[AArch64] PR target/65491: Classify V1TF vectors as AAPCS64 short vectors rather...
[official-gcc.git] / gcc / sched-rgn.c
blobfd53a3f8621853a2e756c51529ea701f5d0c8e92
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "hashtab.h"
56 #include "hash-set.h"
57 #include "vec.h"
58 #include "machmode.h"
59 #include "input.h"
60 #include "function.h"
61 #include "profile.h"
62 #include "flags.h"
63 #include "insn-config.h"
64 #include "insn-attr.h"
65 #include "except.h"
66 #include "recog.h"
67 #include "params.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "cfganal.h"
71 #include "predict.h"
72 #include "basic-block.h"
73 #include "sched-int.h"
74 #include "sel-sched.h"
75 #include "target.h"
76 #include "tree-pass.h"
77 #include "dbgcnt.h"
79 #ifdef INSN_SCHEDULING
81 /* Some accessor macros for h_i_d members only used within this file. */
82 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
83 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
85 /* nr_inter/spec counts interblock/speculative motion for the function. */
86 static int nr_inter, nr_spec;
88 static int is_cfg_nonregular (void);
90 /* Number of regions in the procedure. */
91 int nr_regions = 0;
93 /* Same as above before adding any new regions. */
94 static int nr_regions_initial = 0;
96 /* Table of region descriptions. */
97 region *rgn_table = NULL;
99 /* Array of lists of regions' blocks. */
100 int *rgn_bb_table = NULL;
102 /* Topological order of blocks in the region (if b2 is reachable from
103 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
104 always referred to by either block or b, while its topological
105 order name (in the region) is referred to by bb. */
106 int *block_to_bb = NULL;
108 /* The number of the region containing a block. */
109 int *containing_rgn = NULL;
111 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
112 Currently we can get a ebb only through splitting of currently
113 scheduling block, therefore, we don't need ebb_head array for every region,
114 hence, its sufficient to hold it for current one only. */
115 int *ebb_head = NULL;
117 /* The minimum probability of reaching a source block so that it will be
118 considered for speculative scheduling. */
119 static int min_spec_prob;
121 static void find_single_block_region (bool);
122 static void find_rgns (void);
123 static bool too_large (int, int *, int *);
125 /* Blocks of the current region being scheduled. */
126 int current_nr_blocks;
127 int current_blocks;
129 /* A speculative motion requires checking live information on the path
130 from 'source' to 'target'. The split blocks are those to be checked.
131 After a speculative motion, live information should be modified in
132 the 'update' blocks.
134 Lists of split and update blocks for each candidate of the current
135 target are in array bblst_table. */
136 static basic_block *bblst_table;
137 static int bblst_size, bblst_last;
139 /* Arrays that hold the DFA state at the end of a basic block, to re-use
140 as the initial state at the start of successor blocks. The BB_STATE
141 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
142 into BB_STATE for basic block I. FIXME: This should be a vec. */
143 static char *bb_state_array = NULL;
144 static state_t *bb_state = NULL;
146 /* Target info declarations.
148 The block currently being scheduled is referred to as the "target" block,
149 while other blocks in the region from which insns can be moved to the
150 target are called "source" blocks. The candidate structure holds info
151 about such sources: are they valid? Speculative? Etc. */
152 typedef struct
154 basic_block *first_member;
155 int nr_members;
157 bblst;
159 typedef struct
161 char is_valid;
162 char is_speculative;
163 int src_prob;
164 bblst split_bbs;
165 bblst update_bbs;
167 candidate;
169 static candidate *candidate_table;
170 #define IS_VALID(src) (candidate_table[src].is_valid)
171 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
172 #define IS_SPECULATIVE_INSN(INSN) \
173 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
174 #define SRC_PROB(src) ( candidate_table[src].src_prob )
176 /* The bb being currently scheduled. */
177 int target_bb;
179 /* List of edges. */
180 typedef struct
182 edge *first_member;
183 int nr_members;
185 edgelst;
187 static edge *edgelst_table;
188 static int edgelst_last;
190 static void extract_edgelst (sbitmap, edgelst *);
192 /* Target info functions. */
193 static void split_edges (int, int, edgelst *);
194 static void compute_trg_info (int);
195 void debug_candidate (int);
196 void debug_candidates (int);
198 /* Dominators array: dom[i] contains the sbitmap of dominators of
199 bb i in the region. */
200 static sbitmap *dom;
202 /* bb 0 is the only region entry. */
203 #define IS_RGN_ENTRY(bb) (!bb)
205 /* Is bb_src dominated by bb_trg. */
206 #define IS_DOMINATED(bb_src, bb_trg) \
207 ( bitmap_bit_p (dom[bb_src], bb_trg) )
209 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
210 the probability of bb i relative to the region entry. */
211 static int *prob;
213 /* Bit-set of edges, where bit i stands for edge i. */
214 typedef sbitmap edgeset;
216 /* Number of edges in the region. */
217 static int rgn_nr_edges;
219 /* Array of size rgn_nr_edges. */
220 static edge *rgn_edges;
222 /* Mapping from each edge in the graph to its number in the rgn. */
223 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
224 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
226 /* The split edges of a source bb is different for each target
227 bb. In order to compute this efficiently, the 'potential-split edges'
228 are computed for each bb prior to scheduling a region. This is actually
229 the split edges of each bb relative to the region entry.
231 pot_split[bb] is the set of potential split edges of bb. */
232 static edgeset *pot_split;
234 /* For every bb, a set of its ancestor edges. */
235 static edgeset *ancestor_edges;
237 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
239 /* Speculative scheduling functions. */
240 static int check_live_1 (int, rtx);
241 static void update_live_1 (int, rtx);
242 static int is_pfree (rtx, int, int);
243 static int find_conditional_protection (rtx_insn *, int);
244 static int is_conditionally_protected (rtx, int, int);
245 static int is_prisky (rtx, int, int);
246 static int is_exception_free (rtx_insn *, int, int);
248 static bool sets_likely_spilled (rtx);
249 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
250 static void add_branch_dependences (rtx_insn *, rtx_insn *);
251 static void compute_block_dependences (int);
253 static void schedule_region (int);
254 static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
255 rtx_insn_list **, rtx_expr_list **);
256 static void propagate_deps (int, struct deps_desc *);
257 static void free_pending_lists (void);
259 /* Functions for construction of the control flow graph. */
261 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
263 We decide not to build the control flow graph if there is possibly more
264 than one entry to the function, if computed branches exist, if we
265 have nonlocal gotos, or if we have an unreachable loop. */
267 static int
268 is_cfg_nonregular (void)
270 basic_block b;
271 rtx_insn *insn;
273 /* If we have a label that could be the target of a nonlocal goto, then
274 the cfg is not well structured. */
275 if (nonlocal_goto_handler_labels)
276 return 1;
278 /* If we have any forced labels, then the cfg is not well structured. */
279 if (forced_labels)
280 return 1;
282 /* If we have exception handlers, then we consider the cfg not well
283 structured. ?!? We should be able to handle this now that we
284 compute an accurate cfg for EH. */
285 if (current_function_has_exception_handlers ())
286 return 1;
288 /* If we have insns which refer to labels as non-jumped-to operands,
289 then we consider the cfg not well structured. */
290 FOR_EACH_BB_FN (b, cfun)
291 FOR_BB_INSNS (b, insn)
293 rtx note, set, dest;
294 rtx_insn *next;
296 /* If this function has a computed jump, then we consider the cfg
297 not well structured. */
298 if (JUMP_P (insn) && computed_jump_p (insn))
299 return 1;
301 if (!INSN_P (insn))
302 continue;
304 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
305 if (note == NULL_RTX)
306 continue;
308 /* For that label not to be seen as a referred-to label, this
309 must be a single-set which is feeding a jump *only*. This
310 could be a conditional jump with the label split off for
311 machine-specific reasons or a casesi/tablejump. */
312 next = next_nonnote_insn (insn);
313 if (next == NULL_RTX
314 || !JUMP_P (next)
315 || (JUMP_LABEL (next) != XEXP (note, 0)
316 && find_reg_note (next, REG_LABEL_TARGET,
317 XEXP (note, 0)) == NULL_RTX)
318 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
319 return 1;
321 set = single_set (insn);
322 if (set == NULL_RTX)
323 return 1;
325 dest = SET_DEST (set);
326 if (!REG_P (dest) || !dead_or_set_p (next, dest))
327 return 1;
330 /* Unreachable loops with more than one basic block are detected
331 during the DFS traversal in find_rgns.
333 Unreachable loops with a single block are detected here. This
334 test is redundant with the one in find_rgns, but it's much
335 cheaper to go ahead and catch the trivial case here. */
336 FOR_EACH_BB_FN (b, cfun)
338 if (EDGE_COUNT (b->preds) == 0
339 || (single_pred_p (b)
340 && single_pred (b) == b))
341 return 1;
344 /* All the tests passed. Consider the cfg well structured. */
345 return 0;
348 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
350 static void
351 extract_edgelst (sbitmap set, edgelst *el)
353 unsigned int i = 0;
354 sbitmap_iterator sbi;
356 /* edgelst table space is reused in each call to extract_edgelst. */
357 edgelst_last = 0;
359 el->first_member = &edgelst_table[edgelst_last];
360 el->nr_members = 0;
362 /* Iterate over each word in the bitset. */
363 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
365 edgelst_table[edgelst_last++] = rgn_edges[i];
366 el->nr_members++;
370 /* Functions for the construction of regions. */
372 /* Print the regions, for debugging purposes. Callable from debugger. */
374 DEBUG_FUNCTION void
375 debug_regions (void)
377 int rgn, bb;
379 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
380 for (rgn = 0; rgn < nr_regions; rgn++)
382 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
383 rgn_table[rgn].rgn_nr_blocks);
384 fprintf (sched_dump, ";;\tbb/block: ");
386 /* We don't have ebb_head initialized yet, so we can't use
387 BB_TO_BLOCK (). */
388 current_blocks = RGN_BLOCKS (rgn);
390 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
391 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
393 fprintf (sched_dump, "\n\n");
397 /* Print the region's basic blocks. */
399 DEBUG_FUNCTION void
400 debug_region (int rgn)
402 int bb;
404 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
405 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
406 rgn_table[rgn].rgn_nr_blocks);
407 fprintf (stderr, ";;\tbb/block: ");
409 /* We don't have ebb_head initialized yet, so we can't use
410 BB_TO_BLOCK (). */
411 current_blocks = RGN_BLOCKS (rgn);
413 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
414 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
416 fprintf (stderr, "\n\n");
418 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
420 dump_bb (stderr,
421 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
422 0, TDF_SLIM | TDF_BLOCKS);
423 fprintf (stderr, "\n");
426 fprintf (stderr, "\n");
430 /* True when a bb with index BB_INDEX contained in region RGN. */
431 static bool
432 bb_in_region_p (int bb_index, int rgn)
434 int i;
436 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
437 if (rgn_bb_table[current_blocks + i] == bb_index)
438 return true;
440 return false;
443 /* Dump region RGN to file F using dot syntax. */
444 void
445 dump_region_dot (FILE *f, int rgn)
447 int i;
449 fprintf (f, "digraph Region_%d {\n", rgn);
451 /* We don't have ebb_head initialized yet, so we can't use
452 BB_TO_BLOCK (). */
453 current_blocks = RGN_BLOCKS (rgn);
455 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
457 edge e;
458 edge_iterator ei;
459 int src_bb_num = rgn_bb_table[current_blocks + i];
460 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
462 FOR_EACH_EDGE (e, ei, bb->succs)
463 if (bb_in_region_p (e->dest->index, rgn))
464 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
466 fprintf (f, "}\n");
469 /* The same, but first open a file specified by FNAME. */
470 void
471 dump_region_dot_file (const char *fname, int rgn)
473 FILE *f = fopen (fname, "wt");
474 dump_region_dot (f, rgn);
475 fclose (f);
478 /* Build a single block region for each basic block in the function.
