* gfortran.h: Edit comments on GFC_STD_*.
[official-gcc.git] / gcc / tree-scalar-evolution.c
blob846d27414d50ac72a63ffd6a741956ec2f4cba5a
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /*
23 Description:
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
51 - When the definition is a GIMPLE_MODIFY_STMT: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
74 Examples:
76 Example 1: Illustration of the basic algorithm.
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
120 or in terms of a C program:
122 | a = 3
123 | for (x = 0; x <= 7; x++)
125 | b = x + 3
126 | c = x + 4
129 Example 2: Illustration of the algorithm on nested loops.
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
158 Example 3: Higher degree polynomials.
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
175 Example 4: Lucas, Fibonacci, or mixers in general.
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
184 a -> (1, c)_1
185 c -> {3, +, a}_1
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
196 Example 5: Flip-flops, or exchangers.
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
205 a -> (1, c)_1
206 c -> (3, a)_1
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
211 a -> |1, 3|_1
212 c -> |3, 1|_1
214 This transformation is not yet implemented.
216 Further readings:
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
262 struct scev_info_str
264 tree var;
265 tree chrec;
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet;
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know;
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285 tree chrec_known;
287 static bitmap already_instantiated;
289 static htab_t scalar_evolution_info;
292 /* Constructs a new SCEV_INFO_STR structure. */
294 static inline struct scev_info_str *
295 new_scev_info_str (tree var)
297 struct scev_info_str *res;
299 res = XNEW (struct scev_info_str);
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
303 return res;
306 /* Computes a hash function for database element ELT. */
308 static hashval_t
309 hash_scev_info (const void *elt)
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
314 /* Compares database elements E1 and E2. */
316 static int
317 eq_scev_info (const void *e1, const void *e2)
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
322 return elt1->var == elt2->var;
325 /* Deletes database element E. */
327 static void
328 del_scev_info (void *e)
330 free (e);
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
337 static tree *
338 find_var_scev_info (tree var)
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
347 if (!*slot)
348 *slot = new_scev_info_str (var);
349 res = (struct scev_info_str *) *slot;
351 return &res->chrec;
354 /* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
357 bool
358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
360 int i, n;
362 if (chrec == NULL_TREE)
363 return false;
365 if (TREE_INVARIANT (chrec))
366 return false;
368 if (TREE_CODE (chrec) == VAR_DECL
369 || TREE_CODE (chrec) == PARM_DECL
370 || TREE_CODE (chrec) == FUNCTION_DECL
371 || TREE_CODE (chrec) == LABEL_DECL
372 || TREE_CODE (chrec) == RESULT_DECL
373 || TREE_CODE (chrec) == FIELD_DECL)
374 return true;
376 if (TREE_CODE (chrec) == SSA_NAME)
378 tree def = SSA_NAME_DEF_STMT (chrec);
379 struct loop *def_loop = loop_containing_stmt (def);
380 struct loop *loop = get_loop (loop_nb);
382 if (def_loop == NULL)
383 return false;
385 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
386 return true;
388 return false;
391 n = TREE_OPERAND_LENGTH (chrec);
392 for (i = 0; i < n; i++)
393 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
394 loop_nb))
395 return true;
396 return false;
399 /* Return true when PHI is a loop-phi-node. */
401 static bool
402 loop_phi_node_p (tree phi)
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
408 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
411 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
416 Example:
418 | for (j = 0; j < 100; j++)
420 | for (k = 0; k < 100; k++)
422 | i = k + j; - Here the value of i is a function of j, k.
424 | ... = i - Here the value of i is a function of j.
426 | ... = i - Here the value of i is a scalar.
428 Example:
430 | i_0 = ...
431 | loop_1 10 times
432 | i_1 = phi (i_0, i_2)
433 | i_2 = i_1 + 2
434 | endloop
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
439 | i_1 = i_0 + 20
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
443 EVOLUTION_FN = {i_0, +, 2}_1.
446 static tree
447 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
449 bool val = false;
451 if (evolution_fn == chrec_dont_know)
452 return chrec_dont_know;
454 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
456 struct loop *inner_loop = get_chrec_loop (evolution_fn);
458 if (inner_loop == loop
459 || flow_loop_nested_p (loop, inner_loop))
461 tree nb_iter = number_of_latch_executions (inner_loop);
463 if (nb_iter == chrec_dont_know)
464 return chrec_dont_know;
465 else
467 tree res;
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
473 /* Continue the computation until ending on a parent of LOOP. */
474 return compute_overall_effect_of_inner_loop (loop, res);
477 else
478 return evolution_fn;
481 /* If the evolution function is an invariant, there is nothing to do. */
482 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
483 return evolution_fn;
485 else
486 return chrec_dont_know;
489 /* Determine whether the CHREC is always positive/negative. If the expression
490 cannot be statically analyzed, return false, otherwise set the answer into
491 VALUE. */
493 bool
494 chrec_is_positive (tree chrec, bool *value)
496 bool value0, value1, value2;
497 tree end_value, nb_iter;
499 switch (TREE_CODE (chrec))
501 case POLYNOMIAL_CHREC:
502 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
503 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
504 return false;
506 /* FIXME -- overflows. */
507 if (value0 == value1)
509 *value = value0;
510 return true;
513 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
514 and the proof consists in showing that the sign never
515 changes during the execution of the loop, from 0 to
516 loop->nb_iterations. */
517 if (!evolution_function_is_affine_p (chrec))
518 return false;
520 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
521 if (chrec_contains_undetermined (nb_iter))
522 return false;
524 #if 0
525 /* TODO -- If the test is after the exit, we may decrease the number of
526 iterations by one. */
527 if (after_exit)
528 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
529 #endif
531 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
533 if (!chrec_is_positive (end_value, &value2))
534 return false;
536 *value = value0;
537 return value0 == value1;
539 case INTEGER_CST:
540 *value = (tree_int_cst_sgn (chrec) == 1);
541 return true;
543 default:
544 return false;
548 /* Associate CHREC to SCALAR. */
550 static void
551 set_scalar_evolution (tree scalar, tree chrec)
553 tree *scalar_info;
555 if (TREE_CODE (scalar) != SSA_NAME)
556 return;
558 scalar_info = find_var_scev_info (scalar);
560 if (dump_file)
562 if (dump_flags & TDF_DETAILS)
564 fprintf (dump_file, "(set_scalar_evolution \n");
565 fprintf (dump_file, " (scalar = ");
566 print_generic_expr (dump_file, scalar, 0);
567 fprintf (dump_file, ")\n (scalar_evolution = ");
568 print_generic_expr (dump_file, chrec, 0);
569 fprintf (dump_file, "))\n");
571 if (dump_flags & TDF_STATS)
572 nb_set_scev++;
575 *scalar_info = chrec;
578 /* Retrieve the chrec associated to SCALAR in the LOOP. */
580 static tree
581 get_scalar_evolution (tree scalar)
583 tree res;
585 if (dump_file)
587 if (dump_flags & TDF_DETAILS)
589 fprintf (dump_file, "(get_scalar_evolution \n");
590 fprintf (dump_file, " (scalar = ");
591 print_generic_expr (dump_file, scalar, 0);
592 fprintf (dump_file, ")\n");
594 if (dump_flags & TDF_STATS)
595 nb_get_scev++;
598 switch (TREE_CODE (scalar))
600 case SSA_NAME:
601 res = *find_var_scev_info (scalar);
602 break;
604 case REAL_CST:
605 case INTEGER_CST:
606 res = scalar;
607 break;
609 default:
610 res = chrec_not_analyzed_yet;
611 break;
614 if (dump_file && (dump_flags & TDF_DETAILS))
616 fprintf (dump_file, " (scalar_evolution = ");
617 print_generic_expr (dump_file, res, 0);
618 fprintf (dump_file, "))\n");
621 return res;
624 /* Helper function for add_to_evolution. Returns the evolution
625 function for an assignment of the form "a = b + c", where "a" and
626 "b" are on the strongly connected component. CHREC_BEFORE is the
627 information that we already have collected up to this point.
628 TO_ADD is the evolution of "c".
630 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
631 evolution the expression TO_ADD, otherwise construct an evolution
632 part for this loop. */
634 static tree
635 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
636 tree at_stmt)
638 tree type, left, right;
639 struct loop *loop = get_loop (loop_nb), *chloop;
641 switch (TREE_CODE (chrec_before))
643 case POLYNOMIAL_CHREC:
644 chloop = get_chrec_loop (chrec_before);
645 if (chloop == loop
646 || flow_loop_nested_p (chloop, loop))
648 unsigned var;
650 type = chrec_type (chrec_before);
652 /* When there is no evolution part in this loop, build it. */
653 if (chloop != loop)
655 var = loop_nb;
656 left = chrec_before;
657 right = SCALAR_FLOAT_TYPE_P (type)
658 ? build_real (type, dconst0)
659 : build_int_cst (type, 0);
661 else
663 var = CHREC_VARIABLE (chrec_before);
664 left = CHREC_LEFT (chrec_before);
665 right = CHREC_RIGHT (chrec_before);
668 to_add = chrec_convert (type, to_add, at_stmt);
669 right = chrec_convert (type, right, at_stmt);
670 right = chrec_fold_plus (type, right, to_add);
671 return build_polynomial_chrec (var, left, right);
673 else
675 gcc_assert (flow_loop_nested_p (loop, chloop));
677 /* Search the evolution in LOOP_NB. */
678 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
679 to_add, at_stmt);
680 right = CHREC_RIGHT (chrec_before);
681 right = chrec_convert (chrec_type (left), right, at_stmt);
682 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
683 left, right);
686 default:
687 /* These nodes do not depend on a loop. */
688 if (chrec_before == chrec_dont_know)
689 return chrec_dont_know;
691 left = chrec_before;
692 right = chrec_convert (chrec_type (left), to_add, at_stmt);
693 return build_polynomial_chrec (loop_nb, left, right);
697 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
698 of LOOP_NB.
