[AArch64] PR target/65491: Classify V1TF vectors as AAPCS64 short vectors rather...
[official-gcc.git] / gcc / combine.c
blob4a57557fe8cf16481fa5a56d621cf8b970d3a0de
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "hash-set.h"
84 #include "machmode.h"
85 #include "vec.h"
86 #include "double-int.h"
87 #include "input.h"
88 #include "alias.h"
89 #include "symtab.h"
90 #include "wide-int.h"
91 #include "inchash.h"
92 #include "tree.h"
93 #include "stor-layout.h"
94 #include "tm_p.h"
95 #include "flags.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "predict.h"
99 #include "function.h"
100 #include "dominance.h"
101 #include "cfg.h"
102 #include "cfgrtl.h"
103 #include "cfgcleanup.h"
104 #include "basic-block.h"
105 #include "insn-config.h"
106 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
107 #include "hashtab.h"
108 #include "statistics.h"
109 #include "real.h"
110 #include "fixed-value.h"
111 #include "expmed.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "emit-rtl.h"
116 #include "varasm.h"
117 #include "stmt.h"
118 #include "expr.h"
119 #include "insn-attr.h"
120 #include "recog.h"
121 #include "diagnostic-core.h"
122 #include "target.h"
123 #include "insn-codes.h"
124 #include "optabs.h"
125 #include "rtlhooks-def.h"
126 #include "params.h"
127 #include "tree-pass.h"
128 #include "df.h"
129 #include "valtrack.h"
130 #include "hash-map.h"
131 #include "is-a.h"
132 #include "plugin-api.h"
133 #include "ipa-ref.h"
134 #include "cgraph.h"
135 #include "obstack.h"
136 #include "rtl-iter.h"
138 /* Number of attempts to combine instructions in this function. */
140 static int combine_attempts;
142 /* Number of attempts that got as far as substitution in this function. */
144 static int combine_merges;
146 /* Number of instructions combined with added SETs in this function. */
148 static int combine_extras;
150 /* Number of instructions combined in this function. */
152 static int combine_successes;
154 /* Totals over entire compilation. */
156 static int total_attempts, total_merges, total_extras, total_successes;
158 /* combine_instructions may try to replace the right hand side of the
159 second instruction with the value of an associated REG_EQUAL note
160 before throwing it at try_combine. That is problematic when there
161 is a REG_DEAD note for a register used in the old right hand side
162 and can cause distribute_notes to do wrong things. This is the
163 second instruction if it has been so modified, null otherwise. */
165 static rtx_insn *i2mod;
167 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
169 static rtx i2mod_old_rhs;
171 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
173 static rtx i2mod_new_rhs;
175 typedef struct reg_stat_struct {
176 /* Record last point of death of (hard or pseudo) register n. */
177 rtx_insn *last_death;
179 /* Record last point of modification of (hard or pseudo) register n. */
180 rtx_insn *last_set;
182 /* The next group of fields allows the recording of the last value assigned
183 to (hard or pseudo) register n. We use this information to see if an
184 operation being processed is redundant given a prior operation performed
185 on the register. For example, an `and' with a constant is redundant if
186 all the zero bits are already known to be turned off.
188 We use an approach similar to that used by cse, but change it in the
189 following ways:
191 (1) We do not want to reinitialize at each label.
192 (2) It is useful, but not critical, to know the actual value assigned
193 to a register. Often just its form is helpful.
195 Therefore, we maintain the following fields:
197 last_set_value the last value assigned
198 last_set_label records the value of label_tick when the
199 register was assigned
200 last_set_table_tick records the value of label_tick when a
201 value using the register is assigned
202 last_set_invalid set to nonzero when it is not valid
203 to use the value of this register in some
204 register's value
206 To understand the usage of these tables, it is important to understand
207 the distinction between the value in last_set_value being valid and
208 the register being validly contained in some other expression in the
209 table.
211 (The next two parameters are out of date).
213 reg_stat[i].last_set_value is valid if it is nonzero, and either
214 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
216 Register I may validly appear in any expression returned for the value
217 of another register if reg_n_sets[i] is 1. It may also appear in the
218 value for register J if reg_stat[j].last_set_invalid is zero, or
219 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
221 If an expression is found in the table containing a register which may
222 not validly appear in an expression, the register is replaced by
223 something that won't match, (clobber (const_int 0)). */
225 /* Record last value assigned to (hard or pseudo) register n. */
227 rtx last_set_value;
229 /* Record the value of label_tick when an expression involving register n
230 is placed in last_set_value. */
232 int last_set_table_tick;
234 /* Record the value of label_tick when the value for register n is placed in
235 last_set_value. */
237 int last_set_label;
239 /* These fields are maintained in parallel with last_set_value and are
240 used to store the mode in which the register was last set, the bits
241 that were known to be zero when it was last set, and the number of
242 sign bits copies it was known to have when it was last set. */
244 unsigned HOST_WIDE_INT last_set_nonzero_bits;
245 char last_set_sign_bit_copies;
246 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
248 /* Set nonzero if references to register n in expressions should not be
249 used. last_set_invalid is set nonzero when this register is being
250 assigned to and last_set_table_tick == label_tick. */
252 char last_set_invalid;
254 /* Some registers that are set more than once and used in more than one
255 basic block are nevertheless always set in similar ways. For example,
256 a QImode register may be loaded from memory in two places on a machine
257 where byte loads zero extend.
259 We record in the following fields if a register has some leading bits
260 that are always equal to the sign bit, and what we know about the
261 nonzero bits of a register, specifically which bits are known to be
262 zero.
264 If an entry is zero, it means that we don't know anything special. */
266 unsigned char sign_bit_copies;
268 unsigned HOST_WIDE_INT nonzero_bits;
270 /* Record the value of the label_tick when the last truncation
271 happened. The field truncated_to_mode is only valid if
272 truncation_label == label_tick. */
274 int truncation_label;
276 /* Record the last truncation seen for this register. If truncation
277 is not a nop to this mode we might be able to save an explicit
278 truncation if we know that value already contains a truncated
279 value. */
281 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
282 } reg_stat_type;
285 static vec<reg_stat_type> reg_stat;
287 /* One plus the highest pseudo for which we track REG_N_SETS.
288 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
289 but during combine_split_insns new pseudos can be created. As we don't have
290 updated DF information in that case, it is hard to initialize the array
291 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
292 so instead of growing the arrays, just assume all newly created pseudos
293 during combine might be set multiple times. */
295 static unsigned int reg_n_sets_max;
297 /* Record the luid of the last insn that invalidated memory
298 (anything that writes memory, and subroutine calls, but not pushes). */
300 static int mem_last_set;
302 /* Record the luid of the last CALL_INSN
303 so we can tell whether a potential combination crosses any calls. */
305 static int last_call_luid;
307 /* When `subst' is called, this is the insn that is being modified
308 (by combining in a previous insn). The PATTERN of this insn
309 is still the old pattern partially modified and it should not be
310 looked at, but this may be used to examine the successors of the insn
311 to judge whether a simplification is valid. */
313 static rtx_insn *subst_insn;
315 /* This is the lowest LUID that `subst' is currently dealing with.
316 get_last_value will not return a value if the register was set at or
317 after this LUID. If not for this mechanism, we could get confused if
318 I2 or I1 in try_combine were an insn that used the old value of a register
319 to obtain a new value. In that case, we might erroneously get the
320 new value of the register when we wanted the old one. */
322 static int subst_low_luid;
324 /* This contains any hard registers that are used in newpat; reg_dead_at_p
325 must consider all these registers to be always live. */
327 static HARD_REG_SET newpat_used_regs;
329 /* This is an insn to which a LOG_LINKS entry has been added. If this
330 insn is the earlier than I2 or I3, combine should rescan starting at
331 that location. */
333 static rtx_insn *added_links_insn;
335 /* Basic block in which we are performing combines. */
336 static basic_block this_basic_block;
337 static bool optimize_this_for_speed_p;
340 /* Length of the currently allocated uid_insn_cost array. */
342 static int max_uid_known;
344 /* The following array records the insn_rtx_cost for every insn
345 in the instruction stream. */
347 static int *uid_insn_cost;
349 /* The following array records the LOG_LINKS for every insn in the
350 instruction stream as struct insn_link pointers. */
352 struct insn_link {
353 rtx_insn *insn;
354 unsigned int regno;
355 struct insn_link *next;
358 static struct insn_link **uid_log_links;
360 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
361 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
363 #define FOR_EACH_LOG_LINK(L, INSN) \
364 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
366 /* Links for LOG_LINKS are allocated from this obstack. */
368 static struct obstack insn_link_obstack;
370 /* Allocate a link. */
372 static inline struct insn_link *
373 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
375 struct insn_link *l
376 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
377 sizeof (struct insn_link));
378 l->insn = insn;
379 l->regno = regno;
380 l->next = next;
381 return l;
384 /* Incremented for each basic block. */
386 static int label_tick;
388 /* Reset to label_tick for each extended basic block in scanning order. */
390 static int label_tick_ebb_start;
392 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
393 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
395 static machine_mode nonzero_bits_mode;
397 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
398 be safely used. It is zero while computing them and after combine has
399 completed. This former test prevents propagating values based on
400 previously set values, which can be incorrect if a variable is modified
401 in a loop. */
403 static int nonzero_sign_valid;
406 /* Record one modification to rtl structure
407 to be undone by storing old_contents into *where. */
409 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
411 struct undo
413 struct undo *next;
414 enum undo_kind kind;
415 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
416 union { rtx *r; int *i; struct insn_link **l; } where;
419 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
420 num_undo says how many are currently recorded.
422 other_insn is nonzero if we have modified some other insn in the process
423 of working on subst_insn. It must be verified too. */
425 struct undobuf
427 struct undo *undos;
428 struct undo *frees;
429 rtx_insn *other_insn;
432 static struct undobuf undobuf;
434 /* Number of times the pseudo being substituted for
435 was found and replaced. */
437 static int n_occurrences;
439 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
440 machine_mode,
441 unsigned HOST_WIDE_INT,
442 unsigned HOST_WIDE_INT *);
443 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
444 machine_mode,
445 unsigned int, unsigned int *);
446 static void do_SUBST (rtx *, rtx);
447 static void do_SUBST_INT (int *, int);
448 static void init_reg_last (void);
449 static void setup_incoming_promotions (rtx_insn *);
450 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
451 static int cant_combine_insn_p (rtx_insn *);
452 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
453 rtx_insn *, rtx_insn *, rtx *, rtx *);
454 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
455 static int contains_muldiv (rtx);
456 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
457 int *, rtx_insn *);
458 static void undo_all (void);
459 static void undo_commit (void);
460 static rtx *find_split_point (rtx *, rtx_insn *, bool);
461 static rtx subst (rtx, rtx, rtx, int, int, int);
462 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
463 static rtx simplify_if_then_else (rtx);
464 static rtx simplify_set (rtx);
465 static rtx simplify_logical (rtx);
466 static rtx expand_compound_operation (rtx);
467 static const_rtx expand_field_assignment (const_rtx);
468 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
469 rtx, unsigned HOST_WIDE_INT, int, int, int);
470 static rtx extract_left_shift (rtx, int);
471 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
472 unsigned HOST_WIDE_INT *);
473 static rtx canon_reg_for_combine (rtx, rtx);
474 static rtx force_to_mode (rtx, machine_mode,
475 unsigned HOST_WIDE_INT, int);
476 static rtx if_then_else_cond (rtx, rtx *, rtx *);
477 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
478 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
479 static rtx make_field_assignment (rtx);
480 static rtx apply_distributive_law (rtx);
481 static rtx distribute_and_simplify_rtx (rtx, int);
482 static rtx simplify_and_const_int_1 (machine_mode, rtx,
483 unsigned HOST_WIDE_INT);
484 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
485 unsigned HOST_WIDE_INT);
486 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
487 HOST_WIDE_INT, machine_mode, int *);
488 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
489 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
490 int);
491 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
492 static rtx gen_lowpart_for_combine (machine_mode, rtx);
493 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
494 rtx, rtx *);
495 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
496 static void update_table_tick (rtx);
497 static void record_value_for_reg (rtx, rtx_insn *, rtx);
498 static void check_promoted_subreg (rtx_insn *, rtx);
499 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
500 static void record_dead_and_set_regs (rtx_insn *);
501 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
502 static rtx get_last_value (const_rtx);
503 static int use_crosses_set_p (const_rtx, int);
504 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
505 static int reg_dead_at_p (rtx, rtx_insn *);
506 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
507 static int reg_bitfield_target_p (rtx, rtx);
508 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
509 static void distribute_links (struct insn_link *);
510 static void mark_used_regs_combine (rtx);
511 static void record_promoted_value (rtx_insn *, rtx);
512 static bool unmentioned_reg_p (rtx, rtx);
513 static void record_truncated_values (rtx *, void *);
514 static bool reg_truncated_to_mode (machine_mode, const_rtx);
515 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
518 /* It is not safe to use ordinary gen_lowpart in combine.
519 See comments in gen_lowpart_for_combine. */
520 #undef RTL_HOOKS_GEN_LOWPART
521 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
523 /* Our implementation of gen_lowpart never emits a new pseudo. */
524 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
525 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
527 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
528 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
530 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
531 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
533 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
534 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
536 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
539 /* Convenience wrapper for the canonicalize_comparison target hook.
540 Target hooks cannot use enum rtx_code. */
541 static inline void
542 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
543 bool op0_preserve_value)
545 int code_int = (int)*code;
546 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
547 *code = (enum rtx_code)code_int;
550 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
551 PATTERN can not be split. Otherwise, it returns an insn sequence.
552 This is a wrapper around split_insns which ensures that the
553 reg_stat vector is made larger if the splitter creates a new
554 register. */
556 static rtx_insn *
557 combine_split_insns (rtx pattern, rtx_insn *insn)
559 rtx_insn *ret;
560 unsigned int nregs;
562 ret = safe_as_a <rtx_insn *> (split_insns (pattern, insn));
563 nregs = max_reg_num ();
564 if (nregs > reg_stat.length ())
565 reg_stat.safe_grow_cleared (nregs);
566 return ret;
569 /* This is used by find_single_use to locate an rtx in LOC that
570 contains exactly one use of DEST, which is typically either a REG
571 or CC0. It returns a pointer to the innermost rtx expression
572 containing DEST. Appearances of DEST that are being used to
573 totally replace it are not counted. */
575 static rtx *
576 find_single_use_1 (rtx dest, rtx *loc)
578 rtx x = *loc;
579 enum rtx_code code = GET_CODE (x);
580 rtx *result = NULL;
581 rtx *this_result;
582 int i;
583 const char *fmt;
585 switch (code)
587 case CONST:
588 case LABEL_REF:
589 case SYMBOL_REF:
590 CASE_CONST_ANY:
591 case CLOBBER:
592 return 0;
594 case SET:
595 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
596 of a REG that occupies all of the REG, the insn uses DEST if
597 it is mentioned in the destination or the source. Otherwise, we
598 need just check the source. */
599 if (GET_CODE (SET_DEST (x)) != CC0
600 && GET_CODE (SET_DEST (x)) != PC
601 && !REG_P (SET_DEST (x))
602 && ! (GET_CODE (SET_DEST (x)) == SUBREG
603 && REG_P (SUBREG_REG (SET_DEST (x)))
604 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
605 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
606 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
607 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
608 break;
610 return find_single_use_1 (dest, &SET_SRC (x));
612 case MEM:
613 case SUBREG:
614 return find_single_use_1 (dest, &XEXP (x, 0));
616 default:
617 break;
620 /* If it wasn't one of the common cases above, check each expression and
621 vector of this code. Look for a unique usage of DEST. */
623 fmt = GET_RTX_FORMAT (code);
624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 if (fmt[i] == 'e')
628 if (dest == XEXP (x, i)
629 || (REG_P (dest) && REG_P (XEXP (x, i))
630 && REGNO (dest) == REGNO (XEXP (x, i))))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XEXP (x, i));
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 /* Duplicate usage. */
639 return NULL;
641 else if (fmt[i] == 'E')
643 int j;
645 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
647 if (XVECEXP (x, i, j) == dest
648 || (REG_P (dest)
649 && REG_P (XVECEXP (x, i, j))
650 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
651 this_result = loc;
652 else
653 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
655 if (result == NULL)
656 result = this_result;
657 else if (this_result)
658 return NULL;
663 return result;
667 /* See if DEST, produced in INSN, is used only a single time in the
668 sequel. If so, return a pointer to the innermost rtx expression in which
669 it is used.
671 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
673 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
674 care about REG_DEAD notes or LOG_LINKS.
676 Otherwise, we find the single use by finding an insn that has a
677 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
678 only referenced once in that insn, we know that it must be the first
679 and last insn referencing DEST. */
681 static rtx *
682 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
684 basic_block bb;
685 rtx_insn *next;
686 rtx *result;
687 struct insn_link *link;
689 if (dest == cc0_rtx)
691 next = NEXT_INSN (insn);
692 if (next == 0
693 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
694 return 0;
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (result && ploc)
698 *ploc = next;
699 return result;
702 if (!REG_P (dest))
703 return 0;
705 bb = BLOCK_FOR_INSN (insn);
706 for (next = NEXT_INSN (insn);
707 next && BLOCK_FOR_INSN (next) == bb;
708 next = NEXT_INSN (next))
709 if (INSN_P (next) && dead_or_set_p (next, dest))
711 FOR_EACH_LOG_LINK (link, next)
712 if (link->insn == insn && link->regno == REGNO (dest))
713 break;
715 if (link)
717 result = find_single_use_1 (dest, &PATTERN (next));
718 if (ploc)
719 *ploc = next;
720 return result;
724 return 0;
727 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
728 insn. The substitution can be undone by undo_all. If INTO is already
729 set to NEWVAL, do not record this change. Because computing NEWVAL might
730 also call SUBST, we have to compute it before we put anything into
731 the undo table. */
733 static void
734 do_SUBST (rtx *into, rtx newval)
736 struct undo *buf;
737 rtx oldval = *into;
739 if (oldval == newval)
740 return;
742 /* We'd like to catch as many invalid transformations here as
743 possible. Unfortunately, there are way too many mode changes
744 that are perfectly valid, so we'd waste too much effort for
745 little gain doing the checks here. Focus on catching invalid
746 transformations involving integer constants. */
747 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
748 && CONST_INT_P (newval))
750 /* Sanity check that we're replacing oldval with a CONST_INT
751 that is a valid sign-extension for the original mode. */
752 gcc_assert (INTVAL (newval)
753 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
755 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
756 CONST_INT is not valid, because after the replacement, the
757 original mode would be gone. Unfortunately, we can't tell
758 when do_SUBST is called to replace the operand thereof, so we
759 perform this test on oldval instead, checking whether an
760 invalid replacement took place before we got here. */
761 gcc_assert (!(GET_CODE (oldval) == SUBREG
762 && CONST_INT_P (SUBREG_REG (oldval))));
763 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
764 && CONST_INT_P (XEXP (oldval, 0))));
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
772 buf->kind = UNDO_RTX;
773 buf->where.r = into;
774 buf->old_contents.r = oldval;
775 *into = newval;
777 buf->next = undobuf.undos, undobuf.undos = buf;
780 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
782 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
783 for the value of a HOST_WIDE_INT value (including CONST_INT) is
784 not safe. */
786 static void
787 do_SUBST_INT (int *into, int newval)
789 struct undo *buf;
790 int oldval = *into;
792 if (oldval == newval)
793 return;
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
800 buf->kind = UNDO_INT;
801 buf->where.i = into;
802 buf->old_contents.i = oldval;
803 *into = newval;
805 buf->next = undobuf.undos, undobuf.undos = buf;
808 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
810 /* Similar to SUBST, but just substitute the mode. This is used when
811 changing the mode of a pseudo-register, so that any other
812 references to the entry in the regno_reg_rtx array will change as
813 well. */
815 static void
816 do_SUBST_MODE (rtx *into, machine_mode newval)
818 struct undo *buf;
819 machine_mode oldval = GET_MODE (*into);
821 if (oldval == newval)
822 return;
824 if (undobuf.frees)
825 buf = undobuf.frees, undobuf.frees = buf->next;
826 else
827 buf = XNEW (struct undo);
829 buf->kind = UNDO_MODE;
830 buf->where.r = into;
831 buf->old_contents.m = oldval;
832 adjust_reg_mode (*into, newval);
834 buf->next = undobuf.undos, undobuf.undos = buf;
837 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
839 #if !HAVE_cc0
840 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
842 static void
843 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
845 struct undo *buf;
846 struct insn_link * oldval = *into;
848 if (oldval == newval)
849 return;
851 if (undobuf.frees)
852 buf = undobuf.frees, undobuf.frees = buf->next;
853 else
854 buf = XNEW (struct undo);
856 buf->kind = UNDO_LINKS;
857 buf->where.l = into;
858 buf->old_contents.l = oldval;
859 *into = newval;
861 buf->next = undobuf.undos, undobuf.undos = buf;
864 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
865 #endif
867 /* Subroutine of try_combine. Determine whether the replacement patterns
868 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
869 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
870 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
871 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
872 of all the instructions can be estimated and the replacements are more
873 expensive than the original sequence. */
875 static bool
876 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
877 rtx newpat, rtx newi2pat, rtx newotherpat)
879 int i0_cost, i1_cost, i2_cost, i3_cost;
880 int new_i2_cost, new_i3_cost;
881 int old_cost, new_cost;
883 /* Lookup the original insn_rtx_costs. */
884 i2_cost = INSN_COST (i2);
885 i3_cost = INSN_COST (i3);
887 if (i1)
889 i1_cost = INSN_COST (i1);
890 if (i0)
892 i0_cost = INSN_COST (i0);
893 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
894 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
896 else
898 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
899 ? i1_cost + i2_cost + i3_cost : 0);
900 i0_cost = 0;
903 else
905 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
906 i1_cost = i0_cost = 0;
909 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
910 correct that. */
911 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
912 old_cost -= i1_cost;
915 /* Calculate the replacement insn_rtx_costs. */
916 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
917 if (newi2pat)
919 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
920 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
921 ? new_i2_cost + new_i3_cost : 0;
923 else
925 new_cost = new_i3_cost;
926 new_i2_cost = 0;
929 if (undobuf.other_insn)
931 int old_other_cost, new_other_cost;
933 old_other_cost = INSN_COST (undobuf.other_insn);
934 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
935 if (old_other_cost > 0 && new_other_cost > 0)
937 old_cost += old_other_cost;
938 new_cost += new_other_cost;
940 else
941 old_cost = 0;
944 /* Disallow this combination if both new_cost and old_cost are greater than
945 zero, and new_cost is greater than old cost. */
946 int reject = old_cost > 0 && new_cost > old_cost;
948 if (dump_file)
950 fprintf (dump_file, "%s combination of insns ",
951 reject ? "rejecting" : "allowing");
952 if (i0)
953 fprintf (dump_file, "%d, ", INSN_UID (i0));
954 if (i1 && INSN_UID (i1) != INSN_UID (i2))
955 fprintf (dump_file, "%d, ", INSN_UID (i1));
956 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
958 fprintf (dump_file, "original costs ");
959 if (i0)
960 fprintf (dump_file, "%d + ", i0_cost);
961 if (i1 && INSN_UID (i1) != INSN_UID (i2))
962 fprintf (dump_file, "%d + ", i1_cost);
963 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
965 if (newi2pat)
966 fprintf (dump_file, "replacement costs %d + %d = %d\n",
967 new_i2_cost, new_i3_cost, new_cost);
968 else
969 fprintf (dump_file, "replacement cost %d\n", new_cost);
972 if (reject)
973 return false;
975 /* Update the uid_insn_cost array with the replacement costs. */
976 INSN_COST (i2) = new_i2_cost;
977 INSN_COST (i3) = new_i3_cost;
978 if (i1)
980 INSN_COST (i1) = 0;
981 if (i0)
982 INSN_COST (i0) = 0;
985 return true;
989 /* Delete any insns that copy a register to itself. */
991 static void
992 delete_noop_moves (void)
994 rtx_insn *insn, *next;
995 basic_block bb;
997 FOR_EACH_BB_FN (bb, cfun)
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1007 delete_insn_and_edges (insn);
1014 /* Return false if we do not want to (or cannot) combine DEF. */
1015 static bool
1016 can_combine_def_p (df_ref def)
1018 /* Do not consider if it is pre/post modification in MEM. */
1019 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1020 return false;
1022 unsigned int regno = DF_REF_REGNO (def);
1024 /* Do not combine frame pointer adjustments. */
1025 if ((regno == FRAME_POINTER_REGNUM
1026 && (!reload_completed || frame_pointer_needed))
1027 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1028 || (regno == HARD_FRAME_POINTER_REGNUM
1029 && (!reload_completed || frame_pointer_needed))
1030 #endif
1031 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1033 return false;
1035 return true;
1038 /* Return false if we do not want to (or cannot) combine USE. */
1039 static bool
1040 can_combine_use_p (df_ref use)
1042 /* Do not consider the usage of the stack pointer by function call. */
1043 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1044 return false;
1046 return true;
1049 /* Fill in log links field for all insns. */
1051 static void
1052 create_log_links (void)
1054 basic_block bb;
1055 rtx_insn **next_use;
1056 rtx_insn *insn;
1057 df_ref def, use;
1059 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1061 /* Pass through each block from the end, recording the uses of each
1062 register and establishing log links when def is encountered.
1063 Note that we do not clear next_use array in order to save time,
1064 so we have to test whether the use is in the same basic block as def.
1066 There are a few cases below when we do not consider the definition or
1067 usage -- these are taken from original flow.c did. Don't ask me why it is
1068 done this way; I don't know and if it works, I don't want to know. */
1070 FOR_EACH_BB_FN (bb, cfun)
1072 FOR_BB_INSNS_REVERSE (bb, insn)
1074 if (!NONDEBUG_INSN_P (insn))
1075 continue;
1077 /* Log links are created only once. */
1078 gcc_assert (!LOG_LINKS (insn));
1080 FOR_EACH_INSN_DEF (def, insn)
1082 unsigned int regno = DF_REF_REGNO (def);
1083 rtx_insn *use_insn;
1085 if (!next_use[regno])
1086 continue;
1088 if (!can_combine_def_p (def))
1089 continue;
1091 use_insn = next_use[regno];
1092 next_use[regno] = NULL;
1094 if (BLOCK_FOR_INSN (use_insn) != bb)
1095 continue;
1097 /* flow.c claimed:
1099 We don't build a LOG_LINK for hard registers contained
1100 in ASM_OPERANDs. If these registers get replaced,
1101 we might wind up changing the semantics of the insn,
1102 even if reload can make what appear to be valid
1103 assignments later. */
1104 if (regno < FIRST_PSEUDO_REGISTER
1105 && asm_noperands (PATTERN (use_insn)) >= 0)
1106 continue;
1108 /* Don't add duplicate links between instructions. */
1109 struct insn_link *links;
1110 FOR_EACH_LOG_LINK (links, use_insn)
1111 if (insn == links->insn && regno == links->regno)
1112 break;
1114 if (!links)
1115 LOG_LINKS (use_insn)
1116 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1119 FOR_EACH_INSN_USE (use, insn)
1120 if (can_combine_use_p (use))
1121 next_use[DF_REF_REGNO (use)] = insn;
1125 free (next_use);
1128 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1129 true if we found a LOG_LINK that proves that A feeds B. This only works
1130 if there are no instructions between A and B which could have a link
1131 depending on A, since in that case we would not record a link for B.
1132 We also check the implicit dependency created by a cc0 setter/user
1133 pair. */
1135 static bool
1136 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1138 struct insn_link *links;
1139 FOR_EACH_LOG_LINK (links, b)
1140 if (links->insn == a)
1141 return true;
1142 if (HAVE_cc0 && sets_cc0_p (a))
1143 return true;
1144 return false;
1147 /* Main entry point for combiner. F is the first insn of the function.
1148 NREGS is the first unused pseudo-reg number.
1150 Return nonzero if the combiner has turned an indirect jump
1151 instruction into a direct jump. */
1152 static int
1153 combine_instructions (rtx_insn *f, unsigned int nregs)
1155 rtx_insn *insn, *next;
1156 #if HAVE_cc0
1157 rtx_insn *prev;
1158 #endif
1159 struct insn_link *links, *nextlinks;
1160 rtx_insn *first;
1161 basic_block last_bb;
1163 int new_direct_jump_p = 0;
1165 for (first = f; first && !INSN_P (first); )
1166 first = NEXT_INSN (first);
1167 if (!first)
1168 return 0;
1170 combine_attempts = 0;
1171 combine_merges = 0;
1172 combine_extras = 0;
1173 combine_successes = 0;
1175 rtl_hooks = combine_rtl_hooks;
1177 reg_stat.safe_grow_cleared (nregs);
1179 init_recog_no_volatile ();
1181 /* Allocate array for insn info. */
1182 max_uid_known = get_max_uid ();
1183 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1184 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1185 gcc_obstack_init (&insn_link_obstack);
1187 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1189 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1190 problems when, for example, we have j <<= 1 in a loop. */
1192 nonzero_sign_valid = 0;
1193 label_tick = label_tick_ebb_start = 1;
1195 /* Scan all SETs and see if we can deduce anything about what
1196 bits are known to be zero for some registers and how many copies
1197 of the sign bit are known to exist for those registers.
1199 Also set any known values so that we can use it while searching
1200 for what bits are known to be set. */
1202 setup_incoming_promotions (first);
1203 /* Allow the entry block and the first block to fall into the same EBB.
1204 Conceptually the incoming promotions are assigned to the entry block. */
1205 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1207 create_log_links ();
1208 FOR_EACH_BB_FN (this_basic_block, cfun)
1210 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1211 last_call_luid = 0;
1212 mem_last_set = -1;
1214 label_tick++;
1215 if (!single_pred_p (this_basic_block)
1216 || single_pred (this_basic_block) != last_bb)
1217 label_tick_ebb_start = label_tick;
1218 last_bb = this_basic_block;
1220 FOR_BB_INSNS (this_basic_block, insn)
1221 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1223 #ifdef AUTO_INC_DEC
1224 rtx links;
1225 #endif
1227 subst_low_luid = DF_INSN_LUID (insn);
1228 subst_insn = insn;
1230 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1231 insn);
1232 record_dead_and_set_regs (insn);
1234 #ifdef AUTO_INC_DEC
1235 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1236 if (REG_NOTE_KIND (links) == REG_INC)
1237 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1238 insn);
1239 #endif
1241 /* Record the current insn_rtx_cost of this instruction. */
1242 if (NONJUMP_INSN_P (insn))
1243 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1244 optimize_this_for_speed_p);
1245 if (dump_file)
1246 fprintf (dump_file, "insn_cost %d: %d\n",
1247 INSN_UID (insn), INSN_COST (insn));
1251 nonzero_sign_valid = 1;
1253 /* Now scan all the insns in forward order. */
1254 label_tick = label_tick_ebb_start = 1;
1255 init_reg_last ();
1256 setup_incoming_promotions (first);
1257 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1258 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1260 FOR_EACH_BB_FN (this_basic_block, cfun)
1262 rtx_insn *last_combined_insn = NULL;
1263 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1264 last_call_luid = 0;
1265 mem_last_set = -1;
1267 label_tick++;
1268 if (!single_pred_p (this_basic_block)
1269 || single_pred (this_basic_block) != last_bb)
1270 label_tick_ebb_start = label_tick;
1271 last_bb = this_basic_block;
1273 rtl_profile_for_bb (this_basic_block);
1274 for (insn = BB_HEAD (this_basic_block);
1275 insn != NEXT_INSN (BB_END (this_basic_block));
1276 insn = next ? next : NEXT_INSN (insn))
1278 next = 0;
1279 if (!NONDEBUG_INSN_P (insn))
1280 continue;
1282 while (last_combined_insn
1283 && last_combined_insn->deleted ())
1284 last_combined_insn = PREV_INSN (last_combined_insn);
1285 if (last_combined_insn == NULL_RTX
1286 || BARRIER_P (last_combined_insn)
1287 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1288 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1289 last_combined_insn = insn;
1291 /* See if we know about function return values before this
1292 insn based upon SUBREG flags. */
1293 check_promoted_subreg (insn, PATTERN (insn));
1295 /* See if we can find hardregs and subreg of pseudos in
1296 narrower modes. This could help turning TRUNCATEs
1297 into SUBREGs. */
1298 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1300 /* Try this insn with each insn it links back to. */
1302 FOR_EACH_LOG_LINK (links, insn)
1303 if ((next = try_combine (insn, links->insn, NULL,
1304 NULL, &new_direct_jump_p,
1305 last_combined_insn)) != 0)
1307 statistics_counter_event (cfun, "two-insn combine", 1);
1308 goto retry;
1311 /* Try each sequence of three linked insns ending with this one. */
1313 if (max_combine >= 3)
1314 FOR_EACH_LOG_LINK (links, insn)
1316 rtx_insn *link = links->insn;
1318 /* If the linked insn has been replaced by a note, then there
1319 is no point in pursuing this chain any further. */
1320 if (NOTE_P (link))
1321 continue;
1323 FOR_EACH_LOG_LINK (nextlinks, link)
1324 if ((next = try_combine (insn, link, nextlinks->insn,
1325 NULL, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1328 statistics_counter_event (cfun, "three-insn combine", 1);
1329 goto retry;
1333 #if HAVE_cc0
1334 /* Try to combine a jump insn that uses CC0
1335 with a preceding insn that sets CC0, and maybe with its
1336 logical predecessor as well.
1337 This is how we make decrement-and-branch insns.
1338 We need this special code because data flow connections
1339 via CC0 do not get entered in LOG_LINKS. */
1341 if (JUMP_P (insn)
1342 && (prev = prev_nonnote_insn (insn)) != 0
1343 && NONJUMP_INSN_P (prev)
1344 && sets_cc0_p (PATTERN (prev)))
1346 if ((next = try_combine (insn, prev, NULL, NULL,
1347 &new_direct_jump_p,
1348 last_combined_insn)) != 0)
1349 goto retry;
1351 FOR_EACH_LOG_LINK (nextlinks, prev)
1352 if ((next = try_combine (insn, prev, nextlinks->insn,
1353 NULL, &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1358 /* Do the same for an insn that explicitly references CC0. */
1359 if (NONJUMP_INSN_P (insn)
1360 && (prev = prev_nonnote_insn (insn)) != 0
1361 && NONJUMP_INSN_P (prev)
1362 && sets_cc0_p (PATTERN (prev))
1363 && GET_CODE (PATTERN (insn)) == SET
1364 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1366 if ((next = try_combine (insn, prev, NULL, NULL,
1367 &new_direct_jump_p,
1368 last_combined_insn)) != 0)
1369 goto retry;
1371 FOR_EACH_LOG_LINK (nextlinks, prev)
1372 if ((next = try_combine (insn, prev, nextlinks->insn,
1373 NULL, &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1378 /* Finally, see if any of the insns that this insn links to
1379 explicitly references CC0. If so, try this insn, that insn,
1380 and its predecessor if it sets CC0. */
1381 FOR_EACH_LOG_LINK (links, insn)
1382 if (NONJUMP_INSN_P (links->insn)
1383 && GET_CODE (PATTERN (links->insn)) == SET
1384 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1385 && (prev = prev_nonnote_insn (links->insn)) != 0
1386 && NONJUMP_INSN_P (prev)
1387 && sets_cc0_p (PATTERN (prev))
1388 && (next = try_combine (insn, links->insn,
1389 prev, NULL, &new_direct_jump_p,
1390 last_combined_insn)) != 0)
1391 goto retry;
1392 #endif
1394 /* Try combining an insn with two different insns whose results it
1395 uses. */
1396 if (max_combine >= 3)
1397 FOR_EACH_LOG_LINK (links, insn)
1398 for (nextlinks = links->next; nextlinks;
1399 nextlinks = nextlinks->next)
1400 if ((next = try_combine (insn, links->insn,
1401 nextlinks->insn, NULL,
1402 &new_direct_jump_p,
1403 last_combined_insn)) != 0)
1406 statistics_counter_event (cfun, "three-insn combine", 1);
1407 goto retry;
1410 /* Try four-instruction combinations. */
1411 if (max_combine >= 4)
1412 FOR_EACH_LOG_LINK (links, insn)
1414 struct insn_link *next1;
1415 rtx_insn *link = links->insn;
1417 /* If the linked insn has been replaced by a note, then there
1418 is no point in pursuing this chain any further. */
1419 if (NOTE_P (link))
1420 continue;
1422 FOR_EACH_LOG_LINK (next1, link)
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I1 -> I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link1)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1437 /* I0, I1 -> I2, I2 -> I3. */
1438 for (nextlinks = next1->next; nextlinks;
1439 nextlinks = nextlinks->next)
1440 if ((next = try_combine (insn, link, link1,
1441 nextlinks->insn,
1442 &new_direct_jump_p,
1443 last_combined_insn)) != 0)
1445 statistics_counter_event (cfun, "four-insn combine", 1);
1446 goto retry;
1450 for (next1 = links->next; next1; next1 = next1->next)
1452 rtx_insn *link1 = next1->insn;
1453 if (NOTE_P (link1))
1454 continue;
1455 /* I0 -> I2; I1, I2 -> I3. */
1456 FOR_EACH_LOG_LINK (nextlinks, link)
1457 if ((next = try_combine (insn, link, link1,
1458 nextlinks->insn,
1459 &new_direct_jump_p,
1460 last_combined_insn)) != 0)
1462 statistics_counter_event (cfun, "four-insn combine", 1);
1463 goto retry;
1465 /* I0 -> I1; I1, I2 -> I3. */
1466 FOR_EACH_LOG_LINK (nextlinks, link1)
1467 if ((next = try_combine (insn, link, link1,
1468 nextlinks->insn,
1469 &new_direct_jump_p,
1470 last_combined_insn)) != 0)
1472 statistics_counter_event (cfun, "four-insn combine", 1);
1473 goto retry;
1478 /* Try this insn with each REG_EQUAL note it links back to. */
1479 FOR_EACH_LOG_LINK (links, insn)
1481 rtx set, note;
1482 rtx_insn *temp = links->insn;
1483 if ((set = single_set (temp)) != 0
1484 && (note = find_reg_equal_equiv_note (temp)) != 0
1485 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1486 /* Avoid using a register that may already been marked
1487 dead by an earlier instruction. */
1488 && ! unmentioned_reg_p (note, SET_SRC (set))
1489 && (GET_MODE (note) == VOIDmode
1490 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1491 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1493 /* Temporarily replace the set's source with the
1494 contents of the REG_EQUAL note. The insn will
1495 be deleted or recognized by try_combine. */
1496 rtx orig = SET_SRC (set);
1497 SET_SRC (set) = note;
1498 i2mod = temp;
1499 i2mod_old_rhs = copy_rtx (orig);
1500 i2mod_new_rhs = copy_rtx (note);
1501 next = try_combine (insn, i2mod, NULL, NULL,
1502 &new_direct_jump_p,
1503 last_combined_insn);
1504 i2mod = NULL;
1505 if (next)
1507 statistics_counter_event (cfun, "insn-with-note combine", 1);
1508 goto retry;
1510 SET_SRC (set) = orig;
1514 if (!NOTE_P (insn))
1515 record_dead_and_set_regs (insn);
1517 retry:
1522 default_rtl_profile ();
1523 clear_bb_flags ();
1524 new_direct_jump_p |= purge_all_dead_edges ();
1525 delete_noop_moves ();
1527 /* Clean up. */
1528 obstack_free (&insn_link_obstack, NULL);
1529 free (uid_log_links);
1530 free (uid_insn_cost);
1531 reg_stat.release ();
1534 struct undo *undo, *next;
1535 for (undo = undobuf.frees; undo; undo = next)
1537 next = undo->next;
1538 free (undo);
1540 undobuf.frees = 0;
1543 total_attempts += combine_attempts;
1544 total_merges += combine_merges;
1545 total_extras += combine_extras;
1546 total_successes += combine_successes;
1548 nonzero_sign_valid = 0;
1549 rtl_hooks = general_rtl_hooks;
1551 /* Make recognizer allow volatile MEMs again. */
1552 init_recog ();
1554 return new_direct_jump_p;
1557 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1559 static void
1560 init_reg_last (void)
1562 unsigned int i;
1563 reg_stat_type *p;
1565 FOR_EACH_VEC_ELT (reg_stat, i, p)
1566 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1569 /* Set up any promoted values for incoming argument registers. */
1571 static void
1572 setup_incoming_promotions (rtx_insn *first)
1574 tree arg;
1575 bool strictly_local = false;
1577 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1578 arg = DECL_CHAIN (arg))
1580 rtx x, reg = DECL_INCOMING_RTL (arg);
1581 int uns1, uns3;
1582 machine_mode mode1, mode2, mode3, mode4;
1584 /* Only continue if the incoming argument is in a register. */
1585 if (!REG_P (reg))
1586 continue;
1588 /* Determine, if possible, whether all call sites of the current
1589 function lie within the current compilation unit. (This does
1590 take into account the exporting of a function via taking its
1591 address, and so forth.) */
1592 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1594 /* The mode and signedness of the argument before any promotions happen
1595 (equal to the mode of the pseudo holding it at that stage). */
1596 mode1 = TYPE_MODE (TREE_TYPE (arg));
1597 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1599 /* The mode and signedness of the argument after any source language and
1600 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1601 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1602 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1604 /* The mode and signedness of the argument as it is actually passed,
1605 see assign_parm_setup_reg in function.c. */
1606 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1607 TREE_TYPE (cfun->decl), 0);
1609 /* The mode of the register in which the argument is being passed. */
1610 mode4 = GET_MODE (reg);
1612 /* Eliminate sign extensions in the callee when:
1613 (a) A mode promotion has occurred; */
1614 if (mode1 == mode3)
1615 continue;
1616 /* (b) The mode of the register is the same as the mode of
1617 the argument as it is passed; */
1618 if (mode3 != mode4)
1619 continue;
1620 /* (c) There's no language level extension; */
1621 if (mode1 == mode2)
1623 /* (c.1) All callers are from the current compilation unit. If that's
1624 the case we don't have to rely on an ABI, we only have to know
1625 what we're generating right now, and we know that we will do the
1626 mode1 to mode2 promotion with the given sign. */
1627 else if (!strictly_local)
1628 continue;
1629 /* (c.2) The combination of the two promotions is useful. This is
1630 true when the signs match, or if the first promotion is unsigned.
1631 In the later case, (sign_extend (zero_extend x)) is the same as
1632 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1633 else if (uns1)
1634 uns3 = true;
1635 else if (uns3)
1636 continue;
1638 /* Record that the value was promoted from mode1 to mode3,
1639 so that any sign extension at the head of the current
1640 function may be eliminated. */
1641 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1642 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1643 record_value_for_reg (reg, first, x);
1647 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1648 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1649 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1650 because some machines (maybe most) will actually do the sign-extension and
1651 this is the conservative approach.
1653 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1654 kludge. */
1656 static rtx
1657 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1659 if (GET_MODE_PRECISION (mode) < prec
1660 && CONST_INT_P (src)
1661 && INTVAL (src) > 0
1662 && val_signbit_known_set_p (mode, INTVAL (src)))
1663 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1665 return src;
1667 #endif
1669 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1670 and SET. */
1672 static void
1673 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1674 rtx x)
1676 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1677 unsigned HOST_WIDE_INT bits = 0;
1678 rtx reg_equal = NULL, src = SET_SRC (set);
1679 unsigned int num = 0;
1681 if (reg_equal_note)
1682 reg_equal = XEXP (reg_equal_note, 0);
1684 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1685 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1686 if (reg_equal)
1687 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1688 #endif
1690 /* Don't call nonzero_bits if it cannot change anything. */
1691 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1693 bits = nonzero_bits (src, nonzero_bits_mode);
1694 if (reg_equal && bits)
1695 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1696 rsp->nonzero_bits |= bits;
1699 /* Don't call num_sign_bit_copies if it cannot change anything. */
1700 if (rsp->sign_bit_copies != 1)
1702 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1703 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1705 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1706 if (num == 0 || numeq > num)
1707 num = numeq;
1709 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1710 rsp->sign_bit_copies = num;
1714 /* Called via note_stores. If X is a pseudo that is narrower than
1715 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1717 If we are setting only a portion of X and we can't figure out what
1718 portion, assume all bits will be used since we don't know what will
1719 be happening.
1721 Similarly, set how many bits of X are known to be copies of the sign bit
1722 at all locations in the function. This is the smallest number implied
1723 by any set of X. */
1725 static void
1726 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1728 rtx_insn *insn = (rtx_insn *) data;
1730 if (REG_P (x)
1731 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1732 /* If this register is undefined at the start of the file, we can't
1733 say what its contents were. */
1734 && ! REGNO_REG_SET_P
1735 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1736 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1738 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1740 if (set == 0 || GET_CODE (set) == CLOBBER)
1742 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1743 rsp->sign_bit_copies = 1;
1744 return;
1747 /* If this register is being initialized using itself, and the
1748 register is uninitialized in this basic block, and there are
1749 no LOG_LINKS which set the register, then part of the
1750 register is uninitialized. In that case we can't assume
1751 anything about the number of nonzero bits.
1753 ??? We could do better if we checked this in
1754 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1755 could avoid making assumptions about the insn which initially
1756 sets the register, while still using the information in other
1757 insns. We would have to be careful to check every insn
1758 involved in the combination. */
1760 if (insn
1761 && reg_referenced_p (x, PATTERN (insn))
1762 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1763 REGNO (x)))
1765 struct insn_link *link;
1767 FOR_EACH_LOG_LINK (link, insn)
1768 if (dead_or_set_p (link->insn, x))
1769 break;
1770 if (!link)
1772 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1773 rsp->sign_bit_copies = 1;
1774 return;
1778 /* If this is a complex assignment, see if we can convert it into a
1779 simple assignment. */
1780 set = expand_field_assignment (set);
1782 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1783 set what we know about X. */
1785 if (SET_DEST (set) == x
1786 || (paradoxical_subreg_p (SET_DEST (set))
1787 && SUBREG_REG (SET_DEST (set)) == x))
1788 update_rsp_from_reg_equal (rsp, insn, set, x);
1789 else
1791 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1792 rsp->sign_bit_copies = 1;
1797 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1798 optionally insns that were previously combined into I3 or that will be
1799 combined into the merger of INSN and I3. The order is PRED, PRED2,
1800 INSN, SUCC, SUCC2, I3.
1802 Return 0 if the combination is not allowed for any reason.
1804 If the combination is allowed, *PDEST will be set to the single
1805 destination of INSN and *PSRC to the single source, and this function
1806 will return 1. */
1808 static int
1809 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1810 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1811 rtx *pdest, rtx *psrc)
1813 int i;
1814 const_rtx set = 0;
1815 rtx src, dest;
1816 rtx_insn *p;
1817 #ifdef AUTO_INC_DEC
1818 rtx link;
1819 #endif
1820 bool all_adjacent = true;
1821 int (*is_volatile_p) (const_rtx);
1823 if (succ)
1825 if (succ2)
1827 if (next_active_insn (succ2) != i3)
1828 all_adjacent = false;
1829 if (next_active_insn (succ) != succ2)
1830 all_adjacent = false;
1832 else if (next_active_insn (succ) != i3)
1833 all_adjacent = false;
1834 if (next_active_insn (insn) != succ)
1835 all_adjacent = false;
1837 else if (next_active_insn (insn) != i3)
1838 all_adjacent = false;
1840 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1841 or a PARALLEL consisting of such a SET and CLOBBERs.
1843 If INSN has CLOBBER parallel parts, ignore them for our processing.
1844 By definition, these happen during the execution of the insn. When it
1845 is merged with another insn, all bets are off. If they are, in fact,
1846 needed and aren't also supplied in I3, they may be added by
1847 recog_for_combine. Otherwise, it won't match.
1849 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1850 note.
1852 Get the source and destination of INSN. If more than one, can't
1853 combine. */
1855 if (GET_CODE (PATTERN (insn)) == SET)
1856 set = PATTERN (insn);
1857 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1858 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1860 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1862 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1864 switch (GET_CODE (elt))
1866 /* This is important to combine floating point insns
1867 for the SH4 port. */
1868 case USE:
1869 /* Combining an isolated USE doesn't make sense.
1870 We depend here on combinable_i3pat to reject them. */
1871 /* The code below this loop only verifies that the inputs of
1872 the SET in INSN do not change. We call reg_set_between_p
1873 to verify that the REG in the USE does not change between
1874 I3 and INSN.
1875 If the USE in INSN was for a pseudo register, the matching
1876 insn pattern will likely match any register; combining this
1877 with any other USE would only be safe if we knew that the
1878 used registers have identical values, or if there was
1879 something to tell them apart, e.g. different modes. For
1880 now, we forgo such complicated tests and simply disallow
1881 combining of USES of pseudo registers with any other USE. */
1882 if (REG_P (XEXP (elt, 0))
1883 && GET_CODE (PATTERN (i3)) == PARALLEL)
1885 rtx i3pat = PATTERN (i3);
1886 int i = XVECLEN (i3pat, 0) - 1;
1887 unsigned int regno = REGNO (XEXP (elt, 0));
1891 rtx i3elt = XVECEXP (i3pat, 0, i);
1893 if (GET_CODE (i3elt) == USE
1894 && REG_P (XEXP (i3elt, 0))
1895 && (REGNO (XEXP (i3elt, 0)) == regno
1896 ? reg_set_between_p (XEXP (elt, 0),
1897 PREV_INSN (insn), i3)
1898 : regno >= FIRST_PSEUDO_REGISTER))
1899 return 0;
1901 while (--i >= 0);
1903 break;
1905 /* We can ignore CLOBBERs. */
1906 case CLOBBER:
1907 break;
1909 case SET:
1910 /* Ignore SETs whose result isn't used but not those that
1911 have side-effects. */
1912 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1913 && insn_nothrow_p (insn)
1914 && !side_effects_p (elt))
1915 break;
1917 /* If we have already found a SET, this is a second one and
1918 so we cannot combine with this insn. */
1919 if (set)
1920 return 0;
1922 set = elt;
1923 break;
1925 default:
1926 /* Anything else means we can't combine. */
1927 return 0;
1931 if (set == 0
1932 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1933 so don't do anything with it. */
1934 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1935 return 0;
1937 else
1938 return 0;
1940 if (set == 0)
1941 return 0;
1943 /* The simplification in expand_field_assignment may call back to
1944 get_last_value, so set safe guard here. */
1945 subst_low_luid = DF_INSN_LUID (insn);
1947 set = expand_field_assignment (set);
1948 src = SET_SRC (set), dest = SET_DEST (set);
1950 /* Do not eliminate user-specified register if it is in an
1951 asm input because we may break the register asm usage defined
1952 in GCC manual if allow to do so.
