used TARGET. In this case, we must not generate
5786 another copy. This can be detected by TARGET being equal according
5788 - expand_expr has not used TARGET - that means that the source just
5789 happens to have the same RTX form. Since temp will have been created
5790 by expand_expr, it will compare unequal according to == .
5791 We must generate a copy in this case, to reach the correct number
5792 of volatile memory references. */
5794 if ((! rtx_equal_p (temp
, target
)
5795 || (temp
!= target
&& (side_effects_p (temp
)
5796 || side_effects_p (target
))))
5797 && TREE_CODE (exp
) != ERROR_MARK
5798 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5799 but TARGET is not valid memory reference, TEMP will differ
5800 from TARGET although it is really the same location. */
5802 && rtx_equal_p (alt_rtl
, target
)
5803 && !side_effects_p (alt_rtl
)
5804 && !side_effects_p (target
))
5805 /* If there's nothing to copy, don't bother. Don't call
5806 expr_size unless necessary, because some front-ends (C++)
5807 expr_size-hook must not be given objects that are not
5808 supposed to be bit-copied or bit-initialized. */
5809 && expr_size (exp
) != const0_rtx
)
5811 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5813 if (GET_MODE (target
) == BLKmode
)
5815 /* Handle calls that return BLKmode values in registers. */
5816 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5817 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5819 store_bit_field (target
,
5820 rtx_to_poly_int64 (expr_size (exp
))
5822 0, 0, 0, GET_MODE (temp
), temp
, reverse
);
5825 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5828 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5830 /* Handle copying a string constant into an array. The string
5831 constant may be shorter than the array. So copy just the string's
5832 actual length, and clear the rest. First get the size of the data
5833 type of the string, which is actually the size of the target. */
5834 rtx size
= expr_size (exp
);
5836 if (CONST_INT_P (size
)
5837 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5838 emit_block_move (target
, temp
, size
,
5840 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5843 machine_mode pointer_mode
5844 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5845 machine_mode address_mode
= get_address_mode (target
);
5847 /* Compute the size of the data to copy from the string. */
5849 = size_binop_loc (loc
, MIN_EXPR
,
5850 make_tree (sizetype
, size
),
5851 size_int (TREE_STRING_LENGTH (exp
)));
5853 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5855 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5856 rtx_code_label
*label
= 0;
5858 /* Copy that much. */
5859 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5860 TYPE_UNSIGNED (sizetype
));
5861 emit_block_move (target
, temp
, copy_size_rtx
,
5863 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5865 /* Figure out how much is left in TARGET that we have to clear.
5866 Do all calculations in pointer_mode. */
5867 poly_int64 const_copy_size
;
5868 if (poly_int_rtx_p (copy_size_rtx
, &const_copy_size
))
5870 size
= plus_constant (address_mode
, size
, -const_copy_size
);
5871 target
= adjust_address (target
, BLKmode
, const_copy_size
);
5875 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5876 copy_size_rtx
, NULL_RTX
, 0,
5879 if (GET_MODE (copy_size_rtx
) != address_mode
)
5880 copy_size_rtx
= convert_to_mode (address_mode
,
5882 TYPE_UNSIGNED (sizetype
));
5884 target
= offset_address (target
, copy_size_rtx
,
5885 highest_pow2_factor (copy_size
));
5886 label
= gen_label_rtx ();
5887 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5888 GET_MODE (size
), 0, label
);
5891 if (size
!= const0_rtx
)
5892 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5898 /* Handle calls that return values in multiple non-contiguous locations.
5899 The Irix 6 ABI has examples of this. */
5900 else if (GET_CODE (target
) == PARALLEL
)
5902 if (GET_CODE (temp
) == PARALLEL
)
5903 emit_group_move (target
, temp
);
5905 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5906 int_size_in_bytes (TREE_TYPE (exp
)));
5908 else if (GET_CODE (temp
) == PARALLEL
)
5909 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5910 int_size_in_bytes (TREE_TYPE (exp
)));
5911 else if (GET_MODE (temp
) == BLKmode
)
5912 emit_block_move (target
, temp
, expr_size (exp
),
5914 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5915 /* If we emit a nontemporal store, there is nothing else to do. */
5916 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5921 temp
= flip_storage_order (GET_MODE (target
), temp
);
5922 temp
= force_operand (temp
, target
);
5924 emit_move_insn (target
, temp
);
5931 /* Return true if field F of structure TYPE is a flexible array. */
5934 flexible_array_member_p (const_tree f
, const_tree type
)
5939 return (DECL_CHAIN (f
) == NULL
5940 && TREE_CODE (tf
) == ARRAY_TYPE
5942 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5943 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5944 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5945 && int_size_in_bytes (type
) >= 0);
5948 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5949 must have in order for it to completely initialize a value of type TYPE.
5950 Return -1 if the number isn't known.
5952 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5954 static HOST_WIDE_INT
5955 count_type_elements (const_tree type
, bool for_ctor_p
)
5957 switch (TREE_CODE (type
))
5963 nelts
= array_type_nelts (type
);
5964 if (nelts
&& tree_fits_uhwi_p (nelts
))
5966 unsigned HOST_WIDE_INT n
;
5968 n
= tree_to_uhwi (nelts
) + 1;
5969 if (n
== 0 || for_ctor_p
)
5972 return n
* count_type_elements (TREE_TYPE (type
), false);
5974 return for_ctor_p
? -1 : 1;
5979 unsigned HOST_WIDE_INT n
;
5983 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5984 if (TREE_CODE (f
) == FIELD_DECL
)
5987 n
+= count_type_elements (TREE_TYPE (f
), false);
5988 else if (!flexible_array_member_p (f
, type
))
5989 /* Don't count flexible arrays, which are not supposed
5990 to be initialized. */
5998 case QUAL_UNION_TYPE
:
6003 gcc_assert (!for_ctor_p
);
6004 /* Estimate the number of scalars in each field and pick the
6005 maximum. Other estimates would do instead; the idea is simply
6006 to make sure that the estimate is not sensitive to the ordering
6009 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
6010 if (TREE_CODE (f
) == FIELD_DECL
)
6012 m
= count_type_elements (TREE_TYPE (f
), false);
6013 /* If the field doesn't span the whole union, add an extra
6014 scalar for the rest. */
6015 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
6016 TYPE_SIZE (type
)) != 1)
6029 unsigned HOST_WIDE_INT nelts
;
6030 if (TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
6038 case FIXED_POINT_TYPE
:
6043 case REFERENCE_TYPE
:
6059 /* Helper for categorize_ctor_elements. Identical interface. */
6062 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6063 HOST_WIDE_INT
*p_unique_nz_elts
,
6064 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6066 unsigned HOST_WIDE_INT idx
;
6067 HOST_WIDE_INT nz_elts
, unique_nz_elts
, init_elts
, num_fields
;
6068 tree value
, purpose
, elt_type
;
6070 /* Whether CTOR is a valid constant initializer, in accordance with what
6071 initializer_constant_valid_p does. If inferred from the constructor
6072 elements, true until proven otherwise. */
6073 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
6074 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
6080 elt_type
= NULL_TREE
;
6082 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
6084 HOST_WIDE_INT mult
= 1;
6086 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
6088 tree lo_index
= TREE_OPERAND (purpose
, 0);
6089 tree hi_index
= TREE_OPERAND (purpose
, 1);
6091 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
6092 mult
= (tree_to_uhwi (hi_index
)
6093 - tree_to_uhwi (lo_index
) + 1);
6096 elt_type
= TREE_TYPE (value
);
6098 switch (TREE_CODE (value
))
6102 HOST_WIDE_INT nz
= 0, unz
= 0, ic
= 0;
6104 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &unz
,
6107 nz_elts
+= mult
* nz
;
6108 unique_nz_elts
+= unz
;
6109 init_elts
+= mult
* ic
;
6111 if (const_from_elts_p
&& const_p
)
6112 const_p
= const_elt_p
;
6119 if (!initializer_zerop (value
))
6128 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
6129 unique_nz_elts
+= TREE_STRING_LENGTH (value
);
6130 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
6134 if (!initializer_zerop (TREE_REALPART (value
)))
6139 if (!initializer_zerop (TREE_IMAGPART (value
)))
6144 init_elts
+= 2 * mult
;
6149 /* We can only construct constant-length vectors using
6151 unsigned int nunits
= VECTOR_CST_NELTS (value
).to_constant ();
6152 for (unsigned int i
= 0; i
< nunits
; ++i
)
6154 tree v
= VECTOR_CST_ELT (value
, i
);
6155 if (!initializer_zerop (v
))
6167 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
6168 nz_elts
+= mult
* tc
;
6169 unique_nz_elts
+= tc
;
6170 init_elts
+= mult
* tc
;
6172 if (const_from_elts_p
&& const_p
)
6174 = initializer_constant_valid_p (value
,
6176 TYPE_REVERSE_STORAGE_ORDER
6184 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
6185 num_fields
, elt_type
))
6186 *p_complete
= false;
6188 *p_nz_elts
+= nz_elts
;
6189 *p_unique_nz_elts
+= unique_nz_elts
;
6190 *p_init_elts
+= init_elts
;
6195 /* Examine CTOR to discover:
6196 * how many scalar fields are set to nonzero values,
6197 and place it in *P_NZ_ELTS;
6198 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6199 high - low + 1 (this can be useful for callers to determine ctors
6200 that could be cheaply initialized with - perhaps nested - loops
6201 compared to copied from huge read-only data),
6202 and place it in *P_UNIQUE_NZ_ELTS;
6203 * how many scalar fields in total are in CTOR,
6204 and place it in *P_ELT_COUNT.
6205 * whether the constructor is complete -- in the sense that every
6206 meaningful byte is explicitly given a value --
6207 and place it in *P_COMPLETE.
6209 Return whether or not CTOR is a valid static constant initializer, the same
6210 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6213 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
6214 HOST_WIDE_INT
*p_unique_nz_elts
,
6215 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
6218 *p_unique_nz_elts
= 0;
6222 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_unique_nz_elts
,
6223 p_init_elts
, p_complete
);
6226 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6227 of which had type LAST_TYPE. Each element was itself a complete
6228 initializer, in the sense that every meaningful byte was explicitly
6229 given a value. Return true if the same is true for the constructor
6233 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
6234 const_tree last_type
)
6236 if (TREE_CODE (type
) == UNION_TYPE
6237 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6242 gcc_assert (num_elts
== 1 && last_type
);
6244 /* ??? We could look at each element of the union, and find the
6245 largest element. Which would avoid comparing the size of the
6246 initialized element against any tail padding in the union.
6247 Doesn't seem worth the effort... */
6248 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
6251 return count_type_elements (type
, true) == num_elts
;
6254 /* Return 1 if EXP contains mostly (3/4) zeros. */
6257 mostly_zeros_p (const_tree exp
)
6259 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6261 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6264 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6266 return !complete_p
|| nz_elts
< init_elts
/ 4;
6269 return initializer_zerop (exp
);
6272 /* Return 1 if EXP contains all zeros. */
6275 all_zeros_p (const_tree exp
)
6277 if (TREE_CODE (exp
) == CONSTRUCTOR
)
6279 HOST_WIDE_INT nz_elts
, unz_elts
, init_elts
;
6282 categorize_ctor_elements (exp
, &nz_elts
, &unz_elts
, &init_elts
,
6284 return nz_elts
== 0;
6287 return initializer_zerop (exp
);
6290 /* Helper function for store_constructor.
6291 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6292 CLEARED is as for store_constructor.
6293 ALIAS_SET is the alias set to use for any stores.
6294 If REVERSE is true, the store is to be done in reverse order.
6296 This provides a recursive shortcut back to store_constructor when it isn't
6297 necessary to go through store_field. This is so that we can pass through
6298 the cleared field to let store_constructor know that we may not have to
6299 clear a substructure if the outer structure has already been cleared. */
6302 store_constructor_field (rtx target
, poly_uint64 bitsize
, poly_int64 bitpos
,
6303 poly_uint64 bitregion_start
,
6304 poly_uint64 bitregion_end
,
6306 tree exp
, int cleared
,
6307 alias_set_type alias_set
, bool reverse
)
6310 poly_uint64 bytesize
;
6311 if (TREE_CODE (exp
) == CONSTRUCTOR
6312 /* We can only call store_constructor recursively if the size and
6313 bit position are on a byte boundary. */
6314 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
6315 && maybe_ne (bitsize
, 0U)
6316 && multiple_p (bitsize
, BITS_PER_UNIT
, &bytesize
)
6317 /* If we have a nonzero bitpos for a register target, then we just
6318 let store_field do the bitfield handling. This is unlikely to
6319 generate unnecessary clear instructions anyways. */
6320 && (known_eq (bitpos
, 0) || MEM_P (target
)))
6324 machine_mode target_mode
= GET_MODE (target
);
6325 if (target_mode
!= BLKmode
6326 && !multiple_p (bitpos
, GET_MODE_ALIGNMENT (target_mode
)))
6327 target_mode
= BLKmode
;
6328 target
= adjust_address (target
, target_mode
, bytepos
);
6332 /* Update the alias set, if required. */
6333 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
6334 && MEM_ALIAS_SET (target
) != 0)
6336 target
= copy_rtx (target
);
6337 set_mem_alias_set (target
, alias_set
);
6340 store_constructor (exp
, target
, cleared
, bytesize
, reverse
);
6343 store_field (target
, bitsize
, bitpos
, bitregion_start
, bitregion_end
, mode
,
6344 exp
, alias_set
, false, reverse
);
6348 /* Returns the number of FIELD_DECLs in TYPE. */
6351 fields_length (const_tree type
)
6353 tree t
= TYPE_FIELDS (type
);
6356 for (; t
; t
= DECL_CHAIN (t
))
6357 if (TREE_CODE (t
) == FIELD_DECL
)
6364 /* Store the value of constructor EXP into the rtx TARGET.
6365 TARGET is either a REG or a MEM; we know it cannot conflict, since
6366 safe_from_p has been called.
6367 CLEARED is true if TARGET is known to have been zero'd.
6368 SIZE is the number of bytes of TARGET we are allowed to modify: this
6369 may not be the same as the size of EXP if we are assigning to a field
6370 which has been packed to exclude padding bits.
6371 If REVERSE is true, the store is to be done in reverse order. */
6374 store_constructor (tree exp
, rtx target
, int cleared
, poly_int64 size
,
6377 tree type
= TREE_TYPE (exp
);
6378 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
6379 poly_int64 bitregion_end
= known_gt (size
, 0) ? size
* BITS_PER_UNIT
- 1 : 0;
6381 switch (TREE_CODE (type
))
6385 case QUAL_UNION_TYPE
:
6387 unsigned HOST_WIDE_INT idx
;
6390 /* The storage order is specified for every aggregate type. */
6391 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6393 /* If size is zero or the target is already cleared, do nothing. */
6394 if (known_eq (size
, 0) || cleared
)
6396 /* We either clear the aggregate or indicate the value is dead. */
6397 else if ((TREE_CODE (type
) == UNION_TYPE
6398 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
6399 && ! CONSTRUCTOR_ELTS (exp
))
6400 /* If the constructor is empty, clear the union. */
6402 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6406 /* If we are building a static constructor into a register,
6407 set the initial value as zero so we can fold the value into
6408 a constant. But if more than one register is involved,
6409 this probably loses. */
6410 else if (REG_P (target
) && TREE_STATIC (exp
)
6411 && known_le (GET_MODE_SIZE (GET_MODE (target
)),
6412 REGMODE_NATURAL_SIZE (GET_MODE (target
))))
6414 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6418 /* If the constructor has fewer fields than the structure or
6419 if we are initializing the structure to mostly zeros, clear
6420 the whole structure first. Don't do this if TARGET is a
6421 register whose mode size isn't equal to SIZE since
6422 clear_storage can't handle this case. */
6423 else if (known_size_p (size
)
6424 && (((int) CONSTRUCTOR_NELTS (exp
) != fields_length (type
))
6425 || mostly_zeros_p (exp
))
6427 || known_eq (GET_MODE_SIZE (GET_MODE (target
)), size
)))
6429 clear_storage (target
, gen_int_mode (size
, Pmode
),
6434 if (REG_P (target
) && !cleared
)
6435 emit_clobber (target
);
6437 /* Store each element of the constructor into the
6438 corresponding field of TARGET. */
6439 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6442 HOST_WIDE_INT bitsize
;
6443 HOST_WIDE_INT bitpos
= 0;
6445 rtx to_rtx
= target
;
6447 /* Just ignore missing fields. We cleared the whole
6448 structure, above, if any fields are missing. */
6452 if (cleared
&& initializer_zerop (value
))
6455 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6456 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6460 mode
= DECL_MODE (field
);
6461 if (DECL_BIT_FIELD (field
))
6464 offset
= DECL_FIELD_OFFSET (field
);
6465 if (tree_fits_shwi_p (offset
)
6466 && tree_fits_shwi_p (bit_position (field
)))
6468 bitpos
= int_bit_position (field
);
6474 /* If this initializes a field that is smaller than a
6475 word, at the start of a word, try to widen it to a full
6476 word. This special case allows us to output C++ member
6477 function initializations in a form that the optimizers
6479 if (WORD_REGISTER_OPERATIONS
6481 && bitsize
< BITS_PER_WORD
6482 && bitpos
% BITS_PER_WORD
== 0
6483 && GET_MODE_CLASS (mode
) == MODE_INT
6484 && TREE_CODE (value
) == INTEGER_CST
6486 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6488 type
= TREE_TYPE (value
);
6490 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6492 type
= lang_hooks
.types
.type_for_mode
6493 (word_mode
, TYPE_UNSIGNED (type
));
6494 value
= fold_convert (type
, value
);
6495 /* Make sure the bits beyond the original bitsize are zero
6496 so that we can correctly avoid extra zeroing stores in
6497 later constructor elements. */
6499 = wide_int_to_tree (type
, wi::mask (bitsize
, false,
6501 value
= fold_build2 (BIT_AND_EXPR
, type
, value
, bitsize_mask
);
6504 if (BYTES_BIG_ENDIAN
)
6506 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6507 build_int_cst (type
,
6508 BITS_PER_WORD
- bitsize
));
6509 bitsize
= BITS_PER_WORD
;
6513 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6514 && DECL_NONADDRESSABLE_P (field
))
6516 to_rtx
= copy_rtx (to_rtx
);
6517 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6520 store_constructor_field (to_rtx
, bitsize
, bitpos
,
6521 0, bitregion_end
, mode
,
6523 get_alias_set (TREE_TYPE (field
)),
6531 unsigned HOST_WIDE_INT i
;
6534 tree elttype
= TREE_TYPE (type
);
6536 HOST_WIDE_INT minelt
= 0;
6537 HOST_WIDE_INT maxelt
= 0;
6539 /* The storage order is specified for every aggregate type. */
6540 reverse
= TYPE_REVERSE_STORAGE_ORDER (type
);
6542 domain
= TYPE_DOMAIN (type
);
6543 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6544 && TYPE_MAX_VALUE (domain
)
6545 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6546 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6548 /* If we have constant bounds for the range of the type, get them. */
6551 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6552 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6555 /* If the constructor has fewer elements than the array, clear
6556 the whole array first. Similarly if this is static
6557 constructor of a non-BLKmode object. */
6560 else if (REG_P (target
) && TREE_STATIC (exp
))
6564 unsigned HOST_WIDE_INT idx
;
6565 HOST_WIDE_INT count
= 0, zero_count
= 0;
6566 need_to_clear
= ! const_bounds_p
;
6568 /* This loop is a more accurate version of the loop in
6569 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6570 is also needed to check for missing elements. */
6571 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6573 HOST_WIDE_INT this_node_count
;
6578 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6580 tree lo_index
= TREE_OPERAND (index
, 0);
6581 tree hi_index
= TREE_OPERAND (index
, 1);
6583 if (! tree_fits_uhwi_p (lo_index
)
6584 || ! tree_fits_uhwi_p (hi_index
))
6590 this_node_count
= (tree_to_uhwi (hi_index
)
6591 - tree_to_uhwi (lo_index
) + 1);
6594 this_node_count
= 1;
6596 count
+= this_node_count
;
6597 if (mostly_zeros_p (value
))
6598 zero_count
+= this_node_count
;
6601 /* Clear the entire array first if there are any missing
6602 elements, or if the incidence of zero elements is >=
6605 && (count
< maxelt
- minelt
+ 1
6606 || 4 * zero_count
>= 3 * count
))
6610 if (need_to_clear
&& maybe_gt (size
, 0))
6613 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6615 clear_storage (target
, gen_int_mode (size
, Pmode
),
6620 if (!cleared
&& REG_P (target
))
6621 /* Inform later passes that the old value is dead. */
6622 emit_clobber (target
);
6624 /* Store each element of the constructor into the
6625 corresponding element of TARGET, determined by counting the
6627 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6631 HOST_WIDE_INT bitpos
;
6632 rtx xtarget
= target
;
6634 if (cleared
&& initializer_zerop (value
))
6637 mode
= TYPE_MODE (elttype
);
6638 if (mode
!= BLKmode
)
6639 bitsize
= GET_MODE_BITSIZE (mode
);
6640 else if (!poly_int_tree_p (TYPE_SIZE (elttype
), &bitsize
))
6643 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6645 tree lo_index
= TREE_OPERAND (index
, 0);
6646 tree hi_index
= TREE_OPERAND (index
, 1);
6647 rtx index_r
, pos_rtx
;
6648 HOST_WIDE_INT lo
, hi
, count
;
6651 /* If the range is constant and "small", unroll the loop. */
6653 && tree_fits_shwi_p (lo_index
)
6654 && tree_fits_shwi_p (hi_index
)
6655 && (lo
= tree_to_shwi (lo_index
),
6656 hi
= tree_to_shwi (hi_index
),
6657 count
= hi
- lo
+ 1,
6660 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6661 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6664 lo
-= minelt
; hi
-= minelt
;
6665 for (; lo
<= hi
; lo
++)
6667 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6670 && !MEM_KEEP_ALIAS_SET_P (target
)
6671 && TREE_CODE (type
) == ARRAY_TYPE
6672 && TYPE_NONALIASED_COMPONENT (type
))
6674 target
= copy_rtx (target
);
6675 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6678 store_constructor_field
6679 (target
, bitsize
, bitpos
, 0, bitregion_end
,
6680 mode
, value
, cleared
,
6681 get_alias_set (elttype
), reverse
);
6686 rtx_code_label
*loop_start
= gen_label_rtx ();
6687 rtx_code_label
*loop_end
= gen_label_rtx ();
6690 expand_normal (hi_index
);
6692 index
= build_decl (EXPR_LOCATION (exp
),
6693 VAR_DECL
, NULL_TREE
, domain
);
6694 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6695 SET_DECL_RTL (index
, index_r
);
6696 store_expr (lo_index
, index_r
, 0, false, reverse
);
6698 /* Build the head of the loop. */
6699 do_pending_stack_adjust ();
6700 emit_label (loop_start
);
6702 /* Assign value to element index. */
6704 fold_convert (ssizetype
,
6705 fold_build2 (MINUS_EXPR
,
6708 TYPE_MIN_VALUE (domain
)));
6711 size_binop (MULT_EXPR
, position
,
6712 fold_convert (ssizetype
,
6713 TYPE_SIZE_UNIT (elttype
)));
6715 pos_rtx
= expand_normal (position
);
6716 xtarget
= offset_address (target
, pos_rtx
,
6717 highest_pow2_factor (position
));
6718 xtarget
= adjust_address (xtarget
, mode
, 0);
6719 if (TREE_CODE (value
) == CONSTRUCTOR
)
6720 store_constructor (value
, xtarget
, cleared
,
6721 exact_div (bitsize
, BITS_PER_UNIT
),
6724 store_expr (value
, xtarget
, 0, false, reverse
);
6726 /* Generate a conditional jump to exit the loop. */
6727 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6729 jumpif (exit_cond
, loop_end
,
6730 profile_probability::uninitialized ());
6732 /* Update the loop counter, and jump to the head of
6734 expand_assignment (index
,
6735 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6736 index
, integer_one_node
),
6739 emit_jump (loop_start
);
6741 /* Build the end of the loop. */
6742 emit_label (loop_end
);
6745 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6746 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6751 index
= ssize_int (1);
6754 index
= fold_convert (ssizetype
,
6755 fold_build2 (MINUS_EXPR
,
6758 TYPE_MIN_VALUE (domain
)));
6761 size_binop (MULT_EXPR
, index
,
6762 fold_convert (ssizetype
,
6763 TYPE_SIZE_UNIT (elttype
)));
6764 xtarget
= offset_address (target
,
6765 expand_normal (position
),
6766 highest_pow2_factor (position
));
6767 xtarget
= adjust_address (xtarget
, mode
, 0);
6768 store_expr (value
, xtarget
, 0, false, reverse
);
6773 bitpos
= ((tree_to_shwi (index
) - minelt
)
6774 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6776 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6778 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6779 && TREE_CODE (type
) == ARRAY_TYPE
6780 && TYPE_NONALIASED_COMPONENT (type
))
6782 target
= copy_rtx (target
);
6783 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6785 store_constructor_field (target
, bitsize
, bitpos
, 0,
6786 bitregion_end
, mode
, value
,
6787 cleared
, get_alias_set (elttype
),
6796 unsigned HOST_WIDE_INT idx
;
6797 constructor_elt
*ce
;
6800 insn_code icode
= CODE_FOR_nothing
;
6802 tree elttype
= TREE_TYPE (type
);
6803 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6804 machine_mode eltmode
= TYPE_MODE (elttype
);
6805 HOST_WIDE_INT bitsize
;
6806 HOST_WIDE_INT bitpos
;
6807 rtvec vector
= NULL
;
6809 unsigned HOST_WIDE_INT const_n_elts
;
6810 alias_set_type alias
;
6811 bool vec_vec_init_p
= false;
6812 machine_mode mode
= GET_MODE (target
);
6814 gcc_assert (eltmode
!= BLKmode
);
6816 /* Try using vec_duplicate_optab for uniform vectors. */
6817 if (!TREE_SIDE_EFFECTS (exp
)
6818 && VECTOR_MODE_P (mode
)
6819 && eltmode
== GET_MODE_INNER (mode
)
6820 && ((icode
= optab_handler (vec_duplicate_optab
, mode
))
6821 != CODE_FOR_nothing
)
6822 && (elt
= uniform_vector_p (exp
)))
6824 class expand_operand ops
[2];
6825 create_output_operand (&ops
[0], target
, mode
);
6826 create_input_operand (&ops
[1], expand_normal (elt
), eltmode
);
6827 expand_insn (icode
, 2, ops
);
6828 if (!rtx_equal_p (target
, ops
[0].value
))
6829 emit_move_insn (target
, ops
[0].value
);
6833 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6835 && VECTOR_MODE_P (mode
)
6836 && n_elts
.is_constant (&const_n_elts
))
6838 machine_mode emode
= eltmode
;
6839 bool vector_typed_elts_p
= false;
6841 if (CONSTRUCTOR_NELTS (exp
)
6842 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
))
6845 tree etype
= TREE_TYPE (CONSTRUCTOR_ELT (exp
, 0)->value
);
6846 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp
)
6847 * TYPE_VECTOR_SUBPARTS (etype
),
6849 emode
= TYPE_MODE (etype
);
6850 vector_typed_elts_p
= true;
6852 icode
= convert_optab_handler (vec_init_optab
, mode
, emode
);
6853 if (icode
!= CODE_FOR_nothing
)
6855 unsigned int n
= const_n_elts
;
6857 if (vector_typed_elts_p
)
6859 n
= CONSTRUCTOR_NELTS (exp
);
6860 vec_vec_init_p
= true;
6862 vector
= rtvec_alloc (n
);
6863 for (unsigned int k
= 0; k
< n
; k
++)
6864 RTVEC_ELT (vector
, k
) = CONST0_RTX (emode
);
6868 /* If the constructor has fewer elements than the vector,
6869 clear the whole array first. Similarly if this is static
6870 constructor of a non-BLKmode object. */
6873 else if (REG_P (target
) && TREE_STATIC (exp
))
6877 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6880 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6882 tree sz
= TYPE_SIZE (TREE_TYPE (value
));
6884 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR
, sz
,
6885 TYPE_SIZE (elttype
)));
6887 count
+= n_elts_here
;
6888 if (mostly_zeros_p (value
))
6889 zero_count
+= n_elts_here
;
6892 /* Clear the entire vector first if there are any missing elements,
6893 or if the incidence of zero elements is >= 75%. */
6894 need_to_clear
= (maybe_lt (count
, n_elts
)
6895 || 4 * zero_count
>= 3 * count
);
6898 if (need_to_clear
&& maybe_gt (size
, 0) && !vector
)
6901 emit_move_insn (target
, CONST0_RTX (mode
));
6903 clear_storage (target
, gen_int_mode (size
, Pmode
),
6908 /* Inform later passes that the old value is dead. */
6909 if (!cleared
&& !vector
&& REG_P (target
))
6910 emit_move_insn (target
, CONST0_RTX (mode
));
6913 alias
= MEM_ALIAS_SET (target
);
6915 alias
= get_alias_set (elttype
);
6917 /* Store each element of the constructor into the corresponding
6918 element of TARGET, determined by counting the elements. */
6919 for (idx
= 0, i
= 0;
6920 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6921 idx
++, i
+= bitsize
/ elt_size
)
6923 HOST_WIDE_INT eltpos
;
6924 tree value
= ce
->value
;
6926 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6927 if (cleared
&& initializer_zerop (value
))
6931 eltpos
= tree_to_uhwi (ce
->index
);
6939 gcc_assert (ce
->index
== NULL_TREE
);
6940 gcc_assert (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
);
6944 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6945 RTVEC_ELT (vector
, eltpos
) = expand_normal (value
);
6949 machine_mode value_mode
6950 = (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6951 ? TYPE_MODE (TREE_TYPE (value
)) : eltmode
);
6952 bitpos
= eltpos
* elt_size
;
6953 store_constructor_field (target
, bitsize
, bitpos
, 0,
6954 bitregion_end
, value_mode
,
6955 value
, cleared
, alias
, reverse
);
6960 emit_insn (GEN_FCN (icode
) (target
,
6961 gen_rtx_PARALLEL (mode
, vector
)));
6970 /* Store the value of EXP (an expression tree)
6971 into a subfield of TARGET which has mode MODE and occupies
6972 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6973 If MODE is VOIDmode, it means that we are storing into a bit-field.