700 Description (provided for completeness, for those who read code in
701 a plane, and for my poor 62 bytes brain that would have forgotten
702 all this in the next two or three months):
704 The algorithm of translation of programs from the SSA representation
705 into the chrecs syntax is based on a pattern matching. After having
706 reconstructed the overall tree expression for a loop, there are only
707 two cases that can arise:
709 1. a = loop-phi (init, a + expr)
710 2. a = loop-phi (init, expr)
712 where EXPR is either a scalar constant with respect to the analyzed
713 loop (this is a degree 0 polynomial), or an expression containing
714 other loop-phi definitions (these are higher degree polynomials).
716 Examples:
719 | init = ...
720 | loop_1
721 | a = phi (init, a + 5)
722 | endloop
725 | inita = ...
726 | initb = ...
727 | loop_1
728 | a = phi (inita, 2 * b + 3)
729 | b = phi (initb, b + 1)
730 | endloop
732 For the first case, the semantics of the SSA representation is:
734 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
736 that is, there is a loop index "x" that determines the scalar value
737 of the variable during the loop execution. During the first
738 iteration, the value is that of the initial condition INIT, while
739 during the subsequent iterations, it is the sum of the initial
740 condition with the sum of all the values of EXPR from the initial
741 iteration to the before last considered iteration.
743 For the second case, the semantics of the SSA program is:
745 | a (x) = init, if x = 0;
746 | expr (x - 1), otherwise.
748 The second case corresponds to the PEELED_CHREC, whose syntax is
749 close to the syntax of a loop-phi-node:
751 | phi (init, expr) vs. (init, expr)_x
753 The proof of the translation algorithm for the first case is a
754 proof by structural induction based on the degree of EXPR.
756 Degree 0:
757 When EXPR is a constant with respect to the analyzed loop, or in
758 other words when EXPR is a polynomial of degree 0, the evolution of
759 the variable A in the loop is an affine function with an initial
760 condition INIT, and a step EXPR. In order to show this, we start
761 from the semantics of the SSA representation:
763 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
765 and since "expr (j)" is a constant with respect to "j",
767 f (x) = init + x * expr
769 Finally, based on the semantics of the pure sum chrecs, by
770 identification we get the corresponding chrecs syntax:
772 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
773 f (x) -> {init, +, expr}_x
775 Higher degree:
776 Suppose that EXPR is a polynomial of degree N with respect to the
777 analyzed loop_x for which we have already determined that it is
778 written under the chrecs syntax:
780 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
782 We start from the semantics of the SSA program:
784 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
786 | f (x) = init + \sum_{j = 0}^{x - 1}
787 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
789 | f (x) = init + \sum_{j = 0}^{x - 1}
790 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
792 | f (x) = init + \sum_{k = 0}^{n - 1}
793 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
795 | f (x) = init + \sum_{k = 0}^{n - 1}
796 | (b_k * \binom{x}{k + 1})
798 | f (x) = init + b_0 * \binom{x}{1} + ...
799 | + b_{n-1} * \binom{x}{n}
801 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
802 | + b_{n-1} * \binom{x}{n}
805 And finally from the definition of the chrecs syntax, we identify:
806 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
808 This shows the mechanism that stands behind the add_to_evolution
809 function. An important point is that the use of symbolic
810 parameters avoids the need of an analysis schedule.
812 Example:
814 | inita = ...
815 | initb = ...
816 | loop_1
817 | a = phi (inita, a + 2 + b)
818 | b = phi (initb, b + 1)
819 | endloop
821 When analyzing "a", the algorithm keeps "b" symbolically:
823 | a -> {inita, +, 2 + b}_1
825 Then, after instantiation, the analyzer ends on the evolution:
827 | a -> {inita, +, 2 + initb, +, 1}_1
831 static tree
832 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
833 tree to_add, tree at_stmt)
835 tree type = chrec_type (to_add);
836 tree res = NULL_TREE;
838 if (to_add == NULL_TREE)
839 return chrec_before;
841 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
842 instantiated at this point. */
843 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
844 /* This should not happen. */
845 return chrec_dont_know;
847 if (dump_file && (dump_flags & TDF_DETAILS))
849 fprintf (dump_file, "(add_to_evolution \n");
850 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
851 fprintf (dump_file, " (chrec_before = ");
852 print_generic_expr (dump_file, chrec_before, 0);
853 fprintf (dump_file, ")\n (to_add = ");
854 print_generic_expr (dump_file, to_add, 0);
855 fprintf (dump_file, ")\n");
858 if (code == MINUS_EXPR)
859 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
860 ? build_real (type, dconstm1)
861 : build_int_cst_type (type, -1));
863 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
865 if (dump_file && (dump_flags & TDF_DETAILS))
867 fprintf (dump_file, " (res = ");
868 print_generic_expr (dump_file, res, 0);
869 fprintf (dump_file, "))\n");
872 return res;
875 /* Helper function. */
877 static inline tree
878 set_nb_iterations_in_loop (struct loop *loop,
879 tree res)
881 if (dump_file && (dump_flags & TDF_DETAILS))
883 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
884 print_generic_expr (dump_file, res, 0);
885 fprintf (dump_file, "))\n");
888 loop->nb_iterations = res;
889 return res;
894 /* This section selects the loops that will be good candidates for the
895 scalar evolution analysis. For the moment, greedily select all the
896 loop nests we could analyze. */
898 /* Return true when it is possible to analyze the condition expression
899 EXPR. */
901 static bool
902 analyzable_condition (tree expr)
904 tree condition;
906 if (TREE_CODE (expr) != COND_EXPR)
907 return false;
909 condition = TREE_OPERAND (expr, 0);
911 switch (TREE_CODE (condition))
913 case SSA_NAME:
914 return true;
916 case LT_EXPR:
917 case LE_EXPR:
918 case GT_EXPR:
919 case GE_EXPR:
920 case EQ_EXPR:
921 case NE_EXPR:
922 return true;
924 default:
925 return false;
928 return false;
931 /* For a loop with a single exit edge, return the COND_EXPR that
932 guards the exit edge. If the expression is too difficult to
933 analyze, then give up. */
935 tree
936 get_loop_exit_condition (struct loop *loop)
938 tree res = NULL_TREE;
939 edge exit_edge = single_exit (loop);
941 if (dump_file && (dump_flags & TDF_DETAILS))
942 fprintf (dump_file, "(get_loop_exit_condition \n ");
944 if (exit_edge)
946 tree expr;
948 expr = last_stmt (exit_edge->src);
949 if (analyzable_condition (expr))
950 res = expr;
953 if (dump_file && (dump_flags & TDF_DETAILS))
955 print_generic_expr (dump_file, res, 0);
956 fprintf (dump_file, ")\n");
959 return res;
962 /* Recursively determine and enqueue the exit conditions for a loop. */
964 static void
965 get_exit_conditions_rec (struct loop *loop,
966 VEC(tree,heap) **exit_conditions)
968 if (!loop)
969 return;
971 /* Recurse on the inner loops, then on the next (sibling) loops. */
972 get_exit_conditions_rec (loop->inner, exit_conditions);
973 get_exit_conditions_rec (loop->next, exit_conditions);
975 if (single_exit (loop))
977 tree loop_condition = get_loop_exit_condition (loop);
979 if (loop_condition)
980 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
984 /* Select the candidate loop nests for the analysis. This function
985 initializes the EXIT_CONDITIONS array. */
987 static void
988 select_loops_exit_conditions (VEC(tree,heap) **exit_conditions)
990 struct loop *function_body = current_loops->tree_root;
992 get_exit_conditions_rec (function_body->inner, exit_conditions);
996 /* Depth first search algorithm. */
998 typedef enum t_bool {
999 t_false,
1000 t_true,
1001 t_dont_know
1002 } t_bool;
1005 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1007 /* Follow the ssa edge into the right hand side RHS of an assignment.