1953 Be aware that this may cover more cases than we expect but this
1954 should be harmless. */
1955 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1956 && extract_asm_operands (PATTERN (i3)))
1957 return 0;
1959 /* Don't eliminate a store in the stack pointer. */
1960 if (dest == stack_pointer_rtx
1961 /* Don't combine with an insn that sets a register to itself if it has
1962 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1963 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1964 /* Can't merge an ASM_OPERANDS. */
1965 || GET_CODE (src) == ASM_OPERANDS
1966 /* Can't merge a function call. */
1967 || GET_CODE (src) == CALL
1968 /* Don't eliminate a function call argument. */
1969 || (CALL_P (i3)
1970 && (find_reg_fusage (i3, USE, dest)
1971 || (REG_P (dest)
1972 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1973 && global_regs[REGNO (dest)])))
1974 /* Don't substitute into an incremented register. */
1975 || FIND_REG_INC_NOTE (i3, dest)
1976 || (succ && FIND_REG_INC_NOTE (succ, dest))
1977 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1978 /* Don't substitute into a non-local goto, this confuses CFG. */
1979 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1980 /* Make sure that DEST is not used after SUCC but before I3. */
1981 || (!all_adjacent
1982 && ((succ2
1983 && (reg_used_between_p (dest, succ2, i3)
1984 || reg_used_between_p (dest, succ, succ2)))
1985 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1986 /* Make sure that the value that is to be substituted for the register
1987 does not use any registers whose values alter in between. However,
1988 If the insns are adjacent, a use can't cross a set even though we
1989 think it might (this can happen for a sequence of insns each setting
1990 the same destination; last_set of that register might point to
1991 a NOTE). If INSN has a REG_EQUIV note, the register is always
1992 equivalent to the memory so the substitution is valid even if there
1993 are intervening stores. Also, don't move a volatile asm or
1994 UNSPEC_VOLATILE across any other insns. */
1995 || (! all_adjacent
1996 && (((!MEM_P (src)
1997 || ! find_reg_note (insn, REG_EQUIV, src))
1998 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1999 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2000 || GET_CODE (src) == UNSPEC_VOLATILE))
2001 /* Don't combine across a CALL_INSN, because that would possibly
2002 change whether the life span of some REGs crosses calls or not,
2003 and it is a pain to update that information.
2004 Exception: if source is a constant, moving it later can't hurt.
2005 Accept that as a special case. */
2006 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2007 return 0;
2009 /* DEST must either be a REG or CC0. */
2010 if (REG_P (dest))
2012 /* If register alignment is being enforced for multi-word items in all
2013 cases except for parameters, it is possible to have a register copy
2014 insn referencing a hard register that is not allowed to contain the
2015 mode being copied and which would not be valid as an operand of most
2016 insns. Eliminate this problem by not combining with such an insn.
2018 Also, on some machines we don't want to extend the life of a hard
2019 register. */
2021 if (REG_P (src)
2022 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2023 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2024 /* Don't extend the life of a hard register unless it is
2025 user variable (if we have few registers) or it can't
2026 fit into the desired register (meaning something special
2027 is going on).
2028 Also avoid substituting a return register into I3, because
2029 reload can't handle a conflict with constraints of other
2030 inputs. */
2031 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2032 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2033 return 0;
2035 else if (GET_CODE (dest) != CC0)
2036 return 0;
2039 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2040 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2041 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2043 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2045 /* If the clobber represents an earlyclobber operand, we must not
2046 substitute an expression containing the clobbered register.
2047 As we do not analyze the constraint strings here, we have to
2048 make the conservative assumption. However, if the register is
2049 a fixed hard reg, the clobber cannot represent any operand;
2050 we leave it up to the machine description to either accept or
2051 reject use-and-clobber patterns. */
2052 if (!REG_P (reg)
2053 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2054 || !fixed_regs[REGNO (reg)])
2055 if (reg_overlap_mentioned_p (reg, src))
2056 return 0;
2059 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2060 or not), reject, unless nothing volatile comes between it and I3 */
2062 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2064 /* Make sure neither succ nor succ2 contains a volatile reference. */
2065 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2066 return 0;
2067 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2068 return 0;
2069 /* We'll check insns between INSN and I3 below. */
2072 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2073 to be an explicit register variable, and was chosen for a reason. */
2075 if (GET_CODE (src) == ASM_OPERANDS
2076 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2077 return 0;
2079 /* If INSN contains volatile references (specifically volatile MEMs),
2080 we cannot combine across any other volatile references.
2081 Even if INSN doesn't contain volatile references, any intervening
2082 volatile insn might affect machine state. */
2084 is_volatile_p = volatile_refs_p (PATTERN (insn))
2085 ? volatile_refs_p
2086 : volatile_insn_p;
2088 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2089 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2090 return 0;
2092 /* If INSN contains an autoincrement or autodecrement, make sure that
2093 register is not used between there and I3, and not already used in
2094 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2095 Also insist that I3 not be a jump; if it were one
2096 and the incremented register were spilled, we would lose. */
2098 #ifdef AUTO_INC_DEC
2099 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2100 if (REG_NOTE_KIND (link) == REG_INC
2101 && (JUMP_P (i3)
2102 || reg_used_between_p (XEXP (link, 0), insn, i3)
2103 || (pred != NULL_RTX
2104 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2105 || (pred2 != NULL_RTX
2106 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2107 || (succ != NULL_RTX
2108 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2109 || (succ2 != NULL_RTX
2110 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2111 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2112 return 0;
2113 #endif
2115 /* Don't combine an insn that follows a CC0-setting insn.
2116 An insn that uses CC0 must not be separated from the one that sets it.
2117 We do, however, allow I2 to follow a CC0-setting insn if that insn
2118 is passed as I1; in that case it will be deleted also.
2119 We also allow combining in this case if all the insns are adjacent
2120 because that would leave the two CC0 insns adjacent as well.
2121 It would be more logical to test whether CC0 occurs inside I1 or I2,
2122 but that would be much slower, and this ought to be equivalent. */
2124 if (HAVE_cc0)
2126 p = prev_nonnote_insn (insn);
2127 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2128 && ! all_adjacent)
2129 return 0;
2132 /* If we get here, we have passed all the tests and the combination is
2133 to be allowed. */
2135 *pdest = dest;
2136 *psrc = src;
2138 return 1;
2141 /* LOC is the location within I3 that contains its pattern or the component
2142 of a PARALLEL of the pattern. We validate that it is valid for combining.
2144 One problem is if I3 modifies its output, as opposed to replacing it
2145 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2146 doing so would produce an insn that is not equivalent to the original insns.
2148 Consider:
2150 (set (reg:DI 101) (reg:DI 100))
2151 (set (subreg:SI (reg:DI 101) 0) <foo>)
2153 This is NOT equivalent to:
2155 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2156 (set (reg:DI 101) (reg:DI 100))])
2158 Not only does this modify 100 (in which case it might still be valid
2159 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2161 We can also run into a problem if I2 sets a register that I1
2162 uses and I1 gets directly substituted into I3 (not via I2). In that
2163 case, we would be getting the wrong value of I2DEST into I3, so we
2164 must reject the combination. This case occurs when I2 and I1 both
2165 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2166 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2167 of a SET must prevent combination from occurring. The same situation
2168 can occur for I0, in which case I0_NOT_IN_SRC is set.
2170 Before doing the above check, we first try to expand a field assignment
2171 into a set of logical operations.
2173 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2174 we place a register that is both set and used within I3. If more than one
2175 such register is detected, we fail.
2177 Return 1 if the combination is valid, zero otherwise. */
2179 static int
2180 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2181 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2183 rtx x = *loc;
2185 if (GET_CODE (x) == SET)
2187 rtx set = x ;
2188 rtx dest = SET_DEST (set);
2189 rtx src = SET_SRC (set);
2190 rtx inner_dest = dest;
2191 rtx subdest;
2193 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2194 || GET_CODE (inner_dest) == SUBREG
2195 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2196 inner_dest = XEXP (inner_dest, 0);
2198 /* Check for the case where I3 modifies its output, as discussed
2199 above. We don't want to prevent pseudos from being combined
2200 into the address of a MEM, so only prevent the combination if
2201 i1 or i2 set the same MEM. */
2202 if ((inner_dest != dest &&
2203 (!MEM_P (inner_dest)
2204 || rtx_equal_p (i2dest, inner_dest)
2205 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2206 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2207 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2208 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2209 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2211 /* This is the same test done in can_combine_p except we can't test
2212 all_adjacent; we don't have to, since this instruction will stay
2213 in place, thus we are not considering increasing the lifetime of
2214 INNER_DEST.
2216 Also, if this insn sets a function argument, combining it with
2217 something that might need a spill could clobber a previous
2218 function argument; the all_adjacent test in can_combine_p also
2219 checks this; here, we do a more specific test for this case. */
2221 || (REG_P (inner_dest)
2222 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2223 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2224 GET_MODE (inner_dest))))
2225 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2226 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2227 return 0;
2229 /* If DEST is used in I3, it is being killed in this insn, so
2230 record that for later. We have to consider paradoxical
2231 subregs here, since they kill the whole register, but we
2232 ignore partial subregs, STRICT_LOW_PART, etc.
2233 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2234 STACK_POINTER_REGNUM, since these are always considered to be
2235 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2236 subdest = dest;
2237 if (GET_CODE (subdest) == SUBREG
2238 && (GET_MODE_SIZE (GET_MODE (subdest))
2239 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2240 subdest = SUBREG_REG (subdest);
2241 if (pi3dest_killed
2242 && REG_P (subdest)
2243 && reg_referenced_p (subdest, PATTERN (i3))
2244 && REGNO (subdest) != FRAME_POINTER_REGNUM
2245 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2246 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2247 #endif
2248 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2249 || (REGNO (subdest) != ARG_POINTER_REGNUM
2250 || ! fixed_regs [REGNO (subdest)]))
2251 && REGNO (subdest) != STACK_POINTER_REGNUM)
2253 if (*pi3dest_killed)
2254 return 0;
2256 *pi3dest_killed = subdest;
2260 else if (GET_CODE (x) == PARALLEL)
2262 int i;
2264 for (i = 0; i < XVECLEN (x, 0); i++)
2265 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2266 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2267 return 0;
2270 return 1;
2273 /* Return 1 if X is an arithmetic expression that contains a multiplication
2274 and division. We don't count multiplications by powers of two here. */
2276 static int
2277 contains_muldiv (rtx x)
2279 switch (GET_CODE (x))
2281 case MOD: case DIV: case UMOD: case UDIV:
2282 return 1;
2284 case MULT:
2285 return ! (CONST_INT_P (XEXP (x, 1))
2286 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2287 default:
2288 if (BINARY_P (x))
2289 return contains_muldiv (XEXP (x, 0))
2290 || contains_muldiv (XEXP (x, 1));
2292 if (UNARY_P (x))
2293 return contains_muldiv (XEXP (x, 0));
2295 return 0;
2299 /* Determine whether INSN can be used in a combination. Return nonzero if
2300 not. This is used in try_combine to detect early some cases where we
2301 can't perform combinations. */
2303 static int
2304 cant_combine_insn_p (rtx_insn *insn)
2306 rtx set;
2307 rtx src, dest;
2309 /* If this isn't really an insn, we can't do anything.
2310 This can occur when flow deletes an insn that it has merged into an
2311 auto-increment address. */
2312 if (! INSN_P (insn))
2313 return 1;
2315 /* Never combine loads and stores involving hard regs that are likely
2316 to be spilled. The register allocator can usually handle such
2317 reg-reg moves by tying. If we allow the combiner to make
2318 substitutions of likely-spilled regs, reload might die.
2319 As an exception, we allow combinations involving fixed regs; these are
2320 not available to the register allocator so there's no risk involved. */
2322 set = single_set (insn);
2323 if (! set)
2324 return 0;
2325 src = SET_SRC (set);
2326 dest = SET_DEST (set);
2327 if (GET_CODE (src) == SUBREG)
2328 src = SUBREG_REG (src);
2329 if (GET_CODE (dest) == SUBREG)
2330 dest = SUBREG_REG (dest);
2331 if (REG_P (src) && REG_P (dest)
2332 && ((HARD_REGISTER_P (src)
2333 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2334 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2335 || (HARD_REGISTER_P (dest)
2336 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2337 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2338 return 1;
2340 return 0;
2343 struct likely_spilled_retval_info
2345 unsigned regno, nregs;
2346 unsigned mask;
2349 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2350 hard registers that are known to be written to / clobbered in full. */
2351 static void
2352 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2354 struct likely_spilled_retval_info *const info =
2355 (struct likely_spilled_retval_info *) data;
2356 unsigned regno, nregs;
2357 unsigned new_mask;
2359 if (!REG_P (XEXP (set, 0)))
2360 return;
2361 regno = REGNO (x);
2362 if (regno >= info->regno + info->nregs)
2363 return;
2364 nregs = REG_NREGS (x);
2365 if (regno + nregs <= info->regno)
2366 return;
2367 new_mask = (2U << (nregs - 1)) - 1;
2368 if (regno < info->regno)
2369 new_mask >>= info->regno - regno;
2370 else
2371 new_mask <<= regno - info->regno;
2372 info->mask &= ~new_mask;
2375 /* Return nonzero iff part of the return value is live during INSN, and
2376 it is likely spilled. This can happen when more than one insn is needed
2377 to copy the return value, e.g. when we consider to combine into the
2378 second copy insn for a complex value. */
2380 static int
2381 likely_spilled_retval_p (rtx_insn *insn)
2383 rtx_insn *use = BB_END (this_basic_block);
2384 rtx reg;
2385 rtx_insn *p;
2386 unsigned regno, nregs;
2387 /* We assume here that no machine mode needs more than
2388 32 hard registers when the value overlaps with a register
2389 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2390 unsigned mask;
2391 struct likely_spilled_retval_info info;
2393 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2394 return 0;
2395 reg = XEXP (PATTERN (use), 0);
2396 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2397 return 0;
2398 regno = REGNO (reg);
2399 nregs = REG_NREGS (reg);
2400 if (nregs == 1)
2401 return 0;
2402 mask = (2U << (nregs - 1)) - 1;
2404 /* Disregard parts of the return value that are set later. */
2405 info.regno = regno;
2406 info.nregs = nregs;
2407 info.mask = mask;
2408 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2409 if (INSN_P (p))
2410 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2411 mask = info.mask;
2413 /* Check if any of the (probably) live return value registers is
2414 likely spilled. */
2415 nregs --;
2418 if ((mask & 1 << nregs)
2419 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2420 return 1;
2421 } while (nregs--);
2422 return 0;
2425 /* Adjust INSN after we made a change to its destination.
2427 Changing the destination can invalidate notes that say something about
2428 the results of the insn and a LOG_LINK pointing to the insn. */
2430 static void
2431 adjust_for_new_dest (rtx_insn *insn)
2433 /* For notes, be conservative and simply remove them. */
2434 remove_reg_equal_equiv_notes (insn);
2436 /* The new insn will have a destination that was previously the destination
2437 of an insn just above it. Call distribute_links to make a LOG_LINK from
2438 the next use of that destination. */
2440 rtx set = single_set (insn);
2441 gcc_assert (set);
2443 rtx reg = SET_DEST (set);
2445 while (GET_CODE (reg) == ZERO_EXTRACT
2446 || GET_CODE (reg) == STRICT_LOW_PART
2447 || GET_CODE (reg) == SUBREG)
2448 reg = XEXP (reg, 0);
2449 gcc_assert (REG_P (reg));
2451 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2453 df_insn_rescan (insn);
2456 /* Return TRUE if combine can reuse reg X in mode MODE.
2457 ADDED_SETS is nonzero if the original set is still required. */
2458 static bool
2459 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2461 unsigned int regno;
2463 if (!REG_P (x))
2464 return false;
2466 regno = REGNO (x);
2467 /* Allow hard registers if the new mode is legal, and occupies no more
2468 registers than the old mode. */
2469 if (regno < FIRST_PSEUDO_REGISTER)
2470 return (HARD_REGNO_MODE_OK (regno, mode)
2471 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2473 /* Or a pseudo that is only used once. */
2474 return (regno < reg_n_sets_max
2475 && REG_N_SETS (regno) == 1
2476 && !added_sets
2477 && !REG_USERVAR_P (x));
2481 /* Check whether X, the destination of a set, refers to part of
2482 the register specified by REG. */
2484 static bool
2485 reg_subword_p (rtx x, rtx reg)
2487 /* Check that reg is an integer mode register. */
2488 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2489 return false;
2491 if (GET_CODE (x) == STRICT_LOW_PART
2492 || GET_CODE (x) == ZERO_EXTRACT)
2493 x = XEXP (x, 0);
2495 return GET_CODE (x) == SUBREG
2496 && SUBREG_REG (x) == reg
2497 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2500 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2501 Note that the INSN should be deleted *after* removing dead edges, so
2502 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2503 but not for a (set (pc) (label_ref FOO)). */
2505 static void
2506 update_cfg_for_uncondjump (rtx_insn *insn)
2508 basic_block bb = BLOCK_FOR_INSN (insn);
2509 gcc_assert (BB_END (bb) == insn);
2511 purge_dead_edges (bb);
2513 delete_insn (insn);
2514 if (EDGE_COUNT (bb->succs) == 1)
2516 rtx_insn *insn;
2518 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2520 /* Remove barriers from the footer if there are any. */
2521 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2522 if (BARRIER_P (insn))
2524 if (PREV_INSN (insn))
2525 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2526 else
2527 BB_FOOTER (bb) = NEXT_INSN (insn);
2528 if (NEXT_INSN (insn))
2529 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2531 else if (LABEL_P (insn))
2532 break;
2536 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2537 by an arbitrary number of CLOBBERs. */
2538 static bool
2539 is_parallel_of_n_reg_sets (rtx pat, int n)
2541 if (GET_CODE (pat) != PARALLEL)
2542 return false;
2544 int len = XVECLEN (pat, 0);
2545 if (len < n)
2546 return false;
2548 int i;
2549 for (i = 0; i < n; i++)
2550 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2551 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2552 return false;
2553 for ( ; i < len; i++)
2554 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2555 return false;
2557 return true;
2560 #if !HAVE_cc0
2561 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2562 CLOBBERs), can be split into individual SETs in that order, without
2563 changing semantics. */
2564 static bool
2565 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2567 if (!insn_nothrow_p (insn))
2568 return false;
2570 rtx pat = PATTERN (insn);
2572 int i, j;
2573 for (i = 0; i < n; i++)
2575 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2576 return false;
2578 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2580 for (j = i + 1; j < n; j++)
2581 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2582 return false;
2585 return true;
2587 #endif
2589 /* Try to combine the insns I0, I1 and I2 into I3.
2590 Here I0, I1 and I2 appear earlier than I3.
2591 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2594 If we are combining more than two insns and the resulting insn is not
2595 recognized, try splitting it into two insns. If that happens, I2 and I3
2596 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2597 Otherwise, I0, I1 and I2 are pseudo-deleted.
2599 Return 0 if the combination does not work. Then nothing is changed.
2600 If we did the combination, return the insn at which combine should
2601 resume scanning.
2603 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2604 new direct jump instruction.
2606 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2607 been I3 passed to an earlier try_combine within the same basic
2608 block. */
2610 static rtx_insn *
2611 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2612 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2614 /* New patterns for I3 and I2, respectively. */
2615 rtx newpat, newi2pat = 0;
2616 rtvec newpat_vec_with_clobbers = 0;
2617 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2618 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2619 dead. */
2620 int added_sets_0, added_sets_1, added_sets_2;
2621 /* Total number of SETs to put into I3. */
2622 int total_sets;
2623 /* Nonzero if I2's or I1's body now appears in I3. */
2624 int i2_is_used = 0, i1_is_used = 0;
2625 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2626 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2627 /* Contains I3 if the destination of I3 is used in its source, which means
2628 that the old life of I3 is being killed. If that usage is placed into
2629 I2 and not in I3, a REG_DEAD note must be made. */
2630 rtx i3dest_killed = 0;
2631 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2632 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2633 /* Copy of SET_SRC of I1 and I0, if needed. */
2634 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2635 /* Set if I2DEST was reused as a scratch register. */
2636 bool i2scratch = false;
2637 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2638 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2639 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2640 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2641 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2642 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2643 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2644 /* Notes that must be added to REG_NOTES in I3 and I2. */
2645 rtx new_i3_notes, new_i2_notes;
2646 /* Notes that we substituted I3 into I2 instead of the normal case. */
2647 int i3_subst_into_i2 = 0;
2648 /* Notes that I1, I2 or I3 is a MULT operation. */
2649 int have_mult = 0;
2650 int swap_i2i3 = 0;
2651 int changed_i3_dest = 0;
2653 int maxreg;
2654 rtx_insn *temp_insn;
2655 rtx temp_expr;
2656 struct insn_link *link;
2657 rtx other_pat = 0;
2658 rtx new_other_notes;
2659 int i;
2661 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2662 never be). */
2663 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2664 return 0;
2666 /* Only try four-insn combinations when there's high likelihood of
2667 success. Look for simple insns, such as loads of constants or
2668 binary operations involving a constant. */
2669 if (i0)
2671 int i;
2672 int ngood = 0;
2673 int nshift = 0;
2674 rtx set0, set3;
2676 if (!flag_expensive_optimizations)
2677 return 0;
2679 for (i = 0; i < 4; i++)
2681 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2682 rtx set = single_set (insn);
2683 rtx src;
2684 if (!set)
2685 continue;
2686 src = SET_SRC (set);
2687 if (CONSTANT_P (src))
2689 ngood += 2;
2690 break;
2692 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2693 ngood++;
2694 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2695 || GET_CODE (src) == LSHIFTRT)
2696 nshift++;
2699 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2700 are likely manipulating its value. Ideally we'll be able to combine
2701 all four insns into a bitfield insertion of some kind.
2703 Note the source in I0 might be inside a sign/zero extension and the
2704 memory modes in I0 and I3 might be different. So extract the address
2705 from the destination of I3 and search for it in the source of I0.
2707 In the event that there's a match but the source/dest do not actually
2708 refer to the same memory, the worst that happens is we try some
2709 combinations that we wouldn't have otherwise. */
2710 if ((set0 = single_set (i0))
2711 /* Ensure the source of SET0 is a MEM, possibly buried inside
2712 an extension. */
2713 && (GET_CODE (SET_SRC (set0)) == MEM
2714 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2715 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2716 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2717 && (set3 = single_set (i3))
2718 /* Ensure the destination of SET3 is a MEM. */
2719 && GET_CODE (SET_DEST (set3)) == MEM
2720 /* Would it be better to extract the base address for the MEM
2721 in SET3 and look for that? I don't have cases where it matters
2722 but I could envision such cases. */
2723 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2724 ngood += 2;
2726 if (ngood < 2 && nshift < 2)
2727 return 0;
2730 /* Exit early if one of the insns involved can't be used for
2731 combinations. */
2732 if (CALL_P (i2)
2733 || (i1 && CALL_P (i1))
2734 || (i0 && CALL_P (i0))
2735 || cant_combine_insn_p (i3)
2736 || cant_combine_insn_p (i2)
2737 || (i1 && cant_combine_insn_p (i1))
2738 || (i0 && cant_combine_insn_p (i0))
2739 || likely_spilled_retval_p (i3))
2740 return 0;
2742 combine_attempts++;
2743 undobuf.other_insn = 0;
2745 /* Reset the hard register usage information. */
2746 CLEAR_HARD_REG_SET (newpat_used_regs);
2748 if (dump_file && (dump_flags & TDF_DETAILS))
2750 if (i0)
2751 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2752 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2753 else if (i1)
2754 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2755 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2756 else
2757 fprintf (dump_file, "\nTrying %d -> %d:\n",
2758 INSN_UID (i2), INSN_UID (i3));
2761 /* If multiple insns feed into one of I2 or I3, they can be in any
2762 order. To simplify the code below, reorder them in sequence. */
2763 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2764 temp_insn = i2, i2 = i0, i0 = temp_insn;
2765 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2766 temp_insn = i1, i1 = i0, i0 = temp_insn;
2767 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2768 temp_insn = i1, i1 = i2, i2 = temp_insn;
2770 added_links_insn = 0;
2772 /* First check for one important special case that the code below will
2773 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2774 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2775 we may be able to replace that destination with the destination of I3.
2776 This occurs in the common code where we compute both a quotient and
2777 remainder into a structure, in which case we want to do the computation
2778 directly into the structure to avoid register-register copies.
2780 Note that this case handles both multiple sets in I2 and also cases
2781 where I2 has a number of CLOBBERs inside the PARALLEL.
2783 We make very conservative checks below and only try to handle the
2784 most common cases of this. For example, we only handle the case
2785 where I2 and I3 are adjacent to avoid making difficult register
2786 usage tests. */
2788 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2789 && REG_P (SET_SRC (PATTERN (i3)))
2790 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2791 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2792 && GET_CODE (PATTERN (i2)) == PARALLEL
2793 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2794 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2795 below would need to check what is inside (and reg_overlap_mentioned_p
2796 doesn't support those codes anyway). Don't allow those destinations;
2797 the resulting insn isn't likely to be recognized anyway. */
2798 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2799 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2800 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2801 SET_DEST (PATTERN (i3)))
2802 && next_active_insn (i2) == i3)
2804 rtx p2 = PATTERN (i2);
2806 /* Make sure that the destination of I3,
2807 which we are going to substitute into one output of I2,
2808 is not used within another output of I2. We must avoid making this:
2809 (parallel [(set (mem (reg 69)) ...)
2810 (set (reg 69) ...)])
2811 which is not well-defined as to order of actions.
2812 (Besides, reload can't handle output reloads for this.)
2814 The problem can also happen if the dest of I3 is a memory ref,
2815 if another dest in I2 is an indirect memory ref. */
2816 for (i = 0; i < XVECLEN (p2, 0); i++)
2817 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2818 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2819 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2820 SET_DEST (XVECEXP (p2, 0, i))))
2821 break;
2823 /* Make sure this PARALLEL is not an asm. We do not allow combining
2824 that usually (see can_combine_p), so do not here either. */
2825 for (i = 0; i < XVECLEN (p2, 0); i++)
2826 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2827 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2828 break;
2830 if (i == XVECLEN (p2, 0))
2831 for (i = 0; i < XVECLEN (p2, 0); i++)
2832 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2833 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2835 combine_merges++;
2837 subst_insn = i3;
2838 subst_low_luid = DF_INSN_LUID (i2);
2840 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2841 i2src = SET_SRC (XVECEXP (p2, 0, i));
2842 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2843 i2dest_killed = dead_or_set_p (i2, i2dest);
2845 /* Replace the dest in I2 with our dest and make the resulting
2846 insn the new pattern for I3. Then skip to where we validate
2847 the pattern. Everything was set up above. */
2848 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2849 newpat = p2;
2850 i3_subst_into_i2 = 1;
2851 goto validate_replacement;
2855 /* If I2 is setting a pseudo to a constant and I3 is setting some
2856 sub-part of it to another constant, merge them by making a new
2857 constant. */
2858 if (i1 == 0
2859 && (temp_expr = single_set (i2)) != 0
2860 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2861 && GET_CODE (PATTERN (i3)) == SET
2862 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2863 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2865 rtx dest = SET_DEST (PATTERN (i3));
2866 int offset = -1;
2867 int width = 0;
2869 if (GET_CODE (dest) == ZERO_EXTRACT)
2871 if (CONST_INT_P (XEXP (dest, 1))
2872 && CONST_INT_P (XEXP (dest, 2)))
2874 width = INTVAL (XEXP (dest, 1));
2875 offset = INTVAL (XEXP (dest, 2));
2876 dest = XEXP (dest, 0);
2877 if (BITS_BIG_ENDIAN)
2878 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2881 else
2883 if (GET_CODE (dest) == STRICT_LOW_PART)
2884 dest = XEXP (dest, 0);
2885 width = GET_MODE_PRECISION (GET_MODE (dest));
2886 offset = 0;
2889 if (offset >= 0)
2891 /* If this is the low part, we're done. */
2892 if (subreg_lowpart_p (dest))
2894 /* Handle the case where inner is twice the size of outer. */
2895 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2896 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2897 offset += GET_MODE_PRECISION (GET_MODE (dest));
2898 /* Otherwise give up for now. */
2899 else
2900 offset = -1;
2903 if (offset >= 0)
2905 rtx inner = SET_SRC (PATTERN (i3));
2906 rtx outer = SET_SRC (temp_expr);
2908 wide_int o
2909 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2910 std::make_pair (inner, GET_MODE (dest)),
2911 offset, width);
2913 combine_merges++;
2914 subst_insn = i3;
2915 subst_low_luid = DF_INSN_LUID (i2);
2916 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2917 i2dest = SET_DEST (temp_expr);
2918 i2dest_killed = dead_or_set_p (i2, i2dest);
2920 /* Replace the source in I2 with the new constant and make the
2921 resulting insn the new pattern for I3. Then skip to where we
2922 validate the pattern. Everything was set up above. */
2923 SUBST (SET_SRC (temp_expr),
2924 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2926 newpat = PATTERN (i2);
2928 /* The dest of I3 has been replaced with the dest of I2. */
2929 changed_i3_dest = 1;
2930 goto validate_replacement;
2934 #if !HAVE_cc0
2935 /* If we have no I1 and I2 looks like:
2936 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2937 (set Y OP)])
2938 make up a dummy I1 that is
2939 (set Y OP)
2940 and change I2 to be
2941 (set (reg:CC X) (compare:CC Y (const_int 0)))
2943 (We can ignore any trailing CLOBBERs.)
2945 This undoes a previous combination and allows us to match a branch-and-
2946 decrement insn. */
2948 if (i1 == 0
2949 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2950 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2951 == MODE_CC)
2952 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2953 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2954 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2955 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2956 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2959 /* We make I1 with the same INSN_UID as I2. This gives it
2960 the same DF_INSN_LUID for value tracking. Our fake I1 will
2961 never appear in the insn stream so giving it the same INSN_UID
2962 as I2 will not cause a problem. */
2964 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2965 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2966 -1, NULL_RTX);
2967 INSN_UID (i1) = INSN_UID (i2);
2969 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2970 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2971 SET_DEST (PATTERN (i1)));
2972 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2973 SUBST_LINK (LOG_LINKS (i2),
2974 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2977 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2978 make those two SETs separate I1 and I2 insns, and make an I0 that is
2979 the original I1. */
2980 if (i0 == 0
2981 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2982 && can_split_parallel_of_n_reg_sets (i2, 2)
2983 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2984 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2986 /* If there is no I1, there is no I0 either. */
2987 i0 = i1;
2989 /* We make I1 with the same INSN_UID as I2. This gives it
2990 the same DF_INSN_LUID for value tracking. Our fake I1 will
2991 never appear in the insn stream so giving it the same INSN_UID
2992 as I2 will not cause a problem. */
2994 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2995 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2996 -1, NULL_RTX);
2997 INSN_UID (i1) = INSN_UID (i2);
2999 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3001 #endif
3003 /* Verify that I2 and I1 are valid for combining. */
3004 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
3005 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
3006 &i1dest, &i1src))
3007 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
3008 &i0dest, &i0src)))
3010 undo_all ();
3011 return 0;
3014 /* Record whether I2DEST is used in I2SRC and similarly for the other
3015 cases. Knowing this will help in register status updating below. */
3016 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3017 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3018 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3019 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3020 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3021 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3022 i2dest_killed = dead_or_set_p (i2, i2dest);
3023 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3024 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3026 /* For the earlier insns, determine which of the subsequent ones they
3027 feed. */
3028 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3029 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3030 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3031 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3032 && reg_overlap_mentioned_p (i0dest, i2src))));
3034 /* Ensure that I3's pattern can be the destination of combines. */
3035 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3036 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3037 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3038 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3039 &i3dest_killed))
3041 undo_all ();
3042 return 0;
3045 /* See if any of the insns is a MULT operation. Unless one is, we will
3046 reject a combination that is, since it must be slower. Be conservative
3047 here. */
3048 if (GET_CODE (i2src) == MULT
3049 || (i1 != 0 && GET_CODE (i1src) == MULT)
3050 || (i0 != 0 && GET_CODE (i0src) == MULT)
3051 || (GET_CODE (PATTERN (i3)) == SET
3052 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3053 have_mult = 1;
3055 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3056 We used to do this EXCEPT in one case: I3 has a post-inc in an
3057 output operand. However, that exception can give rise to insns like
3058 mov r3,(r3)+
3059 which is a famous insn on the PDP-11 where the value of r3 used as the
3060 source was model-dependent. Avoid this sort of thing. */
3062 #if 0
3063 if (!(GET_CODE (PATTERN (i3)) == SET
3064 && REG_P (SET_SRC (PATTERN (i3)))
3065 && MEM_P (SET_DEST (PATTERN (i3)))
3066 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3067 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3068 /* It's not the exception. */
3069 #endif
3070 #ifdef AUTO_INC_DEC
3072 rtx link;
3073 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3074 if (REG_NOTE_KIND (link) == REG_INC
3075 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3076 || (i1 != 0
3077 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3079 undo_all ();
3080 return 0;
3083 #endif
3085 /* See if the SETs in I1 or I2 need to be kept around in the merged
3086 instruction: whenever the value set there is still needed past I3.
3087 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3089 For the SET in I1, we have two cases: if I1 and I2 independently feed
3090 into I3, the set in I1 needs to be kept around unless I1DEST dies
3091 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3092 in I1 needs to be kept around unless I1DEST dies or is set in either
3093 I2 or I3. The same considerations apply to I0. */
3095 added_sets_2 = !dead_or_set_p (i3, i2dest);
3097 if (i1)
3098 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3099 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3100 else
3101 added_sets_1 = 0;
3103 if (i0)
3104 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3105 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3106 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3107 && dead_or_set_p (i2, i0dest)));
3108 else
3109 added_sets_0 = 0;
3111 /* We are about to copy insns for the case where they need to be kept
3112 around. Check that they can be copied in the merged instruction. */
3114 if (targetm.cannot_copy_insn_p
3115 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3116 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3117 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3119 undo_all ();
3120 return 0;
3123 /* If the set in I2 needs to be kept around, we must make a copy of
3124 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3125 PATTERN (I2), we are only substituting for the original I1DEST, not into
3126 an already-substituted copy. This also prevents making self-referential
3127 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3128 I2DEST. */
3130 if (added_sets_2)
3132 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3133 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3134 else
3135 i2pat = copy_rtx (PATTERN (i2));
3138 if (added_sets_1)
3140 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3141 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3142 else
3143 i1pat = copy_rtx (PATTERN (i1));
3146 if (added_sets_0)
3148 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3149 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3150 else
3151 i0pat = copy_rtx (PATTERN (i0));
3154 combine_merges++;
3156 /* Substitute in the latest insn for the regs set by the earlier ones. */
3158 maxreg = max_reg_num ();
3160 subst_insn = i3;
3162 /* Many machines that don't use CC0 have insns that can both perform an
3163 arithmetic operation and set the condition code. These operations will
3164 be represented as a PARALLEL with the first element of the vector
3165 being a COMPARE of an arithmetic operation with the constant zero.
3166 The second element of the vector will set some pseudo to the result
3167 of the same arithmetic operation. If we simplify the COMPARE, we won't
3168 match such a pattern and so will generate an extra insn. Here we test
3169 for this case, where both the comparison and the operation result are
3170 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3171 I2SRC. Later we will make the PARALLEL that contains I2. */
3173 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3174 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3175 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3176 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3178 rtx newpat_dest;
3179 rtx *cc_use_loc = NULL;
3180 rtx_insn *cc_use_insn = NULL;
3181 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3182 machine_mode compare_mode, orig_compare_mode;
3183 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3185 newpat = PATTERN (i3);
3186 newpat_dest = SET_DEST (newpat);
3187 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3189 if (undobuf.other_insn == 0
3190 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3191 &cc_use_insn)))
3193 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3194 compare_code = simplify_compare_const (compare_code,
3195 GET_MODE (i2dest), op0, &op1);
3196 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3199 /* Do the rest only if op1 is const0_rtx, which may be the
3200 result of simplification. */
3201 if (op1 == const0_rtx)
3203 /* If a single use of the CC is found, prepare to modify it
3204 when SELECT_CC_MODE returns a new CC-class mode, or when
3205 the above simplify_compare_const() returned a new comparison
3206 operator. undobuf.other_insn is assigned the CC use insn
3207 when modifying it. */
3208 if (cc_use_loc)
3210 #ifdef SELECT_CC_MODE
3211 machine_mode new_mode
3212 = SELECT_CC_MODE (compare_code, op0, op1);
3213 if (new_mode != orig_compare_mode
3214 && can_change_dest_mode (SET_DEST (newpat),
3215 added_sets_2, new_mode))
3217 unsigned int regno = REGNO (newpat_dest);
3218 compare_mode = new_mode;
3219 if (regno < FIRST_PSEUDO_REGISTER)
3220 newpat_dest = gen_rtx_REG (compare_mode, regno);
3221 else
3223 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3224 newpat_dest = regno_reg_rtx[regno];
3227 #endif
3228 /* Cases for modifying the CC-using comparison. */
3229 if (compare_code != orig_compare_code
3230 /* ??? Do we need to verify the zero rtx? */
3231 && XEXP (*cc_use_loc, 1) == const0_rtx)
3233 /* Replace cc_use_loc with entire new RTX. */
3234 SUBST (*cc_use_loc,
3235 gen_rtx_fmt_ee (compare_code, compare_mode,
3236 newpat_dest, const0_rtx));
3237 undobuf.other_insn = cc_use_insn;
3239 else if (compare_mode != orig_compare_mode)
3241 /* Just replace the CC reg with a new mode. */
3242 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3243 undobuf.other_insn = cc_use_insn;
3247 /* Now we modify the current newpat:
3248 First, SET_DEST(newpat) is updated if the CC mode has been
3249 altered. For targets without SELECT_CC_MODE, this should be
3250 optimized away. */
3251 if (compare_mode != orig_compare_mode)
3252 SUBST (SET_DEST (newpat), newpat_dest);
3253 /* This is always done to propagate i2src into newpat. */
3254 SUBST (SET_SRC (newpat),
3255 gen_rtx_COMPARE (compare_mode, op0, op1));
3256 /* Create new version of i2pat if needed; the below PARALLEL
3257 creation needs this to work correctly. */
3258 if (! rtx_equal_p (i2src, op0))
3259 i2pat = gen_rtx_SET (i2dest, op0);
3260 i2_is_used = 1;
3264 if (i2_is_used == 0)
3266 /* It is possible that the source of I2 or I1 may be performing
3267 an unneeded operation, such as a ZERO_EXTEND of something
3268 that is known to have the high part zero. Handle that case
3269 by letting subst look at the inner insns.
3271 Another way to do this would be to have a function that tries
3272 to simplify a single insn instead of merging two or more
3273 insns. We don't do this because of the potential of infinite
3274 loops and because of the potential extra memory required.
3275 However, doing it the way we are is a bit of a kludge and
3276 doesn't catch all cases.
3278 But only do this if -fexpensive-optimizations since it slows
3279 things down and doesn't usually win.
3281 This is not done in the COMPARE case above because the
3282 unmodified I2PAT is used in the PARALLEL and so a pattern
3283 with a modified I2SRC would not match. */
3285 if (flag_expensive_optimizations)
3287 /* Pass pc_rtx so no substitutions are done, just
3288 simplifications. */
3289 if (i1)
3291 subst_low_luid = DF_INSN_LUID (i1);
3292 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3295 subst_low_luid = DF_INSN_LUID (i2);
3296 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3299 n_occurrences = 0; /* `subst' counts here */
3300 subst_low_luid = DF_INSN_LUID (i2);
3302 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3303 copy of I2SRC each time we substitute it, in order to avoid creating
3304 self-referential RTL when we will be substituting I1SRC for I1DEST
3305 later. Likewise if I0 feeds into I2, either directly or indirectly
3306 through I1, and I0DEST is in I0SRC. */
3307 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3308 (i1_feeds_i2_n && i1dest_in_i1src)
3309 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3310 && i0dest_in_i0src));
3311 substed_i2 = 1;
3313 /* Record whether I2's body now appears within I3's body. */
3314 i2_is_used = n_occurrences;
3317 /* If we already got a failure, don't try to do more. Otherwise, try to
3318 substitute I1 if we have it. */
3320 if (i1 && GET_CODE (newpat) != CLOBBER)
3322 /* Check that an autoincrement side-effect on I1 has not been lost.
3323 This happens if I1DEST is mentioned in I2 and dies there, and
3324 has disappeared from the new pattern. */
3325 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3326 && i1_feeds_i2_n
3327 && dead_or_set_p (i2, i1dest)
3328 && !reg_overlap_mentioned_p (i1dest, newpat))
3329 /* Before we can do this substitution, we must redo the test done
3330 above (see detailed comments there) that ensures I1DEST isn't
3331 mentioned in any SETs in NEWPAT that are field assignments. */
3332 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3333 0, 0, 0))
3335 undo_all ();
3336 return 0;
3339 n_occurrences = 0;
3340 subst_low_luid = DF_INSN_LUID (i1);
3342 /* If the following substitution will modify I1SRC, make a copy of it
3343 for the case where it is substituted for I1DEST in I2PAT later. */
3344 if (added_sets_2 && i1_feeds_i2_n)
3345 i1src_copy = copy_rtx (i1src);
3347 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3348 copy of I1SRC each time we substitute it, in order to avoid creating
3349 self-referential RTL when we will be substituting I0SRC for I0DEST
3350 later. */
3351 newpat = subst (newpat, i1dest, i1src, 0, 0,
3352 i0_feeds_i1_n && i0dest_in_i0src);
3353 substed_i1 = 1;
3355 /* Record whether I1's body now appears within I3's body. */
3356 i1_is_used = n_occurrences;
3359 /* Likewise for I0 if we have it. */
3361 if (i0 && GET_CODE (newpat) != CLOBBER)
3363 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3364 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3365 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3366 && !reg_overlap_mentioned_p (i0dest, newpat))
3367 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3368 0, 0, 0))
3370 undo_all ();
3371 return 0;
3374 /* If the following substitution will modify I0SRC, make a copy of it
3375 for the case where it is substituted for I0DEST in I1PAT later. */
3376 if (added_sets_1 && i0_feeds_i1_n)
3377 i0src_copy = copy_rtx (i0src);
3378 /* And a copy for I0DEST in I2PAT substitution. */
3379 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3380 || (i0_feeds_i2_n)))
3381 i0src_copy2 = copy_rtx (i0src);
3383 n_occurrences = 0;
3384 subst_low_luid = DF_INSN_LUID (i0);
3385 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3386 substed_i0 = 1;
3389 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3390 to count all the ways that I2SRC and I1SRC can be used. */
3391 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3392 && i2_is_used + added_sets_2 > 1)
3393 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3394 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3395 > 1))
3396 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3397 && (n_occurrences + added_sets_0
3398 + (added_sets_1 && i0_feeds_i1_n)
3399 + (added_sets_2 && i0_feeds_i2_n)
3400 > 1))
3401 /* Fail if we tried to make a new register. */
3402 || max_reg_num () != maxreg
3403 /* Fail if we couldn't do something and have a CLOBBER. */
3404 || GET_CODE (newpat) == CLOBBER
3405 /* Fail if this new pattern is a MULT and we didn't have one before
3406 at the outer level. */
3407 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3408 && ! have_mult))
3410 undo_all ();
3411 return 0;
3414 /* If the actions of the earlier insns must be kept
3415 in addition to substituting them into the latest one,
3416 we must make a new PARALLEL for the latest insn
3417 to hold additional the SETs. */
3419 if (added_sets_0 || added_sets_1 || added_sets_2)
3421 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3422 combine_extras++;
3424 if (GET_CODE (newpat) == PARALLEL)
3426 rtvec old = XVEC (newpat, 0);
3427 total_sets = XVECLEN (newpat, 0) + extra_sets;
3428 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3429 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3430 sizeof (old->elem[0]) * old->num_elem);
3432 else
3434 rtx old = newpat;
3435 total_sets = 1 + extra_sets;
3436 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3437 XVECEXP (newpat, 0, 0) = old;
3440 if (added_sets_0)
3441 XVECEXP (newpat, 0, --total_sets) = i0pat;
3443 if (added_sets_1)
3445 rtx t = i1pat;
3446 if (i0_feeds_i1_n)
3447 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3449 XVECEXP (newpat, 0, --total_sets) = t;
3451 if (added_sets_2)
3453 rtx t = i2pat;
3454 if (i1_feeds_i2_n)
3455 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3456 i0_feeds_i1_n && i0dest_in_i0src);
3457 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3458 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3460 XVECEXP (newpat, 0, --total_sets) = t;
3464 validate_replacement:
3466 /* Note which hard regs this insn has as inputs. */
3467 mark_used_regs_combine (newpat);
3469 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3470 consider splitting this pattern, we might need these clobbers. */
3471 if (i1 && GET_CODE (newpat) == PARALLEL
3472 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3474 int len = XVECLEN (newpat, 0);
3476 newpat_vec_with_clobbers = rtvec_alloc (len);
3477 for (i = 0; i < len; i++)
3478 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3481 /* We have recognized nothing yet. */
3482 insn_code_number = -1;
3484 /* See if this is a PARALLEL of two SETs where one SET's destination is
3485 a register that is unused and this isn't marked as an instruction that
3486 might trap in an EH region. In that case, we just need the other SET.
3487 We prefer this over the PARALLEL.
3489 This can occur when simplifying a divmod insn. We *must* test for this
3490 case here because the code below that splits two independent SETs doesn't
3491 handle this case correctly when it updates the register status.
3493 It's pointless doing this if we originally had two sets, one from
3494 i3, and one from i2. Combining then splitting the parallel results
3495 in the original i2 again plus an invalid insn (which we delete).
3496 The net effect is only to move instructions around, which makes
3497 debug info less accurate. */
3499 if (!(added_sets_2 && i1 == 0)
3500 && is_parallel_of_n_reg_sets (newpat, 2)
3501 && asm_noperands (newpat) < 0)
3503 rtx set0 = XVECEXP (newpat, 0, 0);
3504 rtx set1 = XVECEXP (newpat, 0, 1);
3505 rtx oldpat = newpat;
3507 if (((REG_P (SET_DEST (set1))
3508 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3509 || (GET_CODE (SET_DEST (set1)) == SUBREG
3510 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3511 && insn_nothrow_p (i3)
3512 && !side_effects_p (SET_SRC (set1)))
3514 newpat = set0;
3515 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3518 else if (((REG_P (SET_DEST (set0))
3519 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3520 || (GET_CODE (SET_DEST (set0)) == SUBREG
3521 && find_reg_note (i3, REG_UNUSED,
3522 SUBREG_REG (SET_DEST (set0)))))
3523 && insn_nothrow_p (i3)
3524 && !side_effects_p (SET_SRC (set0)))
3526 newpat = set1;
3527 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3529 if (insn_code_number >= 0)
3530 changed_i3_dest = 1;
3533 if (insn_code_number < 0)
3534 newpat = oldpat;
3537 /* Is the result of combination a valid instruction? */
3538 if (insn_code_number < 0)
3539 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3541 /* If we were combining three insns and the result is a simple SET
3542 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3543 insns. There are two ways to do this. It can be split using a
3544 machine-specific method (like when you have an addition of a large
3545 constant) or by combine in the function find_split_point. */
3547 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3548 && asm_noperands (newpat) < 0)
3550 rtx parallel, *split;
3551 rtx_insn *m_split_insn;
3553 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3554 use I2DEST as a scratch register will help. In the latter case,
3555 convert I2DEST to the mode of the source of NEWPAT if we can. */
3557 m_split_insn = combine_split_insns (newpat, i3);
3559 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3560 inputs of NEWPAT. */
3562 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3563 possible to try that as a scratch reg. This would require adding
3564 more code to make it work though. */
3566 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3568 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3570 /* First try to split using the original register as a
3571 scratch register. */
3572 parallel = gen_rtx_PARALLEL (VOIDmode,
3573 gen_rtvec (2, newpat,
3574 gen_rtx_CLOBBER (VOIDmode,
3575 i2dest)));
3576 m_split_insn = combine_split_insns (parallel, i3);
3578 /* If that didn't work, try changing the mode of I2DEST if
3579 we can. */
3580 if (m_split_insn == 0
3581 && new_mode != GET_MODE (i2dest)
3582 && new_mode != VOIDmode
3583 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3585 machine_mode old_mode = GET_MODE (i2dest);
3586 rtx ni2dest;
3588 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3589 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3590 else
3592 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3593 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3596 parallel = (gen_rtx_PARALLEL
3597 (VOIDmode,
3598 gen_rtvec (2, newpat,
3599 gen_rtx_CLOBBER (VOIDmode,
3600 ni2dest))));
3601 m_split_insn = combine_split_insns (parallel, i3);
3603 if (m_split_insn == 0
3604 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3606 struct undo *buf;
3608 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3609 buf = undobuf.undos;
3610 undobuf.undos = buf->next;
3611 buf->next = undobuf.frees;
3612 undobuf.frees = buf;
3616 i2scratch = m_split_insn != 0;
3619 /* If recog_for_combine has discarded clobbers, try to use them
3620 again for the split. */
3621 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3623 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3624 m_split_insn = combine_split_insns (parallel, i3);
3627 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3629 rtx m_split_pat = PATTERN (m_split_insn);
3630 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3631 if (insn_code_number >= 0)
3632 newpat = m_split_pat;
3634 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3635 && (next_nonnote_nondebug_insn (i2) == i3
3636 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3638 rtx i2set, i3set;
3639 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3640 newi2pat = PATTERN (m_split_insn);
3642 i3set = single_set (NEXT_INSN (m_split_insn));
3643 i2set = single_set (m_split_insn);
3645 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3647 /* If I2 or I3 has multiple SETs, we won't know how to track
3648 register status, so don't use these insns. If I2's destination
3649 is used between I2 and I3, we also can't use these insns. */
3651 if (i2_code_number >= 0 && i2set && i3set
3652 && (next_nonnote_nondebug_insn (i2) == i3
3653 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3654 insn_code_number = recog_for_combine (&newi3pat, i3,
3655 &new_i3_notes);
3656 if (insn_code_number >= 0)
3657 newpat = newi3pat;
3659 /* It is possible that both insns now set the destination of I3.
