re PR debug/91929 (missing inline subroutine information in build using sin/cos)
[official-gcc.git] / gcc / tree-data-ref.h
blob998937fef6844c9e495b33e345311589c8427e79
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
49 struct innermost_loop_behavior
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57 from an alignment boundary of BASE_ALIGNMENT bytes. For example,
58 if we had:
60 struct S __attribute__((aligned(16))) { ... };
62 char *ptr;
63 ... *(struct S *) (ptr - 4) ...;
65 the information would be:
67 base_address: ptr
68 base_aligment: 16
69 base_misalignment: 4
70 init: -4
72 where init cancels the base misalignment. If instead we had a
73 reference to a particular field:
75 struct S __attribute__((aligned(16))) { ... int f; ... };
77 char *ptr;
78 ... ((struct S *) (ptr - 4))->f ...;
80 the information would be:
82 base_address: ptr
83 base_aligment: 16
84 base_misalignment: 4
85 init: -4 + offsetof (S, f)
87 where base_address + init might also be misaligned, and by a different
88 amount from base_address. */
89 unsigned int base_alignment;
90 unsigned int base_misalignment;
92 /* The largest power of two that divides OFFSET, capped to a suitably
93 high value if the offset is zero. This is a byte rather than a bit
94 quantity. */
95 unsigned int offset_alignment;
97 /* Likewise for STEP. */
98 unsigned int step_alignment;
101 /* Describes the evolutions of indices of the memory reference. The indices
102 are indices of the ARRAY_REFs, indexes in artificial dimensions
103 added for member selection of records and the operands of MEM_REFs.
104 BASE_OBJECT is the part of the reference that is loop-invariant
105 (note that this reference does not have to cover the whole object
106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107 not recommended to use BASE_OBJECT in any code generation).
108 For the examples above,
110 base_object: a *(p + x + 4B * j_0)
111 indices: {j_0, +, 1}_2 {16, +, 4}_2
113 {i_0, +, 1}_1
114 {j_0, +, 1}_2
117 struct indices
119 /* The object. */
120 tree base_object;
122 /* A list of chrecs. Access functions of the indices. */
123 vec<tree> access_fns;
125 /* Whether BASE_OBJECT is an access representing the whole object
126 or whether the access could not be constrained. */
127 bool unconstrained_base;
130 struct dr_alias
132 /* The alias information that should be used for new pointers to this
133 location. */
134 struct ptr_info_def *ptr_info;
137 /* An integer vector. A vector formally consists of an element of a vector
138 space. A vector space is a set that is closed under vector addition
139 and scalar multiplication. In this vector space, an element is a list of
140 integers. */
141 typedef HOST_WIDE_INT lambda_int;
142 typedef lambda_int *lambda_vector;
144 /* An integer matrix. A matrix consists of m vectors of length n (IE
145 all vectors are the same length). */
146 typedef lambda_vector *lambda_matrix;
150 struct data_reference
152 /* A pointer to the statement that contains this DR. */
153 gimple *stmt;
155 /* A pointer to the memory reference. */
156 tree ref;
158 /* Auxiliary info specific to a pass. */
159 void *aux;
161 /* True when the data reference is in RHS of a stmt. */
162 bool is_read;
164 /* True when the data reference is conditional within STMT,
165 i.e. if it might not occur even when the statement is executed
166 and runs to completion. */
167 bool is_conditional_in_stmt;
169 /* Behavior of the memory reference in the innermost loop. */
170 struct innermost_loop_behavior innermost;
172 /* Subscripts of this data reference. */
173 struct indices indices;
175 /* Alias information for the data reference. */
176 struct dr_alias alias;
179 #define DR_STMT(DR) (DR)->stmt
180 #define DR_REF(DR) (DR)->ref
181 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
182 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
183 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
184 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
185 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
186 #define DR_IS_READ(DR) (DR)->is_read
187 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
189 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
190 #define DR_OFFSET(DR) (DR)->innermost.offset
191 #define DR_INIT(DR) (DR)->innermost.init
192 #define DR_STEP(DR) (DR)->innermost.step
193 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
194 #define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
195 #define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
196 #define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
197 #define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
198 #define DR_INNERMOST(DR) (DR)->innermost
200 typedef struct data_reference *data_reference_p;
202 /* This struct is used to store the information of a data reference,
203 including the data ref itself and the segment length for aliasing
204 checks. This is used to merge alias checks. */
206 class dr_with_seg_len
208 public:
209 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
210 unsigned int a)
211 : dr (d), seg_len (len), access_size (size), align (a) {}
213 data_reference_p dr;
214 /* The offset of the last access that needs to be checked minus
215 the offset of the first. */
216 tree seg_len;
217 /* A value that, when added to abs (SEG_LEN), gives the total number of
218 bytes in the segment. */
219 poly_uint64 access_size;
220 /* The minimum common alignment of DR's start address, SEG_LEN and