1008 Return true if the strongly connected component has been found. */
1010 static t_bool
1011 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1012 tree halting_phi, tree *evolution_of_loop, int limit)
1014 t_bool res = t_false;
1015 tree rhs0, rhs1;
1016 tree type_rhs = TREE_TYPE (rhs);
1017 tree evol;
1019 /* The RHS is one of the following cases:
1020 - an SSA_NAME,
1021 - an INTEGER_CST,
1022 - a PLUS_EXPR,
1023 - a MINUS_EXPR,
1024 - an ASSERT_EXPR,
1025 - other cases are not yet handled. */
1026 switch (TREE_CODE (rhs))
1028 case NOP_EXPR:
1029 /* This assignment is under the form "a_1 = (cast) rhs. */
1030 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1031 halting_phi, evolution_of_loop, limit);
1032 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1033 *evolution_of_loop, at_stmt);
1034 break;
1036 case INTEGER_CST:
1037 /* This assignment is under the form "a_1 = 7". */
1038 res = t_false;
1039 break;
1041 case SSA_NAME:
1042 /* This assignment is under the form: "a_1 = b_2". */
1043 res = follow_ssa_edge
1044 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1045 break;
1047 case PLUS_EXPR:
1048 /* This case is under the form "rhs0 + rhs1". */
1049 rhs0 = TREE_OPERAND (rhs, 0);
1050 rhs1 = TREE_OPERAND (rhs, 1);
1051 STRIP_TYPE_NOPS (rhs0);
1052 STRIP_TYPE_NOPS (rhs1);
1054 if (TREE_CODE (rhs0) == SSA_NAME)
1056 if (TREE_CODE (rhs1) == SSA_NAME)
1058 /* Match an assignment under the form:
1059 "a = b + c". */
1060 evol = *evolution_of_loop;
1061 res = follow_ssa_edge
1062 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1063 &evol, limit);
1065 if (res == t_true)
1066 *evolution_of_loop = add_to_evolution
1067 (loop->num,
1068 chrec_convert (type_rhs, evol, at_stmt),
1069 PLUS_EXPR, rhs1, at_stmt);
1071 else if (res == t_false)
1073 res = follow_ssa_edge
1074 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1075 evolution_of_loop, limit);
1077 if (res == t_true)
1078 *evolution_of_loop = add_to_evolution
1079 (loop->num,
1080 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1081 PLUS_EXPR, rhs0, at_stmt);
1083 else if (res == t_dont_know)
1084 *evolution_of_loop = chrec_dont_know;
1087 else if (res == t_dont_know)
1088 *evolution_of_loop = chrec_dont_know;
1091 else
1093 /* Match an assignment under the form:
1094 "a = b + ...". */
1095 res = follow_ssa_edge
1096 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1097 evolution_of_loop, limit);
1098 if (res == t_true)
1099 *evolution_of_loop = add_to_evolution
1100 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1101 at_stmt),
1102 PLUS_EXPR, rhs1, at_stmt);
1104 else if (res == t_dont_know)
1105 *evolution_of_loop = chrec_dont_know;
1109 else if (TREE_CODE (rhs1) == SSA_NAME)
1111 /* Match an assignment under the form:
1112 "a = ... + c". */
1113 res = follow_ssa_edge
1114 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1115 evolution_of_loop, limit);
1116 if (res == t_true)
1117 *evolution_of_loop = add_to_evolution
1118 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1119 at_stmt),
1120 PLUS_EXPR, rhs0, at_stmt);
1122 else if (res == t_dont_know)
1123 *evolution_of_loop = chrec_dont_know;
1126 else
1127 /* Otherwise, match an assignment under the form:
1128 "a = ... + ...". */
1129 /* And there is nothing to do. */
1130 res = t_false;
1132 break;
1134 case MINUS_EXPR:
1135 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1136 rhs0 = TREE_OPERAND (rhs, 0);
1137 rhs1 = TREE_OPERAND (rhs, 1);
1138 STRIP_TYPE_NOPS (rhs0);
1139 STRIP_TYPE_NOPS (rhs1);
1141 if (TREE_CODE (rhs0) == SSA_NAME)
1143 /* Match an assignment under the form:
1144 "a = b - ...". */
1145 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1146 evolution_of_loop, limit);
1147 if (res == t_true)
1148 *evolution_of_loop = add_to_evolution
1149 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1150 MINUS_EXPR, rhs1, at_stmt);
1152 else if (res == t_dont_know)
1153 *evolution_of_loop = chrec_dont_know;
1155 else
1156 /* Otherwise, match an assignment under the form:
1157 "a = ... - ...". */
1158 /* And there is nothing to do. */
1159 res = t_false;
1161 break;
1163 case ASSERT_EXPR:
1165 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1166 It must be handled as a copy assignment of the form a_1 = a_2. */
1167 tree op0 = ASSERT_EXPR_VAR (rhs);
1168 if (TREE_CODE (op0) == SSA_NAME)
1169 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1170 halting_phi, evolution_of_loop, limit);
1171 else
1172 res = t_false;
1173 break;
1177 default:
1178 res = t_false;
1179 break;
1182 return res;
1185 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1187 static bool
1188 backedge_phi_arg_p (tree phi, int i)
1190 edge e = PHI_ARG_EDGE (phi, i);
1192 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1193 about updating it anywhere, and this should work as well most of the
1194 time. */
1195 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1196 return true;
1198 return false;
1201 /* Helper function for one branch of the condition-phi-node. Return
1202 true if the strongly connected component has been found following
1203 this path. */
1205 static inline t_bool
1206 follow_ssa_edge_in_condition_phi_branch (int i,
1207 struct loop *loop,
1208 tree condition_phi,
1209 tree halting_phi,
1210 tree *evolution_of_branch,
1211 tree init_cond, int limit)
1213 tree branch = PHI_ARG_DEF (condition_phi, i);
1214 *evolution_of_branch = chrec_dont_know;
1216 /* Do not follow back edges (they must belong to an irreducible loop, which
1217 we really do not want to worry about). */
1218 if (backedge_phi_arg_p (condition_phi, i))
1219 return t_false;
1221 if (TREE_CODE (branch) == SSA_NAME)
1223 *evolution_of_branch = init_cond;
1224 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1225 evolution_of_branch, limit);
1228 /* This case occurs when one of the condition branches sets
1229 the variable to a constant: i.e. a phi-node like
1230 "a_2 = PHI <a_7(5), 2(6)>;".
1232 FIXME: This case have to be refined correctly:
1233 in some cases it is possible to say something better than
1234 chrec_dont_know, for example using a wrap-around notation. */
1235 return t_false;
1238 /* This function merges the branches of a condition-phi-node in a
1239 loop. */
1241 static t_bool
1242 follow_ssa_edge_in_condition_phi (struct loop *loop,
1243 tree condition_phi,
1244 tree halting_phi,
1245 tree *evolution_of_loop, int limit)
1247 int i;
1248 tree init = *evolution_of_loop;
1249 tree evolution_of_branch;
1250 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1251 halting_phi,
1252 &evolution_of_branch,
1253 init, limit);
1254 if (res == t_false || res == t_dont_know)
1255 return res;
1257 *evolution_of_loop = evolution_of_branch;
1259 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1261 /* Quickly give up when the evolution of one of the branches is
1262 not known. */
1263 if (*evolution_of_loop == chrec_dont_know)
1264 return t_true;
1266 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1267 halting_phi,
1268 &evolution_of_branch,
1269 init, limit);
1270 if (res == t_false || res == t_dont_know)
1271 return res;
1273 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1274 evolution_of_branch);
1277 return t_true;
1280 /* Follow an SSA edge in an inner loop. It computes the overall
1281 effect of the loop, and following the symbolic initial conditions,
1282 it follows the edges in the parent loop. The inner loop is
1283 considered as a single statement. */
1285 static t_bool
1286 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1287 tree loop_phi_node,
1288 tree halting_phi,
1289 tree *evolution_of_loop, int limit)
1291 struct loop *loop = loop_containing_stmt (loop_phi_node);
1292 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1294 /* Sometimes, the inner loop is too difficult to analyze, and the
1295 result of the analysis is a symbolic parameter. */
1296 if (ev == PHI_RESULT (loop_phi_node))
1298 t_bool res = t_false;
1299 int i;
1301 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1303 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1304 basic_block bb;
1306 /* Follow the edges that exit the inner loop. */
1307 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1308 if (!flow_bb_inside_loop_p (loop, bb))
1309 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1310 arg, halting_phi,
1311 evolution_of_loop, limit);
1312 if (res == t_true)
1313 break;
1316 /* If the path crosses this loop-phi, give up. */
1317 if (res == t_true)
1318 *evolution_of_loop = chrec_dont_know;
1320 return res;
1323 /* Otherwise, compute the overall effect of the inner loop. */
1324 ev = compute_overall_effect_of_inner_loop (loop, ev);
1325 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1326 evolution_of_loop, limit);
1329 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1330 path that is analyzed on the return walk. */
1332 static t_bool
1333 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1334 tree *evolution_of_loop, int limit)
1336 struct loop *def_loop;
1338 if (TREE_CODE (def) == NOP_EXPR)
1339 return t_false;
1341 /* Give up if the path is longer than the MAX that we allow. */
1342 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1343 return t_dont_know;
1345 def_loop = loop_containing_stmt (def);
1347 switch (TREE_CODE (def))
1349 case PHI_NODE:
1350 if (!loop_phi_node_p (def))