3660 If so, we must show an extra use of it. */
3662 if (insn_code_number >= 0)
3664 rtx new_i3_dest = SET_DEST (i3set);
3665 rtx new_i2_dest = SET_DEST (i2set);
3667 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3668 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3669 || GET_CODE (new_i3_dest) == SUBREG)
3670 new_i3_dest = XEXP (new_i3_dest, 0);
3672 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3673 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3674 || GET_CODE (new_i2_dest) == SUBREG)
3675 new_i2_dest = XEXP (new_i2_dest, 0);
3677 if (REG_P (new_i3_dest)
3678 && REG_P (new_i2_dest)
3679 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3680 && REGNO (new_i2_dest) < reg_n_sets_max)
3681 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3685 /* If we can split it and use I2DEST, go ahead and see if that
3686 helps things be recognized. Verify that none of the registers
3687 are set between I2 and I3. */
3688 if (insn_code_number < 0
3689 && (split = find_split_point (&newpat, i3, false)) != 0
3690 && (!HAVE_cc0 || REG_P (i2dest))
3691 /* We need I2DEST in the proper mode. If it is a hard register
3692 or the only use of a pseudo, we can change its mode.
3693 Make sure we don't change a hard register to have a mode that
3694 isn't valid for it, or change the number of registers. */
3695 && (GET_MODE (*split) == GET_MODE (i2dest)
3696 || GET_MODE (*split) == VOIDmode
3697 || can_change_dest_mode (i2dest, added_sets_2,
3698 GET_MODE (*split)))
3699 && (next_nonnote_nondebug_insn (i2) == i3
3700 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3701 /* We can't overwrite I2DEST if its value is still used by
3702 NEWPAT. */
3703 && ! reg_referenced_p (i2dest, newpat))
3705 rtx newdest = i2dest;
3706 enum rtx_code split_code = GET_CODE (*split);
3707 machine_mode split_mode = GET_MODE (*split);
3708 bool subst_done = false;
3709 newi2pat = NULL_RTX;
3711 i2scratch = true;
3713 /* *SPLIT may be part of I2SRC, so make sure we have the
3714 original expression around for later debug processing.
3715 We should not need I2SRC any more in other cases. */
3716 if (MAY_HAVE_DEBUG_INSNS)
3717 i2src = copy_rtx (i2src);
3718 else
3719 i2src = NULL;
3721 /* Get NEWDEST as a register in the proper mode. We have already
3722 validated that we can do this. */
3723 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3725 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3726 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3727 else
3729 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3730 newdest = regno_reg_rtx[REGNO (i2dest)];
3734 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3735 an ASHIFT. This can occur if it was inside a PLUS and hence
3736 appeared to be a memory address. This is a kludge. */
3737 if (split_code == MULT
3738 && CONST_INT_P (XEXP (*split, 1))
3739 && INTVAL (XEXP (*split, 1)) > 0
3740 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3742 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3743 XEXP (*split, 0), GEN_INT (i)));
3744 /* Update split_code because we may not have a multiply
3745 anymore. */
3746 split_code = GET_CODE (*split);
3749 #ifdef INSN_SCHEDULING
3750 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3751 be written as a ZERO_EXTEND. */
3752 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3754 #ifdef LOAD_EXTEND_OP
3755 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3756 what it really is. */
3757 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3758 == SIGN_EXTEND)
3759 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3760 SUBREG_REG (*split)));
3761 else
3762 #endif
3763 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3764 SUBREG_REG (*split)));
3766 #endif
3768 /* Attempt to split binary operators using arithmetic identities. */
3769 if (BINARY_P (SET_SRC (newpat))
3770 && split_mode == GET_MODE (SET_SRC (newpat))
3771 && ! side_effects_p (SET_SRC (newpat)))
3773 rtx setsrc = SET_SRC (newpat);
3774 machine_mode mode = GET_MODE (setsrc);
3775 enum rtx_code code = GET_CODE (setsrc);
3776 rtx src_op0 = XEXP (setsrc, 0);
3777 rtx src_op1 = XEXP (setsrc, 1);
3779 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3780 if (rtx_equal_p (src_op0, src_op1))
3782 newi2pat = gen_rtx_SET (newdest, src_op0);
3783 SUBST (XEXP (setsrc, 0), newdest);
3784 SUBST (XEXP (setsrc, 1), newdest);
3785 subst_done = true;
3787 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3788 else if ((code == PLUS || code == MULT)
3789 && GET_CODE (src_op0) == code
3790 && GET_CODE (XEXP (src_op0, 0)) == code
3791 && (INTEGRAL_MODE_P (mode)
3792 || (FLOAT_MODE_P (mode)
3793 && flag_unsafe_math_optimizations)))
3795 rtx p = XEXP (XEXP (src_op0, 0), 0);
3796 rtx q = XEXP (XEXP (src_op0, 0), 1);
3797 rtx r = XEXP (src_op0, 1);
3798 rtx s = src_op1;
3800 /* Split both "((X op Y) op X) op Y" and
3801 "((X op Y) op Y) op X" as "T op T" where T is
3802 "X op Y". */
3803 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3804 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3806 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3807 SUBST (XEXP (setsrc, 0), newdest);
3808 SUBST (XEXP (setsrc, 1), newdest);
3809 subst_done = true;
3811 /* Split "((X op X) op Y) op Y)" as "T op T" where
3812 T is "X op Y". */
3813 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3815 rtx tmp = simplify_gen_binary (code, mode, p, r);
3816 newi2pat = gen_rtx_SET (newdest, tmp);
3817 SUBST (XEXP (setsrc, 0), newdest);
3818 SUBST (XEXP (setsrc, 1), newdest);
3819 subst_done = true;
3824 if (!subst_done)
3826 newi2pat = gen_rtx_SET (newdest, *split);
3827 SUBST (*split, newdest);
3830 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3832 /* recog_for_combine might have added CLOBBERs to newi2pat.
3833 Make sure NEWPAT does not depend on the clobbered regs. */
3834 if (GET_CODE (newi2pat) == PARALLEL)
3835 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3836 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3838 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3839 if (reg_overlap_mentioned_p (reg, newpat))
3841 undo_all ();
3842 return 0;
3846 /* If the split point was a MULT and we didn't have one before,
3847 don't use one now. */
3848 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3849 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3853 /* Check for a case where we loaded from memory in a narrow mode and
3854 then sign extended it, but we need both registers. In that case,
3855 we have a PARALLEL with both loads from the same memory location.
3856 We can split this into a load from memory followed by a register-register
3857 copy. This saves at least one insn, more if register allocation can
3858 eliminate the copy.
3860 We cannot do this if the destination of the first assignment is a
3861 condition code register or cc0. We eliminate this case by making sure
3862 the SET_DEST and SET_SRC have the same mode.
3864 We cannot do this if the destination of the second assignment is
3865 a register that we have already assumed is zero-extended. Similarly
3866 for a SUBREG of such a register. */
3868 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3869 && GET_CODE (newpat) == PARALLEL
3870 && XVECLEN (newpat, 0) == 2
3871 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3872 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3873 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3874 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3875 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3876 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3877 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3878 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3879 DF_INSN_LUID (i2))
3880 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3881 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3882 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3883 (REG_P (temp_expr)
3884 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3885 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3886 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3887 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3888 != GET_MODE_MASK (word_mode))))
3889 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3890 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3891 (REG_P (temp_expr)
3892 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3893 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3894 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3895 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3896 != GET_MODE_MASK (word_mode)))))
3897 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3898 SET_SRC (XVECEXP (newpat, 0, 1)))
3899 && ! find_reg_note (i3, REG_UNUSED,
3900 SET_DEST (XVECEXP (newpat, 0, 0))))
3902 rtx ni2dest;
3904 newi2pat = XVECEXP (newpat, 0, 0);
3905 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3906 newpat = XVECEXP (newpat, 0, 1);
3907 SUBST (SET_SRC (newpat),
3908 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3909 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3911 if (i2_code_number >= 0)
3912 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3914 if (insn_code_number >= 0)
3915 swap_i2i3 = 1;
3918 /* Similarly, check for a case where we have a PARALLEL of two independent
3919 SETs but we started with three insns. In this case, we can do the sets
3920 as two separate insns. This case occurs when some SET allows two
3921 other insns to combine, but the destination of that SET is still live.
3923 Also do this if we started with two insns and (at least) one of the
3924 resulting sets is a noop; this noop will be deleted later. */
3926 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3927 && GET_CODE (newpat) == PARALLEL
3928 && XVECLEN (newpat, 0) == 2
3929 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3930 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3931 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3932 || set_noop_p (XVECEXP (newpat, 0, 1)))
3933 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3934 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3935 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3937 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 XVECEXP (newpat, 0, 0))
3939 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3940 XVECEXP (newpat, 0, 1))
3941 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3942 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3944 rtx set0 = XVECEXP (newpat, 0, 0);
3945 rtx set1 = XVECEXP (newpat, 0, 1);
3947 /* Normally, it doesn't matter which of the two is done first,
3948 but the one that references cc0 can't be the second, and
3949 one which uses any regs/memory set in between i2 and i3 can't
3950 be first. The PARALLEL might also have been pre-existing in i3,
3951 so we need to make sure that we won't wrongly hoist a SET to i2
3952 that would conflict with a death note present in there. */
3953 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3954 && !(REG_P (SET_DEST (set1))
3955 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3956 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3957 && find_reg_note (i2, REG_DEAD,
3958 SUBREG_REG (SET_DEST (set1))))
3959 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3960 /* If I3 is a jump, ensure that set0 is a jump so that
3961 we do not create invalid RTL. */
3962 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3965 newi2pat = set1;
3966 newpat = set0;
3968 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3969 && !(REG_P (SET_DEST (set0))
3970 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3971 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3972 && find_reg_note (i2, REG_DEAD,
3973 SUBREG_REG (SET_DEST (set0))))
3974 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3975 /* If I3 is a jump, ensure that set1 is a jump so that
3976 we do not create invalid RTL. */
3977 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3980 newi2pat = set0;
3981 newpat = set1;
3983 else
3985 undo_all ();
3986 return 0;
3989 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3991 if (i2_code_number >= 0)
3993 /* recog_for_combine might have added CLOBBERs to newi2pat.
3994 Make sure NEWPAT does not depend on the clobbered regs. */
3995 if (GET_CODE (newi2pat) == PARALLEL)
3997 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3998 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4000 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4001 if (reg_overlap_mentioned_p (reg, newpat))
4003 undo_all ();
4004 return 0;
4009 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4013 /* If it still isn't recognized, fail and change things back the way they
4014 were. */
4015 if ((insn_code_number < 0
4016 /* Is the result a reasonable ASM_OPERANDS? */
4017 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4019 undo_all ();
4020 return 0;
4023 /* If we had to change another insn, make sure it is valid also. */
4024 if (undobuf.other_insn)
4026 CLEAR_HARD_REG_SET (newpat_used_regs);
4028 other_pat = PATTERN (undobuf.other_insn);
4029 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4030 &new_other_notes);
4032 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4034 undo_all ();
4035 return 0;
4039 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4040 they are adjacent to each other or not. */
4041 if (HAVE_cc0)
4043 rtx_insn *p = prev_nonnote_insn (i3);
4044 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4045 && sets_cc0_p (newi2pat))
4047 undo_all ();
4048 return 0;
4052 /* Only allow this combination if insn_rtx_costs reports that the
4053 replacement instructions are cheaper than the originals. */
4054 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4056 undo_all ();
4057 return 0;
4060 if (MAY_HAVE_DEBUG_INSNS)
4062 struct undo *undo;
4064 for (undo = undobuf.undos; undo; undo = undo->next)
4065 if (undo->kind == UNDO_MODE)
4067 rtx reg = *undo->where.r;
4068 machine_mode new_mode = GET_MODE (reg);
4069 machine_mode old_mode = undo->old_contents.m;
4071 /* Temporarily revert mode back. */
4072 adjust_reg_mode (reg, old_mode);
4074 if (reg == i2dest && i2scratch)
4076 /* If we used i2dest as a scratch register with a
4077 different mode, substitute it for the original
4078 i2src while its original mode is temporarily
4079 restored, and then clear i2scratch so that we don't
4080 do it again later. */
4081 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4082 this_basic_block);
4083 i2scratch = false;
4084 /* Put back the new mode. */
4085 adjust_reg_mode (reg, new_mode);
4087 else
4089 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4090 rtx_insn *first, *last;
4092 if (reg == i2dest)
4094 first = i2;
4095 last = last_combined_insn;
4097 else
4099 first = i3;
4100 last = undobuf.other_insn;
4101 gcc_assert (last);
4102 if (DF_INSN_LUID (last)
4103 < DF_INSN_LUID (last_combined_insn))
4104 last = last_combined_insn;
4107 /* We're dealing with a reg that changed mode but not
4108 meaning, so we want to turn it into a subreg for
4109 the new mode. However, because of REG sharing and
4110 because its mode had already changed, we have to do
4111 it in two steps. First, replace any debug uses of
4112 reg, with its original mode temporarily restored,
4113 with this copy we have created; then, replace the
4114 copy with the SUBREG of the original shared reg,
4115 once again changed to the new mode. */
4116 propagate_for_debug (first, last, reg, tempreg,
4117 this_basic_block);
4118 adjust_reg_mode (reg, new_mode);
4119 propagate_for_debug (first, last, tempreg,
4120 lowpart_subreg (old_mode, reg, new_mode),
4121 this_basic_block);
4126 /* If we will be able to accept this, we have made a
4127 change to the destination of I3. This requires us to
4128 do a few adjustments. */
4130 if (changed_i3_dest)
4132 PATTERN (i3) = newpat;
4133 adjust_for_new_dest (i3);
4136 /* We now know that we can do this combination. Merge the insns and
4137 update the status of registers and LOG_LINKS. */
4139 if (undobuf.other_insn)
4141 rtx note, next;
4143 PATTERN (undobuf.other_insn) = other_pat;
4145 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4146 ensure that they are still valid. Then add any non-duplicate
4147 notes added by recog_for_combine. */
4148 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4150 next = XEXP (note, 1);
4152 if ((REG_NOTE_KIND (note) == REG_DEAD
4153 && !reg_referenced_p (XEXP (note, 0),
4154 PATTERN (undobuf.other_insn)))
4155 ||(REG_NOTE_KIND (note) == REG_UNUSED
4156 && !reg_set_p (XEXP (note, 0),
4157 PATTERN (undobuf.other_insn))))
4158 remove_note (undobuf.other_insn, note);
4161 distribute_notes (new_other_notes, undobuf.other_insn,
4162 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4163 NULL_RTX);
4166 if (swap_i2i3)
4168 rtx_insn *insn;
4169 struct insn_link *link;
4170 rtx ni2dest;
4172 /* I3 now uses what used to be its destination and which is now
4173 I2's destination. This requires us to do a few adjustments. */
4174 PATTERN (i3) = newpat;
4175 adjust_for_new_dest (i3);
4177 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4178 so we still will.
4180 However, some later insn might be using I2's dest and have
4181 a LOG_LINK pointing at I3. We must remove this link.
4182 The simplest way to remove the link is to point it at I1,
4183 which we know will be a NOTE. */
4185 /* newi2pat is usually a SET here; however, recog_for_combine might
4186 have added some clobbers. */
4187 if (GET_CODE (newi2pat) == PARALLEL)
4188 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4189 else
4190 ni2dest = SET_DEST (newi2pat);
4192 for (insn = NEXT_INSN (i3);
4193 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4194 || insn != BB_HEAD (this_basic_block->next_bb));
4195 insn = NEXT_INSN (insn))
4197 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4199 FOR_EACH_LOG_LINK (link, insn)
4200 if (link->insn == i3)
4201 link->insn = i1;
4203 break;
4209 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4210 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4211 rtx midnotes = 0;
4212 int from_luid;
4213 /* Compute which registers we expect to eliminate. newi2pat may be setting
4214 either i3dest or i2dest, so we must check it. */
4215 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4216 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4217 || !i2dest_killed
4218 ? 0 : i2dest);
4219 /* For i1, we need to compute both local elimination and global
4220 elimination information with respect to newi2pat because i1dest
4221 may be the same as i3dest, in which case newi2pat may be setting
4222 i1dest. Global information is used when distributing REG_DEAD
4223 note for i2 and i3, in which case it does matter if newi2pat sets
4224 i1dest or not.
4226 Local information is used when distributing REG_DEAD note for i1,
4227 in which case it doesn't matter if newi2pat sets i1dest or not.
4228 See PR62151, if we have four insns combination:
4229 i0: r0 <- i0src
4230 i1: r1 <- i1src (using r0)
4231 REG_DEAD (r0)
4232 i2: r0 <- i2src (using r1)
4233 i3: r3 <- i3src (using r0)
4234 ix: using r0
4235 From i1's point of view, r0 is eliminated, no matter if it is set
4236 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4237 should be discarded.
4239 Note local information only affects cases in forms like "I1->I2->I3",
4240 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4241 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4242 i0dest anyway. */
4243 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4244 || !i1dest_killed
4245 ? 0 : i1dest);
4246 rtx elim_i1 = (local_elim_i1 == 0
4247 || (newi2pat && reg_set_p (i1dest, newi2pat))
4248 ? 0 : i1dest);
4249 /* Same case as i1. */
4250 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4251 ? 0 : i0dest);
4252 rtx elim_i0 = (local_elim_i0 == 0
4253 || (newi2pat && reg_set_p (i0dest, newi2pat))
4254 ? 0 : i0dest);
4256 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4257 clear them. */
4258 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4259 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4260 if (i1)
4261 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4262 if (i0)
4263 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4265 /* Ensure that we do not have something that should not be shared but
4266 occurs multiple times in the new insns. Check this by first
4267 resetting all the `used' flags and then copying anything is shared. */
4269 reset_used_flags (i3notes);
4270 reset_used_flags (i2notes);
4271 reset_used_flags (i1notes);
4272 reset_used_flags (i0notes);
4273 reset_used_flags (newpat);
4274 reset_used_flags (newi2pat);
4275 if (undobuf.other_insn)
4276 reset_used_flags (PATTERN (undobuf.other_insn));
4278 i3notes = copy_rtx_if_shared (i3notes);
4279 i2notes = copy_rtx_if_shared (i2notes);
4280 i1notes = copy_rtx_if_shared (i1notes);
4281 i0notes = copy_rtx_if_shared (i0notes);
4282 newpat = copy_rtx_if_shared (newpat);
4283 newi2pat = copy_rtx_if_shared (newi2pat);
4284 if (undobuf.other_insn)
4285 reset_used_flags (PATTERN (undobuf.other_insn));
4287 INSN_CODE (i3) = insn_code_number;
4288 PATTERN (i3) = newpat;
4290 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4292 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4294 reset_used_flags (call_usage);
4295 call_usage = copy_rtx (call_usage);
4297 if (substed_i2)
4299 /* I2SRC must still be meaningful at this point. Some splitting
4300 operations can invalidate I2SRC, but those operations do not
4301 apply to calls. */
4302 gcc_assert (i2src);
4303 replace_rtx (call_usage, i2dest, i2src);
4306 if (substed_i1)
4307 replace_rtx (call_usage, i1dest, i1src);
4308 if (substed_i0)
4309 replace_rtx (call_usage, i0dest, i0src);
4311 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4314 if (undobuf.other_insn)
4315 INSN_CODE (undobuf.other_insn) = other_code_number;
4317 /* We had one special case above where I2 had more than one set and
4318 we replaced a destination of one of those sets with the destination
4319 of I3. In that case, we have to update LOG_LINKS of insns later
4320 in this basic block. Note that this (expensive) case is rare.
4322 Also, in this case, we must pretend that all REG_NOTEs for I2
4323 actually came from I3, so that REG_UNUSED notes from I2 will be
4324 properly handled. */
4326 if (i3_subst_into_i2)
4328 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4329 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4330 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4331 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4332 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4333 && ! find_reg_note (i2, REG_UNUSED,
4334 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4335 for (temp_insn = NEXT_INSN (i2);
4336 temp_insn
4337 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4338 || BB_HEAD (this_basic_block) != temp_insn);
4339 temp_insn = NEXT_INSN (temp_insn))
4340 if (temp_insn != i3 && INSN_P (temp_insn))
4341 FOR_EACH_LOG_LINK (link, temp_insn)
4342 if (link->insn == i2)
4343 link->insn = i3;
4345 if (i3notes)
4347 rtx link = i3notes;
4348 while (XEXP (link, 1))
4349 link = XEXP (link, 1);
4350 XEXP (link, 1) = i2notes;
4352 else
4353 i3notes = i2notes;
4354 i2notes = 0;
4357 LOG_LINKS (i3) = NULL;
4358 REG_NOTES (i3) = 0;
4359 LOG_LINKS (i2) = NULL;
4360 REG_NOTES (i2) = 0;
4362 if (newi2pat)
4364 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4365 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4366 this_basic_block);
4367 INSN_CODE (i2) = i2_code_number;
4368 PATTERN (i2) = newi2pat;
4370 else
4372 if (MAY_HAVE_DEBUG_INSNS && i2src)
4373 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4374 this_basic_block);
4375 SET_INSN_DELETED (i2);
4378 if (i1)
4380 LOG_LINKS (i1) = NULL;
4381 REG_NOTES (i1) = 0;
4382 if (MAY_HAVE_DEBUG_INSNS)
4383 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4384 this_basic_block);
4385 SET_INSN_DELETED (i1);
4388 if (i0)
4390 LOG_LINKS (i0) = NULL;
4391 REG_NOTES (i0) = 0;
4392 if (MAY_HAVE_DEBUG_INSNS)
4393 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4394 this_basic_block);
4395 SET_INSN_DELETED (i0);
4398 /* Get death notes for everything that is now used in either I3 or
4399 I2 and used to die in a previous insn. If we built two new
4400 patterns, move from I1 to I2 then I2 to I3 so that we get the
4401 proper movement on registers that I2 modifies. */
4403 if (i0)
4404 from_luid = DF_INSN_LUID (i0);
4405 else if (i1)
4406 from_luid = DF_INSN_LUID (i1);
4407 else
4408 from_luid = DF_INSN_LUID (i2);
4409 if (newi2pat)
4410 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4411 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4413 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4414 if (i3notes)
4415 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4416 elim_i2, elim_i1, elim_i0);
4417 if (i2notes)
4418 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4419 elim_i2, elim_i1, elim_i0);
4420 if (i1notes)
4421 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4422 elim_i2, local_elim_i1, local_elim_i0);
4423 if (i0notes)
4424 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4425 elim_i2, elim_i1, local_elim_i0);
4426 if (midnotes)
4427 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, elim_i0);
4430 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4431 know these are REG_UNUSED and want them to go to the desired insn,
4432 so we always pass it as i3. */
4434 if (newi2pat && new_i2_notes)
4435 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4436 NULL_RTX);
4438 if (new_i3_notes)
4439 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4440 NULL_RTX);
4442 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4443 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4444 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4445 in that case, it might delete I2. Similarly for I2 and I1.
4446 Show an additional death due to the REG_DEAD note we make here. If
4447 we discard it in distribute_notes, we will decrement it again. */
4449 if (i3dest_killed)
4451 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4452 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4453 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4454 elim_i1, elim_i0);
4455 else
4456 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4457 elim_i2, elim_i1, elim_i0);
4460 if (i2dest_in_i2src)
4462 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4463 if (newi2pat && reg_set_p (i2dest, newi2pat))
4464 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4465 NULL_RTX, NULL_RTX);
4466 else
4467 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4468 NULL_RTX, NULL_RTX, NULL_RTX);
4471 if (i1dest_in_i1src)
4473 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4474 if (newi2pat && reg_set_p (i1dest, newi2pat))
4475 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4476 NULL_RTX, NULL_RTX);
4477 else
4478 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4479 NULL_RTX, NULL_RTX, NULL_RTX);
4482 if (i0dest_in_i0src)
4484 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4485 if (newi2pat && reg_set_p (i0dest, newi2pat))
4486 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4487 NULL_RTX, NULL_RTX);
4488 else
4489 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4490 NULL_RTX, NULL_RTX, NULL_RTX);
4493 distribute_links (i3links);
4494 distribute_links (i2links);
4495 distribute_links (i1links);
4496 distribute_links (i0links);
4498 if (REG_P (i2dest))
4500 struct insn_link *link;
4501 rtx_insn *i2_insn = 0;
4502 rtx i2_val = 0, set;
4504 /* The insn that used to set this register doesn't exist, and
4505 this life of the register may not exist either. See if one of
4506 I3's links points to an insn that sets I2DEST. If it does,
4507 that is now the last known value for I2DEST. If we don't update
4508 this and I2 set the register to a value that depended on its old
4509 contents, we will get confused. If this insn is used, thing
4510 will be set correctly in combine_instructions. */
4511 FOR_EACH_LOG_LINK (link, i3)
4512 if ((set = single_set (link->insn)) != 0
4513 && rtx_equal_p (i2dest, SET_DEST (set)))
4514 i2_insn = link->insn, i2_val = SET_SRC (set);
4516 record_value_for_reg (i2dest, i2_insn, i2_val);
4518 /* If the reg formerly set in I2 died only once and that was in I3,
4519 zero its use count so it won't make `reload' do any work. */
4520 if (! added_sets_2
4521 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4522 && ! i2dest_in_i2src
4523 && REGNO (i2dest) < reg_n_sets_max)
4524 INC_REG_N_SETS (REGNO (i2dest), -1);
4527 if (i1 && REG_P (i1dest))
4529 struct insn_link *link;
4530 rtx_insn *i1_insn = 0;
4531 rtx i1_val = 0, set;
4533 FOR_EACH_LOG_LINK (link, i3)
4534 if ((set = single_set (link->insn)) != 0
4535 && rtx_equal_p (i1dest, SET_DEST (set)))
4536 i1_insn = link->insn, i1_val = SET_SRC (set);
4538 record_value_for_reg (i1dest, i1_insn, i1_val);
4540 if (! added_sets_1
4541 && ! i1dest_in_i1src
4542 && REGNO (i1dest) < reg_n_sets_max)
4543 INC_REG_N_SETS (REGNO (i1dest), -1);
4546 if (i0 && REG_P (i0dest))
4548 struct insn_link *link;
4549 rtx_insn *i0_insn = 0;
4550 rtx i0_val = 0, set;
4552 FOR_EACH_LOG_LINK (link, i3)
4553 if ((set = single_set (link->insn)) != 0
4554 && rtx_equal_p (i0dest, SET_DEST (set)))
4555 i0_insn = link->insn, i0_val = SET_SRC (set);
4557 record_value_for_reg (i0dest, i0_insn, i0_val);
4559 if (! added_sets_0
4560 && ! i0dest_in_i0src
4561 && REGNO (i0dest) < reg_n_sets_max)
4562 INC_REG_N_SETS (REGNO (i0dest), -1);
4565 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4566 been made to this insn. The order is important, because newi2pat
4567 can affect nonzero_bits of newpat. */
4568 if (newi2pat)
4569 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4570 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4573 if (undobuf.other_insn != NULL_RTX)
4575 if (dump_file)
4577 fprintf (dump_file, "modifying other_insn ");
4578 dump_insn_slim (dump_file, undobuf.other_insn);
4580 df_insn_rescan (undobuf.other_insn);
4583 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4585 if (dump_file)
4587 fprintf (dump_file, "modifying insn i0 ");
4588 dump_insn_slim (dump_file, i0);
4590 df_insn_rescan (i0);
4593 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4595 if (dump_file)
4597 fprintf (dump_file, "modifying insn i1 ");
4598 dump_insn_slim (dump_file, i1);
4600 df_insn_rescan (i1);
4603 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4605 if (dump_file)
4607 fprintf (dump_file, "modifying insn i2 ");
4608 dump_insn_slim (dump_file, i2);
4610 df_insn_rescan (i2);
4613 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4615 if (dump_file)
4617 fprintf (dump_file, "modifying insn i3 ");
4618 dump_insn_slim (dump_file, i3);
4620 df_insn_rescan (i3);
4623 /* Set new_direct_jump_p if a new return or simple jump instruction
4624 has been created. Adjust the CFG accordingly. */
4625 if (returnjump_p (i3) || any_uncondjump_p (i3))
4627 *new_direct_jump_p = 1;
4628 mark_jump_label (PATTERN (i3), i3, 0);
4629 update_cfg_for_uncondjump (i3);
4632 if (undobuf.other_insn != NULL_RTX
4633 && (returnjump_p (undobuf.other_insn)
4634 || any_uncondjump_p (undobuf.other_insn)))
4636 *new_direct_jump_p = 1;
4637 update_cfg_for_uncondjump (undobuf.other_insn);
4640 /* A noop might also need cleaning up of CFG, if it comes from the
4641 simplification of a jump. */
4642 if (JUMP_P (i3)
4643 && GET_CODE (newpat) == SET
4644 && SET_SRC (newpat) == pc_rtx
4645 && SET_DEST (newpat) == pc_rtx)
4647 *new_direct_jump_p = 1;
4648 update_cfg_for_uncondjump (i3);
4651 if (undobuf.other_insn != NULL_RTX
4652 && JUMP_P (undobuf.other_insn)
4653 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4654 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4655 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4657 *new_direct_jump_p = 1;
4658 update_cfg_for_uncondjump (undobuf.other_insn);
4661 combine_successes++;
4662 undo_commit ();
4664 if (added_links_insn
4665 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4666 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4667 return added_links_insn;
4668 else
4669 return newi2pat ? i2 : i3;
4672 /* Get a marker for undoing to the current state. */
4674 static void *
4675 get_undo_marker (void)
4677 return undobuf.undos;
4680 /* Undo the modifications up to the marker. */
4682 static void
4683 undo_to_marker (void *marker)
4685 struct undo *undo, *next;
4687 for (undo = undobuf.undos; undo != marker; undo = next)
4689 gcc_assert (undo);
4691 next = undo->next;
4692 switch (undo->kind)
4694 case UNDO_RTX:
4695 *undo->where.r = undo->old_contents.r;
4696 break;
4697 case UNDO_INT:
4698 *undo->where.i = undo->old_contents.i;
4699 break;
4700 case UNDO_MODE:
4701 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4702 break;
4703 case UNDO_LINKS:
4704 *undo->where.l = undo->old_contents.l;
4705 break;
4706 default:
4707 gcc_unreachable ();
4710 undo->next = undobuf.frees;
4711 undobuf.frees = undo;
4714 undobuf.undos = (struct undo *) marker;
4717 /* Undo all the modifications recorded in undobuf. */
4719 static void
4720 undo_all (void)
4722 undo_to_marker (0);
4725 /* We've committed to accepting the changes we made. Move all
4726 of the undos to the free list. */
4728 static void
4729 undo_commit (void)
4731 struct undo *undo, *next;
4733 for (undo = undobuf.undos; undo; undo = next)
4735 next = undo->next;
4736 undo->next = undobuf.frees;
4737 undobuf.frees = undo;
4739 undobuf.undos = 0;
4742 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4743 where we have an arithmetic expression and return that point. LOC will
4744 be inside INSN.
4746 try_combine will call this function to see if an insn can be split into
4747 two insns. */
4749 static rtx *
4750 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4752 rtx x = *loc;
4753 enum rtx_code code = GET_CODE (x);
4754 rtx *split;
4755 unsigned HOST_WIDE_INT len = 0;
4756 HOST_WIDE_INT pos = 0;
4757 int unsignedp = 0;
4758 rtx inner = NULL_RTX;
4760 /* First special-case some codes. */
4761 switch (code)
4763 case SUBREG:
4764 #ifdef INSN_SCHEDULING
4765 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4766 point. */
4767 if (MEM_P (SUBREG_REG (x)))
4768 return loc;
4769 #endif
4770 return find_split_point (&SUBREG_REG (x), insn, false);
4772 case MEM:
4773 #ifdef HAVE_lo_sum
4774 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4775 using LO_SUM and HIGH. */
4776 if (GET_CODE (XEXP (x, 0)) == CONST
4777 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4779 machine_mode address_mode = get_address_mode (x);
4781 SUBST (XEXP (x, 0),
4782 gen_rtx_LO_SUM (address_mode,
4783 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4784 XEXP (x, 0)));
4785 return &XEXP (XEXP (x, 0), 0);
4787 #endif
4789 /* If we have a PLUS whose second operand is a constant and the
4790 address is not valid, perhaps will can split it up using
4791 the machine-specific way to split large constants. We use
4792 the first pseudo-reg (one of the virtual regs) as a placeholder;
4793 it will not remain in the result. */
4794 if (GET_CODE (XEXP (x, 0)) == PLUS
4795 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4796 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4797 MEM_ADDR_SPACE (x)))
4799 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4800 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4801 subst_insn);
4803 /* This should have produced two insns, each of which sets our
4804 placeholder. If the source of the second is a valid address,
4805 we can make put both sources together and make a split point
4806 in the middle. */
4808 if (seq
4809 && NEXT_INSN (seq) != NULL_RTX
4810 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4811 && NONJUMP_INSN_P (seq)
4812 && GET_CODE (PATTERN (seq)) == SET
4813 && SET_DEST (PATTERN (seq)) == reg
4814 && ! reg_mentioned_p (reg,
4815 SET_SRC (PATTERN (seq)))
4816 && NONJUMP_INSN_P (NEXT_INSN (seq))
4817 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4818 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4819 && memory_address_addr_space_p
4820 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4821 MEM_ADDR_SPACE (x)))
4823 rtx src1 = SET_SRC (PATTERN (seq));
4824 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4826 /* Replace the placeholder in SRC2 with SRC1. If we can
4827 find where in SRC2 it was placed, that can become our
4828 split point and we can replace this address with SRC2.
4829 Just try two obvious places. */
4831 src2 = replace_rtx (src2, reg, src1);
4832 split = 0;
4833 if (XEXP (src2, 0) == src1)
4834 split = &XEXP (src2, 0);
4835 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4836 && XEXP (XEXP (src2, 0), 0) == src1)
4837 split = &XEXP (XEXP (src2, 0), 0);
4839 if (split)
4841 SUBST (XEXP (x, 0), src2);
4842 return split;
4846 /* If that didn't work, perhaps the first operand is complex and
4847 needs to be computed separately, so make a split point there.
4848 This will occur on machines that just support REG + CONST
4849 and have a constant moved through some previous computation. */
4851 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4852 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4853 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4854 return &XEXP (XEXP (x, 0), 0);
4857 /* If we have a PLUS whose first operand is complex, try computing it
4858 separately by making a split there. */
4859 if (GET_CODE (XEXP (x, 0)) == PLUS
4860 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4861 MEM_ADDR_SPACE (x))
4862 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4863 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4864 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4865 return &XEXP (XEXP (x, 0), 0);
4866 break;
4868 case SET:
4869 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4870 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4871 we need to put the operand into a register. So split at that
4872 point. */
4874 if (SET_DEST (x) == cc0_rtx
4875 && GET_CODE (SET_SRC (x)) != COMPARE
4876 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4877 && !OBJECT_P (SET_SRC (x))
4878 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4879 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4880 return &SET_SRC (x);
4882 /* See if we can split SET_SRC as it stands. */
4883 split = find_split_point (&SET_SRC (x), insn, true);
4884 if (split && split != &SET_SRC (x))
4885 return split;
4887 /* See if we can split SET_DEST as it stands. */
4888 split = find_split_point (&SET_DEST (x), insn, false);
4889 if (split && split != &SET_DEST (x))
4890 return split;
4892 /* See if this is a bitfield assignment with everything constant. If
4893 so, this is an IOR of an AND, so split it into that. */
4894 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4895 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4896 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4897 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4898 && CONST_INT_P (SET_SRC (x))
4899 && ((INTVAL (XEXP (SET_DEST (x), 1))
4900 + INTVAL (XEXP (SET_DEST (x), 2)))
4901 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4902 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4904 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4905 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4906 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4907 rtx dest = XEXP (SET_DEST (x), 0);
4908 machine_mode mode = GET_MODE (dest);
4909 unsigned HOST_WIDE_INT mask
4910 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4911 rtx or_mask;
4913 if (BITS_BIG_ENDIAN)
4914 pos = GET_MODE_PRECISION (mode) - len - pos;
4916 or_mask = gen_int_mode (src << pos, mode);
4917 if (src == mask)
4918 SUBST (SET_SRC (x),
4919 simplify_gen_binary (IOR, mode, dest, or_mask));
4920 else
4922 rtx negmask = gen_int_mode (~(mask << pos), mode);
4923 SUBST (SET_SRC (x),
4924 simplify_gen_binary (IOR, mode,
4925 simplify_gen_binary (AND, mode,
4926 dest, negmask),
4927 or_mask));
4930 SUBST (SET_DEST (x), dest);
4932 split = find_split_point (&SET_SRC (x), insn, true);
4933 if (split && split != &SET_SRC (x))
4934 return split;
4937 /* Otherwise, see if this is an operation that we can split into two.
4938 If so, try to split that. */
4939 code = GET_CODE (SET_SRC (x));
4941 switch (code)
4943 case AND:
4944 /* If we are AND'ing with a large constant that is only a single
4945 bit and the result is only being used in a context where we
4946 need to know if it is zero or nonzero, replace it with a bit
4947 extraction. This will avoid the large constant, which might
4948 have taken more than one insn to make. If the constant were
4949 not a valid argument to the AND but took only one insn to make,
4950 this is no worse, but if it took more than one insn, it will
4951 be better. */
4953 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4954 && REG_P (XEXP (SET_SRC (x), 0))
4955 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4956 && REG_P (SET_DEST (x))
4957 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4958 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4959 && XEXP (*split, 0) == SET_DEST (x)
4960 && XEXP (*split, 1) == const0_rtx)
4962 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4963 XEXP (SET_SRC (x), 0),
4964 pos, NULL_RTX, 1, 1, 0, 0);
4965 if (extraction != 0)
4967 SUBST (SET_SRC (x), extraction);
4968 return find_split_point (loc, insn, false);
4971 break;
4973 case NE:
4974 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4975 is known to be on, this can be converted into a NEG of a shift. */
4976 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4977 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4978 && 1 <= (pos = exact_log2
4979 (nonzero_bits (XEXP (SET_SRC (x), 0),
4980 GET_MODE (XEXP (SET_SRC (x), 0))))))
4982 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4984 SUBST (SET_SRC (x),
4985 gen_rtx_NEG (mode,
4986 gen_rtx_LSHIFTRT (mode,
4987 XEXP (SET_SRC (x), 0),
4988 GEN_INT (pos))));
4990 split = find_split_point (&SET_SRC (x), insn, true);
4991 if (split && split != &SET_SRC (x))
4992 return split;
4994 break;
4996 case SIGN_EXTEND:
4997 inner = XEXP (SET_SRC (x), 0);
4999 /* We can't optimize if either mode is a partial integer
5000 mode as we don't know how many bits are significant
5001 in those modes. */
5002 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5003 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5004 break;
5006 pos = 0;
5007 len = GET_MODE_PRECISION (GET_MODE (inner));
5008 unsignedp = 0;
5009 break;
5011 case SIGN_EXTRACT:
5012 case ZERO_EXTRACT:
5013 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5014 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5016 inner = XEXP (SET_SRC (x), 0);
5017 len = INTVAL (XEXP (SET_SRC (x), 1));
5018 pos = INTVAL (XEXP (SET_SRC (x), 2));
5020 if (BITS_BIG_ENDIAN)
5021 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5022 unsignedp = (code == ZERO_EXTRACT);
5024 break;
5026 default:
5027 break;
5030 if (len && pos >= 0
5031 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5033 machine_mode mode = GET_MODE (SET_SRC (x));
5035 /* For unsigned, we have a choice of a shift followed by an
5036 AND or two shifts. Use two shifts for field sizes where the
5037 constant might be too large. We assume here that we can
5038 always at least get 8-bit constants in an AND insn, which is
5039 true for every current RISC. */
5041 if (unsignedp && len <= 8)
5043 unsigned HOST_WIDE_INT mask
5044 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5045 SUBST (SET_SRC (x),
5046 gen_rtx_AND (mode,
5047 gen_rtx_LSHIFTRT
5048 (mode, gen_lowpart (mode, inner),
5049 GEN_INT (pos)),
5050 gen_int_mode (mask, mode)));
5052 split = find_split_point (&SET_SRC (x), insn, true);
5053 if (split && split != &SET_SRC (x))
5054 return split;
5056 else
5058 SUBST (SET_SRC (x),
5059 gen_rtx_fmt_ee
5060 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5061 gen_rtx_ASHIFT (mode,
5062 gen_lowpart (mode, inner),
5063 GEN_INT (GET_MODE_PRECISION (mode)
5064 - len - pos)),
5065 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5067 split = find_split_point (&SET_SRC (x), insn, true);
5068 if (split && split != &SET_SRC (x))
5069 return split;
5073 /* See if this is a simple operation with a constant as the second
5074 operand. It might be that this constant is out of range and hence
5075 could be used as a split point. */
5076 if (BINARY_P (SET_SRC (x))
5077 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5078 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5079 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5080 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5081 return &XEXP (SET_SRC (x), 1);
5083 /* Finally, see if this is a simple operation with its first operand
5084 not in a register. The operation might require this operand in a
5085 register, so return it as a split point. We can always do this
5086 because if the first operand were another operation, we would have
5087 already found it as a split point. */
5088 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5089 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5090 return &XEXP (SET_SRC (x), 0);
5092 return 0;
5094 case AND:
5095 case IOR:
5096 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5097 it is better to write this as (not (ior A B)) so we can split it.
5098 Similarly for IOR. */
5099 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5101 SUBST (*loc,
5102 gen_rtx_NOT (GET_MODE (x),
5103 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5104 GET_MODE (x),
5105 XEXP (XEXP (x, 0), 0),
5106 XEXP (XEXP (x, 1), 0))));
5107 return find_split_point (loc, insn, set_src);
5110 /* Many RISC machines have a large set of logical insns. If the
5111 second operand is a NOT, put it first so we will try to split the
5112 other operand first. */
5113 if (GET_CODE (XEXP (x, 1)) == NOT)
5115 rtx tem = XEXP (x, 0);
5116 SUBST (XEXP (x, 0), XEXP (x, 1));
5117 SUBST (XEXP (x, 1), tem);
5119 break;
5121 case PLUS:
5122 case MINUS:
5123 /* Canonicalization can produce (minus A (mult B C)), where C is a
5124 constant. It may be better to try splitting (plus (mult B -C) A)
5125 instead if this isn't a multiply by a power of two. */
5126 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5127 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5128 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5130 machine_mode mode = GET_MODE (x);
5131 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5132 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5133 SUBST (*loc, gen_rtx_PLUS (mode,
5134 gen_rtx_MULT (mode,
5135 XEXP (XEXP (x, 1), 0),
5136 gen_int_mode (other_int,
5137 mode)),
5138 XEXP (x, 0)));
5139 return find_split_point (loc, insn, set_src);
5142 /* Split at a multiply-accumulate instruction. However if this is
5143 the SET_SRC, we likely do not have such an instruction and it's
5144 worthless to try this split. */
5145 if (!set_src
5146 && (GET_CODE (XEXP (x, 0)) == MULT
5147 || GET_CODE (XEXP (x, 0)) == ASHIFT))
5148 return loc;
5150 default:
5151 break;
5154 /* Otherwise, select our actions depending on our rtx class. */
5155 switch (GET_RTX_CLASS (code))
5157 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5158 case RTX_TERNARY:
5159 split = find_split_point (&XEXP (x, 2), insn, false);
5160 if (split)
5161 return split;
5162 /* ... fall through ... */
5163 case RTX_BIN_ARITH:
5164 case RTX_COMM_ARITH:
5165 case RTX_COMPARE:
5166 case RTX_COMM_COMPARE:
5167 split = find_split_point (&XEXP (x, 1), insn, false);
5168 if (split)
5169 return split;
5170 /* ... fall through ... */
5171 case RTX_UNARY:
5172 /* Some machines have (and (shift ...) ...) insns. If X is not
5173 an AND, but XEXP (X, 0) is, use it as our split point. */
5174 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5175 return &XEXP (x, 0);
5177 split = find_split_point (&XEXP (x, 0), insn, false);
5178 if (split)
5179 return split;
5180 return loc;
5182 default:
5183 /* Otherwise, we don't have a split point. */
5184 return 0;
5188 /* Throughout X, replace FROM with TO, and return the result.
5189 The result is TO if X is FROM;
5190 otherwise the result is X, but its contents may have been modified.
5191 If they were modified, a record was made in undobuf so that
5192 undo_all will (among other things) return X to its original state.
5194 If the number of changes necessary is too much to record to undo,
5195 the excess changes are not made, so the result is invalid.
5196 The changes already made can still be undone.
5197 undobuf.num_undo is incremented for such changes, so by testing that
5198 the caller can tell whether the result is valid.
5200 `n_occurrences' is incremented each time FROM is replaced.
5202 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5204 IN_COND is nonzero if we are at the top level of a condition.
5206 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5207 by copying if `n_occurrences' is nonzero. */
5209 static rtx
5210 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5212 enum rtx_code code = GET_CODE (x);
5213 machine_mode op0_mode = VOIDmode;
5214 const char *fmt;
5215 int len, i;
5216 rtx new_rtx;
5218 /* Two expressions are equal if they are identical copies of a shared
5219 RTX or if they are both registers with the same register number
5220 and mode. */
5222 #define COMBINE_RTX_EQUAL_P(X,Y) \
5223 ((X) == (Y) \
5224 || (REG_P (X) && REG_P (Y) \
5225 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5227 /* Do not substitute into clobbers of regs -- this will never result in
5228 valid RTL. */
5229 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5230 return x;
5232 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5234 n_occurrences++;
5235 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5238 /* If X and FROM are the same register but different modes, they
5239 will not have been seen as equal above. However, the log links code
5240 will make a LOG_LINKS entry for that case. If we do nothing, we
5241 will try to rerecognize our original insn and, when it succeeds,
5242 we will delete the feeding insn, which is incorrect.
5244 So force this insn not to match in this (rare) case. */
5245 if (! in_dest && code == REG && REG_P (from)
5246 && reg_overlap_mentioned_p (x, from))
5247 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5249 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5250 of which may contain things that can be combined. */
5251 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5252 return x;
5254 /* It is possible to have a subexpression appear twice in the insn.
5255 Suppose that FROM is a register that appears within TO.
5256 Then, after that subexpression has been scanned once by `subst',
5257 the second time it is scanned, TO may be found. If we were
5258 to scan TO here, we would find FROM within it and create a
5259 self-referent rtl structure which is completely wrong. */
5260 if (COMBINE_RTX_EQUAL_P (x, to))
5261 return to;
5263 /* Parallel asm_operands need special attention because all of the
5264 inputs are shared across the arms. Furthermore, unsharing the
5265 rtl results in recognition failures. Failure to handle this case
5266 specially can result in circular rtl.
5268 Solve this by doing a normal pass across the first entry of the
5269 parallel, and only processing the SET_DESTs of the subsequent
5270 entries. Ug. */
5272 if (code == PARALLEL
5273 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5274 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5276 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5278 /* If this substitution failed, this whole thing fails. */
5279 if (GET_CODE (new_rtx) == CLOBBER
5280 && XEXP (new_rtx, 0) == const0_rtx)
5281 return new_rtx;
5283 SUBST (XVECEXP (x, 0, 0), new_rtx);
5285 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5287 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5289 if (!REG_P (dest)
5290 && GET_CODE (dest) != CC0
5291 && GET_CODE (dest) != PC)
5293 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5295 /* If this substitution failed, this whole thing fails. */
5296 if (GET_CODE (new_rtx) == CLOBBER
5297 && XEXP (new_rtx, 0) == const0_rtx)
5298 return new_rtx;
5300 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5304 else
5306 len = GET_RTX_LENGTH (code);
5307 fmt = GET_RTX_FORMAT (code);
5309 /* We don't need to process a SET_DEST that is a register, CC0,
5310 or PC, so set up to skip this common case. All other cases
5311 where we want to suppress replacing something inside a
5312 SET_SRC are handled via the IN_DEST operand. */
5313 if (code == SET
5314 && (REG_P (SET_DEST (x))
5315 || GET_CODE (SET_DEST (x)) == CC0
5316 || GET_CODE (SET_DEST (x)) == PC))
5317 fmt = "ie";
5319 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5320 constant. */
5321 if (fmt[0] == 'e')
5322 op0_mode = GET_MODE (XEXP (x, 0));
5324 for (i = 0; i < len; i++)
5326 if (fmt[i] == 'E')
5328 int j;
5329 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5331 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5333 new_rtx = (unique_copy && n_occurrences
5334 ? copy_rtx (to) : to);
5335 n_occurrences++;
5337 else
5339 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5340 unique_copy);
5342 /* If this substitution failed, this whole thing
5343 fails. */
5344 if (GET_CODE (new_rtx) == CLOBBER
5345 && XEXP (new_rtx, 0) == const0_rtx)
5346 return new_rtx;
5349 SUBST (XVECEXP (x, i, j), new_rtx);
5352 else if (fmt[i] == 'e')
5354 /* If this is a register being set, ignore it. */
5355 new_rtx = XEXP (x, i);
5356 if (in_dest
5357 && i == 0
5358 && (((code == SUBREG || code == ZERO_EXTRACT)
5359 && REG_P (new_rtx))
5360 || code == STRICT_LOW_PART))
5363 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5365 /* In general, don't install a subreg involving two
5366 modes not tieable. It can worsen register
5367 allocation, and can even make invalid reload
5368 insns, since the reg inside may need to be copied
5369 from in the outside mode, and that may be invalid
5370 if it is an fp reg copied in integer mode.