479 This allows for using the same code for interblock and basic block
480 scheduling. */
482 static void
483 find_single_block_region (bool ebbs_p)
485 basic_block bb, ebb_start;
486 int i = 0;
488 nr_regions = 0;
490 if (ebbs_p) {
491 int probability_cutoff;
492 if (profile_info && flag_branch_probabilities)
493 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
494 else
495 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
496 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
498 FOR_EACH_BB_FN (ebb_start, cfun)
500 RGN_NR_BLOCKS (nr_regions) = 0;
501 RGN_BLOCKS (nr_regions) = i;
502 RGN_DONT_CALC_DEPS (nr_regions) = 0;
503 RGN_HAS_REAL_EBB (nr_regions) = 0;
505 for (bb = ebb_start; ; bb = bb->next_bb)
507 edge e;
509 rgn_bb_table[i] = bb->index;
510 RGN_NR_BLOCKS (nr_regions)++;
511 CONTAINING_RGN (bb->index) = nr_regions;
512 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
513 i++;
515 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
516 || LABEL_P (BB_HEAD (bb->next_bb)))
517 break;
519 e = find_fallthru_edge (bb->succs);
520 if (! e)
521 break;
522 if (e->probability <= probability_cutoff)
523 break;
526 ebb_start = bb;
527 nr_regions++;
530 else
531 FOR_EACH_BB_FN (bb, cfun)
533 rgn_bb_table[nr_regions] = bb->index;
534 RGN_NR_BLOCKS (nr_regions) = 1;
535 RGN_BLOCKS (nr_regions) = nr_regions;
536 RGN_DONT_CALC_DEPS (nr_regions) = 0;
537 RGN_HAS_REAL_EBB (nr_regions) = 0;
539 CONTAINING_RGN (bb->index) = nr_regions;
540 BLOCK_TO_BB (bb->index) = 0;
541 nr_regions++;
545 /* Estimate number of the insns in the BB. */
546 static int
547 rgn_estimate_number_of_insns (basic_block bb)
549 int count;
551 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
553 if (MAY_HAVE_DEBUG_INSNS)
555 rtx_insn *insn;
557 FOR_BB_INSNS (bb, insn)
558 if (DEBUG_INSN_P (insn))
559 count--;
562 return count;
565 /* Update number of blocks and the estimate for number of insns
566 in the region. Return true if the region is "too large" for interblock
567 scheduling (compile time considerations). */
569 static bool
570 too_large (int block, int *num_bbs, int *num_insns)
572 (*num_bbs)++;
573 (*num_insns) += (common_sched_info->estimate_number_of_insns
574 (BASIC_BLOCK_FOR_FN (cfun, block)));
576 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
577 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
580 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
581 is still an inner loop. Put in max_hdr[blk] the header of the most inner
582 loop containing blk. */
583 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
585 if (max_hdr[blk] == -1) \
586 max_hdr[blk] = hdr; \
587 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
588 bitmap_clear_bit (inner, hdr); \
589 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
591 bitmap_clear_bit (inner,max_hdr[blk]); \
592 max_hdr[blk] = hdr; \
596 /* Find regions for interblock scheduling.
598 A region for scheduling can be:
600 * A loop-free procedure, or
602 * A reducible inner loop, or
604 * A basic block not contained in any other region.
606 ?!? In theory we could build other regions based on extended basic
607 blocks or reverse extended basic blocks. Is it worth the trouble?
609 Loop blocks that form a region are put into the region's block list
610 in topological order.
612 This procedure stores its results into the following global (ick) variables
614 * rgn_nr
615 * rgn_table
616 * rgn_bb_table
617 * block_to_bb
618 * containing region
620 We use dominator relationships to avoid making regions out of non-reducible
621 loops.
623 This procedure needs to be converted to work on pred/succ lists instead
624 of edge tables. That would simplify it somewhat. */
626 static void
627 haifa_find_rgns (void)
629 int *max_hdr, *dfs_nr, *degree;
630 char no_loops = 1;
631 int node, child, loop_head, i, head, tail;
632 int count = 0, sp, idx = 0;
633 edge_iterator current_edge;
634 edge_iterator *stack;
635 int num_bbs, num_insns, unreachable;
636 int too_large_failure;
637 basic_block bb;
639 /* Note if a block is a natural loop header. */
640 sbitmap header;
642 /* Note if a block is a natural inner loop header. */
643 sbitmap inner;
645 /* Note if a block is in the block queue. */
646 sbitmap in_queue;
648 /* Note if a block is in the block queue. */
649 sbitmap in_stack;
651 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
652 and a mapping from block to its loop header (if the block is contained
653 in a loop, else -1).
655 Store results in HEADER, INNER, and MAX_HDR respectively, these will
656 be used as inputs to the second traversal.
658 STACK, SP and DFS_NR are only used during the first traversal. */
660 /* Allocate and initialize variables for the first traversal. */
661 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
662 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
663 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
665 inner = sbitmap_alloc (last_basic_block_for_fn (cfun));
666 bitmap_ones (inner);
668 header = sbitmap_alloc (last_basic_block_for_fn (cfun));
669 bitmap_clear (header);
671 in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
672 bitmap_clear (in_queue);
674 in_stack = sbitmap_alloc (last_basic_block_for_fn (cfun));
675 bitmap_clear (in_stack);
677 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
678 max_hdr[i] = -1;
680 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
681 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
683 /* DFS traversal to find inner loops in the cfg. */
685 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
686 sp = -1;
688 while (1)
690 if (EDGE_PASSED (current_edge))
692 /* We have reached a leaf node or a node that was already
693 processed. Pop edges off the stack until we find
694 an edge that has not yet been processed. */
695 while (sp >= 0 && EDGE_PASSED (current_edge))
697 /* Pop entry off the stack. */
698 current_edge = stack[sp--];
699 node = ei_edge (current_edge)->src->index;
700 gcc_assert (node != ENTRY_BLOCK);
701 child = ei_edge (current_edge)->dest->index;
702 gcc_assert (child != EXIT_BLOCK);
703 bitmap_clear_bit (in_stack, child);
704 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
705 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
706 ei_next (&current_edge);
709 /* See if have finished the DFS tree traversal. */
710 if (sp < 0 && EDGE_PASSED (current_edge))
711 break;
713 /* Nope, continue the traversal with the popped node. */
714 continue;
717 /* Process a node. */
718 node = ei_edge (current_edge)->src->index;
719 gcc_assert (node != ENTRY_BLOCK);
720 bitmap_set_bit (in_stack, node);
721 dfs_nr[node] = ++count;
723 /* We don't traverse to the exit block. */
724 child = ei_edge (current_edge)->dest->index;
725 if (child == EXIT_BLOCK)
727 SET_EDGE_PASSED (current_edge);
728 ei_next (&current_edge);
729 continue;
732 /* If the successor is in the stack, then we've found a loop.
733 Mark the loop, if it is not a natural loop, then it will
734 be rejected during the second traversal. */
735 if (bitmap_bit_p (in_stack, child))
737 no_loops = 0;
738 bitmap_set_bit (header, child);
739 UPDATE_LOOP_RELATIONS (node, child);
740 SET_EDGE_PASSED (current_edge);
741 ei_next (&current_edge);
742 continue;
745 /* If the child was already visited, then there is no need to visit
746 it again. Just update the loop relationships and restart
747 with a new edge. */
748 if (dfs_nr[child])
750 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
751 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
752 SET_EDGE_PASSED (current_edge);
753 ei_next (&current_edge);
754 continue;
757 /* Push an entry on the stack and continue DFS traversal. */
758 stack[++sp] = current_edge;
759 SET_EDGE_PASSED (current_edge);
760 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
763 /* Reset ->aux field used by EDGE_PASSED. */
764 FOR_ALL_BB_FN (bb, cfun)
766 edge_iterator ei;
767 edge e;
768 FOR_EACH_EDGE (e, ei, bb->succs)
769 e->aux = NULL;
773 /* Another check for unreachable blocks. The earlier test in
774 is_cfg_nonregular only finds unreachable blocks that do not
775 form a loop.
777 The DFS traversal will mark every block that is reachable from
778 the entry node by placing a nonzero value in dfs_nr. Thus if
779 dfs_nr is zero for any block, then it must be unreachable. */
780 unreachable = 0;
781 FOR_EACH_BB_FN (bb, cfun)
782 if (dfs_nr[bb->index] == 0)
784 unreachable = 1;
785 break;
788 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
789 to hold degree counts. */
790 degree = dfs_nr;
792 FOR_EACH_BB_FN (bb, cfun)
793 degree[bb->index] = EDGE_COUNT (bb->preds);
795 /* Do not perform region scheduling if there are any unreachable
796 blocks. */
797 if (!unreachable)
799 int *queue, *degree1 = NULL;
800 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
801 there basic blocks, which are forced to be region heads.
802 This is done to try to assemble few smaller regions
803 from a too_large region. */
804 sbitmap extended_rgn_header = NULL;
805 bool extend_regions_p;
807 if (no_loops)
808 bitmap_set_bit (header, 0);
810 /* Second traversal:find reducible inner loops and topologically sort
811 block of each region. */
813 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
815 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
816 if (extend_regions_p)
818 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
819 extended_rgn_header =
820 sbitmap_alloc (last_basic_block_for_fn (cfun));
821 bitmap_clear (extended_rgn_header);
824 /* Find blocks which are inner loop headers. We still have non-reducible
825 loops to consider at this point. */
826 FOR_EACH_BB_FN (bb, cfun)
828 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
830 edge e;
831 edge_iterator ei;
832 basic_block jbb;
834 /* Now check that the loop is reducible. We do this separate
835 from finding inner loops so that we do not find a reducible
836 loop which contains an inner non-reducible loop.
838 A simple way to find reducible/natural loops is to verify
839 that each block in the loop is dominated by the loop
840 header.
842 If there exists a block that is not dominated by the loop
843 header, then the block is reachable from outside the loop
844 and thus the loop is not a natural loop. */
845 FOR_EACH_BB_FN (jbb, cfun)
847 /* First identify blocks in the loop, except for the loop
848 entry block. */
849 if (bb->index == max_hdr[jbb->index] && bb != jbb)
851 /* Now verify that the block is dominated by the loop
852 header. */
853 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
854 break;
858 /* If we exited the loop early, then I is the header of
859 a non-reducible loop and we should quit processing it
860 now. */
861 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
862 continue;
864 /* I is a header of an inner loop, or block 0 in a subroutine
865 with no loops at all. */
866 head = tail = -1;
867 too_large_failure = 0;
868 loop_head = max_hdr[bb->index];
870 if (extend_regions_p)
871 /* We save degree in case when we meet a too_large region
872 and cancel it. We need a correct degree later when
873 calling extend_rgns. */
874 memcpy (degree1, degree,
875 last_basic_block_for_fn (cfun) * sizeof (int));
877 /* Decrease degree of all I's successors for topological
878 ordering. */
879 FOR_EACH_EDGE (e, ei, bb->succs)
880 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
881 --degree[e->dest->index];
883 /* Estimate # insns, and count # blocks in the region. */
884 num_bbs = 1;
885 num_insns = common_sched_info->estimate_number_of_insns (bb);
887 /* Find all loop latches (blocks with back edges to the loop
888 header) or all the leaf blocks in the cfg has no loops.
890 Place those blocks into the queue. */
891 if (no_loops)
893 FOR_EACH_BB_FN (jbb, cfun)
894 /* Leaf nodes have only a single successor which must
895 be EXIT_BLOCK. */
896 if (single_succ_p (jbb)
897 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
899 queue[++tail] = jbb->index;
900 bitmap_set_bit (in_queue, jbb->index);
902 if (too_large (jbb->index, &num_bbs, &num_insns))
904 too_large_failure = 1;
905 break;
909 else
911 edge e;
913 FOR_EACH_EDGE (e, ei, bb->preds)
915 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
916 continue;
918 node = e->src->index;
920 if (max_hdr[node] == loop_head && node != bb->index)
922 /* This is a loop latch. */
923 queue[++tail] = node;
924 bitmap_set_bit (in_queue, node);
926 if (too_large (node, &num_bbs, &num_insns))
928 too_large_failure = 1;
929 break;
935 /* Now add all the blocks in the loop to the queue.
937 We know the loop is a natural loop; however the algorithm
938 above will not always mark certain blocks as being in the
939 loop. Consider:
940 node children
941 a b,c
943 c a,d
946 The algorithm in the DFS traversal may not mark B & D as part
947 of the loop (i.e. they will not have max_hdr set to A).
949 We know they can not be loop latches (else they would have
950 had max_hdr set since they'd have a backedge to a dominator
951 block). So we don't need them on the initial queue.
953 We know they are part of the loop because they are dominated
954 by the loop header and can be reached by a backwards walk of
955 the edges starting with nodes on the initial queue.
957 It is safe and desirable to include those nodes in the
958 loop/scheduling region. To do so we would need to decrease
959 the degree of a node if it is the target of a backedge
960 within the loop itself as the node is placed in the queue.