1351 /* DEF is a condition-phi-node. Follow the branches, and
1352 record their evolutions. Finally, merge the collected
1353 information and set the approximation to the main
1354 variable. */
1355 return follow_ssa_edge_in_condition_phi
1356 (loop, def, halting_phi, evolution_of_loop, limit);
1358 /* When the analyzed phi is the halting_phi, the
1359 depth-first search is over: we have found a path from
1360 the halting_phi to itself in the loop. */
1361 if (def == halting_phi)
1362 return t_true;
1364 /* Otherwise, the evolution of the HALTING_PHI depends
1365 on the evolution of another loop-phi-node, i.e. the
1366 evolution function is a higher degree polynomial. */
1367 if (def_loop == loop)
1368 return t_false;
1370 /* Inner loop. */
1371 if (flow_loop_nested_p (loop, def_loop))
1372 return follow_ssa_edge_inner_loop_phi
1373 (loop, def, halting_phi, evolution_of_loop, limit);
1375 /* Outer loop. */
1376 return t_false;
1378 case GIMPLE_MODIFY_STMT:
1379 return follow_ssa_edge_in_rhs (loop, def,
1380 GIMPLE_STMT_OPERAND (def, 1),
1381 halting_phi,
1382 evolution_of_loop, limit);
1384 default:
1385 /* At this level of abstraction, the program is just a set
1386 of GIMPLE_MODIFY_STMTs and PHI_NODEs. In principle there is no
1387 other node to be handled. */
1388 return t_false;
1394 /* Given a LOOP_PHI_NODE, this function determines the evolution
1395 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1397 static tree
1398 analyze_evolution_in_loop (tree loop_phi_node,
1399 tree init_cond)
1401 int i;
1402 tree evolution_function = chrec_not_analyzed_yet;
1403 struct loop *loop = loop_containing_stmt (loop_phi_node);
1404 basic_block bb;
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1408 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1409 fprintf (dump_file, " (loop_phi_node = ");
1410 print_generic_expr (dump_file, loop_phi_node, 0);
1411 fprintf (dump_file, ")\n");
1414 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1416 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1417 tree ssa_chain, ev_fn;
1418 t_bool res;
1420 /* Select the edges that enter the loop body. */
1421 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1422 if (!flow_bb_inside_loop_p (loop, bb))
1423 continue;
1425 if (TREE_CODE (arg) == SSA_NAME)
1427 ssa_chain = SSA_NAME_DEF_STMT (arg);
1429 /* Pass in the initial condition to the follow edge function. */
1430 ev_fn = init_cond;
1431 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1433 else
1434 res = t_false;
1436 /* When it is impossible to go back on the same
1437 loop_phi_node by following the ssa edges, the
1438 evolution is represented by a peeled chrec, i.e. the
1439 first iteration, EV_FN has the value INIT_COND, then
1440 all the other iterations it has the value of ARG.
1441 For the moment, PEELED_CHREC nodes are not built. */
1442 if (res != t_true)
1443 ev_fn = chrec_dont_know;
1445 /* When there are multiple back edges of the loop (which in fact never
1446 happens currently, but nevertheless), merge their evolutions. */
1447 evolution_function = chrec_merge (evolution_function, ev_fn);
1450 if (dump_file && (dump_flags & TDF_DETAILS))
1452 fprintf (dump_file, " (evolution_function = ");
1453 print_generic_expr (dump_file, evolution_function, 0);
1454 fprintf (dump_file, "))\n");
1457 return evolution_function;
1460 /* Given a loop-phi-node, return the initial conditions of the
1461 variable on entry of the loop. When the CCP has propagated
1462 constants into the loop-phi-node, the initial condition is
1463 instantiated, otherwise the initial condition is kept symbolic.
1464 This analyzer does not analyze the evolution outside the current
1465 loop, and leaves this task to the on-demand tree reconstructor. */
1467 static tree
1468 analyze_initial_condition (tree loop_phi_node)
1470 int i;
1471 tree init_cond = chrec_not_analyzed_yet;
1472 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1474 if (dump_file && (dump_flags & TDF_DETAILS))
1476 fprintf (dump_file, "(analyze_initial_condition \n");
1477 fprintf (dump_file, " (loop_phi_node = \n");
1478 print_generic_expr (dump_file, loop_phi_node, 0);
1479 fprintf (dump_file, ")\n");
1482 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1484 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1485 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1487 /* When the branch is oriented to the loop's body, it does
1488 not contribute to the initial condition. */
1489 if (flow_bb_inside_loop_p (loop, bb))
1490 continue;
1492 if (init_cond == chrec_not_analyzed_yet)
1494 init_cond = branch;
1495 continue;
1498 if (TREE_CODE (branch) == SSA_NAME)
1500 init_cond = chrec_dont_know;
1501 break;
1504 init_cond = chrec_merge (init_cond, branch);
1507 /* Ooops -- a loop without an entry??? */
1508 if (init_cond == chrec_not_analyzed_yet)
1509 init_cond = chrec_dont_know;
1511 if (dump_file && (dump_flags & TDF_DETAILS))
1513 fprintf (dump_file, " (init_cond = ");
1514 print_generic_expr (dump_file, init_cond, 0);
1515 fprintf (dump_file, "))\n");
1518 return init_cond;
1521 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1523 static tree
1524 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1526 tree res;
1527 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1528 tree init_cond;
1530 if (phi_loop != loop)
1532 struct loop *subloop;
1533 tree evolution_fn = analyze_scalar_evolution
1534 (phi_loop, PHI_RESULT (loop_phi_node));
1536 /* Dive one level deeper. */
1537 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1539 /* Interpret the subloop. */
1540 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1541 return res;
1544 /* Otherwise really interpret the loop phi. */
1545 init_cond = analyze_initial_condition (loop_phi_node);
1546 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1548 return res;
1551 /* This function merges the branches of a condition-phi-node,
1552 contained in the outermost loop, and whose arguments are already
1553 analyzed. */
1555 static tree
1556 interpret_condition_phi (struct loop *loop, tree condition_phi)
1558 int i;
1559 tree res = chrec_not_analyzed_yet;
1561 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1563 tree branch_chrec;
1565 if (backedge_phi_arg_p (condition_phi, i))
1567 res = chrec_dont_know;
1568 break;
1571 branch_chrec = analyze_scalar_evolution
1572 (loop, PHI_ARG_DEF (condition_phi, i));
1574 res = chrec_merge (res, branch_chrec);
1577 return res;
1580 /* Interpret the right hand side of a GIMPLE_MODIFY_STMT OPND1. If we didn't
1581 analyze this node before, follow the definitions until ending
1582 either on an analyzed GIMPLE_MODIFY_STMT, or on a loop-phi-node. On the
1583 return path, this function propagates evolutions (ala constant copy
1584 propagation). OPND1 is not a GIMPLE expression because we could
1585 analyze the effect of an inner loop: see interpret_loop_phi. */
1587 static tree
1588 interpret_rhs_modify_stmt (struct loop *loop, tree at_stmt,
1589 tree opnd1, tree type)
1591 tree res, opnd10, opnd11, chrec10, chrec11;
1593 if (is_gimple_min_invariant (opnd1))
1594 return chrec_convert (type, opnd1, at_stmt);
1596 switch (TREE_CODE (opnd1))
1598 case PLUS_EXPR:
1599 opnd10 = TREE_OPERAND (opnd1, 0);
1600 opnd11 = TREE_OPERAND (opnd1, 1);
1601 chrec10 = analyze_scalar_evolution (loop, opnd10);
1602 chrec11 = analyze_scalar_evolution (loop, opnd11);
1603 chrec10 = chrec_convert (type, chrec10, at_stmt);
1604 chrec11 = chrec_convert (type, chrec11, at_stmt);
1605 res = chrec_fold_plus (type, chrec10, chrec11);
1606 break;
1608 case MINUS_EXPR:
1609 opnd10 = TREE_OPERAND (opnd1, 0);
1610 opnd11 = TREE_OPERAND (opnd1, 1);
1611 chrec10 = analyze_scalar_evolution (loop, opnd10);
1612 chrec11 = analyze_scalar_evolution (loop, opnd11);
1613 chrec10 = chrec_convert (type, chrec10, at_stmt);
1614 chrec11 = chrec_convert (type, chrec11, at_stmt);
1615 res = chrec_fold_minus (type, chrec10, chrec11);
1616 break;
1618 case NEGATE_EXPR:
1619 opnd10 = TREE_OPERAND (opnd1, 0);
1620 chrec10 = analyze_scalar_evolution (loop, opnd10);
1621 chrec10 = chrec_convert (type, chrec10, at_stmt);
1622 /* TYPE may be integer, real or complex, so use fold_convert. */
1623 res = chrec_fold_multiply (type, chrec10,
1624 fold_convert (type, integer_minus_one_node));
1625 break;
1627 case MULT_EXPR:
1628 opnd10 = TREE_OPERAND (opnd1, 0);
1629 opnd11 = TREE_OPERAND (opnd1, 1);
1630 chrec10 = analyze_scalar_evolution (loop, opnd10);
1631 chrec11 = analyze_scalar_evolution (loop, opnd11);
1632 chrec10 = chrec_convert (type, chrec10, at_stmt);
1633 chrec11 = chrec_convert (type, chrec11, at_stmt);
1634 res = chrec_fold_multiply (type, chrec10, chrec11);
1635 break;
1637 case SSA_NAME:
1638 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1639 at_stmt);
1640 break;
1642 case ASSERT_EXPR:
1643 opnd10 = ASSERT_EXPR_VAR (opnd1);
1644 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1645 at_stmt);
1646 break;
1648 case NOP_EXPR:
1649 case CONVERT_EXPR:
1650 opnd10 = TREE_OPERAND (opnd1, 0);
1651 chrec10 = analyze_scalar_evolution (loop, opnd10);
1652 res = chrec_convert (type, chrec10, at_stmt);
1653 break;
1655 default:
1656 res = chrec_dont_know;
1657 break;
1660 return res;
1665 /* This section contains all the entry points:
1666 - number_of_iterations_in_loop,
1667 - analyze_scalar_evolution,
1668 - instantiate_parameters.