5372 We allow two exceptions to this: It is valid if
5373 it is inside another SUBREG and the mode of that
5374 SUBREG and the mode of the inside of TO is
5375 tieable and it is valid if X is a SET that copies
5376 FROM to CC0. */
5378 if (GET_CODE (to) == SUBREG
5379 && ! MODES_TIEABLE_P (GET_MODE (to),
5380 GET_MODE (SUBREG_REG (to)))
5381 && ! (code == SUBREG
5382 && MODES_TIEABLE_P (GET_MODE (x),
5383 GET_MODE (SUBREG_REG (to))))
5384 #if HAVE_cc0
5385 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5386 #endif
5388 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5390 if (code == SUBREG
5391 && REG_P (to)
5392 && REGNO (to) < FIRST_PSEUDO_REGISTER
5393 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5394 SUBREG_BYTE (x),
5395 GET_MODE (x)) < 0)
5396 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5398 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5399 n_occurrences++;
5401 else
5402 /* If we are in a SET_DEST, suppress most cases unless we
5403 have gone inside a MEM, in which case we want to
5404 simplify the address. We assume here that things that
5405 are actually part of the destination have their inner
5406 parts in the first expression. This is true for SUBREG,
5407 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5408 things aside from REG and MEM that should appear in a
5409 SET_DEST. */
5410 new_rtx = subst (XEXP (x, i), from, to,
5411 (((in_dest
5412 && (code == SUBREG || code == STRICT_LOW_PART
5413 || code == ZERO_EXTRACT))
5414 || code == SET)
5415 && i == 0),
5416 code == IF_THEN_ELSE && i == 0,
5417 unique_copy);
5419 /* If we found that we will have to reject this combination,
5420 indicate that by returning the CLOBBER ourselves, rather than
5421 an expression containing it. This will speed things up as
5422 well as prevent accidents where two CLOBBERs are considered
5423 to be equal, thus producing an incorrect simplification. */
5425 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5426 return new_rtx;
5428 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5430 machine_mode mode = GET_MODE (x);
5432 x = simplify_subreg (GET_MODE (x), new_rtx,
5433 GET_MODE (SUBREG_REG (x)),
5434 SUBREG_BYTE (x));
5435 if (! x)
5436 x = gen_rtx_CLOBBER (mode, const0_rtx);
5438 else if (CONST_SCALAR_INT_P (new_rtx)
5439 && GET_CODE (x) == ZERO_EXTEND)
5441 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5442 new_rtx, GET_MODE (XEXP (x, 0)));
5443 gcc_assert (x);
5445 else
5446 SUBST (XEXP (x, i), new_rtx);
5451 /* Check if we are loading something from the constant pool via float
5452 extension; in this case we would undo compress_float_constant
5453 optimization and degenerate constant load to an immediate value. */
5454 if (GET_CODE (x) == FLOAT_EXTEND
5455 && MEM_P (XEXP (x, 0))
5456 && MEM_READONLY_P (XEXP (x, 0)))
5458 rtx tmp = avoid_constant_pool_reference (x);
5459 if (x != tmp)
5460 return x;
5463 /* Try to simplify X. If the simplification changed the code, it is likely
5464 that further simplification will help, so loop, but limit the number
5465 of repetitions that will be performed. */
5467 for (i = 0; i < 4; i++)
5469 /* If X is sufficiently simple, don't bother trying to do anything
5470 with it. */
5471 if (code != CONST_INT && code != REG && code != CLOBBER)
5472 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5474 if (GET_CODE (x) == code)
5475 break;
5477 code = GET_CODE (x);
5479 /* We no longer know the original mode of operand 0 since we
5480 have changed the form of X) */
5481 op0_mode = VOIDmode;
5484 return x;
5487 /* Simplify X, a piece of RTL. We just operate on the expression at the
5488 outer level; call `subst' to simplify recursively. Return the new
5489 expression.
5491 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5492 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5493 of a condition. */
5495 static rtx
5496 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5497 int in_cond)
5499 enum rtx_code code = GET_CODE (x);
5500 machine_mode mode = GET_MODE (x);
5501 rtx temp;
5502 int i;
5504 /* If this is a commutative operation, put a constant last and a complex
5505 expression first. We don't need to do this for comparisons here. */
5506 if (COMMUTATIVE_ARITH_P (x)
5507 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5509 temp = XEXP (x, 0);
5510 SUBST (XEXP (x, 0), XEXP (x, 1));
5511 SUBST (XEXP (x, 1), temp);
5514 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5515 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5516 things. Check for cases where both arms are testing the same
5517 condition.
5519 Don't do anything if all operands are very simple. */
5521 if ((BINARY_P (x)
5522 && ((!OBJECT_P (XEXP (x, 0))
5523 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5524 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5525 || (!OBJECT_P (XEXP (x, 1))
5526 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5527 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5528 || (UNARY_P (x)
5529 && (!OBJECT_P (XEXP (x, 0))
5530 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5531 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5533 rtx cond, true_rtx, false_rtx;
5535 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5536 if (cond != 0
5537 /* If everything is a comparison, what we have is highly unlikely
5538 to be simpler, so don't use it. */
5539 && ! (COMPARISON_P (x)
5540 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5542 rtx cop1 = const0_rtx;
5543 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5545 if (cond_code == NE && COMPARISON_P (cond))
5546 return x;
5548 /* Simplify the alternative arms; this may collapse the true and
5549 false arms to store-flag values. Be careful to use copy_rtx
5550 here since true_rtx or false_rtx might share RTL with x as a
5551 result of the if_then_else_cond call above. */
5552 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5553 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5555 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5556 is unlikely to be simpler. */
5557 if (general_operand (true_rtx, VOIDmode)
5558 && general_operand (false_rtx, VOIDmode))
5560 enum rtx_code reversed;
5562 /* Restarting if we generate a store-flag expression will cause
5563 us to loop. Just drop through in this case. */
5565 /* If the result values are STORE_FLAG_VALUE and zero, we can
5566 just make the comparison operation. */
5567 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5568 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5569 cond, cop1);
5570 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5571 && ((reversed = reversed_comparison_code_parts
5572 (cond_code, cond, cop1, NULL))
5573 != UNKNOWN))
5574 x = simplify_gen_relational (reversed, mode, VOIDmode,
5575 cond, cop1);
5577 /* Likewise, we can make the negate of a comparison operation
5578 if the result values are - STORE_FLAG_VALUE and zero. */
5579 else if (CONST_INT_P (true_rtx)
5580 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5581 && false_rtx == const0_rtx)
5582 x = simplify_gen_unary (NEG, mode,
5583 simplify_gen_relational (cond_code,
5584 mode, VOIDmode,
5585 cond, cop1),
5586 mode);
5587 else if (CONST_INT_P (false_rtx)
5588 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5589 && true_rtx == const0_rtx
5590 && ((reversed = reversed_comparison_code_parts
5591 (cond_code, cond, cop1, NULL))
5592 != UNKNOWN))
5593 x = simplify_gen_unary (NEG, mode,
5594 simplify_gen_relational (reversed,
5595 mode, VOIDmode,
5596 cond, cop1),
5597 mode);
5598 else
5599 return gen_rtx_IF_THEN_ELSE (mode,
5600 simplify_gen_relational (cond_code,
5601 mode,
5602 VOIDmode,
5603 cond,
5604 cop1),
5605 true_rtx, false_rtx);
5607 code = GET_CODE (x);
5608 op0_mode = VOIDmode;
5613 /* Try to fold this expression in case we have constants that weren't
5614 present before. */
5615 temp = 0;
5616 switch (GET_RTX_CLASS (code))
5618 case RTX_UNARY:
5619 if (op0_mode == VOIDmode)
5620 op0_mode = GET_MODE (XEXP (x, 0));
5621 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5622 break;
5623 case RTX_COMPARE:
5624 case RTX_COMM_COMPARE:
5626 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5627 if (cmp_mode == VOIDmode)
5629 cmp_mode = GET_MODE (XEXP (x, 1));
5630 if (cmp_mode == VOIDmode)
5631 cmp_mode = op0_mode;
5633 temp = simplify_relational_operation (code, mode, cmp_mode,
5634 XEXP (x, 0), XEXP (x, 1));
5636 break;
5637 case RTX_COMM_ARITH:
5638 case RTX_BIN_ARITH:
5639 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5640 break;
5641 case RTX_BITFIELD_OPS:
5642 case RTX_TERNARY:
5643 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5644 XEXP (x, 1), XEXP (x, 2));
5645 break;
5646 default:
5647 break;
5650 if (temp)
5652 x = temp;
5653 code = GET_CODE (temp);
5654 op0_mode = VOIDmode;
5655 mode = GET_MODE (temp);
5658 /* First see if we can apply the inverse distributive law. */
5659 if (code == PLUS || code == MINUS
5660 || code == AND || code == IOR || code == XOR)
5662 x = apply_distributive_law (x);
5663 code = GET_CODE (x);
5664 op0_mode = VOIDmode;
5667 /* If CODE is an associative operation not otherwise handled, see if we
5668 can associate some operands. This can win if they are constants or
5669 if they are logically related (i.e. (a & b) & a). */
5670 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5671 || code == AND || code == IOR || code == XOR
5672 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5673 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5674 || (flag_associative_math && FLOAT_MODE_P (mode))))
5676 if (GET_CODE (XEXP (x, 0)) == code)
5678 rtx other = XEXP (XEXP (x, 0), 0);
5679 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5680 rtx inner_op1 = XEXP (x, 1);
5681 rtx inner;
5683 /* Make sure we pass the constant operand if any as the second
5684 one if this is a commutative operation. */
5685 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5687 rtx tem = inner_op0;
5688 inner_op0 = inner_op1;
5689 inner_op1 = tem;
5691 inner = simplify_binary_operation (code == MINUS ? PLUS
5692 : code == DIV ? MULT
5693 : code,
5694 mode, inner_op0, inner_op1);
5696 /* For commutative operations, try the other pair if that one
5697 didn't simplify. */
5698 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5700 other = XEXP (XEXP (x, 0), 1);
5701 inner = simplify_binary_operation (code, mode,
5702 XEXP (XEXP (x, 0), 0),
5703 XEXP (x, 1));
5706 if (inner)
5707 return simplify_gen_binary (code, mode, other, inner);
5711 /* A little bit of algebraic simplification here. */
5712 switch (code)
5714 case MEM:
5715 /* Ensure that our address has any ASHIFTs converted to MULT in case
5716 address-recognizing predicates are called later. */
5717 temp = make_compound_operation (XEXP (x, 0), MEM);
5718 SUBST (XEXP (x, 0), temp);
5719 break;
5721 case SUBREG:
5722 if (op0_mode == VOIDmode)
5723 op0_mode = GET_MODE (SUBREG_REG (x));
5725 /* See if this can be moved to simplify_subreg. */
5726 if (CONSTANT_P (SUBREG_REG (x))
5727 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5728 /* Don't call gen_lowpart if the inner mode
5729 is VOIDmode and we cannot simplify it, as SUBREG without
5730 inner mode is invalid. */
5731 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5732 || gen_lowpart_common (mode, SUBREG_REG (x))))
5733 return gen_lowpart (mode, SUBREG_REG (x));
5735 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5736 break;
5738 rtx temp;
5739 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5740 SUBREG_BYTE (x));
5741 if (temp)
5742 return temp;
5744 /* If op is known to have all lower bits zero, the result is zero. */
5745 if (!in_dest
5746 && SCALAR_INT_MODE_P (mode)
5747 && SCALAR_INT_MODE_P (op0_mode)
5748 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5749 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5750 && HWI_COMPUTABLE_MODE_P (op0_mode)
5751 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5752 & GET_MODE_MASK (mode)) == 0)
5753 return CONST0_RTX (mode);
5756 /* Don't change the mode of the MEM if that would change the meaning
5757 of the address. */
5758 if (MEM_P (SUBREG_REG (x))
5759 && (MEM_VOLATILE_P (SUBREG_REG (x))
5760 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5761 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5762 return gen_rtx_CLOBBER (mode, const0_rtx);
5764 /* Note that we cannot do any narrowing for non-constants since
5765 we might have been counting on using the fact that some bits were
5766 zero. We now do this in the SET. */
5768 break;
5770 case NEG:
5771 temp = expand_compound_operation (XEXP (x, 0));
5773 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5774 replaced by (lshiftrt X C). This will convert
5775 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5777 if (GET_CODE (temp) == ASHIFTRT
5778 && CONST_INT_P (XEXP (temp, 1))
5779 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5780 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5781 INTVAL (XEXP (temp, 1)));
5783 /* If X has only a single bit that might be nonzero, say, bit I, convert
5784 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5785 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5786 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5787 or a SUBREG of one since we'd be making the expression more
5788 complex if it was just a register. */
5790 if (!REG_P (temp)
5791 && ! (GET_CODE (temp) == SUBREG
5792 && REG_P (SUBREG_REG (temp)))
5793 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5795 rtx temp1 = simplify_shift_const
5796 (NULL_RTX, ASHIFTRT, mode,
5797 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5798 GET_MODE_PRECISION (mode) - 1 - i),
5799 GET_MODE_PRECISION (mode) - 1 - i);
5801 /* If all we did was surround TEMP with the two shifts, we
5802 haven't improved anything, so don't use it. Otherwise,
5803 we are better off with TEMP1. */
5804 if (GET_CODE (temp1) != ASHIFTRT
5805 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5806 || XEXP (XEXP (temp1, 0), 0) != temp)
5807 return temp1;
5809 break;
5811 case TRUNCATE:
5812 /* We can't handle truncation to a partial integer mode here
5813 because we don't know the real bitsize of the partial
5814 integer mode. */
5815 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5816 break;
5818 if (HWI_COMPUTABLE_MODE_P (mode))
5819 SUBST (XEXP (x, 0),
5820 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5821 GET_MODE_MASK (mode), 0));
5823 /* We can truncate a constant value and return it. */
5824 if (CONST_INT_P (XEXP (x, 0)))
5825 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5827 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5828 whose value is a comparison can be replaced with a subreg if
5829 STORE_FLAG_VALUE permits. */
5830 if (HWI_COMPUTABLE_MODE_P (mode)
5831 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5832 && (temp = get_last_value (XEXP (x, 0)))
5833 && COMPARISON_P (temp))
5834 return gen_lowpart (mode, XEXP (x, 0));
5835 break;
5837 case CONST:
5838 /* (const (const X)) can become (const X). Do it this way rather than
5839 returning the inner CONST since CONST can be shared with a
5840 REG_EQUAL note. */
5841 if (GET_CODE (XEXP (x, 0)) == CONST)
5842 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5843 break;
5845 #ifdef HAVE_lo_sum
5846 case LO_SUM:
5847 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5848 can add in an offset. find_split_point will split this address up
5849 again if it doesn't match. */
5850 if (GET_CODE (XEXP (x, 0)) == HIGH
5851 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5852 return XEXP (x, 1);
5853 break;
5854 #endif
5856 case PLUS:
5857 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5858 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5859 bit-field and can be replaced by either a sign_extend or a
5860 sign_extract. The `and' may be a zero_extend and the two
5861 <c>, -<c> constants may be reversed. */
5862 if (GET_CODE (XEXP (x, 0)) == XOR
5863 && CONST_INT_P (XEXP (x, 1))
5864 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5865 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5866 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5867 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5868 && HWI_COMPUTABLE_MODE_P (mode)
5869 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5870 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5871 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5872 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5873 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5874 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5875 == (unsigned int) i + 1))))
5876 return simplify_shift_const
5877 (NULL_RTX, ASHIFTRT, mode,
5878 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5879 XEXP (XEXP (XEXP (x, 0), 0), 0),
5880 GET_MODE_PRECISION (mode) - (i + 1)),
5881 GET_MODE_PRECISION (mode) - (i + 1));
5883 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5884 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5885 the bitsize of the mode - 1. This allows simplification of
5886 "a = (b & 8) == 0;" */
5887 if (XEXP (x, 1) == constm1_rtx
5888 && !REG_P (XEXP (x, 0))
5889 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5890 && REG_P (SUBREG_REG (XEXP (x, 0))))
5891 && nonzero_bits (XEXP (x, 0), mode) == 1)
5892 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5893 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5894 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5895 GET_MODE_PRECISION (mode) - 1),
5896 GET_MODE_PRECISION (mode) - 1);
5898 /* If we are adding two things that have no bits in common, convert
5899 the addition into an IOR. This will often be further simplified,
5900 for example in cases like ((a & 1) + (a & 2)), which can
5901 become a & 3. */
5903 if (HWI_COMPUTABLE_MODE_P (mode)
5904 && (nonzero_bits (XEXP (x, 0), mode)
5905 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5907 /* Try to simplify the expression further. */
5908 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5909 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5911 /* If we could, great. If not, do not go ahead with the IOR
5912 replacement, since PLUS appears in many special purpose
5913 address arithmetic instructions. */
5914 if (GET_CODE (temp) != CLOBBER
5915 && (GET_CODE (temp) != IOR
5916 || ((XEXP (temp, 0) != XEXP (x, 0)
5917 || XEXP (temp, 1) != XEXP (x, 1))
5918 && (XEXP (temp, 0) != XEXP (x, 1)
5919 || XEXP (temp, 1) != XEXP (x, 0)))))
5920 return temp;
5922 break;
5924 case MINUS:
5925 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5926 (and <foo> (const_int pow2-1)) */
5927 if (GET_CODE (XEXP (x, 1)) == AND
5928 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5929 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5930 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5931 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5932 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5933 break;
5935 case MULT:
5936 /* If we have (mult (plus A B) C), apply the distributive law and then
5937 the inverse distributive law to see if things simplify. This
5938 occurs mostly in addresses, often when unrolling loops. */
5940 if (GET_CODE (XEXP (x, 0)) == PLUS)
5942 rtx result = distribute_and_simplify_rtx (x, 0);
5943 if (result)
5944 return result;
5947 /* Try simplify a*(b/c) as (a*b)/c. */
5948 if (FLOAT_MODE_P (mode) && flag_associative_math
5949 && GET_CODE (XEXP (x, 0)) == DIV)
5951 rtx tem = simplify_binary_operation (MULT, mode,
5952 XEXP (XEXP (x, 0), 0),
5953 XEXP (x, 1));
5954 if (tem)
5955 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5957 break;
5959 case UDIV:
5960 /* If this is a divide by a power of two, treat it as a shift if
5961 its first operand is a shift. */
5962 if (CONST_INT_P (XEXP (x, 1))
5963 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5964 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5965 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5966 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5967 || GET_CODE (XEXP (x, 0)) == ROTATE
5968 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5969 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5970 break;
5972 case EQ: case NE:
5973 case GT: case GTU: case GE: case GEU:
5974 case LT: case LTU: case LE: case LEU:
5975 case UNEQ: case LTGT:
5976 case UNGT: case UNGE:
5977 case UNLT: case UNLE:
5978 case UNORDERED: case ORDERED:
5979 /* If the first operand is a condition code, we can't do anything
5980 with it. */
5981 if (GET_CODE (XEXP (x, 0)) == COMPARE
5982 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5983 && ! CC0_P (XEXP (x, 0))))
5985 rtx op0 = XEXP (x, 0);
5986 rtx op1 = XEXP (x, 1);
5987 enum rtx_code new_code;
5989 if (GET_CODE (op0) == COMPARE)
5990 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5992 /* Simplify our comparison, if possible. */
5993 new_code = simplify_comparison (code, &op0, &op1);
5995 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5996 if only the low-order bit is possibly nonzero in X (such as when
5997 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5998 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5999 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6000 (plus X 1).
6002 Remove any ZERO_EXTRACT we made when thinking this was a
6003 comparison. It may now be simpler to use, e.g., an AND. If a
6004 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6005 the call to make_compound_operation in the SET case.
6007 Don't apply these optimizations if the caller would
6008 prefer a comparison rather than a value.
6009 E.g., for the condition in an IF_THEN_ELSE most targets need
6010 an explicit comparison. */
6012 if (in_cond)
6015 else if (STORE_FLAG_VALUE == 1
6016 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6017 && op1 == const0_rtx
6018 && mode == GET_MODE (op0)
6019 && nonzero_bits (op0, mode) == 1)
6020 return gen_lowpart (mode,
6021 expand_compound_operation (op0));
6023 else if (STORE_FLAG_VALUE == 1
6024 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6025 && op1 == const0_rtx
6026 && mode == GET_MODE (op0)
6027 && (num_sign_bit_copies (op0, mode)
6028 == GET_MODE_PRECISION (mode)))
6030 op0 = expand_compound_operation (op0);
6031 return simplify_gen_unary (NEG, mode,
6032 gen_lowpart (mode, op0),
6033 mode);
6036 else if (STORE_FLAG_VALUE == 1
6037 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6038 && op1 == const0_rtx
6039 && mode == GET_MODE (op0)
6040 && nonzero_bits (op0, mode) == 1)
6042 op0 = expand_compound_operation (op0);
6043 return simplify_gen_binary (XOR, mode,
6044 gen_lowpart (mode, op0),
6045 const1_rtx);
6048 else if (STORE_FLAG_VALUE == 1
6049 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6050 && op1 == const0_rtx
6051 && mode == GET_MODE (op0)
6052 && (num_sign_bit_copies (op0, mode)
6053 == GET_MODE_PRECISION (mode)))
6055 op0 = expand_compound_operation (op0);
6056 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6059 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6060 those above. */
6061 if (in_cond)
6064 else if (STORE_FLAG_VALUE == -1
6065 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6066 && op1 == const0_rtx
6067 && mode == GET_MODE (op0)
6068 && (num_sign_bit_copies (op0, mode)
6069 == GET_MODE_PRECISION (mode)))
6070 return gen_lowpart (mode,
6071 expand_compound_operation (op0));
6073 else if (STORE_FLAG_VALUE == -1
6074 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6075 && op1 == const0_rtx
6076 && mode == GET_MODE (op0)
6077 && nonzero_bits (op0, mode) == 1)
6079 op0 = expand_compound_operation (op0);
6080 return simplify_gen_unary (NEG, mode,
6081 gen_lowpart (mode, op0),
6082 mode);
6085 else if (STORE_FLAG_VALUE == -1
6086 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6087 && op1 == const0_rtx
6088 && mode == GET_MODE (op0)
6089 && (num_sign_bit_copies (op0, mode)
6090 == GET_MODE_PRECISION (mode)))
6092 op0 = expand_compound_operation (op0);
6093 return simplify_gen_unary (NOT, mode,
6094 gen_lowpart (mode, op0),
6095 mode);
6098 /* If X is 0/1, (eq X 0) is X-1. */
6099 else if (STORE_FLAG_VALUE == -1
6100 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6101 && op1 == const0_rtx
6102 && mode == GET_MODE (op0)
6103 && nonzero_bits (op0, mode) == 1)
6105 op0 = expand_compound_operation (op0);
6106 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6109 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6110 one bit that might be nonzero, we can convert (ne x 0) to
6111 (ashift x c) where C puts the bit in the sign bit. Remove any
6112 AND with STORE_FLAG_VALUE when we are done, since we are only
6113 going to test the sign bit. */
6114 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6115 && HWI_COMPUTABLE_MODE_P (mode)
6116 && val_signbit_p (mode, STORE_FLAG_VALUE)
6117 && op1 == const0_rtx
6118 && mode == GET_MODE (op0)
6119 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6121 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6122 expand_compound_operation (op0),
6123 GET_MODE_PRECISION (mode) - 1 - i);
6124 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6125 return XEXP (x, 0);
6126 else
6127 return x;
6130 /* If the code changed, return a whole new comparison.
6131 We also need to avoid using SUBST in cases where
6132 simplify_comparison has widened a comparison with a CONST_INT,
6133 since in that case the wider CONST_INT may fail the sanity
6134 checks in do_SUBST. */
6135 if (new_code != code
6136 || (CONST_INT_P (op1)
6137 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6138 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6139 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6141 /* Otherwise, keep this operation, but maybe change its operands.
6142 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6143 SUBST (XEXP (x, 0), op0);
6144 SUBST (XEXP (x, 1), op1);
6146 break;
6148 case IF_THEN_ELSE:
6149 return simplify_if_then_else (x);
6151 case ZERO_EXTRACT:
6152 case SIGN_EXTRACT:
6153 case ZERO_EXTEND:
6154 case SIGN_EXTEND:
6155 /* If we are processing SET_DEST, we are done. */
6156 if (in_dest)
6157 return x;
6159 return expand_compound_operation (x);
6161 case SET:
6162 return simplify_set (x);
6164 case AND:
6165 case IOR:
6166 return simplify_logical (x);
6168 case ASHIFT:
6169 case LSHIFTRT:
6170 case ASHIFTRT:
6171 case ROTATE:
6172 case ROTATERT:
6173 /* If this is a shift by a constant amount, simplify it. */
6174 if (CONST_INT_P (XEXP (x, 1)))
6175 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6176 INTVAL (XEXP (x, 1)));
6178 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6179 SUBST (XEXP (x, 1),
6180 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6181 ((unsigned HOST_WIDE_INT) 1
6182 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6183 - 1,
6184 0));
6185 break;
6187 default:
6188 break;
6191 return x;
6194 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6196 static rtx
6197 simplify_if_then_else (rtx x)
6199 machine_mode mode = GET_MODE (x);
6200 rtx cond = XEXP (x, 0);
6201 rtx true_rtx = XEXP (x, 1);
6202 rtx false_rtx = XEXP (x, 2);
6203 enum rtx_code true_code = GET_CODE (cond);
6204 int comparison_p = COMPARISON_P (cond);
6205 rtx temp;
6206 int i;
6207 enum rtx_code false_code;
6208 rtx reversed;
6210 /* Simplify storing of the truth value. */
6211 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6212 return simplify_gen_relational (true_code, mode, VOIDmode,
6213 XEXP (cond, 0), XEXP (cond, 1));
6215 /* Also when the truth value has to be reversed. */
6216 if (comparison_p
6217 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6218 && (reversed = reversed_comparison (cond, mode)))
6219 return reversed;
6221 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6222 in it is being compared against certain values. Get the true and false
6223 comparisons and see if that says anything about the value of each arm. */
6225 if (comparison_p
6226 && ((false_code = reversed_comparison_code (cond, NULL))
6227 != UNKNOWN)
6228 && REG_P (XEXP (cond, 0)))
6230 HOST_WIDE_INT nzb;
6231 rtx from = XEXP (cond, 0);
6232 rtx true_val = XEXP (cond, 1);
6233 rtx false_val = true_val;
6234 int swapped = 0;
6236 /* If FALSE_CODE is EQ, swap the codes and arms. */
6238 if (false_code == EQ)
6240 swapped = 1, true_code = EQ, false_code = NE;
6241 std::swap (true_rtx, false_rtx);
6244 /* If we are comparing against zero and the expression being tested has
6245 only a single bit that might be nonzero, that is its value when it is
6246 not equal to zero. Similarly if it is known to be -1 or 0. */
6248 if (true_code == EQ && true_val == const0_rtx
6249 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6251 false_code = EQ;
6252 false_val = gen_int_mode (nzb, GET_MODE (from));
6254 else if (true_code == EQ && true_val == const0_rtx
6255 && (num_sign_bit_copies (from, GET_MODE (from))
6256 == GET_MODE_PRECISION (GET_MODE (from))))
6258 false_code = EQ;
6259 false_val = constm1_rtx;
6262 /* Now simplify an arm if we know the value of the register in the
6263 branch and it is used in the arm. Be careful due to the potential
6264 of locally-shared RTL. */
6266 if (reg_mentioned_p (from, true_rtx))
6267 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6268 from, true_val),
6269 pc_rtx, pc_rtx, 0, 0, 0);
6270 if (reg_mentioned_p (from, false_rtx))
6271 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6272 from, false_val),
6273 pc_rtx, pc_rtx, 0, 0, 0);
6275 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6276 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6278 true_rtx = XEXP (x, 1);
6279 false_rtx = XEXP (x, 2);
6280 true_code = GET_CODE (cond);
6283 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6284 reversed, do so to avoid needing two sets of patterns for
6285 subtract-and-branch insns. Similarly if we have a constant in the true
6286 arm, the false arm is the same as the first operand of the comparison, or
6287 the false arm is more complicated than the true arm. */
6289 if (comparison_p
6290 && reversed_comparison_code (cond, NULL) != UNKNOWN
6291 && (true_rtx == pc_rtx
6292 || (CONSTANT_P (true_rtx)
6293 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6294 || true_rtx == const0_rtx
6295 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6296 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6297 && !OBJECT_P (false_rtx))
6298 || reg_mentioned_p (true_rtx, false_rtx)
6299 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6301 true_code = reversed_comparison_code (cond, NULL);
6302 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6303 SUBST (XEXP (x, 1), false_rtx);
6304 SUBST (XEXP (x, 2), true_rtx);
6306 std::swap (true_rtx, false_rtx);
6307 cond = XEXP (x, 0);
6309 /* It is possible that the conditional has been simplified out. */
6310 true_code = GET_CODE (cond);
6311 comparison_p = COMPARISON_P (cond);
6314 /* If the two arms are identical, we don't need the comparison. */
6316 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6317 return true_rtx;
6319 /* Convert a == b ? b : a to "a". */
6320 if (true_code == EQ && ! side_effects_p (cond)
6321 && !HONOR_NANS (mode)
6322 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6323 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6324 return false_rtx;
6325 else if (true_code == NE && ! side_effects_p (cond)
6326 && !HONOR_NANS (mode)
6327 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6328 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6329 return true_rtx;
6331 /* Look for cases where we have (abs x) or (neg (abs X)). */
6333 if (GET_MODE_CLASS (mode) == MODE_INT
6334 && comparison_p
6335 && XEXP (cond, 1) == const0_rtx
6336 && GET_CODE (false_rtx) == NEG
6337 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6338 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6339 && ! side_effects_p (true_rtx))
6340 switch (true_code)
6342 case GT:
6343 case GE:
6344 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6345 case LT:
6346 case LE:
6347 return
6348 simplify_gen_unary (NEG, mode,
6349 simplify_gen_unary (ABS, mode, true_rtx, mode),
6350 mode);
6351 default:
6352 break;
6355 /* Look for MIN or MAX. */
6357 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6358 && comparison_p
6359 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6360 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6361 && ! side_effects_p (cond))
6362 switch (true_code)
6364 case GE:
6365 case GT:
6366 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6367 case LE:
6368 case LT:
6369 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6370 case GEU:
6371 case GTU:
6372 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6373 case LEU:
6374 case LTU:
6375 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6376 default:
6377 break;
6380 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6381 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6382 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6383 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6384 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6385 neither 1 or -1, but it isn't worth checking for. */
6387 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6388 && comparison_p
6389 && GET_MODE_CLASS (mode) == MODE_INT
6390 && ! side_effects_p (x))
6392 rtx t = make_compound_operation (true_rtx, SET);
6393 rtx f = make_compound_operation (false_rtx, SET);
6394 rtx cond_op0 = XEXP (cond, 0);
6395 rtx cond_op1 = XEXP (cond, 1);
6396 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6397 machine_mode m = mode;
6398 rtx z = 0, c1 = NULL_RTX;
6400 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6401 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6402 || GET_CODE (t) == ASHIFT
6403 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6404 && rtx_equal_p (XEXP (t, 0), f))
6405 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6407 /* If an identity-zero op is commutative, check whether there
6408 would be a match if we swapped the operands. */
6409 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6410 || GET_CODE (t) == XOR)
6411 && rtx_equal_p (XEXP (t, 1), f))
6412 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6413 else if (GET_CODE (t) == SIGN_EXTEND
6414 && (GET_CODE (XEXP (t, 0)) == PLUS
6415 || GET_CODE (XEXP (t, 0)) == MINUS
6416 || GET_CODE (XEXP (t, 0)) == IOR
6417 || GET_CODE (XEXP (t, 0)) == XOR
6418 || GET_CODE (XEXP (t, 0)) == ASHIFT
6419 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6420 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6421 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6422 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6423 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6424 && (num_sign_bit_copies (f, GET_MODE (f))
6425 > (unsigned int)
6426 (GET_MODE_PRECISION (mode)
6427 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6429 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6430 extend_op = SIGN_EXTEND;
6431 m = GET_MODE (XEXP (t, 0));
6433 else if (GET_CODE (t) == SIGN_EXTEND
6434 && (GET_CODE (XEXP (t, 0)) == PLUS
6435 || GET_CODE (XEXP (t, 0)) == IOR
6436 || GET_CODE (XEXP (t, 0)) == XOR)
6437 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6438 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6439 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6440 && (num_sign_bit_copies (f, GET_MODE (f))
6441 > (unsigned int)
6442 (GET_MODE_PRECISION (mode)
6443 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6445 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6446 extend_op = SIGN_EXTEND;
6447 m = GET_MODE (XEXP (t, 0));
6449 else if (GET_CODE (t) == ZERO_EXTEND
6450 && (GET_CODE (XEXP (t, 0)) == PLUS
6451 || GET_CODE (XEXP (t, 0)) == MINUS
6452 || GET_CODE (XEXP (t, 0)) == IOR
6453 || GET_CODE (XEXP (t, 0)) == XOR
6454 || GET_CODE (XEXP (t, 0)) == ASHIFT
6455 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6456 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6457 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6458 && HWI_COMPUTABLE_MODE_P (mode)
6459 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6460 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6461 && ((nonzero_bits (f, GET_MODE (f))
6462 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6463 == 0))
6465 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6466 extend_op = ZERO_EXTEND;
6467 m = GET_MODE (XEXP (t, 0));
6469 else if (GET_CODE (t) == ZERO_EXTEND
6470 && (GET_CODE (XEXP (t, 0)) == PLUS
6471 || GET_CODE (XEXP (t, 0)) == IOR
6472 || GET_CODE (XEXP (t, 0)) == XOR)
6473 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6474 && HWI_COMPUTABLE_MODE_P (mode)
6475 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6476 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6477 && ((nonzero_bits (f, GET_MODE (f))
6478 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6479 == 0))
6481 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6482 extend_op = ZERO_EXTEND;
6483 m = GET_MODE (XEXP (t, 0));
6486 if (z)
6488 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6489 cond_op0, cond_op1),
6490 pc_rtx, pc_rtx, 0, 0, 0);
6491 temp = simplify_gen_binary (MULT, m, temp,
6492 simplify_gen_binary (MULT, m, c1,
6493 const_true_rtx));
6494 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6495 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6497 if (extend_op != UNKNOWN)
6498 temp = simplify_gen_unary (extend_op, mode, temp, m);
6500 return temp;
6504 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6505 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6506 negation of a single bit, we can convert this operation to a shift. We
6507 can actually do this more generally, but it doesn't seem worth it. */
6509 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6510 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6511 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6512 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6513 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6514 == GET_MODE_PRECISION (mode))
6515 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6516 return
6517 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6518 gen_lowpart (mode, XEXP (cond, 0)), i);
6520 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6521 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6522 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6523 && GET_MODE (XEXP (cond, 0)) == mode
6524 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6525 == nonzero_bits (XEXP (cond, 0), mode)
6526 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6527 return XEXP (cond, 0);
6529 return x;
6532 /* Simplify X, a SET expression. Return the new expression. */
6534 static rtx
6535 simplify_set (rtx x)
6537 rtx src = SET_SRC (x);
6538 rtx dest = SET_DEST (x);
6539 machine_mode mode
6540 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6541 rtx_insn *other_insn;
6542 rtx *cc_use;
6544 /* (set (pc) (return)) gets written as (return). */
6545 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6546 return src;
6548 /* Now that we know for sure which bits of SRC we are using, see if we can
6549 simplify the expression for the object knowing that we only need the
6550 low-order bits. */
6552 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6554 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6555 SUBST (SET_SRC (x), src);
6558 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6559 the comparison result and try to simplify it unless we already have used
6560 undobuf.other_insn. */
6561 if ((GET_MODE_CLASS (mode) == MODE_CC
6562 || GET_CODE (src) == COMPARE
6563 || CC0_P (dest))
6564 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6565 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6566 && COMPARISON_P (*cc_use)
6567 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6569 enum rtx_code old_code = GET_CODE (*cc_use);
6570 enum rtx_code new_code;
6571 rtx op0, op1, tmp;
6572 int other_changed = 0;
6573 rtx inner_compare = NULL_RTX;
6574 machine_mode compare_mode = GET_MODE (dest);
6576 if (GET_CODE (src) == COMPARE)
6578 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6579 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6581 inner_compare = op0;
6582 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6585 else
6586 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6588 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6589 op0, op1);
6590 if (!tmp)
6591 new_code = old_code;
6592 else if (!CONSTANT_P (tmp))
6594 new_code = GET_CODE (tmp);
6595 op0 = XEXP (tmp, 0);
6596 op1 = XEXP (tmp, 1);
6598 else
6600 rtx pat = PATTERN (other_insn);
6601 undobuf.other_insn = other_insn;
6602 SUBST (*cc_use, tmp);
6604 /* Attempt to simplify CC user. */
6605 if (GET_CODE (pat) == SET)
6607 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6608 if (new_rtx != NULL_RTX)
6609 SUBST (SET_SRC (pat), new_rtx);
6612 /* Convert X into a no-op move. */
6613 SUBST (SET_DEST (x), pc_rtx);
6614 SUBST (SET_SRC (x), pc_rtx);
6615 return x;
6618 /* Simplify our comparison, if possible. */
6619 new_code = simplify_comparison (new_code, &op0, &op1);
6621 #ifdef SELECT_CC_MODE
6622 /* If this machine has CC modes other than CCmode, check to see if we
6623 need to use a different CC mode here. */
6624 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6625 compare_mode = GET_MODE (op0);
6626 else if (inner_compare
6627 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6628 && new_code == old_code
6629 && op0 == XEXP (inner_compare, 0)
6630 && op1 == XEXP (inner_compare, 1))
6631 compare_mode = GET_MODE (inner_compare);
6632 else
6633 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6635 /* If the mode changed, we have to change SET_DEST, the mode in the
6636 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6637 a hard register, just build new versions with the proper mode. If it
6638 is a pseudo, we lose unless it is only time we set the pseudo, in
6639 which case we can safely change its mode. */
6640 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6642 if (can_change_dest_mode (dest, 0, compare_mode))
6644 unsigned int regno = REGNO (dest);
6645 rtx new_dest;
6647 if (regno < FIRST_PSEUDO_REGISTER)
6648 new_dest = gen_rtx_REG (compare_mode, regno);
6649 else
6651 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6652 new_dest = regno_reg_rtx[regno];
6655 SUBST (SET_DEST (x), new_dest);
6656 SUBST (XEXP (*cc_use, 0), new_dest);
6657 other_changed = 1;
6659 dest = new_dest;
6662 #endif /* SELECT_CC_MODE */
6664 /* If the code changed, we have to build a new comparison in
6665 undobuf.other_insn. */
6666 if (new_code != old_code)
6668 int other_changed_previously = other_changed;
6669 unsigned HOST_WIDE_INT mask;
6670 rtx old_cc_use = *cc_use;
6672 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6673 dest, const0_rtx));
6674 other_changed = 1;
6676 /* If the only change we made was to change an EQ into an NE or
6677 vice versa, OP0 has only one bit that might be nonzero, and OP1
6678 is zero, check if changing the user of the condition code will
6679 produce a valid insn. If it won't, we can keep the original code
6680 in that insn by surrounding our operation with an XOR. */
6682 if (((old_code == NE && new_code == EQ)
6683 || (old_code == EQ && new_code == NE))
6684 && ! other_changed_previously && op1 == const0_rtx
6685 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6686 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6688 rtx pat = PATTERN (other_insn), note = 0;
6690 if ((recog_for_combine (&pat, other_insn, &note) < 0
6691 && ! check_asm_operands (pat)))
6693 *cc_use = old_cc_use;
6694 other_changed = 0;
6696 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6697 gen_int_mode (mask,
6698 GET_MODE (op0)));
6703 if (other_changed)
6704 undobuf.other_insn = other_insn;
6706 /* Don't generate a compare of a CC with 0, just use that CC. */
6707 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6709 SUBST (SET_SRC (x), op0);
6710 src = SET_SRC (x);
6712 /* Otherwise, if we didn't previously have the same COMPARE we
6713 want, create it from scratch. */
6714 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6715 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6717 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6718 src = SET_SRC (x);
6721 else
6723 /* Get SET_SRC in a form where we have placed back any
6724 compound expressions. Then do the checks below. */
6725 src = make_compound_operation (src, SET);
6726 SUBST (SET_SRC (x), src);
6729 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6730 and X being a REG or (subreg (reg)), we may be able to convert this to
6731 (set (subreg:m2 x) (op)).
6733 We can always do this if M1 is narrower than M2 because that means that
6734 we only care about the low bits of the result.
6736 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6737 perform a narrower operation than requested since the high-order bits will
6738 be undefined. On machine where it is defined, this transformation is safe
6739 as long as M1 and M2 have the same number of words. */
6741 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6742 && !OBJECT_P (SUBREG_REG (src))
6743 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6744 / UNITS_PER_WORD)
6745 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6746 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6747 #ifndef WORD_REGISTER_OPERATIONS
6748 && (GET_MODE_SIZE (GET_MODE (src))
6749 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6750 #endif
6751 #ifdef CANNOT_CHANGE_MODE_CLASS
6752 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6753 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6754 GET_MODE (SUBREG_REG (src)),
6755 GET_MODE (src)))
6756 #endif
6757 && (REG_P (dest)
6758 || (GET_CODE (dest) == SUBREG
6759 && REG_P (SUBREG_REG (dest)))))
6761 SUBST (SET_DEST (x),
6762 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6763 dest));
6764 SUBST (SET_SRC (x), SUBREG_REG (src));
6766 src = SET_SRC (x), dest = SET_DEST (x);
6769 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6770 in SRC. */
6771 if (dest == cc0_rtx
6772 && GET_CODE (src) == SUBREG
6773 && subreg_lowpart_p (src)
6774 && (GET_MODE_PRECISION (GET_MODE (src))
6775 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6777 rtx inner = SUBREG_REG (src);
6778 machine_mode inner_mode = GET_MODE (inner);
6780 /* Here we make sure that we don't have a sign bit on. */
6781 if (val_signbit_known_clear_p (GET_MODE (src),
6782 nonzero_bits (inner, inner_mode)))
6784 SUBST (SET_SRC (x), inner);
6785 src = SET_SRC (x);
6789 #ifdef LOAD_EXTEND_OP
6790 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6791 would require a paradoxical subreg. Replace the subreg with a
6792 zero_extend to avoid the reload that would otherwise be required. */
6794 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6795 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6796 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6797 && SUBREG_BYTE (src) == 0
6798 && paradoxical_subreg_p (src)
6799 && MEM_P (SUBREG_REG (src)))
6801 SUBST (SET_SRC (x),
6802 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6803 GET_MODE (src), SUBREG_REG (src)));
6805 src = SET_SRC (x);
6807 #endif
6809 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6810 are comparing an item known to be 0 or -1 against 0, use a logical
6811 operation instead. Check for one of the arms being an IOR of the other
6812 arm with some value. We compute three terms to be IOR'ed together. In
6813 practice, at most two will be nonzero. Then we do the IOR's. */
6815 if (GET_CODE (dest) != PC
6816 && GET_CODE (src) == IF_THEN_ELSE
6817 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6818 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6819 && XEXP (XEXP (src, 0), 1) == const0_rtx
6820 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6821 && (!HAVE_conditional_move
6822 || ! can_conditionally_move_p (GET_MODE (src)))
6823 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6824 GET_MODE (XEXP (XEXP (src, 0), 0)))
6825 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6826 && ! side_effects_p (src))
6828 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6829 ? XEXP (src, 1) : XEXP (src, 2));
6830 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6831 ? XEXP (src, 2) : XEXP (src, 1));
6832 rtx term1 = const0_rtx, term2, term3;
6834 if (GET_CODE (true_rtx) == IOR
6835 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6836 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6837 else if (GET_CODE (true_rtx) == IOR
6838 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6839 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6840 else if (GET_CODE (false_rtx) == IOR
6841 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6842 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6843 else if (GET_CODE (false_rtx) == IOR
6844 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6845 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6847 term2 = simplify_gen_binary (AND, GET_MODE (src),
6848 XEXP (XEXP (src, 0), 0), true_rtx);
6849 term3 = simplify_gen_binary (AND, GET_MODE (src),
6850 simplify_gen_unary (NOT, GET_MODE (src),
6851 XEXP (XEXP (src, 0), 0),
6852 GET_MODE (src)),
6853 false_rtx);
6855 SUBST (SET_SRC (x),
6856 simplify_gen_binary (IOR, GET_MODE (src),
6857 simplify_gen_binary (IOR, GET_MODE (src),
6858 term1, term2),
6859 term3));
6861 src = SET_SRC (x);
6864 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6865 whole thing fail. */
6866 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6867 return src;
6868 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6869 return dest;
6870 else
6871 /* Convert this into a field assignment operation, if possible. */
6872 return make_field_assignment (x);
6875 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6876 result. */
6878 static rtx
6879 simplify_logical (rtx x)
6881 machine_mode mode = GET_MODE (x);
6882 rtx op0 = XEXP (x, 0);
6883 rtx op1 = XEXP (x, 1);
6885 switch (GET_CODE (x))
6887 case AND:
6888 /* We can call simplify_and_const_int only if we don't lose
6889 any (sign) bits when converting INTVAL (op1) to
6890 "unsigned HOST_WIDE_INT". */
6891 if (CONST_INT_P (op1)
6892 && (HWI_COMPUTABLE_MODE_P (mode)
6893 || INTVAL (op1) > 0))
6895 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6896 if (GET_CODE (x) != AND)
6897 return x;
6899 op0 = XEXP (x, 0);
6900 op1 = XEXP (x, 1);
6903 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6904 apply the distributive law and then the inverse distributive
6905 law to see if things simplify. */
6906 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6908 rtx result = distribute_and_simplify_rtx (x, 0);
6909 if (result)
6910 return result;
6912 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6914 rtx result = distribute_and_simplify_rtx (x, 1);
6915 if (result)
6916 return result;
6918 break;
6920 case IOR:
6921 /* If we have (ior (and A B) C), apply the distributive law and then
6922 the inverse distributive law to see if things simplify. */
6924 if (GET_CODE (op0) == AND)
6926 rtx result = distribute_and_simplify_rtx (x, 0);
6927 if (result)
6928 return result;
6931 if (GET_CODE (op1) == AND)
6933 rtx result = distribute_and_simplify_rtx (x, 1);
6934 if (result)
6935 return result;
6937 break;
6939 default:
6940 gcc_unreachable ();
6943 return x;
6946 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6947 operations" because they can be replaced with two more basic operations.
6948 ZERO_EXTEND is also considered "compound" because it can be replaced with
6949 an AND operation, which is simpler, though only one operation.
6951 The function expand_compound_operation is called with an rtx expression
6952 and will convert it to the appropriate shifts and AND operations,
6953 simplifying at each stage.
6955 The function make_compound_operation is called to convert an expression
6956 consisting of shifts and ANDs into the equivalent compound expression.
6957 It is the inverse of this function, loosely speaking. */
6959 static rtx
6960 expand_compound_operation (rtx x)
6962 unsigned HOST_WIDE_INT pos = 0, len;
6963 int unsignedp = 0;
6964 unsigned int modewidth;
6965 rtx tem;
6967 switch (GET_CODE (x))
6969 case ZERO_EXTEND:
6970 unsignedp = 1;
6971 case SIGN_EXTEND:
6972 /* We can't necessarily use a const_int for a multiword mode;
6973 it depends on implicitly extending the value.
6974 Since we don't know the right way to extend it,
6975 we can't tell whether the implicit way is right.
6977 Even for a mode that is no wider than a const_int,
6978 we can't win, because we need to sign extend one of its bits through
6979 the rest of it, and we don't know which bit. */
6980 if (CONST_INT_P (XEXP (x, 0)))
6981 return x;
6983 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6984 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6985 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6986 reloaded. If not for that, MEM's would very rarely be safe.
6988 Reject MODEs bigger than a word, because we might not be able
6989 to reference a two-register group starting with an arbitrary register
6990 (and currently gen_lowpart might crash for a SUBREG). */
6992 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6993 return x;
6995 /* Reject MODEs that aren't scalar integers because turning vector
6996 or complex modes into shifts causes problems. */
6998 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6999 return x;
7001 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7002 /* If the inner object has VOIDmode (the only way this can happen
7003 is if it is an ASM_OPERANDS), we can't do anything since we don't
7004 know how much masking to do. */
7005 if (len == 0)
7006 return x;
7008 break;
7010 case ZERO_EXTRACT:
7011 unsignedp = 1;
7013 /* ... fall through ... */
7015 case SIGN_EXTRACT:
7016 /* If the operand is a CLOBBER, just return it. */
7017 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7018 return XEXP (x, 0);
7020 if (!CONST_INT_P (XEXP (x, 1))
7021 || !CONST_INT_P (XEXP (x, 2))
7022 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7023 return x;
7025 /* Reject MODEs that aren't scalar integers because turning vector
7026 or complex modes into shifts causes problems. */
7028 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7029 return x;
7031 len = INTVAL (XEXP (x, 1));
7032 pos = INTVAL (XEXP (x, 2));
7034 /* This should stay within the object being extracted, fail otherwise. */
7035 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7036 return x;
7038 if (BITS_BIG_ENDIAN)
7039 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7041 break;
7043 default:
7044 return x;
7046 /* Convert sign extension to zero extension, if we know that the high
7047 bit is not set, as this is easier to optimize. It will be converted
7048 back to cheaper alternative in make_extraction. */
7049 if (GET_CODE (x) == SIGN_EXTEND
7050 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7051 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7052 & ~(((unsigned HOST_WIDE_INT)
7053 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7054 >> 1))
7055 == 0)))
7057 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7058 rtx temp2 = expand_compound_operation (temp);
7060 /* Make sure this is a profitable operation. */
7061 if (set_src_cost (x, optimize_this_for_speed_p)
7062 > set_src_cost (temp2, optimize_this_for_speed_p))
7063 return temp2;
7064 else if (set_src_cost (x, optimize_this_for_speed_p)
7065 > set_src_cost (temp, optimize_this_for_speed_p))
7066 return temp;
7067 else
7068 return x;
7071 /* We can optimize some special cases of ZERO_EXTEND. */
7072 if (GET_CODE (x) == ZERO_EXTEND)
7074 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7075 know that the last value didn't have any inappropriate bits
7076 set. */
7077 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7078 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7079 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7080 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7081 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7082 return XEXP (XEXP (x, 0), 0);
7084 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7085 if (GET_CODE (XEXP (x, 0)) == SUBREG
7086 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7087 && subreg_lowpart_p (XEXP (x, 0))
7088 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7089 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7090 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7091 return SUBREG_REG (XEXP (x, 0));
7093 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7094 is a comparison and STORE_FLAG_VALUE permits. This is like
7095 the first case, but it works even when GET_MODE (x) is larger
7096 than HOST_WIDE_INT. */
7097 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7098 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7099 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7100 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7101 <= HOST_BITS_PER_WIDE_INT)
7102 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7103 return XEXP (XEXP (x, 0), 0);
7105 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7106 if (GET_CODE (XEXP (x, 0)) == SUBREG
7107 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7108 && subreg_lowpart_p (XEXP (x, 0))
7109 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7110 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7111 <= HOST_BITS_PER_WIDE_INT)
7112 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7113 return SUBREG_REG (XEXP (x, 0));
7117 /* If we reach here, we want to return a pair of shifts. The inner
7118 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7119 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7120 logical depending on the value of UNSIGNEDP.
7122 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7123 converted into an AND of a shift.