6975 BITREGION_START is bitpos of the first bitfield in this region.
6976 BITREGION_END is the bitpos of the ending bitfield in this region.
6977 These two fields are 0, if the C++ memory model does not apply,
6978 or we are not interested in keeping track of bitfield regions.
6980 Always return const0_rtx unless we have something particular to
6983 ALIAS_SET is the alias set for the destination. This value will
6984 (in general) be different from that for TARGET, since TARGET is a
6985 reference to the containing structure.
6987 If NONTEMPORAL is true, try generating a nontemporal store.
6989 If REVERSE is true, the store is to be done in reverse order. */
6992 store_field (rtx target
, poly_int64 bitsize
, poly_int64 bitpos
,
6993 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
6994 machine_mode mode
, tree exp
,
6995 alias_set_type alias_set
, bool nontemporal
, bool reverse
)
6997 if (TREE_CODE (exp
) == ERROR_MARK
)
7000 /* If we have nothing to store, do nothing unless the expression has
7001 side-effects. Don't do that for zero sized addressable lhs of
7003 if (known_eq (bitsize
, 0)
7004 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
7005 || TREE_CODE (exp
) != CALL_EXPR
))
7006 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
7008 if (GET_CODE (target
) == CONCAT
)
7010 /* We're storing into a struct containing a single __complex. */
7012 gcc_assert (known_eq (bitpos
, 0));
7013 return store_expr (exp
, target
, 0, nontemporal
, reverse
);
7016 /* If the structure is in a register or if the component
7017 is a bit field, we cannot use addressing to access it.
7018 Use bit-field techniques or SUBREG to store in it. */
7020 poly_int64 decl_bitsize
;
7021 if (mode
== VOIDmode
7022 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
7023 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7024 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
7026 || GET_CODE (target
) == SUBREG
7027 /* If the field isn't aligned enough to store as an ordinary memref,
7028 store it as a bit field. */
7030 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
7031 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
7032 && targetm
.slow_unaligned_access (mode
, MEM_ALIGN (target
)))
7033 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
7034 || (known_size_p (bitsize
)
7036 && maybe_gt (GET_MODE_BITSIZE (mode
), bitsize
))
7037 /* If the RHS and field are a constant size and the size of the
7038 RHS isn't the same size as the bitfield, we must use bitfield
7040 || (known_size_p (bitsize
)
7041 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
7042 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
7044 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7045 we will handle specially below. */
7046 && !(TREE_CODE (exp
) == CONSTRUCTOR
7047 && multiple_p (bitsize
, BITS_PER_UNIT
))
7048 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7049 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7050 includes some extra padding. store_expr / expand_expr will in
7051 that case call get_inner_reference that will have the bitsize
7052 we check here and thus the block move will not clobber the
7053 padding that shouldn't be clobbered. In the future we could
7054 replace the TREE_ADDRESSABLE check with a check that
7055 get_base_address needs to live in memory. */
7056 && (!TREE_ADDRESSABLE (TREE_TYPE (exp
))
7057 || TREE_CODE (exp
) != COMPONENT_REF
7058 || !multiple_p (bitsize
, BITS_PER_UNIT
)
7059 || !multiple_p (bitpos
, BITS_PER_UNIT
)
7060 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp
, 1)),
7062 || maybe_ne (decl_bitsize
, bitsize
)))
7063 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7064 decl we must use bitfield operations. */
7065 || (known_size_p (bitsize
)
7066 && TREE_CODE (exp
) == MEM_REF
7067 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
7068 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7069 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
7070 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
7075 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7076 implies a mask operation. If the precision is the same size as
7077 the field we're storing into, that mask is redundant. This is
7078 particularly common with bit field assignments generated by the
7080 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
7083 tree type
= TREE_TYPE (exp
);
7084 if (INTEGRAL_TYPE_P (type
)
7085 && maybe_ne (TYPE_PRECISION (type
),
7086 GET_MODE_BITSIZE (TYPE_MODE (type
)))
7087 && known_eq (bitsize
, TYPE_PRECISION (type
)))
7089 tree op
= gimple_assign_rhs1 (nop_def
);
7090 type
= TREE_TYPE (op
);
7091 if (INTEGRAL_TYPE_P (type
)
7092 && known_ge (TYPE_PRECISION (type
), bitsize
))
7097 temp
= expand_normal (exp
);
7099 /* We don't support variable-sized BLKmode bitfields, since our
7100 handling of BLKmode is bound up with the ability to break
7101 things into words. */
7102 gcc_assert (mode
!= BLKmode
|| bitsize
.is_constant ());
7104 /* Handle calls that return values in multiple non-contiguous locations.
7105 The Irix 6 ABI has examples of this. */
7106 if (GET_CODE (temp
) == PARALLEL
)
7108 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
7109 machine_mode temp_mode
= GET_MODE (temp
);
7110 if (temp_mode
== BLKmode
|| temp_mode
== VOIDmode
)
7111 temp_mode
= smallest_int_mode_for_size (size
* BITS_PER_UNIT
);
7112 rtx temp_target
= gen_reg_rtx (temp_mode
);
7113 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
7117 /* Handle calls that return BLKmode values in registers. */
7118 else if (mode
== BLKmode
&& REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
7120 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
7121 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
7125 /* If the value has aggregate type and an integral mode then, if BITSIZE
7126 is narrower than this mode and this is for big-endian data, we first
7127 need to put the value into the low-order bits for store_bit_field,
7128 except when MODE is BLKmode and BITSIZE larger than the word size
7129 (see the handling of fields larger than a word in store_bit_field).
7130 Moreover, the field may be not aligned on a byte boundary; in this
7131 case, if it has reverse storage order, it needs to be accessed as a
7132 scalar field with reverse storage order and we must first put the
7133 value into target order. */
7134 scalar_int_mode temp_mode
;
7135 if (AGGREGATE_TYPE_P (TREE_TYPE (exp
))
7136 && is_int_mode (GET_MODE (temp
), &temp_mode
))
7138 HOST_WIDE_INT size
= GET_MODE_BITSIZE (temp_mode
);
7140 reverse
= TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp
));
7143 temp
= flip_storage_order (temp_mode
, temp
);
7145 gcc_checking_assert (known_le (bitsize
, size
));
7146 if (maybe_lt (bitsize
, size
)
7147 && reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
7148 /* Use of to_constant for BLKmode was checked above. */
7149 && !(mode
== BLKmode
&& bitsize
.to_constant () > BITS_PER_WORD
))
7150 temp
= expand_shift (RSHIFT_EXPR
, temp_mode
, temp
,
7151 size
- bitsize
, NULL_RTX
, 1);
7154 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7155 if (mode
!= VOIDmode
&& mode
!= BLKmode
7156 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
7157 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
7159 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7160 and BITPOS must be aligned on a byte boundary. If so, we simply do
7161 a block copy. Likewise for a BLKmode-like TARGET. */
7162 if (GET_MODE (temp
) == BLKmode
7163 && (GET_MODE (target
) == BLKmode
7165 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
7166 && multiple_p (bitpos
, BITS_PER_UNIT
)
7167 && multiple_p (bitsize
, BITS_PER_UNIT
))))
7169 gcc_assert (MEM_P (target
) && MEM_P (temp
));
7170 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
7171 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
7173 target
= adjust_address (target
, VOIDmode
, bytepos
);
7174 emit_block_move (target
, temp
,
7175 gen_int_mode (bytesize
, Pmode
),
7181 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7182 word size, we need to load the value (see again store_bit_field). */
7183 if (GET_MODE (temp
) == BLKmode
&& known_le (bitsize
, BITS_PER_WORD
))
7185 temp_mode
= smallest_int_mode_for_size (bitsize
);
7186 temp
= extract_bit_field (temp
, bitsize
, 0, 1, NULL_RTX
, temp_mode
,
7187 temp_mode
, false, NULL
);
7190 /* Store the value in the bitfield. */
7191 gcc_checking_assert (known_ge (bitpos
, 0));
7192 store_bit_field (target
, bitsize
, bitpos
,
7193 bitregion_start
, bitregion_end
,
7194 mode
, temp
, reverse
);
7200 /* Now build a reference to just the desired component. */
7201 rtx to_rtx
= adjust_address (target
, mode
,
7202 exact_div (bitpos
, BITS_PER_UNIT
));
7204 if (to_rtx
== target
)
7205 to_rtx
= copy_rtx (to_rtx
);
7207 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
7208 set_mem_alias_set (to_rtx
, alias_set
);
7210 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7211 into a target smaller than its type; handle that case now. */
7212 if (TREE_CODE (exp
) == CONSTRUCTOR
&& known_size_p (bitsize
))
7214 poly_int64 bytesize
= exact_div (bitsize
, BITS_PER_UNIT
);
7215 store_constructor (exp
, to_rtx
, 0, bytesize
, reverse
);
7219 return store_expr (exp
, to_rtx
, 0, nontemporal
, reverse
);
7223 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7224 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7225 codes and find the ultimate containing object, which we return.
7227 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7228 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7229 storage order of the field.
7230 If the position of the field is variable, we store a tree
7231 giving the variable offset (in units) in *POFFSET.
7232 This offset is in addition to the bit position.
7233 If the position is not variable, we store 0 in *POFFSET.
7235 If any of the extraction expressions is volatile,
7236 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7238 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7239 Otherwise, it is a mode that can be used to access the field.
7241 If the field describes a variable-sized object, *PMODE is set to
7242 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7243 this case, but the address of the object can be found. */
7246 get_inner_reference (tree exp
, poly_int64_pod
*pbitsize
,
7247 poly_int64_pod
*pbitpos
, tree
*poffset
,
7248 machine_mode
*pmode
, int *punsignedp
,
7249 int *preversep
, int *pvolatilep
)
7252 machine_mode mode
= VOIDmode
;
7253 bool blkmode_bitfield
= false;
7254 tree offset
= size_zero_node
;
7255 poly_offset_int bit_offset
= 0;
7257 /* First get the mode, signedness, storage order and size. We do this from
7258 just the outermost expression. */
7260 if (TREE_CODE (exp
) == COMPONENT_REF
)
7262 tree field
= TREE_OPERAND (exp
, 1);
7263 size_tree
= DECL_SIZE (field
);
7264 if (flag_strict_volatile_bitfields
> 0
7265 && TREE_THIS_VOLATILE (exp
)
7266 && DECL_BIT_FIELD_TYPE (field
)
7267 && DECL_MODE (field
) != BLKmode
)
7268 /* Volatile bitfields should be accessed in the mode of the
7269 field's type, not the mode computed based on the bit
7271 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
7272 else if (!DECL_BIT_FIELD (field
))
7274 mode
= DECL_MODE (field
);
7275 /* For vector fields re-check the target flags, as DECL_MODE
7276 could have been set with different target flags than
7277 the current function has. */
7279 && VECTOR_TYPE_P (TREE_TYPE (field
))
7280 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field
))))
7281 mode
= TYPE_MODE (TREE_TYPE (field
));
7283 else if (DECL_MODE (field
) == BLKmode
)
7284 blkmode_bitfield
= true;
7286 *punsignedp
= DECL_UNSIGNED (field
);
7288 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
7290 size_tree
= TREE_OPERAND (exp
, 1);
7291 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
7292 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
7294 /* For vector element types with the correct size of access or for
7295 vector typed accesses use the mode of the access type. */
7296 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
7297 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
7298 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
7299 || VECTOR_TYPE_P (TREE_TYPE (exp
)))
7300 mode
= TYPE_MODE (TREE_TYPE (exp
));
7304 mode
= TYPE_MODE (TREE_TYPE (exp
));
7305 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
7307 if (mode
== BLKmode
)
7308 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
7310 *pbitsize
= GET_MODE_BITSIZE (mode
);
7315 if (! tree_fits_uhwi_p (size_tree
))
7316 mode
= BLKmode
, *pbitsize
= -1;
7318 *pbitsize
= tree_to_uhwi (size_tree
);
7321 *preversep
= reverse_storage_order_for_component_p (exp
);
7323 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7324 and find the ultimate containing object. */
7327 switch (TREE_CODE (exp
))
7330 bit_offset
+= wi::to_poly_offset (TREE_OPERAND (exp
, 2));
7335 tree field
= TREE_OPERAND (exp
, 1);
7336 tree this_offset
= component_ref_field_offset (exp
);
7338 /* If this field hasn't been filled in yet, don't go past it.
7339 This should only happen when folding expressions made during
7340 type construction. */
7341 if (this_offset
== 0)
7344 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
7345 bit_offset
+= wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field
));
7347 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7352 case ARRAY_RANGE_REF
:
7354 tree index
= TREE_OPERAND (exp
, 1);
7355 tree low_bound
= array_ref_low_bound (exp
);
7356 tree unit_size
= array_ref_element_size (exp
);
7358 /* We assume all arrays have sizes that are a multiple of a byte.
7359 First subtract the lower bound, if any, in the type of the
7360 index, then convert to sizetype and multiply by the size of
7361 the array element. */
7362 if (! integer_zerop (low_bound
))
7363 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
7366 offset
= size_binop (PLUS_EXPR
, offset
,
7367 size_binop (MULT_EXPR
,
7368 fold_convert (sizetype
, index
),
7377 bit_offset
+= *pbitsize
;
7380 case VIEW_CONVERT_EXPR
:
7384 /* Hand back the decl for MEM[&decl, off]. */
7385 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
7387 tree off
= TREE_OPERAND (exp
, 1);
7388 if (!integer_zerop (off
))
7390 poly_offset_int boff
= mem_ref_offset (exp
);
7391 boff
<<= LOG2_BITS_PER_UNIT
;
7394 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
7402 /* If any reference in the chain is volatile, the effect is volatile. */
7403 if (TREE_THIS_VOLATILE (exp
))
7406 exp
= TREE_OPERAND (exp
, 0);
7410 /* If OFFSET is constant, see if we can return the whole thing as a
7411 constant bit position. Make sure to handle overflow during
7413 if (poly_int_tree_p (offset
))
7415 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset
),
7416 TYPE_PRECISION (sizetype
));
7417 tem
<<= LOG2_BITS_PER_UNIT
;
7419 if (tem
.to_shwi (pbitpos
))
7420 *poffset
= offset
= NULL_TREE
;
7423 /* Otherwise, split it up. */
7426 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7427 if (!bit_offset
.to_shwi (pbitpos
) || maybe_lt (*pbitpos
, 0))
7429 *pbitpos
= num_trailing_bits (bit_offset
.force_shwi ());
7430 poly_offset_int bytes
= bits_to_bytes_round_down (bit_offset
);
7431 offset
= size_binop (PLUS_EXPR
, offset
,
7432 build_int_cst (sizetype
, bytes
.force_shwi ()));
7438 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7439 if (mode
== VOIDmode
7441 && multiple_p (*pbitpos
, BITS_PER_UNIT
)
7442 && multiple_p (*pbitsize
, BITS_PER_UNIT
))
7450 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7452 static unsigned HOST_WIDE_INT
7453 target_align (const_tree target
)
7455 /* We might have a chain of nested references with intermediate misaligning
7456 bitfields components, so need to recurse to find out. */
7458 unsigned HOST_WIDE_INT this_align
, outer_align
;
7460 switch (TREE_CODE (target
))
7466 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7467 outer_align
= target_align (TREE_OPERAND (target
, 0));
7468 return MIN (this_align
, outer_align
);
7471 case ARRAY_RANGE_REF
:
7472 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7473 outer_align
= target_align (TREE_OPERAND (target
, 0));
7474 return MIN (this_align
, outer_align
);
7477 case NON_LVALUE_EXPR
:
7478 case VIEW_CONVERT_EXPR
:
7479 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7480 outer_align
= target_align (TREE_OPERAND (target
, 0));
7481 return MAX (this_align
, outer_align
);
7484 return TYPE_ALIGN (TREE_TYPE (target
));
7489 /* Given an rtx VALUE that may contain additions and multiplications, return
7490 an equivalent value that just refers to a register, memory, or constant.
7491 This is done by generating instructions to perform the arithmetic and
7492 returning a pseudo-register containing the value.
