In gcc/: 2011-01-12 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / ifcvt.c
blobeee5cc724e925b93b96906a486b3697dcf8c2ae8
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "optabs.h"
38 #include "diagnostic-core.h"
39 #include "tm_p.h"
40 #include "cfgloop.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "vec.h"
46 #include "vecprim.h"
47 #include "dbgcnt.h"
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
51 #endif
52 #ifndef HAVE_incscc
53 #define HAVE_incscc 0
54 #endif
55 #ifndef HAVE_decscc
56 #define HAVE_decscc 0
57 #endif
58 #ifndef HAVE_trap
59 #define HAVE_trap 0
60 #endif
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
65 + 1)
66 #endif
68 #define IFCVT_MULTIPLE_DUMPS 1
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
76 execution. */
77 static int num_updated_if_blocks;
79 /* # of changes made. */
80 static int num_true_changes;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p;
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block);
87 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
88 static rtx first_active_insn (basic_block);
89 static rtx last_active_insn (basic_block, int);
90 static rtx find_active_insn_before (basic_block, rtx);
91 static rtx find_active_insn_after (basic_block, rtx);
92 static basic_block block_fallthru (basic_block);
93 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
94 static rtx cond_exec_get_condition (rtx);
95 static rtx noce_get_condition (rtx, rtx *, bool);
96 static int noce_operand_ok (const_rtx);
97 static void merge_if_block (ce_if_block_t *);
98 static int find_cond_trap (basic_block, edge, edge);
99 static basic_block find_if_header (basic_block, int);
100 static int block_jumps_and_fallthru_p (basic_block, basic_block);
101 static int noce_find_if_block (basic_block, edge, edge, int);
102 static int cond_exec_find_if_block (ce_if_block_t *);
103 static int find_if_case_1 (basic_block, edge, edge);
104 static int find_if_case_2 (basic_block, edge, edge);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 basic_block, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
118 while (1)
120 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated. */
135 static bool
136 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
138 int count = 0;
139 rtx insn = BB_HEAD (bb);
140 bool speed = optimize_bb_for_speed_p (bb);
142 while (1)
144 if (NONJUMP_INSN_P (insn))
146 int cost = insn_rtx_cost (PATTERN (insn), speed);
147 if (cost == 0)
148 return false;
150 /* If this instruction is the load or set of a "stack" register,
151 such as a floating point register on x87, then the cost of
152 speculatively executing this insn may need to include
153 the additional cost of popping its result off of the
154 register stack. Unfortunately, correctly recognizing and
155 accounting for this additional overhead is tricky, so for
156 now we simply prohibit such speculative execution. */
157 #ifdef STACK_REGS
159 rtx set = single_set (insn);
160 if (set && STACK_REG_P (SET_DEST (set)))
161 return false;
163 #endif
165 count += cost;
166 if (count >= max_cost)
167 return false;
169 else if (CALL_P (insn))
170 return false;
172 if (insn == BB_END (bb))
173 break;
174 insn = NEXT_INSN (insn);
177 return true;
180 /* Return the first non-jump active insn in the basic block. */
182 static rtx
183 first_active_insn (basic_block bb)
185 rtx insn = BB_HEAD (bb);
187 if (LABEL_P (insn))
189 if (insn == BB_END (bb))
190 return NULL_RTX;
191 insn = NEXT_INSN (insn);
194 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
196 if (insn == BB_END (bb))
197 return NULL_RTX;
198 insn = NEXT_INSN (insn);
201 if (JUMP_P (insn))
202 return NULL_RTX;
204 return insn;
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
209 static rtx
210 last_active_insn (basic_block bb, int skip_use_p)
212 rtx insn = BB_END (bb);
213 rtx head = BB_HEAD (bb);
215 while (NOTE_P (insn)
216 || JUMP_P (insn)
217 || DEBUG_INSN_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
227 if (LABEL_P (insn))
228 return NULL_RTX;
230 return insn;
233 /* Return the active insn before INSN inside basic block CURR_BB. */
235 static rtx
236 find_active_insn_before (basic_block curr_bb, rtx insn)
238 if (!insn || insn == BB_HEAD (curr_bb))
239 return NULL_RTX;
241 while ((insn = PREV_INSN (insn)) != NULL_RTX)
243 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
244 break;
246 /* No other active insn all the way to the start of the basic block. */