7125 We must check for the case where the left shift would have a negative
7126 count. This can happen in a case like (x >> 31) & 255 on machines
7127 that can't shift by a constant. On those machines, we would first
7128 combine the shift with the AND to produce a variable-position
7129 extraction. Then the constant of 31 would be substituted in
7130 to produce such a position. */
7132 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7133 if (modewidth >= pos + len)
7135 machine_mode mode = GET_MODE (x);
7136 tem = gen_lowpart (mode, XEXP (x, 0));
7137 if (!tem || GET_CODE (tem) == CLOBBER)
7138 return x;
7139 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7140 tem, modewidth - pos - len);
7141 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7142 mode, tem, modewidth - len);
7144 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7145 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7146 simplify_shift_const (NULL_RTX, LSHIFTRT,
7147 GET_MODE (x),
7148 XEXP (x, 0), pos),
7149 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7150 else
7151 /* Any other cases we can't handle. */
7152 return x;
7154 /* If we couldn't do this for some reason, return the original
7155 expression. */
7156 if (GET_CODE (tem) == CLOBBER)
7157 return x;
7159 return tem;
7162 /* X is a SET which contains an assignment of one object into
7163 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7164 or certain SUBREGS). If possible, convert it into a series of
7165 logical operations.
7167 We half-heartedly support variable positions, but do not at all
7168 support variable lengths. */
7170 static const_rtx
7171 expand_field_assignment (const_rtx x)
7173 rtx inner;
7174 rtx pos; /* Always counts from low bit. */
7175 int len;
7176 rtx mask, cleared, masked;
7177 machine_mode compute_mode;
7179 /* Loop until we find something we can't simplify. */
7180 while (1)
7182 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7183 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7185 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7186 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7187 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7189 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7190 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7192 inner = XEXP (SET_DEST (x), 0);
7193 len = INTVAL (XEXP (SET_DEST (x), 1));
7194 pos = XEXP (SET_DEST (x), 2);
7196 /* A constant position should stay within the width of INNER. */
7197 if (CONST_INT_P (pos)
7198 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7199 break;
7201 if (BITS_BIG_ENDIAN)
7203 if (CONST_INT_P (pos))
7204 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7205 - INTVAL (pos));
7206 else if (GET_CODE (pos) == MINUS
7207 && CONST_INT_P (XEXP (pos, 1))
7208 && (INTVAL (XEXP (pos, 1))
7209 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7210 /* If position is ADJUST - X, new position is X. */
7211 pos = XEXP (pos, 0);
7212 else
7214 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7215 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7216 gen_int_mode (prec - len,
7217 GET_MODE (pos)),
7218 pos);
7223 /* A SUBREG between two modes that occupy the same numbers of words
7224 can be done by moving the SUBREG to the source. */
7225 else if (GET_CODE (SET_DEST (x)) == SUBREG
7226 /* We need SUBREGs to compute nonzero_bits properly. */
7227 && nonzero_sign_valid
7228 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7229 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7230 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7231 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7233 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7234 gen_lowpart
7235 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7236 SET_SRC (x)));
7237 continue;
7239 else
7240 break;
7242 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7243 inner = SUBREG_REG (inner);
7245 compute_mode = GET_MODE (inner);
7247 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7248 if (! SCALAR_INT_MODE_P (compute_mode))
7250 machine_mode imode;
7252 /* Don't do anything for vector or complex integral types. */
7253 if (! FLOAT_MODE_P (compute_mode))
7254 break;
7256 /* Try to find an integral mode to pun with. */
7257 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7258 if (imode == BLKmode)
7259 break;
7261 compute_mode = imode;
7262 inner = gen_lowpart (imode, inner);
7265 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7266 if (len >= HOST_BITS_PER_WIDE_INT)
7267 break;
7269 /* Now compute the equivalent expression. Make a copy of INNER
7270 for the SET_DEST in case it is a MEM into which we will substitute;
7271 we don't want shared RTL in that case. */
7272 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7273 compute_mode);
7274 cleared = simplify_gen_binary (AND, compute_mode,
7275 simplify_gen_unary (NOT, compute_mode,
7276 simplify_gen_binary (ASHIFT,
7277 compute_mode,
7278 mask, pos),
7279 compute_mode),
7280 inner);
7281 masked = simplify_gen_binary (ASHIFT, compute_mode,
7282 simplify_gen_binary (
7283 AND, compute_mode,
7284 gen_lowpart (compute_mode, SET_SRC (x)),
7285 mask),
7286 pos);
7288 x = gen_rtx_SET (copy_rtx (inner),
7289 simplify_gen_binary (IOR, compute_mode,
7290 cleared, masked));
7293 return x;
7296 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7297 it is an RTX that represents the (variable) starting position; otherwise,
7298 POS is the (constant) starting bit position. Both are counted from the LSB.
7300 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7302 IN_DEST is nonzero if this is a reference in the destination of a SET.
7303 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7304 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7305 be used.
7307 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7308 ZERO_EXTRACT should be built even for bits starting at bit 0.
7310 MODE is the desired mode of the result (if IN_DEST == 0).
7312 The result is an RTX for the extraction or NULL_RTX if the target
7313 can't handle it. */
7315 static rtx
7316 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7317 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7318 int in_dest, int in_compare)
7320 /* This mode describes the size of the storage area
7321 to fetch the overall value from. Within that, we
7322 ignore the POS lowest bits, etc. */
7323 machine_mode is_mode = GET_MODE (inner);
7324 machine_mode inner_mode;
7325 machine_mode wanted_inner_mode;
7326 machine_mode wanted_inner_reg_mode = word_mode;
7327 machine_mode pos_mode = word_mode;
7328 machine_mode extraction_mode = word_mode;
7329 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7330 rtx new_rtx = 0;
7331 rtx orig_pos_rtx = pos_rtx;
7332 HOST_WIDE_INT orig_pos;
7334 if (pos_rtx && CONST_INT_P (pos_rtx))
7335 pos = INTVAL (pos_rtx), pos_rtx = 0;
7337 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7339 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7340 consider just the QI as the memory to extract from.
7341 The subreg adds or removes high bits; its mode is
7342 irrelevant to the meaning of this extraction,
7343 since POS and LEN count from the lsb. */
7344 if (MEM_P (SUBREG_REG (inner)))
7345 is_mode = GET_MODE (SUBREG_REG (inner));
7346 inner = SUBREG_REG (inner);
7348 else if (GET_CODE (inner) == ASHIFT
7349 && CONST_INT_P (XEXP (inner, 1))
7350 && pos_rtx == 0 && pos == 0
7351 && len > UINTVAL (XEXP (inner, 1)))
7353 /* We're extracting the least significant bits of an rtx
7354 (ashift X (const_int C)), where LEN > C. Extract the
7355 least significant (LEN - C) bits of X, giving an rtx
7356 whose mode is MODE, then shift it left C times. */
7357 new_rtx = make_extraction (mode, XEXP (inner, 0),
7358 0, 0, len - INTVAL (XEXP (inner, 1)),
7359 unsignedp, in_dest, in_compare);
7360 if (new_rtx != 0)
7361 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7363 else if (GET_CODE (inner) == TRUNCATE)
7364 inner = XEXP (inner, 0);
7366 inner_mode = GET_MODE (inner);
7368 /* See if this can be done without an extraction. We never can if the
7369 width of the field is not the same as that of some integer mode. For
7370 registers, we can only avoid the extraction if the position is at the
7371 low-order bit and this is either not in the destination or we have the
7372 appropriate STRICT_LOW_PART operation available.
7374 For MEM, we can avoid an extract if the field starts on an appropriate
7375 boundary and we can change the mode of the memory reference. */
7377 if (tmode != BLKmode
7378 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7379 && !MEM_P (inner)
7380 && (inner_mode == tmode
7381 || !REG_P (inner)
7382 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7383 || reg_truncated_to_mode (tmode, inner))
7384 && (! in_dest
7385 || (REG_P (inner)
7386 && have_insn_for (STRICT_LOW_PART, tmode))))
7387 || (MEM_P (inner) && pos_rtx == 0
7388 && (pos
7389 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7390 : BITS_PER_UNIT)) == 0
7391 /* We can't do this if we are widening INNER_MODE (it
7392 may not be aligned, for one thing). */
7393 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7394 && (inner_mode == tmode
7395 || (! mode_dependent_address_p (XEXP (inner, 0),
7396 MEM_ADDR_SPACE (inner))
7397 && ! MEM_VOLATILE_P (inner))))))
7399 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7400 field. If the original and current mode are the same, we need not
7401 adjust the offset. Otherwise, we do if bytes big endian.
7403 If INNER is not a MEM, get a piece consisting of just the field
7404 of interest (in this case POS % BITS_PER_WORD must be 0). */
7406 if (MEM_P (inner))
7408 HOST_WIDE_INT offset;
7410 /* POS counts from lsb, but make OFFSET count in memory order. */
7411 if (BYTES_BIG_ENDIAN)
7412 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7413 else
7414 offset = pos / BITS_PER_UNIT;
7416 new_rtx = adjust_address_nv (inner, tmode, offset);
7418 else if (REG_P (inner))
7420 if (tmode != inner_mode)
7422 /* We can't call gen_lowpart in a DEST since we
7423 always want a SUBREG (see below) and it would sometimes
7424 return a new hard register. */
7425 if (pos || in_dest)
7427 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7429 if (WORDS_BIG_ENDIAN
7430 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7431 final_word = ((GET_MODE_SIZE (inner_mode)
7432 - GET_MODE_SIZE (tmode))
7433 / UNITS_PER_WORD) - final_word;
7435 final_word *= UNITS_PER_WORD;
7436 if (BYTES_BIG_ENDIAN &&
7437 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7438 final_word += (GET_MODE_SIZE (inner_mode)
7439 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7441 /* Avoid creating invalid subregs, for example when
7442 simplifying (x>>32)&255. */
7443 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7444 return NULL_RTX;
7446 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7448 else
7449 new_rtx = gen_lowpart (tmode, inner);
7451 else
7452 new_rtx = inner;
7454 else
7455 new_rtx = force_to_mode (inner, tmode,
7456 len >= HOST_BITS_PER_WIDE_INT
7457 ? ~(unsigned HOST_WIDE_INT) 0
7458 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7461 /* If this extraction is going into the destination of a SET,
7462 make a STRICT_LOW_PART unless we made a MEM. */
7464 if (in_dest)
7465 return (MEM_P (new_rtx) ? new_rtx
7466 : (GET_CODE (new_rtx) != SUBREG
7467 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7468 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7470 if (mode == tmode)
7471 return new_rtx;
7473 if (CONST_SCALAR_INT_P (new_rtx))
7474 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7475 mode, new_rtx, tmode);
7477 /* If we know that no extraneous bits are set, and that the high
7478 bit is not set, convert the extraction to the cheaper of
7479 sign and zero extension, that are equivalent in these cases. */
7480 if (flag_expensive_optimizations
7481 && (HWI_COMPUTABLE_MODE_P (tmode)
7482 && ((nonzero_bits (new_rtx, tmode)
7483 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7484 == 0)))
7486 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7487 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7489 /* Prefer ZERO_EXTENSION, since it gives more information to
7490 backends. */
7491 if (set_src_cost (temp, optimize_this_for_speed_p)
7492 <= set_src_cost (temp1, optimize_this_for_speed_p))
7493 return temp;
7494 return temp1;
7497 /* Otherwise, sign- or zero-extend unless we already are in the
7498 proper mode. */
7500 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7501 mode, new_rtx));
7504 /* Unless this is a COMPARE or we have a funny memory reference,
7505 don't do anything with zero-extending field extracts starting at
7506 the low-order bit since they are simple AND operations. */
7507 if (pos_rtx == 0 && pos == 0 && ! in_dest
7508 && ! in_compare && unsignedp)
7509 return 0;
7511 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7512 if the position is not a constant and the length is not 1. In all
7513 other cases, we would only be going outside our object in cases when
7514 an original shift would have been undefined. */
7515 if (MEM_P (inner)
7516 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7517 || (pos_rtx != 0 && len != 1)))
7518 return 0;
7520 enum extraction_pattern pattern = (in_dest ? EP_insv
7521 : unsignedp ? EP_extzv : EP_extv);
7523 /* If INNER is not from memory, we want it to have the mode of a register
7524 extraction pattern's structure operand, or word_mode if there is no
7525 such pattern. The same applies to extraction_mode and pos_mode
7526 and their respective operands.
7528 For memory, assume that the desired extraction_mode and pos_mode
7529 are the same as for a register operation, since at present we don't
7530 have named patterns for aligned memory structures. */
7531 struct extraction_insn insn;
7532 if (get_best_reg_extraction_insn (&insn, pattern,
7533 GET_MODE_BITSIZE (inner_mode), mode))
7535 wanted_inner_reg_mode = insn.struct_mode;
7536 pos_mode = insn.pos_mode;
7537 extraction_mode = insn.field_mode;
7540 /* Never narrow an object, since that might not be safe. */
7542 if (mode != VOIDmode
7543 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7544 extraction_mode = mode;
7546 if (!MEM_P (inner))
7547 wanted_inner_mode = wanted_inner_reg_mode;
7548 else
7550 /* Be careful not to go beyond the extracted object and maintain the
7551 natural alignment of the memory. */
7552 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7553 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7554 > GET_MODE_BITSIZE (wanted_inner_mode))
7556 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7557 gcc_assert (wanted_inner_mode != VOIDmode);
7561 orig_pos = pos;
7563 if (BITS_BIG_ENDIAN)
7565 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7566 BITS_BIG_ENDIAN style. If position is constant, compute new
7567 position. Otherwise, build subtraction.
7568 Note that POS is relative to the mode of the original argument.
7569 If it's a MEM we need to recompute POS relative to that.
7570 However, if we're extracting from (or inserting into) a register,
7571 we want to recompute POS relative to wanted_inner_mode. */
7572 int width = (MEM_P (inner)
7573 ? GET_MODE_BITSIZE (is_mode)
7574 : GET_MODE_BITSIZE (wanted_inner_mode));
7576 if (pos_rtx == 0)
7577 pos = width - len - pos;
7578 else
7579 pos_rtx
7580 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7581 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7582 pos_rtx);
7583 /* POS may be less than 0 now, but we check for that below.
7584 Note that it can only be less than 0 if !MEM_P (inner). */
7587 /* If INNER has a wider mode, and this is a constant extraction, try to
7588 make it smaller and adjust the byte to point to the byte containing
7589 the value. */
7590 if (wanted_inner_mode != VOIDmode
7591 && inner_mode != wanted_inner_mode
7592 && ! pos_rtx
7593 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7594 && MEM_P (inner)
7595 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7596 && ! MEM_VOLATILE_P (inner))
7598 int offset = 0;
7600 /* The computations below will be correct if the machine is big
7601 endian in both bits and bytes or little endian in bits and bytes.
7602 If it is mixed, we must adjust. */
7604 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7605 adjust OFFSET to compensate. */
7606 if (BYTES_BIG_ENDIAN
7607 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7608 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7610 /* We can now move to the desired byte. */
7611 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7612 * GET_MODE_SIZE (wanted_inner_mode);
7613 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7615 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7616 && is_mode != wanted_inner_mode)
7617 offset = (GET_MODE_SIZE (is_mode)
7618 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7620 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7623 /* If INNER is not memory, get it into the proper mode. If we are changing
7624 its mode, POS must be a constant and smaller than the size of the new
7625 mode. */
7626 else if (!MEM_P (inner))
7628 /* On the LHS, don't create paradoxical subregs implicitely truncating
7629 the register unless TRULY_NOOP_TRUNCATION. */
7630 if (in_dest
7631 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7632 wanted_inner_mode))
7633 return NULL_RTX;
7635 if (GET_MODE (inner) != wanted_inner_mode
7636 && (pos_rtx != 0
7637 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7638 return NULL_RTX;
7640 if (orig_pos < 0)
7641 return NULL_RTX;
7643 inner = force_to_mode (inner, wanted_inner_mode,
7644 pos_rtx
7645 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7646 ? ~(unsigned HOST_WIDE_INT) 0
7647 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7648 << orig_pos),
7652 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7653 have to zero extend. Otherwise, we can just use a SUBREG. */
7654 if (pos_rtx != 0
7655 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7657 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7658 GET_MODE (pos_rtx));
7660 /* If we know that no extraneous bits are set, and that the high
7661 bit is not set, convert extraction to cheaper one - either
7662 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7663 cases. */
7664 if (flag_expensive_optimizations
7665 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7666 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7667 & ~(((unsigned HOST_WIDE_INT)
7668 GET_MODE_MASK (GET_MODE (pos_rtx)))
7669 >> 1))
7670 == 0)))
7672 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7673 GET_MODE (pos_rtx));
7675 /* Prefer ZERO_EXTENSION, since it gives more information to
7676 backends. */
7677 if (set_src_cost (temp1, optimize_this_for_speed_p)
7678 < set_src_cost (temp, optimize_this_for_speed_p))
7679 temp = temp1;
7681 pos_rtx = temp;
7684 /* Make POS_RTX unless we already have it and it is correct. If we don't
7685 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7686 be a CONST_INT. */
7687 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7688 pos_rtx = orig_pos_rtx;
7690 else if (pos_rtx == 0)
7691 pos_rtx = GEN_INT (pos);
7693 /* Make the required operation. See if we can use existing rtx. */
7694 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7695 extraction_mode, inner, GEN_INT (len), pos_rtx);
7696 if (! in_dest)
7697 new_rtx = gen_lowpart (mode, new_rtx);
7699 return new_rtx;
7702 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7703 with any other operations in X. Return X without that shift if so. */
7705 static rtx
7706 extract_left_shift (rtx x, int count)
7708 enum rtx_code code = GET_CODE (x);
7709 machine_mode mode = GET_MODE (x);
7710 rtx tem;
7712 switch (code)
7714 case ASHIFT:
7715 /* This is the shift itself. If it is wide enough, we will return
7716 either the value being shifted if the shift count is equal to
7717 COUNT or a shift for the difference. */
7718 if (CONST_INT_P (XEXP (x, 1))
7719 && INTVAL (XEXP (x, 1)) >= count)
7720 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7721 INTVAL (XEXP (x, 1)) - count);
7722 break;
7724 case NEG: case NOT:
7725 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7726 return simplify_gen_unary (code, mode, tem, mode);
7728 break;
7730 case PLUS: case IOR: case XOR: case AND:
7731 /* If we can safely shift this constant and we find the inner shift,
7732 make a new operation. */
7733 if (CONST_INT_P (XEXP (x, 1))
7734 && (UINTVAL (XEXP (x, 1))
7735 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7736 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7738 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7739 return simplify_gen_binary (code, mode, tem,
7740 gen_int_mode (val, mode));
7742 break;
7744 default:
7745 break;
7748 return 0;
7751 /* Look at the expression rooted at X. Look for expressions
7752 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7753 Form these expressions.
7755 Return the new rtx, usually just X.
7757 Also, for machines like the VAX that don't have logical shift insns,
7758 try to convert logical to arithmetic shift operations in cases where
7759 they are equivalent. This undoes the canonicalizations to logical
7760 shifts done elsewhere.
7762 We try, as much as possible, to re-use rtl expressions to save memory.
7764 IN_CODE says what kind of expression we are processing. Normally, it is
7765 SET. In a memory address it is MEM. When processing the arguments of
7766 a comparison or a COMPARE against zero, it is COMPARE. */
7769 make_compound_operation (rtx x, enum rtx_code in_code)
7771 enum rtx_code code = GET_CODE (x);
7772 machine_mode mode = GET_MODE (x);
7773 int mode_width = GET_MODE_PRECISION (mode);
7774 rtx rhs, lhs;
7775 enum rtx_code next_code;
7776 int i, j;
7777 rtx new_rtx = 0;
7778 rtx tem;
7779 const char *fmt;
7781 /* Select the code to be used in recursive calls. Once we are inside an
7782 address, we stay there. If we have a comparison, set to COMPARE,
7783 but once inside, go back to our default of SET. */
7785 next_code = (code == MEM ? MEM
7786 : ((code == COMPARE || COMPARISON_P (x))
7787 && XEXP (x, 1) == const0_rtx) ? COMPARE
7788 : in_code == COMPARE ? SET : in_code);
7790 /* Process depending on the code of this operation. If NEW is set
7791 nonzero, it will be returned. */
7793 switch (code)
7795 case ASHIFT:
7796 /* Convert shifts by constants into multiplications if inside
7797 an address. */
7798 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7799 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7800 && INTVAL (XEXP (x, 1)) >= 0
7801 && SCALAR_INT_MODE_P (mode))
7803 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7804 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7806 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7807 if (GET_CODE (new_rtx) == NEG)
7809 new_rtx = XEXP (new_rtx, 0);
7810 multval = -multval;
7812 multval = trunc_int_for_mode (multval, mode);
7813 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7815 break;
7817 case PLUS:
7818 lhs = XEXP (x, 0);
7819 rhs = XEXP (x, 1);
7820 lhs = make_compound_operation (lhs, next_code);
7821 rhs = make_compound_operation (rhs, next_code);
7822 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7823 && SCALAR_INT_MODE_P (mode))
7825 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7826 XEXP (lhs, 1));
7827 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7829 else if (GET_CODE (lhs) == MULT
7830 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7832 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7833 simplify_gen_unary (NEG, mode,
7834 XEXP (lhs, 1),
7835 mode));
7836 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7838 else
7840 SUBST (XEXP (x, 0), lhs);
7841 SUBST (XEXP (x, 1), rhs);
7842 goto maybe_swap;
7844 x = gen_lowpart (mode, new_rtx);
7845 goto maybe_swap;
7847 case MINUS:
7848 lhs = XEXP (x, 0);
7849 rhs = XEXP (x, 1);
7850 lhs = make_compound_operation (lhs, next_code);
7851 rhs = make_compound_operation (rhs, next_code);
7852 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7853 && SCALAR_INT_MODE_P (mode))
7855 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7856 XEXP (rhs, 1));
7857 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7859 else if (GET_CODE (rhs) == MULT
7860 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7862 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7863 simplify_gen_unary (NEG, mode,
7864 XEXP (rhs, 1),
7865 mode));
7866 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7868 else
7870 SUBST (XEXP (x, 0), lhs);
7871 SUBST (XEXP (x, 1), rhs);
7872 return x;
7874 return gen_lowpart (mode, new_rtx);
7876 case AND:
7877 /* If the second operand is not a constant, we can't do anything
7878 with it. */
7879 if (!CONST_INT_P (XEXP (x, 1)))
7880 break;
7882 /* If the constant is a power of two minus one and the first operand
7883 is a logical right shift, make an extraction. */
7884 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7885 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7887 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7888 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7889 0, in_code == COMPARE);
7892 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7893 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7894 && subreg_lowpart_p (XEXP (x, 0))
7895 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7896 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7898 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7899 next_code);
7900 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7901 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7902 0, in_code == COMPARE);
7904 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7905 else if ((GET_CODE (XEXP (x, 0)) == XOR
7906 || GET_CODE (XEXP (x, 0)) == IOR)
7907 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7908 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7909 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7911 /* Apply the distributive law, and then try to make extractions. */
7912 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7913 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7914 XEXP (x, 1)),
7915 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7916 XEXP (x, 1)));
7917 new_rtx = make_compound_operation (new_rtx, in_code);
7920 /* If we are have (and (rotate X C) M) and C is larger than the number
7921 of bits in M, this is an extraction. */
7923 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7924 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7925 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7926 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7928 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7929 new_rtx = make_extraction (mode, new_rtx,
7930 (GET_MODE_PRECISION (mode)
7931 - INTVAL (XEXP (XEXP (x, 0), 1))),
7932 NULL_RTX, i, 1, 0, in_code == COMPARE);
7935 /* On machines without logical shifts, if the operand of the AND is
7936 a logical shift and our mask turns off all the propagated sign
7937 bits, we can replace the logical shift with an arithmetic shift. */
7938 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7939 && !have_insn_for (LSHIFTRT, mode)
7940 && have_insn_for (ASHIFTRT, mode)
7941 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7942 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7943 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7944 && mode_width <= HOST_BITS_PER_WIDE_INT)
7946 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7948 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7949 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7950 SUBST (XEXP (x, 0),
7951 gen_rtx_ASHIFTRT (mode,
7952 make_compound_operation
7953 (XEXP (XEXP (x, 0), 0), next_code),
7954 XEXP (XEXP (x, 0), 1)));
7957 /* If the constant is one less than a power of two, this might be
7958 representable by an extraction even if no shift is present.
7959 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7960 we are in a COMPARE. */
7961 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7962 new_rtx = make_extraction (mode,
7963 make_compound_operation (XEXP (x, 0),
7964 next_code),
7965 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7967 /* If we are in a comparison and this is an AND with a power of two,
7968 convert this into the appropriate bit extract. */
7969 else if (in_code == COMPARE
7970 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7971 new_rtx = make_extraction (mode,
7972 make_compound_operation (XEXP (x, 0),
7973 next_code),
7974 i, NULL_RTX, 1, 1, 0, 1);
7976 break;
7978 case LSHIFTRT:
7979 /* If the sign bit is known to be zero, replace this with an
7980 arithmetic shift. */
7981 if (have_insn_for (ASHIFTRT, mode)
7982 && ! have_insn_for (LSHIFTRT, mode)
7983 && mode_width <= HOST_BITS_PER_WIDE_INT
7984 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7986 new_rtx = gen_rtx_ASHIFTRT (mode,
7987 make_compound_operation (XEXP (x, 0),
7988 next_code),
7989 XEXP (x, 1));
7990 break;
7993 /* ... fall through ... */
7995 case ASHIFTRT:
7996 lhs = XEXP (x, 0);
7997 rhs = XEXP (x, 1);
7999 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8000 this is a SIGN_EXTRACT. */
8001 if (CONST_INT_P (rhs)
8002 && GET_CODE (lhs) == ASHIFT
8003 && CONST_INT_P (XEXP (lhs, 1))
8004 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8005 && INTVAL (XEXP (lhs, 1)) >= 0
8006 && INTVAL (rhs) < mode_width)
8008 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8009 new_rtx = make_extraction (mode, new_rtx,
8010 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8011 NULL_RTX, mode_width - INTVAL (rhs),
8012 code == LSHIFTRT, 0, in_code == COMPARE);
8013 break;
8016 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8017 If so, try to merge the shifts into a SIGN_EXTEND. We could
8018 also do this for some cases of SIGN_EXTRACT, but it doesn't
8019 seem worth the effort; the case checked for occurs on Alpha. */
8021 if (!OBJECT_P (lhs)
8022 && ! (GET_CODE (lhs) == SUBREG
8023 && (OBJECT_P (SUBREG_REG (lhs))))
8024 && CONST_INT_P (rhs)
8025 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8026 && INTVAL (rhs) < mode_width
8027 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8028 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8029 0, NULL_RTX, mode_width - INTVAL (rhs),
8030 code == LSHIFTRT, 0, in_code == COMPARE);
8032 break;
8034 case SUBREG:
8035 /* Call ourselves recursively on the inner expression. If we are
8036 narrowing the object and it has a different RTL code from
8037 what it originally did, do this SUBREG as a force_to_mode. */
8039 rtx inner = SUBREG_REG (x), simplified;
8040 enum rtx_code subreg_code = in_code;
8042 /* If in_code is COMPARE, it isn't always safe to pass it through
8043 to the recursive make_compound_operation call. */
8044 if (subreg_code == COMPARE
8045 && (!subreg_lowpart_p (x)
8046 || GET_CODE (inner) == SUBREG
8047 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8048 is (const_int 0), rather than
8049 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8050 || (GET_CODE (inner) == AND
8051 && CONST_INT_P (XEXP (inner, 1))
8052 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8053 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8054 >= GET_MODE_BITSIZE (mode))))
8055 subreg_code = SET;
8057 tem = make_compound_operation (inner, subreg_code);
8059 simplified
8060 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8061 if (simplified)
8062 tem = simplified;
8064 if (GET_CODE (tem) != GET_CODE (inner)
8065 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8066 && subreg_lowpart_p (x))
8068 rtx newer
8069 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8071 /* If we have something other than a SUBREG, we might have
8072 done an expansion, so rerun ourselves. */
8073 if (GET_CODE (newer) != SUBREG)
8074 newer = make_compound_operation (newer, in_code);
8076 /* force_to_mode can expand compounds. If it just re-expanded the
8077 compound, use gen_lowpart to convert to the desired mode. */
8078 if (rtx_equal_p (newer, x)
8079 /* Likewise if it re-expanded the compound only partially.
8080 This happens for SUBREG of ZERO_EXTRACT if they extract
8081 the same number of bits. */
8082 || (GET_CODE (newer) == SUBREG
8083 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8084 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8085 && GET_CODE (inner) == AND
8086 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8087 return gen_lowpart (GET_MODE (x), tem);
8089 return newer;
8092 if (simplified)
8093 return tem;
8095 break;
8097 default:
8098 break;
8101 if (new_rtx)
8103 x = gen_lowpart (mode, new_rtx);
8104 code = GET_CODE (x);
8107 /* Now recursively process each operand of this operation. We need to
8108 handle ZERO_EXTEND specially so that we don't lose track of the
8109 inner mode. */
8110 if (GET_CODE (x) == ZERO_EXTEND)
8112 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8113 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8114 new_rtx, GET_MODE (XEXP (x, 0)));
8115 if (tem)
8116 return tem;
8117 SUBST (XEXP (x, 0), new_rtx);
8118 return x;
8121 fmt = GET_RTX_FORMAT (code);
8122 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8123 if (fmt[i] == 'e')
8125 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8126 SUBST (XEXP (x, i), new_rtx);
8128 else if (fmt[i] == 'E')
8129 for (j = 0; j < XVECLEN (x, i); j++)
8131 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8132 SUBST (XVECEXP (x, i, j), new_rtx);
8135 maybe_swap:
8136 /* If this is a commutative operation, the changes to the operands
8137 may have made it noncanonical. */
8138 if (COMMUTATIVE_ARITH_P (x)
8139 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8141 tem = XEXP (x, 0);
8142 SUBST (XEXP (x, 0), XEXP (x, 1));
8143 SUBST (XEXP (x, 1), tem);
8146 return x;
8149 /* Given M see if it is a value that would select a field of bits
8150 within an item, but not the entire word. Return -1 if not.
8151 Otherwise, return the starting position of the field, where 0 is the
8152 low-order bit.
8154 *PLEN is set to the length of the field. */
8156 static int
8157 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8159 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8160 int pos = m ? ctz_hwi (m) : -1;
8161 int len = 0;
8163 if (pos >= 0)
8164 /* Now shift off the low-order zero bits and see if we have a
8165 power of two minus 1. */
8166 len = exact_log2 ((m >> pos) + 1);
8168 if (len <= 0)
8169 pos = -1;
8171 *plen = len;
8172 return pos;
8175 /* If X refers to a register that equals REG in value, replace these
8176 references with REG. */
8177 static rtx
8178 canon_reg_for_combine (rtx x, rtx reg)
8180 rtx op0, op1, op2;
8181 const char *fmt;
8182 int i;
8183 bool copied;
8185 enum rtx_code code = GET_CODE (x);
8186 switch (GET_RTX_CLASS (code))
8188 case RTX_UNARY:
8189 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8190 if (op0 != XEXP (x, 0))
8191 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8192 GET_MODE (reg));
8193 break;
8195 case RTX_BIN_ARITH:
8196 case RTX_COMM_ARITH:
8197 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8198 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8199 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8200 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8201 break;
8203 case RTX_COMPARE:
8204 case RTX_COMM_COMPARE:
8205 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8206 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8207 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8208 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8209 GET_MODE (op0), op0, op1);
8210 break;
8212 case RTX_TERNARY:
8213 case RTX_BITFIELD_OPS:
8214 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8215 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8216 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8217 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8218 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8219 GET_MODE (op0), op0, op1, op2);
8221 case RTX_OBJ:
8222 if (REG_P (x))
8224 if (rtx_equal_p (get_last_value (reg), x)
8225 || rtx_equal_p (reg, get_last_value (x)))
8226 return reg;
8227 else
8228 break;
8231 /* fall through */
8233 default:
8234 fmt = GET_RTX_FORMAT (code);
8235 copied = false;
8236 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8237 if (fmt[i] == 'e')
8239 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8240 if (op != XEXP (x, i))
8242 if (!copied)
8244 copied = true;
8245 x = copy_rtx (x);
8247 XEXP (x, i) = op;
8250 else if (fmt[i] == 'E')
8252 int j;
8253 for (j = 0; j < XVECLEN (x, i); j++)
8255 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8256 if (op != XVECEXP (x, i, j))
8258 if (!copied)
8260 copied = true;
8261 x = copy_rtx (x);
8263 XVECEXP (x, i, j) = op;
8268 break;
8271 return x;
8274 /* Return X converted to MODE. If the value is already truncated to
8275 MODE we can just return a subreg even though in the general case we
8276 would need an explicit truncation. */
8278 static rtx
8279 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8281 if (!CONST_INT_P (x)
8282 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8283 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8284 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8286 /* Bit-cast X into an integer mode. */
8287 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8288 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8289 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8290 x, GET_MODE (x));
8293 return gen_lowpart (mode, x);
8296 /* See if X can be simplified knowing that we will only refer to it in
8297 MODE and will only refer to those bits that are nonzero in MASK.
8298 If other bits are being computed or if masking operations are done
8299 that select a superset of the bits in MASK, they can sometimes be
8300 ignored.
8302 Return a possibly simplified expression, but always convert X to
8303 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8305 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8306 are all off in X. This is used when X will be complemented, by either
8307 NOT, NEG, or XOR. */
8309 static rtx
8310 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8311 int just_select)
8313 enum rtx_code code = GET_CODE (x);
8314 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8315 machine_mode op_mode;
8316 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8317 rtx op0, op1, temp;
8319 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8320 code below will do the wrong thing since the mode of such an
8321 expression is VOIDmode.
8323 Also do nothing if X is a CLOBBER; this can happen if X was
8324 the return value from a call to gen_lowpart. */
8325 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8326 return x;
8328 /* We want to perform the operation in its present mode unless we know
8329 that the operation is valid in MODE, in which case we do the operation
8330 in MODE. */
8331 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8332 && have_insn_for (code, mode))
8333 ? mode : GET_MODE (x));
8335 /* It is not valid to do a right-shift in a narrower mode
8336 than the one it came in with. */
8337 if ((code == LSHIFTRT || code == ASHIFTRT)
8338 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8339 op_mode = GET_MODE (x);
8341 /* Truncate MASK to fit OP_MODE. */
8342 if (op_mode)
8343 mask &= GET_MODE_MASK (op_mode);
8345 /* When we have an arithmetic operation, or a shift whose count we
8346 do not know, we need to assume that all bits up to the highest-order
8347 bit in MASK will be needed. This is how we form such a mask. */
8348 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8349 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8350 else
8351 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8352 - 1);
8354 /* Determine what bits of X are guaranteed to be (non)zero. */
8355 nonzero = nonzero_bits (x, mode);
8357 /* If none of the bits in X are needed, return a zero. */
8358 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8359 x = const0_rtx;
8361 /* If X is a CONST_INT, return a new one. Do this here since the
8362 test below will fail. */
8363 if (CONST_INT_P (x))
8365 if (SCALAR_INT_MODE_P (mode))
8366 return gen_int_mode (INTVAL (x) & mask, mode);
8367 else
8369 x = GEN_INT (INTVAL (x) & mask);
8370 return gen_lowpart_common (mode, x);
8374 /* If X is narrower than MODE and we want all the bits in X's mode, just
8375 get X in the proper mode. */
8376 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8377 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8378 return gen_lowpart (mode, x);
8380 /* We can ignore the effect of a SUBREG if it narrows the mode or
8381 if the constant masks to zero all the bits the mode doesn't have. */
8382 if (GET_CODE (x) == SUBREG
8383 && subreg_lowpart_p (x)
8384 && ((GET_MODE_SIZE (GET_MODE (x))
8385 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8386 || (0 == (mask
8387 & GET_MODE_MASK (GET_MODE (x))
8388 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8389 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8391 /* The arithmetic simplifications here only work for scalar integer modes. */
8392 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8393 return gen_lowpart_or_truncate (mode, x);
8395 switch (code)
8397 case CLOBBER:
8398 /* If X is a (clobber (const_int)), return it since we know we are
8399 generating something that won't match. */
8400 return x;
8402 case SIGN_EXTEND:
8403 case ZERO_EXTEND:
8404 case ZERO_EXTRACT:
8405 case SIGN_EXTRACT:
8406 x = expand_compound_operation (x);
8407 if (GET_CODE (x) != code)
8408 return force_to_mode (x, mode, mask, next_select);
8409 break;
8411 case TRUNCATE:
8412 /* Similarly for a truncate. */
8413 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8415 case AND:
8416 /* If this is an AND with a constant, convert it into an AND
8417 whose constant is the AND of that constant with MASK. If it
8418 remains an AND of MASK, delete it since it is redundant. */
8420 if (CONST_INT_P (XEXP (x, 1)))
8422 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8423 mask & INTVAL (XEXP (x, 1)));
8425 /* If X is still an AND, see if it is an AND with a mask that
8426 is just some low-order bits. If so, and it is MASK, we don't
8427 need it. */
8429 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8430 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8431 == mask))
8432 x = XEXP (x, 0);
8434 /* If it remains an AND, try making another AND with the bits
8435 in the mode mask that aren't in MASK turned on. If the
8436 constant in the AND is wide enough, this might make a
8437 cheaper constant. */
8439 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8440 && GET_MODE_MASK (GET_MODE (x)) != mask
8441 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8443 unsigned HOST_WIDE_INT cval
8444 = UINTVAL (XEXP (x, 1))
8445 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8446 rtx y;
8448 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8449 gen_int_mode (cval, GET_MODE (x)));
8450 if (set_src_cost (y, optimize_this_for_speed_p)
8451 < set_src_cost (x, optimize_this_for_speed_p))
8452 x = y;
8455 break;
8458 goto binop;
8460 case PLUS:
8461 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8462 low-order bits (as in an alignment operation) and FOO is already
8463 aligned to that boundary, mask C1 to that boundary as well.
8464 This may eliminate that PLUS and, later, the AND. */
8467 unsigned int width = GET_MODE_PRECISION (mode);
8468 unsigned HOST_WIDE_INT smask = mask;
8470 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8471 number, sign extend it. */
8473 if (width < HOST_BITS_PER_WIDE_INT
8474 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8475 smask |= HOST_WIDE_INT_M1U << width;
8477 if (CONST_INT_P (XEXP (x, 1))
8478 && exact_log2 (- smask) >= 0
8479 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8480 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8481 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8482 (INTVAL (XEXP (x, 1)) & smask)),
8483 mode, smask, next_select);
8486 /* ... fall through ... */
8488 case MULT:
8489 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8490 most significant bit in MASK since carries from those bits will
8491 affect the bits we are interested in. */
8492 mask = fuller_mask;
8493 goto binop;
8495 case MINUS:
8496 /* If X is (minus C Y) where C's least set bit is larger than any bit
8497 in the mask, then we may replace with (neg Y). */
8498 if (CONST_INT_P (XEXP (x, 0))
8499 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8501 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8502 GET_MODE (x));
8503 return force_to_mode (x, mode, mask, next_select);
8506 /* Similarly, if C contains every bit in the fuller_mask, then we may
8507 replace with (not Y). */
8508 if (CONST_INT_P (XEXP (x, 0))
8509 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8511 x = simplify_gen_unary (NOT, GET_MODE (x),
8512 XEXP (x, 1), GET_MODE (x));
8513 return force_to_mode (x, mode, mask, next_select);
8516 mask = fuller_mask;
8517 goto binop;
8519 case IOR:
8520 case XOR:
8521 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8522 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8523 operation which may be a bitfield extraction. Ensure that the
8524 constant we form is not wider than the mode of X. */
8526 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8527 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8528 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8529 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8530 && CONST_INT_P (XEXP (x, 1))
8531 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8532 + floor_log2 (INTVAL (XEXP (x, 1))))
8533 < GET_MODE_PRECISION (GET_MODE (x)))
8534 && (UINTVAL (XEXP (x, 1))
8535 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8537 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8538 << INTVAL (XEXP (XEXP (x, 0), 1)),
8539 GET_MODE (x));
8540 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8541 XEXP (XEXP (x, 0), 0), temp);
8542 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8543 XEXP (XEXP (x, 0), 1));
8544 return force_to_mode (x, mode, mask, next_select);
8547 binop:
8548 /* For most binary operations, just propagate into the operation and
8549 change the mode if we have an operation of that mode. */
8551 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8552 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8554 /* If we ended up truncating both operands, truncate the result of the
8555 operation instead. */
8556 if (GET_CODE (op0) == TRUNCATE
8557 && GET_CODE (op1) == TRUNCATE)
8559 op0 = XEXP (op0, 0);
8560 op1 = XEXP (op1, 0);
8563 op0 = gen_lowpart_or_truncate (op_mode, op0);
8564 op1 = gen_lowpart_or_truncate (op_mode, op1);
8566 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8567 x = simplify_gen_binary (code, op_mode, op0, op1);
8568 break;
8570 case ASHIFT:
8571 /* For left shifts, do the same, but just for the first operand.
8572 However, we cannot do anything with shifts where we cannot
8573 guarantee that the counts are smaller than the size of the mode
8574 because such a count will have a different meaning in a
8575 wider mode. */
8577 if (! (CONST_INT_P (XEXP (x, 1))
8578 && INTVAL (XEXP (x, 1)) >= 0
8579 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8580 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8581 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8582 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8583 break;
8585 /* If the shift count is a constant and we can do arithmetic in
8586 the mode of the shift, refine which bits we need. Otherwise, use the
8587 conservative form of the mask. */
8588 if (CONST_INT_P (XEXP (x, 1))
8589 && INTVAL (XEXP (x, 1)) >= 0
8590 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8591 && HWI_COMPUTABLE_MODE_P (op_mode))
8592 mask >>= INTVAL (XEXP (x, 1));
8593 else
8594 mask = fuller_mask;
8596 op0 = gen_lowpart_or_truncate (op_mode,
8597 force_to_mode (XEXP (x, 0), op_mode,
8598 mask, next_select));
8600 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8601 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8602 break;
8604 case LSHIFTRT:
8605 /* Here we can only do something if the shift count is a constant,
8606 this shift constant is valid for the host, and we can do arithmetic
8607 in OP_MODE. */
8609 if (CONST_INT_P (XEXP (x, 1))
8610 && INTVAL (XEXP (x, 1)) >= 0
8611 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8612 && HWI_COMPUTABLE_MODE_P (op_mode))
8614 rtx inner = XEXP (x, 0);
8615 unsigned HOST_WIDE_INT inner_mask;
8617 /* Select the mask of the bits we need for the shift operand. */
8618 inner_mask = mask << INTVAL (XEXP (x, 1));
8620 /* We can only change the mode of the shift if we can do arithmetic
8621 in the mode of the shift and INNER_MASK is no wider than the
8622 width of X's mode. */
8623 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8624 op_mode = GET_MODE (x);
8626 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8628 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8629 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8632 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8633 shift and AND produces only copies of the sign bit (C2 is one less
8634 than a power of two), we can do this with just a shift. */
8636 if (GET_CODE (x) == LSHIFTRT
8637 && CONST_INT_P (XEXP (x, 1))
8638 /* The shift puts one of the sign bit copies in the least significant
8639 bit. */
8640 && ((INTVAL (XEXP (x, 1))
8641 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8642 >= GET_MODE_PRECISION (GET_MODE (x)))
8643 && exact_log2 (mask + 1) >= 0
8644 /* Number of bits left after the shift must be more than the mask
8645 needs. */
8646 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8647 <= GET_MODE_PRECISION (GET_MODE (x)))
8648 /* Must be more sign bit copies than the mask needs. */
8649 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8650 >= exact_log2 (mask + 1)))
8651 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8652 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8653 - exact_log2 (mask + 1)));
8655 goto shiftrt;
8657 case ASHIFTRT:
8658 /* If we are just looking for the sign bit, we don't need this shift at
8659 all, even if it has a variable count. */
8660 if (val_signbit_p (GET_MODE (x), mask))
8661 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8663 /* If this is a shift by a constant, get a mask that contains those bits
8664 that are not copies of the sign bit. We then have two cases: If
8665 MASK only includes those bits, this can be a logical shift, which may
8666 allow simplifications. If MASK is a single-bit field not within
8667 those bits, we are requesting a copy of the sign bit and hence can
8668 shift the sign bit to the appropriate location. */
8670 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8671 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8673 int i;
8675 /* If the considered data is wider than HOST_WIDE_INT, we can't
8676 represent a mask for all its bits in a single scalar.
8677 But we only care about the lower bits, so calculate these. */
8679 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8681 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8683 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8684 is the number of bits a full-width mask would have set.
8685 We need only shift if these are fewer than nonzero can
8686 hold. If not, we must keep all bits set in nonzero. */
8688 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8689 < HOST_BITS_PER_WIDE_INT)
8690 nonzero >>= INTVAL (XEXP (x, 1))
8691 + HOST_BITS_PER_WIDE_INT
8692 - GET_MODE_PRECISION (GET_MODE (x)) ;
8694 else
8696 nonzero = GET_MODE_MASK (GET_MODE (x));
8697 nonzero >>= INTVAL (XEXP (x, 1));
8700 if ((mask & ~nonzero) == 0)
8702 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8703 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8704 if (GET_CODE (x) != ASHIFTRT)
8705 return force_to_mode (x, mode, mask, next_select);
8708 else if ((i = exact_log2 (mask)) >= 0)
8710 x = simplify_shift_const
8711 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8712 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8714 if (GET_CODE (x) != ASHIFTRT)
8715 return force_to_mode (x, mode, mask, next_select);
8719 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8720 even if the shift count isn't a constant. */
8721 if (mask == 1)
8722 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8723 XEXP (x, 0), XEXP (x, 1));
8725 shiftrt:
8727 /* If this is a zero- or sign-extension operation that just affects bits
8728 we don't care about, remove it. Be sure the call above returned
8729 something that is still a shift. */
8731 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8732 && CONST_INT_P (XEXP (x, 1))
8733 && INTVAL (XEXP (x, 1)) >= 0
8734 && (INTVAL (XEXP (x, 1))
8735 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8736 && GET_CODE (XEXP (x, 0)) == ASHIFT
8737 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8738 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8739 next_select);
8741 break;
8743 case ROTATE:
8744 case ROTATERT:
8745 /* If the shift count is constant and we can do computations
8746 in the mode of X, compute where the bits we care about are.
8747 Otherwise, we can't do anything. Don't change the mode of
8748 the shift or propagate MODE into the shift, though. */
8749 if (CONST_INT_P (XEXP (x, 1))
8750 && INTVAL (XEXP (x, 1)) >= 0)
8752 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8753 GET_MODE (x),
8754 gen_int_mode (mask, GET_MODE (x)),
8755 XEXP (x, 1));
8756 if (temp && CONST_INT_P (temp))
8757 x = simplify_gen_binary (code, GET_MODE (x),
8758 force_to_mode (XEXP (x, 0), GET_MODE (x),
8759 INTVAL (temp), next_select),
8760 XEXP (x, 1));
8762 break;
8764 case NEG:
8765 /* If we just want the low-order bit, the NEG isn't needed since it
8766 won't change the low-order bit. */
8767 if (mask == 1)
8768 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8770 /* We need any bits less significant than the most significant bit in
8771 MASK since carries from those bits will affect the bits we are
8772 interested in. */
8773 mask = fuller_mask;
8774 goto unop;
8776 case NOT:
8777 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8778 same as the XOR case above. Ensure that the constant we form is not
8779 wider than the mode of X. */
8781 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8782 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8783 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8784 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8785 < GET_MODE_PRECISION (GET_MODE (x)))
8786 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8788 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8789 GET_MODE (x));
8790 temp = simplify_gen_binary (XOR, GET_MODE (x),
8791 XEXP (XEXP (x, 0), 0), temp);
8792 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8793 temp, XEXP (XEXP (x, 0), 1));
8795 return force_to_mode (x, mode, mask, next_select);
8798 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8799 use the full mask inside the NOT. */
8800 mask = fuller_mask;
8802 unop:
8803 op0 = gen_lowpart_or_truncate (op_mode,
8804 force_to_mode (XEXP (x, 0), mode, mask,
8805 next_select));
8806 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8807 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8808 break;
8810 case NE:
8811 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8812 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8813 which is equal to STORE_FLAG_VALUE. */
8814 if ((mask & ~STORE_FLAG_VALUE) == 0
8815 && XEXP (x, 1) == const0_rtx
8816 && GET_MODE (XEXP (x, 0)) == mode
8817 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8818 && (nonzero_bits (XEXP (x, 0), mode)
8819 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8820 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8822 break;
8824 case IF_THEN_ELSE:
8825 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8826 written in a narrower mode. We play it safe and do not do so. */
8828 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8829 force_to_mode (XEXP (x, 1), mode,
8830 mask, next_select));
8831 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8832 force_to_mode (XEXP (x, 2), mode,
8833 mask, next_select));
8834 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8835 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8836 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8837 op0, op1);
8838 break;
8840 default:
8841 break;
8844 /* Ensure we return a value of the proper mode. */
8845 return gen_lowpart_or_truncate (mode, x);
8848 /* Return nonzero if X is an expression that has one of two values depending on
8849 whether some other value is zero or nonzero. In that case, we return the
8850 value that is being tested, *PTRUE is set to the value if the rtx being
8851 returned has a nonzero value, and *PFALSE is set to the other alternative.