962 We do not do this because I'm not sure that the actual
963 scheduling code will properly handle this case. ?!? */
965 while (head < tail && !too_large_failure)
967 edge e;
968 child = queue[++head];
970 FOR_EACH_EDGE (e, ei,
971 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
973 node = e->src->index;
975 /* See discussion above about nodes not marked as in
976 this loop during the initial DFS traversal. */
977 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
978 || max_hdr[node] != loop_head)
980 tail = -1;
981 break;
983 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
985 queue[++tail] = node;
986 bitmap_set_bit (in_queue, node);
988 if (too_large (node, &num_bbs, &num_insns))
990 too_large_failure = 1;
991 break;
997 if (tail >= 0 && !too_large_failure)
999 /* Place the loop header into list of region blocks. */
1000 degree[bb->index] = -1;
1001 rgn_bb_table[idx] = bb->index;
1002 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1003 RGN_BLOCKS (nr_regions) = idx++;
1004 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1005 RGN_HAS_REAL_EBB (nr_regions) = 0;
1006 CONTAINING_RGN (bb->index) = nr_regions;
1007 BLOCK_TO_BB (bb->index) = count = 0;
1009 /* Remove blocks from queue[] when their in degree
1010 becomes zero. Repeat until no blocks are left on the
1011 list. This produces a topological list of blocks in
1012 the region. */
1013 while (tail >= 0)
1015 if (head < 0)
1016 head = tail;
1017 child = queue[head];
1018 if (degree[child] == 0)
1020 edge e;
1022 degree[child] = -1;
1023 rgn_bb_table[idx++] = child;
1024 BLOCK_TO_BB (child) = ++count;
1025 CONTAINING_RGN (child) = nr_regions;
1026 queue[head] = queue[tail--];
1028 FOR_EACH_EDGE (e, ei,
1029 BASIC_BLOCK_FOR_FN (cfun,
1030 child)->succs)
1031 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1032 --degree[e->dest->index];
1034 else
1035 --head;
1037 ++nr_regions;
1039 else if (extend_regions_p)
1041 /* Restore DEGREE. */
1042 int *t = degree;
1044 degree = degree1;
1045 degree1 = t;
1047 /* And force successors of BB to be region heads.
1048 This may provide several smaller regions instead
1049 of one too_large region. */
1050 FOR_EACH_EDGE (e, ei, bb->succs)
1051 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1052 bitmap_set_bit (extended_rgn_header, e->dest->index);
1056 free (queue);
1058 if (extend_regions_p)
1060 free (degree1);
1062 bitmap_ior (header, header, extended_rgn_header);
1063 sbitmap_free (extended_rgn_header);
1065 extend_rgns (degree, &idx, header, max_hdr);
1069 /* Any block that did not end up in a region is placed into a region
1070 by itself. */
1071 FOR_EACH_BB_FN (bb, cfun)
1072 if (degree[bb->index] >= 0)
1074 rgn_bb_table[idx] = bb->index;
1075 RGN_NR_BLOCKS (nr_regions) = 1;
1076 RGN_BLOCKS (nr_regions) = idx++;
1077 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1078 RGN_HAS_REAL_EBB (nr_regions) = 0;
1079 CONTAINING_RGN (bb->index) = nr_regions++;
1080 BLOCK_TO_BB (bb->index) = 0;
1083 free (max_hdr);
1084 free (degree);
1085 free (stack);
1086 sbitmap_free (header);
1087 sbitmap_free (inner);
1088 sbitmap_free (in_queue);
1089 sbitmap_free (in_stack);
1093 /* Wrapper function.
1094 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1095 regions. Otherwise just call find_rgns_haifa. */
1096 static void
1097 find_rgns (void)
1099 if (sel_sched_p () && flag_sel_sched_pipelining)
1100 sel_find_rgns ();
1101 else
1102 haifa_find_rgns ();
1105 static int gather_region_statistics (int **);
1106 static void print_region_statistics (int *, int, int *, int);
1108 /* Calculate the histogram that shows the number of regions having the
1109 given number of basic blocks, and store it in the RSP array. Return
1110 the size of this array. */
1111 static int
1112 gather_region_statistics (int **rsp)
1114 int i, *a = 0, a_sz = 0;
1116 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1117 for (i = 0; i < nr_regions; i++)
1119 int nr_blocks = RGN_NR_BLOCKS (i);
1121 gcc_assert (nr_blocks >= 1);
1123 if (nr_blocks > a_sz)
1125 a = XRESIZEVEC (int, a, nr_blocks);
1127 a[a_sz++] = 0;
1128 while (a_sz != nr_blocks);
1131 a[nr_blocks - 1]++;
1134 *rsp = a;
1135 return a_sz;
1138 /* Print regions statistics. S1 and S2 denote the data before and after
1139 calling extend_rgns, respectively. */
1140 static void
1141 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1143 int i;
1145 /* We iterate until s2_sz because extend_rgns does not decrease
1146 the maximal region size. */
1147 for (i = 1; i < s2_sz; i++)
1149 int n1, n2;
1151 n2 = s2[i];
1153 if (n2 == 0)
1154 continue;
1156 if (i >= s1_sz)
1157 n1 = 0;
1158 else
1159 n1 = s1[i];
1161 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1162 "was %d + %d more\n", i + 1, n1, n2 - n1);
1166 /* Extend regions.
1167 DEGREE - Array of incoming edge count, considering only
1168 the edges, that don't have their sources in formed regions yet.
1169 IDXP - pointer to the next available index in rgn_bb_table.
1170 HEADER - set of all region heads.
1171 LOOP_HDR - mapping from block to the containing loop
1172 (two blocks can reside within one region if they have
1173 the same loop header). */
1174 void
1175 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1177 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1178 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1180 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1182 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1184 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1185 post_order_compute (order, false, false);
1187 for (i = nblocks - 1; i >= 0; i--)
1189 int bbn = order[i];
1190 if (degree[bbn] >= 0)
1192 max_hdr[bbn] = bbn;
1193 rescan = 1;
1195 else
1196 /* This block already was processed in find_rgns. */
1197 max_hdr[bbn] = -1;
1200 /* The idea is to topologically walk through CFG in top-down order.
1201 During the traversal, if all the predecessors of a node are
1202 marked to be in the same region (they all have the same max_hdr),
1203 then current node is also marked to be a part of that region.
1204 Otherwise the node starts its own region.
1205 CFG should be traversed until no further changes are made. On each
1206 iteration the set of the region heads is extended (the set of those
1207 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1208 set of all basic blocks, thus the algorithm is guaranteed to
1209 terminate. */
1211 while (rescan && iter < max_iter)
1213 rescan = 0;
1215 for (i = nblocks - 1; i >= 0; i--)
1217 edge e;
1218 edge_iterator ei;
1219 int bbn = order[i];
1221 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1223 int hdr = -1;
1225 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1227 int predn = e->src->index;
1229 if (predn != ENTRY_BLOCK
1230 /* If pred wasn't processed in find_rgns. */
1231 && max_hdr[predn] != -1
1232 /* And pred and bb reside in the same loop.
1233 (Or out of any loop). */
1234 && loop_hdr[bbn] == loop_hdr[predn])
1236 if (hdr == -1)
1237 /* Then bb extends the containing region of pred. */
1238 hdr = max_hdr[predn];
1239 else if (hdr != max_hdr[predn])
1240 /* Too bad, there are at least two predecessors
1241 that reside in different regions. Thus, BB should
1242 begin its own region. */
1244 hdr = bbn;
1245 break;
1248 else
1249 /* BB starts its own region. */
1251 hdr = bbn;
1252 break;
1256 if (hdr == bbn)
1258 /* If BB start its own region,
1259 update set of headers with BB. */
1260 bitmap_set_bit (header, bbn);
1261 rescan = 1;
1263 else
1264 gcc_assert (hdr != -1);
1266 max_hdr[bbn] = hdr;
1270 iter++;
1273 /* Statistics were gathered on the SPEC2000 package of tests with
1274 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1276 Statistics for SPECint:
1277 1 iteration : 1751 cases (38.7%)
1278 2 iterations: 2770 cases (61.3%)
1279 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1280 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1281 (We don't count single block regions here).
1283 Statistics for SPECfp:
1284 1 iteration : 621 cases (35.9%)
1285 2 iterations: 1110 cases (64.1%)
1286 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1287 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1288 (We don't count single block regions here).
1290 By default we do at most 2 iterations.
1291 This can be overridden with max-sched-extend-regions-iters parameter:
1292 0 - disable region extension,
1293 N > 0 - do at most N iterations. */
1295 if (sched_verbose && iter != 0)
1296 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1297 rescan ? "... failed" : "");
1299 if (!rescan && iter != 0)
1301 int *s1 = NULL, s1_sz = 0;
1303 /* Save the old statistics for later printout. */
1304 if (sched_verbose >= 6)
1305 s1_sz = gather_region_statistics (&s1);
1307 /* We have succeeded. Now assemble the regions. */
1308 for (i = nblocks - 1; i >= 0; i--)
1310 int bbn = order[i];
1312 if (max_hdr[bbn] == bbn)
1313 /* BBN is a region head. */
1315 edge e;
1316 edge_iterator ei;
1317 int num_bbs = 0, j, num_insns = 0, large;
1319 large = too_large (bbn, &num_bbs, &num_insns);
1321 degree[bbn] = -1;
1322 rgn_bb_table[idx] = bbn;
1323 RGN_BLOCKS (nr_regions) = idx++;
1324 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1325 RGN_HAS_REAL_EBB (nr_regions) = 0;
1326 CONTAINING_RGN (bbn) = nr_regions;
1327 BLOCK_TO_BB (bbn) = 0;
1329 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1330 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1331 degree[e->dest->index]--;
1333 if (!large)
1334 /* Here we check whether the region is too_large. */
1335 for (j = i - 1; j >= 0; j--)
1337 int succn = order[j];
1338 if (max_hdr[succn] == bbn)
1340 if ((large = too_large (succn, &num_bbs, &num_insns)))
1341 break;
1345 if (large)
1346 /* If the region is too_large, then wrap every block of
1347 the region into single block region.
1348 Here we wrap region head only. Other blocks are
1349 processed in the below cycle. */
1351 RGN_NR_BLOCKS (nr_regions) = 1;
1352 nr_regions++;
1355 num_bbs = 1;
1357 for (j = i - 1; j >= 0; j--)
1359 int succn = order[j];
1361 if (max_hdr[succn] == bbn)
1362 /* This cycle iterates over all basic blocks, that
1363 are supposed to be in the region with head BBN,
1364 and wraps them into that region (or in single
1365 block region). */
1367 gcc_assert (degree[succn] == 0);
1369 degree[succn] = -1;
1370 rgn_bb_table[idx] = succn;
1371 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1372 CONTAINING_RGN (succn) = nr_regions;
1374 if (large)
1375 /* Wrap SUCCN into single block region. */
1377 RGN_BLOCKS (nr_regions) = idx;
1378 RGN_NR_BLOCKS (nr_regions) = 1;
1379 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1380 RGN_HAS_REAL_EBB (nr_regions) = 0;
1381 nr_regions++;
1384 idx++;
1386 FOR_EACH_EDGE (e, ei,
1387 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1388 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1389 degree[e->dest->index]--;
1393 if (!large)
1395 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1396 nr_regions++;
1401 if (sched_verbose >= 6)
1403 int *s2, s2_sz;
1405 /* Get the new statistics and print the comparison with the
1406 one before calling this function. */
1407 s2_sz = gather_region_statistics (&s2);
1408 print_region_statistics (s1, s1_sz, s2, s2_sz);
1409 free (s1);
1410 free (s2);
1414 free (order);
1415 free (max_hdr);
1417 *idxp = idx;
1420 /* Functions for regions scheduling information. */
1422 /* Compute dominators, probability, and potential-split-edges of bb.
1423 Assume that these values were already computed for bb's predecessors. */
1425 static void
1426 compute_dom_prob_ps (int bb)
1428 edge_iterator in_ei;
1429 edge in_edge;
1431 /* We shouldn't have any real ebbs yet. */
1432 gcc_assert (ebb_head [bb] == bb + current_blocks);
1434 if (IS_RGN_ENTRY (bb))
1436 bitmap_set_bit (dom[bb], 0);
1437 prob[bb] = REG_BR_PROB_BASE;
1438 return;
1441 prob[bb] = 0;
1443 /* Initialize dom[bb] to '111..1'. */
1444 bitmap_ones (dom[bb]);
1446 FOR_EACH_EDGE (in_edge, in_ei,
1447 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1449 int pred_bb;
1450 edge out_edge;
1451 edge_iterator out_ei;
1453 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1454 continue;
1456 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1457 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1458 bitmap_ior (ancestor_edges[bb],
1459 ancestor_edges[bb], ancestor_edges[pred_bb]);
1461 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1463 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1465 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1466 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1468 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1469 // The rounding divide in combine_probabilities can result in an extra
1470 // probability increment propagating along 50-50 edges. Eventually when
1471 // the edges re-merge, the accumulated probability can go slightly above
1472 // REG_BR_PROB_BASE.