247 if (insn == BB_HEAD (curr_bb))
248 return NULL_RTX;
251 return insn;
254 /* Return the active insn after INSN inside basic block CURR_BB. */
256 static rtx
257 find_active_insn_after (basic_block curr_bb, rtx insn)
259 if (!insn || insn == BB_END (curr_bb))
260 return NULL_RTX;
262 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
264 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
265 break;
267 /* No other active insn all the way to the end of the basic block. */
268 if (insn == BB_END (curr_bb))
269 return NULL_RTX;
272 return insn;
275 /* Return the basic block reached by falling though the basic block BB. */
277 static basic_block
278 block_fallthru (basic_block bb)
280 edge e = find_fallthru_edge (bb->succs);
282 return (e) ? e->dest : NULL_BLOCK;
285 /* Go through a bunch of insns, converting them to conditional
286 execution format if possible. Return TRUE if all of the non-note
287 insns were processed. */
289 static int
290 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
291 /* if block information */rtx start,
292 /* first insn to look at */rtx end,
293 /* last insn to look at */rtx test,
294 /* conditional execution test */rtx prob_val,
295 /* probability of branch taken. */int mod_ok)
297 int must_be_last = FALSE;
298 rtx insn;
299 rtx xtest;
300 rtx pattern;
302 if (!start || !end)
303 return FALSE;
305 for (insn = start; ; insn = NEXT_INSN (insn))
307 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
308 goto insn_done;
310 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
312 /* Remove USE insns that get in the way. */
313 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
315 /* ??? Ug. Actually unlinking the thing is problematic,
316 given what we'd have to coordinate with our callers. */
317 SET_INSN_DELETED (insn);
318 goto insn_done;
321 /* Last insn wasn't last? */
322 if (must_be_last)
323 return FALSE;
325 if (modified_in_p (test, insn))
327 if (!mod_ok)
328 return FALSE;
329 must_be_last = TRUE;
332 /* Now build the conditional form of the instruction. */
333 pattern = PATTERN (insn);
334 xtest = copy_rtx (test);
336 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
337 two conditions. */
338 if (GET_CODE (pattern) == COND_EXEC)
340 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
341 return FALSE;
343 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
344 COND_EXEC_TEST (pattern));
345 pattern = COND_EXEC_CODE (pattern);
348 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
350 /* If the machine needs to modify the insn being conditionally executed,
351 say for example to force a constant integer operand into a temp
352 register, do so here. */
353 #ifdef IFCVT_MODIFY_INSN
354 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
355 if (! pattern)
356 return FALSE;
357 #endif
359 validate_change (insn, &PATTERN (insn), pattern, 1);
361 if (CALL_P (insn) && prob_val)
362 validate_change (insn, &REG_NOTES (insn),
363 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
364 REG_NOTES (insn)), 1);
366 insn_done:
367 if (insn == end)
368 break;
371 return TRUE;
374 /* Return the condition for a jump. Do not do any special processing. */
376 static rtx
377 cond_exec_get_condition (rtx jump)
379 rtx test_if, cond;
381 if (any_condjump_p (jump))
382 test_if = SET_SRC (pc_set (jump));
383 else
384 return NULL_RTX;
385 cond = XEXP (test_if, 0);
387 /* If this branches to JUMP_LABEL when the condition is false,
388 reverse the condition. */
389 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
390 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
392 enum rtx_code rev = reversed_comparison_code (cond, jump);
393 if (rev == UNKNOWN)
394 return NULL_RTX;
396 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
397 XEXP (cond, 1));
400 return cond;
403 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
404 to conditional execution. Return TRUE if we were successful at
405 converting the block. */
407 static int
408 cond_exec_process_if_block (ce_if_block_t * ce_info,
409 /* if block information */int do_multiple_p)
411 basic_block test_bb = ce_info->test_bb; /* last test block */
412 basic_block then_bb = ce_info->then_bb; /* THEN */
413 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
414 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
415 rtx then_start; /* first insn in THEN block */
416 rtx then_end; /* last insn + 1 in THEN block */