7494 The returned value may be a REG, SUBREG, MEM or constant. */
7497 force_operand (rtx value
, rtx target
)
7500 /* Use subtarget as the target for operand 0 of a binary operation. */
7501 rtx subtarget
= get_subtarget (target
);
7502 enum rtx_code code
= GET_CODE (value
);
7504 /* Check for subreg applied to an expression produced by loop optimizer. */
7506 && !REG_P (SUBREG_REG (value
))
7507 && !MEM_P (SUBREG_REG (value
)))
7510 = simplify_gen_subreg (GET_MODE (value
),
7511 force_reg (GET_MODE (SUBREG_REG (value
)),
7512 force_operand (SUBREG_REG (value
),
7514 GET_MODE (SUBREG_REG (value
)),
7515 SUBREG_BYTE (value
));
7516 code
= GET_CODE (value
);
7519 /* Check for a PIC address load. */
7520 if ((code
== PLUS
|| code
== MINUS
)
7521 && XEXP (value
, 0) == pic_offset_table_rtx
7522 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7523 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7524 || GET_CODE (XEXP (value
, 1)) == CONST
))
7527 subtarget
= gen_reg_rtx (GET_MODE (value
));
7528 emit_move_insn (subtarget
, value
);
7532 if (ARITHMETIC_P (value
))
7534 op2
= XEXP (value
, 1);
7535 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7537 if (code
== MINUS
&& CONST_INT_P (op2
))
7540 op2
= negate_rtx (GET_MODE (value
), op2
);
7543 /* Check for an addition with OP2 a constant integer and our first
7544 operand a PLUS of a virtual register and something else. In that
7545 case, we want to emit the sum of the virtual register and the
7546 constant first and then add the other value. This allows virtual
7547 register instantiation to simply modify the constant rather than
7548 creating another one around this addition. */
7549 if (code
== PLUS
&& CONST_INT_P (op2
)
7550 && GET_CODE (XEXP (value
, 0)) == PLUS
7551 && REG_P (XEXP (XEXP (value
, 0), 0))
7552 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7553 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7555 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7556 XEXP (XEXP (value
, 0), 0), op2
,
7557 subtarget
, 0, OPTAB_LIB_WIDEN
);
7558 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7559 force_operand (XEXP (XEXP (value
,
7561 target
, 0, OPTAB_LIB_WIDEN
);
7564 op1
= force_operand (XEXP (value
, 0), subtarget
);
7565 op2
= force_operand (op2
, NULL_RTX
);
7569 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7571 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7572 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7573 target
, 1, OPTAB_LIB_WIDEN
);
7575 return expand_divmod (0,
7576 FLOAT_MODE_P (GET_MODE (value
))
7577 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7578 GET_MODE (value
), op1
, op2
, target
, 0);
7580 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7583 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7586 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7589 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7590 target
, 0, OPTAB_LIB_WIDEN
);
7592 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7593 target
, 1, OPTAB_LIB_WIDEN
);
7596 if (UNARY_P (value
))
7599 target
= gen_reg_rtx (GET_MODE (value
));
7600 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7607 case FLOAT_TRUNCATE
:
7608 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7613 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7617 case UNSIGNED_FLOAT
:
7618 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7622 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7626 #ifdef INSN_SCHEDULING
7627 /* On machines that have insn scheduling, we want all memory reference to be
7628 explicit, so we need to deal with such paradoxical SUBREGs. */
7629 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7631 = simplify_gen_subreg (GET_MODE (value
),
7632 force_reg (GET_MODE (SUBREG_REG (value
)),
7633 force_operand (SUBREG_REG (value
),
7635 GET_MODE (SUBREG_REG (value
)),
7636 SUBREG_BYTE (value
));
7642 /* Subroutine of expand_expr: return nonzero iff there is no way that
7643 EXP can reference X, which is being modified. TOP_P is nonzero if this
7644 call is going to be used to determine whether we need a temporary
7645 for EXP, as opposed to a recursive call to this function.
7647 It is always safe for this routine to return zero since it merely
7648 searches for optimization opportunities. */
7651 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7657 /* If EXP has varying size, we MUST use a target since we currently
7658 have no way of allocating temporaries of variable size
7659 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7660 So we assume here that something at a higher level has prevented a
7661 clash. This is somewhat bogus, but the best we can do. Only
7662 do this when X is BLKmode and when we are at the top level. */
7663 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7664 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7665 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7666 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7667 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7669 && GET_MODE (x
) == BLKmode
)
7670 /* If X is in the outgoing argument area, it is always safe. */
7672 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7673 || (GET_CODE (XEXP (x
, 0)) == PLUS
7674 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7677 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7678 find the underlying pseudo. */
7679 if (GET_CODE (x
) == SUBREG
)
7682 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7686 /* Now look at our tree code and possibly recurse. */
7687 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7689 case tcc_declaration
:
7690 exp_rtl
= DECL_RTL_IF_SET (exp
);
7696 case tcc_exceptional
:
7697 if (TREE_CODE (exp
) == TREE_LIST
)
7701 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7703 exp
= TREE_CHAIN (exp
);
7706 if (TREE_CODE (exp
) != TREE_LIST
)
7707 return safe_from_p (x
, exp
, 0);
7710 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7712 constructor_elt
*ce
;
7713 unsigned HOST_WIDE_INT idx
;
7715 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7716 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7717 || !safe_from_p (x
, ce
->value
, 0))
7721 else if (TREE_CODE (exp
) == ERROR_MARK
)
7722 return 1; /* An already-visited SAVE_EXPR? */
7727 /* The only case we look at here is the DECL_INITIAL inside a
7729 return (TREE_CODE (exp
) != DECL_EXPR
7730 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7731 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7732 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7735 case tcc_comparison
:
7736 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7741 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7743 case tcc_expression
:
7746 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7747 the expression. If it is set, we conflict iff we are that rtx or
7748 both are in memory. Otherwise, we check all operands of the
7749 expression recursively. */
7751 switch (TREE_CODE (exp
))
7754 /* If the operand is static or we are static, we can't conflict.
7755 Likewise if we don't conflict with the operand at all. */
7756 if (staticp (TREE_OPERAND (exp
, 0))
7757 || TREE_STATIC (exp
)
7758 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7761 /* Otherwise, the only way this can conflict is if we are taking
7762 the address of a DECL a that address if part of X, which is
7764 exp
= TREE_OPERAND (exp
, 0);
7767 if (!DECL_RTL_SET_P (exp
)
7768 || !MEM_P (DECL_RTL (exp
)))
7771 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7777 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7778 get_alias_set (exp
)))
7783 /* Assume that the call will clobber all hard registers and
7785 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7790 case WITH_CLEANUP_EXPR
:
7791 case CLEANUP_POINT_EXPR
:
7792 /* Lowered by gimplify.c. */
7796 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7802 /* If we have an rtx, we do not need to scan our operands. */
7806 nops
= TREE_OPERAND_LENGTH (exp
);
7807 for (i
= 0; i
< nops
; i
++)
7808 if (TREE_OPERAND (exp
, i
) != 0
7809 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7815 /* Should never get a type here. */
7819 /* If we have an rtl, find any enclosed object. Then see if we conflict
7823 if (GET_CODE (exp_rtl
) == SUBREG
)
7825 exp_rtl
= SUBREG_REG (exp_rtl
);
7827 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7831 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7832 are memory and they conflict. */
7833 return ! (rtx_equal_p (x
, exp_rtl
)
7834 || (MEM_P (x
) && MEM_P (exp_rtl
)
7835 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7838 /* If we reach here, it is safe. */
7843 /* Return the highest power of two that EXP is known to be a multiple of.
7844 This is used in updating alignment of MEMs in array references. */
7846 unsigned HOST_WIDE_INT
7847 highest_pow2_factor (const_tree exp
)
7849 unsigned HOST_WIDE_INT ret
;
7850 int trailing_zeros
= tree_ctz (exp
);
7851 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7852 return BIGGEST_ALIGNMENT
;
7853 ret
= HOST_WIDE_INT_1U
<< trailing_zeros
;
7854 if (ret
> BIGGEST_ALIGNMENT
)
7855 return BIGGEST_ALIGNMENT
;
7859 /* Similar, except that the alignment requirements of TARGET are
7860 taken into account. Assume it is at least as aligned as its
7861 type, unless it is a COMPONENT_REF in which case the layout of
7862 the structure gives the alignment. */
7864 static unsigned HOST_WIDE_INT
7865 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7867 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7868 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7870 return MAX (factor
, talign
);
7873 /* Convert the tree comparison code TCODE to the rtl one where the
7874 signedness is UNSIGNEDP. */
7876 static enum rtx_code
7877 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7889 code
= unsignedp
? LTU
: LT
;
7892 code
= unsignedp
? LEU
: LE
;
7895 code
= unsignedp
? GTU
: GT
;
7898 code
= unsignedp
? GEU
: GE
;
7900 case UNORDERED_EXPR
:
7931 /* Subroutine of expand_expr. Expand the two operands of a binary
7932 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7933 The value may be stored in TARGET if TARGET is nonzero. The
7934 MODIFIER argument is as documented by expand_expr. */
7937 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7938 enum expand_modifier modifier
)
7940 if (! safe_from_p (target
, exp1
, 1))
7942 if (operand_equal_p (exp0
, exp1
, 0))
7944 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7945 *op1
= copy_rtx (*op0
);
7949 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7950 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7955 /* Return a MEM that contains constant EXP. DEFER is as for
7956 output_constant_def and MODIFIER is as for expand_expr. */
7959 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7963 mem
= output_constant_def (exp
, defer
);
7964 if (modifier
!= EXPAND_INITIALIZER
)
7965 mem
= use_anchored_address (mem
);
7969 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7970 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7973 expand_expr_addr_expr_1 (tree exp
, rtx target
, scalar_int_mode tmode
,
7974 enum expand_modifier modifier
, addr_space_t as
)
7976 rtx result
, subtarget
;
7978 poly_int64 bitsize
, bitpos
;
7979 int unsignedp
, reversep
, volatilep
= 0;
7982 /* If we are taking the address of a constant and are at the top level,
7983 we have to use output_constant_def since we can't call force_const_mem
7985 /* ??? This should be considered a front-end bug. We should not be
7986 generating ADDR_EXPR of something that isn't an LVALUE. The only
7987 exception here is STRING_CST. */
7988 if (CONSTANT_CLASS_P (exp
))
7990 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7991 if (modifier
< EXPAND_SUM
)
7992 result
= force_operand (result
, target
);
7996 /* Everything must be something allowed by is_gimple_addressable. */
7997 switch (TREE_CODE (exp
))
8000 /* This case will happen via recursion for &a->b. */
8001 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
8005 tree tem
= TREE_OPERAND (exp
, 0);
8006 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
8007 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
8008 return expand_expr (tem
, target
, tmode
, modifier
);
8011 case TARGET_MEM_REF
:
8012 return addr_for_mem_ref (exp
, as
, true);
8015 /* Expand the initializer like constants above. */
8016 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
8018 if (modifier
< EXPAND_SUM
)
8019 result
= force_operand (result
, target
);
8023 /* The real part of the complex number is always first, therefore
8024 the address is the same as the address of the parent object. */
8027 inner
= TREE_OPERAND (exp
, 0);
8031 /* The imaginary part of the complex number is always second.
8032 The expression is therefore always offset by the size of the
8035 bitpos
= GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp
)));
8036 inner
= TREE_OPERAND (exp
, 0);
8039 case COMPOUND_LITERAL_EXPR
:
8040 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8041 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8042 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8043 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8044 the initializers aren't gimplified. */
8045 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
8046 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
8047 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
8048 target
, tmode
, modifier
, as
);
8051 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8052 expand_expr, as that can have various side effects; LABEL_DECLs for
8053 example, may not have their DECL_RTL set yet. Expand the rtl of
8054 CONSTRUCTORs too, which should yield a memory reference for the
8055 constructor's contents. Assume language specific tree nodes can
8056 be expanded in some interesting way. */
8057 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
8059 || TREE_CODE (exp
) == CONSTRUCTOR
8060 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
8062 result
= expand_expr (exp
, target
, tmode
,
8063 modifier
== EXPAND_INITIALIZER
8064 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
8066 /* If the DECL isn't in memory, then the DECL wasn't properly
8067 marked TREE_ADDRESSABLE, which will be either a front-end
8068 or a tree optimizer bug. */
8070 gcc_assert (MEM_P (result
));
8071 result
= XEXP (result
, 0);
8073 /* ??? Is this needed anymore? */
8075 TREE_USED (exp
) = 1;
8077 if (modifier
!= EXPAND_INITIALIZER
8078 && modifier
!= EXPAND_CONST_ADDRESS
8079 && modifier
!= EXPAND_SUM
)
8080 result
= force_operand (result
, target
);
8084 /* Pass FALSE as the last argument to get_inner_reference although
8085 we are expanding to RTL. The rationale is that we know how to
8086 handle "aligning nodes" here: we can just bypass them because
8087 they won't change the final object whose address will be returned
8088 (they actually exist only for that purpose). */
8089 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
8090 &unsignedp
, &reversep
, &volatilep
);
8094 /* We must have made progress. */
8095 gcc_assert (inner
!= exp
);
8097 subtarget
= offset
|| maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8098 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8099 inner alignment, force the inner to be sufficiently aligned. */
8100 if (CONSTANT_CLASS_P (inner
)
8101 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
8103 inner
= copy_node (inner
);
8104 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
8105 SET_TYPE_ALIGN (TREE_TYPE (inner
), TYPE_ALIGN (TREE_TYPE (exp
)));
8106 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
8108 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
8114 if (modifier
!= EXPAND_NORMAL
)
8115 result
= force_operand (result
, NULL
);
8116 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
8117 modifier
== EXPAND_INITIALIZER
8118 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
8120 /* expand_expr is allowed to return an object in a mode other
8121 than TMODE. If it did, we need to convert. */
8122 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
8123 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
8124 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
8125 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8126 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
8128 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8129 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
8132 subtarget
= maybe_ne (bitpos
, 0) ? NULL_RTX
: target
;
8133 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
8134 1, OPTAB_LIB_WIDEN
);
8138 if (maybe_ne (bitpos
, 0))
8140 /* Someone beforehand should have rejected taking the address
8141 of an object that isn't byte-aligned. */
8142 poly_int64 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
8143 result
= convert_memory_address_addr_space (tmode
, result
, as
);
8144 result
= plus_constant (tmode
, result
, bytepos
);
8145 if (modifier
< EXPAND_SUM
)
8146 result
= force_operand (result
, target
);
8152 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8153 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8156 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
8157 enum expand_modifier modifier
)
8159 addr_space_t as
= ADDR_SPACE_GENERIC
;
8160 scalar_int_mode address_mode
= Pmode
;
8161 scalar_int_mode pointer_mode
= ptr_mode
;
8165 /* Target mode of VOIDmode says "whatever's natural". */
8166 if (tmode
== VOIDmode
)
8167 tmode
= TYPE_MODE (TREE_TYPE (exp
));
8169 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
8171 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
8172 address_mode
= targetm
.addr_space
.address_mode (as
);
8173 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
8176 /* We can get called with some Weird Things if the user does silliness
8177 like "(short) &a". In that case, convert_memory_address won't do
8178 the right thing, so ignore the given target mode. */
8179 scalar_int_mode new_tmode
= (tmode
== pointer_mode
8183 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
8184 new_tmode
, modifier
, as
);
8186 /* Despite expand_expr claims concerning ignoring TMODE when not
8187 strictly convenient, stuff breaks if we don't honor it. Note
8188 that combined with the above, we only do this for pointer modes. */
8189 rmode
= GET_MODE (result
);
8190 if (rmode
== VOIDmode
)
8192 if (rmode
!= new_tmode
)
8193 result
= convert_memory_address_addr_space (new_tmode
, result
, as
);
8198 /* Generate code for computing CONSTRUCTOR EXP.
8199 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8200 is TRUE, instead of creating a temporary variable in memory
8201 NULL is returned and the caller needs to handle it differently. */
8204 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
8205 bool avoid_temp_mem
)
8207 tree type
= TREE_TYPE (exp
);
8208 machine_mode mode
= TYPE_MODE (type
);
8210 /* Try to avoid creating a temporary at all. This is possible
8211 if all of the initializer is zero.
8212 FIXME: try to handle all [0..255] initializers we can handle
8214 if (TREE_STATIC (exp
)
8215 && !TREE_ADDRESSABLE (exp
)
8216 && target
!= 0 && mode
== BLKmode
8217 && all_zeros_p (exp
))
8219 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
8223 /* All elts simple constants => refer to a constant in memory. But
8224 if this is a non-BLKmode mode, let it store a field at a time
8225 since that should make a CONST_INT, CONST_WIDE_INT or
8226 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8227 use, it is best to store directly into the target unless the type
8228 is large enough that memcpy will be used. If we are making an
8229 initializer and all operands are constant, put it in memory as
8232 FIXME: Avoid trying to fill vector constructors piece-meal.
8233 Output them with output_constant_def below unless we're sure
8234 they're zeros. This should go away when vector initializers
8235 are treated like VECTOR_CST instead of arrays. */
8236 if ((TREE_STATIC (exp
)
8237 && ((mode
== BLKmode
8238 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
8239 || TREE_ADDRESSABLE (exp
)
8240 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
8241 && (! can_move_by_pieces
8242 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
8244 && ! mostly_zeros_p (exp
))))
8245 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
8246 && TREE_CONSTANT (exp
)))
8253 constructor
= expand_expr_constant (exp
, 1, modifier
);
8255 if (modifier
!= EXPAND_CONST_ADDRESS
8256 && modifier
!= EXPAND_INITIALIZER
8257 && modifier
!= EXPAND_SUM
)
8258 constructor
= validize_mem (constructor
);
8263 /* Handle calls that pass values in multiple non-contiguous
8264 locations. The Irix 6 ABI has examples of this. */
8265 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
8266 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
8271 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
8274 store_constructor (exp
, target
, 0, int_expr_size (exp
), false);
8279 /* expand_expr: generate code for computing expression EXP.
8280 An rtx for the computed value is returned. The value is never null.
8281 In the case of a void EXP, const0_rtx is returned.
8283 The value may be stored in TARGET if TARGET is nonzero.
8284 TARGET is just a suggestion; callers must assume that
8285 the rtx returned may not be the same as TARGET.
8287 If TARGET is CONST0_RTX, it means that the value will be ignored.
8289 If TMODE is not VOIDmode, it suggests generating the
8290 result in mode TMODE. But this is done only when convenient.
8291 Otherwise, TMODE is ignored and the value generated in its natural mode.
8292 TMODE is just a suggestion; callers must assume that
8293 the rtx returned may not have mode TMODE.
8295 Note that TARGET may have neither TMODE nor MODE. In that case, it
8296 probably will not be used.
8298 If MODIFIER is EXPAND_SUM then when EXP is an addition
8299 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8300 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8301 products as above, or REG or MEM, or constant.
8302 Ordinarily in such cases we would output mul or add instructions
8303 and then return a pseudo reg containing the sum.
8305 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8306 it also marks a label as absolutely required (it can't be dead).
8307 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8308 This is used for outputting expressions used in initializers.
8310 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8311 with a constant address even if that address is not normally legitimate.
8312 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8314 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8315 a call parameter. Such targets require special care as we haven't yet
8316 marked TARGET so that it's safe from being trashed by libcalls. We
8317 don't want to use TARGET for anything but the final result;
8318 Intermediate values must go elsewhere. Additionally, calls to
8319 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8321 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8322 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8323 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8324 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8326 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8327 then *ALT_RTL is set to TARGET (before legitimziation).
8329 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8330 In this case, we don't adjust a returned MEM rtx that wouldn't be
8331 sufficiently aligned for its mode; instead, it's up to the caller
8332 to deal with it afterwards. This is used to make sure that unaligned
8333 base objects for which out-of-bounds accesses are supported, for
8334 example record types with trailing arrays, aren't realigned behind
8335 the back of the caller.
8336 The normal operating mode is to pass FALSE for this parameter. */
8339 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
8340 enum expand_modifier modifier
, rtx
*alt_rtl
,
8341 bool inner_reference_p
)
8345 /* Handle ERROR_MARK before anybody tries to access its type. */
8346 if (TREE_CODE (exp
) == ERROR_MARK
8347 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8349 ret
= CONST0_RTX (tmode
);
8350 return ret
? ret
: const0_rtx
;
8353 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8358 /* Try to expand the conditional expression which is represented by
8359 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8360 return the rtl reg which represents the result. Otherwise return
8364 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8365 tree treeop1 ATTRIBUTE_UNUSED
,
8366 tree treeop2 ATTRIBUTE_UNUSED
)
8369 rtx op00
, op01
, op1
, op2
;
8370 enum rtx_code comparison_code
;
8371 machine_mode comparison_mode
;
8374 tree type
= TREE_TYPE (treeop1
);
8375 int unsignedp
= TYPE_UNSIGNED (type
);
8376 machine_mode mode
= TYPE_MODE (type
);
8377 machine_mode orig_mode
= mode
;
8378 static bool expanding_cond_expr_using_cmove
= false;
8380 /* Conditional move expansion can end up TERing two operands which,
8381 when recursively hitting conditional expressions can result in
8382 exponential behavior if the cmove expansion ultimatively fails.
8383 It's hardly profitable to TER a cmove into a cmove so avoid doing
8384 that by failing early if we end up recursing. */
8385 if (expanding_cond_expr_using_cmove
)
8388 /* If we cannot do a conditional move on the mode, try doing it
8389 with the promoted mode. */
8390 if (!can_conditionally_move_p (mode
))
8392 mode
= promote_mode (type
, mode
, &unsignedp
);
8393 if (!can_conditionally_move_p (mode
))
8395 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8398 temp
= assign_temp (type
, 0, 1);
8400 expanding_cond_expr_using_cmove
= true;
8402 expand_operands (treeop1
, treeop2
,
8403 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8405 if (TREE_CODE (treeop0
) == SSA_NAME
8406 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8408 type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8409 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8410 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8411 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8412 comparison_mode
= TYPE_MODE (type
);
8413 unsignedp
= TYPE_UNSIGNED (type
);
8414 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8416 else if (COMPARISON_CLASS_P (treeop0
))
8418 type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8419 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8420 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8421 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8422 unsignedp
= TYPE_UNSIGNED (type
);
8423 comparison_mode
= TYPE_MODE (type
);
8424 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8428 op00
= expand_normal (treeop0
);
8430 comparison_code
= NE
;
8431 comparison_mode
= GET_MODE (op00
);
8432 if (comparison_mode
== VOIDmode
)
8433 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8435 expanding_cond_expr_using_cmove
= false;
8437 if (GET_MODE (op1
) != mode
)
8438 op1
= gen_lowpart (mode
, op1
);
8440 if (GET_MODE (op2
) != mode
)
8441 op2
= gen_lowpart (mode
, op2
);
8443 /* Try to emit the conditional move. */
8444 insn
= emit_conditional_move (temp
, comparison_code
,
8445 op00
, op01
, comparison_mode
,
8449 /* If we could do the conditional move, emit the sequence,
8453 rtx_insn
*seq
= get_insns ();
8456 return convert_modes (orig_mode
, mode
, temp
, 0);
8459 /* Otherwise discard the sequence and fall back to code with
8465 /* A helper function for expand_expr_real_2 to be used with a
8466 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8467 is nonzero, with alignment ALIGN in bits.