221 ACCESS_SIZE. */
222 unsigned int align;
225 /* This struct contains two dr_with_seg_len objects with aliasing data
226 refs. Two comparisons are generated from them. */
228 class dr_with_seg_len_pair_t
230 public:
231 dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
232 const dr_with_seg_len& d2)
233 : first (d1), second (d2) {}
235 dr_with_seg_len first;
236 dr_with_seg_len second;
239 enum data_dependence_direction {
240 dir_positive,
241 dir_negative,
242 dir_equal,
243 dir_positive_or_negative,
244 dir_positive_or_equal,
245 dir_negative_or_equal,
246 dir_star,
247 dir_independent
250 /* The description of the grid of iterations that overlap. At most
251 two loops are considered at the same time just now, hence at most
252 two functions are needed. For each of the functions, we store
253 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
254 where x, y, ... are variables. */
256 #define MAX_DIM 2
258 /* Special values of N. */
259 #define NO_DEPENDENCE 0
260 #define NOT_KNOWN (MAX_DIM + 1)
261 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
262 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
263 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
265 typedef vec<tree> affine_fn;
267 struct conflict_function
269 unsigned n;
270 affine_fn fns[MAX_DIM];
273 /* What is a subscript? Given two array accesses a subscript is the
274 tuple composed of the access functions for a given dimension.
275 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
276 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
277 are stored in the data_dependence_relation structure under the form
278 of an array of subscripts. */
280 struct subscript
282 /* The access functions of the two references. */
283 tree access_fn[2];
285 /* A description of the iterations for which the elements are
286 accessed twice. */
287 conflict_function *conflicting_iterations_in_a;
288 conflict_function *conflicting_iterations_in_b;
290 /* This field stores the information about the iteration domain
291 validity of the dependence relation. */
292 tree last_conflict;
294 /* Distance from the iteration that access a conflicting element in
295 A to the iteration that access this same conflicting element in
296 B. The distance is a tree scalar expression, i.e. a constant or a
297 symbolic expression, but certainly not a chrec function. */
298 tree distance;
301 typedef struct subscript *subscript_p;
303 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
304 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
305 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
306 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
307 #define SUB_DISTANCE(SUB) (SUB)->distance
309 /* A data_dependence_relation represents a relation between two
310 data_references A and B. */
312 struct data_dependence_relation
315 struct data_reference *a;
316 struct data_reference *b;
318 /* A "yes/no/maybe" field for the dependence relation:
320 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
321 relation between A and B, and the description of this relation
322 is given in the SUBSCRIPTS array,
324 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
325 SUBSCRIPTS is empty,
327 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
328 but the analyzer cannot be more specific. */
329 tree are_dependent;
331 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
332 independent when the runtime addresses of OBJECT_A and OBJECT_B
333 are different. The addresses of both objects are invariant in the
334 loop nest. */
335 tree object_a;
336 tree object_b;
338 /* For each subscript in the dependence test, there is an element in
339 this array. This is the attribute that labels the edge A->B of
340 the data_dependence_relation. */
341 vec<subscript_p> subscripts;
343 /* The analyzed loop nest. */
344 vec<loop_p> loop_nest;
346 /* The classic direction vector. */
347 vec<lambda_vector> dir_vects;
349 /* The classic distance vector. */
350 vec<lambda_vector> dist_vects;
352 /* Is the dependence reversed with respect to the lexicographic order? */
353 bool reversed_p;
355 /* When the dependence relation is affine, it can be represented by
356 a distance vector. */
357 bool affine_p;
359 /* Set to true when the dependence relation is on the same data
360 access. */
361 bool self_reference_p;
363 /* True if the dependence described is conservatively correct rather
364 than exact, and if it is still possible for the accesses to be
365 conditionally independent. For example, the a and b references in:
367 struct s *a, *b;
368 for (int i = 0; i < n; ++i)
369 a->f[i] += b->f[i];
371 conservatively have a distance vector of (0), for the case in which
372 a == b, but the accesses are independent if a != b. Similarly,
373 the a and b references in:
375 struct s *a, *b;
376 for (int i = 0; i < n; ++i)
377 a[0].f[i] += b[i].f[i];
379 conservatively have a distance vector of (0), but they are indepenent
380 when a != b + i. In contrast, the references in:
382 struct s *a;
383 for (int i = 0; i < n; ++i)
384 a->f[i] += a->f[i];
386 have the same distance vector of (0), but the accesses can never be
387 independent. */
388 bool could_be_independent_p;
391 typedef struct data_dependence_relation *ddr_p;
393 #define DDR_A(DDR) (DDR)->a
394 #define DDR_B(DDR) (DDR)->b
395 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
396 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