1671 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1672 common ancestor of DEF_LOOP and USE_LOOP. */
1674 static tree
1675 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1676 struct loop *def_loop,
1677 tree ev)
1679 tree res;
1680 if (def_loop == wrto_loop)
1681 return ev;
1683 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1684 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1686 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1689 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1690 polynomial_chrec does not wrap. */
1692 static tree
1693 fold_used_pointer_cast (tree expr)
1695 tree op;
1696 tree type, inner_type;
1698 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1699 return expr;
1701 op = TREE_OPERAND (expr, 0);
1702 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1703 return expr;
1705 type = TREE_TYPE (expr);
1706 inner_type = TREE_TYPE (op);
1708 if (!INTEGRAL_TYPE_P (inner_type)
1709 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1710 return expr;
1712 return build_polynomial_chrec (CHREC_VARIABLE (op),
1713 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1714 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1717 /* Returns true if EXPR is an expression corresponding to offset of pointer
1718 in p + offset. */
1720 static bool
1721 pointer_offset_p (tree expr)
1723 if (TREE_CODE (expr) == INTEGER_CST)
1724 return true;
1726 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1727 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1728 return true;
1730 return false;
1733 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1734 comparison. This means that it must point to a part of some object in
1735 memory, which enables us to argue about overflows and possibly simplify
1736 the EXPR. AT_STMT is the statement in which this conversion has to be
1737 performed. Returns the simplified value.
1739 Currently, for
1741 int i, n;
1742 int *p;
1744 for (i = -n; i < n; i++)
1745 *(p + i) = ...;
1747 We generate the following code (assuming that size of int and size_t is
1748 4 bytes):
1750 for (i = -n; i < n; i++)
1752 size_t tmp1, tmp2;
1753 int *tmp3, *tmp4;
1755 tmp1 = (size_t) i; (1)
1756 tmp2 = 4 * tmp1; (2)
1757 tmp3 = (int *) tmp2; (3)
1758 tmp4 = p + tmp3; (4)
1760 *tmp4 = ...;
1763 We in general assume that pointer arithmetics does not overflow (since its
1764 behavior is undefined in that case). One of the problems is that our
1765 translation does not capture this property very well -- (int *) is
1766 considered unsigned, hence the computation in (4) does overflow if i is
1767 negative.
1769 This impreciseness creates complications in scev analysis. The scalar
1770 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1771 (in this example), and size_t is unsigned (so we do not care about
1772 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1773 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1774 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1775 places assume that this is not the case for scevs with pointer type, we
1776 cannot use this scev for tmp3; hence, its scev is
1777 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1778 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1779 work with scevs of this shape.
1781 However, since tmp4 is dereferenced, all its values must belong to a single
1782 object, and taking into account that the precision of int * and size_t is
1783 the same, it is impossible for its scev to wrap. Hence, we can derive that
1784 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1785 can work with.
1787 ??? Maybe we should use different representation for pointer arithmetics,
1788 however that is a long-term project with a lot of potential for creating
1789 bugs. */
1791 static tree
1792 fold_used_pointer (tree expr, tree at_stmt)
1794 tree op0, op1, new0, new1;
1795 enum tree_code code = TREE_CODE (expr);
1797 if (code == PLUS_EXPR
1798 || code == MINUS_EXPR)
1800 op0 = TREE_OPERAND (expr, 0);
1801 op1 = TREE_OPERAND (expr, 1);
1803 if (pointer_offset_p (op1))
1805 new0 = fold_used_pointer (op0, at_stmt);
1806 new1 = fold_used_pointer_cast (op1);
1808 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1810 new0 = fold_used_pointer_cast (op0);
1811 new1 = fold_used_pointer (op1, at_stmt);
1813 else
1814 return expr;
1816 if (new0 == op0 && new1 == op1)
1817 return expr;
1819 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1820 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1822 if (code == PLUS_EXPR)
1823 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1824 else
1825 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1827 return expr;
1829 else
1830 return fold_used_pointer_cast (expr);
1833 /* Returns true if PTR is dereferenced, or used in comparison. */
1835 static bool
1836 pointer_used_p (tree ptr)
1838 use_operand_p use_p;
1839 imm_use_iterator imm_iter;
1840 tree stmt, rhs;
1841 struct ptr_info_def *pi = get_ptr_info (ptr);
1843 /* Check whether the pointer has a memory tag; if it does, it is
1844 (or at least used to be) dereferenced. */
1845 if ((pi != NULL && pi->name_mem_tag != NULL)
1846 || symbol_mem_tag (SSA_NAME_VAR (ptr)))
1847 return true;
1849 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1851 stmt = USE_STMT (use_p);
1852 if (TREE_CODE (stmt) == COND_EXPR)
1853 return true;
1855 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
1856 continue;
1858 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1859 if (!COMPARISON_CLASS_P (rhs))
1860 continue;
1862 if (GIMPLE_STMT_OPERAND (stmt, 0) == ptr
1863 || GIMPLE_STMT_OPERAND (stmt, 1) == ptr)
1864 return true;
1867 return false;
1870 /* Helper recursive function. */
1872 static tree
1873 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1875 tree def, type = TREE_TYPE (var);
1876 basic_block bb;
1877 struct loop *def_loop;
1879 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1880 return chrec_dont_know;
1882 if (TREE_CODE (var) != SSA_NAME)
1883 return interpret_rhs_modify_stmt (loop, NULL_TREE, var, type);
1885 def = SSA_NAME_DEF_STMT (var);
1886 bb = bb_for_stmt (def);
1887 def_loop = bb ? bb->loop_father : NULL;
1889 if (bb == NULL
1890 || !flow_bb_inside_loop_p (loop, bb))
1892 /* Keep the symbolic form. */
1893 res = var;
1894 goto set_and_end;
1897 if (res != chrec_not_analyzed_yet)
1899 if (loop != bb->loop_father)
1900 res = compute_scalar_evolution_in_loop
1901 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1903 goto set_and_end;
1906 if (loop != def_loop)
1908 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1909 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1911 goto set_and_end;
1914 switch (TREE_CODE (def))
1916 case GIMPLE_MODIFY_STMT:
1917 res = interpret_rhs_modify_stmt (loop, def,
1918 GIMPLE_STMT_OPERAND (def, 1), type);
1920 if (POINTER_TYPE_P (type)
1921 && !automatically_generated_chrec_p (res)
1922 && pointer_used_p (var))
1923 res = fold_used_pointer (res, def);
1924 break;
1926 case PHI_NODE:
1927 if (loop_phi_node_p (def))
1928 res = interpret_loop_phi (loop, def);
1929 else
1930 res = interpret_condition_phi (loop, def);
1931 break;
1933 default:
1934 res = chrec_dont_know;
1935 break;
1938 set_and_end:
1940 /* Keep the symbolic form. */
1941 if (res == chrec_dont_know)
1942 res = var;
1944 if (loop == def_loop)
1945 set_scalar_evolution (var, res);
1947 return res;
1950 /* Entry point for the scalar evolution analyzer.
1951 Analyzes and returns the scalar evolution of the ssa_name VAR.
1952 LOOP_NB is the identifier number of the loop in which the variable
1953 is used.
1955 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1956 pointer to the statement that uses this variable, in order to
1957 determine the evolution function of the variable, use the following
1958 calls:
1960 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1961 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1962 tree chrec_instantiated = instantiate_parameters
1963 (loop_nb, chrec_with_symbols);
1966 tree
1967 analyze_scalar_evolution (struct loop *loop, tree var)
1969 tree res;
1971 if (dump_file && (dump_flags & TDF_DETAILS))
1973 fprintf (dump_file, "(analyze_scalar_evolution \n");
1974 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1975 fprintf (dump_file, " (scalar = ");
1976 print_generic_expr (dump_file, var, 0);
1977 fprintf (dump_file, ")\n");
1980 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1982 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1983 res = var;
1985 if (dump_file && (dump_flags & TDF_DETAILS))
1986 fprintf (dump_file, ")\n");
1988 return res;
1991 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1992 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1993 of VERSION).