8468 Store the value at TARGET if possible (if TARGET is nonzero).
8469 Regardless of TARGET, we return the rtx for where the value is placed.
8470 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8471 then *ALT_RTL is set to TARGET (before legitimziation). */
8474 expand_misaligned_mem_ref (rtx temp
, machine_mode mode
, int unsignedp
,
8475 unsigned int align
, rtx target
, rtx
*alt_rtl
)
8477 enum insn_code icode
;
8479 if ((icode
= optab_handler (movmisalign_optab
, mode
))
8480 != CODE_FOR_nothing
)
8482 class expand_operand ops
[2];
8484 /* We've already validated the memory, and we're creating a
8485 new pseudo destination. The predicates really can't fail,
8486 nor can the generator. */
8487 create_output_operand (&ops
[0], NULL_RTX
, mode
);
8488 create_fixed_operand (&ops
[1], temp
);
8489 expand_insn (icode
, 2, ops
);
8490 temp
= ops
[0].value
;
8492 else if (targetm
.slow_unaligned_access (mode
, align
))
8493 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
8494 0, unsignedp
, target
,
8495 mode
, mode
, false, alt_rtl
);
8500 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8501 enum expand_modifier modifier
)
8503 rtx op0
, op1
, op2
, temp
;
8504 rtx_code_label
*lab
;
8508 scalar_int_mode int_mode
;
8509 enum tree_code code
= ops
->code
;
8511 rtx subtarget
, original_target
;
8513 bool reduce_bit_field
;
8514 location_t loc
= ops
->location
;
8515 tree treeop0
, treeop1
, treeop2
;
8516 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8517 ? reduce_to_bit_field_precision ((expr), \
8523 mode
= TYPE_MODE (type
);
8524 unsignedp
= TYPE_UNSIGNED (type
);
8530 /* We should be called only on simple (binary or unary) expressions,
8531 exactly those that are valid in gimple expressions that aren't
8532 GIMPLE_SINGLE_RHS (or invalid). */
8533 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8534 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8535 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8537 ignore
= (target
== const0_rtx
8538 || ((CONVERT_EXPR_CODE_P (code
)
8539 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8540 && TREE_CODE (type
) == VOID_TYPE
));
8542 /* We should be called only if we need the result. */
8543 gcc_assert (!ignore
);
8545 /* An operation in what may be a bit-field type needs the
8546 result to be reduced to the precision of the bit-field type,
8547 which is narrower than that of the type's mode. */
8548 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8549 && !type_has_mode_precision_p (type
));
8551 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8554 /* Use subtarget as the target for operand 0 of a binary operation. */
8555 subtarget
= get_subtarget (target
);
8556 original_target
= target
;
8560 case NON_LVALUE_EXPR
:
8563 if (treeop0
== error_mark_node
)
8566 if (TREE_CODE (type
) == UNION_TYPE
)
8568 tree valtype
= TREE_TYPE (treeop0
);
8570 /* If both input and output are BLKmode, this conversion isn't doing
8571 anything except possibly changing memory attribute. */
8572 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8574 rtx result
= expand_expr (treeop0
, target
, tmode
,
8577 result
= copy_rtx (result
);
8578 set_mem_attributes (result
, type
, 0);
8584 if (TYPE_MODE (type
) != BLKmode
)
8585 target
= gen_reg_rtx (TYPE_MODE (type
));
8587 target
= assign_temp (type
, 1, 1);
8591 /* Store data into beginning of memory target. */
8592 store_expr (treeop0
,
8593 adjust_address (target
, TYPE_MODE (valtype
), 0),
8594 modifier
== EXPAND_STACK_PARM
,
8595 false, TYPE_REVERSE_STORAGE_ORDER (type
));
8599 gcc_assert (REG_P (target
)
8600 && !TYPE_REVERSE_STORAGE_ORDER (type
));
8602 /* Store this field into a union of the proper type. */
8603 poly_uint64 op0_size
8604 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0
)));
8605 poly_uint64 union_size
= GET_MODE_BITSIZE (mode
);
8606 store_field (target
,
8607 /* The conversion must be constructed so that
8608 we know at compile time how many bits
8610 ordered_min (op0_size
, union_size
),
8611 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0,
8615 /* Return the entire union. */
8619 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8621 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8624 /* If the signedness of the conversion differs and OP0 is
8625 a promoted SUBREG, clear that indication since we now
8626 have to do the proper extension. */
8627 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8628 && GET_CODE (op0
) == SUBREG
)
8629 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8631 return REDUCE_BIT_FIELD (op0
);
8634 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8635 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8636 if (GET_MODE (op0
) == mode
)
8639 /* If OP0 is a constant, just convert it into the proper mode. */
8640 else if (CONSTANT_P (op0
))
8642 tree inner_type
= TREE_TYPE (treeop0
);
8643 machine_mode inner_mode
= GET_MODE (op0
);
8645 if (inner_mode
== VOIDmode
)
8646 inner_mode
= TYPE_MODE (inner_type
);
8648 if (modifier
== EXPAND_INITIALIZER
)
8649 op0
= lowpart_subreg (mode
, op0
, inner_mode
);
8651 op0
= convert_modes (mode
, inner_mode
, op0
,
8652 TYPE_UNSIGNED (inner_type
));
8655 else if (modifier
== EXPAND_INITIALIZER
)
8656 op0
= gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8657 ? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8659 else if (target
== 0)
8660 op0
= convert_to_mode (mode
, op0
,
8661 TYPE_UNSIGNED (TREE_TYPE
8665 convert_move (target
, op0
,
8666 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8670 return REDUCE_BIT_FIELD (op0
);
8672 case ADDR_SPACE_CONVERT_EXPR
:
8674 tree treeop0_type
= TREE_TYPE (treeop0
);
8676 gcc_assert (POINTER_TYPE_P (type
));
8677 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8679 addr_space_t as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8680 addr_space_t as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8682 /* Conversions between pointers to the same address space should
8683 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8684 gcc_assert (as_to
!= as_from
);
8686 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8688 /* Ask target code to handle conversion between pointers
8689 to overlapping address spaces. */
8690 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8691 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8693 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8697 /* For disjoint address spaces, converting anything but a null
8698 pointer invokes undefined behavior. We truncate or extend the
8699 value as if we'd converted via integers, which handles 0 as
8700 required, and all others as the programmer likely expects. */
8701 #ifndef POINTERS_EXTEND_UNSIGNED
8702 const int POINTERS_EXTEND_UNSIGNED
= 1;
8704 op0
= convert_modes (mode
, TYPE_MODE (treeop0_type
),
8705 op0
, POINTERS_EXTEND_UNSIGNED
);
8711 case POINTER_PLUS_EXPR
:
8712 /* Even though the sizetype mode and the pointer's mode can be different
8713 expand is able to handle this correctly and get the correct result out
8714 of the PLUS_EXPR code. */
8715 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8716 if sizetype precision is smaller than pointer precision. */
8717 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8718 treeop1
= fold_convert_loc (loc
, type
,
8719 fold_convert_loc (loc
, ssizetype
,
8721 /* If sizetype precision is larger than pointer precision, truncate the
8722 offset to have matching modes. */
8723 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8724 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8728 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8729 something else, make sure we add the register to the constant and
8730 then to the other thing. This case can occur during strength
8731 reduction and doing it this way will produce better code if the
8732 frame pointer or argument pointer is eliminated.
8734 fold-const.c will ensure that the constant is always in the inner
8735 PLUS_EXPR, so the only case we need to do anything about is if
8736 sp, ap, or fp is our second argument, in which case we must swap
8737 the innermost first argument and our second argument. */
8739 if (TREE_CODE (treeop0
) == PLUS_EXPR
8740 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8742 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8743 || DECL_RTL (treeop1
) == stack_pointer_rtx
8744 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8749 /* If the result is to be ptr_mode and we are adding an integer to
8750 something, we might be forming a constant. So try to use
8751 plus_constant. If it produces a sum and we can't accept it,
8752 use force_operand. This allows P = &ARR[const] to generate
8753 efficient code on machines where a SYMBOL_REF is not a valid
8756 If this is an EXPAND_SUM call, always return the sum. */
8757 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8758 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8760 if (modifier
== EXPAND_STACK_PARM
)
8762 if (TREE_CODE (treeop0
) == INTEGER_CST
8763 && HWI_COMPUTABLE_MODE_P (mode
)
8764 && TREE_CONSTANT (treeop1
))
8768 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8770 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8772 /* Use wi::shwi to ensure that the constant is
8773 truncated according to the mode of OP1, then sign extended
8774 to a HOST_WIDE_INT. Using the constant directly can result
8775 in non-canonical RTL in a 64x32 cross compile. */
8776 wc
= TREE_INT_CST_LOW (treeop0
);
8778 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8779 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8780 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8781 op1
= force_operand (op1
, target
);
8782 return REDUCE_BIT_FIELD (op1
);
8785 else if (TREE_CODE (treeop1
) == INTEGER_CST
8786 && HWI_COMPUTABLE_MODE_P (mode
)
8787 && TREE_CONSTANT (treeop0
))
8791 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8793 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8794 (modifier
== EXPAND_INITIALIZER
8795 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8796 if (! CONSTANT_P (op0
))
8798 op1
= expand_expr (treeop1
, NULL_RTX
,
8799 VOIDmode
, modifier
);
8800 /* Return a PLUS if modifier says it's OK. */
8801 if (modifier
== EXPAND_SUM
8802 || modifier
== EXPAND_INITIALIZER
)
8803 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8806 /* Use wi::shwi to ensure that the constant is
8807 truncated according to the mode of OP1, then sign extended
8808 to a HOST_WIDE_INT. Using the constant directly can result
8809 in non-canonical RTL in a 64x32 cross compile. */
8810 wc
= TREE_INT_CST_LOW (treeop1
);
8812 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8813 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8814 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8815 op0
= force_operand (op0
, target
);
8816 return REDUCE_BIT_FIELD (op0
);
8820 /* Use TER to expand pointer addition of a negated value
8821 as pointer subtraction. */
8822 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8823 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8824 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8825 && TREE_CODE (treeop1
) == SSA_NAME
8826 && TYPE_MODE (TREE_TYPE (treeop0
))
8827 == TYPE_MODE (TREE_TYPE (treeop1
)))
8829 gimple
*def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8832 treeop1
= gimple_assign_rhs1 (def
);
8838 /* No sense saving up arithmetic to be done
8839 if it's all in the wrong mode to form part of an address.
8840 And force_operand won't know whether to sign-extend or
8842 if (modifier
!= EXPAND_INITIALIZER
8843 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8845 expand_operands (treeop0
, treeop1
,
8846 subtarget
, &op0
, &op1
, modifier
);
8847 if (op0
== const0_rtx
)
8849 if (op1
== const0_rtx
)
8854 expand_operands (treeop0
, treeop1
,
8855 subtarget
, &op0
, &op1
, modifier
);
8856 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8859 case POINTER_DIFF_EXPR
:
8861 /* For initializers, we are allowed to return a MINUS of two
8862 symbolic constants. Here we handle all cases when both operands
8864 /* Handle difference of two symbolic constants,
8865 for the sake of an initializer. */
8866 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8867 && really_constant_p (treeop0
)
8868 && really_constant_p (treeop1
))
8870 expand_operands (treeop0
, treeop1
,
8871 NULL_RTX
, &op0
, &op1
, modifier
);
8872 return simplify_gen_binary (MINUS
, mode
, op0
, op1
);
8875 /* No sense saving up arithmetic to be done
8876 if it's all in the wrong mode to form part of an address.
8877 And force_operand won't know whether to sign-extend or
8879 if (modifier
!= EXPAND_INITIALIZER
8880 && (modifier
!= EXPAND_SUM
|| mode
!= ptr_mode
))
8883 expand_operands (treeop0
, treeop1
,
8884 subtarget
, &op0
, &op1
, modifier
);
8886 /* Convert A - const to A + (-const). */
8887 if (CONST_INT_P (op1
))
8889 op1
= negate_rtx (mode
, op1
);
8890 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8895 case WIDEN_MULT_PLUS_EXPR
:
8896 case WIDEN_MULT_MINUS_EXPR
:
8897 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8898 op2
= expand_normal (treeop2
);
8899 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8903 case WIDEN_MULT_EXPR
:
8904 /* If first operand is constant, swap them.
8905 Thus the following special case checks need only
8906 check the second operand. */
8907 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8908 std::swap (treeop0
, treeop1
);
8910 /* First, check if we have a multiplication of one signed and one
8911 unsigned operand. */
8912 if (TREE_CODE (treeop1
) != INTEGER_CST
8913 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8914 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8916 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8917 this_optab
= usmul_widen_optab
;
8918 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8919 != CODE_FOR_nothing
)
8921 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8922 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8925 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8927 /* op0 and op1 might still be constant, despite the above
8928 != INTEGER_CST check. Handle it. */
8929 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8931 op0
= convert_modes (mode
, innermode
, op0
, true);
8932 op1
= convert_modes (mode
, innermode
, op1
, false);
8933 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8934 target
, unsignedp
));
8939 /* Check for a multiplication with matching signedness. */
8940 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8941 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8942 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8943 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8945 tree op0type
= TREE_TYPE (treeop0
);
8946 machine_mode innermode
= TYPE_MODE (op0type
);
8947 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8948 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8949 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8951 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8953 if (find_widening_optab_handler (this_optab
, mode
, innermode
)
8954 != CODE_FOR_nothing
)
8956 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8958 /* op0 and op1 might still be constant, despite the above
8959 != INTEGER_CST check. Handle it. */
8960 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8963 op0
= convert_modes (mode
, innermode
, op0
, zextend_p
);
8965 = convert_modes (mode
, innermode
, op1
,
8966 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8967 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8971 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8972 unsignedp
, this_optab
);
8973 return REDUCE_BIT_FIELD (temp
);
8975 if (find_widening_optab_handler (other_optab
, mode
, innermode
)
8977 && innermode
== word_mode
)
8980 op0
= expand_normal (treeop0
);
8981 op1
= expand_normal (treeop1
);
8982 /* op0 and op1 might be constants, despite the above
8983 != INTEGER_CST check. Handle it. */
8984 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8985 goto widen_mult_const
;
8986 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8987 unsignedp
, OPTAB_LIB_WIDEN
);
8988 hipart
= gen_highpart (word_mode
, temp
);
8989 htem
= expand_mult_highpart_adjust (word_mode
, hipart
,
8993 emit_move_insn (hipart
, htem
);
8994 return REDUCE_BIT_FIELD (temp
);
8998 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8999 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
9000 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9001 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
9004 /* If this is a fixed-point operation, then we cannot use the code
9005 below because "expand_mult" doesn't support sat/no-sat fixed-point
9007 if (ALL_FIXED_POINT_MODE_P (mode
))
9010 /* If first operand is constant, swap them.
9011 Thus the following special case checks need only
9012 check the second operand. */
9013 if (TREE_CODE (treeop0
) == INTEGER_CST
)
9014 std::swap (treeop0
, treeop1
);
9016 /* Attempt to return something suitable for generating an
9017 indexed address, for machines that support that. */
9019 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
9020 && tree_fits_shwi_p (treeop1
))
9022 tree exp1
= treeop1
;
9024 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
9028 op0
= force_operand (op0
, NULL_RTX
);
9030 op0
= copy_to_mode_reg (mode
, op0
);
9032 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
9033 gen_int_mode (tree_to_shwi (exp1
),
9034 TYPE_MODE (TREE_TYPE (exp1
)))));
9037 if (modifier
== EXPAND_STACK_PARM
)
9040 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9041 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
9043 case TRUNC_MOD_EXPR
:
9044 case FLOOR_MOD_EXPR
:
9046 case ROUND_MOD_EXPR
:
9048 case TRUNC_DIV_EXPR
:
9049 case FLOOR_DIV_EXPR
:
9051 case ROUND_DIV_EXPR
:
9052 case EXACT_DIV_EXPR
:
9054 /* If this is a fixed-point operation, then we cannot use the code
9055 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9057 if (ALL_FIXED_POINT_MODE_P (mode
))
9060 if (modifier
== EXPAND_STACK_PARM
)
9062 /* Possible optimization: compute the dividend with EXPAND_SUM
9063 then if the divisor is constant can optimize the case
9064 where some terms of the dividend have coeffs divisible by it. */
9065 expand_operands (treeop0
, treeop1
,
9066 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9067 bool mod_p
= code
== TRUNC_MOD_EXPR
|| code
== FLOOR_MOD_EXPR
9068 || code
== CEIL_MOD_EXPR
|| code
== ROUND_MOD_EXPR
;
9069 if (SCALAR_INT_MODE_P (mode
)
9071 && get_range_pos_neg (treeop0
) == 1
9072 && get_range_pos_neg (treeop1
) == 1)
9074 /* If both arguments are known to be positive when interpreted
9075 as signed, we can expand it as both signed and unsigned
9076 division or modulo. Choose the cheaper sequence in that case. */
9077 bool speed_p
= optimize_insn_for_speed_p ();
9078 do_pending_stack_adjust ();
9080 rtx uns_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 1);
9081 rtx_insn
*uns_insns
= get_insns ();
9084 rtx sgn_ret
= expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, 0);
9085 rtx_insn
*sgn_insns
= get_insns ();
9087 unsigned uns_cost
= seq_cost (uns_insns
, speed_p
);
9088 unsigned sgn_cost
= seq_cost (sgn_insns
, speed_p
);
9090 /* If costs are the same then use as tie breaker the other
9092 if (uns_cost
== sgn_cost
)
9094 uns_cost
= seq_cost (uns_insns
, !speed_p
);
9095 sgn_cost
= seq_cost (sgn_insns
, !speed_p
);
9098 if (uns_cost
< sgn_cost
|| (uns_cost
== sgn_cost
&& unsignedp
))
9100 emit_insn (uns_insns
);
9103 emit_insn (sgn_insns
);
9106 return expand_divmod (mod_p
, code
, mode
, op0
, op1
, target
, unsignedp
);
9111 case MULT_HIGHPART_EXPR
:
9112 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9113 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
9117 case FIXED_CONVERT_EXPR
:
9118 op0
= expand_normal (treeop0
);
9119 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9120 target
= gen_reg_rtx (mode
);
9122 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
9123 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9124 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
9125 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
9127 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
9130 case FIX_TRUNC_EXPR
:
9131 op0
= expand_normal (treeop0
);
9132 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9133 target
= gen_reg_rtx (mode
);
9134 expand_fix (target
, op0
, unsignedp
);
9138 op0
= expand_normal (treeop0
);
9139 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
9140 target
= gen_reg_rtx (mode
);
9141 /* expand_float can't figure out what to do if FROM has VOIDmode.
9142 So give it the correct mode. With -O, cse will optimize this. */
9143 if (GET_MODE (op0
) == VOIDmode
)
9144 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
9146 expand_float (target
, op0
,
9147 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9151 op0
= expand_expr (treeop0
, subtarget
,
9152 VOIDmode
, EXPAND_NORMAL
);
9153 if (modifier
== EXPAND_STACK_PARM
)
9155 temp
= expand_unop (mode
,
9156 optab_for_tree_code (NEGATE_EXPR
, type
,
9160 return REDUCE_BIT_FIELD (temp
);
9164 op0
= expand_expr (treeop0
, subtarget
,
9165 VOIDmode
, EXPAND_NORMAL
);
9166 if (modifier
== EXPAND_STACK_PARM
)
9169 /* ABS_EXPR is not valid for complex arguments. */
9170 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
9171 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
9173 /* Unsigned abs is simply the operand. Testing here means we don't
9174 risk generating incorrect code below. */
9175 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
9178 return expand_abs (mode
, op0
, target
, unsignedp
,
9179 safe_from_p (target
, treeop0
, 1));
9183 target
= original_target
;
9185 || modifier
== EXPAND_STACK_PARM
9186 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
9187 || GET_MODE (target
) != mode
9189 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
9190 target
= gen_reg_rtx (mode
);
9191 expand_operands (treeop0
, treeop1
,
9192 target
, &op0
, &op1
, EXPAND_NORMAL
);
9194 /* First try to do it with a special MIN or MAX instruction.
9195 If that does not win, use a conditional jump to select the proper
9197 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9198 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9203 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9204 and similarly for MAX <x, y>. */
9205 if (VECTOR_TYPE_P (type
))
9207 tree t0
= make_tree (type
, op0
);
9208 tree t1
= make_tree (type
, op1
);
9209 tree comparison
= build2 (code
== MIN_EXPR
? LE_EXPR
: GE_EXPR
,
9211 return expand_vec_cond_expr (type
, comparison
, t0
, t1
,
9215 /* At this point, a MEM target is no longer useful; we will get better
9218 if (! REG_P (target
))
9219 target
= gen_reg_rtx (mode
);
9221 /* If op1 was placed in target, swap op0 and op1. */
9222 if (target
!= op0
&& target
== op1
)
9223 std::swap (op0
, op1
);
9225 /* We generate better code and avoid problems with op1 mentioning
9226 target by forcing op1 into a pseudo if it isn't a constant. */
9227 if (! CONSTANT_P (op1
))
9228 op1
= force_reg (mode
, op1
);
9231 enum rtx_code comparison_code
;
9234 if (code
== MAX_EXPR
)
9235 comparison_code
= unsignedp
? GEU
: GE
;
9237 comparison_code
= unsignedp
? LEU
: LE
;
9239 /* Canonicalize to comparisons against 0. */
9240 if (op1
== const1_rtx
)
9242 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9243 or (a != 0 ? a : 1) for unsigned.
9244 For MIN we are safe converting (a <= 1 ? a : 1)
9245 into (a <= 0 ? a : 1) */
9246 cmpop1
= const0_rtx
;
9247 if (code
== MAX_EXPR
)
9248 comparison_code
= unsignedp
? NE
: GT
;
9250 if (op1
== constm1_rtx
&& !unsignedp
)
9252 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9253 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9254 cmpop1
= const0_rtx
;
9255 if (code
== MIN_EXPR
)
9256 comparison_code
= LT
;
9259 /* Use a conditional move if possible. */
9260 if (can_conditionally_move_p (mode
))
9266 /* Try to emit the conditional move. */
9267 insn
= emit_conditional_move (target
, comparison_code
,
9272 /* If we could do the conditional move, emit the sequence,
9276 rtx_insn
*seq
= get_insns ();
9282 /* Otherwise discard the sequence and fall back to code with
9288 emit_move_insn (target
, op0
);
9290 lab
= gen_label_rtx ();
9291 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
9292 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
9293 profile_probability::uninitialized ());
9295 emit_move_insn (target
, op1
);
9300 op0
= expand_expr (treeop0
, subtarget
,
9301 VOIDmode
, EXPAND_NORMAL
);
9302 if (modifier
== EXPAND_STACK_PARM
)
9304 /* In case we have to reduce the result to bitfield precision
9305 for unsigned bitfield expand this as XOR with a proper constant
9307 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
9309 int_mode
= SCALAR_INT_TYPE_MODE (type
);
9310 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
9311 false, GET_MODE_PRECISION (int_mode
));
9313 temp
= expand_binop (int_mode
, xor_optab
, op0
,
9314 immed_wide_int_const (mask
, int_mode
),
9315 target
, 1, OPTAB_LIB_WIDEN
);
9318 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
9322 /* ??? Can optimize bitwise operations with one arg constant.
9323 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9324 and (a bitwise1 b) bitwise2 b (etc)
9325 but that is probably not worth while. */
9334 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
9335 || type_has_mode_precision_p (type
));
9341 /* If this is a fixed-point operation, then we cannot use the code
9342 below because "expand_shift" doesn't support sat/no-sat fixed-point
9344 if (ALL_FIXED_POINT_MODE_P (mode
))
9347 if (! safe_from_p (subtarget
, treeop1
, 1))
9349 if (modifier
== EXPAND_STACK_PARM
)
9351 op0
= expand_expr (treeop0
, subtarget
,
9352 VOIDmode
, EXPAND_NORMAL
);
9354 /* Left shift optimization when shifting across word_size boundary.
9356 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9357 there isn't native instruction to support this wide mode
9358 left shift. Given below scenario:
9360 Type A = (Type) B << C
9363 | dest_high | dest_low |
9367 If the shift amount C caused we shift B to across the word
9368 size boundary, i.e part of B shifted into high half of
9369 destination register, and part of B remains in the low
9370 half, then GCC will use the following left shift expand
9373 1. Initialize dest_low to B.
9374 2. Initialize every bit of dest_high to the sign bit of B.
9375 3. Logic left shift dest_low by C bit to finalize dest_low.
9376 The value of dest_low before this shift is kept in a temp D.
9377 4. Logic left shift dest_high by C.
9378 5. Logic right shift D by (word_size - C).
9379 6. Or the result of 4 and 5 to finalize dest_high.
9381 While, by checking gimple statements, if operand B is
9382 coming from signed extension, then we can simplify above
9385 1. dest_high = src_low >> (word_size - C).
9386 2. dest_low = src_low << C.
9388 We can use one arithmetic right shift to finish all the
9389 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9390 needed from 6 into 2.