397 #define DDR_OBJECT_A(DDR) (DDR)->object_a
398 #define DDR_OBJECT_B(DDR) (DDR)->object_b
399 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
400 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
401 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
403 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
404 /* The size of the direction/distance vectors: the number of loops in
405 the loop nest. */
406 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
407 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
409 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
410 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
411 #define DDR_NUM_DIST_VECTS(DDR) \
412 (DDR_DIST_VECTS (DDR).length ())
413 #define DDR_NUM_DIR_VECTS(DDR) \
414 (DDR_DIR_VECTS (DDR).length ())
415 #define DDR_DIR_VECT(DDR, I) \
416 DDR_DIR_VECTS (DDR)[I]
417 #define DDR_DIST_VECT(DDR, I) \
418 DDR_DIST_VECTS (DDR)[I]
419 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
420 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
423 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
424 class loop *, const gimple *);
425 extern bool compute_data_dependences_for_loop (class loop *, bool,
426 vec<loop_p> *,
427 vec<data_reference_p> *,
428 vec<ddr_p> *);
429 extern void debug_ddrs (vec<ddr_p> );
430 extern void dump_data_reference (FILE *, struct data_reference *);
431 extern void debug (data_reference &ref);
432 extern void debug (data_reference *ptr);
433 extern void debug_data_reference (struct data_reference *);
434 extern void debug_data_references (vec<data_reference_p> );
435 extern void debug (vec<data_reference_p> &ref);
436 extern void debug (vec<data_reference_p> *ptr);
437 extern void debug_data_dependence_relation (struct data_dependence_relation *);
438 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
439 extern void debug (vec<ddr_p> &ref);
440 extern void debug (vec<ddr_p> *ptr);
441 extern void debug_data_dependence_relations (vec<ddr_p> );
442 extern void free_dependence_relation (struct data_dependence_relation *);
443 extern void free_dependence_relations (vec<ddr_p> );
444 extern void free_data_ref (data_reference_p);
445 extern void free_data_refs (vec<data_reference_p> );
446 extern opt_result find_data_references_in_stmt (class loop *, gimple *,
447 vec<data_reference_p> *);
448 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
449 vec<data_reference_p> *);
450 tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
451 bool loop_nest_has_data_refs (loop_p loop);
452 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
453 bool);
454 extern bool find_loop_nest (class loop *, vec<loop_p> *);
455 extern struct data_dependence_relation *initialize_data_dependence_relation
456 (struct data_reference *, struct data_reference *, vec<loop_p>);
457 extern void compute_affine_dependence (struct data_dependence_relation *,
458 loop_p);
459 extern void compute_self_dependence (struct data_dependence_relation *);
460 extern bool compute_all_dependences (vec<data_reference_p> ,
461 vec<ddr_p> *,
462 vec<loop_p>, bool);
463 extern tree find_data_references_in_bb (class loop *, basic_block,
464 vec<data_reference_p> *);
465 extern unsigned int dr_alignment (innermost_loop_behavior *);
466 extern tree get_base_for_alignment (tree, unsigned int *);
468 /* Return the alignment in bytes that DR is guaranteed to have at all
469 times. */
471 inline unsigned int
472 dr_alignment (data_reference *dr)
474 return dr_alignment (&DR_INNERMOST (dr));
477 extern bool dr_may_alias_p (const struct data_reference *,
478 const struct data_reference *, class loop *);
479 extern bool dr_equal_offsets_p (struct data_reference *,
480 struct data_reference *);
482 extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
483 extern int data_ref_compare_tree (tree, tree);
484 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
485 poly_uint64);
486 extern void create_runtime_alias_checks (class loop *,
487 vec<dr_with_seg_len_pair_t> *, tree*);
488 extern tree dr_direction_indicator (struct data_reference *);
489 extern tree dr_zero_step_indicator (struct data_reference *);
490 extern bool dr_known_forward_stride_p (struct data_reference *);
492 /* Return true when the base objects of data references A and B are
493 the same memory object. */
495 static inline bool
496 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
498 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
499 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
502 /* Return true when the data references A and B are accessing the same
503 memory object with the same access functions. */
505 static inline bool
506 same_data_refs (data_reference_p a, data_reference_p b)
508 unsigned int i;
510 /* The references are exactly the same. */
511 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
512 return true;
514 if (!same_data_refs_base_objects (a, b))
515 return false;
517 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
518 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
519 return false;
521 return true;
524 /* Returns true when all the dependences are computable. */
526 inline bool
527 known_dependences_p (vec<ddr_p> dependence_relations)
529 ddr_p ddr;
530 unsigned int i;
532 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
533 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
534 return false;
536 return true;
539 /* Returns the dependence level for a vector DIST of size LENGTH.