1473 if (prob[bb] > REG_BR_PROB_BASE)
1474 prob[bb] = REG_BR_PROB_BASE;
1477 bitmap_set_bit (dom[bb], bb);
1478 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1480 if (sched_verbose >= 2)
1481 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1482 (100 * prob[bb]) / REG_BR_PROB_BASE);
1485 /* Functions for target info. */
1487 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1488 Note that bb_trg dominates bb_src. */
1490 static void
1491 split_edges (int bb_src, int bb_trg, edgelst *bl)
1493 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1494 bitmap_copy (src, pot_split[bb_src]);
1496 bitmap_and_compl (src, src, pot_split[bb_trg]);
1497 extract_edgelst (src, bl);
1498 sbitmap_free (src);
1501 /* Find the valid candidate-source-blocks for the target block TRG, compute
1502 their probability, and check if they are speculative or not.
1503 For speculative sources, compute their update-blocks and split-blocks. */
1505 static void
1506 compute_trg_info (int trg)
1508 candidate *sp;
1509 edgelst el = { NULL, 0 };
1510 int i, j, k, update_idx;
1511 basic_block block;
1512 sbitmap visited;
1513 edge_iterator ei;
1514 edge e;
1516 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1518 bblst_last = 0;
1519 /* bblst_table holds split blocks and update blocks for each block after
1520 the current one in the region. split blocks and update blocks are
1521 the TO blocks of region edges, so there can be at most rgn_nr_edges
1522 of them. */
1523 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1524 bblst_table = XNEWVEC (basic_block, bblst_size);
1526 edgelst_last = 0;
1527 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1529 /* Define some of the fields for the target bb as well. */
1530 sp = candidate_table + trg;
1531 sp->is_valid = 1;
1532 sp->is_speculative = 0;
1533 sp->src_prob = REG_BR_PROB_BASE;
1535 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1537 for (i = trg + 1; i < current_nr_blocks; i++)
1539 sp = candidate_table + i;
1541 sp->is_valid = IS_DOMINATED (i, trg);
1542 if (sp->is_valid)
1544 int tf = prob[trg], cf = prob[i];
1546 /* In CFGs with low probability edges TF can possibly be zero. */
1547 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1548 sp->is_valid = (sp->src_prob >= min_spec_prob);
1551 if (sp->is_valid)
1553 split_edges (i, trg, &el);
1554 sp->is_speculative = (el.nr_members) ? 1 : 0;
1555 if (sp->is_speculative && !flag_schedule_speculative)
1556 sp->is_valid = 0;
1559 if (sp->is_valid)
1561 /* Compute split blocks and store them in bblst_table.
1562 The TO block of every split edge is a split block. */
1563 sp->split_bbs.first_member = &bblst_table[bblst_last];
1564 sp->split_bbs.nr_members = el.nr_members;
1565 for (j = 0; j < el.nr_members; bblst_last++, j++)
1566 bblst_table[bblst_last] = el.first_member[j]->dest;
1567 sp->update_bbs.first_member = &bblst_table[bblst_last];
1569 /* Compute update blocks and store them in bblst_table.
1570 For every split edge, look at the FROM block, and check
1571 all out edges. For each out edge that is not a split edge,
1572 add the TO block to the update block list. This list can end
1573 up with a lot of duplicates. We need to weed them out to avoid
1574 overrunning the end of the bblst_table. */
1576 update_idx = 0;
1577 bitmap_clear (visited);
1578 for (j = 0; j < el.nr_members; j++)
1580 block = el.first_member[j]->src;
1581 FOR_EACH_EDGE (e, ei, block->succs)
1583 if (!bitmap_bit_p (visited, e->dest->index))
1585 for (k = 0; k < el.nr_members; k++)
1586 if (e == el.first_member[k])
1587 break;
1589 if (k >= el.nr_members)
1591 bblst_table[bblst_last++] = e->dest;
1592 bitmap_set_bit (visited, e->dest->index);
1593 update_idx++;
1598 sp->update_bbs.nr_members = update_idx;
1600 /* Make sure we didn't overrun the end of bblst_table. */
1601 gcc_assert (bblst_last <= bblst_size);
1603 else
1605 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1607 sp->is_speculative = 0;
1608 sp->src_prob = 0;
1612 sbitmap_free (visited);
1615 /* Free the computed target info. */
1616 static void
1617 free_trg_info (void)
1619 free (candidate_table);
1620 free (bblst_table);
1621 free (edgelst_table);
1624 /* Print candidates info, for debugging purposes. Callable from debugger. */
1626 DEBUG_FUNCTION void
1627 debug_candidate (int i)
1629 if (!candidate_table[i].is_valid)
1630 return;
1632 if (candidate_table[i].is_speculative)
1634 int j;
1635 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1637 fprintf (sched_dump, "split path: ");
1638 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1640 int b = candidate_table[i].split_bbs.first_member[j]->index;
1642 fprintf (sched_dump, " %d ", b);
1644 fprintf (sched_dump, "\n");
1646 fprintf (sched_dump, "update path: ");
1647 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1649 int b = candidate_table[i].update_bbs.first_member[j]->index;
1651 fprintf (sched_dump, " %d ", b);
1653 fprintf (sched_dump, "\n");
1655 else
1657 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1661 /* Print candidates info, for debugging purposes. Callable from debugger. */
1663 DEBUG_FUNCTION void
1664 debug_candidates (int trg)
1666 int i;
1668 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1669 BB_TO_BLOCK (trg), trg);
1670 for (i = trg + 1; i < current_nr_blocks; i++)
1671 debug_candidate (i);
1674 /* Functions for speculative scheduling. */
1676 static bitmap_head not_in_df;
1678 /* Return 0 if x is a set of a register alive in the beginning of one
1679 of the split-blocks of src, otherwise return 1. */
1681 static int
1682 check_live_1 (int src, rtx x)
1684 int i;
1685 int regno;
1686 rtx reg = SET_DEST (x);
1688 if (reg == 0)
1689 return 1;
1691 while (GET_CODE (reg) == SUBREG
1692 || GET_CODE (reg) == ZERO_EXTRACT
1693 || GET_CODE (reg) == STRICT_LOW_PART)
1694 reg = XEXP (reg, 0);
1696 if (GET_CODE (reg) == PARALLEL)
1698 int i;
1700 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1701 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1702 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1703 return 1;
1705 return 0;
1708 if (!REG_P (reg))
1709 return 1;
1711 regno = REGNO (reg);
1713 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1715 /* Global registers are assumed live. */
1716 return 0;
1718 else
1720 if (regno < FIRST_PSEUDO_REGISTER)
1722 /* Check for hard registers. */
1723 int j = REG_NREGS (reg);
1724 while (--j >= 0)
1726 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1728 basic_block b = candidate_table[src].split_bbs.first_member[i];
1729 int t = bitmap_bit_p (&not_in_df, b->index);
1731 /* We can have split blocks, that were recently generated.
1732 Such blocks are always outside current region. */
1733 gcc_assert (!t || (CONTAINING_RGN (b->index)
1734 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1736 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1737 return 0;
1741 else
1743 /* Check for pseudo registers. */
1744 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1746 basic_block b = candidate_table[src].split_bbs.first_member[i];
1747 int t = bitmap_bit_p (&not_in_df, b->index);
1749 gcc_assert (!t || (CONTAINING_RGN (b->index)
1750 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1752 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1753 return 0;
1758 return 1;
1761 /* If x is a set of a register R, mark that R is alive in the beginning
1762 of every update-block of src. */
1764 static void
1765 update_live_1 (int src, rtx x)
1767 int i;
1768 int regno;
1769 rtx reg = SET_DEST (x);
1771 if (reg == 0)
1772 return;
1774 while (GET_CODE (reg) == SUBREG
1775 || GET_CODE (reg) == ZERO_EXTRACT
1776 || GET_CODE (reg) == STRICT_LOW_PART)
1777 reg = XEXP (reg, 0);
1779 if (GET_CODE (reg) == PARALLEL)
1781 int i;
1783 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1784 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1785 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1787 return;
1790 if (!REG_P (reg))
1791 return;
1793 /* Global registers are always live, so the code below does not apply
1794 to them. */
1796 regno = REGNO (reg);
1798 if (! HARD_REGISTER_NUM_P (regno)
1799 || !global_regs[regno])
1801 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1803 basic_block b = candidate_table[src].update_bbs.first_member[i];
1804 bitmap_set_range (df_get_live_in (b), regno, REG_NREGS (reg));
1809 /* Return 1 if insn can be speculatively moved from block src to trg,
1810 otherwise return 0. Called before first insertion of insn to
1811 ready-list or before the scheduling. */
1813 static int
1814 check_live (rtx_insn *insn, int src)
1816 /* Find the registers set by instruction. */
1817 if (GET_CODE (PATTERN (insn)) == SET
1818 || GET_CODE (PATTERN (insn)) == CLOBBER)
1819 return check_live_1 (src, PATTERN (insn));
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1822 int j;
1823 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1824 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1825 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1826 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1827 return 0;
1829 return 1;
1832 return 1;
1835 /* Update the live registers info after insn was moved speculatively from
1836 block src to trg. */
1838 static void
1839 update_live (rtx_insn *insn, int src)
1841 /* Find the registers set by instruction. */
1842 if (GET_CODE (PATTERN (insn)) == SET
1843 || GET_CODE (PATTERN (insn)) == CLOBBER)
1844 update_live_1 (src, PATTERN (insn));
1845 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1847 int j;
1848 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1849 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1850 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1851 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1855 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1856 #define IS_REACHABLE(bb_from, bb_to) \
1857 (bb_from == bb_to \
1858 || IS_RGN_ENTRY (bb_from) \
1859 || (bitmap_bit_p (ancestor_edges[bb_to], \
1860 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1861 BB_TO_BLOCK (bb_from)))))))
1863 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1865 static void
1866 set_spec_fed (rtx load_insn)
1868 sd_iterator_def sd_it;
1869 dep_t dep;
1871 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1872 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1873 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1876 /* On the path from the insn to load_insn_bb, find a conditional
1877 branch depending on insn, that guards the speculative load. */
1879 static int
1880 find_conditional_protection (rtx_insn *insn, int load_insn_bb)
1882 sd_iterator_def sd_it;
1883 dep_t dep;
1885 /* Iterate through DEF-USE forward dependences. */
1886 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1888 rtx_insn *next = DEP_CON (dep);
1890 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1891 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1892 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1893 && load_insn_bb != INSN_BB (next)
1894 && DEP_TYPE (dep) == REG_DEP_TRUE
1895 && (JUMP_P (next)
1896 || find_conditional_protection (next, load_insn_bb)))
1897 return 1;
1899 return 0;
1900 } /* find_conditional_protection */
1902 /* Returns 1 if the same insn1 that participates in the computation
1903 of load_insn's address is feeding a conditional branch that is
1904 guarding on load_insn. This is true if we find two DEF-USE
1905 chains:
1906 insn1 -> ... -> conditional-branch
1907 insn1 -> ... -> load_insn,
1908 and if a flow path exists:
1909 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1910 and if insn1 is on the path
1911 region-entry -> ... -> bb_trg -> ... load_insn.
1913 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1914 Locate the branch by following INSN_FORW_DEPS from insn1. */
1916 static int
1917 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1919 sd_iterator_def sd_it;
1920 dep_t dep;
1922 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1924 rtx_insn *insn1 = DEP_PRO (dep);
1926 /* Must be a DEF-USE dependence upon non-branch. */
1927 if (DEP_TYPE (dep) != REG_DEP_TRUE
1928 || JUMP_P (insn1))
1929 continue;
1931 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1932 if (INSN_BB (insn1) == bb_src
1933 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1934 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1935 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1936 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1937 continue;
1939 /* Now search for the conditional-branch. */
1940 if (find_conditional_protection (insn1, bb_src))
1941 return 1;
1943 /* Recursive step: search another insn1, "above" current insn1. */
1944 return is_conditionally_protected (insn1, bb_src, bb_trg);
1947 /* The chain does not exist. */
1948 return 0;
1949 } /* is_conditionally_protected */
1951 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1952 load_insn can move speculatively from bb_src to bb_trg. All the
1953 following must hold:
1955 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1956 (2) load_insn and load1 have a def-use dependence upon
1957 the same insn 'insn1'.