9392 The case is similar for zero extension, except that we
9393 initialize dest_high to zero rather than copies of the sign
9394 bit from B. Furthermore, we need to use a logical right shift
9397 The choice of sign-extension versus zero-extension is
9398 determined entirely by whether or not B is signed and is
9399 independent of the current setting of unsignedp. */
9402 if (code
== LSHIFT_EXPR
9405 && GET_MODE_2XWIDER_MODE (word_mode
).exists (&int_mode
)
9407 && TREE_CONSTANT (treeop1
)
9408 && TREE_CODE (treeop0
) == SSA_NAME
)
9410 gimple
*def
= SSA_NAME_DEF_STMT (treeop0
);
9411 if (is_gimple_assign (def
)
9412 && gimple_assign_rhs_code (def
) == NOP_EXPR
)
9414 scalar_int_mode rmode
= SCALAR_INT_TYPE_MODE
9415 (TREE_TYPE (gimple_assign_rhs1 (def
)));
9417 if (GET_MODE_SIZE (rmode
) < GET_MODE_SIZE (int_mode
)
9418 && TREE_INT_CST_LOW (treeop1
) < GET_MODE_BITSIZE (word_mode
)
9419 && ((TREE_INT_CST_LOW (treeop1
) + GET_MODE_BITSIZE (rmode
))
9420 >= GET_MODE_BITSIZE (word_mode
)))
9422 rtx_insn
*seq
, *seq_old
;
9423 poly_uint64 high_off
= subreg_highpart_offset (word_mode
,
9425 bool extend_unsigned
9426 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def
)));
9427 rtx low
= lowpart_subreg (word_mode
, op0
, int_mode
);
9428 rtx dest_low
= lowpart_subreg (word_mode
, target
, int_mode
);
9429 rtx dest_high
= simplify_gen_subreg (word_mode
, target
,
9430 int_mode
, high_off
);
9431 HOST_WIDE_INT ramount
= (BITS_PER_WORD
9432 - TREE_INT_CST_LOW (treeop1
));
9433 tree rshift
= build_int_cst (TREE_TYPE (treeop1
), ramount
);
9436 /* dest_high = src_low >> (word_size - C). */
9437 temp
= expand_variable_shift (RSHIFT_EXPR
, word_mode
, low
,
9440 if (temp
!= dest_high
)
9441 emit_move_insn (dest_high
, temp
);
9443 /* dest_low = src_low << C. */
9444 temp
= expand_variable_shift (LSHIFT_EXPR
, word_mode
, low
,
9445 treeop1
, dest_low
, unsignedp
);
9446 if (temp
!= dest_low
)
9447 emit_move_insn (dest_low
, temp
);
9453 if (have_insn_for (ASHIFT
, int_mode
))
9455 bool speed_p
= optimize_insn_for_speed_p ();
9457 rtx ret_old
= expand_variable_shift (code
, int_mode
,
9462 seq_old
= get_insns ();
9464 if (seq_cost (seq
, speed_p
)
9465 >= seq_cost (seq_old
, speed_p
))
9476 if (temp
== NULL_RTX
)
9477 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
9479 if (code
== LSHIFT_EXPR
)
9480 temp
= REDUCE_BIT_FIELD (temp
);
9484 /* Could determine the answer when only additive constants differ. Also,
9485 the addition of one can be handled by changing the condition. */
9492 case UNORDERED_EXPR
:
9501 temp
= do_store_flag (ops
,
9502 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9503 tmode
!= VOIDmode
? tmode
: mode
);
9507 /* Use a compare and a jump for BLKmode comparisons, or for function
9508 type comparisons is have_canonicalize_funcptr_for_compare. */
9511 || modifier
== EXPAND_STACK_PARM
9512 || ! safe_from_p (target
, treeop0
, 1)
9513 || ! safe_from_p (target
, treeop1
, 1)
9514 /* Make sure we don't have a hard reg (such as function's return
9515 value) live across basic blocks, if not optimizing. */
9516 || (!optimize
&& REG_P (target
)
9517 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9518 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9520 emit_move_insn (target
, const0_rtx
);
9522 rtx_code_label
*lab1
= gen_label_rtx ();
9523 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
,
9524 profile_probability::uninitialized ());
9526 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9527 emit_move_insn (target
, constm1_rtx
);
9529 emit_move_insn (target
, const1_rtx
);
9535 /* Get the rtx code of the operands. */
9536 op0
= expand_normal (treeop0
);
9537 op1
= expand_normal (treeop1
);
9540 target
= gen_reg_rtx (TYPE_MODE (type
));
9542 /* If target overlaps with op1, then either we need to force
9543 op1 into a pseudo (if target also overlaps with op0),
9544 or write the complex parts in reverse order. */
9545 switch (GET_CODE (target
))
9548 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9550 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9552 complex_expr_force_op1
:
9553 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9554 emit_move_insn (temp
, op1
);
9558 complex_expr_swap_order
:
9559 /* Move the imaginary (op1) and real (op0) parts to their
9561 write_complex_part (target
, op1
, true);
9562 write_complex_part (target
, op0
, false);
9568 temp
= adjust_address_nv (target
,
9569 GET_MODE_INNER (GET_MODE (target
)), 0);
9570 if (reg_overlap_mentioned_p (temp
, op1
))
9572 scalar_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9573 temp
= adjust_address_nv (target
, imode
,
9574 GET_MODE_SIZE (imode
));
9575 if (reg_overlap_mentioned_p (temp
, op0
))
9576 goto complex_expr_force_op1
;
9577 goto complex_expr_swap_order
;
9581 if (reg_overlap_mentioned_p (target
, op1
))
9583 if (reg_overlap_mentioned_p (target
, op0
))
9584 goto complex_expr_force_op1
;
9585 goto complex_expr_swap_order
;
9590 /* Move the real (op0) and imaginary (op1) parts to their location. */
9591 write_complex_part (target
, op0
, false);
9592 write_complex_part (target
, op1
, true);
9596 case WIDEN_SUM_EXPR
:
9598 tree oprnd0
= treeop0
;
9599 tree oprnd1
= treeop1
;
9601 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9602 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9607 case VEC_UNPACK_HI_EXPR
:
9608 case VEC_UNPACK_LO_EXPR
:
9609 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
9610 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
9612 op0
= expand_normal (treeop0
);
9613 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9619 case VEC_UNPACK_FLOAT_HI_EXPR
:
9620 case VEC_UNPACK_FLOAT_LO_EXPR
:
9622 op0
= expand_normal (treeop0
);
9623 /* The signedness is determined from input operand. */
9624 temp
= expand_widen_pattern_expr
9625 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9626 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9632 case VEC_WIDEN_MULT_HI_EXPR
:
9633 case VEC_WIDEN_MULT_LO_EXPR
:
9634 case VEC_WIDEN_MULT_EVEN_EXPR
:
9635 case VEC_WIDEN_MULT_ODD_EXPR
:
9636 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9637 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9638 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9639 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9641 gcc_assert (target
);
9644 case VEC_PACK_SAT_EXPR
:
9645 case VEC_PACK_FIX_TRUNC_EXPR
:
9646 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9649 case VEC_PACK_TRUNC_EXPR
:
9650 if (VECTOR_BOOLEAN_TYPE_P (type
)
9651 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0
))
9652 && mode
== TYPE_MODE (TREE_TYPE (treeop0
))
9653 && SCALAR_INT_MODE_P (mode
))
9655 class expand_operand eops
[4];
9656 machine_mode imode
= TYPE_MODE (TREE_TYPE (treeop0
));
9657 expand_operands (treeop0
, treeop1
,
9658 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9659 this_optab
= vec_pack_sbool_trunc_optab
;
9660 enum insn_code icode
= optab_handler (this_optab
, imode
);
9661 create_output_operand (&eops
[0], target
, mode
);
9662 create_convert_operand_from (&eops
[1], op0
, imode
, false);
9663 create_convert_operand_from (&eops
[2], op1
, imode
, false);
9664 temp
= GEN_INT (TYPE_VECTOR_SUBPARTS (type
).to_constant ());
9665 create_input_operand (&eops
[3], temp
, imode
);
9666 expand_insn (icode
, 4, eops
);
9667 return eops
[0].value
;
9669 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9672 case VEC_PACK_FLOAT_EXPR
:
9673 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9674 expand_operands (treeop0
, treeop1
,
9675 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9676 this_optab
= optab_for_tree_code (code
, TREE_TYPE (treeop0
),
9678 target
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9679 TYPE_UNSIGNED (TREE_TYPE (treeop0
)),
9681 gcc_assert (target
);
9686 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9687 vec_perm_builder sel
;
9688 if (TREE_CODE (treeop2
) == VECTOR_CST
9689 && tree_to_vec_perm_builder (&sel
, treeop2
))
9691 machine_mode sel_mode
= TYPE_MODE (TREE_TYPE (treeop2
));
9692 temp
= expand_vec_perm_const (mode
, op0
, op1
, sel
,
9697 op2
= expand_normal (treeop2
);
9698 temp
= expand_vec_perm_var (mode
, op0
, op1
, op2
, target
);
9706 tree oprnd0
= treeop0
;
9707 tree oprnd1
= treeop1
;
9708 tree oprnd2
= treeop2
;
9710 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9711 op2
= expand_normal (oprnd2
);
9712 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9719 tree oprnd0
= treeop0
;
9720 tree oprnd1
= treeop1
;
9721 tree oprnd2
= treeop2
;
9723 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9724 op2
= expand_normal (oprnd2
);
9725 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9730 case REALIGN_LOAD_EXPR
:
9732 tree oprnd0
= treeop0
;
9733 tree oprnd1
= treeop1
;
9734 tree oprnd2
= treeop2
;
9736 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9737 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9738 op2
= expand_normal (oprnd2
);
9739 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9747 /* A COND_EXPR with its type being VOID_TYPE represents a
9748 conditional jump and is handled in
9749 expand_gimple_cond_expr. */
9750 gcc_assert (!VOID_TYPE_P (type
));
9752 /* Note that COND_EXPRs whose type is a structure or union
9753 are required to be constructed to contain assignments of
9754 a temporary variable, so that we can evaluate them here
9755 for side effect only. If type is void, we must do likewise. */
9757 gcc_assert (!TREE_ADDRESSABLE (type
)
9759 && TREE_TYPE (treeop1
) != void_type_node
9760 && TREE_TYPE (treeop2
) != void_type_node
);
9762 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9766 /* If we are not to produce a result, we have no target. Otherwise,
9767 if a target was specified use it; it will not be used as an
9768 intermediate target unless it is safe. If no target, use a
9771 if (modifier
!= EXPAND_STACK_PARM
9773 && safe_from_p (original_target
, treeop0
, 1)
9774 && GET_MODE (original_target
) == mode
9775 && !MEM_P (original_target
))
9776 temp
= original_target
;
9778 temp
= assign_temp (type
, 0, 1);
9780 do_pending_stack_adjust ();
9782 rtx_code_label
*lab0
= gen_label_rtx ();
9783 rtx_code_label
*lab1
= gen_label_rtx ();
9784 jumpifnot (treeop0
, lab0
,
9785 profile_probability::uninitialized ());
9786 store_expr (treeop1
, temp
,
9787 modifier
== EXPAND_STACK_PARM
,
9790 emit_jump_insn (targetm
.gen_jump (lab1
));
9793 store_expr (treeop2
, temp
,
9794 modifier
== EXPAND_STACK_PARM
,
9803 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9806 case VEC_DUPLICATE_EXPR
:
9807 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
9808 target
= expand_vector_broadcast (mode
, op0
);
9809 gcc_assert (target
);
9812 case VEC_SERIES_EXPR
:
9813 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, modifier
);
9814 return expand_vec_series_expr (mode
, op0
, op1
, target
);
9816 case BIT_INSERT_EXPR
:
9818 unsigned bitpos
= tree_to_uhwi (treeop2
);
9820 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1
)))
9821 bitsize
= TYPE_PRECISION (TREE_TYPE (treeop1
));
9823 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1
)));
9824 op0
= expand_normal (treeop0
);
9825 op1
= expand_normal (treeop1
);
9826 rtx dst
= gen_reg_rtx (mode
);
9827 emit_move_insn (dst
, op0
);
9828 store_bit_field (dst
, bitsize
, bitpos
, 0, 0,
9829 TYPE_MODE (TREE_TYPE (treeop1
)), op1
, false);
9837 /* Here to do an ordinary binary operator. */
9839 expand_operands (treeop0
, treeop1
,
9840 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9842 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9844 if (modifier
== EXPAND_STACK_PARM
)
9846 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9847 unsignedp
, OPTAB_LIB_WIDEN
);
9849 /* Bitwise operations do not need bitfield reduction as we expect their
9850 operands being properly truncated. */
9851 if (code
== BIT_XOR_EXPR
9852 || code
== BIT_AND_EXPR
9853 || code
== BIT_IOR_EXPR
)
9855 return REDUCE_BIT_FIELD (temp
);
9857 #undef REDUCE_BIT_FIELD
9860 /* Return TRUE if expression STMT is suitable for replacement.
9861 Never consider memory loads as replaceable, because those don't ever lead
9862 into constant expressions. */
9865 stmt_is_replaceable_p (gimple
*stmt
)
9867 if (ssa_is_replaceable_p (stmt
))
9869 /* Don't move around loads. */
9870 if (!gimple_assign_single_p (stmt
)
9871 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9878 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9879 enum expand_modifier modifier
, rtx
*alt_rtl
,
9880 bool inner_reference_p
)
9882 rtx op0
, op1
, temp
, decl_rtl
;
9885 machine_mode mode
, dmode
;
9886 enum tree_code code
= TREE_CODE (exp
);
9887 rtx subtarget
, original_target
;
9890 bool reduce_bit_field
;
9891 location_t loc
= EXPR_LOCATION (exp
);
9892 struct separate_ops ops
;
9893 tree treeop0
, treeop1
, treeop2
;
9894 tree ssa_name
= NULL_TREE
;
9897 type
= TREE_TYPE (exp
);
9898 mode
= TYPE_MODE (type
);
9899 unsignedp
= TYPE_UNSIGNED (type
);
9901 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9902 if (!VL_EXP_CLASS_P (exp
))
9903 switch (TREE_CODE_LENGTH (code
))
9906 case 3: treeop2
= TREE_OPERAND (exp
, 2); /* FALLTHRU */
9907 case 2: treeop1
= TREE_OPERAND (exp
, 1); /* FALLTHRU */
9908 case 1: treeop0
= TREE_OPERAND (exp
, 0); /* FALLTHRU */
9918 ignore
= (target
== const0_rtx
9919 || ((CONVERT_EXPR_CODE_P (code
)
9920 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9921 && TREE_CODE (type
) == VOID_TYPE
));
9923 /* An operation in what may be a bit-field type needs the
9924 result to be reduced to the precision of the bit-field type,
9925 which is narrower than that of the type's mode. */
9926 reduce_bit_field
= (!ignore
9927 && INTEGRAL_TYPE_P (type
)
9928 && !type_has_mode_precision_p (type
));
9930 /* If we are going to ignore this result, we need only do something
9931 if there is a side-effect somewhere in the expression. If there
9932 is, short-circuit the most common cases here. Note that we must
9933 not call expand_expr with anything but const0_rtx in case this
9934 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9938 if (! TREE_SIDE_EFFECTS (exp
))
9941 /* Ensure we reference a volatile object even if value is ignored, but
9942 don't do this if all we are doing is taking its address. */
9943 if (TREE_THIS_VOLATILE (exp
)
9944 && TREE_CODE (exp
) != FUNCTION_DECL
9945 && mode
!= VOIDmode
&& mode
!= BLKmode
9946 && modifier
!= EXPAND_CONST_ADDRESS
)
9948 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9954 if (TREE_CODE_CLASS (code
) == tcc_unary
9955 || code
== BIT_FIELD_REF
9956 || code
== COMPONENT_REF
9957 || code
== INDIRECT_REF
)
9958 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9961 else if (TREE_CODE_CLASS (code
) == tcc_binary
9962 || TREE_CODE_CLASS (code
) == tcc_comparison
9963 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9965 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9966 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9973 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9976 /* Use subtarget as the target for operand 0 of a binary operation. */
9977 subtarget
= get_subtarget (target
);
9978 original_target
= target
;
9984 tree function
= decl_function_context (exp
);
9986 temp
= label_rtx (exp
);
9987 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9989 if (function
!= current_function_decl
9991 LABEL_REF_NONLOCAL_P (temp
) = 1;
9993 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9998 /* ??? ivopts calls expander, without any preparation from
9999 out-of-ssa. So fake instructions as if this was an access to the
10000 base variable. This unnecessarily allocates a pseudo, see how we can
10001 reuse it, if partition base vars have it set already. */
10002 if (!currently_expanding_to_rtl
)
10004 tree var
= SSA_NAME_VAR (exp
);
10005 if (var
&& DECL_RTL_SET_P (var
))
10006 return DECL_RTL (var
);
10007 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
10008 LAST_VIRTUAL_REGISTER
+ 1);
10011 g
= get_gimple_for_ssa_name (exp
);
10012 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10014 && modifier
== EXPAND_INITIALIZER
10015 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
10016 && (optimize
|| !SSA_NAME_VAR (exp
)
10017 || DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
10018 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
10019 g
= SSA_NAME_DEF_STMT (exp
);
10023 location_t saved_loc
= curr_insn_location ();
10024 loc
= gimple_location (g
);
10025 if (loc
!= UNKNOWN_LOCATION
)
10026 set_curr_insn_location (loc
);
10027 ops
.code
= gimple_assign_rhs_code (g
);
10028 switch (get_gimple_rhs_class (ops
.code
))
10030 case GIMPLE_TERNARY_RHS
:
10031 ops
.op2
= gimple_assign_rhs3 (g
);
10033 case GIMPLE_BINARY_RHS
:
10034 ops
.op1
= gimple_assign_rhs2 (g
);
10036 /* Try to expand conditonal compare. */
10037 if (targetm
.gen_ccmp_first
)
10039 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
10040 r
= expand_ccmp_expr (g
, mode
);
10045 case GIMPLE_UNARY_RHS
:
10046 ops
.op0
= gimple_assign_rhs1 (g
);
10047 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
10048 ops
.location
= loc
;
10049 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10051 case GIMPLE_SINGLE_RHS
:
10053 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
10054 tmode
, modifier
, alt_rtl
,
10055 inner_reference_p
);
10059 gcc_unreachable ();
10061 set_curr_insn_location (saved_loc
);
10062 if (REG_P (r
) && !REG_EXPR (r
))
10063 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
10068 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
10069 exp
= SSA_NAME_VAR (ssa_name
);
10070 goto expand_decl_rtl
;
10074 /* If a static var's type was incomplete when the decl was written,
10075 but the type is complete now, lay out the decl now. */
10076 if (DECL_SIZE (exp
) == 0
10077 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
10078 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
10079 layout_decl (exp
, 0);
10083 case FUNCTION_DECL
:
10085 decl_rtl
= DECL_RTL (exp
);
10087 gcc_assert (decl_rtl
);
10089 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10090 settings for VECTOR_TYPE_P that might switch for the function. */
10091 if (currently_expanding_to_rtl
10092 && code
== VAR_DECL
&& MEM_P (decl_rtl
)
10093 && VECTOR_TYPE_P (type
) && exp
&& DECL_MODE (exp
) != mode
)
10094 decl_rtl
= change_address (decl_rtl
, TYPE_MODE (type
), 0);
10096 decl_rtl
= copy_rtx (decl_rtl
);
10098 /* Record writes to register variables. */
10099 if (modifier
== EXPAND_WRITE
10100 && REG_P (decl_rtl
)
10101 && HARD_REGISTER_P (decl_rtl
))
10102 add_to_hard_reg_set (&crtl
->asm_clobbers
,
10103 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
10105 /* Ensure variable marked as used even if it doesn't go through
10106 a parser. If it hasn't be used yet, write out an external
10109 TREE_USED (exp
) = 1;
10111 /* Show we haven't gotten RTL for this yet. */
10114 /* Variables inherited from containing functions should have
10115 been lowered by this point. */
10117 context
= decl_function_context (exp
);
10119 || SCOPE_FILE_SCOPE_P (context
)
10120 || context
== current_function_decl
10121 || TREE_STATIC (exp
)
10122 || DECL_EXTERNAL (exp
)
10123 /* ??? C++ creates functions that are not TREE_STATIC. */
10124 || TREE_CODE (exp
) == FUNCTION_DECL
);
10126 /* This is the case of an array whose size is to be determined
10127 from its initializer, while the initializer is still being parsed.
10128 ??? We aren't parsing while expanding anymore. */
10130 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
10131 temp
= validize_mem (decl_rtl
);
10133 /* If DECL_RTL is memory, we are in the normal case and the
10134 address is not valid, get the address into a register. */
10136 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
10139 *alt_rtl
= decl_rtl
;
10140 decl_rtl
= use_anchored_address (decl_rtl
);
10141 if (modifier
!= EXPAND_CONST_ADDRESS
10142 && modifier
!= EXPAND_SUM
10143 && !memory_address_addr_space_p (exp
? DECL_MODE (exp
)
10144 : GET_MODE (decl_rtl
),
10145 XEXP (decl_rtl
, 0),
10146 MEM_ADDR_SPACE (decl_rtl
)))
10147 temp
= replace_equiv_address (decl_rtl
,
10148 copy_rtx (XEXP (decl_rtl
, 0)));
10151 /* If we got something, return it. But first, set the alignment
10152 if the address is a register. */
10155 if (exp
&& MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
10156 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
10158 else if (MEM_P (decl_rtl
))
10164 && modifier
!= EXPAND_WRITE
10165 && modifier
!= EXPAND_MEMORY
10166 && modifier
!= EXPAND_INITIALIZER
10167 && modifier
!= EXPAND_CONST_ADDRESS
10168 && modifier
!= EXPAND_SUM
10169 && !inner_reference_p
10171 && MEM_ALIGN (temp
) < GET_MODE_ALIGNMENT (mode
))
10172 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
10173 MEM_ALIGN (temp
), NULL_RTX
, NULL
);
10179 dmode
= DECL_MODE (exp
);
10181 dmode
= TYPE_MODE (TREE_TYPE (ssa_name
));
10183 /* If the mode of DECL_RTL does not match that of the decl,
10184 there are two cases: we are dealing with a BLKmode value
10185 that is returned in a register, or we are dealing with
10186 a promoted value. In the latter case, return a SUBREG
10187 of the wanted mode, but mark it so that we know that it
10188 was already extended. */
10189 if (REG_P (decl_rtl
)
10190 && dmode
!= BLKmode
10191 && GET_MODE (decl_rtl
) != dmode
)
10193 machine_mode pmode
;
10195 /* Get the signedness to be used for this variable. Ensure we get
10196 the same mode we got when the variable was declared. */
10197 if (code
!= SSA_NAME
)
10198 pmode
= promote_decl_mode (exp
, &unsignedp
);
10199 else if ((g
= SSA_NAME_DEF_STMT (ssa_name
))
10200 && gimple_code (g
) == GIMPLE_CALL
10201 && !gimple_call_internal_p (g
))
10202 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
10203 gimple_call_fntype (g
),
10206 pmode
= promote_ssa_mode (ssa_name
, &unsignedp
);
10207 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
10209 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
10210 SUBREG_PROMOTED_VAR_P (temp
) = 1;
10211 SUBREG_PROMOTED_SET (temp
, unsignedp
);
10219 /* Given that TYPE_PRECISION (type) is not always equal to
10220 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10221 the former to the latter according to the signedness of the
10223 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (type
);
10224 temp
= immed_wide_int_const
10225 (wi::to_wide (exp
, GET_MODE_PRECISION (int_mode
)), int_mode
);
10231 tree tmp
= NULL_TREE
;
10232 if (VECTOR_MODE_P (mode
))
10233 return const_vector_from_tree (exp
);
10234 scalar_int_mode int_mode
;
10235 if (is_int_mode (mode
, &int_mode
))
10237 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
10238 return const_scalar_mask_from_tree (int_mode
, exp
);
10242 = lang_hooks
.types
.type_for_mode (int_mode
, 1);
10244 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
,
10245 type_for_mode
, exp
);
10250 vec
<constructor_elt
, va_gc
> *v
;
10251 /* Constructors need to be fixed-length. FIXME. */
10252 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
10253 vec_alloc (v
, nunits
);
10254 for (unsigned int i
= 0; i
< nunits
; ++i
)
10255 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
10256 tmp
= build_constructor (type
, v
);
10258 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
10263 if (modifier
== EXPAND_WRITE
)
10265 /* Writing into CONST_DECL is always invalid, but handle it
10267 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (exp
));
10268 scalar_int_mode address_mode
= targetm
.addr_space
.address_mode (as
);
10269 op0
= expand_expr_addr_expr_1 (exp
, NULL_RTX
, address_mode
,
10270 EXPAND_NORMAL
, as
);
10271 op0
= memory_address_addr_space (mode
, op0
, as
);
10272 temp
= gen_rtx_MEM (mode
, op0
);
10273 set_mem_addr_space (temp
, as
);
10276 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
10279 /* If optimized, generate immediate CONST_DOUBLE
10280 which will be turned into memory by reload if necessary.
10282 We used to force a register so that loop.c could see it. But
10283 this does not allow gen_* patterns to perform optimizations with
10284 the constants. It also produces two insns in cases like "x = 1.0;".
10285 On most machines, floating-point constants are not permitted in
10286 many insns, so we'd end up copying it to a register in any case.
10288 Now, we do the copying in expand_binop, if appropriate. */
10289 return const_double_from_real_value (TREE_REAL_CST (exp
),
10290 TYPE_MODE (TREE_TYPE (exp
)));
10293 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
10294 TYPE_MODE (TREE_TYPE (exp
)));
10297 /* Handle evaluating a complex constant in a CONCAT target. */
10298 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
10302 mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
10303 rtarg
= XEXP (original_target
, 0);
10304 itarg
= XEXP (original_target
, 1);
10306 /* Move the real and imaginary parts separately. */
10307 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
10308 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
10311 emit_move_insn (rtarg
, op0
);
10313 emit_move_insn (itarg
, op1
);
10315 return original_target
;
10321 temp
= expand_expr_constant (exp
, 1, modifier
);
10323 /* temp contains a constant address.