540 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
541 to the sequence of statements, not carried by any loop. */
543 static inline unsigned
544 dependence_level (lambda_vector dist_vect, int length)
546 int i;
548 for (i = 0; i < length; i++)
549 if (dist_vect[i] != 0)
550 return i + 1;
552 return 0;
555 /* Return the dependence level for the DDR relation. */
557 static inline unsigned
558 ddr_dependence_level (ddr_p ddr)
560 unsigned vector;
561 unsigned level = 0;
563 if (DDR_DIST_VECTS (ddr).exists ())
564 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
566 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
567 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
568 DDR_NB_LOOPS (ddr)));
569 return level;
572 /* Return the index of the variable VAR in the LOOP_NEST array. */
574 static inline int
575 index_in_loop_nest (int var, vec<loop_p> loop_nest)
577 class loop *loopi;
578 int var_index;
580 for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
581 if (loopi->num == var)
582 return var_index;
584 gcc_unreachable ();
587 /* Returns true when the data reference DR the form "A[i] = ..."
588 with a stride equal to its unit type size. */
590 static inline bool
591 adjacent_dr_p (struct data_reference *dr)
593 /* If this is a bitfield store bail out. */
594 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
595 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
596 return false;
598 if (!DR_STEP (dr)
599 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
600 return false;
602 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
603 DR_STEP (dr)),
604 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
607 void split_constant_offset (tree , tree *, tree *);
609 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
611 static inline lambda_int
612 lambda_vector_gcd (lambda_vector vector, int size)
614 int i;
615 lambda_int gcd1 = 0;
617 if (size > 0)
619 gcd1 = vector[0];
620 for (i = 1; i < size; i++)
621 gcd1 = gcd (gcd1, vector[i]);
623 return gcd1;
626 /* Allocate a new vector of given SIZE. */
628 static inline lambda_vector
629 lambda_vector_new (int size)
631 /* ??? We shouldn't abuse the GC allocator here. */
632 return ggc_cleared_vec_alloc<lambda_int> (size);
635 /* Clear out vector VEC1 of length SIZE. */
637 static inline void
638 lambda_vector_clear (lambda_vector vec1, int size)
640 memset (vec1, 0, size * sizeof (*vec1));
643 /* Returns true when the vector V is lexicographically positive, in
644 other words, when the first nonzero element is positive. */
646 static inline bool
647 lambda_vector_lexico_pos (lambda_vector v,
648 unsigned n)
650 unsigned i;
651 for (i = 0; i < n; i++)
653 if (v[i] == 0)
654 continue;
655 if (v[i] < 0)
656 return false;
657 if (v[i] > 0)
658 return true;
660 return true;
663 /* Return true if vector VEC1 of length SIZE is the zero vector. */
665 static inline bool
666 lambda_vector_zerop (lambda_vector vec1, int size)
668 int i;
669 for (i = 0; i < size; i++)
670 if (vec1[i] != 0)
671 return false;
672 return true;
675 /* Allocate a matrix of M rows x N cols. */
677 static inline lambda_matrix
678 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
680 lambda_matrix mat;
681 int i;
683 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
685 for (i = 0; i < m; i++)
686 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
688 return mat;
691 #endif /* GCC_TREE_DATA_REF_H */