417 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
418 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
419 int max; /* max # of insns to convert. */
420 int then_mod_ok; /* whether conditional mods are ok in THEN */
421 rtx true_expr; /* test for else block insns */
422 rtx false_expr; /* test for then block insns */
423 rtx true_prob_val; /* probability of else block */
424 rtx false_prob_val; /* probability of then block */
425 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
426 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
427 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
428 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
429 int then_n_insns, else_n_insns, n_insns;
430 enum rtx_code false_code;
432 /* If test is comprised of && or || elements, and we've failed at handling
433 all of them together, just use the last test if it is the special case of
434 && elements without an ELSE block. */
435 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
437 if (else_bb || ! ce_info->and_and_p)
438 return FALSE;
440 ce_info->test_bb = test_bb = ce_info->last_test_bb;
441 ce_info->num_multiple_test_blocks = 0;
442 ce_info->num_and_and_blocks = 0;
443 ce_info->num_or_or_blocks = 0;
446 /* Find the conditional jump to the ELSE or JOIN part, and isolate
447 the test. */
448 test_expr = cond_exec_get_condition (BB_END (test_bb));
449 if (! test_expr)
450 return FALSE;
452 /* If the conditional jump is more than just a conditional jump,
453 then we can not do conditional execution conversion on this block. */
454 if (! onlyjump_p (BB_END (test_bb)))
455 return FALSE;
457 /* Collect the bounds of where we're to search, skipping any labels, jumps
458 and notes at the beginning and end of the block. Then count the total
459 number of insns and see if it is small enough to convert. */
460 then_start = first_active_insn (then_bb);
461 then_end = last_active_insn (then_bb, TRUE);
462 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
463 n_insns = then_n_insns;
464 max = MAX_CONDITIONAL_EXECUTE;
466 if (else_bb)
468 int n_matching;
470 max *= 2;
471 else_start = first_active_insn (else_bb);
472 else_end = last_active_insn (else_bb, TRUE);
473 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
474 n_insns += else_n_insns;
476 /* Look for matching sequences at the head and tail of the two blocks,
477 and limit the range of insns to be converted if possible. */
478 n_matching = flow_find_cross_jump (then_bb, else_bb,
479 &then_first_tail, &else_first_tail);
480 if (then_first_tail == BB_HEAD (then_bb))
481 then_start = then_end = NULL_RTX;
482 if (else_first_tail == BB_HEAD (else_bb))
483 else_start = else_end = NULL_RTX;
485 if (n_matching > 0)
487 if (then_end)
488 then_end = find_active_insn_before (then_bb, then_first_tail);
489 if (else_end)
490 else_end = find_active_insn_before (else_bb, else_first_tail);
491 n_insns -= 2 * n_matching;
494 if (then_start && else_start)
496 int longest_match = MIN (then_n_insns - n_matching,
497 else_n_insns - n_matching);
498 n_matching
499 = flow_find_head_matching_sequence (then_bb, else_bb,
500 &then_last_head,
501 &else_last_head,
502 longest_match);
504 if (n_matching > 0)
506 rtx insn;
508 /* We won't pass the insns in the head sequence to
509 cond_exec_process_insns, so we need to test them here
510 to make sure that they don't clobber the condition. */
511 for (insn = BB_HEAD (then_bb);
512 insn != NEXT_INSN (then_last_head);
513 insn = NEXT_INSN (insn))
514 if (!LABEL_P (insn) && !NOTE_P (insn)
515 && !DEBUG_INSN_P (insn)
516 && modified_in_p (test_expr, insn))
517 return FALSE;
520 if (then_last_head == then_end)
521 then_start = then_end = NULL_RTX;
522 if (else_last_head == else_end)
523 else_start = else_end = NULL_RTX;
525 if (n_matching > 0)
527 if (then_start)
528 then_start = find_active_insn_after (then_bb, then_last_head);
529 if (else_start)
530 else_start = find_active_insn_after (else_bb, else_last_head);
531 n_insns -= 2 * n_matching;
536 if (n_insns > max)
537 return FALSE;
539 /* Map test_expr/test_jump into the appropriate MD tests to use on
540 the conditionally executed code. */
542 true_expr = test_expr;
544 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
545 if (false_code != UNKNOWN)
546 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
547 XEXP (true_expr, 0), XEXP (true_expr, 1));
548 else
549 false_expr = NULL_RTX;
551 #ifdef IFCVT_MODIFY_TESTS