10324 On RISC machines where a constant address isn't valid,
10325 make some insns to get that address into a register. */
10326 if (modifier
!= EXPAND_CONST_ADDRESS
10327 && modifier
!= EXPAND_INITIALIZER
10328 && modifier
!= EXPAND_SUM
10329 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
10330 MEM_ADDR_SPACE (temp
)))
10331 return replace_equiv_address (temp
,
10332 copy_rtx (XEXP (temp
, 0)));
10336 return immed_wide_int_const (poly_int_cst_value (exp
), mode
);
10340 tree val
= treeop0
;
10341 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
10342 inner_reference_p
);
10344 if (!SAVE_EXPR_RESOLVED_P (exp
))
10346 /* We can indeed still hit this case, typically via builtin
10347 expanders calling save_expr immediately before expanding
10348 something. Assume this means that we only have to deal
10349 with non-BLKmode values. */
10350 gcc_assert (GET_MODE (ret
) != BLKmode
);
10352 val
= build_decl (curr_insn_location (),
10353 VAR_DECL
, NULL
, TREE_TYPE (exp
));
10354 DECL_ARTIFICIAL (val
) = 1;
10355 DECL_IGNORED_P (val
) = 1;
10357 TREE_OPERAND (exp
, 0) = treeop0
;
10358 SAVE_EXPR_RESOLVED_P (exp
) = 1;
10360 if (!CONSTANT_P (ret
))
10361 ret
= copy_to_reg (ret
);
10362 SET_DECL_RTL (val
, ret
);
10370 /* If we don't need the result, just ensure we evaluate any
10374 unsigned HOST_WIDE_INT idx
;
10377 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
10378 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
10383 return expand_constructor (exp
, target
, modifier
, false);
10385 case TARGET_MEM_REF
:
10388 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10389 unsigned int align
;
10391 op0
= addr_for_mem_ref (exp
, as
, true);
10392 op0
= memory_address_addr_space (mode
, op0
, as
);
10393 temp
= gen_rtx_MEM (mode
, op0
);
10394 set_mem_attributes (temp
, exp
, 0);
10395 set_mem_addr_space (temp
, as
);
10396 align
= get_object_alignment (exp
);
10397 if (modifier
!= EXPAND_WRITE
10398 && modifier
!= EXPAND_MEMORY
10400 && align
< GET_MODE_ALIGNMENT (mode
))
10401 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
,
10402 align
, NULL_RTX
, NULL
);
10408 const bool reverse
= REF_REVERSE_STORAGE_ORDER (exp
);
10410 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
10411 machine_mode address_mode
;
10412 tree base
= TREE_OPERAND (exp
, 0);
10415 /* Handle expansion of non-aliased memory with non-BLKmode. That
10416 might end up in a register. */
10417 if (mem_ref_refers_to_non_mem_p (exp
))
10419 poly_int64 offset
= mem_ref_offset (exp
).force_shwi ();
10420 base
= TREE_OPERAND (base
, 0);
10421 poly_uint64 type_size
;
10422 if (known_eq (offset
, 0)
10424 && poly_int_tree_p (TYPE_SIZE (type
), &type_size
)
10425 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base
)), type_size
))
10426 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
10427 target
, tmode
, modifier
);
10428 if (TYPE_MODE (type
) == BLKmode
)
10430 temp
= assign_stack_temp (DECL_MODE (base
),
10431 GET_MODE_SIZE (DECL_MODE (base
)));
10432 store_expr (base
, temp
, 0, false, false);
10433 temp
= adjust_address (temp
, BLKmode
, offset
);
10434 set_mem_size (temp
, int_size_in_bytes (type
));
10437 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
10438 bitsize_int (offset
* BITS_PER_UNIT
));
10439 REF_REVERSE_STORAGE_ORDER (exp
) = reverse
;
10440 return expand_expr (exp
, target
, tmode
, modifier
);
10442 address_mode
= targetm
.addr_space
.address_mode (as
);
10443 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
10445 tree mask
= gimple_assign_rhs2 (def_stmt
);
10446 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
10447 gimple_assign_rhs1 (def_stmt
), mask
);
10448 TREE_OPERAND (exp
, 0) = base
;
10450 align
= get_object_alignment (exp
);
10451 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
10452 op0
= memory_address_addr_space (mode
, op0
, as
);
10453 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
10455 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
10456 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
10457 op0
= memory_address_addr_space (mode
, op0
, as
);
10459 temp
= gen_rtx_MEM (mode
, op0
);
10460 set_mem_attributes (temp
, exp
, 0);
10461 set_mem_addr_space (temp
, as
);
10462 if (TREE_THIS_VOLATILE (exp
))
10463 MEM_VOLATILE_P (temp
) = 1;
10464 if (modifier
!= EXPAND_WRITE
10465 && modifier
!= EXPAND_MEMORY
10466 && !inner_reference_p
10468 && align
< GET_MODE_ALIGNMENT (mode
))
10469 temp
= expand_misaligned_mem_ref (temp
, mode
, unsignedp
, align
,
10470 modifier
== EXPAND_STACK_PARM
10471 ? NULL_RTX
: target
, alt_rtl
);
10473 && modifier
!= EXPAND_MEMORY
10474 && modifier
!= EXPAND_WRITE
)
10475 temp
= flip_storage_order (mode
, temp
);
10482 tree array
= treeop0
;
10483 tree index
= treeop1
;
10486 /* Fold an expression like: "foo"[2].
10487 This is not done in fold so it won't happen inside &.
10488 Don't fold if this is for wide characters since it's too
10489 difficult to do correctly and this is a very rare case. */
10491 if (modifier
!= EXPAND_CONST_ADDRESS
10492 && modifier
!= EXPAND_INITIALIZER
10493 && modifier
!= EXPAND_MEMORY
)
10495 tree t
= fold_read_from_constant_string (exp
);
10498 return expand_expr (t
, target
, tmode
, modifier
);
10501 /* If this is a constant index into a constant array,
10502 just get the value from the array. Handle both the cases when
10503 we have an explicit constructor and when our operand is a variable
10504 that was declared const. */
10506 if (modifier
!= EXPAND_CONST_ADDRESS
10507 && modifier
!= EXPAND_INITIALIZER
10508 && modifier
!= EXPAND_MEMORY
10509 && TREE_CODE (array
) == CONSTRUCTOR
10510 && ! TREE_SIDE_EFFECTS (array
)
10511 && TREE_CODE (index
) == INTEGER_CST
)
10513 unsigned HOST_WIDE_INT ix
;
10516 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
10518 if (tree_int_cst_equal (field
, index
))
10520 if (!TREE_SIDE_EFFECTS (value
))
10521 return expand_expr (fold (value
), target
, tmode
, modifier
);
10526 else if (optimize
>= 1
10527 && modifier
!= EXPAND_CONST_ADDRESS
10528 && modifier
!= EXPAND_INITIALIZER
10529 && modifier
!= EXPAND_MEMORY
10530 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
10531 && TREE_CODE (index
) == INTEGER_CST
10532 && (VAR_P (array
) || TREE_CODE (array
) == CONST_DECL
)
10533 && (init
= ctor_for_folding (array
)) != error_mark_node
)
10535 if (init
== NULL_TREE
)
10537 tree value
= build_zero_cst (type
);
10538 if (TREE_CODE (value
) == CONSTRUCTOR
)
10540 /* If VALUE is a CONSTRUCTOR, this optimization is only
10541 useful if this doesn't store the CONSTRUCTOR into
10542 memory. If it does, it is more efficient to just
10543 load the data from the array directly. */
10544 rtx ret
= expand_constructor (value
, target
,
10546 if (ret
== NULL_RTX
)
10551 return expand_expr (value
, target
, tmode
, modifier
);
10553 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10555 unsigned HOST_WIDE_INT ix
;
10558 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10560 if (tree_int_cst_equal (field
, index
))
10562 if (TREE_SIDE_EFFECTS (value
))
10565 if (TREE_CODE (value
) == CONSTRUCTOR
)
10567 /* If VALUE is a CONSTRUCTOR, this
10568 optimization is only useful if
10569 this doesn't store the CONSTRUCTOR
10570 into memory. If it does, it is more
10571 efficient to just load the data from
10572 the array directly. */
10573 rtx ret
= expand_constructor (value
, target
,
10575 if (ret
== NULL_RTX
)
10580 expand_expr (fold (value
), target
, tmode
, modifier
);
10583 else if (TREE_CODE (init
) == STRING_CST
)
10585 tree low_bound
= array_ref_low_bound (exp
);
10586 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10588 /* Optimize the special case of a zero lower bound.
10590 We convert the lower bound to sizetype to avoid problems
10591 with constant folding. E.g. suppose the lower bound is
10592 1 and its mode is QI. Without the conversion
10593 (ARRAY + (INDEX - (unsigned char)1))
10595 (ARRAY + (-(unsigned char)1) + INDEX)
10597 (ARRAY + 255 + INDEX). Oops! */
10598 if (!integer_zerop (low_bound
))
10599 index1
= size_diffop_loc (loc
, index1
,
10600 fold_convert_loc (loc
, sizetype
,
10603 if (tree_fits_uhwi_p (index1
)
10604 && compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10606 tree char_type
= TREE_TYPE (TREE_TYPE (init
));
10607 scalar_int_mode char_mode
;
10609 if (is_int_mode (TYPE_MODE (char_type
), &char_mode
)
10610 && GET_MODE_SIZE (char_mode
) == 1)
10611 return gen_int_mode (TREE_STRING_POINTER (init
)
10612 [TREE_INT_CST_LOW (index1
)],
10618 goto normal_inner_ref
;
10620 case COMPONENT_REF
:
10621 /* If the operand is a CONSTRUCTOR, we can just extract the
10622 appropriate field if it is present. */
10623 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10625 unsigned HOST_WIDE_INT idx
;
10627 scalar_int_mode field_mode
;
10629 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10631 if (field
== treeop1
10632 /* We can normally use the value of the field in the
10633 CONSTRUCTOR. However, if this is a bitfield in
10634 an integral mode that we can fit in a HOST_WIDE_INT,
10635 we must mask only the number of bits in the bitfield,
10636 since this is done implicitly by the constructor. If
10637 the bitfield does not meet either of those conditions,
10638 we can't do this optimization. */
10639 && (! DECL_BIT_FIELD (field
)
10640 || (is_int_mode (DECL_MODE (field
), &field_mode
)
10641 && (GET_MODE_PRECISION (field_mode
)
10642 <= HOST_BITS_PER_WIDE_INT
))))
10644 if (DECL_BIT_FIELD (field
)
10645 && modifier
== EXPAND_STACK_PARM
)
10647 op0
= expand_expr (value
, target
, tmode
, modifier
);
10648 if (DECL_BIT_FIELD (field
))
10650 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10651 scalar_int_mode imode
10652 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field
));
10654 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10656 op1
= gen_int_mode ((HOST_WIDE_INT_1
<< bitsize
) - 1,
10658 op0
= expand_and (imode
, op0
, op1
, target
);
10662 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10664 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10666 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10674 goto normal_inner_ref
;
10676 case BIT_FIELD_REF
:
10677 case ARRAY_RANGE_REF
:
10680 machine_mode mode1
, mode2
;
10681 poly_int64 bitsize
, bitpos
, bytepos
;
10683 int reversep
, volatilep
= 0, must_force_mem
;
10685 = get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
, &mode1
,
10686 &unsignedp
, &reversep
, &volatilep
);
10687 rtx orig_op0
, memloc
;
10688 bool clear_mem_expr
= false;
10690 /* If we got back the original object, something is wrong. Perhaps
10691 we are evaluating an expression too early. In any event, don't
10692 infinitely recurse. */
10693 gcc_assert (tem
!= exp
);
10695 /* If TEM's type is a union of variable size, pass TARGET to the inner
10696 computation, since it will need a temporary and TARGET is known
10697 to have to do. This occurs in unchecked conversion in Ada. */
10699 = expand_expr_real (tem
,
10700 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10701 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10702 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10704 && modifier
!= EXPAND_STACK_PARM
10705 ? target
: NULL_RTX
),
10707 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10710 /* If the field has a mode, we want to access it in the
10711 field's mode, not the computed mode.
10712 If a MEM has VOIDmode (external with incomplete type),
10713 use BLKmode for it instead. */
10716 if (mode1
!= VOIDmode
)
10717 op0
= adjust_address (op0
, mode1
, 0);
10718 else if (GET_MODE (op0
) == VOIDmode
)
10719 op0
= adjust_address (op0
, BLKmode
, 0);
10723 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10725 /* Make sure bitpos is not negative, it can wreak havoc later. */
10726 if (maybe_lt (bitpos
, 0))
10728 gcc_checking_assert (offset
== NULL_TREE
);
10729 offset
= size_int (bits_to_bytes_round_down (bitpos
));
10730 bitpos
= num_trailing_bits (bitpos
);
10733 /* If we have either an offset, a BLKmode result, or a reference
10734 outside the underlying object, we must force it to memory.
10735 Such a case can occur in Ada if we have unchecked conversion
10736 of an expression from a scalar type to an aggregate type or
10737 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10738 passed a partially uninitialized object or a view-conversion
10739 to a larger size. */
10740 must_force_mem
= (offset
10741 || mode1
== BLKmode
10742 || (mode
== BLKmode
10743 && !int_mode_for_size (bitsize
, 1).exists ())
10744 || maybe_gt (bitpos
+ bitsize
,
10745 GET_MODE_BITSIZE (mode2
)));
10747 /* Handle CONCAT first. */
10748 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10750 if (known_eq (bitpos
, 0)
10751 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
10752 && COMPLEX_MODE_P (mode1
)
10753 && COMPLEX_MODE_P (GET_MODE (op0
))
10754 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1
))
10755 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0
)))))
10758 op0
= flip_storage_order (GET_MODE (op0
), op0
);
10759 if (mode1
!= GET_MODE (op0
))
10762 for (int i
= 0; i
< 2; i
++)
10764 rtx op
= read_complex_part (op0
, i
!= 0);
10765 if (GET_CODE (op
) == SUBREG
)
10766 op
= force_reg (GET_MODE (op
), op
);
10767 temp
= gen_lowpart_common (GET_MODE_INNER (mode1
), op
);
10772 if (!REG_P (op
) && !MEM_P (op
))
10773 op
= force_reg (GET_MODE (op
), op
);
10774 op
= gen_lowpart (GET_MODE_INNER (mode1
), op
);
10778 op0
= gen_rtx_CONCAT (mode1
, parts
[0], parts
[1]);
10782 if (known_eq (bitpos
, 0)
10783 && known_eq (bitsize
,
10784 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10785 && maybe_ne (bitsize
, 0))
10787 op0
= XEXP (op0
, 0);
10788 mode2
= GET_MODE (op0
);
10790 else if (known_eq (bitpos
,
10791 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))))
10792 && known_eq (bitsize
,
10793 GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1))))
10794 && maybe_ne (bitpos
, 0)
10795 && maybe_ne (bitsize
, 0))
10797 op0
= XEXP (op0
, 1);
10799 mode2
= GET_MODE (op0
);
10802 /* Otherwise force into memory. */
10803 must_force_mem
= 1;
10806 /* If this is a constant, put it in a register if it is a legitimate
10807 constant and we don't need a memory reference. */
10808 if (CONSTANT_P (op0
)
10809 && mode2
!= BLKmode
10810 && targetm
.legitimate_constant_p (mode2
, op0
)
10811 && !must_force_mem
)
10812 op0
= force_reg (mode2
, op0
);
10814 /* Otherwise, if this is a constant, try to force it to the constant
10815 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10816 is a legitimate constant. */
10817 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10818 op0
= validize_mem (memloc
);
10820 /* Otherwise, if this is a constant or the object is not in memory
10821 and need be, put it there. */
10822 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10824 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10825 emit_move_insn (memloc
, op0
);
10827 clear_mem_expr
= true;
10832 machine_mode address_mode
;
10833 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10836 gcc_assert (MEM_P (op0
));
10838 address_mode
= get_address_mode (op0
);
10839 if (GET_MODE (offset_rtx
) != address_mode
)
10841 /* We cannot be sure that the RTL in offset_rtx is valid outside
10842 of a memory address context, so force it into a register
10843 before attempting to convert it to the desired mode. */
10844 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10845 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10848 /* See the comment in expand_assignment for the rationale. */
10849 if (mode1
!= VOIDmode
10850 && maybe_ne (bitpos
, 0)
10851 && maybe_gt (bitsize
, 0)
10852 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
10853 && multiple_p (bitpos
, bitsize
)
10854 && multiple_p (bitsize
, GET_MODE_ALIGNMENT (mode1
))
10855 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10857 op0
= adjust_address (op0
, mode1
, bytepos
);
10861 op0
= offset_address (op0
, offset_rtx
,
10862 highest_pow2_factor (offset
));
10865 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10866 record its alignment as BIGGEST_ALIGNMENT. */
10868 && known_eq (bitpos
, 0)
10870 && is_aligning_offset (offset
, tem
))
10871 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10873 /* Don't forget about volatility even if this is a bitfield. */
10874 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10876 if (op0
== orig_op0
)
10877 op0
= copy_rtx (op0
);
10879 MEM_VOLATILE_P (op0
) = 1;
10882 if (MEM_P (op0
) && TREE_CODE (tem
) == FUNCTION_DECL
)
10884 if (op0
== orig_op0
)
10885 op0
= copy_rtx (op0
);
10887 set_mem_align (op0
, BITS_PER_UNIT
);
10890 /* In cases where an aligned union has an unaligned object
10891 as a field, we might be extracting a BLKmode value from
10892 an integer-mode (e.g., SImode) object. Handle this case
10893 by doing the extract into an object as wide as the field
10894 (which we know to be the width of a basic mode), then
10895 storing into memory, and changing the mode to BLKmode. */
10896 if (mode1
== VOIDmode
10897 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10898 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10899 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10900 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10901 && modifier
!= EXPAND_CONST_ADDRESS
10902 && modifier
!= EXPAND_INITIALIZER
10903 && modifier
!= EXPAND_MEMORY
)
10904 /* If the bitfield is volatile and the bitsize
10905 is narrower than the access size of the bitfield,
10906 we need to extract bitfields from the access. */
10907 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10908 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10909 && mode1
!= BLKmode
10910 && maybe_lt (bitsize
, GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
))
10911 /* If the field isn't aligned enough to fetch as a memref,
10912 fetch it as a bit field. */
10913 || (mode1
!= BLKmode
10915 ? MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10916 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode1
))
10917 : TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10918 || !multiple_p (bitpos
, GET_MODE_ALIGNMENT (mode
)))
10919 && modifier
!= EXPAND_MEMORY
10920 && ((modifier
== EXPAND_CONST_ADDRESS
10921 || modifier
== EXPAND_INITIALIZER
)
10923 : targetm
.slow_unaligned_access (mode1
,
10925 || !multiple_p (bitpos
, BITS_PER_UNIT
)))
10926 /* If the type and the field are a constant size and the
10927 size of the type isn't the same size as the bitfield,
10928 we must use bitfield operations. */
10929 || (known_size_p (bitsize
)
10930 && TYPE_SIZE (TREE_TYPE (exp
))
10931 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp
)))
10932 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp
))),
10935 machine_mode ext_mode
= mode
;
10937 if (ext_mode
== BLKmode
10938 && ! (target
!= 0 && MEM_P (op0
)
10940 && multiple_p (bitpos
, BITS_PER_UNIT
)))
10941 ext_mode
= int_mode_for_size (bitsize
, 1).else_blk ();
10943 if (ext_mode
== BLKmode
)
10946 target
= assign_temp (type
, 1, 1);
10948 /* ??? Unlike the similar test a few lines below, this one is
10949 very likely obsolete. */
10950 if (known_eq (bitsize
, 0))
10953 /* In this case, BITPOS must start at a byte boundary and
10954 TARGET, if specified, must be a MEM. */
10955 gcc_assert (MEM_P (op0
)
10956 && (!target
|| MEM_P (target
)));
10958 bytepos
= exact_div (bitpos
, BITS_PER_UNIT
);
10959 poly_int64 bytesize
= bits_to_bytes_round_up (bitsize
);
10960 emit_block_move (target
,
10961 adjust_address (op0
, VOIDmode
, bytepos
),
10962 gen_int_mode (bytesize
, Pmode
),
10963 (modifier
== EXPAND_STACK_PARM
10964 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10969 /* If we have nothing to extract, the result will be 0 for targets
10970 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10971 return 0 for the sake of consistency, as reading a zero-sized
10972 bitfield is valid in Ada and the value is fully specified. */
10973 if (known_eq (bitsize
, 0))
10976 op0
= validize_mem (op0
);
10978 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10979 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10981 /* If the result has aggregate type and the extraction is done in
10982 an integral mode, then the field may be not aligned on a byte
10983 boundary; in this case, if it has reverse storage order, it
10984 needs to be extracted as a scalar field with reverse storage
10985 order and put back into memory order afterwards. */
10986 if (AGGREGATE_TYPE_P (type
)
10987 && GET_MODE_CLASS (ext_mode
) == MODE_INT
)
10988 reversep
= TYPE_REVERSE_STORAGE_ORDER (type
);
10990 gcc_checking_assert (known_ge (bitpos
, 0));
10991 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10992 (modifier
== EXPAND_STACK_PARM
10993 ? NULL_RTX
: target
),
10994 ext_mode
, ext_mode
, reversep
, alt_rtl
);
10996 /* If the result has aggregate type and the mode of OP0 is an
10997 integral mode then, if BITSIZE is narrower than this mode
10998 and this is for big-endian data, we must put the field
10999 into the high-order bits. And we must also put it back
11000 into memory order if it has been previously reversed. */
11001 scalar_int_mode op0_mode
;
11002 if (AGGREGATE_TYPE_P (type
)
11003 && is_int_mode (GET_MODE (op0
), &op0_mode
))
11005 HOST_WIDE_INT size
= GET_MODE_BITSIZE (op0_mode
);
11007 gcc_checking_assert (known_le (bitsize
, size
));
11008 if (maybe_lt (bitsize
, size
)
11009 && reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
11010 op0
= expand_shift (LSHIFT_EXPR
, op0_mode
, op0
,
11011 size
- bitsize
, op0
, 1);
11014 op0
= flip_storage_order (op0_mode
, op0
);
11017 /* If the result type is BLKmode, store the data into a temporary
11018 of the appropriate type, but with the mode corresponding to the
11019 mode for the data we have (op0's mode). */
11020 if (mode
== BLKmode
)
11023 = assign_stack_temp_for_type (ext_mode
,
11024 GET_MODE_BITSIZE (ext_mode
),
11026 emit_move_insn (new_rtx
, op0
);
11027 op0
= copy_rtx (new_rtx
);
11028 PUT_MODE (op0
, BLKmode
);
11034 /* If the result is BLKmode, use that to access the object
11036 if (mode
== BLKmode
)
11039 /* Get a reference to just this component. */
11040 bytepos
= bits_to_bytes_round_down (bitpos
);
11041 if (modifier
== EXPAND_CONST_ADDRESS
11042 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
11043 op0
= adjust_address_nv (op0
, mode1
, bytepos
);
11045 op0
= adjust_address (op0
, mode1
, bytepos
);
11047 if (op0
== orig_op0
)
11048 op0
= copy_rtx (op0
);
11050 /* Don't set memory attributes if the base expression is
11051 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11052 we should just honor its original memory attributes. */
11053 if (!(TREE_CODE (tem
) == SSA_NAME
11054 && (MEM_P (orig_op0
) || CONSTANT_P (orig_op0
))))
11055 set_mem_attributes (op0
, exp
, 0);
11057 if (REG_P (XEXP (op0
, 0)))
11058 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11060 /* If op0 is a temporary because the original expressions was forced
11061 to memory, clear MEM_EXPR so that the original expression cannot
11062 be marked as addressable through MEM_EXPR of the temporary. */
11063 if (clear_mem_expr
)
11064 set_mem_expr (op0
, NULL_TREE
);