1958 (3) either load2 is in bb_trg, or:
1959 - there's only one split-block, and
1960 - load1 is on the escape path, and
1962 From all these we can conclude that the two loads access memory
1963 addresses that differ at most by a constant, and hence if moving
1964 load_insn would cause an exception, it would have been caused by
1965 load2 anyhow. */
1967 static int
1968 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1970 sd_iterator_def back_sd_it;
1971 dep_t back_dep;
1972 candidate *candp = candidate_table + bb_src;
1974 if (candp->split_bbs.nr_members != 1)
1975 /* Must have exactly one escape block. */
1976 return 0;
1978 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1980 rtx_insn *insn1 = DEP_PRO (back_dep);
1982 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1983 /* Found a DEF-USE dependence (insn1, load_insn). */
1985 sd_iterator_def fore_sd_it;
1986 dep_t fore_dep;
1988 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1990 rtx_insn *insn2 = DEP_CON (fore_dep);
1992 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1994 /* Found a DEF-USE dependence (insn1, insn2). */
1995 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1996 /* insn2 not guaranteed to be a 1 base reg load. */
1997 continue;
1999 if (INSN_BB (insn2) == bb_trg)
2000 /* insn2 is the similar load, in the target block. */
2001 return 1;
2003 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
2004 /* insn2 is a similar load, in a split-block. */
2005 return 1;
2011 /* Couldn't find a similar load. */
2012 return 0;
2013 } /* is_pfree */
2015 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2016 a load moved speculatively, or if load_insn is protected by
2017 a compare on load_insn's address). */
2019 static int
2020 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2022 if (FED_BY_SPEC_LOAD (load_insn))
2023 return 1;
2025 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2026 /* Dependence may 'hide' out of the region. */
2027 return 1;
2029 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2030 return 1;
2032 return 0;
2035 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2036 Return 1 if insn is exception-free (and the motion is valid)
2037 and 0 otherwise. */
2039 static int
2040 is_exception_free (rtx_insn *insn, int bb_src, int bb_trg)
2042 int insn_class = haifa_classify_insn (insn);
2044 /* Handle non-load insns. */
2045 switch (insn_class)
2047 case TRAP_FREE:
2048 return 1;
2049 case TRAP_RISKY:
2050 return 0;
2051 default:;
2054 /* Handle loads. */
2055 if (!flag_schedule_speculative_load)
2056 return 0;
2057 IS_LOAD_INSN (insn) = 1;
2058 switch (insn_class)
2060 case IFREE:
2061 return (1);
2062 case IRISKY:
2063 return 0;
2064 case PFREE_CANDIDATE:
2065 if (is_pfree (insn, bb_src, bb_trg))
2066 return 1;
2067 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2068 case PRISKY_CANDIDATE:
2069 if (!flag_schedule_speculative_load_dangerous
2070 || is_prisky (insn, bb_src, bb_trg))
2071 return 0;
2072 break;
2073 default:;
2076 return flag_schedule_speculative_load_dangerous;
2079 /* The number of insns from the current block scheduled so far. */
2080 static int sched_target_n_insns;
2081 /* The number of insns from the current block to be scheduled in total. */
2082 static int target_n_insns;
2083 /* The number of insns from the entire region scheduled so far. */
2084 static int sched_n_insns;
2086 /* Implementations of the sched_info functions for region scheduling. */
2087 static void init_ready_list (void);
2088 static int can_schedule_ready_p (rtx_insn *);
2089 static void begin_schedule_ready (rtx_insn *);
2090 static ds_t new_ready (rtx_insn *, ds_t);
2091 static int schedule_more_p (void);
2092 static const char *rgn_print_insn (const rtx_insn *, int);
2093 static int rgn_rank (rtx_insn *, rtx_insn *);
2094 static void compute_jump_reg_dependencies (rtx, regset);
2096 /* Functions for speculative scheduling. */
2097 static void rgn_add_remove_insn (rtx_insn *, int);
2098 static void rgn_add_block (basic_block, basic_block);
2099 static void rgn_fix_recovery_cfg (int, int, int);
2100 static basic_block advance_target_bb (basic_block, rtx_insn *);
2102 /* Return nonzero if there are more insns that should be scheduled. */
2104 static int
2105 schedule_more_p (void)
2107 return sched_target_n_insns < target_n_insns;
2110 /* Add all insns that are initially ready to the ready list READY. Called
2111 once before scheduling a set of insns. */
2113 static void
2114 init_ready_list (void)
2116 rtx_insn *prev_head = current_sched_info->prev_head;
2117 rtx_insn *next_tail = current_sched_info->next_tail;
2118 int bb_src;
2119 rtx_insn *insn;
2121 target_n_insns = 0;
2122 sched_target_n_insns = 0;
2123 sched_n_insns = 0;
2125 /* Print debugging information. */
2126 if (sched_verbose >= 5)
2127 debug_rgn_dependencies (target_bb);
2129 /* Prepare current target block info. */
2130 if (current_nr_blocks > 1)
2131 compute_trg_info (target_bb);
2133 /* Initialize ready list with all 'ready' insns in target block.
2134 Count number of insns in the target block being scheduled. */
2135 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2137 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2138 TODO_SPEC (insn) = HARD_DEP;
2139 try_ready (insn);
2140 target_n_insns++;
2142 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2145 /* Add to ready list all 'ready' insns in valid source blocks.
2146 For speculative insns, check-live, exception-free, and
2147 issue-delay. */
2148 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2149 if (IS_VALID (bb_src))
2151 rtx_insn *src_head;
2152 rtx_insn *src_next_tail;
2153 rtx_insn *tail, *head;
2155 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2156 &head, &tail);
2157 src_next_tail = NEXT_INSN (tail);
2158 src_head = head;
2160 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2161 if (INSN_P (insn))
2163 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2164 TODO_SPEC (insn) = HARD_DEP;
2165 try_ready (insn);
2170 /* Called after taking INSN from the ready list. Returns nonzero if this
2171 insn can be scheduled, nonzero if we should silently discard it. */
2173 static int
2174 can_schedule_ready_p (rtx_insn *insn)
2176 /* An interblock motion? */
2177 if (INSN_BB (insn) != target_bb
2178 && IS_SPECULATIVE_INSN (insn)
2179 && !check_live (insn, INSN_BB (insn)))
2180 return 0;
2181 else
2182 return 1;
2185 /* Updates counter and other information. Split from can_schedule_ready_p ()
2186 because when we schedule insn speculatively then insn passed to
2187 can_schedule_ready_p () differs from the one passed to
2188 begin_schedule_ready (). */
2189 static void
2190 begin_schedule_ready (rtx_insn *insn)
2192 /* An interblock motion? */
2193 if (INSN_BB (insn) != target_bb)
2195 if (IS_SPECULATIVE_INSN (insn))
2197 gcc_assert (check_live (insn, INSN_BB (insn)));
2199 update_live (insn, INSN_BB (insn));
2201 /* For speculative load, mark insns fed by it. */
2202 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2203 set_spec_fed (insn);
2205 nr_spec++;
2207 nr_inter++;
2209 else
2211 /* In block motion. */
2212 sched_target_n_insns++;
2214 sched_n_insns++;
2217 /* Called after INSN has all its hard dependencies resolved and the speculation
2218 of type TS is enough to overcome them all.
2219 Return nonzero if it should be moved to the ready list or the queue, or zero
2220 if we should silently discard it. */
2221 static ds_t
2222 new_ready (rtx_insn *next, ds_t ts)
2224 if (INSN_BB (next) != target_bb)
2226 int not_ex_free = 0;
2228 /* For speculative insns, before inserting to ready/queue,
2229 check live, exception-free, and issue-delay. */
2230 if (!IS_VALID (INSN_BB (next))
2231 || CANT_MOVE (next)
2232 || (IS_SPECULATIVE_INSN (next)
2233 && ((recog_memoized (next) >= 0
2234 && min_insn_conflict_delay (curr_state, next, next)
2235 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2236 || IS_SPECULATION_CHECK_P (next)
2237 || !check_live (next, INSN_BB (next))
2238 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2239 target_bb)))))
2241 if (not_ex_free
2242 /* We are here because is_exception_free () == false.
2243 But we possibly can handle that with control speculation. */
2244 && sched_deps_info->generate_spec_deps
2245 && spec_info->mask & BEGIN_CONTROL)
2247 ds_t new_ds;
2249 /* Add control speculation to NEXT's dependency type. */
2250 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2252 /* Check if NEXT can be speculated with new dependency type. */
2253 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2254 /* Here we got new control-speculative instruction. */
2255 ts = new_ds;
2256 else
2257 /* NEXT isn't ready yet. */
2258 ts = DEP_POSTPONED;
2260 else
2261 /* NEXT isn't ready yet. */
2262 ts = DEP_POSTPONED;
2266 return ts;
2269 /* Return a string that contains the insn uid and optionally anything else
2270 necessary to identify this insn in an output. It's valid to use a
2271 static buffer for this. The ALIGNED parameter should cause the string
2272 to be formatted so that multiple output lines will line up nicely. */
2274 static const char *
2275 rgn_print_insn (const rtx_insn *insn, int aligned)
2277 static char tmp[80];
2279 if (aligned)
2280 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2281 else
2283 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2284 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2285 else
2286 sprintf (tmp, "%d", INSN_UID (insn));
2288 return tmp;
2291 /* Compare priority of two insns. Return a positive number if the second
2292 insn is to be preferred for scheduling, and a negative one if the first
2293 is to be preferred. Zero if they are equally good. */
2295 static int
2296 rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2298 /* Some comparison make sense in interblock scheduling only. */
2299 if (INSN_BB (insn1) != INSN_BB (insn2))
2301 int spec_val, prob_val;
2303 /* Prefer an inblock motion on an interblock motion. */
2304 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2305 return 1;
2306 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2307 return -1;
2309 /* Prefer a useful motion on a speculative one. */
2310 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2311 if (spec_val)
2312 return spec_val;
2314 /* Prefer a more probable (speculative) insn. */
2315 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2316 if (prob_val)
2317 return prob_val;
2319 return 0;
2322 /* NEXT is an instruction that depends on INSN (a backward dependence);
2323 return nonzero if we should include this dependence in priority
2324 calculations. */
2327 contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2329 /* NEXT and INSN reside in one ebb. */
2330 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2333 /* INSN is a JUMP_INSN. Store the set of registers that must be
2334 considered as used by this jump in USED. */
2336 static void
2337 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2338 regset used ATTRIBUTE_UNUSED)
2340 /* Nothing to do here, since we postprocess jumps in
2341 add_branch_dependences. */
2344 /* This variable holds common_sched_info hooks and data relevant to
2345 the interblock scheduler. */
2346 static struct common_sched_info_def rgn_common_sched_info;
2349 /* This holds data for the dependence analysis relevant to
2350 the interblock scheduler. */
2351 static struct sched_deps_info_def rgn_sched_deps_info;
2353 /* This holds constant data used for initializing the above structure
2354 for the Haifa scheduler. */
2355 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2357 compute_jump_reg_dependencies,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 0, 0, 0
2362 /* Same as above, but for the selective scheduler. */
2363 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2365 compute_jump_reg_dependencies,
2366 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2367 0, 0, 0
2370 /* Return true if scheduling INSN will trigger finish of scheduling
2371 current block. */
2372 static bool
2373 rgn_insn_finishes_block_p (rtx_insn *insn)
2375 if (INSN_BB (insn) == target_bb
2376 && sched_target_n_insns + 1 == target_n_insns)
2377 /* INSN is the last not-scheduled instruction in the current block. */
2378 return true;
2380 return false;
2383 /* Used in schedule_insns to initialize current_sched_info for scheduling
2384 regions (or single basic blocks). */
2386 static const struct haifa_sched_info rgn_const_sched_info =
2388 init_ready_list,
2389 can_schedule_ready_p,
2390 schedule_more_p,
2391 new_ready,
2392 rgn_rank,
2393 rgn_print_insn,
2394 contributes_to_priority,
2395 rgn_insn_finishes_block_p,
2397 NULL, NULL,
2398 NULL, NULL,
2399 0, 0,
2401 rgn_add_remove_insn,
2402 begin_schedule_ready,
2403 NULL,
2404 advance_target_bb,
2405 NULL, NULL,
2406 SCHED_RGN
2409 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2410 for the interblock scheduler frontend. */
2411 static struct haifa_sched_info rgn_sched_info;
2413 /* Returns maximum priority that an insn was assigned to. */
2416 get_rgn_sched_max_insns_priority (void)
2418 return rgn_sched_info.sched_max_insns_priority;
2421 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2423 static bool
2424 sets_likely_spilled (rtx pat)
2426 bool ret = false;
2427 note_stores (pat, sets_likely_spilled_1, &ret);
2428 return ret;
2431 static void
2432 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2434 bool *ret = (bool *) data;
2436 if (GET_CODE (pat) == SET
2437 && REG_P (x)
2438 && HARD_REGISTER_P (x)
2439 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2440 *ret = true;
2443 /* A bitmap to note insns that participate in any dependency. Used in
2444 add_branch_dependences. */
2445 static sbitmap insn_referenced;
2447 /* Add dependences so that branches are scheduled to run last in their
2448 block. */
2449 static void
2450 add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2452 rtx_insn *insn, *last;
2454 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2455 that can throw exceptions, force them to remain in order at the end of
2456 the block by adding dependencies and giving the last a high priority.