552 /* If the machine description needs to modify the tests, such as setting a
553 conditional execution register from a comparison, it can do so here. */
554 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
556 /* See if the conversion failed. */
557 if (!true_expr || !false_expr)
558 goto fail;
559 #endif
561 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
562 if (true_prob_val)
564 true_prob_val = XEXP (true_prob_val, 0);
565 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
567 else
568 false_prob_val = NULL_RTX;
570 /* If we have && or || tests, do them here. These tests are in the adjacent
571 blocks after the first block containing the test. */
572 if (ce_info->num_multiple_test_blocks > 0)
574 basic_block bb = test_bb;
575 basic_block last_test_bb = ce_info->last_test_bb;
577 if (! false_expr)
578 goto fail;
582 rtx start, end;
583 rtx t, f;
584 enum rtx_code f_code;
586 bb = block_fallthru (bb);
587 start = first_active_insn (bb);
588 end = last_active_insn (bb, TRUE);
589 if (start
590 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
591 false_prob_val, FALSE))
592 goto fail;
594 /* If the conditional jump is more than just a conditional jump, then
595 we can not do conditional execution conversion on this block. */
596 if (! onlyjump_p (BB_END (bb)))
597 goto fail;
599 /* Find the conditional jump and isolate the test. */
600 t = cond_exec_get_condition (BB_END (bb));
601 if (! t)
602 goto fail;
604 f_code = reversed_comparison_code (t, BB_END (bb));
605 if (f_code == UNKNOWN)
606 goto fail;
608 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
609 if (ce_info->and_and_p)
611 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
612 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
614 else
616 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
617 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
620 /* If the machine description needs to modify the tests, such as
621 setting a conditional execution register from a comparison, it can
622 do so here. */
623 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
624 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
626 /* See if the conversion failed. */
627 if (!t || !f)
628 goto fail;
629 #endif
631 true_expr = t;
632 false_expr = f;
634 while (bb != last_test_bb);
637 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
638 on then THEN block. */
639 then_mod_ok = (else_bb == NULL_BLOCK);
641 /* Go through the THEN and ELSE blocks converting the insns if possible
642 to conditional execution. */
644 if (then_end
645 && (! false_expr
646 || ! cond_exec_process_insns (ce_info, then_start, then_end,
647 false_expr, false_prob_val,
648 then_mod_ok)))
649 goto fail;
651 if (else_bb && else_end
652 && ! cond_exec_process_insns (ce_info, else_start, else_end,
653 true_expr, true_prob_val, TRUE))
654 goto fail;
656 /* If we cannot apply the changes, fail. Do not go through the normal fail
657 processing, since apply_change_group will call cancel_changes. */
658 if (! apply_change_group ())
660 #ifdef IFCVT_MODIFY_CANCEL
661 /* Cancel any machine dependent changes. */
662 IFCVT_MODIFY_CANCEL (ce_info);
663 #endif
664 return FALSE;
667 #ifdef IFCVT_MODIFY_FINAL
668 /* Do any machine dependent final modifications. */
669 IFCVT_MODIFY_FINAL (ce_info);
670 #endif
672 /* Conversion succeeded. */
673 if (dump_file)
674 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
675 n_insns, (n_insns == 1) ? " was" : "s were");
677 /* Merge the blocks! If we had matching sequences, make sure to delete one
678 copy at the appropriate location first: delete the copy in the THEN branch
679 for a tail sequence so that the remaining one is executed last for both
680 branches, and delete the copy in the ELSE branch for a head sequence so
681 that the remaining one is executed first for both branches. */
682 if (then_first_tail)
684 rtx from = then_first_tail;
685 if (!INSN_P (from))
686 from = find_active_insn_after (then_bb, from);
687 delete_insn_chain (from, BB_END (then_bb), false);
689 if (else_last_head)
690 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
692 merge_if_block (ce_info);
693 cond_exec_changed_p = TRUE;
694 return TRUE;
696 fail:
697 #ifdef IFCVT_MODIFY_CANCEL
698 /* Cancel any machine dependent changes. */
699 IFCVT_MODIFY_CANCEL (ce_info);
700 #endif
702 cancel_changes (0);
703 return FALSE;
706 /* Used by noce_process_if_block to communicate with its subroutines.