11066 MEM_VOLATILE_P (op0
) |= volatilep
;
11069 && modifier
!= EXPAND_MEMORY
11070 && modifier
!= EXPAND_WRITE
)
11071 op0
= flip_storage_order (mode1
, op0
);
11073 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
11074 || modifier
== EXPAND_CONST_ADDRESS
11075 || modifier
== EXPAND_INITIALIZER
)
11079 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
11081 convert_move (target
, op0
, unsignedp
);
11086 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
11089 /* All valid uses of __builtin_va_arg_pack () are removed during
11091 if (CALL_EXPR_VA_ARG_PACK (exp
))
11092 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
11094 tree fndecl
= get_callee_fndecl (exp
), attr
;
11097 /* Don't diagnose the error attribute in thunks, those are
11098 artificially created. */
11099 && !CALL_FROM_THUNK_P (exp
)
11100 && (attr
= lookup_attribute ("error",
11101 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11103 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11104 error ("%Kcall to %qs declared with attribute error: %s", exp
,
11105 identifier_to_locale (ident
),
11106 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11109 /* Don't diagnose the warning attribute in thunks, those are
11110 artificially created. */
11111 && !CALL_FROM_THUNK_P (exp
)
11112 && (attr
= lookup_attribute ("warning",
11113 DECL_ATTRIBUTES (fndecl
))) != NULL
)
11115 const char *ident
= lang_hooks
.decl_printable_name (fndecl
, 1);
11116 warning_at (tree_nonartificial_location (exp
),
11117 OPT_Wattribute_warning
,
11118 "%Kcall to %qs declared with attribute warning: %s",
11119 exp
, identifier_to_locale (ident
),
11120 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
11123 /* Check for a built-in function. */
11124 if (fndecl
&& fndecl_built_in_p (fndecl
))
11126 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
11127 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
11130 return expand_call (exp
, target
, ignore
);
11132 case VIEW_CONVERT_EXPR
:
11135 /* If we are converting to BLKmode, try to avoid an intermediate
11136 temporary by fetching an inner memory reference. */
11137 if (mode
== BLKmode
11138 && poly_int_tree_p (TYPE_SIZE (type
))
11139 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
11140 && handled_component_p (treeop0
))
11142 machine_mode mode1
;
11143 poly_int64 bitsize
, bitpos
, bytepos
;
11145 int reversep
, volatilep
= 0;
11147 = get_inner_reference (treeop0
, &bitsize
, &bitpos
, &offset
, &mode1
,
11148 &unsignedp
, &reversep
, &volatilep
);
11150 /* ??? We should work harder and deal with non-zero offsets. */
11152 && multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
)
11154 && known_size_p (bitsize
)
11155 && known_eq (wi::to_poly_offset (TYPE_SIZE (type
)), bitsize
))
11157 /* See the normal_inner_ref case for the rationale. */
11159 = expand_expr_real (tem
,
11160 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
11161 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
11163 && modifier
!= EXPAND_STACK_PARM
11164 ? target
: NULL_RTX
),
11166 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
11169 if (MEM_P (orig_op0
))
11173 /* Get a reference to just this component. */
11174 if (modifier
== EXPAND_CONST_ADDRESS
11175 || modifier
== EXPAND_SUM
11176 || modifier
== EXPAND_INITIALIZER
)
11177 op0
= adjust_address_nv (op0
, mode
, bytepos
);
11179 op0
= adjust_address (op0
, mode
, bytepos
);
11181 if (op0
== orig_op0
)
11182 op0
= copy_rtx (op0
);
11184 set_mem_attributes (op0
, treeop0
, 0);
11185 if (REG_P (XEXP (op0
, 0)))
11186 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
11188 MEM_VOLATILE_P (op0
) |= volatilep
;
11194 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
11195 NULL
, inner_reference_p
);
11197 /* If the input and output modes are both the same, we are done. */
11198 if (mode
== GET_MODE (op0
))
11200 /* If neither mode is BLKmode, and both modes are the same size
11201 then we can use gen_lowpart. */
11202 else if (mode
!= BLKmode
11203 && GET_MODE (op0
) != BLKmode
11204 && known_eq (GET_MODE_PRECISION (mode
),
11205 GET_MODE_PRECISION (GET_MODE (op0
)))
11206 && !COMPLEX_MODE_P (GET_MODE (op0
)))
11208 if (GET_CODE (op0
) == SUBREG
)
11209 op0
= force_reg (GET_MODE (op0
), op0
);
11210 temp
= gen_lowpart_common (mode
, op0
);
11215 if (!REG_P (op0
) && !MEM_P (op0
))
11216 op0
= force_reg (GET_MODE (op0
), op0
);
11217 op0
= gen_lowpart (mode
, op0
);
11220 /* If both types are integral, convert from one mode to the other. */
11221 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
11222 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
11223 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
11224 /* If the output type is a bit-field type, do an extraction. */
11225 else if (reduce_bit_field
)
11226 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
11227 TYPE_UNSIGNED (type
), NULL_RTX
,
11228 mode
, mode
, false, NULL
);
11229 /* As a last resort, spill op0 to memory, and reload it in a
11231 else if (!MEM_P (op0
))
11233 /* If the operand is not a MEM, force it into memory. Since we
11234 are going to be changing the mode of the MEM, don't call
11235 force_const_mem for constants because we don't allow pool
11236 constants to change mode. */
11237 tree inner_type
= TREE_TYPE (treeop0
);
11239 gcc_assert (!TREE_ADDRESSABLE (exp
));
11241 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
11243 = assign_stack_temp_for_type
11244 (TYPE_MODE (inner_type
),
11245 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
11247 emit_move_insn (target
, op0
);
11251 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11252 output type is such that the operand is known to be aligned, indicate
11253 that it is. Otherwise, we need only be concerned about alignment for
11254 non-BLKmode results. */
11257 enum insn_code icode
;
11259 if (modifier
!= EXPAND_WRITE
11260 && modifier
!= EXPAND_MEMORY
11261 && !inner_reference_p
11263 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
11265 /* If the target does have special handling for unaligned
11266 loads of mode then use them. */
11267 if ((icode
= optab_handler (movmisalign_optab
, mode
))
11268 != CODE_FOR_nothing
)
11272 op0
= adjust_address (op0
, mode
, 0);
11273 /* We've already validated the memory, and we're creating a
11274 new pseudo destination. The predicates really can't
11276 reg
= gen_reg_rtx (mode
);
11278 /* Nor can the insn generator. */
11279 rtx_insn
*insn
= GEN_FCN (icode
) (reg
, op0
);
11283 else if (STRICT_ALIGNMENT
)
11285 poly_uint64 mode_size
= GET_MODE_SIZE (mode
);
11286 poly_uint64 temp_size
= mode_size
;
11287 if (GET_MODE (op0
) != BLKmode
)
11288 temp_size
= upper_bound (temp_size
,
11289 GET_MODE_SIZE (GET_MODE (op0
)));
11291 = assign_stack_temp_for_type (mode
, temp_size
, type
);
11292 rtx new_with_op0_mode
11293 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
11295 gcc_assert (!TREE_ADDRESSABLE (exp
));
11297 if (GET_MODE (op0
) == BLKmode
)
11299 rtx size_rtx
= gen_int_mode (mode_size
, Pmode
);
11300 emit_block_move (new_with_op0_mode
, op0
, size_rtx
,
11301 (modifier
== EXPAND_STACK_PARM
11302 ? BLOCK_OP_CALL_PARM
11303 : BLOCK_OP_NORMAL
));
11306 emit_move_insn (new_with_op0_mode
, op0
);
11312 op0
= adjust_address (op0
, mode
, 0);
11319 tree lhs
= treeop0
;
11320 tree rhs
= treeop1
;
11321 gcc_assert (ignore
);
11323 /* Check for |= or &= of a bitfield of size one into another bitfield
11324 of size 1. In this case, (unless we need the result of the
11325 assignment) we can do this more efficiently with a
11326 test followed by an assignment, if necessary.
11328 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11329 things change so we do, this code should be enhanced to
11331 if (TREE_CODE (lhs
) == COMPONENT_REF
11332 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
11333 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
11334 && TREE_OPERAND (rhs
, 0) == lhs
11335 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
11336 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
11337 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
11339 rtx_code_label
*label
= gen_label_rtx ();
11340 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
11341 profile_probability prob
= profile_probability::uninitialized ();
11343 jumpifnot (TREE_OPERAND (rhs
, 1), label
, prob
);
11345 jumpif (TREE_OPERAND (rhs
, 1), label
, prob
);
11346 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
11348 do_pending_stack_adjust ();
11349 emit_label (label
);
11353 expand_assignment (lhs
, rhs
, false);
11358 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
11360 case REALPART_EXPR
:
11361 op0
= expand_normal (treeop0
);
11362 return read_complex_part (op0
, false);
11364 case IMAGPART_EXPR
:
11365 op0
= expand_normal (treeop0
);
11366 return read_complex_part (op0
, true);
11373 /* Expanded in cfgexpand.c. */
11374 gcc_unreachable ();
11376 case TRY_CATCH_EXPR
:
11378 case EH_FILTER_EXPR
:
11379 case TRY_FINALLY_EXPR
:
11381 /* Lowered by tree-eh.c. */
11382 gcc_unreachable ();
11384 case WITH_CLEANUP_EXPR
:
11385 case CLEANUP_POINT_EXPR
:
11387 case CASE_LABEL_EXPR
:
11392 case COMPOUND_EXPR
:
11393 case PREINCREMENT_EXPR
:
11394 case PREDECREMENT_EXPR
:
11395 case POSTINCREMENT_EXPR
:
11396 case POSTDECREMENT_EXPR
:
11399 case COMPOUND_LITERAL_EXPR
:
11400 /* Lowered by gimplify.c. */
11401 gcc_unreachable ();
11404 /* Function descriptors are not valid except for as
11405 initialization constants, and should not be expanded. */
11406 gcc_unreachable ();
11408 case WITH_SIZE_EXPR
:
11409 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11410 have pulled out the size to use in whatever context it needed. */
11411 return expand_expr_real (treeop0
, original_target
, tmode
,
11412 modifier
, alt_rtl
, inner_reference_p
);
11415 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
11419 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11420 signedness of TYPE), possibly returning the result in TARGET.
11421 TYPE is known to be a partial integer type. */
11423 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
11425 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
11426 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
11428 /* For constant values, reduce using build_int_cst_type. */
11429 poly_int64 const_exp
;
11430 if (poly_int_rtx_p (exp
, &const_exp
))
11432 tree t
= build_int_cst_type (type
, const_exp
);
11433 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
11435 else if (TYPE_UNSIGNED (type
))
11437 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11438 rtx mask
= immed_wide_int_const
11439 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
11440 return expand_and (mode
, exp
, mask
, target
);
11444 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (exp
));
11445 int count
= GET_MODE_PRECISION (mode
) - prec
;
11446 exp
= expand_shift (LSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11447 return expand_shift (RSHIFT_EXPR
, mode
, exp
, count
, target
, 0);
11451 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11452 when applied to the address of EXP produces an address known to be
11453 aligned more than BIGGEST_ALIGNMENT. */
11456 is_aligning_offset (const_tree offset
, const_tree exp
)
11458 /* Strip off any conversions. */
11459 while (CONVERT_EXPR_P (offset
))
11460 offset
= TREE_OPERAND (offset
, 0);
11462 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11463 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11464 if (TREE_CODE (offset
) != BIT_AND_EXPR
11465 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
11466 || compare_tree_int (TREE_OPERAND (offset
, 1),
11467 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
11468 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1))
11471 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11472 It must be NEGATE_EXPR. Then strip any more conversions. */
11473 offset
= TREE_OPERAND (offset
, 0);
11474 while (CONVERT_EXPR_P (offset
))
11475 offset
= TREE_OPERAND (offset
, 0);
11477 if (TREE_CODE (offset
) != NEGATE_EXPR
)
11480 offset
= TREE_OPERAND (offset
, 0);
11481 while (CONVERT_EXPR_P (offset
))
11482 offset
= TREE_OPERAND (offset
, 0);
11484 /* This must now be the address of EXP. */
11485 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
11488 /* Return the tree node if an ARG corresponds to a string constant or zero
11489 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11490 non-constant) offset in bytes within the string that ARG is accessing.
11491 If MEM_SIZE is non-zero the storage size of the memory is returned.
11492 If DECL is non-zero the constant declaration is returned if available. */
11495 string_constant (tree arg
, tree
*ptr_offset
, tree
*mem_size
, tree
*decl
)
11497 tree dummy
= NULL_TREE
;;
11501 /* Store the type of the original expression before conversions
11502 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11504 tree argtype
= TREE_TYPE (arg
);
11509 /* Non-constant index into the character array in an ARRAY_REF
11510 expression or null. */
11511 tree varidx
= NULL_TREE
;
11513 poly_int64 base_off
= 0;
11515 if (TREE_CODE (arg
) == ADDR_EXPR
)
11517 arg
= TREE_OPERAND (arg
, 0);
11519 if (TREE_CODE (arg
) == ARRAY_REF
)
11521 tree idx
= TREE_OPERAND (arg
, 1);
11522 if (TREE_CODE (idx
) != INTEGER_CST
)
11524 /* From a pointer (but not array) argument extract the variable
11525 index to prevent get_addr_base_and_unit_offset() from failing
11526 due to it. Use it later to compute the non-constant offset
11527 into the string and return it to the caller. */
11529 ref
= TREE_OPERAND (arg
, 0);
11531 if (TREE_CODE (TREE_TYPE (arg
)) == ARRAY_TYPE
)
11534 if (!integer_zerop (array_ref_low_bound (arg
)))
11537 if (!integer_onep (array_ref_element_size (arg
)))
11541 array
= get_addr_base_and_unit_offset (ref
, &base_off
);
11543 || (TREE_CODE (array
) != VAR_DECL
11544 && TREE_CODE (array
) != CONST_DECL
11545 && TREE_CODE (array
) != STRING_CST
))
11548 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
11550 tree arg0
= TREE_OPERAND (arg
, 0);
11551 tree arg1
= TREE_OPERAND (arg
, 1);
11554 tree str
= string_constant (arg0
, &offset
, mem_size
, decl
);
11557 str
= string_constant (arg1
, &offset
, mem_size
, decl
);
11563 /* Avoid pointers to arrays (see bug 86622). */
11564 if (POINTER_TYPE_P (TREE_TYPE (arg
))
11565 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg
))) == ARRAY_TYPE
11566 && !(decl
&& !*decl
)
11567 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
11568 && tree_fits_uhwi_p (*mem_size
)
11569 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
11572 tree type
= TREE_TYPE (offset
);
11573 arg1
= fold_convert (type
, arg1
);
11574 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, arg1
);
11579 else if (TREE_CODE (arg
) == SSA_NAME
)
11581 gimple
*stmt
= SSA_NAME_DEF_STMT (arg
);
11582 if (!is_gimple_assign (stmt
))
11585 tree rhs1
= gimple_assign_rhs1 (stmt
);
11586 tree_code code
= gimple_assign_rhs_code (stmt
);
11587 if (code
== ADDR_EXPR
)
11588 return string_constant (rhs1
, ptr_offset
, mem_size
, decl
);
11589 else if (code
!= POINTER_PLUS_EXPR
)
11593 if (tree str
= string_constant (rhs1
, &offset
, mem_size
, decl
))
11595 /* Avoid pointers to arrays (see bug 86622). */
11596 if (POINTER_TYPE_P (TREE_TYPE (rhs1
))
11597 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1
))) == ARRAY_TYPE
11598 && !(decl
&& !*decl
)
11599 && !(decl
&& tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl
))
11600 && tree_fits_uhwi_p (*mem_size
)
11601 && tree_int_cst_equal (*mem_size
, DECL_SIZE_UNIT (*decl
))))
11604 tree rhs2
= gimple_assign_rhs2 (stmt
);
11605 tree type
= TREE_TYPE (offset
);
11606 rhs2
= fold_convert (type
, rhs2
);
11607 *ptr_offset
= fold_build2 (PLUS_EXPR
, type
, offset
, rhs2
);
11612 else if (DECL_P (arg
))
11617 tree offset
= wide_int_to_tree (sizetype
, base_off
);
11620 if (TREE_CODE (TREE_TYPE (array
)) != ARRAY_TYPE
)
11623 gcc_assert (TREE_CODE (arg
) == ARRAY_REF
);
11624 tree chartype
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg
, 0)));
11625 if (TREE_CODE (chartype
) != INTEGER_TYPE
)
11628 offset
= fold_convert (sizetype
, varidx
);
11631 if (TREE_CODE (array
) == STRING_CST
)
11633 *ptr_offset
= fold_convert (sizetype
, offset
);
11634 *mem_size
= TYPE_SIZE_UNIT (TREE_TYPE (array
));
11637 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array
)))
11638 >= TREE_STRING_LENGTH (array
));
11642 if (!VAR_P (array
) && TREE_CODE (array
) != CONST_DECL
)
11645 tree init
= ctor_for_folding (array
);
11647 /* Handle variables initialized with string literals. */
11648 if (!init
|| init
== error_mark_node
)
11650 if (TREE_CODE (init
) == CONSTRUCTOR
)
11652 /* Convert the 64-bit constant offset to a wider type to avoid
11655 if (!base_off
.is_constant (&wioff
))
11658 wioff
*= BITS_PER_UNIT
;
11659 if (!wi::fits_uhwi_p (wioff
))
11662 base_off
= wioff
.to_uhwi ();
11663 unsigned HOST_WIDE_INT fieldoff
= 0;
11664 init
= fold_ctor_reference (TREE_TYPE (arg
), init
, base_off
, 0, array
,
11666 HOST_WIDE_INT cstoff
;
11667 if (!base_off
.is_constant (&cstoff
))
11670 cstoff
= (cstoff
- fieldoff
) / BITS_PER_UNIT
;
11671 tree off
= build_int_cst (sizetype
, cstoff
);
11673 offset
= fold_build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
, off
);
11681 *ptr_offset
= offset
;
11683 tree inittype
= TREE_TYPE (init
);
11685 if (TREE_CODE (init
) == INTEGER_CST
11686 && (TREE_CODE (TREE_TYPE (array
)) == INTEGER_TYPE
11687 || TYPE_MAIN_VARIANT (inittype
) == char_type_node
))
11689 /* For a reference to (address of) a single constant character,
11690 store the native representation of the character in CHARBUF.
11691 If the reference is to an element of an array or a member
11692 of a struct, only consider narrow characters until ctors
11693 for wide character arrays are transformed to STRING_CSTs
11694 like those for narrow arrays. */
11695 unsigned char charbuf
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11696 int len
= native_encode_expr (init
, charbuf
, sizeof charbuf
, 0);
11699 /* Construct a string literal with elements of INITTYPE and
11700 the representation above. Then strip
11701 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11702 init
= build_string_literal (len
, (char *)charbuf
, inittype
);
11703 init
= TREE_OPERAND (TREE_OPERAND (init
, 0), 0);
11707 tree initsize
= TYPE_SIZE_UNIT (inittype
);
11709 if (TREE_CODE (init
) == CONSTRUCTOR
&& initializer_zerop (init
))
11711 /* Fold an empty/zero constructor for an implicitly initialized
11712 object or subobject into the empty string. */
11714 /* Determine the character type from that of the original
11716 tree chartype
= argtype
;
11717 if (POINTER_TYPE_P (chartype
))
11718 chartype
= TREE_TYPE (chartype
);
11719 while (TREE_CODE (chartype
) == ARRAY_TYPE
)
11720 chartype
= TREE_TYPE (chartype
);
11721 /* Convert a char array to an empty STRING_CST having an array
11722 of the expected type. */
11724 initsize
= integer_zero_node
;
11726 unsigned HOST_WIDE_INT size
= tree_to_uhwi (initsize
);
11727 init
= build_string_literal (size
? 1 : 0, "", chartype
, size
);
11728 init
= TREE_OPERAND (init
, 0);
11729 init
= TREE_OPERAND (init
, 0);
11731 *ptr_offset
= integer_zero_node
;
11737 if (TREE_CODE (init
) != STRING_CST
)
11740 *mem_size
= initsize
;
11742 gcc_checking_assert (tree_to_shwi (initsize
) >= TREE_STRING_LENGTH (init
));
11747 /* Compute the modular multiplicative inverse of A modulo M
11748 using extended Euclid's algorithm. Assumes A and M are coprime. */
11750 mod_inv (const wide_int
&a
, const wide_int
&b
)
11752 /* Verify the assumption. */
11753 gcc_checking_assert (wi::eq_p (wi::gcd (a
, b
), 1));
11755 unsigned int p
= a
.get_precision () + 1;
11756 gcc_checking_assert (b
.get_precision () + 1 == p
);
11757 wide_int c
= wide_int::from (a
, p
, UNSIGNED
);
11758 wide_int d
= wide_int::from (b
, p
, UNSIGNED
);
11759 wide_int x0
= wide_int::from (0, p
, UNSIGNED
);
11760 wide_int x1
= wide_int::from (1, p
, UNSIGNED
);
11762 if (wi::eq_p (b
, 1))
11763 return wide_int::from (1, p
, UNSIGNED
);
11765 while (wi::gt_p (c
, 1, UNSIGNED
))
11768 wide_int q
= wi::divmod_trunc (c
, d
, UNSIGNED
, &d
);
11771 x0
= wi::sub (x1
, wi::mul (q
, x0
));
11774 if (wi::lt_p (x1
, 0, SIGNED
))
11779 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11780 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11781 for C2 > 0 to x & C3 == C2
11782 for C2 < 0 to x & C3 == (C2 & C3). */
11784 maybe_optimize_pow2p_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
11786 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
11787 tree treeop0
= gimple_assign_rhs1 (stmt
);
11788 tree treeop1
= gimple_assign_rhs2 (stmt
);
11789 tree type
= TREE_TYPE (*arg0
);
11790 scalar_int_mode mode
;
11791 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
11793 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
11794 || TYPE_PRECISION (type
) <= 1
11795 || TYPE_UNSIGNED (type
)
11796 /* Signed x % c == 0 should have been optimized into unsigned modulo
11798 || integer_zerop (*arg1
)
11799 /* If c is known to be non-negative, modulo will be expanded as unsigned
11801 || get_range_pos_neg (treeop0
) == 1)
11804 /* x % c == d where d < 0 && d <= -c should be always false. */
11805 if (tree_int_cst_sgn (*arg1
) == -1
11806 && -wi::to_widest (treeop1
) >= wi::to_widest (*arg1
))
11809 int prec
= TYPE_PRECISION (type
);
11810 wide_int w
= wi::to_wide (treeop1
) - 1;
11811 w
|= wi::shifted_mask (0, prec
- 1, true, prec
);
11812 tree c3
= wide_int_to_tree (type
, w
);
11814 if (tree_int_cst_sgn (*arg1
) == -1)
11815 c4
= wide_int_to_tree (type
, w
& wi::to_wide (*arg1
));
11817 rtx op0
= expand_normal (treeop0
);
11818 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
11820 bool speed_p
= optimize_insn_for_speed_p ();
11822 do_pending_stack_adjust ();
11824 location_t loc
= gimple_location (stmt
);
11825 struct separate_ops ops
;
11826 ops
.code
= TRUNC_MOD_EXPR
;
11827 ops
.location
= loc
;
11828 ops
.type
= TREE_TYPE (treeop0
);
11831 ops
.op2
= NULL_TREE
;
11833 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
11835 rtx_insn
*moinsns
= get_insns ();
11838 unsigned mocost
= seq_cost (moinsns
, speed_p
);
11839 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
11840 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
11842 ops
.code
= BIT_AND_EXPR
;
11843 ops
.location
= loc
;
11844 ops
.type
= TREE_TYPE (treeop0
);
11847 ops
.op2
= NULL_TREE
;
11849 rtx mur
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
11851 rtx_insn
*muinsns
= get_insns ();
11854 unsigned mucost
= seq_cost (muinsns
, speed_p
);
11855 mucost
+= rtx_cost (mur
, mode
, EQ
, 0, speed_p
);
11856 mucost
+= rtx_cost (expand_normal (c4
), mode
, EQ
, 1, speed_p
);
11858 if (mocost
<= mucost
)
11860 emit_insn (moinsns
);
11861 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
11865 emit_insn (muinsns
);
11866 *arg0
= make_tree (TREE_TYPE (*arg0
), mur
);
11871 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11873 (X - C2) * C3 <= C4 (or >), where
11874 C3 is modular multiplicative inverse of C1 and 1<<prec and
11875 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11876 if C2 > ((1<<prec) - 1) % C1).