1995 FOLDED_CASTS is set to true if resolve_mixers used
1996 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1997 at the moment in order to keep things simple). */
1999 static tree
2000 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2001 tree version, bool *folded_casts)
2003 bool val = false;
2004 tree ev = version, tmp;
2006 if (folded_casts)
2007 *folded_casts = false;
2008 while (1)
2010 tmp = analyze_scalar_evolution (use_loop, ev);
2011 ev = resolve_mixers (use_loop, tmp);
2013 if (folded_casts && tmp != ev)
2014 *folded_casts = true;
2016 if (use_loop == wrto_loop)
2017 return ev;
2019 /* If the value of the use changes in the inner loop, we cannot express
2020 its value in the outer loop (we might try to return interval chrec,
2021 but we do not have a user for it anyway) */
2022 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2023 || !val)
2024 return chrec_dont_know;
2026 use_loop = use_loop->outer;
2030 /* Returns instantiated value for VERSION in CACHE. */
2032 static tree
2033 get_instantiated_value (htab_t cache, tree version)
2035 struct scev_info_str *info, pattern;
2037 pattern.var = version;
2038 info = (struct scev_info_str *) htab_find (cache, &pattern);
2040 if (info)
2041 return info->chrec;
2042 else
2043 return NULL_TREE;
2046 /* Sets instantiated value for VERSION to VAL in CACHE. */
2048 static void
2049 set_instantiated_value (htab_t cache, tree version, tree val)
2051 struct scev_info_str *info, pattern;
2052 PTR *slot;
2054 pattern.var = version;
2055 slot = htab_find_slot (cache, &pattern, INSERT);
2057 if (!*slot)
2058 *slot = new_scev_info_str (version);
2059 info = (struct scev_info_str *) *slot;
2060 info->chrec = val;
2063 /* Return the closed_loop_phi node for VAR. If there is none, return
2064 NULL_TREE. */
2066 static tree
2067 loop_closed_phi_def (tree var)
2069 struct loop *loop;
2070 edge exit;
2071 tree phi;
2073 if (var == NULL_TREE
2074 || TREE_CODE (var) != SSA_NAME)
2075 return NULL_TREE;
2077 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2078 exit = single_exit (loop);
2079 if (!exit)
2080 return NULL_TREE;
2082 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2083 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2084 return PHI_RESULT (phi);
2086 return NULL_TREE;
2089 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2090 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2091 of already instantiated values. FLAGS modify the way chrecs are
2092 instantiated. SIZE_EXPR is used for computing the size of the expression to
2093 be instantiated, and to stop if it exceeds some limit. */
2095 /* Values for FLAGS. */
2096 enum
2098 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2099 in outer loops. */
2100 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2101 signed/pointer type are folded, as long as the
2102 value of the chrec is preserved. */
2105 static tree
2106 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2107 int size_expr)
2109 tree res, op0, op1, op2;
2110 basic_block def_bb;
2111 struct loop *def_loop;
2112 tree type = chrec_type (chrec);
2114 /* Give up if the expression is larger than the MAX that we allow. */
2115 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2116 return chrec_dont_know;
2118 if (automatically_generated_chrec_p (chrec)
2119 || is_gimple_min_invariant (chrec))
2120 return chrec;
2122 switch (TREE_CODE (chrec))
2124 case SSA_NAME:
2125 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2127 /* A parameter (or loop invariant and we do not want to include
2128 evolutions in outer loops), nothing to do. */
2129 if (!def_bb
2130 || (!(flags & INSERT_SUPERLOOP_CHRECS)
2131 && !flow_bb_inside_loop_p (loop, def_bb)))
2132 return chrec;
2134 /* We cache the value of instantiated variable to avoid exponential
2135 time complexity due to reevaluations. We also store the convenient
2136 value in the cache in order to prevent infinite recursion -- we do
2137 not want to instantiate the SSA_NAME if it is in a mixer
2138 structure. This is used for avoiding the instantiation of
2139 recursively defined functions, such as:
2141 | a_2 -> {0, +, 1, +, a_2}_1 */
2143 res = get_instantiated_value (cache, chrec);
2144 if (res)
2145 return res;
2147 /* Store the convenient value for chrec in the structure. If it
2148 is defined outside of the loop, we may just leave it in symbolic
2149 form, otherwise we need to admit that we do not know its behavior
2150 inside the loop. */
2151 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2152 set_instantiated_value (cache, chrec, res);
2154 /* To make things even more complicated, instantiate_parameters_1
2155 calls analyze_scalar_evolution that may call # of iterations
2156 analysis that may in turn call instantiate_parameters_1 again.
2157 To prevent the infinite recursion, keep also the bitmap of
2158 ssa names that are being instantiated globally. */
2159 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2160 return res;
2162 def_loop = find_common_loop (loop, def_bb->loop_father);
2164 /* If the analysis yields a parametric chrec, instantiate the
2165 result again. */
2166 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2167 res = analyze_scalar_evolution (def_loop, chrec);
2169 /* Don't instantiate loop-closed-ssa phi nodes. */
2170 if (TREE_CODE (res) == SSA_NAME
2171 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2172 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2173 > def_loop->depth)))
2175 if (res == chrec)
2176 res = loop_closed_phi_def (chrec);
2177 else
2178 res = chrec;
2180 if (res == NULL_TREE)
2181 res = chrec_dont_know;
2184 else if (res != chrec_dont_know)
2185 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2187 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2189 /* Store the correct value to the cache. */
2190 set_instantiated_value (cache, chrec, res);
2191 return res;
2193 case POLYNOMIAL_CHREC:
2194 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2195 flags, cache, size_expr);
2196 if (op0 == chrec_dont_know)
2197 return chrec_dont_know;
2199 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2200 flags, cache, size_expr);
2201 if (op1 == chrec_dont_know)
2202 return chrec_dont_know;
2204 if (CHREC_LEFT (chrec) != op0
2205 || CHREC_RIGHT (chrec) != op1)
2207 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2208 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2210 return chrec;
2212 case PLUS_EXPR:
2213 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2214 flags, cache, size_expr);
2215 if (op0 == chrec_dont_know)
2216 return chrec_dont_know;
2218 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2219 flags, cache, size_expr);
2220 if (op1 == chrec_dont_know)
2221 return chrec_dont_know;
2223 if (TREE_OPERAND (chrec, 0) != op0
2224 || TREE_OPERAND (chrec, 1) != op1)
2226 op0 = chrec_convert (type, op0, NULL_TREE);
2227 op1 = chrec_convert (type, op1, NULL_TREE);
2228 chrec = chrec_fold_plus (type, op0, op1);
2230 return chrec;
2232 case MINUS_EXPR:
2233 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2234 flags, cache, size_expr);
2235 if (op0 == chrec_dont_know)
2236 return chrec_dont_know;
2238 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2239 flags, cache, size_expr);
2240 if (op1 == chrec_dont_know)
2241 return chrec_dont_know;
2243 if (TREE_OPERAND (chrec, 0) != op0
2244 || TREE_OPERAND (chrec, 1) != op1)
2246 op0 = chrec_convert (type, op0, NULL_TREE);
2247 op1 = chrec_convert (type, op1, NULL_TREE);
2248 chrec = chrec_fold_minus (type, op0, op1);
2250 return chrec;
2252 case MULT_EXPR:
2253 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2254 flags, cache, size_expr);
2255 if (op0 == chrec_dont_know)
2256 return chrec_dont_know;
2258 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2259 flags, cache, size_expr);
2260 if (op1 == chrec_dont_know)
2261 return chrec_dont_know;
2263 if (TREE_OPERAND (chrec, 0) != op0
2264 || TREE_OPERAND (chrec, 1) != op1)
2266 op0 = chrec_convert (type, op0, NULL_TREE);
2267 op1 = chrec_convert (type, op1, NULL_TREE);
2268 chrec = chrec_fold_multiply (type, op0, op1);
2270 return chrec;
2272 case NOP_EXPR:
2273 case CONVERT_EXPR:
2274 case NON_LVALUE_EXPR:
2275 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2276 flags, cache, size_expr);
2277 if (op0 == chrec_dont_know)
2278 return chrec_dont_know;
2280 if (flags & FOLD_CONVERSIONS)
2282 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2283 if (tmp)
2284 return tmp;
2287 if (op0 == TREE_OPERAND (chrec, 0))
2288 return chrec;
2290 /* If we used chrec_convert_aggressive, we can no longer assume that
2291 signed chrecs do not overflow, as chrec_convert does, so avoid
2292 calling it in that case. */
2293 if (flags & FOLD_CONVERSIONS)
2294 return fold_convert (TREE_TYPE (chrec), op0);
2296 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2298 case SCEV_NOT_KNOWN:
2299 return chrec_dont_know;
2301 case SCEV_KNOWN:
2302 return chrec_known;
2304 default:
2305 break;
2308 gcc_assert (!VL_EXP_CLASS_P (chrec));
2309 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2311 case 3:
2312 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2313 flags, cache, size_expr);
2314 if (op0 == chrec_dont_know)
2315 return chrec_dont_know;
2317 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2318 flags, cache, size_expr);
2319 if (op1 == chrec_dont_know)
2320 return chrec_dont_know;
2322 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2323 flags, cache, size_expr);
2324 if (op2 == chrec_dont_know)
2325 return chrec_dont_know;
2327 if (op0 == TREE_OPERAND (chrec, 0)
2328 && op1 == TREE_OPERAND (chrec, 1)
2329 && op2 == TREE_OPERAND (chrec, 2))
2330 return chrec;
2332 return fold_build3 (TREE_CODE (chrec),
2333 TREE_TYPE (chrec), op0, op1, op2);
2335 case 2:
2336 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2337 flags, cache, size_expr);
2338 if (op0 == chrec_dont_know)
2339 return chrec_dont_know;
2341 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2342 flags, cache, size_expr);
2343 if (op1 == chrec_dont_know)
2344 return chrec_dont_know;
2346 if (op0 == TREE_OPERAND (chrec, 0)
2347 && op1 == TREE_OPERAND (chrec, 1))
2348 return chrec;
2349 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2351 case 1:
2352 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2353 flags, cache, size_expr);
2354 if (op0 == chrec_dont_know)
2355 return chrec_dont_know;
2356 if (op0 == TREE_OPERAND (chrec, 0))
2357 return chrec;
2358 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2360 case 0:
2361 return chrec;
2363 default:
2364 break;
2367 /* Too complicated to handle. */
2368 return chrec_dont_know;
2371 /* Analyze all the parameters of the chrec that were left under a
2372 symbolic form. LOOP is the loop in which symbolic names have to
2373 be analyzed and instantiated. */
2375 tree
2376 instantiate_parameters (struct loop *loop,
2377 tree chrec)
2379 tree res;
2380 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2382 if (dump_file && (dump_flags & TDF_DETAILS))
2384 fprintf (dump_file, "(instantiate_parameters \n");
2385 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2386 fprintf (dump_file, " (chrec = ");
2387 print_generic_expr (dump_file, chrec, 0);
2388 fprintf (dump_file, ")\n");
2391 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2394 if (dump_file && (dump_flags & TDF_DETAILS))
2396 fprintf (dump_file, " (res = ");
2397 print_generic_expr (dump_file, res, 0);
2398 fprintf (dump_file, "))\n");
2401 htab_delete (cache);
2403 return res;
2406 /* Similar to instantiate_parameters, but does not introduce the
2407 evolutions in outer loops for LOOP invariants in CHREC, and does not
2408 care about causing overflows, as long as they do not affect value
2409 of an expression. */
2411 static tree
2412 resolve_mixers (struct loop *loop, tree chrec)
2414 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2415 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2416 htab_delete (cache);
2417 return ret;
2420 /* Entry point for the analysis of the number of iterations pass.