2457 There may be notes present, and prev_head may also be a note.
2459 Branches must obviously remain at the end. Calls should remain at the
2460 end since moving them results in worse register allocation. Uses remain
2461 at the end to ensure proper register allocation.
2463 cc0 setters remain at the end because they can't be moved away from
2464 their cc0 user.
2466 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2468 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2470 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2471 values) are not moved before reload because we can wind up with register
2472 allocation failures. */
2474 while (tail != head && DEBUG_INSN_P (tail))
2475 tail = PREV_INSN (tail);
2477 insn = tail;
2478 last = 0;
2479 while (CALL_P (insn)
2480 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2481 || (NONJUMP_INSN_P (insn)
2482 && (GET_CODE (PATTERN (insn)) == USE
2483 || GET_CODE (PATTERN (insn)) == CLOBBER
2484 || can_throw_internal (insn)
2485 || (HAVE_cc0 && sets_cc0_p (PATTERN (insn)))
2486 || (!reload_completed
2487 && sets_likely_spilled (PATTERN (insn)))))
2488 || NOTE_P (insn)
2489 || (last != 0 && SCHED_GROUP_P (last)))
2491 if (!NOTE_P (insn))
2493 if (last != 0
2494 && sd_find_dep_between (insn, last, false) == NULL)
2496 if (! sched_insns_conditions_mutex_p (last, insn))
2497 add_dependence (last, insn, REG_DEP_ANTI);
2498 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2501 CANT_MOVE (insn) = 1;
2503 last = insn;
2506 /* Don't overrun the bounds of the basic block. */
2507 if (insn == head)
2508 break;
2511 insn = PREV_INSN (insn);
2512 while (insn != head && DEBUG_INSN_P (insn));
2515 /* Make sure these insns are scheduled last in their block. */
2516 insn = last;
2517 if (insn != 0)
2518 while (insn != head)
2520 insn = prev_nonnote_insn (insn);
2522 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2523 || DEBUG_INSN_P (insn))
2524 continue;
2526 if (! sched_insns_conditions_mutex_p (last, insn))
2527 add_dependence (last, insn, REG_DEP_ANTI);
2530 if (!targetm.have_conditional_execution ())
2531 return;
2533 /* Finally, if the block ends in a jump, and we are doing intra-block
2534 scheduling, make sure that the branch depends on any COND_EXEC insns
2535 inside the block to avoid moving the COND_EXECs past the branch insn.
2537 We only have to do this after reload, because (1) before reload there
2538 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2539 scheduler after reload.
2541 FIXME: We could in some cases move COND_EXEC insns past the branch if
2542 this scheduler would be a little smarter. Consider this code:
2544 T = [addr]
2545 C ? addr += 4
2546 !C ? X += 12
2547 C ? T += 1
2548 C ? jump foo
2550 On a target with a one cycle stall on a memory access the optimal
2551 sequence would be:
2553 T = [addr]
2554 C ? addr += 4
2555 C ? T += 1
2556 C ? jump foo
2557 !C ? X += 12
2559 We don't want to put the 'X += 12' before the branch because it just
2560 wastes a cycle of execution time when the branch is taken.
2562 Note that in the example "!C" will always be true. That is another
2563 possible improvement for handling COND_EXECs in this scheduler: it
2564 could remove always-true predicates. */
2566 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2567 return;
2569 insn = tail;
2570 while (insn != head)
2572 insn = PREV_INSN (insn);
2574 /* Note that we want to add this dependency even when
2575 sched_insns_conditions_mutex_p returns true. The whole point
2576 is that we _want_ this dependency, even if these insns really
2577 are independent. */
2578 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2579 add_dependence (tail, insn, REG_DEP_ANTI);
2583 /* Data structures for the computation of data dependences in a regions. We
2584 keep one `deps' structure for every basic block. Before analyzing the
2585 data dependences for a bb, its variables are initialized as a function of
2586 the variables of its predecessors. When the analysis for a bb completes,
2587 we save the contents to the corresponding bb_deps[bb] variable. */
2589 static struct deps_desc *bb_deps;
2591 static void
2592 concat_insn_mem_list (rtx_insn_list *copy_insns,
2593 rtx_expr_list *copy_mems,
2594 rtx_insn_list **old_insns_p,
2595 rtx_expr_list **old_mems_p)
2597 rtx_insn_list *new_insns = *old_insns_p;
2598 rtx_expr_list *new_mems = *old_mems_p;
2600 while (copy_insns)
2602 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2603 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2604 copy_insns = copy_insns->next ();
2605 copy_mems = copy_mems->next ();
2608 *old_insns_p = new_insns;
2609 *old_mems_p = new_mems;
2612 /* Join PRED_DEPS to the SUCC_DEPS. */
2613 void
2614 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2616 unsigned reg;
2617 reg_set_iterator rsi;
2619 /* The reg_last lists are inherited by successor. */
2620 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2622 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2623 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2625 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2626 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2627 succ_rl->implicit_sets
2628 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2629 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2630 succ_rl->clobbers);
2631 succ_rl->uses_length += pred_rl->uses_length;
2632 succ_rl->clobbers_length += pred_rl->clobbers_length;
2634 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2636 /* Mem read/write lists are inherited by successor. */
2637 concat_insn_mem_list (pred_deps->pending_read_insns,
2638 pred_deps->pending_read_mems,
2639 &succ_deps->pending_read_insns,
2640 &succ_deps->pending_read_mems);
2641 concat_insn_mem_list (pred_deps->pending_write_insns,
2642 pred_deps->pending_write_mems,
2643 &succ_deps->pending_write_insns,
2644 &succ_deps->pending_write_mems);
2646 succ_deps->pending_jump_insns
2647 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2648 succ_deps->pending_jump_insns);
2649 succ_deps->last_pending_memory_flush
2650 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2651 succ_deps->last_pending_memory_flush);
2653 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2654 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2655 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2657 /* last_function_call is inherited by successor. */
2658 succ_deps->last_function_call
2659 = concat_INSN_LIST (pred_deps->last_function_call,
2660 succ_deps->last_function_call);
2662 /* last_function_call_may_noreturn is inherited by successor. */
2663 succ_deps->last_function_call_may_noreturn
2664 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2665 succ_deps->last_function_call_may_noreturn);
2667 /* sched_before_next_call is inherited by successor. */
2668 succ_deps->sched_before_next_call
2669 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2670 succ_deps->sched_before_next_call);
2673 /* After computing the dependencies for block BB, propagate the dependencies
2674 found in TMP_DEPS to the successors of the block. */
2675 static void
2676 propagate_deps (int bb, struct deps_desc *pred_deps)
2678 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2679 edge_iterator ei;
2680 edge e;
2682 /* bb's structures are inherited by its successors. */
2683 FOR_EACH_EDGE (e, ei, block->succs)
2685 /* Only bbs "below" bb, in the same region, are interesting. */
2686 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2687 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2688 || BLOCK_TO_BB (e->dest->index) <= bb)
2689 continue;
2691 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2694 /* These lists should point to the right place, for correct
2695 freeing later. */
2696 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2697 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2698 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2699 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2700 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2702 /* Can't allow these to be freed twice. */
2703 pred_deps->pending_read_insns = 0;
2704 pred_deps->pending_read_mems = 0;
2705 pred_deps->pending_write_insns = 0;
2706 pred_deps->pending_write_mems = 0;
2707 pred_deps->pending_jump_insns = 0;
2710 /* Compute dependences inside bb. In a multiple blocks region:
2711 (1) a bb is analyzed after its predecessors, and (2) the lists in
2712 effect at the end of bb (after analyzing for bb) are inherited by
2713 bb's successors.
2715 Specifically for reg-reg data dependences, the block insns are
2716 scanned by sched_analyze () top-to-bottom. Three lists are
2717 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2718 reg_last[].implicit_sets for implicit hard register DEFs, and
2719 reg_last[].uses for register USEs.
2721 When analysis is completed for bb, we update for its successors:
2722 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2723 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2724 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2726 The mechanism for computing mem-mem data dependence is very
2727 similar, and the result is interblock dependences in the region. */
2729 static void
2730 compute_block_dependences (int bb)
2732 rtx_insn *head, *tail;
2733 struct deps_desc tmp_deps;
2735 tmp_deps = bb_deps[bb];
2737 /* Do the analysis for this block. */
2738 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2739 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2741 sched_analyze (&tmp_deps, head, tail);
2743 /* Selective scheduling handles control dependencies by itself. */
2744 if (!sel_sched_p ())
2745 add_branch_dependences (head, tail);
2747 if (current_nr_blocks > 1)
2748 propagate_deps (bb, &tmp_deps);
2750 /* Free up the INSN_LISTs. */
2751 free_deps (&tmp_deps);
2753 if (targetm.sched.dependencies_evaluation_hook)
2754 targetm.sched.dependencies_evaluation_hook (head, tail);
2757 /* Free dependencies of instructions inside BB. */
2758 static void
2759 free_block_dependencies (int bb)
2761 rtx_insn *head;
2762 rtx_insn *tail;
2764 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2766 if (no_real_insns_p (head, tail))
2767 return;
2769 sched_free_deps (head, tail, true);
2772 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2773 them to the unused_*_list variables, so that they can be reused. */
2775 static void
2776 free_pending_lists (void)
2778 int bb;
2780 for (bb = 0; bb < current_nr_blocks; bb++)
2782 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2783 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2784 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2785 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2786 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2790 /* Print dependences for debugging starting from FROM_BB.
2791 Callable from debugger. */
2792 /* Print dependences for debugging starting from FROM_BB.
2793 Callable from debugger. */
2794 DEBUG_FUNCTION void
2795 debug_rgn_dependencies (int from_bb)
2797 int bb;
2799 fprintf (sched_dump,
2800 ";; --------------- forward dependences: ------------ \n");
2802 for (bb = from_bb; bb < current_nr_blocks; bb++)
2804 rtx_insn *head, *tail;
2806 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2807 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2808 BB_TO_BLOCK (bb), bb);
2810 debug_dependencies (head, tail);
2814 /* Print dependencies information for instructions between HEAD and TAIL.
2815 ??? This function would probably fit best in haifa-sched.c. */
2816 void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2818 rtx_insn *insn;
2819 rtx_insn *next_tail = NEXT_INSN (tail);
2821 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2822 "insn", "code", "bb", "dep", "prio", "cost",
2823 "reservation");
2824 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2825 "----", "----", "--", "---", "----", "----",
2826 "-----------");
2828 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2830 if (! INSN_P (insn))
2832 int n;
2833 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2834 if (NOTE_P (insn))
2836 n = NOTE_KIND (insn);
2837 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2839 else
2840 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2841 continue;
2844 fprintf (sched_dump,
2845 ";; %s%5d%6d%6d%6d%6d%6d ",
2846 (SCHED_GROUP_P (insn) ? "+" : " "),
2847 INSN_UID (insn),
2848 INSN_CODE (insn),
2849 BLOCK_NUM (insn),
2850 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2851 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2852 : INSN_PRIORITY (insn))
2853 : INSN_PRIORITY (insn)),
2854 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2855 : insn_cost (insn))
2856 : insn_cost (insn)));
2858 if (recog_memoized (insn) < 0)
2859 fprintf (sched_dump, "nothing");
2860 else
2861 print_reservation (sched_dump, insn);
2863 fprintf (sched_dump, "\t: ");
2865 sd_iterator_def sd_it;
2866 dep_t dep;
2868 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2869 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2870 DEP_NONREG (dep) ? "n" : "",
2871 DEP_MULTIPLE (dep) ? "m" : "");
2873 fprintf (sched_dump, "\n");
2876 fprintf (sched_dump, "\n");
2879 /* Returns true if all the basic blocks of the current region have
2880 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2881 bool
2882 sched_is_disabled_for_current_region_p (void)
2884 int bb;
2886 for (bb = 0; bb < current_nr_blocks; bb++)
2887 if (!(BASIC_BLOCK_FOR_FN (cfun,
2888 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2889 return false;
2891 return true;
2894 /* Free all region dependencies saved in INSN_BACK_DEPS and
2895 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2896 when scheduling, so this function is supposed to be called from
2897 the selective scheduling only. */
2898 void
2899 free_rgn_deps (void)
2901 int bb;
2903 for (bb = 0; bb < current_nr_blocks; bb++)
2905 rtx_insn *head, *tail;
2907 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2908 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2910 sched_free_deps (head, tail, false);
2914 static int rgn_n_insns;
2916 /* Compute insn priority for a current region. */
2917 void
2918 compute_priorities (void)
2920 int bb;
2922 current_sched_info->sched_max_insns_priority = 0;
2923 for (bb = 0; bb < current_nr_blocks; bb++)
2925 rtx_insn *head, *tail;
2927 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2928 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2930 if (no_real_insns_p (head, tail))
2931 continue;
2933 rgn_n_insns += set_priorities (head, tail);
2935 current_sched_info->sched_max_insns_priority++;
2938 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2940 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2941 zero for the first call to this function, to allocate the arrays for the
2942 first time.