11877 If C1 is even, S = ctz (C1) and C2 is 0, use
11878 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11879 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11881 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11883 (X * C3) + C4 <= 2 * C4, where
11884 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11885 C4 is ((1<<(prec - 1) - 1) / C1).
11886 If C1 is even, S = ctz(C1), use
11887 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11888 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11889 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11891 See the Hacker's Delight book, section 10-17. */
11893 maybe_optimize_mod_cmp (enum tree_code code
, tree
*arg0
, tree
*arg1
)
11895 gcc_checking_assert (code
== EQ_EXPR
|| code
== NE_EXPR
);
11896 gcc_checking_assert (TREE_CODE (*arg1
) == INTEGER_CST
);
11901 gimple
*stmt
= get_def_for_expr (*arg0
, TRUNC_MOD_EXPR
);
11905 tree treeop0
= gimple_assign_rhs1 (stmt
);
11906 tree treeop1
= gimple_assign_rhs2 (stmt
);
11907 if (TREE_CODE (treeop0
) != SSA_NAME
11908 || TREE_CODE (treeop1
) != INTEGER_CST
11909 /* Don't optimize the undefined behavior case x % 0;
11910 x % 1 should have been optimized into zero, punt if
11911 it makes it here for whatever reason;
11912 x % -c should have been optimized into x % c. */
11913 || compare_tree_int (treeop1
, 2) <= 0
11914 /* Likewise x % c == d where d >= c should be always false. */
11915 || tree_int_cst_le (treeop1
, *arg1
))
11918 /* Unsigned x % pow2 is handled right already, for signed
11919 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11920 if (integer_pow2p (treeop1
))
11921 return maybe_optimize_pow2p_mod_cmp (code
, arg0
, arg1
);
11923 tree type
= TREE_TYPE (*arg0
);
11924 scalar_int_mode mode
;
11925 if (!is_a
<scalar_int_mode
> (TYPE_MODE (type
), &mode
))
11927 if (GET_MODE_BITSIZE (mode
) != TYPE_PRECISION (type
)
11928 || TYPE_PRECISION (type
) <= 1)
11931 signop sgn
= UNSIGNED
;
11932 /* If both operands are known to have the sign bit clear, handle
11933 even the signed modulo case as unsigned. treeop1 is always
11934 positive >= 2, checked above. */
11935 if (!TYPE_UNSIGNED (type
) && get_range_pos_neg (treeop0
) != 1)
11938 if (!TYPE_UNSIGNED (type
))
11940 if (tree_int_cst_sgn (*arg1
) == -1)
11942 type
= unsigned_type_for (type
);
11943 if (!type
|| TYPE_MODE (type
) != TYPE_MODE (TREE_TYPE (*arg0
)))
11947 int prec
= TYPE_PRECISION (type
);
11948 wide_int w
= wi::to_wide (treeop1
);
11949 int shift
= wi::ctz (w
);
11950 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11951 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11952 If C1 is odd, we can handle all cases by subtracting
11953 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11954 e.g. by testing for overflow on the subtraction, punt on that for now
11956 if ((sgn
== SIGNED
|| shift
) && !integer_zerop (*arg1
))
11960 wide_int x
= wi::umod_trunc (wi::mask (prec
, false, prec
), w
);
11961 if (wi::gtu_p (wi::to_wide (*arg1
), x
))
11965 imm_use_iterator imm_iter
;
11966 use_operand_p use_p
;
11967 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, treeop0
)
11969 gimple
*use_stmt
= USE_STMT (use_p
);
11970 /* Punt if treeop0 is used in the same bb in a division
11971 or another modulo with the same divisor. We should expect
11972 the division and modulo combined together. */
11973 if (use_stmt
== stmt
11974 || gimple_bb (use_stmt
) != gimple_bb (stmt
))
11976 if (!is_gimple_assign (use_stmt
)
11977 || (gimple_assign_rhs_code (use_stmt
) != TRUNC_DIV_EXPR
11978 && gimple_assign_rhs_code (use_stmt
) != TRUNC_MOD_EXPR
))
11980 if (gimple_assign_rhs1 (use_stmt
) != treeop0
11981 || !operand_equal_p (gimple_assign_rhs2 (use_stmt
), treeop1
, 0))
11986 w
= wi::lrshift (w
, shift
);
11987 wide_int a
= wide_int::from (w
, prec
+ 1, UNSIGNED
);
11988 wide_int b
= wi::shifted_mask (prec
, 1, false, prec
+ 1);
11989 wide_int m
= wide_int::from (mod_inv (a
, b
), prec
, UNSIGNED
);
11990 tree c3
= wide_int_to_tree (type
, m
);
11991 tree c5
= NULL_TREE
;
11993 if (sgn
== UNSIGNED
)
11995 d
= wi::divmod_trunc (wi::mask (prec
, false, prec
), w
, UNSIGNED
, &e
);
11996 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
11997 otherwise use < or subtract one from C4. E.g. for
11998 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
11999 x % 3U == 1 already needs to be
12000 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12001 if (!shift
&& wi::gtu_p (wi::to_wide (*arg1
), e
))
12004 d
= wi::lrshift (d
, shift
);
12008 e
= wi::udiv_trunc (wi::mask (prec
- 1, false, prec
), w
);
12010 d
= wi::lshift (e
, 1);
12013 e
= wi::bit_and (e
, wi::mask (shift
, true, prec
));
12014 d
= wi::lrshift (e
, shift
- 1);
12016 c5
= wide_int_to_tree (type
, e
);
12018 tree c4
= wide_int_to_tree (type
, d
);
12020 rtx op0
= expand_normal (treeop0
);
12021 treeop0
= make_tree (TREE_TYPE (treeop0
), op0
);
12023 bool speed_p
= optimize_insn_for_speed_p ();
12025 do_pending_stack_adjust ();
12027 location_t loc
= gimple_location (stmt
);
12028 struct separate_ops ops
;
12029 ops
.code
= TRUNC_MOD_EXPR
;
12030 ops
.location
= loc
;
12031 ops
.type
= TREE_TYPE (treeop0
);
12034 ops
.op2
= NULL_TREE
;
12036 rtx mor
= expand_expr_real_2 (&ops
, NULL_RTX
, TYPE_MODE (ops
.type
),
12038 rtx_insn
*moinsns
= get_insns ();
12041 unsigned mocost
= seq_cost (moinsns
, speed_p
);
12042 mocost
+= rtx_cost (mor
, mode
, EQ
, 0, speed_p
);
12043 mocost
+= rtx_cost (expand_normal (*arg1
), mode
, EQ
, 1, speed_p
);
12045 tree t
= fold_convert_loc (loc
, type
, treeop0
);
12046 if (!integer_zerop (*arg1
))
12047 t
= fold_build2_loc (loc
, MINUS_EXPR
, type
, t
, fold_convert (type
, *arg1
));
12048 t
= fold_build2_loc (loc
, MULT_EXPR
, type
, t
, c3
);
12050 t
= fold_build2_loc (loc
, PLUS_EXPR
, type
, t
, c5
);
12053 tree s
= build_int_cst (NULL_TREE
, shift
);
12054 t
= fold_build2_loc (loc
, RROTATE_EXPR
, type
, t
, s
);
12058 rtx mur
= expand_normal (t
);
12059 rtx_insn
*muinsns
= get_insns ();
12062 unsigned mucost
= seq_cost (muinsns
, speed_p
);
12063 mucost
+= rtx_cost (mur
, mode
, LE
, 0, speed_p
);
12064 mucost
+= rtx_cost (expand_normal (c4
), mode
, LE
, 1, speed_p
);
12066 if (mocost
<= mucost
)
12068 emit_insn (moinsns
);
12069 *arg0
= make_tree (TREE_TYPE (*arg0
), mor
);
12073 emit_insn (muinsns
);
12074 *arg0
= make_tree (type
, mur
);
12076 return code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
12079 /* Generate code to calculate OPS, and exploded expression
12080 using a store-flag instruction and return an rtx for the result.
12081 OPS reflects a comparison.
12083 If TARGET is nonzero, store the result there if convenient.
12085 Return zero if there is no suitable set-flag instruction
12086 available on this machine.
12088 Once expand_expr has been called on the arguments of the comparison,
12089 we are committed to doing the store flag, since it is not safe to
12090 re-evaluate the expression. We emit the store-flag insn by calling
12091 emit_store_flag, but only expand the arguments if we have a reason
12092 to believe that emit_store_flag will be successful. If we think that
12093 it will, but it isn't, we have to simulate the store-flag with a
12094 set/jump/set sequence. */
12097 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
12099 enum rtx_code code
;
12100 tree arg0
, arg1
, type
;
12101 machine_mode operand_mode
;
12104 rtx subtarget
= target
;
12105 location_t loc
= ops
->location
;
12110 /* Don't crash if the comparison was erroneous. */
12111 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
12114 type
= TREE_TYPE (arg0
);
12115 operand_mode
= TYPE_MODE (type
);
12116 unsignedp
= TYPE_UNSIGNED (type
);
12118 /* We won't bother with BLKmode store-flag operations because it would mean
12119 passing a lot of information to emit_store_flag. */
12120 if (operand_mode
== BLKmode
)
12123 /* We won't bother with store-flag operations involving function pointers
12124 when function pointers must be canonicalized before comparisons. */
12125 if (targetm
.have_canonicalize_funcptr_for_compare ()
12126 && ((POINTER_TYPE_P (TREE_TYPE (arg0
))
12127 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0
))))
12128 || (POINTER_TYPE_P (TREE_TYPE (arg1
))
12129 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1
))))))
12135 /* For vector typed comparisons emit code to generate the desired
12136 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12137 expander for this. */
12138 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
12140 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
12141 if (VECTOR_BOOLEAN_TYPE_P (ops
->type
)
12142 && expand_vec_cmp_expr_p (TREE_TYPE (arg0
), ops
->type
, ops
->code
))
12143 return expand_vec_cmp_expr (ops
->type
, ifexp
, target
);
12146 tree if_true
= constant_boolean_node (true, ops
->type
);
12147 tree if_false
= constant_boolean_node (false, ops
->type
);
12148 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
,
12153 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12154 into (x - C2) * C3 < C4. */
12155 if ((ops
->code
== EQ_EXPR
|| ops
->code
== NE_EXPR
)
12156 && TREE_CODE (arg0
) == SSA_NAME
12157 && TREE_CODE (arg1
) == INTEGER_CST
)
12159 enum tree_code new_code
= maybe_optimize_mod_cmp (ops
->code
,
12161 if (new_code
!= ops
->code
)
12163 struct separate_ops nops
= *ops
;
12164 nops
.code
= ops
->code
= new_code
;
12167 nops
.type
= TREE_TYPE (arg0
);
12168 return do_store_flag (&nops
, target
, mode
);
12172 /* Get the rtx comparison code to use. We know that EXP is a comparison
12173 operation of some type. Some comparisons against 1 and -1 can be
12174 converted to comparisons with zero. Do so here so that the tests
12175 below will be aware that we have a comparison with zero. These
12176 tests will not catch constants in the first operand, but constants
12177 are rarely passed as the first operand. */
12188 if (integer_onep (arg1
))
12189 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
12191 code
= unsignedp
? LTU
: LT
;
12194 if (! unsignedp
&& integer_all_onesp (arg1
))
12195 arg1
= integer_zero_node
, code
= LT
;
12197 code
= unsignedp
? LEU
: LE
;
12200 if (! unsignedp
&& integer_all_onesp (arg1
))
12201 arg1
= integer_zero_node
, code
= GE
;
12203 code
= unsignedp
? GTU
: GT
;
12206 if (integer_onep (arg1
))
12207 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
12209 code
= unsignedp
? GEU
: GE
;
12212 case UNORDERED_EXPR
:
12238 gcc_unreachable ();
12241 /* Put a constant second. */
12242 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
12243 || TREE_CODE (arg0
) == FIXED_CST
)
12245 std::swap (arg0
, arg1
);
12246 code
= swap_condition (code
);
12249 /* If this is an equality or inequality test of a single bit, we can
12250 do this by shifting the bit being tested to the low-order bit and
12251 masking the result with the constant 1. If the condition was EQ,
12252 we xor it with 1. This does not require an scc insn and is faster
12253 than an scc insn even if we have it.
12255 The code to make this transformation was moved into fold_single_bit_test,
12256 so we just call into the folder and expand its result. */
12258 if ((code
== NE
|| code
== EQ
)
12259 && integer_zerop (arg1
)
12260 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
12262 gimple
*srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
12264 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
12266 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
12267 type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
12268 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
12269 gimple_assign_rhs1 (srcstmt
),
12270 gimple_assign_rhs2 (srcstmt
));
12271 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
12273 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
12277 if (! get_subtarget (target
)
12278 || GET_MODE (subtarget
) != operand_mode
)
12281 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
12284 target
= gen_reg_rtx (mode
);
12286 /* Try a cstore if possible. */
12287 return emit_store_flag_force (target
, code
, op0
, op1
,
12288 operand_mode
, unsignedp
,
12289 (TYPE_PRECISION (ops
->type
) == 1
12290 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
12293 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12294 0 otherwise (i.e. if there is no casesi instruction).
12296 DEFAULT_PROBABILITY is the probability of jumping to the default
12299 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
12300 rtx table_label
, rtx default_label
, rtx fallback_label
,
12301 profile_probability default_probability
)
12303 class expand_operand ops
[5];
12304 scalar_int_mode index_mode
= SImode
;
12305 rtx op1
, op2
, index
;
12307 if (! targetm
.have_casesi ())
12310 /* The index must be some form of integer. Convert it to SImode. */
12311 scalar_int_mode omode
= SCALAR_INT_TYPE_MODE (index_type
);
12312 if (GET_MODE_BITSIZE (omode
) > GET_MODE_BITSIZE (index_mode
))
12314 rtx rangertx
= expand_normal (range
);
12316 /* We must handle the endpoints in the original mode. */
12317 index_expr
= build2 (MINUS_EXPR
, index_type
,
12318 index_expr
, minval
);
12319 minval
= integer_zero_node
;
12320 index
= expand_normal (index_expr
);
12322 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
12323 omode
, 1, default_label
,
12324 default_probability
);
12325 /* Now we can safely truncate. */
12326 index
= convert_to_mode (index_mode
, index
, 0);
12330 if (omode
!= index_mode
)
12332 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
12333 index_expr
= fold_convert (index_type
, index_expr
);
12336 index
= expand_normal (index_expr
);
12339 do_pending_stack_adjust ();
12341 op1
= expand_normal (minval
);
12342 op2
= expand_normal (range
);
12344 create_input_operand (&ops
[0], index
, index_mode
);
12345 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
12346 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
12347 create_fixed_operand (&ops
[3], table_label
);
12348 create_fixed_operand (&ops
[4], (default_label
12350 : fallback_label
));
12351 expand_jump_insn (targetm
.code_for_casesi
, 5, ops
);
12355 /* Attempt to generate a tablejump instruction; same concept. */
12356 /* Subroutine of the next function.
12358 INDEX is the value being switched on, with the lowest value
12359 in the table already subtracted.
12360 MODE is its expected mode (needed if INDEX is constant).
12361 RANGE is the length of the jump table.
12362 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12364 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12365 index value is out of range.
12366 DEFAULT_PROBABILITY is the probability of jumping to
12367 the default label. */
12370 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
12371 rtx default_label
, profile_probability default_probability
)
12375 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
12376 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
12378 /* Do an unsigned comparison (in the proper mode) between the index
12379 expression and the value which represents the length of the range.
12380 Since we just finished subtracting the lower bound of the range
12381 from the index expression, this comparison allows us to simultaneously
12382 check that the original index expression value is both greater than
12383 or equal to the minimum value of the range and less than or equal to
12384 the maximum value of the range. */
12387 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
12388 default_label
, default_probability
);
12390 /* If index is in range, it must fit in Pmode.
12391 Convert to Pmode so we can index with it. */
12394 unsigned int width
;
12396 /* We know the value of INDEX is between 0 and RANGE. If we have a
12397 sign-extended subreg, and RANGE does not have the sign bit set, then
12398 we have a value that is valid for both sign and zero extension. In
12399 this case, we get better code if we sign extend. */
12400 if (GET_CODE (index
) == SUBREG
12401 && SUBREG_PROMOTED_VAR_P (index
)
12402 && SUBREG_PROMOTED_SIGNED_P (index
)
12403 && ((width
= GET_MODE_PRECISION (as_a
<scalar_int_mode
> (mode
)))
12404 <= HOST_BITS_PER_WIDE_INT
)
12405 && ! (UINTVAL (range
) & (HOST_WIDE_INT_1U
<< (width
- 1))))
12406 index
= convert_to_mode (Pmode
, index
, 0);
12408 index
= convert_to_mode (Pmode
, index
, 1);
12411 /* Don't let a MEM slip through, because then INDEX that comes
12412 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12413 and break_out_memory_refs will go to work on it and mess it up. */
12414 #ifdef PIC_CASE_VECTOR_ADDRESS
12415 if (flag_pic
&& !REG_P (index
))
12416 index
= copy_to_mode_reg (Pmode
, index
);
12419 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12420 GET_MODE_SIZE, because this indicates how large insns are. The other
12421 uses should all be Pmode, because they are addresses. This code
12422 could fail if addresses and insns are not the same size. */
12423 index
= simplify_gen_binary (MULT
, Pmode
, index
,
12424 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
12426 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
12427 gen_rtx_LABEL_REF (Pmode
, table_label
));
12429 #ifdef PIC_CASE_VECTOR_ADDRESS
12431 index
= PIC_CASE_VECTOR_ADDRESS (index
);
12434 index
= memory_address (CASE_VECTOR_MODE
, index
);
12435 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
12436 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
12437 convert_move (temp
, vector
, 0);
12439 emit_jump_insn (targetm
.gen_tablejump (temp
, table_label
));
12441 /* If we are generating PIC code or if the table is PC-relative, the
12442 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12443 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
12448 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
12449 rtx table_label
, rtx default_label
,
12450 profile_probability default_probability
)
12454 if (! targetm
.have_tablejump ())
12457 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
12458 fold_convert (index_type
, index_expr
),
12459 fold_convert (index_type
, minval
));
12460 index
= expand_normal (index_expr
);
12461 do_pending_stack_adjust ();
12463 do_tablejump (index
, TYPE_MODE (index_type
),
12464 convert_modes (TYPE_MODE (index_type
),
12465 TYPE_MODE (TREE_TYPE (range
)),
12466 expand_normal (range
),
12467 TYPE_UNSIGNED (TREE_TYPE (range
))),
12468 table_label
, default_label
, default_probability
);
12472 /* Return a CONST_VECTOR rtx representing vector mask for
12473 a VECTOR_CST of booleans. */
12475 const_vector_mask_from_tree (tree exp
)
12477 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
12478 machine_mode inner
= GET_MODE_INNER (mode
);
12480 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
12481 VECTOR_CST_NELTS_PER_PATTERN (exp
));
12482 unsigned int count
= builder
.encoded_nelts ();
12483 for (unsigned int i
= 0; i
< count
; ++i
)
12485 tree elt
= VECTOR_CST_ELT (exp
, i
);
12486 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
12487 if (integer_zerop (elt
))
12488 builder
.quick_push (CONST0_RTX (inner
));
12489 else if (integer_onep (elt
)
12490 || integer_minus_onep (elt
))
12491 builder
.quick_push (CONSTM1_RTX (inner
));
12493 gcc_unreachable ();
12495 return builder
.build ();
12498 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12499 Return a constant scalar rtx of mode MODE in which bit X is set if element
12500 X of EXP is nonzero. */
12502 const_scalar_mask_from_tree (scalar_int_mode mode
, tree exp
)
12504 wide_int res
= wi::zero (GET_MODE_PRECISION (mode
));
12507 /* The result has a fixed number of bits so the input must too. */
12508 unsigned int nunits
= VECTOR_CST_NELTS (exp
).to_constant ();
12509 for (unsigned int i
= 0; i
< nunits
; ++i
)
12511 elt
= VECTOR_CST_ELT (exp
, i
);
12512 gcc_assert (TREE_CODE (elt
) == INTEGER_CST
);
12513 if (integer_all_onesp (elt
))
12514 res
= wi::set_bit (res
, i
);
12516 gcc_assert (integer_zerop (elt
));
12519 return immed_wide_int_const (res
, mode
);
12522 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12524 const_vector_from_tree (tree exp
)
12526 machine_mode mode
= TYPE_MODE (TREE_TYPE (exp
));
12528 if (initializer_zerop (exp
))
12529 return CONST0_RTX (mode
);
12531 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp
)))
12532 return const_vector_mask_from_tree (exp
);
12534 machine_mode inner
= GET_MODE_INNER (mode
);
12536 rtx_vector_builder
builder (mode
, VECTOR_CST_NPATTERNS (exp
),
12537 VECTOR_CST_NELTS_PER_PATTERN (exp
));
12538 unsigned int count
= builder
.encoded_nelts ();
12539 for (unsigned int i
= 0; i
< count
; ++i
)
12541 tree elt
= VECTOR_CST_ELT (exp
, i
);
12542 if (TREE_CODE (elt
) == REAL_CST
)
12543 builder
.quick_push (const_double_from_real_value (TREE_REAL_CST (elt
),
12545 else if (TREE_CODE (elt
) == FIXED_CST
)
12546 builder
.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
12549 builder
.quick_push (immed_wide_int_const (wi::to_poly_wide (elt
),
12552 return builder
.build ();
12555 /* Build a decl for a personality function given a language prefix. */
12558 build_personality_function (const char *lang
)
12560 const char *unwind_and_version
;
12564 switch (targetm_common
.except_unwind_info (&global_options
))
12569 unwind_and_version
= "_sj0";
12573 unwind_and_version
= "_v0";
12576 unwind_and_version
= "_seh0";
12579 gcc_unreachable ();
12582 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
12584 type
= build_function_type_list (unsigned_type_node
,
12585 integer_type_node
, integer_type_node
,
12586 long_long_unsigned_type_node
,
12587 ptr_type_node
, ptr_type_node
, NULL_TREE
);
12588 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
12589 get_identifier (name
), type
);
12590 DECL_ARTIFICIAL (decl
) = 1;
12591 DECL_EXTERNAL (decl
) = 1;
12592 TREE_PUBLIC (decl
) = 1;
12594 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12595 are the flags assigned by targetm.encode_section_info. */
12596 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
12601 /* Extracts the personality function of DECL and returns the corresponding
12605 get_personality_function (tree decl
)
12607 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
12608 enum eh_personality_kind pk
;
12610 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
12611 if (pk
== eh_personality_none
)
12615 && pk
== eh_personality_any
)
12616 personality
= lang_hooks
.eh_personality ();
12618 if (pk
== eh_personality_lang
)
12619 gcc_assert (personality
!= NULL_TREE
);
12621 return XEXP (DECL_RTL (personality
), 0);
12624 /* Returns a tree for the size of EXP in bytes. */
12627 tree_expr_size (const_tree exp
)
12630 && DECL_SIZE_UNIT (exp
) != 0)
12631 return DECL_SIZE_UNIT (exp
);
12633 return size_in_bytes (TREE_TYPE (exp
));
12636 /* Return an rtx for the size in bytes of the value of EXP. */
12639 expr_size (tree exp
)
12643 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12644 size
= TREE_OPERAND (exp
, 1);
12647 size
= tree_expr_size (exp
);
12649 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
12652 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
12655 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12656 if the size can vary or is larger than an integer. */
12658 static HOST_WIDE_INT
12659 int_expr_size (tree exp
)
12663 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
12664 size
= TREE_OPERAND (exp
, 1);
12667 size
= tree_expr_size (exp
);
12671 if (size
== 0 || !tree_fits_shwi_p (size
))
12674 return tree_to_shwi (size
);