8853 If we return zero, we set *PTRUE and *PFALSE to X. */
8855 static rtx
8856 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8858 machine_mode mode = GET_MODE (x);
8859 enum rtx_code code = GET_CODE (x);
8860 rtx cond0, cond1, true0, true1, false0, false1;
8861 unsigned HOST_WIDE_INT nz;
8863 /* If we are comparing a value against zero, we are done. */
8864 if ((code == NE || code == EQ)
8865 && XEXP (x, 1) == const0_rtx)
8867 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8868 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8869 return XEXP (x, 0);
8872 /* If this is a unary operation whose operand has one of two values, apply
8873 our opcode to compute those values. */
8874 else if (UNARY_P (x)
8875 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8877 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8878 *pfalse = simplify_gen_unary (code, mode, false0,
8879 GET_MODE (XEXP (x, 0)));
8880 return cond0;
8883 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8884 make can't possibly match and would suppress other optimizations. */
8885 else if (code == COMPARE)
8888 /* If this is a binary operation, see if either side has only one of two
8889 values. If either one does or if both do and they are conditional on
8890 the same value, compute the new true and false values. */
8891 else if (BINARY_P (x))
8893 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8894 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8896 if ((cond0 != 0 || cond1 != 0)
8897 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8899 /* If if_then_else_cond returned zero, then true/false are the
8900 same rtl. We must copy one of them to prevent invalid rtl
8901 sharing. */
8902 if (cond0 == 0)
8903 true0 = copy_rtx (true0);
8904 else if (cond1 == 0)
8905 true1 = copy_rtx (true1);
8907 if (COMPARISON_P (x))
8909 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8910 true0, true1);
8911 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8912 false0, false1);
8914 else
8916 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8917 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8920 return cond0 ? cond0 : cond1;
8923 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8924 operands is zero when the other is nonzero, and vice-versa,
8925 and STORE_FLAG_VALUE is 1 or -1. */
8927 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8928 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8929 || code == UMAX)
8930 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8932 rtx op0 = XEXP (XEXP (x, 0), 1);
8933 rtx op1 = XEXP (XEXP (x, 1), 1);
8935 cond0 = XEXP (XEXP (x, 0), 0);
8936 cond1 = XEXP (XEXP (x, 1), 0);
8938 if (COMPARISON_P (cond0)
8939 && COMPARISON_P (cond1)
8940 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8941 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8942 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8943 || ((swap_condition (GET_CODE (cond0))
8944 == reversed_comparison_code (cond1, NULL))
8945 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8946 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8947 && ! side_effects_p (x))
8949 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8950 *pfalse = simplify_gen_binary (MULT, mode,
8951 (code == MINUS
8952 ? simplify_gen_unary (NEG, mode,
8953 op1, mode)
8954 : op1),
8955 const_true_rtx);
8956 return cond0;
8960 /* Similarly for MULT, AND and UMIN, except that for these the result
8961 is always zero. */
8962 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8963 && (code == MULT || code == AND || code == UMIN)
8964 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8966 cond0 = XEXP (XEXP (x, 0), 0);
8967 cond1 = XEXP (XEXP (x, 1), 0);
8969 if (COMPARISON_P (cond0)
8970 && COMPARISON_P (cond1)
8971 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8972 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8973 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8974 || ((swap_condition (GET_CODE (cond0))
8975 == reversed_comparison_code (cond1, NULL))
8976 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8977 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8978 && ! side_effects_p (x))
8980 *ptrue = *pfalse = const0_rtx;
8981 return cond0;
8986 else if (code == IF_THEN_ELSE)
8988 /* If we have IF_THEN_ELSE already, extract the condition and
8989 canonicalize it if it is NE or EQ. */
8990 cond0 = XEXP (x, 0);
8991 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8992 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8993 return XEXP (cond0, 0);
8994 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8996 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8997 return XEXP (cond0, 0);
8999 else
9000 return cond0;
9003 /* If X is a SUBREG, we can narrow both the true and false values
9004 if the inner expression, if there is a condition. */
9005 else if (code == SUBREG
9006 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9007 &true0, &false0)))
9009 true0 = simplify_gen_subreg (mode, true0,
9010 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9011 false0 = simplify_gen_subreg (mode, false0,
9012 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9013 if (true0 && false0)
9015 *ptrue = true0;
9016 *pfalse = false0;
9017 return cond0;
9021 /* If X is a constant, this isn't special and will cause confusions
9022 if we treat it as such. Likewise if it is equivalent to a constant. */
9023 else if (CONSTANT_P (x)
9024 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9027 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9028 will be least confusing to the rest of the compiler. */
9029 else if (mode == BImode)
9031 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9032 return x;
9035 /* If X is known to be either 0 or -1, those are the true and
9036 false values when testing X. */
9037 else if (x == constm1_rtx || x == const0_rtx
9038 || (mode != VOIDmode
9039 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9041 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9042 return x;
9045 /* Likewise for 0 or a single bit. */
9046 else if (HWI_COMPUTABLE_MODE_P (mode)
9047 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9049 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9050 return x;
9053 /* Otherwise fail; show no condition with true and false values the same. */
9054 *ptrue = *pfalse = x;
9055 return 0;
9058 /* Return the value of expression X given the fact that condition COND
9059 is known to be true when applied to REG as its first operand and VAL
9060 as its second. X is known to not be shared and so can be modified in
9061 place.
9063 We only handle the simplest cases, and specifically those cases that
9064 arise with IF_THEN_ELSE expressions. */
9066 static rtx
9067 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9069 enum rtx_code code = GET_CODE (x);
9070 const char *fmt;
9071 int i, j;
9073 if (side_effects_p (x))
9074 return x;
9076 /* If either operand of the condition is a floating point value,
9077 then we have to avoid collapsing an EQ comparison. */
9078 if (cond == EQ
9079 && rtx_equal_p (x, reg)
9080 && ! FLOAT_MODE_P (GET_MODE (x))
9081 && ! FLOAT_MODE_P (GET_MODE (val)))
9082 return val;
9084 if (cond == UNEQ && rtx_equal_p (x, reg))
9085 return val;
9087 /* If X is (abs REG) and we know something about REG's relationship
9088 with zero, we may be able to simplify this. */
9090 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9091 switch (cond)
9093 case GE: case GT: case EQ:
9094 return XEXP (x, 0);
9095 case LT: case LE:
9096 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9097 XEXP (x, 0),
9098 GET_MODE (XEXP (x, 0)));
9099 default:
9100 break;
9103 /* The only other cases we handle are MIN, MAX, and comparisons if the
9104 operands are the same as REG and VAL. */
9106 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9108 if (rtx_equal_p (XEXP (x, 0), val))
9110 std::swap (val, reg);
9111 cond = swap_condition (cond);
9114 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9116 if (COMPARISON_P (x))
9118 if (comparison_dominates_p (cond, code))
9119 return const_true_rtx;
9121 code = reversed_comparison_code (x, NULL);
9122 if (code != UNKNOWN
9123 && comparison_dominates_p (cond, code))
9124 return const0_rtx;
9125 else
9126 return x;
9128 else if (code == SMAX || code == SMIN
9129 || code == UMIN || code == UMAX)
9131 int unsignedp = (code == UMIN || code == UMAX);
9133 /* Do not reverse the condition when it is NE or EQ.
9134 This is because we cannot conclude anything about
9135 the value of 'SMAX (x, y)' when x is not equal to y,
9136 but we can when x equals y. */
9137 if ((code == SMAX || code == UMAX)
9138 && ! (cond == EQ || cond == NE))
9139 cond = reverse_condition (cond);
9141 switch (cond)
9143 case GE: case GT:
9144 return unsignedp ? x : XEXP (x, 1);
9145 case LE: case LT:
9146 return unsignedp ? x : XEXP (x, 0);
9147 case GEU: case GTU:
9148 return unsignedp ? XEXP (x, 1) : x;
9149 case LEU: case LTU:
9150 return unsignedp ? XEXP (x, 0) : x;
9151 default:
9152 break;
9157 else if (code == SUBREG)
9159 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9160 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9162 if (SUBREG_REG (x) != r)
9164 /* We must simplify subreg here, before we lose track of the
9165 original inner_mode. */
9166 new_rtx = simplify_subreg (GET_MODE (x), r,
9167 inner_mode, SUBREG_BYTE (x));
9168 if (new_rtx)
9169 return new_rtx;
9170 else
9171 SUBST (SUBREG_REG (x), r);
9174 return x;
9176 /* We don't have to handle SIGN_EXTEND here, because even in the
9177 case of replacing something with a modeless CONST_INT, a
9178 CONST_INT is already (supposed to be) a valid sign extension for
9179 its narrower mode, which implies it's already properly
9180 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9181 story is different. */
9182 else if (code == ZERO_EXTEND)
9184 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9185 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9187 if (XEXP (x, 0) != r)
9189 /* We must simplify the zero_extend here, before we lose
9190 track of the original inner_mode. */
9191 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9192 r, inner_mode);
9193 if (new_rtx)
9194 return new_rtx;
9195 else
9196 SUBST (XEXP (x, 0), r);
9199 return x;
9202 fmt = GET_RTX_FORMAT (code);
9203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9205 if (fmt[i] == 'e')
9206 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9207 else if (fmt[i] == 'E')
9208 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9209 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9210 cond, reg, val));
9213 return x;
9216 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9217 assignment as a field assignment. */
9219 static int
9220 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9222 if (widen_x && GET_MODE (x) != GET_MODE (y))
9224 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9225 return 0;
9226 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9227 return 0;
9228 /* For big endian, adjust the memory offset. */
9229 if (BYTES_BIG_ENDIAN)
9230 x = adjust_address_nv (x, GET_MODE (y),
9231 -subreg_lowpart_offset (GET_MODE (x),
9232 GET_MODE (y)));
9233 else
9234 x = adjust_address_nv (x, GET_MODE (y), 0);
9237 if (x == y || rtx_equal_p (x, y))
9238 return 1;
9240 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9241 return 0;
9243 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9244 Note that all SUBREGs of MEM are paradoxical; otherwise they
9245 would have been rewritten. */
9246 if (MEM_P (x) && GET_CODE (y) == SUBREG
9247 && MEM_P (SUBREG_REG (y))
9248 && rtx_equal_p (SUBREG_REG (y),
9249 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9250 return 1;
9252 if (MEM_P (y) && GET_CODE (x) == SUBREG
9253 && MEM_P (SUBREG_REG (x))
9254 && rtx_equal_p (SUBREG_REG (x),
9255 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9256 return 1;
9258 /* We used to see if get_last_value of X and Y were the same but that's
9259 not correct. In one direction, we'll cause the assignment to have
9260 the wrong destination and in the case, we'll import a register into this
9261 insn that might have already have been dead. So fail if none of the
9262 above cases are true. */
9263 return 0;
9266 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9267 Return that assignment if so.
9269 We only handle the most common cases. */
9271 static rtx
9272 make_field_assignment (rtx x)
9274 rtx dest = SET_DEST (x);
9275 rtx src = SET_SRC (x);
9276 rtx assign;
9277 rtx rhs, lhs;
9278 HOST_WIDE_INT c1;
9279 HOST_WIDE_INT pos;
9280 unsigned HOST_WIDE_INT len;
9281 rtx other;
9282 machine_mode mode;
9284 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9285 a clear of a one-bit field. We will have changed it to
9286 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9287 for a SUBREG. */
9289 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9290 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9291 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9292 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9294 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9295 1, 1, 1, 0);
9296 if (assign != 0)
9297 return gen_rtx_SET (assign, const0_rtx);
9298 return x;
9301 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9302 && subreg_lowpart_p (XEXP (src, 0))
9303 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9304 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9305 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9306 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9307 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9308 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9310 assign = make_extraction (VOIDmode, dest, 0,
9311 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9312 1, 1, 1, 0);
9313 if (assign != 0)
9314 return gen_rtx_SET (assign, const0_rtx);
9315 return x;
9318 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9319 one-bit field. */
9320 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9321 && XEXP (XEXP (src, 0), 0) == const1_rtx
9322 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9324 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9325 1, 1, 1, 0);
9326 if (assign != 0)
9327 return gen_rtx_SET (assign, const1_rtx);
9328 return x;
9331 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9332 SRC is an AND with all bits of that field set, then we can discard
9333 the AND. */
9334 if (GET_CODE (dest) == ZERO_EXTRACT
9335 && CONST_INT_P (XEXP (dest, 1))
9336 && GET_CODE (src) == AND
9337 && CONST_INT_P (XEXP (src, 1)))
9339 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9340 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9341 unsigned HOST_WIDE_INT ze_mask;
9343 if (width >= HOST_BITS_PER_WIDE_INT)
9344 ze_mask = -1;
9345 else
9346 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9348 /* Complete overlap. We can remove the source AND. */
9349 if ((and_mask & ze_mask) == ze_mask)
9350 return gen_rtx_SET (dest, XEXP (src, 0));
9352 /* Partial overlap. We can reduce the source AND. */
9353 if ((and_mask & ze_mask) != and_mask)
9355 mode = GET_MODE (src);
9356 src = gen_rtx_AND (mode, XEXP (src, 0),
9357 gen_int_mode (and_mask & ze_mask, mode));
9358 return gen_rtx_SET (dest, src);
9362 /* The other case we handle is assignments into a constant-position
9363 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9364 a mask that has all one bits except for a group of zero bits and
9365 OTHER is known to have zeros where C1 has ones, this is such an
9366 assignment. Compute the position and length from C1. Shift OTHER
9367 to the appropriate position, force it to the required mode, and
9368 make the extraction. Check for the AND in both operands. */
9370 /* One or more SUBREGs might obscure the constant-position field
9371 assignment. The first one we are likely to encounter is an outer
9372 narrowing SUBREG, which we can just strip for the purposes of
9373 identifying the constant-field assignment. */
9374 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9375 src = SUBREG_REG (src);
9377 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9378 return x;
9380 rhs = expand_compound_operation (XEXP (src, 0));
9381 lhs = expand_compound_operation (XEXP (src, 1));
9383 if (GET_CODE (rhs) == AND
9384 && CONST_INT_P (XEXP (rhs, 1))
9385 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9386 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9387 /* The second SUBREG that might get in the way is a paradoxical
9388 SUBREG around the first operand of the AND. We want to
9389 pretend the operand is as wide as the destination here. We
9390 do this by adjusting the MEM to wider mode for the sole
9391 purpose of the call to rtx_equal_for_field_assignment_p. Also
9392 note this trick only works for MEMs. */
9393 else if (GET_CODE (rhs) == AND
9394 && paradoxical_subreg_p (XEXP (rhs, 0))
9395 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9396 && CONST_INT_P (XEXP (rhs, 1))
9397 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9398 dest, true))
9399 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9400 else if (GET_CODE (lhs) == AND
9401 && CONST_INT_P (XEXP (lhs, 1))
9402 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9403 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9404 /* The second SUBREG that might get in the way is a paradoxical
9405 SUBREG around the first operand of the AND. We want to
9406 pretend the operand is as wide as the destination here. We
9407 do this by adjusting the MEM to wider mode for the sole
9408 purpose of the call to rtx_equal_for_field_assignment_p. Also
9409 note this trick only works for MEMs. */
9410 else if (GET_CODE (lhs) == AND
9411 && paradoxical_subreg_p (XEXP (lhs, 0))
9412 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9413 && CONST_INT_P (XEXP (lhs, 1))
9414 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9415 dest, true))
9416 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9417 else
9418 return x;
9420 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9421 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9422 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9423 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9424 return x;
9426 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9427 if (assign == 0)
9428 return x;
9430 /* The mode to use for the source is the mode of the assignment, or of
9431 what is inside a possible STRICT_LOW_PART. */
9432 mode = (GET_CODE (assign) == STRICT_LOW_PART
9433 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9435 /* Shift OTHER right POS places and make it the source, restricting it
9436 to the proper length and mode. */
9438 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9439 GET_MODE (src),
9440 other, pos),
9441 dest);
9442 src = force_to_mode (src, mode,
9443 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9444 ? ~(unsigned HOST_WIDE_INT) 0
9445 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9448 /* If SRC is masked by an AND that does not make a difference in
9449 the value being stored, strip it. */
9450 if (GET_CODE (assign) == ZERO_EXTRACT
9451 && CONST_INT_P (XEXP (assign, 1))
9452 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9453 && GET_CODE (src) == AND
9454 && CONST_INT_P (XEXP (src, 1))
9455 && UINTVAL (XEXP (src, 1))
9456 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9457 src = XEXP (src, 0);
9459 return gen_rtx_SET (assign, src);
9462 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9463 if so. */
9465 static rtx
9466 apply_distributive_law (rtx x)
9468 enum rtx_code code = GET_CODE (x);
9469 enum rtx_code inner_code;
9470 rtx lhs, rhs, other;
9471 rtx tem;
9473 /* Distributivity is not true for floating point as it can change the
9474 value. So we don't do it unless -funsafe-math-optimizations. */
9475 if (FLOAT_MODE_P (GET_MODE (x))
9476 && ! flag_unsafe_math_optimizations)
9477 return x;
9479 /* The outer operation can only be one of the following: */
9480 if (code != IOR && code != AND && code != XOR
9481 && code != PLUS && code != MINUS)
9482 return x;
9484 lhs = XEXP (x, 0);
9485 rhs = XEXP (x, 1);
9487 /* If either operand is a primitive we can't do anything, so get out
9488 fast. */
9489 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9490 return x;
9492 lhs = expand_compound_operation (lhs);
9493 rhs = expand_compound_operation (rhs);
9494 inner_code = GET_CODE (lhs);
9495 if (inner_code != GET_CODE (rhs))
9496 return x;
9498 /* See if the inner and outer operations distribute. */
9499 switch (inner_code)
9501 case LSHIFTRT:
9502 case ASHIFTRT:
9503 case AND:
9504 case IOR:
9505 /* These all distribute except over PLUS. */
9506 if (code == PLUS || code == MINUS)
9507 return x;
9508 break;
9510 case MULT:
9511 if (code != PLUS && code != MINUS)
9512 return x;
9513 break;
9515 case ASHIFT:
9516 /* This is also a multiply, so it distributes over everything. */
9517 break;
9519 /* This used to handle SUBREG, but this turned out to be counter-
9520 productive, since (subreg (op ...)) usually is not handled by
9521 insn patterns, and this "optimization" therefore transformed
9522 recognizable patterns into unrecognizable ones. Therefore the
9523 SUBREG case was removed from here.
9525 It is possible that distributing SUBREG over arithmetic operations
9526 leads to an intermediate result than can then be optimized further,
9527 e.g. by moving the outer SUBREG to the other side of a SET as done
9528 in simplify_set. This seems to have been the original intent of
9529 handling SUBREGs here.
9531 However, with current GCC this does not appear to actually happen,
9532 at least on major platforms. If some case is found where removing
9533 the SUBREG case here prevents follow-on optimizations, distributing
9534 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9536 default:
9537 return x;
9540 /* Set LHS and RHS to the inner operands (A and B in the example
9541 above) and set OTHER to the common operand (C in the example).
9542 There is only one way to do this unless the inner operation is
9543 commutative. */
9544 if (COMMUTATIVE_ARITH_P (lhs)
9545 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9546 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9547 else if (COMMUTATIVE_ARITH_P (lhs)
9548 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9549 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9550 else if (COMMUTATIVE_ARITH_P (lhs)
9551 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9552 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9553 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9554 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9555 else
9556 return x;
9558 /* Form the new inner operation, seeing if it simplifies first. */
9559 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9561 /* There is one exception to the general way of distributing:
9562 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9563 if (code == XOR && inner_code == IOR)
9565 inner_code = AND;
9566 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9569 /* We may be able to continuing distributing the result, so call
9570 ourselves recursively on the inner operation before forming the
9571 outer operation, which we return. */
9572 return simplify_gen_binary (inner_code, GET_MODE (x),
9573 apply_distributive_law (tem), other);
9576 /* See if X is of the form (* (+ A B) C), and if so convert to
9577 (+ (* A C) (* B C)) and try to simplify.
9579 Most of the time, this results in no change. However, if some of
9580 the operands are the same or inverses of each other, simplifications
9581 will result.
9583 For example, (and (ior A B) (not B)) can occur as the result of
9584 expanding a bit field assignment. When we apply the distributive
9585 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9586 which then simplifies to (and (A (not B))).
9588 Note that no checks happen on the validity of applying the inverse
9589 distributive law. This is pointless since we can do it in the
9590 few places where this routine is called.
9592 N is the index of the term that is decomposed (the arithmetic operation,
9593 i.e. (+ A B) in the first example above). !N is the index of the term that
9594 is distributed, i.e. of C in the first example above. */
9595 static rtx
9596 distribute_and_simplify_rtx (rtx x, int n)
9598 machine_mode mode;
9599 enum rtx_code outer_code, inner_code;
9600 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9602 /* Distributivity is not true for floating point as it can change the
9603 value. So we don't do it unless -funsafe-math-optimizations. */
9604 if (FLOAT_MODE_P (GET_MODE (x))
9605 && ! flag_unsafe_math_optimizations)
9606 return NULL_RTX;
9608 decomposed = XEXP (x, n);
9609 if (!ARITHMETIC_P (decomposed))
9610 return NULL_RTX;
9612 mode = GET_MODE (x);
9613 outer_code = GET_CODE (x);
9614 distributed = XEXP (x, !n);
9616 inner_code = GET_CODE (decomposed);
9617 inner_op0 = XEXP (decomposed, 0);
9618 inner_op1 = XEXP (decomposed, 1);
9620 /* Special case (and (xor B C) (not A)), which is equivalent to
9621 (xor (ior A B) (ior A C)) */
9622 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9624 distributed = XEXP (distributed, 0);
9625 outer_code = IOR;
9628 if (n == 0)
9630 /* Distribute the second term. */
9631 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9632 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9634 else
9636 /* Distribute the first term. */
9637 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9638 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9641 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9642 new_op0, new_op1));
9643 if (GET_CODE (tmp) != outer_code
9644 && (set_src_cost (tmp, optimize_this_for_speed_p)
9645 < set_src_cost (x, optimize_this_for_speed_p)))
9646 return tmp;
9648 return NULL_RTX;
9651 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9652 in MODE. Return an equivalent form, if different from (and VAROP
9653 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9655 static rtx
9656 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9657 unsigned HOST_WIDE_INT constop)
9659 unsigned HOST_WIDE_INT nonzero;
9660 unsigned HOST_WIDE_INT orig_constop;
9661 rtx orig_varop;
9662 int i;
9664 orig_varop = varop;
9665 orig_constop = constop;
9666 if (GET_CODE (varop) == CLOBBER)
9667 return NULL_RTX;
9669 /* Simplify VAROP knowing that we will be only looking at some of the
9670 bits in it.
9672 Note by passing in CONSTOP, we guarantee that the bits not set in
9673 CONSTOP are not significant and will never be examined. We must
9674 ensure that is the case by explicitly masking out those bits
9675 before returning. */
9676 varop = force_to_mode (varop, mode, constop, 0);
9678 /* If VAROP is a CLOBBER, we will fail so return it. */
9679 if (GET_CODE (varop) == CLOBBER)
9680 return varop;
9682 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9683 to VAROP and return the new constant. */
9684 if (CONST_INT_P (varop))
9685 return gen_int_mode (INTVAL (varop) & constop, mode);
9687 /* See what bits may be nonzero in VAROP. Unlike the general case of
9688 a call to nonzero_bits, here we don't care about bits outside
9689 MODE. */
9691 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9693 /* Turn off all bits in the constant that are known to already be zero.
9694 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9695 which is tested below. */
9697 constop &= nonzero;
9699 /* If we don't have any bits left, return zero. */
9700 if (constop == 0)
9701 return const0_rtx;
9703 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9704 a power of two, we can replace this with an ASHIFT. */
9705 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9706 && (i = exact_log2 (constop)) >= 0)
9707 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9709 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9710 or XOR, then try to apply the distributive law. This may eliminate
9711 operations if either branch can be simplified because of the AND.
9712 It may also make some cases more complex, but those cases probably
9713 won't match a pattern either with or without this. */
9715 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9716 return
9717 gen_lowpart
9718 (mode,
9719 apply_distributive_law
9720 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9721 simplify_and_const_int (NULL_RTX,
9722 GET_MODE (varop),
9723 XEXP (varop, 0),
9724 constop),
9725 simplify_and_const_int (NULL_RTX,
9726 GET_MODE (varop),
9727 XEXP (varop, 1),
9728 constop))));
9730 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9731 the AND and see if one of the operands simplifies to zero. If so, we
9732 may eliminate it. */
9734 if (GET_CODE (varop) == PLUS
9735 && exact_log2 (constop + 1) >= 0)
9737 rtx o0, o1;
9739 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9740 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9741 if (o0 == const0_rtx)
9742 return o1;
9743 if (o1 == const0_rtx)
9744 return o0;
9747 /* Make a SUBREG if necessary. If we can't make it, fail. */
9748 varop = gen_lowpart (mode, varop);
9749 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9750 return NULL_RTX;
9752 /* If we are only masking insignificant bits, return VAROP. */
9753 if (constop == nonzero)
9754 return varop;
9756 if (varop == orig_varop && constop == orig_constop)
9757 return NULL_RTX;
9759 /* Otherwise, return an AND. */
9760 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9764 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9765 in MODE.
9767 Return an equivalent form, if different from X. Otherwise, return X. If
9768 X is zero, we are to always construct the equivalent form. */
9770 static rtx
9771 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9772 unsigned HOST_WIDE_INT constop)
9774 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9775 if (tem)
9776 return tem;
9778 if (!x)
9779 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9780 gen_int_mode (constop, mode));
9781 if (GET_MODE (x) != mode)
9782 x = gen_lowpart (mode, x);
9783 return x;
9786 /* Given a REG, X, compute which bits in X can be nonzero.
9787 We don't care about bits outside of those defined in MODE.
9789 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9790 a shift, AND, or zero_extract, we can do better. */
9792 static rtx
9793 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9794 const_rtx known_x ATTRIBUTE_UNUSED,
9795 machine_mode known_mode ATTRIBUTE_UNUSED,
9796 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9797 unsigned HOST_WIDE_INT *nonzero)
9799 rtx tem;
9800 reg_stat_type *rsp;
9802 /* If X is a register whose nonzero bits value is current, use it.
9803 Otherwise, if X is a register whose value we can find, use that
9804 value. Otherwise, use the previously-computed global nonzero bits
9805 for this register. */
9807 rsp = &reg_stat[REGNO (x)];
9808 if (rsp->last_set_value != 0
9809 && (rsp->last_set_mode == mode
9810 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9811 && GET_MODE_CLASS (mode) == MODE_INT))
9812 && ((rsp->last_set_label >= label_tick_ebb_start
9813 && rsp->last_set_label < label_tick)
9814 || (rsp->last_set_label == label_tick
9815 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9816 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9817 && REGNO (x) < reg_n_sets_max
9818 && REG_N_SETS (REGNO (x)) == 1
9819 && !REGNO_REG_SET_P
9820 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9821 REGNO (x)))))
9823 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9825 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9826 /* We don't know anything about the upper bits. */
9827 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9829 *nonzero &= mask;
9830 return NULL;
9833 tem = get_last_value (x);
9835 if (tem)
9837 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9838 tem = sign_extend_short_imm (tem, GET_MODE (x),
9839 GET_MODE_PRECISION (mode));
9840 #endif
9841 return tem;
9843 else if (nonzero_sign_valid && rsp->nonzero_bits)
9845 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9847 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9848 /* We don't know anything about the upper bits. */
9849 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9851 *nonzero &= mask;
9854 return NULL;
9857 /* Return the number of bits at the high-order end of X that are known to
9858 be equal to the sign bit. X will be used in mode MODE; if MODE is
9859 VOIDmode, X will be used in its own mode. The returned value will always
9860 be between 1 and the number of bits in MODE. */
9862 static rtx
9863 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9864 const_rtx known_x ATTRIBUTE_UNUSED,
9865 machine_mode known_mode
9866 ATTRIBUTE_UNUSED,
9867 unsigned int known_ret ATTRIBUTE_UNUSED,
9868 unsigned int *result)
9870 rtx tem;
9871 reg_stat_type *rsp;
9873 rsp = &reg_stat[REGNO (x)];
9874 if (rsp->last_set_value != 0
9875 && rsp->last_set_mode == mode
9876 && ((rsp->last_set_label >= label_tick_ebb_start
9877 && rsp->last_set_label < label_tick)
9878 || (rsp->last_set_label == label_tick
9879 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9880 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9881 && REGNO (x) < reg_n_sets_max
9882 && REG_N_SETS (REGNO (x)) == 1
9883 && !REGNO_REG_SET_P
9884 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9885 REGNO (x)))))
9887 *result = rsp->last_set_sign_bit_copies;
9888 return NULL;
9891 tem = get_last_value (x);
9892 if (tem != 0)
9893 return tem;
9895 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9896 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9897 *result = rsp->sign_bit_copies;
9899 return NULL;
9902 /* Return the number of "extended" bits there are in X, when interpreted
9903 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9904 unsigned quantities, this is the number of high-order zero bits.
9905 For signed quantities, this is the number of copies of the sign bit
9906 minus 1. In both case, this function returns the number of "spare"
9907 bits. For example, if two quantities for which this function returns
9908 at least 1 are added, the addition is known not to overflow.
9910 This function will always return 0 unless called during combine, which
9911 implies that it must be called from a define_split. */
9913 unsigned int
9914 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9916 if (nonzero_sign_valid == 0)
9917 return 0;
9919 return (unsignedp
9920 ? (HWI_COMPUTABLE_MODE_P (mode)
9921 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9922 - floor_log2 (nonzero_bits (x, mode)))
9923 : 0)
9924 : num_sign_bit_copies (x, mode) - 1);
9927 /* This function is called from `simplify_shift_const' to merge two
9928 outer operations. Specifically, we have already found that we need
9929 to perform operation *POP0 with constant *PCONST0 at the outermost
9930 position. We would now like to also perform OP1 with constant CONST1
9931 (with *POP0 being done last).
9933 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9934 the resulting operation. *PCOMP_P is set to 1 if we would need to
9935 complement the innermost operand, otherwise it is unchanged.
9937 MODE is the mode in which the operation will be done. No bits outside
9938 the width of this mode matter. It is assumed that the width of this mode
9939 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9941 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9942 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9943 result is simply *PCONST0.
9945 If the resulting operation cannot be expressed as one operation, we
9946 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9948 static int
9949 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9951 enum rtx_code op0 = *pop0;
9952 HOST_WIDE_INT const0 = *pconst0;
9954 const0 &= GET_MODE_MASK (mode);
9955 const1 &= GET_MODE_MASK (mode);
9957 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9958 if (op0 == AND)
9959 const1 &= const0;
9961 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9962 if OP0 is SET. */
9964 if (op1 == UNKNOWN || op0 == SET)
9965 return 1;
9967 else if (op0 == UNKNOWN)
9968 op0 = op1, const0 = const1;
9970 else if (op0 == op1)
9972 switch (op0)
9974 case AND:
9975 const0 &= const1;
9976 break;
9977 case IOR:
9978 const0 |= const1;
9979 break;
9980 case XOR:
9981 const0 ^= const1;
9982 break;
9983 case PLUS:
9984 const0 += const1;
9985 break;
9986 case NEG:
9987 op0 = UNKNOWN;
9988 break;
9989 default:
9990 break;
9994 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9995 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9996 return 0;
9998 /* If the two constants aren't the same, we can't do anything. The
9999 remaining six cases can all be done. */
10000 else if (const0 != const1)
10001 return 0;
10003 else
10004 switch (op0)
10006 case IOR:
10007 if (op1 == AND)
10008 /* (a & b) | b == b */
10009 op0 = SET;
10010 else /* op1 == XOR */
10011 /* (a ^ b) | b == a | b */
10013 break;
10015 case XOR:
10016 if (op1 == AND)
10017 /* (a & b) ^ b == (~a) & b */
10018 op0 = AND, *pcomp_p = 1;
10019 else /* op1 == IOR */
10020 /* (a | b) ^ b == a & ~b */
10021 op0 = AND, const0 = ~const0;
10022 break;
10024 case AND:
10025 if (op1 == IOR)
10026 /* (a | b) & b == b */
10027 op0 = SET;
10028 else /* op1 == XOR */
10029 /* (a ^ b) & b) == (~a) & b */
10030 *pcomp_p = 1;
10031 break;
10032 default:
10033 break;
10036 /* Check for NO-OP cases. */
10037 const0 &= GET_MODE_MASK (mode);
10038 if (const0 == 0
10039 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10040 op0 = UNKNOWN;
10041 else if (const0 == 0 && op0 == AND)
10042 op0 = SET;
10043 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10044 && op0 == AND)
10045 op0 = UNKNOWN;
10047 *pop0 = op0;
10049 /* ??? Slightly redundant with the above mask, but not entirely.
10050 Moving this above means we'd have to sign-extend the mode mask
10051 for the final test. */
10052 if (op0 != UNKNOWN && op0 != NEG)
10053 *pconst0 = trunc_int_for_mode (const0, mode);
10055 return 1;
10058 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10059 the shift in. The original shift operation CODE is performed on OP in
10060 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10061 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10062 result of the shift is subject to operation OUTER_CODE with operand
10063 OUTER_CONST. */
10065 static machine_mode
10066 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10067 machine_mode orig_mode, machine_mode mode,
10068 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10070 if (orig_mode == mode)
10071 return mode;
10072 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10074 /* In general we can't perform in wider mode for right shift and rotate. */
10075 switch (code)
10077 case ASHIFTRT:
10078 /* We can still widen if the bits brought in from the left are identical
10079 to the sign bit of ORIG_MODE. */
10080 if (num_sign_bit_copies (op, mode)
10081 > (unsigned) (GET_MODE_PRECISION (mode)
10082 - GET_MODE_PRECISION (orig_mode)))
10083 return mode;
10084 return orig_mode;
10086 case LSHIFTRT:
10087 /* Similarly here but with zero bits. */
10088 if (HWI_COMPUTABLE_MODE_P (mode)
10089 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10090 return mode;
10092 /* We can also widen if the bits brought in will be masked off. This
10093 operation is performed in ORIG_MODE. */
10094 if (outer_code == AND)
10096 int care_bits = low_bitmask_len (orig_mode, outer_const);
10098 if (care_bits >= 0
10099 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10100 return mode;
10102 /* fall through */
10104 case ROTATE:
10105 return orig_mode;
10107 case ROTATERT:
10108 gcc_unreachable ();
10110 default:
10111 return mode;
10115 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10116 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10117 if we cannot simplify it. Otherwise, return a simplified value.
10119 The shift is normally computed in the widest mode we find in VAROP, as
10120 long as it isn't a different number of words than RESULT_MODE. Exceptions
10121 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10123 static rtx
10124 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10125 rtx varop, int orig_count)
10127 enum rtx_code orig_code = code;
10128 rtx orig_varop = varop;
10129 int count;
10130 machine_mode mode = result_mode;
10131 machine_mode shift_mode, tmode;
10132 unsigned int mode_words
10133 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10134 /* We form (outer_op (code varop count) (outer_const)). */
10135 enum rtx_code outer_op = UNKNOWN;
10136 HOST_WIDE_INT outer_const = 0;
10137 int complement_p = 0;
10138 rtx new_rtx, x;
10140 /* Make sure and truncate the "natural" shift on the way in. We don't
10141 want to do this inside the loop as it makes it more difficult to
10142 combine shifts. */
10143 if (SHIFT_COUNT_TRUNCATED)
10144 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10146 /* If we were given an invalid count, don't do anything except exactly
10147 what was requested. */
10149 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10150 return NULL_RTX;
10152 count = orig_count;
10154 /* Unless one of the branches of the `if' in this loop does a `continue',
10155 we will `break' the loop after the `if'. */
10157 while (count != 0)
10159 /* If we have an operand of (clobber (const_int 0)), fail. */
10160 if (GET_CODE (varop) == CLOBBER)
10161 return NULL_RTX;
10163 /* Convert ROTATERT to ROTATE. */
10164 if (code == ROTATERT)
10166 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10167 code = ROTATE;
10168 if (VECTOR_MODE_P (result_mode))
10169 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10170 else
10171 count = bitsize - count;
10174 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10175 mode, outer_op, outer_const);
10177 /* Handle cases where the count is greater than the size of the mode
10178 minus 1. For ASHIFT, use the size minus one as the count (this can
10179 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10180 take the count modulo the size. For other shifts, the result is
10181 zero.
10183 Since these shifts are being produced by the compiler by combining
10184 multiple operations, each of which are defined, we know what the
10185 result is supposed to be. */
10187 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10189 if (code == ASHIFTRT)
10190 count = GET_MODE_PRECISION (shift_mode) - 1;
10191 else if (code == ROTATE || code == ROTATERT)
10192 count %= GET_MODE_PRECISION (shift_mode);
10193 else
10195 /* We can't simply return zero because there may be an
10196 outer op. */
10197 varop = const0_rtx;
10198 count = 0;
10199 break;
10203 /* If we discovered we had to complement VAROP, leave. Making a NOT
10204 here would cause an infinite loop. */
10205 if (complement_p)
10206 break;
10208 /* An arithmetic right shift of a quantity known to be -1 or 0
10209 is a no-op. */
10210 if (code == ASHIFTRT
10211 && (num_sign_bit_copies (varop, shift_mode)
10212 == GET_MODE_PRECISION (shift_mode)))
10214 count = 0;
10215 break;
10218 /* If we are doing an arithmetic right shift and discarding all but
10219 the sign bit copies, this is equivalent to doing a shift by the
10220 bitsize minus one. Convert it into that shift because it will often
10221 allow other simplifications. */
10223 if (code == ASHIFTRT
10224 && (count + num_sign_bit_copies (varop, shift_mode)
10225 >= GET_MODE_PRECISION (shift_mode)))
10226 count = GET_MODE_PRECISION (shift_mode) - 1;
10228 /* We simplify the tests below and elsewhere by converting
10229 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10230 `make_compound_operation' will convert it to an ASHIFTRT for
10231 those machines (such as VAX) that don't have an LSHIFTRT. */
10232 if (code == ASHIFTRT
10233 && val_signbit_known_clear_p (shift_mode,
10234 nonzero_bits (varop, shift_mode)))
10235 code = LSHIFTRT;
10237 if (((code == LSHIFTRT
10238 && HWI_COMPUTABLE_MODE_P (shift_mode)
10239 && !(nonzero_bits (varop, shift_mode) >> count))
10240 || (code == ASHIFT
10241 && HWI_COMPUTABLE_MODE_P (shift_mode)
10242 && !((nonzero_bits (varop, shift_mode) << count)
10243 & GET_MODE_MASK (shift_mode))))
10244 && !side_effects_p (varop))
10245 varop = const0_rtx;
10247 switch (GET_CODE (varop))
10249 case SIGN_EXTEND:
10250 case ZERO_EXTEND:
10251 case SIGN_EXTRACT:
10252 case ZERO_EXTRACT:
10253 new_rtx = expand_compound_operation (varop);
10254 if (new_rtx != varop)
10256 varop = new_rtx;
10257 continue;
10259 break;
10261 case MEM:
10262 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10263 minus the width of a smaller mode, we can do this with a
10264 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10265 if ((code == ASHIFTRT || code == LSHIFTRT)
10266 && ! mode_dependent_address_p (XEXP (varop, 0),
10267 MEM_ADDR_SPACE (varop))
10268 && ! MEM_VOLATILE_P (varop)
10269 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10270 MODE_INT, 1)) != BLKmode)
10272 new_rtx = adjust_address_nv (varop, tmode,
10273 BYTES_BIG_ENDIAN ? 0
10274 : count / BITS_PER_UNIT);
10276 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10277 : ZERO_EXTEND, mode, new_rtx);
10278 count = 0;
10279 continue;
10281 break;
10283 case SUBREG:
10284 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10285 the same number of words as what we've seen so far. Then store
10286 the widest mode in MODE. */
10287 if (subreg_lowpart_p (varop)
10288 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10289 > GET_MODE_SIZE (GET_MODE (varop)))
10290 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10291 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10292 == mode_words
10293 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10294 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10296 varop = SUBREG_REG (varop);
10297 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10298 mode = GET_MODE (varop);
10299 continue;
10301 break;
10303 case MULT:
10304 /* Some machines use MULT instead of ASHIFT because MULT
10305 is cheaper. But it is still better on those machines to
10306 merge two shifts into one. */
10307 if (CONST_INT_P (XEXP (varop, 1))
10308 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10310 varop
10311 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10312 XEXP (varop, 0),
10313 GEN_INT (exact_log2 (
10314 UINTVAL (XEXP (varop, 1)))));
10315 continue;
10317 break;
10319 case UDIV:
10320 /* Similar, for when divides are cheaper. */
10321 if (CONST_INT_P (XEXP (varop, 1))
10322 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10324 varop
10325 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10326 XEXP (varop, 0),
10327 GEN_INT (exact_log2 (
10328 UINTVAL (XEXP (varop, 1)))));
10329 continue;
10331 break;
10333 case ASHIFTRT:
10334 /* If we are extracting just the sign bit of an arithmetic
10335 right shift, that shift is not needed. However, the sign
10336 bit of a wider mode may be different from what would be
10337 interpreted as the sign bit in a narrower mode, so, if
10338 the result is narrower, don't discard the shift. */
10339 if (code == LSHIFTRT
10340 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10341 && (GET_MODE_BITSIZE (result_mode)
10342 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10344 varop = XEXP (varop, 0);
10345 continue;
10348 /* ... fall through ... */
10350 case LSHIFTRT:
10351 case ASHIFT:
10352 case ROTATE:
10353 /* Here we have two nested shifts. The result is usually the
10354 AND of a new shift with a mask. We compute the result below. */
10355 if (CONST_INT_P (XEXP (varop, 1))
10356 && INTVAL (XEXP (varop, 1)) >= 0
10357 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10358 && HWI_COMPUTABLE_MODE_P (result_mode)
10359 && HWI_COMPUTABLE_MODE_P (mode)
10360 && !VECTOR_MODE_P (result_mode))
10362 enum rtx_code first_code = GET_CODE (varop);
10363 unsigned int first_count = INTVAL (XEXP (varop, 1));
10364 unsigned HOST_WIDE_INT mask;
10365 rtx mask_rtx;
10367 /* We have one common special case. We can't do any merging if
10368 the inner code is an ASHIFTRT of a smaller mode. However, if
10369 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10370 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10371 we can convert it to
10372 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10373 This simplifies certain SIGN_EXTEND operations. */
10374 if (code == ASHIFT && first_code == ASHIFTRT
10375 && count == (GET_MODE_PRECISION (result_mode)
10376 - GET_MODE_PRECISION (GET_MODE (varop))))
10378 /* C3 has the low-order C1 bits zero. */
10380 mask = GET_MODE_MASK (mode)
10381 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10383 varop = simplify_and_const_int (NULL_RTX, result_mode,
10384 XEXP (varop, 0), mask);
10385 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10386 varop, count);
10387 count = first_count;
10388 code = ASHIFTRT;
10389 continue;
10392 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10393 than C1 high-order bits equal to the sign bit, we can convert
10394 this to either an ASHIFT or an ASHIFTRT depending on the
10395 two counts.
10397 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10399 if (code == ASHIFTRT && first_code == ASHIFT
10400 && GET_MODE (varop) == shift_mode
10401 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10402 > first_count))
10404 varop = XEXP (varop, 0);
10405 count -= first_count;
10406 if (count < 0)
10408 count = -count;
10409 code = ASHIFT;
10412 continue;
10415 /* There are some cases we can't do. If CODE is ASHIFTRT,
10416 we can only do this if FIRST_CODE is also ASHIFTRT.
10418 We can't do the case when CODE is ROTATE and FIRST_CODE is
10419 ASHIFTRT.
10421 If the mode of this shift is not the mode of the outer shift,
10422 we can't do this if either shift is a right shift or ROTATE.
10424 Finally, we can't do any of these if the mode is too wide
10425 unless the codes are the same.
10427 Handle the case where the shift codes are the same
10428 first. */
10430 if (code == first_code)
10432 if (GET_MODE (varop) != result_mode
10433 && (code == ASHIFTRT || code == LSHIFTRT
10434 || code == ROTATE))
10435 break;
10437 count += first_count;
10438 varop = XEXP (varop, 0);
10439 continue;
10442 if (code == ASHIFTRT
10443 || (code == ROTATE && first_code == ASHIFTRT)
10444 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10445 || (GET_MODE (varop) != result_mode
10446 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10447 || first_code == ROTATE
10448 || code == ROTATE)))
10449 break;
10451 /* To compute the mask to apply after the shift, shift the
10452 nonzero bits of the inner shift the same way the
10453 outer shift will. */
10455 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10456 result_mode);
10458 mask_rtx
10459 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10460 GEN_INT (count));
10462 /* Give up if we can't compute an outer operation to use. */
10463 if (mask_rtx == 0
10464 || !CONST_INT_P (mask_rtx)
10465 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10466 INTVAL (mask_rtx),
10467 result_mode, &complement_p))
10468 break;
10470 /* If the shifts are in the same direction, we add the
10471 counts. Otherwise, we subtract them. */
10472 if ((code == ASHIFTRT || code == LSHIFTRT)
10473 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10474 count += first_count;
10475 else
10476 count -= first_count;
10478 /* If COUNT is positive, the new shift is usually CODE,
10479 except for the two exceptions below, in which case it is
10480 FIRST_CODE. If the count is negative, FIRST_CODE should
10481 always be used */
10482 if (count > 0
10483 && ((first_code == ROTATE && code == ASHIFT)
10484 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10485 code = first_code;
10486 else if (count < 0)
10487 code = first_code, count = -count;
10489 varop = XEXP (varop, 0);
10490 continue;
10493 /* If we have (A << B << C) for any shift, we can convert this to
10494 (A << C << B). This wins if A is a constant. Only try this if
10495 B is not a constant. */
10497 else if (GET_CODE (varop) == code
10498 && CONST_INT_P (XEXP (varop, 0))
10499 && !CONST_INT_P (XEXP (varop, 1)))
10501 rtx new_rtx = simplify_const_binary_operation (code, mode,
10502 XEXP (varop, 0),
10503 GEN_INT (count));
10504 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10505 count = 0;
10506 continue;
10508 break;
10510 case NOT:
10511 if (VECTOR_MODE_P (mode))
10512 break;
10514 /* Make this fit the case below. */
10515 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10516 continue;
10518 case IOR:
10519 case AND:
10520 case XOR:
10521 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10522 with C the size of VAROP - 1 and the shift is logical if
10523 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10524 we have an (le X 0) operation. If we have an arithmetic shift
10525 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10526 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10528 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10529 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10530 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10531 && (code == LSHIFTRT || code == ASHIFTRT)
10532 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10533 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10535 count = 0;
10536 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10537 const0_rtx);
10539 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10540 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10542 continue;
10545 /* If we have (shift (logical)), move the logical to the outside
10546 to allow it to possibly combine with another logical and the
10547 shift to combine with another shift. This also canonicalizes to
10548 what a ZERO_EXTRACT looks like. Also, some machines have
10549 (and (shift)) insns. */
10551 if (CONST_INT_P (XEXP (varop, 1))
10552 /* We can't do this if we have (ashiftrt (xor)) and the
10553 constant has its sign bit set in shift_mode with shift_mode
10554 wider than result_mode. */
10555 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10556 && result_mode != shift_mode
10557 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10558 shift_mode))
10559 && (new_rtx = simplify_const_binary_operation
10560 (code, result_mode,
10561 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10562 GEN_INT (count))) != 0
10563 && CONST_INT_P (new_rtx)
10564 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10565 INTVAL (new_rtx), result_mode, &complement_p))
10567 varop = XEXP (varop, 0);
10568 continue;
10571 /* If we can't do that, try to simplify the shift in each arm of the
10572 logical expression, make a new logical expression, and apply
10573 the inverse distributive law. This also can't be done for
10574 (ashiftrt (xor)) where we've widened the shift and the constant
10575 changes the sign bit. */
10576 if (CONST_INT_P (XEXP (varop, 1))
10577 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10578 && result_mode != shift_mode
10579 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10580 shift_mode)))
10582 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10583 XEXP (varop, 0), count);
10584 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10585 XEXP (varop, 1), count);
10587 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10588 lhs, rhs);
10589 varop = apply_distributive_law (varop);
10591 count = 0;
10592 continue;
10594 break;
10596 case EQ:
10597 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10598 says that the sign bit can be tested, FOO has mode MODE, C is
10599 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10600 that may be nonzero. */
10601 if (code == LSHIFTRT
10602 && XEXP (varop, 1) == const0_rtx
10603 && GET_MODE (XEXP (varop, 0)) == result_mode
10604 && count == (GET_MODE_PRECISION (result_mode) - 1)
10605 && HWI_COMPUTABLE_MODE_P (result_mode)
10606 && STORE_FLAG_VALUE == -1
10607 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10608 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10609 &complement_p))
10611 varop = XEXP (varop, 0);
10612 count = 0;
10613 continue;
10615 break;
10617 case NEG:
10618 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10619 than the number of bits in the mode is equivalent to A. */
10620 if (code == LSHIFTRT
10621 && count == (GET_MODE_PRECISION (result_mode) - 1)
10622 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10624 varop = XEXP (varop, 0);
10625 count = 0;
10626 continue;
10629 /* NEG commutes with ASHIFT since it is multiplication. Move the
10630 NEG outside to allow shifts to combine. */
10631 if (code == ASHIFT
10632 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10633 &complement_p))
10635 varop = XEXP (varop, 0);
10636 continue;
10638 break;
10640 case PLUS:
10641 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10642 is one less than the number of bits in the mode is
10643 equivalent to (xor A 1). */
10644 if (code == LSHIFTRT
10645 && count == (GET_MODE_PRECISION (result_mode) - 1)
10646 && XEXP (varop, 1) == constm1_rtx
10647 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10648 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10649 &complement_p))
10651 count = 0;
10652 varop = XEXP (varop, 0);
10653 continue;
10656 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10657 that might be nonzero in BAR are those being shifted out and those
10658 bits are known zero in FOO, we can replace the PLUS with FOO.