2944 This function is called once during initialization of the scheduler, and
2945 called again to resize the arrays if new basic blocks have been created,
2946 for example for speculation recovery code. */
2948 static void
2949 realloc_bb_state_array (int saved_last_basic_block)
2951 char *old_bb_state_array = bb_state_array;
2952 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
2953 size_t slbb = (size_t) saved_last_basic_block;
2955 /* Nothing to do if nothing changed since the last time this was called. */
2956 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
2957 return;
2959 /* The selective scheduler doesn't use the state arrays. */
2960 if (sel_sched_p ())
2962 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2963 return;
2966 gcc_checking_assert (saved_last_basic_block == 0
2967 || (bb_state_array != NULL && bb_state != NULL));
2969 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2970 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2972 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2973 Otherwise only fixup the newly allocated ones. For the state
2974 array itself, only initialize the new entries. */
2975 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2976 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2977 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2978 for (size_t i = slbb; i < lbb; i++)
2979 state_reset (bb_state[i]);
2982 /* Free the arrays of DFA states at the end of each basic block. */
2984 static void
2985 free_bb_state_array (void)
2987 free (bb_state_array);
2988 free (bb_state);
2989 bb_state_array = NULL;
2990 bb_state = NULL;
2993 /* Schedule a region. A region is either an inner loop, a loop-free
2994 subroutine, or a single basic block. Each bb in the region is
2995 scheduled after its flow predecessors. */
2997 static void
2998 schedule_region (int rgn)
3000 int bb;
3001 int sched_rgn_n_insns = 0;
3003 rgn_n_insns = 0;
3005 /* Do not support register pressure sensitive scheduling for the new regions
3006 as we don't update the liveness info for them. */
3007 if (sched_pressure != SCHED_PRESSURE_NONE
3008 && rgn >= nr_regions_initial)
3010 free_global_sched_pressure_data ();
3011 sched_pressure = SCHED_PRESSURE_NONE;
3014 rgn_setup_region (rgn);
3016 /* Don't schedule region that is marked by
3017 NOTE_DISABLE_SCHED_OF_BLOCK. */
3018 if (sched_is_disabled_for_current_region_p ())
3019 return;
3021 sched_rgn_compute_dependencies (rgn);
3023 sched_rgn_local_init (rgn);
3025 /* Set priorities. */
3026 compute_priorities ();
3028 sched_extend_ready_list (rgn_n_insns);
3030 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3032 sched_init_region_reg_pressure_info ();
3033 for (bb = 0; bb < current_nr_blocks; bb++)
3035 basic_block first_bb, last_bb;
3036 rtx_insn *head, *tail;
3038 first_bb = EBB_FIRST_BB (bb);
3039 last_bb = EBB_LAST_BB (bb);
3041 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3043 if (no_real_insns_p (head, tail))
3045 gcc_assert (first_bb == last_bb);
3046 continue;
3048 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3052 /* Now we can schedule all blocks. */
3053 for (bb = 0; bb < current_nr_blocks; bb++)
3055 basic_block first_bb, last_bb, curr_bb;
3056 rtx_insn *head, *tail;
3058 first_bb = EBB_FIRST_BB (bb);
3059 last_bb = EBB_LAST_BB (bb);
3061 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3063 if (no_real_insns_p (head, tail))
3065 gcc_assert (first_bb == last_bb);
3066 continue;
3069 current_sched_info->prev_head = PREV_INSN (head);
3070 current_sched_info->next_tail = NEXT_INSN (tail);
3072 remove_notes (head, tail);
3074 unlink_bb_notes (first_bb, last_bb);
3076 target_bb = bb;
3078 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3079 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3081 curr_bb = first_bb;
3082 if (dbg_cnt (sched_block))
3084 edge f;
3085 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3087 schedule_block (&curr_bb, bb_state[first_bb->index]);
3088 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3089 sched_rgn_n_insns += sched_n_insns;
3090 realloc_bb_state_array (saved_last_basic_block);
3091 f = find_fallthru_edge (last_bb->succs);
3092 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3093 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3095 memcpy (bb_state[f->dest->index], curr_state,
3096 dfa_state_size);
3097 if (sched_verbose >= 5)
3098 fprintf (sched_dump, "saving state for edge %d->%d\n",
3099 f->src->index, f->dest->index);
3102 else
3104 sched_rgn_n_insns += rgn_n_insns;
3107 /* Clean up. */
3108 if (current_nr_blocks > 1)
3109 free_trg_info ();
3112 /* Sanity check: verify that all region insns were scheduled. */
3113 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3115 sched_finish_ready_list ();
3117 /* Done with this region. */
3118 sched_rgn_local_finish ();
3120 /* Free dependencies. */
3121 for (bb = 0; bb < current_nr_blocks; ++bb)
3122 free_block_dependencies (bb);
3124 gcc_assert (haifa_recovery_bb_ever_added_p
3125 || deps_pools_are_empty_p ());
3128 /* Initialize data structures for region scheduling. */
3130 void
3131 sched_rgn_init (bool single_blocks_p)
3133 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3134 / 100);
3136 nr_inter = 0;
3137 nr_spec = 0;
3139 extend_regions ();
3141 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3142 CONTAINING_RGN (EXIT_BLOCK) = -1;
3144 realloc_bb_state_array (0);
3146 /* Compute regions for scheduling. */
3147 if (single_blocks_p
3148 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3149 || !flag_schedule_interblock
3150 || is_cfg_nonregular ())
3152 find_single_block_region (sel_sched_p ());
3154 else
3156 /* Compute the dominators and post dominators. */
3157 if (!sel_sched_p ())
3158 calculate_dominance_info (CDI_DOMINATORS);
3160 /* Find regions. */
3161 find_rgns ();
3163 if (sched_verbose >= 3)
3164 debug_regions ();
3166 /* For now. This will move as more and more of haifa is converted
3167 to using the cfg code. */
3168 if (!sel_sched_p ())
3169 free_dominance_info (CDI_DOMINATORS);
3172 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3174 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3175 RGN_NR_BLOCKS (nr_regions - 1));
3176 nr_regions_initial = nr_regions;
3179 /* Free data structures for region scheduling. */
3180 void
3181 sched_rgn_finish (void)
3183 free_bb_state_array ();
3185 /* Reposition the prologue and epilogue notes in case we moved the
3186 prologue/epilogue insns. */
3187 if (reload_completed)
3188 reposition_prologue_and_epilogue_notes ();
3190 if (sched_verbose)
3192 if (reload_completed == 0
3193 && flag_schedule_interblock)
3195 fprintf (sched_dump,
3196 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3197 nr_inter, nr_spec);
3199 else
3200 gcc_assert (nr_inter <= 0);
3201 fprintf (sched_dump, "\n\n");
3204 nr_regions = 0;
3206 free (rgn_table);
3207 rgn_table = NULL;
3209 free (rgn_bb_table);
3210 rgn_bb_table = NULL;
3212 free (block_to_bb);
3213 block_to_bb = NULL;
3215 free (containing_rgn);
3216 containing_rgn = NULL;
3218 free (ebb_head);
3219 ebb_head = NULL;
3222 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3223 point to the region RGN. */
3224 void
3225 rgn_setup_region (int rgn)
3227 int bb;
3229 /* Set variables for the current region. */
3230 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3231 current_blocks = RGN_BLOCKS (rgn);
3233 /* EBB_HEAD is a region-scope structure. But we realloc it for
3234 each region to save time/memory/something else.
3235 See comments in add_block1, for what reasons we allocate +1 element. */
3236 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3237 for (bb = 0; bb <= current_nr_blocks; bb++)
3238 ebb_head[bb] = current_blocks + bb;
3241 /* Compute instruction dependencies in region RGN. */
3242 void
3243 sched_rgn_compute_dependencies (int rgn)
3245 if (!RGN_DONT_CALC_DEPS (rgn))
3247 int bb;
3249 if (sel_sched_p ())
3250 sched_emulate_haifa_p = 1;
3252 init_deps_global ();
3254 /* Initializations for region data dependence analysis. */
3255 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3256 for (bb = 0; bb < current_nr_blocks; bb++)
3257 init_deps (bb_deps + bb, false);
3259 /* Initialize bitmap used in add_branch_dependences. */
3260 insn_referenced = sbitmap_alloc (sched_max_luid);
3261 bitmap_clear (insn_referenced);
3263 /* Compute backward dependencies. */
3264 for (bb = 0; bb < current_nr_blocks; bb++)
3265 compute_block_dependences (bb);
3267 sbitmap_free (insn_referenced);
3268 free_pending_lists ();
3269 finish_deps_global ();
3270 free (bb_deps);
3272 /* We don't want to recalculate this twice. */
3273 RGN_DONT_CALC_DEPS (rgn) = 1;
3275 if (sel_sched_p ())
3276 sched_emulate_haifa_p = 0;
3278 else
3279 /* (This is a recovery block. It is always a single block region.)