2421 This function tries to safely approximate the number of iterations
2422 the loop will run. When this property is not decidable at compile
2423 time, the result is chrec_dont_know. Otherwise the result is
2424 a scalar or a symbolic parameter.
2426 Example of analysis: suppose that the loop has an exit condition:
2428 "if (b > 49) goto end_loop;"
2430 and that in a previous analysis we have determined that the
2431 variable 'b' has an evolution function:
2433 "EF = {23, +, 5}_2".
2435 When we evaluate the function at the point 5, i.e. the value of the
2436 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2437 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2438 the loop body has been executed 6 times. */
2440 tree
2441 number_of_latch_executions (struct loop *loop)
2443 tree res, type;
2444 edge exit;
2445 struct tree_niter_desc niter_desc;
2447 /* Determine whether the number_of_iterations_in_loop has already
2448 been computed. */
2449 res = loop->nb_iterations;
2450 if (res)
2451 return res;
2452 res = chrec_dont_know;
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2457 exit = single_exit (loop);
2458 if (!exit)
2459 goto end;
2461 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2462 goto end;
2464 type = TREE_TYPE (niter_desc.niter);
2465 if (integer_nonzerop (niter_desc.may_be_zero))
2466 res = build_int_cst (type, 0);
2467 else if (integer_zerop (niter_desc.may_be_zero))
2468 res = niter_desc.niter;
2469 else
2470 res = chrec_dont_know;
2472 end:
2473 return set_nb_iterations_in_loop (loop, res);
2476 /* Returns the number of executions of the exit condition of LOOP,
2477 i.e., the number by one higher than number_of_latch_executions.
2478 Note that unline number_of_latch_executions, this number does
2479 not necessarily fit in the unsigned variant of the type of
2480 the control variable -- if the number of iterations is a constant,
2481 we return chrec_dont_know if adding one to number_of_latch_executions
2482 overflows; however, in case the number of iterations is symbolic
2483 expression, the caller is responsible for dealing with this
2484 the possible overflow. */
2486 tree
2487 number_of_exit_cond_executions (struct loop *loop)
2489 tree ret = number_of_latch_executions (loop);
2490 tree type = chrec_type (ret);
2492 if (chrec_contains_undetermined (ret))
2493 return ret;
2495 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2496 if (TREE_CODE (ret) == INTEGER_CST
2497 && TREE_OVERFLOW (ret))
2498 return chrec_dont_know;
2500 return ret;
2503 /* One of the drivers for testing the scalar evolutions analysis.
2504 This function computes the number of iterations for all the loops
2505 from the EXIT_CONDITIONS array. */
2507 static void
2508 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2510 unsigned int i;
2511 unsigned nb_chrec_dont_know_loops = 0;
2512 unsigned nb_static_loops = 0;
2513 tree cond;
2515 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2517 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2518 if (chrec_contains_undetermined (res))
2519 nb_chrec_dont_know_loops++;
2520 else
2521 nb_static_loops++;
2524 if (dump_file)
2526 fprintf (dump_file, "\n(\n");
2527 fprintf (dump_file, "-----------------------------------------\n");
2528 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2529 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2530 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2531 fprintf (dump_file, "-----------------------------------------\n");
2532 fprintf (dump_file, ")\n\n");
2534 print_loop_ir (dump_file);
2540 /* Counters for the stats. */
2542 struct chrec_stats
2544 unsigned nb_chrecs;
2545 unsigned nb_affine;
2546 unsigned nb_affine_multivar;
2547 unsigned nb_higher_poly;
2548 unsigned nb_chrec_dont_know;
2549 unsigned nb_undetermined;
2552 /* Reset the counters. */
2554 static inline void
2555 reset_chrecs_counters (struct chrec_stats *stats)
2557 stats->nb_chrecs = 0;
2558 stats->nb_affine = 0;
2559 stats->nb_affine_multivar = 0;
2560 stats->nb_higher_poly = 0;
2561 stats->nb_chrec_dont_know = 0;
2562 stats->nb_undetermined = 0;
2565 /* Dump the contents of a CHREC_STATS structure. */
2567 static void
2568 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2570 fprintf (file, "\n(\n");
2571 fprintf (file, "-----------------------------------------\n");
2572 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2573 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2574 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2575 stats->nb_higher_poly);
2576 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2577 fprintf (file, "-----------------------------------------\n");
2578 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2579 fprintf (file, "%d\twith undetermined coefficients\n",
2580 stats->nb_undetermined);
2581 fprintf (file, "-----------------------------------------\n");
2582 fprintf (file, "%d\tchrecs in the scev database\n",
2583 (int) htab_elements (scalar_evolution_info));
2584 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2585 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2586 fprintf (file, "-----------------------------------------\n");
2587 fprintf (file, ")\n\n");
2590 /* Gather statistics about CHREC. */
2592 static void
2593 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2595 if (dump_file && (dump_flags & TDF_STATS))
2597 fprintf (dump_file, "(classify_chrec ");
2598 print_generic_expr (dump_file, chrec, 0);
2599 fprintf (dump_file, "\n");
2602 stats->nb_chrecs++;
2604 if (chrec == NULL_TREE)
2606 stats->nb_undetermined++;
2607 return;
2610 switch (TREE_CODE (chrec))
2612 case POLYNOMIAL_CHREC:
2613 if (evolution_function_is_affine_p (chrec))
2615 if (dump_file && (dump_flags & TDF_STATS))
2616 fprintf (dump_file, " affine_univariate\n");
2617 stats->nb_affine++;
2619 else if (evolution_function_is_affine_multivariate_p (chrec))
2621 if (dump_file && (dump_flags & TDF_STATS))
2622 fprintf (dump_file, " affine_multivariate\n");
2623 stats->nb_affine_multivar++;
2625 else
2627 if (dump_file && (dump_flags & TDF_STATS))
2628 fprintf (dump_file, " higher_degree_polynomial\n");
2629 stats->nb_higher_poly++;
2632 break;
2634 default:
2635 break;
2638 if (chrec_contains_undetermined (chrec))
2640 if (dump_file && (dump_flags & TDF_STATS))
2641 fprintf (dump_file, " undetermined\n");
2642 stats->nb_undetermined++;
2645 if (dump_file && (dump_flags & TDF_STATS))
2646 fprintf (dump_file, ")\n");
2649 /* One of the drivers for testing the scalar evolutions analysis.