10659 Similarly in the other operand order. This code occurs when
10660 we are computing the size of a variable-size array. */
10662 if ((code == ASHIFTRT || code == LSHIFTRT)
10663 && count < HOST_BITS_PER_WIDE_INT
10664 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10665 && (nonzero_bits (XEXP (varop, 1), result_mode)
10666 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10668 varop = XEXP (varop, 0);
10669 continue;
10671 else if ((code == ASHIFTRT || code == LSHIFTRT)
10672 && count < HOST_BITS_PER_WIDE_INT
10673 && HWI_COMPUTABLE_MODE_P (result_mode)
10674 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10675 >> count)
10676 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10677 & nonzero_bits (XEXP (varop, 1),
10678 result_mode)))
10680 varop = XEXP (varop, 1);
10681 continue;
10684 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10685 if (code == ASHIFT
10686 && CONST_INT_P (XEXP (varop, 1))
10687 && (new_rtx = simplify_const_binary_operation
10688 (ASHIFT, result_mode,
10689 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10690 GEN_INT (count))) != 0
10691 && CONST_INT_P (new_rtx)
10692 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10693 INTVAL (new_rtx), result_mode, &complement_p))
10695 varop = XEXP (varop, 0);
10696 continue;
10699 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10700 signbit', and attempt to change the PLUS to an XOR and move it to
10701 the outer operation as is done above in the AND/IOR/XOR case
10702 leg for shift(logical). See details in logical handling above
10703 for reasoning in doing so. */
10704 if (code == LSHIFTRT
10705 && CONST_INT_P (XEXP (varop, 1))
10706 && mode_signbit_p (result_mode, XEXP (varop, 1))
10707 && (new_rtx = simplify_const_binary_operation
10708 (code, result_mode,
10709 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10710 GEN_INT (count))) != 0
10711 && CONST_INT_P (new_rtx)
10712 && merge_outer_ops (&outer_op, &outer_const, XOR,
10713 INTVAL (new_rtx), result_mode, &complement_p))
10715 varop = XEXP (varop, 0);
10716 continue;
10719 break;
10721 case MINUS:
10722 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10723 with C the size of VAROP - 1 and the shift is logical if
10724 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10725 we have a (gt X 0) operation. If the shift is arithmetic with
10726 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10727 we have a (neg (gt X 0)) operation. */
10729 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10730 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10731 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10732 && (code == LSHIFTRT || code == ASHIFTRT)
10733 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10734 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10735 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10737 count = 0;
10738 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10739 const0_rtx);
10741 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10742 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10744 continue;
10746 break;
10748 case TRUNCATE:
10749 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10750 if the truncate does not affect the value. */
10751 if (code == LSHIFTRT
10752 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10753 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10754 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10755 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10756 - GET_MODE_PRECISION (GET_MODE (varop)))))
10758 rtx varop_inner = XEXP (varop, 0);
10760 varop_inner
10761 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10762 XEXP (varop_inner, 0),
10763 GEN_INT
10764 (count + INTVAL (XEXP (varop_inner, 1))));
10765 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10766 count = 0;
10767 continue;
10769 break;
10771 default:
10772 break;
10775 break;
10778 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10779 outer_op, outer_const);
10781 /* We have now finished analyzing the shift. The result should be
10782 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10783 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10784 to the result of the shift. OUTER_CONST is the relevant constant,
10785 but we must turn off all bits turned off in the shift. */
10787 if (outer_op == UNKNOWN
10788 && orig_code == code && orig_count == count
10789 && varop == orig_varop
10790 && shift_mode == GET_MODE (varop))
10791 return NULL_RTX;
10793 /* Make a SUBREG if necessary. If we can't make it, fail. */
10794 varop = gen_lowpart (shift_mode, varop);
10795 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10796 return NULL_RTX;
10798 /* If we have an outer operation and we just made a shift, it is
10799 possible that we could have simplified the shift were it not
10800 for the outer operation. So try to do the simplification
10801 recursively. */
10803 if (outer_op != UNKNOWN)
10804 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10805 else
10806 x = NULL_RTX;
10808 if (x == NULL_RTX)
10809 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10811 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10812 turn off all the bits that the shift would have turned off. */
10813 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10814 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10815 GET_MODE_MASK (result_mode) >> orig_count);
10817 /* Do the remainder of the processing in RESULT_MODE. */
10818 x = gen_lowpart_or_truncate (result_mode, x);
10820 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10821 operation. */
10822 if (complement_p)
10823 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10825 if (outer_op != UNKNOWN)
10827 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10828 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10829 outer_const = trunc_int_for_mode (outer_const, result_mode);
10831 if (outer_op == AND)
10832 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10833 else if (outer_op == SET)
10835 /* This means that we have determined that the result is
10836 equivalent to a constant. This should be rare. */
10837 if (!side_effects_p (x))
10838 x = GEN_INT (outer_const);
10840 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10841 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10842 else
10843 x = simplify_gen_binary (outer_op, result_mode, x,
10844 GEN_INT (outer_const));
10847 return x;
10850 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10851 The result of the shift is RESULT_MODE. If we cannot simplify it,
10852 return X or, if it is NULL, synthesize the expression with
10853 simplify_gen_binary. Otherwise, return a simplified value.
10855 The shift is normally computed in the widest mode we find in VAROP, as
10856 long as it isn't a different number of words than RESULT_MODE. Exceptions
10857 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10859 static rtx
10860 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10861 rtx varop, int count)
10863 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10864 if (tem)
10865 return tem;
10867 if (!x)
10868 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10869 if (GET_MODE (x) != result_mode)
10870 x = gen_lowpart (result_mode, x);
10871 return x;
10875 /* A subroutine of recog_for_combine. See there for arguments and
10876 return value. */
10878 static int
10879 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10881 rtx pat = *pnewpat;
10882 rtx pat_without_clobbers;
10883 int insn_code_number;
10884 int num_clobbers_to_add = 0;
10885 int i;
10886 rtx notes = NULL_RTX;
10887 rtx old_notes, old_pat;
10888 int old_icode;
10890 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10891 we use to indicate that something didn't match. If we find such a
10892 thing, force rejection. */
10893 if (GET_CODE (pat) == PARALLEL)
10894 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10895 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10896 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10897 return -1;
10899 old_pat = PATTERN (insn);
10900 old_notes = REG_NOTES (insn);
10901 PATTERN (insn) = pat;
10902 REG_NOTES (insn) = NULL_RTX;
10904 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10905 if (dump_file && (dump_flags & TDF_DETAILS))
10907 if (insn_code_number < 0)
10908 fputs ("Failed to match this instruction:\n", dump_file);
10909 else
10910 fputs ("Successfully matched this instruction:\n", dump_file);
10911 print_rtl_single (dump_file, pat);
10914 /* If it isn't, there is the possibility that we previously had an insn
10915 that clobbered some register as a side effect, but the combined
10916 insn doesn't need to do that. So try once more without the clobbers
10917 unless this represents an ASM insn. */
10919 if (insn_code_number < 0 && ! check_asm_operands (pat)
10920 && GET_CODE (pat) == PARALLEL)
10922 int pos;
10924 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10925 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10927 if (i != pos)
10928 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10929 pos++;
10932 SUBST_INT (XVECLEN (pat, 0), pos);
10934 if (pos == 1)
10935 pat = XVECEXP (pat, 0, 0);
10937 PATTERN (insn) = pat;
10938 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10939 if (dump_file && (dump_flags & TDF_DETAILS))
10941 if (insn_code_number < 0)
10942 fputs ("Failed to match this instruction:\n", dump_file);
10943 else
10944 fputs ("Successfully matched this instruction:\n", dump_file);
10945 print_rtl_single (dump_file, pat);
10949 pat_without_clobbers = pat;
10951 PATTERN (insn) = old_pat;
10952 REG_NOTES (insn) = old_notes;
10954 /* Recognize all noop sets, these will be killed by followup pass. */
10955 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10956 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10958 /* If we had any clobbers to add, make a new pattern than contains
10959 them. Then check to make sure that all of them are dead. */
10960 if (num_clobbers_to_add)
10962 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10963 rtvec_alloc (GET_CODE (pat) == PARALLEL
10964 ? (XVECLEN (pat, 0)
10965 + num_clobbers_to_add)
10966 : num_clobbers_to_add + 1));
10968 if (GET_CODE (pat) == PARALLEL)
10969 for (i = 0; i < XVECLEN (pat, 0); i++)
10970 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10971 else
10972 XVECEXP (newpat, 0, 0) = pat;
10974 add_clobbers (newpat, insn_code_number);
10976 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10977 i < XVECLEN (newpat, 0); i++)
10979 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10980 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10981 return -1;
10982 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10984 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10985 notes = alloc_reg_note (REG_UNUSED,
10986 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10989 pat = newpat;
10992 if (insn_code_number >= 0
10993 && insn_code_number != NOOP_MOVE_INSN_CODE)
10995 old_pat = PATTERN (insn);
10996 old_notes = REG_NOTES (insn);
10997 old_icode = INSN_CODE (insn);
10998 PATTERN (insn) = pat;
10999 REG_NOTES (insn) = notes;
11001 /* Allow targets to reject combined insn. */
11002 if (!targetm.legitimate_combined_insn (insn))
11004 if (dump_file && (dump_flags & TDF_DETAILS))
11005 fputs ("Instruction not appropriate for target.",
11006 dump_file);
11008 /* Callers expect recog_for_combine to strip
11009 clobbers from the pattern on failure. */
11010 pat = pat_without_clobbers;
11011 notes = NULL_RTX;
11013 insn_code_number = -1;
11016 PATTERN (insn) = old_pat;
11017 REG_NOTES (insn) = old_notes;
11018 INSN_CODE (insn) = old_icode;
11021 *pnewpat = pat;
11022 *pnotes = notes;
11024 return insn_code_number;
11027 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11028 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11029 Return whether anything was so changed. */
11031 static bool
11032 change_zero_ext (rtx *src)
11034 bool changed = false;
11036 subrtx_ptr_iterator::array_type array;
11037 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11039 rtx x = **iter;
11040 machine_mode mode = GET_MODE (x);
11041 int size;
11043 if (GET_CODE (x) == ZERO_EXTRACT
11044 && CONST_INT_P (XEXP (x, 1))
11045 && CONST_INT_P (XEXP (x, 2))
11046 && GET_MODE (XEXP (x, 0)) == mode)
11048 size = INTVAL (XEXP (x, 1));
11050 int start = INTVAL (XEXP (x, 2));
11051 if (BITS_BIG_ENDIAN)
11052 start = GET_MODE_PRECISION (mode) - size - start;
11054 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11056 else if (GET_CODE (x) == ZERO_EXTEND
11057 && GET_CODE (XEXP (x, 0)) == SUBREG
11058 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11059 && subreg_lowpart_p (XEXP (x, 0)))
11061 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11062 x = SUBREG_REG (XEXP (x, 0));
11064 else
11065 continue;
11067 unsigned HOST_WIDE_INT mask = 1;
11068 mask <<= size;
11069 mask--;
11071 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11073 SUBST (**iter, x);
11074 changed = true;
11077 return changed;
11080 /* Like recog, but we receive the address of a pointer to a new pattern.
11081 We try to match the rtx that the pointer points to.
11082 If that fails, we may try to modify or replace the pattern,
11083 storing the replacement into the same pointer object.
11085 Modifications include deletion or addition of CLOBBERs. If the
11086 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11087 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11088 (and undo if that fails).
11090 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11091 the CLOBBERs are placed.
11093 The value is the final insn code from the pattern ultimately matched,
11094 or -1. */
11096 static int
11097 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11099 rtx pat = PATTERN (insn);
11100 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11101 if (insn_code_number >= 0 || check_asm_operands (pat))
11102 return insn_code_number;
11104 void *marker = get_undo_marker ();
11105 bool changed = false;
11107 if (GET_CODE (pat) == SET)
11108 changed = change_zero_ext (&SET_SRC (pat));
11109 else if (GET_CODE (pat) == PARALLEL)
11111 int i;
11112 for (i = 0; i < XVECLEN (pat, 0); i++)
11114 rtx set = XVECEXP (pat, 0, i);
11115 if (GET_CODE (set) == SET)
11116 changed |= change_zero_ext (&SET_SRC (set));
11120 if (changed)
11122 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11124 if (insn_code_number < 0)
11125 undo_to_marker (marker);
11128 return insn_code_number;
11131 /* Like gen_lowpart_general but for use by combine. In combine it
11132 is not possible to create any new pseudoregs. However, it is
11133 safe to create invalid memory addresses, because combine will
11134 try to recognize them and all they will do is make the combine
11135 attempt fail.
11137 If for some reason this cannot do its job, an rtx
11138 (clobber (const_int 0)) is returned.
11139 An insn containing that will not be recognized. */
11141 static rtx
11142 gen_lowpart_for_combine (machine_mode omode, rtx x)
11144 machine_mode imode = GET_MODE (x);
11145 unsigned int osize = GET_MODE_SIZE (omode);
11146 unsigned int isize = GET_MODE_SIZE (imode);
11147 rtx result;
11149 if (omode == imode)
11150 return x;
11152 /* We can only support MODE being wider than a word if X is a
11153 constant integer or has a mode the same size. */
11154 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11155 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11156 goto fail;
11158 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11159 won't know what to do. So we will strip off the SUBREG here and
11160 process normally. */
11161 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11163 x = SUBREG_REG (x);
11165 /* For use in case we fall down into the address adjustments
11166 further below, we need to adjust the known mode and size of
11167 x; imode and isize, since we just adjusted x. */
11168 imode = GET_MODE (x);
11170 if (imode == omode)
11171 return x;
11173 isize = GET_MODE_SIZE (imode);
11176 result = gen_lowpart_common (omode, x);
11178 if (result)
11179 return result;
11181 if (MEM_P (x))
11183 int offset = 0;
11185 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11186 address. */
11187 if (MEM_VOLATILE_P (x)
11188 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11189 goto fail;
11191 /* If we want to refer to something bigger than the original memref,
11192 generate a paradoxical subreg instead. That will force a reload
11193 of the original memref X. */
11194 if (isize < osize)
11195 return gen_rtx_SUBREG (omode, x, 0);
11197 if (WORDS_BIG_ENDIAN)
11198 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11200 /* Adjust the address so that the address-after-the-data is
11201 unchanged. */
11202 if (BYTES_BIG_ENDIAN)
11203 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11205 return adjust_address_nv (x, omode, offset);
11208 /* If X is a comparison operator, rewrite it in a new mode. This
11209 probably won't match, but may allow further simplifications. */
11210 else if (COMPARISON_P (x))
11211 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11213 /* If we couldn't simplify X any other way, just enclose it in a
11214 SUBREG. Normally, this SUBREG won't match, but some patterns may
11215 include an explicit SUBREG or we may simplify it further in combine. */
11216 else
11218 int offset = 0;
11219 rtx res;
11221 offset = subreg_lowpart_offset (omode, imode);
11222 if (imode == VOIDmode)
11224 imode = int_mode_for_mode (omode);
11225 x = gen_lowpart_common (imode, x);
11226 if (x == NULL)
11227 goto fail;
11229 res = simplify_gen_subreg (omode, x, imode, offset);
11230 if (res)
11231 return res;
11234 fail:
11235 return gen_rtx_CLOBBER (omode, const0_rtx);
11238 /* Try to simplify a comparison between OP0 and a constant OP1,
11239 where CODE is the comparison code that will be tested, into a
11240 (CODE OP0 const0_rtx) form.
11242 The result is a possibly different comparison code to use.
11243 *POP1 may be updated. */
11245 static enum rtx_code
11246 simplify_compare_const (enum rtx_code code, machine_mode mode,
11247 rtx op0, rtx *pop1)
11249 unsigned int mode_width = GET_MODE_PRECISION (mode);
11250 HOST_WIDE_INT const_op = INTVAL (*pop1);
11252 /* Get the constant we are comparing against and turn off all bits
11253 not on in our mode. */
11254 if (mode != VOIDmode)
11255 const_op = trunc_int_for_mode (const_op, mode);
11257 /* If we are comparing against a constant power of two and the value
11258 being compared can only have that single bit nonzero (e.g., it was
11259 `and'ed with that bit), we can replace this with a comparison
11260 with zero. */
11261 if (const_op
11262 && (code == EQ || code == NE || code == GE || code == GEU
11263 || code == LT || code == LTU)
11264 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11265 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11266 && (nonzero_bits (op0, mode)
11267 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11269 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11270 const_op = 0;
11273 /* Similarly, if we are comparing a value known to be either -1 or
11274 0 with -1, change it to the opposite comparison against zero. */
11275 if (const_op == -1
11276 && (code == EQ || code == NE || code == GT || code == LE
11277 || code == GEU || code == LTU)
11278 && num_sign_bit_copies (op0, mode) == mode_width)
11280 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11281 const_op = 0;
11284 /* Do some canonicalizations based on the comparison code. We prefer
11285 comparisons against zero and then prefer equality comparisons.
11286 If we can reduce the size of a constant, we will do that too. */
11287 switch (code)
11289 case LT:
11290 /* < C is equivalent to <= (C - 1) */
11291 if (const_op > 0)
11293 const_op -= 1;
11294 code = LE;
11295 /* ... fall through to LE case below. */
11297 else
11298 break;
11300 case LE:
11301 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11302 if (const_op < 0)
11304 const_op += 1;
11305 code = LT;
11308 /* If we are doing a <= 0 comparison on a value known to have
11309 a zero sign bit, we can replace this with == 0. */
11310 else if (const_op == 0
11311 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11312 && (nonzero_bits (op0, mode)
11313 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11314 == 0)
11315 code = EQ;
11316 break;
11318 case GE:
11319 /* >= C is equivalent to > (C - 1). */
11320 if (const_op > 0)
11322 const_op -= 1;
11323 code = GT;
11324 /* ... fall through to GT below. */
11326 else
11327 break;
11329 case GT:
11330 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11331 if (const_op < 0)
11333 const_op += 1;
11334 code = GE;
11337 /* If we are doing a > 0 comparison on a value known to have
11338 a zero sign bit, we can replace this with != 0. */
11339 else if (const_op == 0
11340 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11341 && (nonzero_bits (op0, mode)
11342 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11343 == 0)
11344 code = NE;
11345 break;
11347 case LTU:
11348 /* < C is equivalent to <= (C - 1). */
11349 if (const_op > 0)
11351 const_op -= 1;
11352 code = LEU;
11353 /* ... fall through ... */
11355 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11356 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11357 && (unsigned HOST_WIDE_INT) const_op
11358 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11360 const_op = 0;
11361 code = GE;
11362 break;
11364 else
11365 break;
11367 case LEU:
11368 /* unsigned <= 0 is equivalent to == 0 */
11369 if (const_op == 0)
11370 code = EQ;
11371 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11372 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11373 && (unsigned HOST_WIDE_INT) const_op
11374 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11376 const_op = 0;
11377 code = GE;
11379 break;
11381 case GEU:
11382 /* >= C is equivalent to > (C - 1). */
11383 if (const_op > 1)
11385 const_op -= 1;
11386 code = GTU;
11387 /* ... fall through ... */
11390 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11391 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11392 && (unsigned HOST_WIDE_INT) const_op
11393 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11395 const_op = 0;
11396 code = LT;
11397 break;
11399 else
11400 break;
11402 case GTU:
11403 /* unsigned > 0 is equivalent to != 0 */
11404 if (const_op == 0)
11405 code = NE;
11406 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11407 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11408 && (unsigned HOST_WIDE_INT) const_op
11409 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11411 const_op = 0;
11412 code = LT;
11414 break;
11416 default:
11417 break;
11420 *pop1 = GEN_INT (const_op);
11421 return code;
11424 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11425 comparison code that will be tested.
11427 The result is a possibly different comparison code to use. *POP0 and
11428 *POP1 may be updated.
11430 It is possible that we might detect that a comparison is either always
11431 true or always false. However, we do not perform general constant
11432 folding in combine, so this knowledge isn't useful. Such tautologies
11433 should have been detected earlier. Hence we ignore all such cases. */
11435 static enum rtx_code
11436 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11438 rtx op0 = *pop0;
11439 rtx op1 = *pop1;
11440 rtx tem, tem1;
11441 int i;
11442 machine_mode mode, tmode;
11444 /* Try a few ways of applying the same transformation to both operands. */
11445 while (1)
11447 #ifndef WORD_REGISTER_OPERATIONS
11448 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11449 so check specially. */
11450 if (code != GTU && code != GEU && code != LTU && code != LEU
11451 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11452 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11453 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11454 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11455 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11456 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11457 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11458 && CONST_INT_P (XEXP (op0, 1))
11459 && XEXP (op0, 1) == XEXP (op1, 1)
11460 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11461 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11462 && (INTVAL (XEXP (op0, 1))
11463 == (GET_MODE_PRECISION (GET_MODE (op0))
11464 - (GET_MODE_PRECISION
11465 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11467 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11468 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11470 #endif
11472 /* If both operands are the same constant shift, see if we can ignore the
11473 shift. We can if the shift is a rotate or if the bits shifted out of
11474 this shift are known to be zero for both inputs and if the type of
11475 comparison is compatible with the shift. */
11476 if (GET_CODE (op0) == GET_CODE (op1)
11477 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11478 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11479 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11480 && (code != GT && code != LT && code != GE && code != LE))
11481 || (GET_CODE (op0) == ASHIFTRT
11482 && (code != GTU && code != LTU
11483 && code != GEU && code != LEU)))
11484 && CONST_INT_P (XEXP (op0, 1))
11485 && INTVAL (XEXP (op0, 1)) >= 0
11486 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11487 && XEXP (op0, 1) == XEXP (op1, 1))
11489 machine_mode mode = GET_MODE (op0);
11490 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11491 int shift_count = INTVAL (XEXP (op0, 1));
11493 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11494 mask &= (mask >> shift_count) << shift_count;
11495 else if (GET_CODE (op0) == ASHIFT)
11496 mask = (mask & (mask << shift_count)) >> shift_count;
11498 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11499 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11500 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11501 else
11502 break;
11505 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11506 SUBREGs are of the same mode, and, in both cases, the AND would
11507 be redundant if the comparison was done in the narrower mode,
11508 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11509 and the operand's possibly nonzero bits are 0xffffff01; in that case
11510 if we only care about QImode, we don't need the AND). This case
11511 occurs if the output mode of an scc insn is not SImode and
11512 STORE_FLAG_VALUE == 1 (e.g., the 386).
11514 Similarly, check for a case where the AND's are ZERO_EXTEND
11515 operations from some narrower mode even though a SUBREG is not
11516 present. */
11518 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11519 && CONST_INT_P (XEXP (op0, 1))
11520 && CONST_INT_P (XEXP (op1, 1)))
11522 rtx inner_op0 = XEXP (op0, 0);
11523 rtx inner_op1 = XEXP (op1, 0);
11524 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11525 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11526 int changed = 0;
11528 if (paradoxical_subreg_p (inner_op0)
11529 && GET_CODE (inner_op1) == SUBREG
11530 && (GET_MODE (SUBREG_REG (inner_op0))
11531 == GET_MODE (SUBREG_REG (inner_op1)))
11532 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11533 <= HOST_BITS_PER_WIDE_INT)
11534 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11535 GET_MODE (SUBREG_REG (inner_op0)))))
11536 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11537 GET_MODE (SUBREG_REG (inner_op1))))))
11539 op0 = SUBREG_REG (inner_op0);
11540 op1 = SUBREG_REG (inner_op1);
11542 /* The resulting comparison is always unsigned since we masked
11543 off the original sign bit. */
11544 code = unsigned_condition (code);
11546 changed = 1;
11549 else if (c0 == c1)
11550 for (tmode = GET_CLASS_NARROWEST_MODE
11551 (GET_MODE_CLASS (GET_MODE (op0)));
11552 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11553 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11555 op0 = gen_lowpart (tmode, inner_op0);
11556 op1 = gen_lowpart (tmode, inner_op1);
11557 code = unsigned_condition (code);
11558 changed = 1;
11559 break;
11562 if (! changed)
11563 break;
11566 /* If both operands are NOT, we can strip off the outer operation
11567 and adjust the comparison code for swapped operands; similarly for
11568 NEG, except that this must be an equality comparison. */
11569 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11570 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11571 && (code == EQ || code == NE)))
11572 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11574 else
11575 break;
11578 /* If the first operand is a constant, swap the operands and adjust the
11579 comparison code appropriately, but don't do this if the second operand
11580 is already a constant integer. */
11581 if (swap_commutative_operands_p (op0, op1))
11583 std::swap (op0, op1);
11584 code = swap_condition (code);
11587 /* We now enter a loop during which we will try to simplify the comparison.
11588 For the most part, we only are concerned with comparisons with zero,
11589 but some things may really be comparisons with zero but not start
11590 out looking that way. */
11592 while (CONST_INT_P (op1))
11594 machine_mode mode = GET_MODE (op0);
11595 unsigned int mode_width = GET_MODE_PRECISION (mode);
11596 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11597 int equality_comparison_p;
11598 int sign_bit_comparison_p;
11599 int unsigned_comparison_p;
11600 HOST_WIDE_INT const_op;
11602 /* We only want to handle integral modes. This catches VOIDmode,
11603 CCmode, and the floating-point modes. An exception is that we
11604 can handle VOIDmode if OP0 is a COMPARE or a comparison
11605 operation. */
11607 if (GET_MODE_CLASS (mode) != MODE_INT
11608 && ! (mode == VOIDmode
11609 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11610 break;
11612 /* Try to simplify the compare to constant, possibly changing the
11613 comparison op, and/or changing op1 to zero. */
11614 code = simplify_compare_const (code, mode, op0, &op1);
11615 const_op = INTVAL (op1);
11617 /* Compute some predicates to simplify code below. */
11619 equality_comparison_p = (code == EQ || code == NE);
11620 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11621 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11622 || code == GEU);
11624 /* If this is a sign bit comparison and we can do arithmetic in
11625 MODE, say that we will only be needing the sign bit of OP0. */
11626 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11627 op0 = force_to_mode (op0, mode,
11628 (unsigned HOST_WIDE_INT) 1
11629 << (GET_MODE_PRECISION (mode) - 1),
11632 /* Now try cases based on the opcode of OP0. If none of the cases
11633 does a "continue", we exit this loop immediately after the
11634 switch. */
11636 switch (GET_CODE (op0))
11638 case ZERO_EXTRACT:
11639 /* If we are extracting a single bit from a variable position in
11640 a constant that has only a single bit set and are comparing it
11641 with zero, we can convert this into an equality comparison
11642 between the position and the location of the single bit. */
11643 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11644 have already reduced the shift count modulo the word size. */
11645 if (!SHIFT_COUNT_TRUNCATED
11646 && CONST_INT_P (XEXP (op0, 0))
11647 && XEXP (op0, 1) == const1_rtx
11648 && equality_comparison_p && const_op == 0
11649 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11651 if (BITS_BIG_ENDIAN)
11652 i = BITS_PER_WORD - 1 - i;
11654 op0 = XEXP (op0, 2);
11655 op1 = GEN_INT (i);
11656 const_op = i;
11658 /* Result is nonzero iff shift count is equal to I. */
11659 code = reverse_condition (code);
11660 continue;
11663 /* ... fall through ... */
11665 case SIGN_EXTRACT:
11666 tem = expand_compound_operation (op0);
11667 if (tem != op0)
11669 op0 = tem;
11670 continue;
11672 break;
11674 case NOT:
11675 /* If testing for equality, we can take the NOT of the constant. */
11676 if (equality_comparison_p
11677 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11679 op0 = XEXP (op0, 0);
11680 op1 = tem;
11681 continue;
11684 /* If just looking at the sign bit, reverse the sense of the
11685 comparison. */
11686 if (sign_bit_comparison_p)
11688 op0 = XEXP (op0, 0);
11689 code = (code == GE ? LT : GE);
11690 continue;
11692 break;
11694 case NEG:
11695 /* If testing for equality, we can take the NEG of the constant. */
11696 if (equality_comparison_p
11697 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11699 op0 = XEXP (op0, 0);
11700 op1 = tem;
11701 continue;
11704 /* The remaining cases only apply to comparisons with zero. */
11705 if (const_op != 0)
11706 break;
11708 /* When X is ABS or is known positive,
11709 (neg X) is < 0 if and only if X != 0. */
11711 if (sign_bit_comparison_p
11712 && (GET_CODE (XEXP (op0, 0)) == ABS
11713 || (mode_width <= HOST_BITS_PER_WIDE_INT
11714 && (nonzero_bits (XEXP (op0, 0), mode)
11715 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11716 == 0)))
11718 op0 = XEXP (op0, 0);
11719 code = (code == LT ? NE : EQ);
11720 continue;
11723 /* If we have NEG of something whose two high-order bits are the
11724 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11725 if (num_sign_bit_copies (op0, mode) >= 2)
11727 op0 = XEXP (op0, 0);
11728 code = swap_condition (code);
11729 continue;
11731 break;
11733 case ROTATE:
11734 /* If we are testing equality and our count is a constant, we
11735 can perform the inverse operation on our RHS. */
11736 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11737 && (tem = simplify_binary_operation (ROTATERT, mode,
11738 op1, XEXP (op0, 1))) != 0)
11740 op0 = XEXP (op0, 0);
11741 op1 = tem;
11742 continue;
11745 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11746 a particular bit. Convert it to an AND of a constant of that
11747 bit. This will be converted into a ZERO_EXTRACT. */
11748 if (const_op == 0 && sign_bit_comparison_p
11749 && CONST_INT_P (XEXP (op0, 1))
11750 && mode_width <= HOST_BITS_PER_WIDE_INT)
11752 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11753 ((unsigned HOST_WIDE_INT) 1
11754 << (mode_width - 1
11755 - INTVAL (XEXP (op0, 1)))));
11756 code = (code == LT ? NE : EQ);
11757 continue;
11760 /* Fall through. */
11762 case ABS:
11763 /* ABS is ignorable inside an equality comparison with zero. */
11764 if (const_op == 0 && equality_comparison_p)
11766 op0 = XEXP (op0, 0);
11767 continue;
11769 break;
11771 case SIGN_EXTEND:
11772 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11773 (compare FOO CONST) if CONST fits in FOO's mode and we
11774 are either testing inequality or have an unsigned
11775 comparison with ZERO_EXTEND or a signed comparison with
11776 SIGN_EXTEND. But don't do it if we don't have a compare
11777 insn of the given mode, since we'd have to revert it
11778 later on, and then we wouldn't know whether to sign- or
11779 zero-extend. */
11780 mode = GET_MODE (XEXP (op0, 0));
11781 if (GET_MODE_CLASS (mode) == MODE_INT
11782 && ! unsigned_comparison_p
11783 && HWI_COMPUTABLE_MODE_P (mode)
11784 && trunc_int_for_mode (const_op, mode) == const_op
11785 && have_insn_for (COMPARE, mode))
11787 op0 = XEXP (op0, 0);
11788 continue;
11790 break;
11792 case SUBREG:
11793 /* Check for the case where we are comparing A - C1 with C2, that is
11795 (subreg:MODE (plus (A) (-C1))) op (C2)
11797 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11798 comparison in the wider mode. One of the following two conditions
11799 must be true in order for this to be valid:
11801 1. The mode extension results in the same bit pattern being added
11802 on both sides and the comparison is equality or unsigned. As
11803 C2 has been truncated to fit in MODE, the pattern can only be
11804 all 0s or all 1s.
11806 2. The mode extension results in the sign bit being copied on
11807 each side.
11809 The difficulty here is that we have predicates for A but not for
11810 (A - C1) so we need to check that C1 is within proper bounds so
11811 as to perturbate A as little as possible. */
11813 if (mode_width <= HOST_BITS_PER_WIDE_INT
11814 && subreg_lowpart_p (op0)
11815 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11816 && GET_CODE (SUBREG_REG (op0)) == PLUS
11817 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11819 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11820 rtx a = XEXP (SUBREG_REG (op0), 0);
11821 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11823 if ((c1 > 0
11824 && (unsigned HOST_WIDE_INT) c1
11825 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11826 && (equality_comparison_p || unsigned_comparison_p)
11827 /* (A - C1) zero-extends if it is positive and sign-extends
11828 if it is negative, C2 both zero- and sign-extends. */
11829 && ((0 == (nonzero_bits (a, inner_mode)
11830 & ~GET_MODE_MASK (mode))
11831 && const_op >= 0)
11832 /* (A - C1) sign-extends if it is positive and 1-extends
11833 if it is negative, C2 both sign- and 1-extends. */
11834 || (num_sign_bit_copies (a, inner_mode)
11835 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11836 - mode_width)
11837 && const_op < 0)))
11838 || ((unsigned HOST_WIDE_INT) c1
11839 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11840 /* (A - C1) always sign-extends, like C2. */
11841 && num_sign_bit_copies (a, inner_mode)
11842 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11843 - (mode_width - 1))))
11845 op0 = SUBREG_REG (op0);
11846 continue;
11850 /* If the inner mode is narrower and we are extracting the low part,
11851 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11852 if (subreg_lowpart_p (op0)
11853 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11854 /* Fall through */ ;
11855 else
11856 break;
11858 /* ... fall through ... */
11860 case ZERO_EXTEND:
11861 mode = GET_MODE (XEXP (op0, 0));
11862 if (GET_MODE_CLASS (mode) == MODE_INT
11863 && (unsigned_comparison_p || equality_comparison_p)
11864 && HWI_COMPUTABLE_MODE_P (mode)
11865 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11866 && const_op >= 0
11867 && have_insn_for (COMPARE, mode))
11869 op0 = XEXP (op0, 0);
11870 continue;
11872 break;
11874 case PLUS:
11875 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11876 this for equality comparisons due to pathological cases involving
11877 overflows. */
11878 if (equality_comparison_p
11879 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11880 op1, XEXP (op0, 1))))
11882 op0 = XEXP (op0, 0);
11883 op1 = tem;
11884 continue;
11887 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11888 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11889 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11891 op0 = XEXP (XEXP (op0, 0), 0);
11892 code = (code == LT ? EQ : NE);
11893 continue;
11895 break;
11897 case MINUS:
11898 /* We used to optimize signed comparisons against zero, but that
11899 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11900 arrive here as equality comparisons, or (GEU, LTU) are
11901 optimized away. No need to special-case them. */
11903 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11904 (eq B (minus A C)), whichever simplifies. We can only do
11905 this for equality comparisons due to pathological cases involving
11906 overflows. */
11907 if (equality_comparison_p
11908 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11909 XEXP (op0, 1), op1)))
11911 op0 = XEXP (op0, 0);
11912 op1 = tem;
11913 continue;
11916 if (equality_comparison_p
11917 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11918 XEXP (op0, 0), op1)))
11920 op0 = XEXP (op0, 1);
11921 op1 = tem;
11922 continue;
11925 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11926 of bits in X minus 1, is one iff X > 0. */
11927 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11928 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11929 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11930 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11932 op0 = XEXP (op0, 1);
11933 code = (code == GE ? LE : GT);
11934 continue;
11936 break;
11938 case XOR:
11939 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11940 if C is zero or B is a constant. */
11941 if (equality_comparison_p
11942 && 0 != (tem = simplify_binary_operation (XOR, mode,
11943 XEXP (op0, 1), op1)))
11945 op0 = XEXP (op0, 0);
11946 op1 = tem;
11947 continue;
11949 break;
11951 case EQ: case NE:
11952 case UNEQ: case LTGT:
11953 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11954 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11955 case UNORDERED: case ORDERED:
11956 /* We can't do anything if OP0 is a condition code value, rather
11957 than an actual data value. */
11958 if (const_op != 0
11959 || CC0_P (XEXP (op0, 0))
11960 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11961 break;
11963 /* Get the two operands being compared. */
11964 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11965 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11966 else
11967 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11969 /* Check for the cases where we simply want the result of the
11970 earlier test or the opposite of that result. */
11971 if (code == NE || code == EQ
11972 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11973 && (code == LT || code == GE)))
11975 enum rtx_code new_code;
11976 if (code == LT || code == NE)
11977 new_code = GET_CODE (op0);
11978 else
11979 new_code = reversed_comparison_code (op0, NULL);
11981 if (new_code != UNKNOWN)
11983 code = new_code;
11984 op0 = tem;
11985 op1 = tem1;
11986 continue;
11989 break;
11991 case IOR:
11992 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11993 iff X <= 0. */
11994 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11995 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11996 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11998 op0 = XEXP (op0, 1);
11999 code = (code == GE ? GT : LE);
12000 continue;
12002 break;
12004 case AND:
12005 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12006 will be converted to a ZERO_EXTRACT later. */
12007 if (const_op == 0 && equality_comparison_p
12008 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12009 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12011 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12012 XEXP (XEXP (op0, 0), 1));
12013 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12014 continue;
12017 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12018 zero and X is a comparison and C1 and C2 describe only bits set
12019 in STORE_FLAG_VALUE, we can compare with X. */
12020 if (const_op == 0 && equality_comparison_p
12021 && mode_width <= HOST_BITS_PER_WIDE_INT
12022 && CONST_INT_P (XEXP (op0, 1))
12023 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12024 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12025 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12026 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12028 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12029 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12030 if ((~STORE_FLAG_VALUE & mask) == 0
12031 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12032 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12033 && COMPARISON_P (tem))))
12035 op0 = XEXP (XEXP (op0, 0), 0);
12036 continue;
12040 /* If we are doing an equality comparison of an AND of a bit equal
12041 to the sign bit, replace this with a LT or GE comparison of
12042 the underlying value. */
12043 if (equality_comparison_p
12044 && const_op == 0
12045 && CONST_INT_P (XEXP (op0, 1))
12046 && mode_width <= HOST_BITS_PER_WIDE_INT
12047 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12048 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12050 op0 = XEXP (op0, 0);
12051 code = (code == EQ ? GE : LT);
12052 continue;
12055 /* If this AND operation is really a ZERO_EXTEND from a narrower
12056 mode, the constant fits within that mode, and this is either an
12057 equality or unsigned comparison, try to do this comparison in
12058 the narrower mode.
12060 Note that in:
12062 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12063 -> (ne:DI (reg:SI 4) (const_int 0))
12065 unless TRULY_NOOP_TRUNCATION allows it or the register is
12066 known to hold a value of the required mode the
12067 transformation is invalid. */
12068 if ((equality_comparison_p || unsigned_comparison_p)
12069 && CONST_INT_P (XEXP (op0, 1))
12070 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12071 & GET_MODE_MASK (mode))
12072 + 1)) >= 0
12073 && const_op >> i == 0
12074 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
12075 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
12076 || (REG_P (XEXP (op0, 0))
12077 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
12079 op0 = gen_lowpart (tmode, XEXP (op0, 0));
12080 continue;
12083 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
12084 fits in both M1 and M2 and the SUBREG is either paradoxical
12085 or represents the low part, permute the SUBREG and the AND
12086 and try again. */
12087 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
12089 unsigned HOST_WIDE_INT c1;
12090 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12091 /* Require an integral mode, to avoid creating something like
12092 (AND:SF ...). */
12093 if (SCALAR_INT_MODE_P (tmode)
12094 /* It is unsafe to commute the AND into the SUBREG if the
12095 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12096 not defined. As originally written the upper bits
12097 have a defined value due to the AND operation.
12098 However, if we commute the AND inside the SUBREG then
12099 they no longer have defined values and the meaning of
12100 the code has been changed. */
12101 && (0
12102 #ifdef WORD_REGISTER_OPERATIONS
12103 || (mode_width > GET_MODE_PRECISION (tmode)
12104 && mode_width <= BITS_PER_WORD)
12105 #endif
12106 || (mode_width <= GET_MODE_PRECISION (tmode)
12107 && subreg_lowpart_p (XEXP (op0, 0))))
12108 && CONST_INT_P (XEXP (op0, 1))
12109 && mode_width <= HOST_BITS_PER_WIDE_INT
12110 && HWI_COMPUTABLE_MODE_P (tmode)
12111 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
12112 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12113 && c1 != mask
12114 && c1 != GET_MODE_MASK (tmode))
12116 op0 = simplify_gen_binary (AND, tmode,
12117 SUBREG_REG (XEXP (op0, 0)),
12118 gen_int_mode (c1, tmode));
12119 op0 = gen_lowpart (mode, op0);
12120 continue;
12124 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12125 if (const_op == 0 && equality_comparison_p
12126 && XEXP (op0, 1) == const1_rtx
12127 && GET_CODE (XEXP (op0, 0)) == NOT)
12129 op0 = simplify_and_const_int (NULL_RTX, mode,
12130 XEXP (XEXP (op0, 0), 0), 1);
12131 code = (code == NE ? EQ : NE);
12132 continue;
12135 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12136 (eq (and (lshiftrt X) 1) 0).
12137 Also handle the case where (not X) is expressed using xor. */
12138 if (const_op == 0 && equality_comparison_p
12139 && XEXP (op0, 1) == const1_rtx
12140 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12142 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12143 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12145 if (GET_CODE (shift_op) == NOT
12146 || (GET_CODE (shift_op) == XOR
12147 && CONST_INT_P (XEXP (shift_op, 1))
12148 && CONST_INT_P (shift_count)
12149 && HWI_COMPUTABLE_MODE_P (mode)
12150 && (UINTVAL (XEXP (shift_op, 1))
12151 == (unsigned HOST_WIDE_INT) 1
12152 << INTVAL (shift_count))))
12155 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12156 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12157 code = (code == NE ? EQ : NE);
12158 continue;
12161 break;
12163 case ASHIFT:
12164 /* If we have (compare (ashift FOO N) (const_int C)) and
12165 the high order N bits of FOO (N+1 if an inequality comparison)
12166 are known to be zero, we can do this by comparing FOO with C
12167 shifted right N bits so long as the low-order N bits of C are
12168 zero. */
12169 if (CONST_INT_P (XEXP (op0, 1))
12170 && INTVAL (XEXP (op0, 1)) >= 0
12171 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12172 < HOST_BITS_PER_WIDE_INT)
12173 && (((unsigned HOST_WIDE_INT) const_op
12174 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12175 - 1)) == 0)
12176 && mode_width <= HOST_BITS_PER_WIDE_INT
12177 && (nonzero_bits (XEXP (op0, 0), mode)
12178 & ~(mask >> (INTVAL (XEXP (op0, 1))
12179 + ! equality_comparison_p))) == 0)
12181 /* We must perform a logical shift, not an arithmetic one,
12182 as we want the top N bits of C to be zero. */
12183 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12185 temp >>= INTVAL (XEXP (op0, 1));
12186 op1 = gen_int_mode (temp, mode);
12187 op0 = XEXP (op0, 0);
12188 continue;
12191 /* If we are doing a sign bit comparison, it means we are testing
12192 a particular bit. Convert it to the appropriate AND. */
12193 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12194 && mode_width <= HOST_BITS_PER_WIDE_INT)
12196 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12197 ((unsigned HOST_WIDE_INT) 1
12198 << (mode_width - 1
12199 - INTVAL (XEXP (op0, 1)))));
12200 code = (code == LT ? NE : EQ);
12201 continue;
12204 /* If this an equality comparison with zero and we are shifting
12205 the low bit to the sign bit, we can convert this to an AND of the
12206 low-order bit. */
12207 if (const_op == 0 && equality_comparison_p
12208 && CONST_INT_P (XEXP (op0, 1))
12209 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12211 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12212 continue;
12214 break;
12216 case ASHIFTRT:
12217 /* If this is an equality comparison with zero, we can do this
12218 as a logical shift, which might be much simpler. */
12219 if (equality_comparison_p && const_op == 0
12220 && CONST_INT_P (XEXP (op0, 1)))
12222 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12223 XEXP (op0, 0),
12224 INTVAL (XEXP (op0, 1)));
12225 continue;
12228 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12229 do the comparison in a narrower mode. */
12230 if (! unsigned_comparison_p
12231 && CONST_INT_P (XEXP (op0, 1))
12232 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12233 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12234 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12235 MODE_INT, 1)) != BLKmode
12236 && (((unsigned HOST_WIDE_INT) const_op
12237 + (GET_MODE_MASK (tmode) >> 1) + 1)
12238 <= GET_MODE_MASK (tmode)))
12240 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12241 continue;
12244 /* Likewise if OP0 is a PLUS of a sign extension with a
12245 constant, which is usually represented with the PLUS
12246 between the shifts. */
12247 if (! unsigned_comparison_p
12248 && CONST_INT_P (XEXP (op0, 1))
12249 && GET_CODE (XEXP (op0, 0)) == PLUS
12250 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12251 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12252 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12253 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12254 MODE_INT, 1)) != BLKmode
12255 && (((unsigned HOST_WIDE_INT) const_op
12256 + (GET_MODE_MASK (tmode) >> 1) + 1)
12257 <= GET_MODE_MASK (tmode)))
12259 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12260 rtx add_const = XEXP (XEXP (op0, 0), 1);
12261 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12262 add_const, XEXP (op0, 1));
12264 op0 = simplify_gen_binary (PLUS, tmode,
12265 gen_lowpart (tmode, inner),
12266 new_const);
12267 continue;
12270 /* ... fall through ... */
12271 case LSHIFTRT:
12272 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12273 the low order N bits of FOO are known to be zero, we can do this
12274 by comparing FOO with C shifted left N bits so long as no
12275 overflow occurs. Even if the low order N bits of FOO aren't known
12276 to be zero, if the comparison is >= or < we can use the same
12277 optimization and for > or <= by setting all the low
12278 order N bits in the comparison constant. */
12279 if (CONST_INT_P (XEXP (op0, 1))
12280 && INTVAL (XEXP (op0, 1)) > 0
12281 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12282 && mode_width <= HOST_BITS_PER_WIDE_INT
12283 && (((unsigned HOST_WIDE_INT) const_op
12284 + (GET_CODE (op0) != LSHIFTRT
12285 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12286 + 1)
12287 : 0))
12288 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12290 unsigned HOST_WIDE_INT low_bits
12291 = (nonzero_bits (XEXP (op0, 0), mode)
12292 & (((unsigned HOST_WIDE_INT) 1
12293 << INTVAL (XEXP (op0, 1))) - 1));
12294 if (low_bits == 0 || !equality_comparison_p)
12296 /* If the shift was logical, then we must make the condition
12297 unsigned. */
12298 if (GET_CODE (op0) == LSHIFTRT)
12299 code = unsigned_condition (code);
12301 const_op <<= INTVAL (XEXP (op0, 1));
12302 if (low_bits != 0
12303 && (code == GT || code == GTU
12304 || code == LE || code == LEU))
12305 const_op
12306 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12307 op1 = GEN_INT (const_op);
12308 op0 = XEXP (op0, 0);
12309 continue;
12313 /* If we are using this shift to extract just the sign bit, we
12314 can replace this with an LT or GE comparison. */
12315 if (const_op == 0
12316 && (equality_comparison_p || sign_bit_comparison_p)
12317 && CONST_INT_P (XEXP (op0, 1))
12318 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12320 op0 = XEXP (op0, 0);
12321 code = (code == NE || code == GT ? LT : GE);
12322 continue;
12324 break;
12326 default:
12327 break;
12330 break;
12333 /* Now make any compound operations involved in this comparison. Then,
12334 check for an outmost SUBREG on OP0 that is not doing anything or is
12335 paradoxical. The latter transformation must only be performed when
12336 it is known that the "extra" bits will be the same in op0 and op1 or
12337 that they don't matter. There are three cases to consider:
12339 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12340 care bits and we can assume they have any convenient value. So
12341 making the transformation is safe.
12343 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12344 In this case the upper bits of op0 are undefined. We should not make
12345 the simplification in that case as we do not know the contents of
12346 those bits.
12348 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12349 UNKNOWN. In that case we know those bits are zeros or ones. We must
12350 also be sure that they are the same as the upper bits of op1.
12352 We can never remove a SUBREG for a non-equality comparison because
12353 the sign bit is in a different place in the underlying object. */
12355 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12356 op1 = make_compound_operation (op1, SET);
12358 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12359 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12360 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12361 && (code == NE || code == EQ))
12363 if (paradoxical_subreg_p (op0))
12365 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12366 implemented. */
12367 if (REG_P (SUBREG_REG (op0)))
12369 op0 = SUBREG_REG (op0);
12370 op1 = gen_lowpart (GET_MODE (op0), op1);
12373 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12374 <= HOST_BITS_PER_WIDE_INT)
12375 && (nonzero_bits (SUBREG_REG (op0),
12376 GET_MODE (SUBREG_REG (op0)))
12377 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12379 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12381 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12382 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12383 op0 = SUBREG_REG (op0), op1 = tem;
12387 /* We now do the opposite procedure: Some machines don't have compare
12388 insns in all modes. If OP0's mode is an integer mode smaller than a
12389 word and we can't do a compare in that mode, see if there is a larger
12390 mode for which we can do the compare. There are a number of cases in
12391 which we can use the wider mode. */
12393 mode = GET_MODE (op0);
12394 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12395 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12396 && ! have_insn_for (COMPARE, mode))
12397 for (tmode = GET_MODE_WIDER_MODE (mode);
12398 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12399 tmode = GET_MODE_WIDER_MODE (tmode))
12400 if (have_insn_for (COMPARE, tmode))
12402 int zero_extended;
12404 /* If this is a test for negative, we can make an explicit
12405 test of the sign bit. Test this first so we can use
12406 a paradoxical subreg to extend OP0. */
12408 if (op1 == const0_rtx && (code == LT || code == GE)
12409 && HWI_COMPUTABLE_MODE_P (mode))
12411 unsigned HOST_WIDE_INT sign
12412 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12413 op0 = simplify_gen_binary (AND, tmode,
12414 gen_lowpart (tmode, op0),
12415 gen_int_mode (sign, tmode));
12416 code = (code == LT) ? NE : EQ;
12417 break;
12420 /* If the only nonzero bits in OP0 and OP1 are those in the
12421 narrower mode and this is an equality or unsigned comparison,
12422 we can use the wider mode. Similarly for sign-extended
12423 values, in which case it is true for all comparisons. */
12424 zero_extended = ((code == EQ || code == NE
12425 || code == GEU || code == GTU
12426 || code == LEU || code == LTU)
12427 && (nonzero_bits (op0, tmode)
12428 & ~GET_MODE_MASK (mode)) == 0
12429 && ((CONST_INT_P (op1)
12430 || (nonzero_bits (op1, tmode)
12431 & ~GET_MODE_MASK (mode)) == 0)));
12433 if (zero_extended
12434 || ((num_sign_bit_copies (op0, tmode)
12435 > (unsigned int) (GET_MODE_PRECISION (tmode)
12436 - GET_MODE_PRECISION (mode)))
12437 && (num_sign_bit_copies (op1, tmode)
12438 > (unsigned int) (GET_MODE_PRECISION (tmode)
12439 - GET_MODE_PRECISION (mode)))))
12441 /* If OP0 is an AND and we don't have an AND in MODE either,
12442 make a new AND in the proper mode. */
12443 if (GET_CODE (op0) == AND
12444 && !have_insn_for (AND, mode))
12445 op0 = simplify_gen_binary (AND, tmode,
12446 gen_lowpart (tmode,
12447 XEXP (op0, 0)),
12448 gen_lowpart (tmode,
12449 XEXP (op0, 1)));
12450 else
12452 if (zero_extended)
12454 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12455 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12457 else
12459 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12460 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12462 break;
12467 /* We may have changed the comparison operands. Re-canonicalize. */
12468 if (swap_commutative_operands_p (op0, op1))
12470 std::swap (op0, op1);
12471 code = swap_condition (code);
12474 /* If this machine only supports a subset of valid comparisons, see if we
12475 can convert an unsupported one into a supported one. */
12476 target_canonicalize_comparison (&code, &op0, &op1, 0);
12478 *pop0 = op0;
12479 *pop1 = op1;
12481 return code;
12484 /* Utility function for record_value_for_reg. Count number of
12485 rtxs in X. */
12486 static int
12487 count_rtxs (rtx x)
12489 enum rtx_code code = GET_CODE (x);
12490 const char *fmt;
12491 int i, j, ret = 1;
12493 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12494 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12496 rtx x0 = XEXP (x, 0);
12497 rtx x1 = XEXP (x, 1);
12499 if (x0 == x1)
12500 return 1 + 2 * count_rtxs (x0);
12502 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12503 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12504 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12505 return 2 + 2 * count_rtxs (x0)
12506 + count_rtxs (x == XEXP (x1, 0)
12507 ? XEXP (x1, 1) : XEXP (x1, 0));
12509 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12510 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12511 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12512 return 2 + 2 * count_rtxs (x1)
12513 + count_rtxs (x == XEXP (x0, 0)
12514 ? XEXP (x0, 1) : XEXP (x0, 0));
12517 fmt = GET_RTX_FORMAT (code);
12518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12519 if (fmt[i] == 'e')
12520 ret += count_rtxs (XEXP (x, i));
12521 else if (fmt[i] == 'E')
12522 for (j = 0; j < XVECLEN (x, i); j++)
12523 ret += count_rtxs (XVECEXP (x, i, j));
12525 return ret;
12528 /* Utility function for following routine. Called when X is part of a value
12529 being stored into last_set_value. Sets last_set_table_tick
12530 for each register mentioned. Similar to mention_regs in cse.c */
12532 static void
12533 update_table_tick (rtx x)
12535 enum rtx_code code = GET_CODE (x);
12536 const char *fmt = GET_RTX_FORMAT (code);
12537 int i, j;
12539 if (code == REG)
12541 unsigned int regno = REGNO (x);
12542 unsigned int endregno = END_REGNO (x);
12543 unsigned int r;
12545 for (r = regno; r < endregno; r++)
12547 reg_stat_type *rsp = &reg_stat[r];
12548 rsp->last_set_table_tick = label_tick;
12551 return;
12554 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12555 if (fmt[i] == 'e')
12557 /* Check for identical subexpressions. If x contains
12558 identical subexpression we only have to traverse one of
12559 them. */
12560 if (i == 0 && ARITHMETIC_P (x))
12562 /* Note that at this point x1 has already been
12563 processed. */
12564 rtx x0 = XEXP (x, 0);
12565 rtx x1 = XEXP (x, 1);
12567 /* If x0 and x1 are identical then there is no need to
12568 process x0. */
12569 if (x0 == x1)
12570 break;
12572 /* If x0 is identical to a subexpression of x1 then while
12573 processing x1, x0 has already been processed. Thus we
12574 are done with x. */
12575 if (ARITHMETIC_P (x1)
12576 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12577 break;
12579 /* If x1 is identical to a subexpression of x0 then we
12580 still have to process the rest of x0. */
12581 if (ARITHMETIC_P (x0)
12582 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12584 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12585 break;
12589 update_table_tick (XEXP (x, i));
12591 else if (fmt[i] == 'E')
12592 for (j = 0; j < XVECLEN (x, i); j++)
12593 update_table_tick (XVECEXP (x, i, j));
12596 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12597 are saying that the register is clobbered and we no longer know its
12598 value. If INSN is zero, don't update reg_stat[].last_set; this is
12599 only permitted with VALUE also zero and is used to invalidate the
12600 register. */
12602 static void
12603 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12605 unsigned int regno = REGNO (reg);
12606 unsigned int endregno = END_REGNO (reg);
12607 unsigned int i;
12608 reg_stat_type *rsp;
12610 /* If VALUE contains REG and we have a previous value for REG, substitute
12611 the previous value. */
12612 if (value && insn && reg_overlap_mentioned_p (reg, value))
12614 rtx tem;
12616 /* Set things up so get_last_value is allowed to see anything set up to
12617 our insn. */
12618 subst_low_luid = DF_INSN_LUID (insn);
12619 tem = get_last_value (reg);
12621 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12622 it isn't going to be useful and will take a lot of time to process,
12623 so just use the CLOBBER. */
12625 if (tem)
12627 if (ARITHMETIC_P (tem)
12628 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12629 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12630 tem = XEXP (tem, 0);
12631 else if (count_occurrences (value, reg, 1) >= 2)
12633 /* If there are two or more occurrences of REG in VALUE,
12634 prevent the value from growing too much. */
12635 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12636 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12639 value = replace_rtx (copy_rtx (value), reg, tem);
12643 /* For each register modified, show we don't know its value, that
12644 we don't know about its bitwise content, that its value has been
12645 updated, and that we don't know the location of the death of the
12646 register. */
12647 for (i = regno; i < endregno; i++)
12649 rsp = &reg_stat[i];
12651 if (insn)
12652 rsp->last_set = insn;
12654 rsp->last_set_value = 0;
12655 rsp->last_set_mode = VOIDmode;
12656 rsp->last_set_nonzero_bits = 0;
12657 rsp->last_set_sign_bit_copies = 0;
12658 rsp->last_death = 0;
12659 rsp->truncated_to_mode = VOIDmode;
12662 /* Mark registers that are being referenced in this value. */
12663 if (value)
12664 update_table_tick (value);
12666 /* Now update the status of each register being set.