3280 OR (We use selective scheduling.) */
3281 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3284 /* Init region data structures. Returns true if this region should
3285 not be scheduled. */
3286 void
3287 sched_rgn_local_init (int rgn)
3289 int bb;
3291 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3292 if (current_nr_blocks > 1)
3294 basic_block block;
3295 edge e;
3296 edge_iterator ei;
3298 prob = XNEWVEC (int, current_nr_blocks);
3300 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3301 bitmap_vector_clear (dom, current_nr_blocks);
3303 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3304 rgn_nr_edges = 0;
3305 FOR_EACH_BB_FN (block, cfun)
3307 if (CONTAINING_RGN (block->index) != rgn)
3308 continue;
3309 FOR_EACH_EDGE (e, ei, block->succs)
3310 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3313 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3314 rgn_nr_edges = 0;
3315 FOR_EACH_BB_FN (block, cfun)
3317 if (CONTAINING_RGN (block->index) != rgn)
3318 continue;
3319 FOR_EACH_EDGE (e, ei, block->succs)
3320 rgn_edges[rgn_nr_edges++] = e;
3323 /* Split edges. */
3324 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3325 bitmap_vector_clear (pot_split, current_nr_blocks);
3326 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3327 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3329 /* Compute probabilities, dominators, split_edges. */
3330 for (bb = 0; bb < current_nr_blocks; bb++)
3331 compute_dom_prob_ps (bb);
3333 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3334 /* We don't need them anymore. But we want to avoid duplication of
3335 aux fields in the newly created edges. */
3336 FOR_EACH_BB_FN (block, cfun)
3338 if (CONTAINING_RGN (block->index) != rgn)
3339 continue;
3340 FOR_EACH_EDGE (e, ei, block->succs)
3341 e->aux = NULL;
3346 /* Free data computed for the finished region. */
3347 void
3348 sched_rgn_local_free (void)
3350 free (prob);
3351 sbitmap_vector_free (dom);
3352 sbitmap_vector_free (pot_split);
3353 sbitmap_vector_free (ancestor_edges);
3354 free (rgn_edges);
3357 /* Free data computed for the finished region. */
3358 void
3359 sched_rgn_local_finish (void)
3361 if (current_nr_blocks > 1 && !sel_sched_p ())
3363 sched_rgn_local_free ();
3367 /* Setup scheduler infos. */
3368 void
3369 rgn_setup_common_sched_info (void)
3371 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3372 sizeof (rgn_common_sched_info));
3374 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3375 rgn_common_sched_info.add_block = rgn_add_block;
3376 rgn_common_sched_info.estimate_number_of_insns
3377 = rgn_estimate_number_of_insns;
3378 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3380 common_sched_info = &rgn_common_sched_info;
3383 /* Setup all *_sched_info structures (for the Haifa frontend
3384 and for the dependence analysis) in the interblock scheduler. */
3385 void
3386 rgn_setup_sched_infos (void)
3388 if (!sel_sched_p ())
3389 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3390 sizeof (rgn_sched_deps_info));
3391 else
3392 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3393 sizeof (rgn_sched_deps_info));
3395 sched_deps_info = &rgn_sched_deps_info;
3397 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3398 current_sched_info = &rgn_sched_info;
3401 /* The one entry point in this file. */
3402 void
3403 schedule_insns (void)
3405 int rgn;
3407 /* Taking care of this degenerate case makes the rest of
3408 this code simpler. */
3409 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3410 return;
3412 rgn_setup_common_sched_info ();
3413 rgn_setup_sched_infos ();
3415 haifa_sched_init ();
3416 sched_rgn_init (reload_completed);
3418 bitmap_initialize (&not_in_df, 0);
3419 bitmap_clear (&not_in_df);
3421 /* Schedule every region in the subroutine. */
3422 for (rgn = 0; rgn < nr_regions; rgn++)
3423 if (dbg_cnt (sched_region))
3424 schedule_region (rgn);
3426 /* Clean up. */
3427 sched_rgn_finish ();
3428 bitmap_clear (&not_in_df);
3430 haifa_sched_finish ();
3433 /* INSN has been added to/removed from current region. */
3434 static void
3435 rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3437 if (!remove_p)
3438 rgn_n_insns++;
3439 else
3440 rgn_n_insns--;
3442 if (INSN_BB (insn) == target_bb)
3444 if (!remove_p)
3445 target_n_insns++;
3446 else
3447 target_n_insns--;
3451 /* Extend internal data structures. */
3452 void
3453 extend_regions (void)
3455 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3456 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3457 n_basic_blocks_for_fn (cfun));
3458 block_to_bb = XRESIZEVEC (int, block_to_bb,
3459 last_basic_block_for_fn (cfun));
3460 containing_rgn = XRESIZEVEC (int, containing_rgn,
3461 last_basic_block_for_fn (cfun));
3464 void
3465 rgn_make_new_region_out_of_new_block (basic_block bb)
3467 int i;
3469 i = RGN_BLOCKS (nr_regions);
3470 /* I - first free position in rgn_bb_table. */
3472 rgn_bb_table[i] = bb->index;
3473 RGN_NR_BLOCKS (nr_regions) = 1;
3474 RGN_HAS_REAL_EBB (nr_regions) = 0;
3475 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3476 CONTAINING_RGN (bb->index) = nr_regions;
3477 BLOCK_TO_BB (bb->index) = 0;
3479 nr_regions++;
3481 RGN_BLOCKS (nr_regions) = i + 1;
3484 /* BB was added to ebb after AFTER. */
3485 static void
3486 rgn_add_block (basic_block bb, basic_block after)
3488 extend_regions ();
3489 bitmap_set_bit (&not_in_df, bb->index);
3491 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3493 rgn_make_new_region_out_of_new_block (bb);
3494 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3495 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3497 else
3499 int i, pos;
3501 /* We need to fix rgn_table, block_to_bb, containing_rgn
3502 and ebb_head. */
3504 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3506 /* We extend ebb_head to one more position to
3507 easily find the last position of the last ebb in
3508 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3509 is _always_ valid for access. */
3511 i = BLOCK_TO_BB (after->index) + 1;
3512 pos = ebb_head[i] - 1;
3513 /* Now POS is the index of the last block in the region. */
3515 /* Find index of basic block AFTER. */
3516 for (; rgn_bb_table[pos] != after->index; pos--)
3519 pos++;
3520 gcc_assert (pos > ebb_head[i - 1]);
3522 /* i - ebb right after "AFTER". */
3523 /* ebb_head[i] - VALID. */
3525 /* Source position: ebb_head[i]
3526 Destination position: ebb_head[i] + 1
3527 Last position:
3528 RGN_BLOCKS (nr_regions) - 1
3529 Number of elements to copy: (last_position) - (source_position) + 1
3532 memmove (rgn_bb_table + pos + 1,
3533 rgn_bb_table + pos,
3534 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3535 * sizeof (*rgn_bb_table));
3537 rgn_bb_table[pos] = bb->index;
3539 for (; i <= current_nr_blocks; i++)
3540 ebb_head [i]++;
3542 i = CONTAINING_RGN (after->index);
3543 CONTAINING_RGN (bb->index) = i;
3545 RGN_HAS_REAL_EBB (i) = 1;
3547 for (++i; i <= nr_regions; i++)
3548 RGN_BLOCKS (i)++;
3552 /* Fix internal data after interblock movement of jump instruction.
3553 For parameter meaning please refer to
3554 sched-int.h: struct sched_info: fix_recovery_cfg. */
3555 static void
3556 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3558 int old_pos, new_pos, i;
3560 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3562 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3563 rgn_bb_table[old_pos] != check_bb_nexti;
3564 old_pos--)
3566 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3568 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3569 rgn_bb_table[new_pos] != bbi;
3570 new_pos--)
3572 new_pos++;
3573 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3575 gcc_assert (new_pos < old_pos);
3577 memmove (rgn_bb_table + new_pos + 1,
3578 rgn_bb_table + new_pos,
3579 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3581 rgn_bb_table[new_pos] = check_bb_nexti;
3583 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3584 ebb_head[i]++;
3587 /* Return next block in ebb chain. For parameter meaning please refer to
3588 sched-int.h: struct sched_info: advance_target_bb. */
3589 static basic_block
3590 advance_target_bb (basic_block bb, rtx_insn *insn)
3592 if (insn)
3593 return 0;
3595 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3596 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3597 return bb->next_bb;
3600 #endif
3602 /* Run instruction scheduler. */
3603 static unsigned int
3604 rest_of_handle_live_range_shrinkage (void)
3606 #ifdef INSN_SCHEDULING
3607 int saved;
3609 initialize_live_range_shrinkage ();
3610 saved = flag_schedule_interblock;
3611 flag_schedule_interblock = false;
3612 schedule_insns ();
3613 flag_schedule_interblock = saved;
3614 finish_live_range_shrinkage ();
3615 #endif
3616 return 0;
3619 /* Run instruction scheduler. */
3620 static unsigned int
3621 rest_of_handle_sched (void)
3623 #ifdef INSN_SCHEDULING
3624 if (flag_selective_scheduling
3625 && ! maybe_skip_selective_scheduling ())
3626 run_selective_scheduling ();
3627 else
3628 schedule_insns ();
3629 #endif
3630 return 0;
3633 /* Run second scheduling pass after reload. */
3634 static unsigned int
3635 rest_of_handle_sched2 (void)
3637 #ifdef INSN_SCHEDULING
3638 if (flag_selective_scheduling2
3639 && ! maybe_skip_selective_scheduling ())
3640 run_selective_scheduling ();
3641 else
3643 /* Do control and data sched analysis again,
3644 and write some more of the results to dump file. */
3645 if (flag_sched2_use_superblocks)
3646 schedule_ebbs ();
3647 else
3648 schedule_insns ();
3650 #endif
3651 return 0;
3654 static unsigned int
3655 rest_of_handle_sched_fusion (void)
3657 #ifdef INSN_SCHEDULING
3658 sched_fusion = true;
3659 schedule_insns ();
3660 sched_fusion = false;
3661 #endif
3662 return 0;
3665 namespace {
3667 const pass_data pass_data_live_range_shrinkage =
3669 RTL_PASS, /* type */
3670 "lr_shrinkage", /* name */
3671 OPTGROUP_NONE, /* optinfo_flags */
3672 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3673 0, /* properties_required */
3674 0, /* properties_provided */
3675 0, /* properties_destroyed */
3676 0, /* todo_flags_start */
3677 TODO_df_finish, /* todo_flags_finish */
3680 class pass_live_range_shrinkage : public rtl_opt_pass
3682 public:
3683 pass_live_range_shrinkage(gcc::context *ctxt)
3684 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3687 /* opt_pass methods: */
3688 virtual bool gate (function *)
3690 #ifdef INSN_SCHEDULING
3691 return flag_live_range_shrinkage;
3692 #else
3693 return 0;
3694 #endif
3697 virtual unsigned int execute (function *)
3699 return rest_of_handle_live_range_shrinkage ();
3702 }; // class pass_live_range_shrinkage
3704 } // anon namespace
3706 rtl_opt_pass *
3707 make_pass_live_range_shrinkage (gcc::context *ctxt)
3709 return new pass_live_range_shrinkage (ctxt);
3712 namespace {
3714 const pass_data pass_data_sched =
3716 RTL_PASS, /* type */
3717 "sched1", /* name */
3718 OPTGROUP_NONE, /* optinfo_flags */
3719 TV_SCHED, /* tv_id */
3720 0, /* properties_required */
3721 0, /* properties_provided */
3722 0, /* properties_destroyed */
3723 0, /* todo_flags_start */
3724 TODO_df_finish, /* todo_flags_finish */
3727 class pass_sched : public rtl_opt_pass
3729 public:
3730 pass_sched (gcc::context *ctxt)
3731 : rtl_opt_pass (pass_data_sched, ctxt)
3734 /* opt_pass methods: */
3735 virtual bool gate (function *);
3736 virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3738 }; // class pass_sched
3740 bool
3741 pass_sched::gate (function *)
3743 #ifdef INSN_SCHEDULING
3744 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3745 #else
3746 return 0;
3747 #endif
3750 } // anon namespace
3752 rtl_opt_pass *
3753 make_pass_sched (gcc::context *ctxt)
3755 return new pass_sched (ctxt);
3758 namespace {
3760 const pass_data pass_data_sched2 =
3762 RTL_PASS, /* type */
3763 "sched2", /* name */
3764 OPTGROUP_NONE, /* optinfo_flags */
3765 TV_SCHED2, /* tv_id */
3766 0, /* properties_required */
3767 0, /* properties_provided */
3768 0, /* properties_destroyed */
3769 0, /* todo_flags_start */
3770 TODO_df_finish, /* todo_flags_finish */
3773 class pass_sched2 : public rtl_opt_pass
3775 public:
3776 pass_sched2 (gcc::context *ctxt)
3777 : rtl_opt_pass (pass_data_sched2, ctxt)
3780 /* opt_pass methods: */
3781 virtual bool gate (function *);
3782 virtual unsigned int execute (function *)
3784 return rest_of_handle_sched2 ();
3787 }; // class pass_sched2
3789 bool
3790 pass_sched2::gate (function *)
3792 #ifdef INSN_SCHEDULING
3793 return optimize > 0 && flag_schedule_insns_after_reload
3794 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3795 #else
3796 return 0;
3797 #endif
3800 } // anon namespace
3802 rtl_opt_pass *
3803 make_pass_sched2 (gcc::context *ctxt)
3805 return new pass_sched2 (ctxt);
3808 namespace {
3810 const pass_data pass_data_sched_fusion =
3812 RTL_PASS, /* type */
3813 "sched_fusion", /* name */
3814 OPTGROUP_NONE, /* optinfo_flags */
3815 TV_SCHED_FUSION, /* tv_id */
3816 0, /* properties_required */
3817 0, /* properties_provided */
3818 0, /* properties_destroyed */
3819 0, /* todo_flags_start */
3820 TODO_df_finish, /* todo_flags_finish */
3823 class pass_sched_fusion : public rtl_opt_pass
3825 public:
3826 pass_sched_fusion (gcc::context *ctxt)
3827 : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3830 /* opt_pass methods: */
3831 virtual bool gate (function *);
3832 virtual unsigned int execute (function *)
3834 return rest_of_handle_sched_fusion ();
3837 }; // class pass_sched2
3839 bool
3840 pass_sched_fusion::gate (function *)
3842 #ifdef INSN_SCHEDULING
3843 /* Scheduling fusion relies on peephole2 to do real fusion work,
3844 so only enable it if peephole2 is in effect. */
3845 return (optimize > 0 && flag_peephole2
3846 && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3847 #else
3848 return 0;
3849 #endif
3852 } // anon namespace
3854 rtl_opt_pass *
3855 make_pass_sched_fusion (gcc::context *ctxt)
3857 return new pass_sched_fusion (ctxt);