2650 This function analyzes the scalar evolution of all the scalars
2651 defined as loop phi nodes in one of the loops from the
2652 EXIT_CONDITIONS array.
2654 TODO Optimization: A loop is in canonical form if it contains only
2655 a single scalar loop phi node. All the other scalars that have an
2656 evolution in the loop are rewritten in function of this single
2657 index. This allows the parallelization of the loop. */
2659 static void
2660 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2662 unsigned int i;
2663 struct chrec_stats stats;
2664 tree cond;
2666 reset_chrecs_counters (&stats);
2668 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2670 struct loop *loop;
2671 basic_block bb;
2672 tree phi, chrec;
2674 loop = loop_containing_stmt (cond);
2675 bb = loop->header;
2677 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2678 if (is_gimple_reg (PHI_RESULT (phi)))
2680 chrec = instantiate_parameters
2681 (loop,
2682 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2684 if (dump_file && (dump_flags & TDF_STATS))
2685 gather_chrec_stats (chrec, &stats);
2689 if (dump_file && (dump_flags & TDF_STATS))
2690 dump_chrecs_stats (dump_file, &stats);
2693 /* Callback for htab_traverse, gathers information on chrecs in the
2694 hashtable. */
2696 static int
2697 gather_stats_on_scev_database_1 (void **slot, void *stats)
2699 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2701 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2703 return 1;
2706 /* Classify the chrecs of the whole database. */
2708 void
2709 gather_stats_on_scev_database (void)
2711 struct chrec_stats stats;
2713 if (!dump_file)
2714 return;
2716 reset_chrecs_counters (&stats);
2718 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2719 &stats);
2721 dump_chrecs_stats (dump_file, &stats);
2726 /* Initializer. */
2728 static void
2729 initialize_scalar_evolutions_analyzer (void)
2731 /* The elements below are unique. */
2732 if (chrec_dont_know == NULL_TREE)
2734 chrec_not_analyzed_yet = NULL_TREE;
2735 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2736 chrec_known = make_node (SCEV_KNOWN);
2737 TREE_TYPE (chrec_dont_know) = void_type_node;
2738 TREE_TYPE (chrec_known) = void_type_node;
2742 /* Initialize the analysis of scalar evolutions for LOOPS. */
2744 void
2745 scev_initialize (void)
2747 loop_iterator li;
2748 struct loop *loop;
2750 scalar_evolution_info = htab_create (100, hash_scev_info,
2751 eq_scev_info, del_scev_info);
2752 already_instantiated = BITMAP_ALLOC (NULL);
2754 initialize_scalar_evolutions_analyzer ();
2756 FOR_EACH_LOOP (li, loop, 0)
2758 loop->nb_iterations = NULL_TREE;
2762 /* Cleans up the information cached by the scalar evolutions analysis. */
2764 void
2765 scev_reset (void)
2767 loop_iterator li;
2768 struct loop *loop;
2770 if (!scalar_evolution_info || !current_loops)
2771 return;
2773 htab_empty (scalar_evolution_info);
2774 FOR_EACH_LOOP (li, loop, 0)
2776 loop->nb_iterations = NULL_TREE;
2780 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2781 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2782 want step to be invariant in LOOP. Otherwise we require it to be an
2783 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2784 overflow (e.g. because it is computed in signed arithmetics). */
2786 bool
2787 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2788 bool allow_nonconstant_step)
2790 basic_block bb = bb_for_stmt (stmt);
2791 tree type, ev;
2792 bool folded_casts;
2794 iv->base = NULL_TREE;
2795 iv->step = NULL_TREE;
2796 iv->no_overflow = false;
2798 type = TREE_TYPE (op);
2799 if (TREE_CODE (type) != INTEGER_TYPE
2800 && TREE_CODE (type) != POINTER_TYPE)
2801 return false;
2803 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2804 &folded_casts);
2805 if (chrec_contains_undetermined (ev))
2806 return false;
2808 if (tree_does_not_contain_chrecs (ev)
2809 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2811 iv->base = ev;
2812 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2813 iv->no_overflow = true;
2814 return true;
2817 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2818 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2819 return false;
2821 iv->step = CHREC_RIGHT (ev);
2822 if (allow_nonconstant_step)
2824 if (tree_contains_chrecs (iv->step, NULL)
2825 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2826 return false;
2828 else if (TREE_CODE (iv->step) != INTEGER_CST)
2829 return false;
2831 iv->base = CHREC_LEFT (ev);
2832 if (tree_contains_chrecs (iv->base, NULL)
2833 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2834 return false;
2836 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2838 return true;
2841 /* Runs the analysis of scalar evolutions. */
2843 void
2844 scev_analysis (void)
2846 VEC(tree,heap) *exit_conditions;
2848 exit_conditions = VEC_alloc (tree, heap, 37);
2849 select_loops_exit_conditions (&exit_conditions);
2851 if (dump_file && (dump_flags & TDF_STATS))
2852 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2854 number_of_iterations_for_all_loops (&exit_conditions);
2855 VEC_free (tree, heap, exit_conditions);
2858 /* Finalize the scalar evolution analysis. */
2860 void
2861 scev_finalize (void)
2863 htab_delete (scalar_evolution_info);
2864 BITMAP_FREE (already_instantiated);
2867 /* Replace ssa names for that scev can prove they are constant by the
2868 appropriate constants. Also perform final value replacement in loops,
2869 in case the replacement expressions are cheap.
2871 We only consider SSA names defined by phi nodes; rest is left to the
2872 ordinary constant propagation pass. */
2874 unsigned int
2875 scev_const_prop (void)
2877 basic_block bb;
2878 tree name, phi, next_phi, type, ev;
2879 struct loop *loop, *ex_loop;
2880 bitmap ssa_names_to_remove = NULL;
2881 unsigned i;
2882 loop_iterator li;
2884 if (!current_loops)
2885 return 0;
2887 FOR_EACH_BB (bb)
2889 loop = bb->loop_father;
2891 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2893 name = PHI_RESULT (phi);
2895 if (!is_gimple_reg (name))
2896 continue;
2898 type = TREE_TYPE (name);
2900 if (!POINTER_TYPE_P (type)
2901 && !INTEGRAL_TYPE_P (type))
2902 continue;
2904 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2905 if (!is_gimple_min_invariant (ev)
2906 || !may_propagate_copy (name, ev))
2907 continue;
2909 /* Replace the uses of the name. */
2910 if (name != ev)
2911 replace_uses_by (name, ev);
2913 if (!ssa_names_to_remove)
2914 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2915 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2919 /* Remove the ssa names that were replaced by constants. We do not
2920 remove them directly in the previous cycle, since this
2921 invalidates scev cache. */
2922 if (ssa_names_to_remove)
2924 bitmap_iterator bi;
2926 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2928 name = ssa_name (i);
2929 phi = SSA_NAME_DEF_STMT (name);
2931 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2932 remove_phi_node (phi, NULL, true);
2935 BITMAP_FREE (ssa_names_to_remove);
2936 scev_reset ();
2939 /* Now the regular final value replacement. */
2940 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2942 edge exit;
2943 tree def, rslt, ass, niter;
2944 block_stmt_iterator bsi;
2946 /* If we do not know exact number of iterations of the loop, we cannot
2947 replace the final value. */
2948 exit = single_exit (loop);
2949 if (!exit)
2950 continue;
2952 niter = number_of_latch_executions (loop);
2953 /* We used to check here whether the computation of NITER is expensive,
2954 and avoided final value elimination if that is the case. The problem
2955 is that it is hard to evaluate whether the expression is too
2956 expensive, as we do not know what optimization opportunities the
2957 the elimination of the final value may reveal. Therefore, we now
2958 eliminate the final values of induction variables unconditionally. */
2959 if (niter == chrec_dont_know)
2960 continue;
2962 /* Ensure that it is possible to insert new statements somewhere. */
2963 if (!single_pred_p (exit->dest))
2964 split_loop_exit_edge (exit);
2965 tree_block_label (exit->dest);
2966 bsi = bsi_after_labels (exit->dest);
2968 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2970 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2972 next_phi = PHI_CHAIN (phi);
2973 rslt = PHI_RESULT (phi);
2974 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2975 if (!is_gimple_reg (def))
2976 continue;
2978 if (!POINTER_TYPE_P (TREE_TYPE (def))
2979 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2980 continue;
2982 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2983 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2984 if (!tree_does_not_contain_chrecs (def)
2985 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2986 /* Moving the computation from the loop may prolong life range
2987 of some ssa names, which may cause problems if they appear
2988 on abnormal edges. */
2989 || contains_abnormal_ssa_name_p (def))
2990 continue;
2992 /* Eliminate the PHI node and replace it by a computation outside
2993 the loop. */
2994 def = unshare_expr (def);
2995 remove_phi_node (phi, NULL_TREE, false);
2997 ass = build_gimple_modify_stmt (rslt, NULL_TREE);
2998 SSA_NAME_DEF_STMT (rslt) = ass;
3000 block_stmt_iterator dest = bsi;
3001 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3002 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3004 GIMPLE_STMT_OPERAND (ass, 1) = def;
3005 update_stmt (ass);
3008 return 0;