12667 If someone is using this register in this block, set this register
12668 to invalid since we will get confused between the two lives in this
12669 basic block. This makes using this register always invalid. In cse, we
12670 scan the table to invalidate all entries using this register, but this
12671 is too much work for us. */
12673 for (i = regno; i < endregno; i++)
12675 rsp = &reg_stat[i];
12676 rsp->last_set_label = label_tick;
12677 if (!insn
12678 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12679 rsp->last_set_invalid = 1;
12680 else
12681 rsp->last_set_invalid = 0;
12684 /* The value being assigned might refer to X (like in "x++;"). In that
12685 case, we must replace it with (clobber (const_int 0)) to prevent
12686 infinite loops. */
12687 rsp = &reg_stat[regno];
12688 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12690 value = copy_rtx (value);
12691 if (!get_last_value_validate (&value, insn, label_tick, 1))
12692 value = 0;
12695 /* For the main register being modified, update the value, the mode, the
12696 nonzero bits, and the number of sign bit copies. */
12698 rsp->last_set_value = value;
12700 if (value)
12702 machine_mode mode = GET_MODE (reg);
12703 subst_low_luid = DF_INSN_LUID (insn);
12704 rsp->last_set_mode = mode;
12705 if (GET_MODE_CLASS (mode) == MODE_INT
12706 && HWI_COMPUTABLE_MODE_P (mode))
12707 mode = nonzero_bits_mode;
12708 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12709 rsp->last_set_sign_bit_copies
12710 = num_sign_bit_copies (value, GET_MODE (reg));
12714 /* Called via note_stores from record_dead_and_set_regs to handle one
12715 SET or CLOBBER in an insn. DATA is the instruction in which the
12716 set is occurring. */
12718 static void
12719 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12721 rtx_insn *record_dead_insn = (rtx_insn *) data;
12723 if (GET_CODE (dest) == SUBREG)
12724 dest = SUBREG_REG (dest);
12726 if (!record_dead_insn)
12728 if (REG_P (dest))
12729 record_value_for_reg (dest, NULL, NULL_RTX);
12730 return;
12733 if (REG_P (dest))
12735 /* If we are setting the whole register, we know its value. Otherwise
12736 show that we don't know the value. We can handle SUBREG in
12737 some cases. */
12738 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12739 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12740 else if (GET_CODE (setter) == SET
12741 && GET_CODE (SET_DEST (setter)) == SUBREG
12742 && SUBREG_REG (SET_DEST (setter)) == dest
12743 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12744 && subreg_lowpart_p (SET_DEST (setter)))
12745 record_value_for_reg (dest, record_dead_insn,
12746 gen_lowpart (GET_MODE (dest),
12747 SET_SRC (setter)));
12748 else
12749 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12751 else if (MEM_P (dest)
12752 /* Ignore pushes, they clobber nothing. */
12753 && ! push_operand (dest, GET_MODE (dest)))
12754 mem_last_set = DF_INSN_LUID (record_dead_insn);
12757 /* Update the records of when each REG was most recently set or killed
12758 for the things done by INSN. This is the last thing done in processing
12759 INSN in the combiner loop.
12761 We update reg_stat[], in particular fields last_set, last_set_value,
12762 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12763 last_death, and also the similar information mem_last_set (which insn
12764 most recently modified memory) and last_call_luid (which insn was the
12765 most recent subroutine call). */
12767 static void
12768 record_dead_and_set_regs (rtx_insn *insn)
12770 rtx link;
12771 unsigned int i;
12773 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12775 if (REG_NOTE_KIND (link) == REG_DEAD
12776 && REG_P (XEXP (link, 0)))
12778 unsigned int regno = REGNO (XEXP (link, 0));
12779 unsigned int endregno = END_REGNO (XEXP (link, 0));
12781 for (i = regno; i < endregno; i++)
12783 reg_stat_type *rsp;
12785 rsp = &reg_stat[i];
12786 rsp->last_death = insn;
12789 else if (REG_NOTE_KIND (link) == REG_INC)
12790 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12793 if (CALL_P (insn))
12795 hard_reg_set_iterator hrsi;
12796 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12798 reg_stat_type *rsp;
12800 rsp = &reg_stat[i];
12801 rsp->last_set_invalid = 1;
12802 rsp->last_set = insn;
12803 rsp->last_set_value = 0;
12804 rsp->last_set_mode = VOIDmode;
12805 rsp->last_set_nonzero_bits = 0;
12806 rsp->last_set_sign_bit_copies = 0;
12807 rsp->last_death = 0;
12808 rsp->truncated_to_mode = VOIDmode;
12811 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12813 /* We can't combine into a call pattern. Remember, though, that
12814 the return value register is set at this LUID. We could
12815 still replace a register with the return value from the
12816 wrong subroutine call! */
12817 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12819 else
12820 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12823 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12824 register present in the SUBREG, so for each such SUBREG go back and
12825 adjust nonzero and sign bit information of the registers that are
12826 known to have some zero/sign bits set.
12828 This is needed because when combine blows the SUBREGs away, the
12829 information on zero/sign bits is lost and further combines can be
12830 missed because of that. */
12832 static void
12833 record_promoted_value (rtx_insn *insn, rtx subreg)
12835 struct insn_link *links;
12836 rtx set;
12837 unsigned int regno = REGNO (SUBREG_REG (subreg));
12838 machine_mode mode = GET_MODE (subreg);
12840 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12841 return;
12843 for (links = LOG_LINKS (insn); links;)
12845 reg_stat_type *rsp;
12847 insn = links->insn;
12848 set = single_set (insn);
12850 if (! set || !REG_P (SET_DEST (set))
12851 || REGNO (SET_DEST (set)) != regno
12852 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12854 links = links->next;
12855 continue;
12858 rsp = &reg_stat[regno];
12859 if (rsp->last_set == insn)
12861 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12862 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12865 if (REG_P (SET_SRC (set)))
12867 regno = REGNO (SET_SRC (set));
12868 links = LOG_LINKS (insn);
12870 else
12871 break;
12875 /* Check if X, a register, is known to contain a value already
12876 truncated to MODE. In this case we can use a subreg to refer to
12877 the truncated value even though in the generic case we would need
12878 an explicit truncation. */
12880 static bool
12881 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12883 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12884 machine_mode truncated = rsp->truncated_to_mode;
12886 if (truncated == 0
12887 || rsp->truncation_label < label_tick_ebb_start)
12888 return false;
12889 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12890 return true;
12891 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12892 return true;
12893 return false;
12896 /* If X is a hard reg or a subreg record the mode that the register is
12897 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12898 to turn a truncate into a subreg using this information. Return true
12899 if traversing X is complete. */
12901 static bool
12902 record_truncated_value (rtx x)
12904 machine_mode truncated_mode;
12905 reg_stat_type *rsp;
12907 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12909 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12910 truncated_mode = GET_MODE (x);
12912 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12913 return true;
12915 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12916 return true;
12918 x = SUBREG_REG (x);
12920 /* ??? For hard-regs we now record everything. We might be able to
12921 optimize this using last_set_mode. */
12922 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12923 truncated_mode = GET_MODE (x);
12924 else
12925 return false;
12927 rsp = &reg_stat[REGNO (x)];
12928 if (rsp->truncated_to_mode == 0
12929 || rsp->truncation_label < label_tick_ebb_start
12930 || (GET_MODE_SIZE (truncated_mode)
12931 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12933 rsp->truncated_to_mode = truncated_mode;
12934 rsp->truncation_label = label_tick;
12937 return true;
12940 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12941 the modes they are used in. This can help truning TRUNCATEs into
12942 SUBREGs. */
12944 static void
12945 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12947 subrtx_var_iterator::array_type array;
12948 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12949 if (record_truncated_value (*iter))
12950 iter.skip_subrtxes ();
12953 /* Scan X for promoted SUBREGs. For each one found,
12954 note what it implies to the registers used in it. */
12956 static void
12957 check_promoted_subreg (rtx_insn *insn, rtx x)
12959 if (GET_CODE (x) == SUBREG
12960 && SUBREG_PROMOTED_VAR_P (x)
12961 && REG_P (SUBREG_REG (x)))
12962 record_promoted_value (insn, x);
12963 else
12965 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12966 int i, j;
12968 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12969 switch (format[i])
12971 case 'e':
12972 check_promoted_subreg (insn, XEXP (x, i));
12973 break;
12974 case 'V':
12975 case 'E':
12976 if (XVEC (x, i) != 0)
12977 for (j = 0; j < XVECLEN (x, i); j++)
12978 check_promoted_subreg (insn, XVECEXP (x, i, j));
12979 break;
12984 /* Verify that all the registers and memory references mentioned in *LOC are
12985 still valid. *LOC was part of a value set in INSN when label_tick was
12986 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12987 the invalid references with (clobber (const_int 0)) and return 1. This
12988 replacement is useful because we often can get useful information about
12989 the form of a value (e.g., if it was produced by a shift that always
12990 produces -1 or 0) even though we don't know exactly what registers it
12991 was produced from. */
12993 static int
12994 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12996 rtx x = *loc;
12997 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12998 int len = GET_RTX_LENGTH (GET_CODE (x));
12999 int i, j;
13001 if (REG_P (x))
13003 unsigned int regno = REGNO (x);
13004 unsigned int endregno = END_REGNO (x);
13005 unsigned int j;
13007 for (j = regno; j < endregno; j++)
13009 reg_stat_type *rsp = &reg_stat[j];
13010 if (rsp->last_set_invalid
13011 /* If this is a pseudo-register that was only set once and not
13012 live at the beginning of the function, it is always valid. */
13013 || (! (regno >= FIRST_PSEUDO_REGISTER
13014 && regno < reg_n_sets_max
13015 && REG_N_SETS (regno) == 1
13016 && (!REGNO_REG_SET_P
13017 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13018 regno)))
13019 && rsp->last_set_label > tick))
13021 if (replace)
13022 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13023 return replace;
13027 return 1;
13029 /* If this is a memory reference, make sure that there were no stores after
13030 it that might have clobbered the value. We don't have alias info, so we
13031 assume any store invalidates it. Moreover, we only have local UIDs, so
13032 we also assume that there were stores in the intervening basic blocks. */
13033 else if (MEM_P (x) && !MEM_READONLY_P (x)
13034 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13036 if (replace)
13037 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13038 return replace;
13041 for (i = 0; i < len; i++)
13043 if (fmt[i] == 'e')
13045 /* Check for identical subexpressions. If x contains
13046 identical subexpression we only have to traverse one of
13047 them. */
13048 if (i == 1 && ARITHMETIC_P (x))
13050 /* Note that at this point x0 has already been checked
13051 and found valid. */
13052 rtx x0 = XEXP (x, 0);
13053 rtx x1 = XEXP (x, 1);
13055 /* If x0 and x1 are identical then x is also valid. */
13056 if (x0 == x1)
13057 return 1;
13059 /* If x1 is identical to a subexpression of x0 then
13060 while checking x0, x1 has already been checked. Thus
13061 it is valid and so as x. */
13062 if (ARITHMETIC_P (x0)
13063 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13064 return 1;
13066 /* If x0 is identical to a subexpression of x1 then x is
13067 valid iff the rest of x1 is valid. */
13068 if (ARITHMETIC_P (x1)
13069 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13070 return
13071 get_last_value_validate (&XEXP (x1,
13072 x0 == XEXP (x1, 0) ? 1 : 0),
13073 insn, tick, replace);
13076 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13077 replace) == 0)
13078 return 0;
13080 else if (fmt[i] == 'E')
13081 for (j = 0; j < XVECLEN (x, i); j++)
13082 if (get_last_value_validate (&XVECEXP (x, i, j),
13083 insn, tick, replace) == 0)
13084 return 0;
13087 /* If we haven't found a reason for it to be invalid, it is valid. */
13088 return 1;
13091 /* Get the last value assigned to X, if known. Some registers
13092 in the value may be replaced with (clobber (const_int 0)) if their value
13093 is known longer known reliably. */
13095 static rtx
13096 get_last_value (const_rtx x)
13098 unsigned int regno;
13099 rtx value;
13100 reg_stat_type *rsp;
13102 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13103 then convert it to the desired mode. If this is a paradoxical SUBREG,
13104 we cannot predict what values the "extra" bits might have. */
13105 if (GET_CODE (x) == SUBREG
13106 && subreg_lowpart_p (x)
13107 && !paradoxical_subreg_p (x)
13108 && (value = get_last_value (SUBREG_REG (x))) != 0)
13109 return gen_lowpart (GET_MODE (x), value);
13111 if (!REG_P (x))
13112 return 0;
13114 regno = REGNO (x);
13115 rsp = &reg_stat[regno];
13116 value = rsp->last_set_value;
13118 /* If we don't have a value, or if it isn't for this basic block and
13119 it's either a hard register, set more than once, or it's a live
13120 at the beginning of the function, return 0.
13122 Because if it's not live at the beginning of the function then the reg
13123 is always set before being used (is never used without being set).
13124 And, if it's set only once, and it's always set before use, then all
13125 uses must have the same last value, even if it's not from this basic
13126 block. */
13128 if (value == 0
13129 || (rsp->last_set_label < label_tick_ebb_start
13130 && (regno < FIRST_PSEUDO_REGISTER
13131 || regno >= reg_n_sets_max
13132 || REG_N_SETS (regno) != 1
13133 || REGNO_REG_SET_P
13134 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13135 return 0;
13137 /* If the value was set in a later insn than the ones we are processing,
13138 we can't use it even if the register was only set once. */
13139 if (rsp->last_set_label == label_tick
13140 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13141 return 0;
13143 /* If the value has all its registers valid, return it. */
13144 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13145 return value;
13147 /* Otherwise, make a copy and replace any invalid register with
13148 (clobber (const_int 0)). If that fails for some reason, return 0. */
13150 value = copy_rtx (value);
13151 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13152 return value;
13154 return 0;
13157 /* Return nonzero if expression X refers to a REG or to memory
13158 that is set in an instruction more recent than FROM_LUID. */
13160 static int
13161 use_crosses_set_p (const_rtx x, int from_luid)
13163 const char *fmt;
13164 int i;
13165 enum rtx_code code = GET_CODE (x);
13167 if (code == REG)
13169 unsigned int regno = REGNO (x);
13170 unsigned endreg = END_REGNO (x);
13172 #ifdef PUSH_ROUNDING
13173 /* Don't allow uses of the stack pointer to be moved,
13174 because we don't know whether the move crosses a push insn. */
13175 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13176 return 1;
13177 #endif
13178 for (; regno < endreg; regno++)
13180 reg_stat_type *rsp = &reg_stat[regno];
13181 if (rsp->last_set
13182 && rsp->last_set_label == label_tick
13183 && DF_INSN_LUID (rsp->last_set) > from_luid)
13184 return 1;
13186 return 0;
13189 if (code == MEM && mem_last_set > from_luid)
13190 return 1;
13192 fmt = GET_RTX_FORMAT (code);
13194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13196 if (fmt[i] == 'E')
13198 int j;
13199 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13200 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13201 return 1;
13203 else if (fmt[i] == 'e'
13204 && use_crosses_set_p (XEXP (x, i), from_luid))
13205 return 1;
13207 return 0;
13210 /* Define three variables used for communication between the following
13211 routines. */
13213 static unsigned int reg_dead_regno, reg_dead_endregno;
13214 static int reg_dead_flag;
13216 /* Function called via note_stores from reg_dead_at_p.
13218 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13219 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13221 static void
13222 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13224 unsigned int regno, endregno;
13226 if (!REG_P (dest))
13227 return;
13229 regno = REGNO (dest);
13230 endregno = END_REGNO (dest);
13231 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13232 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13235 /* Return nonzero if REG is known to be dead at INSN.
13237 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13238 referencing REG, it is dead. If we hit a SET referencing REG, it is
13239 live. Otherwise, see if it is live or dead at the start of the basic
13240 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13241 must be assumed to be always live. */
13243 static int
13244 reg_dead_at_p (rtx reg, rtx_insn *insn)
13246 basic_block block;
13247 unsigned int i;
13249 /* Set variables for reg_dead_at_p_1. */
13250 reg_dead_regno = REGNO (reg);
13251 reg_dead_endregno = END_REGNO (reg);
13253 reg_dead_flag = 0;
13255 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13256 we allow the machine description to decide whether use-and-clobber
13257 patterns are OK. */
13258 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13260 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13261 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13262 return 0;
13265 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13266 beginning of basic block. */
13267 block = BLOCK_FOR_INSN (insn);
13268 for (;;)
13270 if (INSN_P (insn))
13272 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13273 return 1;
13275 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13276 if (reg_dead_flag)
13277 return reg_dead_flag == 1 ? 1 : 0;
13279 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13280 return 1;
13283 if (insn == BB_HEAD (block))
13284 break;
13286 insn = PREV_INSN (insn);
13289 /* Look at live-in sets for the basic block that we were in. */
13290 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13291 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13292 return 0;
13294 return 1;
13297 /* Note hard registers in X that are used. */
13299 static void
13300 mark_used_regs_combine (rtx x)
13302 RTX_CODE code = GET_CODE (x);
13303 unsigned int regno;
13304 int i;
13306 switch (code)
13308 case LABEL_REF:
13309 case SYMBOL_REF:
13310 case CONST:
13311 CASE_CONST_ANY:
13312 case PC:
13313 case ADDR_VEC:
13314 case ADDR_DIFF_VEC:
13315 case ASM_INPUT:
13316 /* CC0 must die in the insn after it is set, so we don't need to take
13317 special note of it here. */
13318 case CC0:
13319 return;
13321 case CLOBBER:
13322 /* If we are clobbering a MEM, mark any hard registers inside the
13323 address as used. */
13324 if (MEM_P (XEXP (x, 0)))
13325 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13326 return;
13328 case REG:
13329 regno = REGNO (x);
13330 /* A hard reg in a wide mode may really be multiple registers.
13331 If so, mark all of them just like the first. */
13332 if (regno < FIRST_PSEUDO_REGISTER)
13334 /* None of this applies to the stack, frame or arg pointers. */
13335 if (regno == STACK_POINTER_REGNUM
13336 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13337 || regno == HARD_FRAME_POINTER_REGNUM
13338 #endif
13339 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13340 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13341 || regno == FRAME_POINTER_REGNUM)
13342 return;
13344 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13346 return;
13348 case SET:
13350 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13351 the address. */
13352 rtx testreg = SET_DEST (x);
13354 while (GET_CODE (testreg) == SUBREG
13355 || GET_CODE (testreg) == ZERO_EXTRACT
13356 || GET_CODE (testreg) == STRICT_LOW_PART)
13357 testreg = XEXP (testreg, 0);
13359 if (MEM_P (testreg))
13360 mark_used_regs_combine (XEXP (testreg, 0));
13362 mark_used_regs_combine (SET_SRC (x));
13364 return;
13366 default:
13367 break;
13370 /* Recursively scan the operands of this expression. */
13373 const char *fmt = GET_RTX_FORMAT (code);
13375 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13377 if (fmt[i] == 'e')
13378 mark_used_regs_combine (XEXP (x, i));
13379 else if (fmt[i] == 'E')
13381 int j;
13383 for (j = 0; j < XVECLEN (x, i); j++)
13384 mark_used_regs_combine (XVECEXP (x, i, j));
13390 /* Remove register number REGNO from the dead registers list of INSN.
13392 Return the note used to record the death, if there was one. */
13395 remove_death (unsigned int regno, rtx_insn *insn)
13397 rtx note = find_regno_note (insn, REG_DEAD, regno);
13399 if (note)
13400 remove_note (insn, note);
13402 return note;
13405 /* For each register (hardware or pseudo) used within expression X, if its
13406 death is in an instruction with luid between FROM_LUID (inclusive) and
13407 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13408 list headed by PNOTES.
13410 That said, don't move registers killed by maybe_kill_insn.
13412 This is done when X is being merged by combination into TO_INSN. These
13413 notes will then be distributed as needed. */
13415 static void
13416 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13417 rtx *pnotes)
13419 const char *fmt;
13420 int len, i;
13421 enum rtx_code code = GET_CODE (x);
13423 if (code == REG)
13425 unsigned int regno = REGNO (x);
13426 rtx_insn *where_dead = reg_stat[regno].last_death;
13428 /* Don't move the register if it gets killed in between from and to. */
13429 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13430 && ! reg_referenced_p (x, maybe_kill_insn))
13431 return;
13433 if (where_dead
13434 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13435 && DF_INSN_LUID (where_dead) >= from_luid
13436 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13438 rtx note = remove_death (regno, where_dead);
13440 /* It is possible for the call above to return 0. This can occur
13441 when last_death points to I2 or I1 that we combined with.
13442 In that case make a new note.
13444 We must also check for the case where X is a hard register
13445 and NOTE is a death note for a range of hard registers
13446 including X. In that case, we must put REG_DEAD notes for
13447 the remaining registers in place of NOTE. */
13449 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13450 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13451 > GET_MODE_SIZE (GET_MODE (x))))
13453 unsigned int deadregno = REGNO (XEXP (note, 0));
13454 unsigned int deadend = END_REGNO (XEXP (note, 0));
13455 unsigned int ourend = END_REGNO (x);
13456 unsigned int i;
13458 for (i = deadregno; i < deadend; i++)
13459 if (i < regno || i >= ourend)
13460 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13463 /* If we didn't find any note, or if we found a REG_DEAD note that
13464 covers only part of the given reg, and we have a multi-reg hard
13465 register, then to be safe we must check for REG_DEAD notes
13466 for each register other than the first. They could have
13467 their own REG_DEAD notes lying around. */
13468 else if ((note == 0
13469 || (note != 0
13470 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13471 < GET_MODE_SIZE (GET_MODE (x)))))
13472 && regno < FIRST_PSEUDO_REGISTER
13473 && REG_NREGS (x) > 1)
13475 unsigned int ourend = END_REGNO (x);
13476 unsigned int i, offset;
13477 rtx oldnotes = 0;
13479 if (note)
13480 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13481 else
13482 offset = 1;
13484 for (i = regno + offset; i < ourend; i++)
13485 move_deaths (regno_reg_rtx[i],
13486 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13489 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13491 XEXP (note, 1) = *pnotes;
13492 *pnotes = note;
13494 else
13495 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13498 return;
13501 else if (GET_CODE (x) == SET)
13503 rtx dest = SET_DEST (x);
13505 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13507 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13508 that accesses one word of a multi-word item, some
13509 piece of everything register in the expression is used by
13510 this insn, so remove any old death. */
13511 /* ??? So why do we test for equality of the sizes? */
13513 if (GET_CODE (dest) == ZERO_EXTRACT
13514 || GET_CODE (dest) == STRICT_LOW_PART
13515 || (GET_CODE (dest) == SUBREG
13516 && (((GET_MODE_SIZE (GET_MODE (dest))
13517 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13518 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13519 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13521 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13522 return;
13525 /* If this is some other SUBREG, we know it replaces the entire
13526 value, so use that as the destination. */
13527 if (GET_CODE (dest) == SUBREG)
13528 dest = SUBREG_REG (dest);
13530 /* If this is a MEM, adjust deaths of anything used in the address.
13531 For a REG (the only other possibility), the entire value is
13532 being replaced so the old value is not used in this insn. */
13534 if (MEM_P (dest))
13535 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13536 to_insn, pnotes);
13537 return;
13540 else if (GET_CODE (x) == CLOBBER)
13541 return;
13543 len = GET_RTX_LENGTH (code);
13544 fmt = GET_RTX_FORMAT (code);
13546 for (i = 0; i < len; i++)
13548 if (fmt[i] == 'E')
13550 int j;
13551 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13552 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13553 to_insn, pnotes);
13555 else if (fmt[i] == 'e')
13556 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13560 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13561 pattern of an insn. X must be a REG. */
13563 static int
13564 reg_bitfield_target_p (rtx x, rtx body)
13566 int i;
13568 if (GET_CODE (body) == SET)
13570 rtx dest = SET_DEST (body);
13571 rtx target;
13572 unsigned int regno, tregno, endregno, endtregno;
13574 if (GET_CODE (dest) == ZERO_EXTRACT)
13575 target = XEXP (dest, 0);
13576 else if (GET_CODE (dest) == STRICT_LOW_PART)
13577 target = SUBREG_REG (XEXP (dest, 0));
13578 else
13579 return 0;
13581 if (GET_CODE (target) == SUBREG)
13582 target = SUBREG_REG (target);
13584 if (!REG_P (target))
13585 return 0;
13587 tregno = REGNO (target), regno = REGNO (x);
13588 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13589 return target == x;
13591 endtregno = end_hard_regno (GET_MODE (target), tregno);
13592 endregno = end_hard_regno (GET_MODE (x), regno);
13594 return endregno > tregno && regno < endtregno;
13597 else if (GET_CODE (body) == PARALLEL)
13598 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13599 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13600 return 1;
13602 return 0;
13605 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13606 as appropriate. I3 and I2 are the insns resulting from the combination
13607 insns including FROM (I2 may be zero).
13609 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13610 not need REG_DEAD notes because they are being substituted for. This
13611 saves searching in the most common cases.
13613 Each note in the list is either ignored or placed on some insns, depending
13614 on the type of note. */
13616 static void
13617 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13618 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13620 rtx note, next_note;
13621 rtx tem_note;
13622 rtx_insn *tem_insn;
13624 for (note = notes; note; note = next_note)
13626 rtx_insn *place = 0, *place2 = 0;
13628 next_note = XEXP (note, 1);
13629 switch (REG_NOTE_KIND (note))
13631 case REG_BR_PROB:
13632 case REG_BR_PRED:
13633 /* Doesn't matter much where we put this, as long as it's somewhere.
13634 It is preferable to keep these notes on branches, which is most
13635 likely to be i3. */
13636 place = i3;
13637 break;
13639 case REG_NON_LOCAL_GOTO:
13640 if (JUMP_P (i3))
13641 place = i3;
13642 else
13644 gcc_assert (i2 && JUMP_P (i2));
13645 place = i2;
13647 break;
13649 case REG_EH_REGION:
13650 /* These notes must remain with the call or trapping instruction. */
13651 if (CALL_P (i3))
13652 place = i3;
13653 else if (i2 && CALL_P (i2))
13654 place = i2;
13655 else
13657 gcc_assert (cfun->can_throw_non_call_exceptions);
13658 if (may_trap_p (i3))
13659 place = i3;
13660 else if (i2 && may_trap_p (i2))
13661 place = i2;
13662 /* ??? Otherwise assume we've combined things such that we
13663 can now prove that the instructions can't trap. Drop the
13664 note in this case. */
13666 break;
13668 case REG_ARGS_SIZE:
13669 /* ??? How to distribute between i3-i1. Assume i3 contains the
13670 entire adjustment. Assert i3 contains at least some adjust. */
13671 if (!noop_move_p (i3))
13673 int old_size, args_size = INTVAL (XEXP (note, 0));
13674 /* fixup_args_size_notes looks at REG_NORETURN note,
13675 so ensure the note is placed there first. */
13676 if (CALL_P (i3))
13678 rtx *np;
13679 for (np = &next_note; *np; np = &XEXP (*np, 1))
13680 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13682 rtx n = *np;
13683 *np = XEXP (n, 1);
13684 XEXP (n, 1) = REG_NOTES (i3);
13685 REG_NOTES (i3) = n;
13686 break;
13689 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13690 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13691 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13692 gcc_assert (old_size != args_size
13693 || (CALL_P (i3)
13694 && !ACCUMULATE_OUTGOING_ARGS
13695 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13697 break;
13699 case REG_NORETURN:
13700 case REG_SETJMP:
13701 case REG_TM:
13702 case REG_CALL_DECL:
13703 /* These notes must remain with the call. It should not be
13704 possible for both I2 and I3 to be a call. */
13705 if (CALL_P (i3))
13706 place = i3;
13707 else
13709 gcc_assert (i2 && CALL_P (i2));
13710 place = i2;
13712 break;
13714 case REG_UNUSED:
13715 /* Any clobbers for i3 may still exist, and so we must process
13716 REG_UNUSED notes from that insn.
13718 Any clobbers from i2 or i1 can only exist if they were added by
13719 recog_for_combine. In that case, recog_for_combine created the
13720 necessary REG_UNUSED notes. Trying to keep any original
13721 REG_UNUSED notes from these insns can cause incorrect output
13722 if it is for the same register as the original i3 dest.
13723 In that case, we will notice that the register is set in i3,
13724 and then add a REG_UNUSED note for the destination of i3, which
13725 is wrong. However, it is possible to have REG_UNUSED notes from
13726 i2 or i1 for register which were both used and clobbered, so
13727 we keep notes from i2 or i1 if they will turn into REG_DEAD
13728 notes. */
13730 /* If this register is set or clobbered in I3, put the note there
13731 unless there is one already. */
13732 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13734 if (from_insn != i3)
13735 break;
13737 if (! (REG_P (XEXP (note, 0))
13738 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13739 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13740 place = i3;
13742 /* Otherwise, if this register is used by I3, then this register
13743 now dies here, so we must put a REG_DEAD note here unless there
13744 is one already. */
13745 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13746 && ! (REG_P (XEXP (note, 0))
13747 ? find_regno_note (i3, REG_DEAD,
13748 REGNO (XEXP (note, 0)))
13749 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13751 PUT_REG_NOTE_KIND (note, REG_DEAD);
13752 place = i3;
13754 break;
13756 case REG_EQUAL:
13757 case REG_EQUIV:
13758 case REG_NOALIAS:
13759 /* These notes say something about results of an insn. We can
13760 only support them if they used to be on I3 in which case they
13761 remain on I3. Otherwise they are ignored.
13763 If the note refers to an expression that is not a constant, we
13764 must also ignore the note since we cannot tell whether the
13765 equivalence is still true. It might be possible to do
13766 slightly better than this (we only have a problem if I2DEST
13767 or I1DEST is present in the expression), but it doesn't
13768 seem worth the trouble. */
13770 if (from_insn == i3
13771 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13772 place = i3;
13773 break;
13775 case REG_INC:
13776 /* These notes say something about how a register is used. They must
13777 be present on any use of the register in I2 or I3. */
13778 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13779 place = i3;
13781 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13783 if (place)
13784 place2 = i2;
13785 else
13786 place = i2;
13788 break;
13790 case REG_LABEL_TARGET:
13791 case REG_LABEL_OPERAND:
13792 /* This can show up in several ways -- either directly in the
13793 pattern, or hidden off in the constant pool with (or without?)
13794 a REG_EQUAL note. */
13795 /* ??? Ignore the without-reg_equal-note problem for now. */
13796 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13797 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13798 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13799 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13800 place = i3;
13802 if (i2
13803 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13804 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13805 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13806 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13808 if (place)
13809 place2 = i2;
13810 else
13811 place = i2;
13814 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13815 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13816 there. */
13817 if (place && JUMP_P (place)
13818 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13819 && (JUMP_LABEL (place) == NULL
13820 || JUMP_LABEL (place) == XEXP (note, 0)))
13822 rtx label = JUMP_LABEL (place);
13824 if (!label)
13825 JUMP_LABEL (place) = XEXP (note, 0);
13826 else if (LABEL_P (label))
13827 LABEL_NUSES (label)--;
13830 if (place2 && JUMP_P (place2)
13831 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13832 && (JUMP_LABEL (place2) == NULL
13833 || JUMP_LABEL (place2) == XEXP (note, 0)))
13835 rtx label = JUMP_LABEL (place2);
13837 if (!label)
13838 JUMP_LABEL (place2) = XEXP (note, 0);
13839 else if (LABEL_P (label))
13840 LABEL_NUSES (label)--;
13841 place2 = 0;
13843 break;
13845 case REG_NONNEG:
13846 /* This note says something about the value of a register prior
13847 to the execution of an insn. It is too much trouble to see
13848 if the note is still correct in all situations. It is better
13849 to simply delete it. */
13850 break;
13852 case REG_DEAD:
13853 /* If we replaced the right hand side of FROM_INSN with a
13854 REG_EQUAL note, the original use of the dying register
13855 will not have been combined into I3 and I2. In such cases,
13856 FROM_INSN is guaranteed to be the first of the combined
13857 instructions, so we simply need to search back before
13858 FROM_INSN for the previous use or set of this register,
13859 then alter the notes there appropriately.
13861 If the register is used as an input in I3, it dies there.
13862 Similarly for I2, if it is nonzero and adjacent to I3.
13864 If the register is not used as an input in either I3 or I2
13865 and it is not one of the registers we were supposed to eliminate,
13866 there are two possibilities. We might have a non-adjacent I2
13867 or we might have somehow eliminated an additional register
13868 from a computation. For example, we might have had A & B where
13869 we discover that B will always be zero. In this case we will
13870 eliminate the reference to A.
13872 In both cases, we must search to see if we can find a previous
13873 use of A and put the death note there. */
13875 if (from_insn
13876 && from_insn == i2mod
13877 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13878 tem_insn = from_insn;
13879 else
13881 if (from_insn
13882 && CALL_P (from_insn)
13883 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13884 place = from_insn;
13885 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13886 place = i3;
13887 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13888 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13889 place = i2;
13890 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13891 && !(i2mod
13892 && reg_overlap_mentioned_p (XEXP (note, 0),
13893 i2mod_old_rhs)))
13894 || rtx_equal_p (XEXP (note, 0), elim_i1)
13895 || rtx_equal_p (XEXP (note, 0), elim_i0))
13896 break;
13897 tem_insn = i3;
13898 /* If the new I2 sets the same register that is marked dead
13899 in the note, the note now should not be put on I2, as the
13900 note refers to a previous incarnation of the reg. */
13901 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13902 tem_insn = i2;
13905 if (place == 0)
13907 basic_block bb = this_basic_block;
13909 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13911 if (!NONDEBUG_INSN_P (tem_insn))
13913 if (tem_insn == BB_HEAD (bb))
13914 break;
13915 continue;
13918 /* If the register is being set at TEM_INSN, see if that is all
13919 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13920 into a REG_UNUSED note instead. Don't delete sets to
13921 global register vars. */
13922 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13923 || !global_regs[REGNO (XEXP (note, 0))])
13924 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13926 rtx set = single_set (tem_insn);
13927 rtx inner_dest = 0;
13928 rtx_insn *cc0_setter = NULL;
13930 if (set != 0)
13931 for (inner_dest = SET_DEST (set);
13932 (GET_CODE (inner_dest) == STRICT_LOW_PART
13933 || GET_CODE (inner_dest) == SUBREG
13934 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13935 inner_dest = XEXP (inner_dest, 0))
13938 /* Verify that it was the set, and not a clobber that
13939 modified the register.
13941 CC0 targets must be careful to maintain setter/user
13942 pairs. If we cannot delete the setter due to side
13943 effects, mark the user with an UNUSED note instead
13944 of deleting it. */
13946 if (set != 0 && ! side_effects_p (SET_SRC (set))
13947 && rtx_equal_p (XEXP (note, 0), inner_dest)
13948 #if HAVE_cc0
13949 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13950 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13951 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13952 #endif
13955 /* Move the notes and links of TEM_INSN elsewhere.
13956 This might delete other dead insns recursively.
13957 First set the pattern to something that won't use
13958 any register. */
13959 rtx old_notes = REG_NOTES (tem_insn);
13961 PATTERN (tem_insn) = pc_rtx;
13962 REG_NOTES (tem_insn) = NULL;
13964 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13965 NULL_RTX, NULL_RTX, NULL_RTX);
13966 distribute_links (LOG_LINKS (tem_insn));
13968 SET_INSN_DELETED (tem_insn);
13969 if (tem_insn == i2)
13970 i2 = NULL;
13972 /* Delete the setter too. */
13973 if (cc0_setter)
13975 PATTERN (cc0_setter) = pc_rtx;
13976 old_notes = REG_NOTES (cc0_setter);
13977 REG_NOTES (cc0_setter) = NULL;
13979 distribute_notes (old_notes, cc0_setter,
13980 cc0_setter, NULL,
13981 NULL_RTX, NULL_RTX, NULL_RTX);
13982 distribute_links (LOG_LINKS (cc0_setter));
13984 SET_INSN_DELETED (cc0_setter);
13985 if (cc0_setter == i2)
13986 i2 = NULL;
13989 else
13991 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13993 /* If there isn't already a REG_UNUSED note, put one
13994 here. Do not place a REG_DEAD note, even if
13995 the register is also used here; that would not
13996 match the algorithm used in lifetime analysis
13997 and can cause the consistency check in the
13998 scheduler to fail. */
13999 if (! find_regno_note (tem_insn, REG_UNUSED,
14000 REGNO (XEXP (note, 0))))
14001 place = tem_insn;
14002 break;
14005 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14006 || (CALL_P (tem_insn)
14007 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14009 place = tem_insn;
14011 /* If we are doing a 3->2 combination, and we have a
14012 register which formerly died in i3 and was not used
14013 by i2, which now no longer dies in i3 and is used in
14014 i2 but does not die in i2, and place is between i2
14015 and i3, then we may need to move a link from place to
14016 i2. */
14017 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14018 && from_insn
14019 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14020 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14022 struct insn_link *links = LOG_LINKS (place);
14023 LOG_LINKS (place) = NULL;
14024 distribute_links (links);
14026 break;
14029 if (tem_insn == BB_HEAD (bb))
14030 break;
14035 /* If the register is set or already dead at PLACE, we needn't do
14036 anything with this note if it is still a REG_DEAD note.
14037 We check here if it is set at all, not if is it totally replaced,
14038 which is what `dead_or_set_p' checks, so also check for it being
14039 set partially. */
14041 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14043 unsigned int regno = REGNO (XEXP (note, 0));
14044 reg_stat_type *rsp = &reg_stat[regno];
14046 if (dead_or_set_p (place, XEXP (note, 0))
14047 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14049 /* Unless the register previously died in PLACE, clear
14050 last_death. [I no longer understand why this is
14051 being done.] */
14052 if (rsp->last_death != place)
14053 rsp->last_death = 0;
14054 place = 0;
14056 else
14057 rsp->last_death = place;
14059 /* If this is a death note for a hard reg that is occupying
14060 multiple registers, ensure that we are still using all
14061 parts of the object. If we find a piece of the object
14062 that is unused, we must arrange for an appropriate REG_DEAD
14063 note to be added for it. However, we can't just emit a USE
14064 and tag the note to it, since the register might actually
14065 be dead; so we recourse, and the recursive call then finds
14066 the previous insn that used this register. */
14068 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14070 unsigned int endregno = END_REGNO (XEXP (note, 0));
14071 bool all_used = true;
14072 unsigned int i;
14074 for (i = regno; i < endregno; i++)
14075 if ((! refers_to_regno_p (i, PATTERN (place))
14076 && ! find_regno_fusage (place, USE, i))
14077 || dead_or_set_regno_p (place, i))
14079 all_used = false;
14080 break;
14083 if (! all_used)
14085 /* Put only REG_DEAD notes for pieces that are
14086 not already dead or set. */
14088 for (i = regno; i < endregno;
14089 i += hard_regno_nregs[i][reg_raw_mode[i]])
14091 rtx piece = regno_reg_rtx[i];
14092 basic_block bb = this_basic_block;
14094 if (! dead_or_set_p (place, piece)
14095 && ! reg_bitfield_target_p (piece,
14096 PATTERN (place)))
14098 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14099 NULL_RTX);
14101 distribute_notes (new_note, place, place,
14102 NULL, NULL_RTX, NULL_RTX,
14103 NULL_RTX);
14105 else if (! refers_to_regno_p (i, PATTERN (place))
14106 && ! find_regno_fusage (place, USE, i))
14107 for (tem_insn = PREV_INSN (place); ;
14108 tem_insn = PREV_INSN (tem_insn))
14110 if (!NONDEBUG_INSN_P (tem_insn))
14112 if (tem_insn == BB_HEAD (bb))
14113 break;
14114 continue;
14116 if (dead_or_set_p (tem_insn, piece)
14117 || reg_bitfield_target_p (piece,
14118 PATTERN (tem_insn)))
14120 add_reg_note (tem_insn, REG_UNUSED, piece);
14121 break;
14126 place = 0;
14130 break;
14132 default:
14133 /* Any other notes should not be present at this point in the
14134 compilation. */
14135 gcc_unreachable ();
14138 if (place)
14140 XEXP (note, 1) = REG_NOTES (place);
14141 REG_NOTES (place) = note;
14144 if (place2)
14145 add_shallow_copy_of_reg_note (place2, note);
14149 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14150 I3, I2, and I1 to new locations. This is also called to add a link
14151 pointing at I3 when I3's destination is changed. */
14153 static void
14154 distribute_links (struct insn_link *links)
14156 struct insn_link *link, *next_link;
14158 for (link = links; link; link = next_link)
14160 rtx_insn *place = 0;
14161 rtx_insn *insn;
14162 rtx set, reg;
14164 next_link = link->next;
14166 /* If the insn that this link points to is a NOTE, ignore it. */
14167 if (NOTE_P (link->insn))
14168 continue;
14170 set = 0;
14171 rtx pat = PATTERN (link->insn);
14172 if (GET_CODE (pat) == SET)
14173 set = pat;
14174 else if (GET_CODE (pat) == PARALLEL)
14176 int i;
14177 for (i = 0; i < XVECLEN (pat, 0); i++)
14179 set = XVECEXP (pat, 0, i);
14180 if (GET_CODE (set) != SET)
14181 continue;
14183 reg = SET_DEST (set);
14184 while (GET_CODE (reg) == ZERO_EXTRACT
14185 || GET_CODE (reg) == STRICT_LOW_PART
14186 || GET_CODE (reg) == SUBREG)
14187 reg = XEXP (reg, 0);
14189 if (!REG_P (reg))
14190 continue;
14192 if (REGNO (reg) == link->regno)
14193 break;
14195 if (i == XVECLEN (pat, 0))
14196 continue;
14198 else
14199 continue;
14201 reg = SET_DEST (set);
14203 while (GET_CODE (reg) == ZERO_EXTRACT
14204 || GET_CODE (reg) == STRICT_LOW_PART
14205 || GET_CODE (reg) == SUBREG)
14206 reg = XEXP (reg, 0);
14208 /* A LOG_LINK is defined as being placed on the first insn that uses
14209 a register and points to the insn that sets the register. Start
14210 searching at the next insn after the target of the link and stop
14211 when we reach a set of the register or the end of the basic block.
14213 Note that this correctly handles the link that used to point from
14214 I3 to I2. Also note that not much searching is typically done here
14215 since most links don't point very far away. */
14217 for (insn = NEXT_INSN (link->insn);
14218 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14219 || BB_HEAD (this_basic_block->next_bb) != insn));
14220 insn = NEXT_INSN (insn))
14221 if (DEBUG_INSN_P (insn))
14222 continue;
14223 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14225 if (reg_referenced_p (reg, PATTERN (insn)))
14226 place = insn;
14227 break;
14229 else if (CALL_P (insn)
14230 && find_reg_fusage (insn, USE, reg))
14232 place = insn;
14233 break;
14235 else if (INSN_P (insn) && reg_set_p (reg, insn))
14236 break;
14238 /* If we found a place to put the link, place it there unless there
14239 is already a link to the same insn as LINK at that point. */
14241 if (place)
14243 struct insn_link *link2;
14245 FOR_EACH_LOG_LINK (link2, place)
14246 if (link2->insn == link->insn && link2->regno == link->regno)
14247 break;
14249 if (link2 == NULL)
14251 link->next = LOG_LINKS (place);
14252 LOG_LINKS (place) = link;
14254 /* Set added_links_insn to the earliest insn we added a
14255 link to. */
14256 if (added_links_insn == 0
14257 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14258 added_links_insn = place;
14264 /* Check for any register or memory mentioned in EQUIV that is not
14265 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14266 of EXPR where some registers may have been replaced by constants. */
14268 static bool
14269 unmentioned_reg_p (rtx equiv, rtx expr)
14271 subrtx_iterator::array_type array;
14272 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14274 const_rtx x = *iter;
14275 if ((REG_P (x) || MEM_P (x))
14276 && !reg_mentioned_p (x, expr))
14277 return true;
14279 return false;
14282 DEBUG_FUNCTION void
14283 dump_combine_stats (FILE *file)
14285 fprintf
14286 (file,
14287 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14288 combine_attempts, combine_merges, combine_extras, combine_successes);
14291 void
14292 dump_combine_total_stats (FILE *file)
14294 fprintf
14295 (file,
14296 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14297 total_attempts, total_merges, total_extras, total_successes);
14300 /* Try combining insns through substitution. */
14301 static unsigned int
14302 rest_of_handle_combine (void)
14304 int rebuild_jump_labels_after_combine;
14306 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14307 df_note_add_problem ();
14308 df_analyze ();
14310 regstat_init_n_sets_and_refs ();
14311 reg_n_sets_max = max_reg_num ();
14313 rebuild_jump_labels_after_combine
14314 = combine_instructions (get_insns (), max_reg_num ());
14316 /* Combining insns may have turned an indirect jump into a
14317 direct jump. Rebuild the JUMP_LABEL fields of jumping
14318 instructions. */
14319 if (rebuild_jump_labels_after_combine)
14321 timevar_push (TV_JUMP);
14322 rebuild_jump_labels (get_insns ());
14323 cleanup_cfg (0);
14324 timevar_pop (TV_JUMP);
14327 regstat_free_n_sets_and_refs ();
14328 return 0;
14331 namespace {
14333 const pass_data pass_data_combine =
14335 RTL_PASS, /* type */
14336 "combine", /* name */
14337 OPTGROUP_NONE, /* optinfo_flags */
14338 TV_COMBINE, /* tv_id */
14339 PROP_cfglayout, /* properties_required */
14340 0, /* properties_provided */
14341 0, /* properties_destroyed */
14342 0, /* todo_flags_start */
14343 TODO_df_finish, /* todo_flags_finish */
14346 class pass_combine : public rtl_opt_pass
14348 public:
14349 pass_combine (gcc::context *ctxt)
14350 : rtl_opt_pass (pass_data_combine, ctxt)
14353 /* opt_pass methods: */
14354 virtual bool gate (function *) { return (optimize > 0); }
14355 virtual unsigned int execute (function *)
14357 return rest_of_handle_combine ();
14360 }; // class pass_combine
14362 } // anon namespace
14364 rtl_opt_pass *
14365 make_pass_combine (gcc::context *ctxt)
14367 return new pass_combine (ctxt);