708 The subroutines know that A and B may be evaluated freely. They
709 know that X is a register. They should insert new instructions
710 before cond_earliest. */
712 struct noce_if_info
714 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
715 basic_block test_bb, then_bb, else_bb, join_bb;
717 /* The jump that ends TEST_BB. */
718 rtx jump;
720 /* The jump condition. */
721 rtx cond;
723 /* New insns should be inserted before this one. */
724 rtx cond_earliest;
726 /* Insns in the THEN and ELSE block. There is always just this
727 one insns in those blocks. The insns are single_set insns.
728 If there was no ELSE block, INSN_B is the last insn before
729 COND_EARLIEST, or NULL_RTX. In the former case, the insn
730 operands are still valid, as if INSN_B was moved down below
731 the jump. */
732 rtx insn_a, insn_b;
734 /* The SET_SRC of INSN_A and INSN_B. */
735 rtx a, b;
737 /* The SET_DEST of INSN_A. */
738 rtx x;
740 /* True if this if block is not canonical. In the canonical form of
741 if blocks, the THEN_BB is the block reached via the fallthru edge
742 from TEST_BB. For the noce transformations, we allow the symmetric
743 form as well. */
744 bool then_else_reversed;
746 /* Estimated cost of the particular branch instruction. */
747 int branch_cost;
750 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
751 static int noce_try_move (struct noce_if_info *);
752 static int noce_try_store_flag (struct noce_if_info *);
753 static int noce_try_addcc (struct noce_if_info *);
754 static int noce_try_store_flag_constants (struct noce_if_info *);
755 static int noce_try_store_flag_mask (struct noce_if_info *);
756 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
757 rtx, rtx, rtx);
758 static int noce_try_cmove (struct noce_if_info *);
759 static int noce_try_cmove_arith (struct noce_if_info *);
760 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
761 static int noce_try_minmax (struct noce_if_info *);
762 static int noce_try_abs (struct noce_if_info *);
763 static int noce_try_sign_mask (struct noce_if_info *);
765 /* Helper function for noce_try_store_flag*. */
767 static rtx
768 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
769 int normalize)
771 rtx cond = if_info->cond;
772 int cond_complex;
773 enum rtx_code code;
775 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
776 || ! general_operand (XEXP (cond, 1), VOIDmode));
778 /* If earliest == jump, or when the condition is complex, try to
779 build the store_flag insn directly. */
781 if (cond_complex)
783 rtx set = pc_set (if_info->jump);
784 cond = XEXP (SET_SRC (set), 0);
785 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
786 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
787 reversep = !reversep;
788 if (if_info->then_else_reversed)
789 reversep = !reversep;
792 if (reversep)
793 code = reversed_comparison_code (cond, if_info->jump);
794 else
795 code = GET_CODE (cond);
797 if ((if_info->cond_earliest == if_info->jump || cond_complex)
798 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
800 rtx tmp;
802 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
803 XEXP (cond, 1));
804 tmp = gen_rtx_SET (VOIDmode, x, tmp);
806 start_sequence ();
807 tmp = emit_insn (tmp);
809 if (recog_memoized (tmp) >= 0)
811 tmp = get_insns ();
812 end_sequence ();
813 emit_insn (tmp);
815 if_info->cond_earliest = if_info->jump;
817 return x;
820 end_sequence ();
823 /* Don't even try if the comparison operands or the mode of X are weird. */
824 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
825 return NULL_RTX;
827 return emit_store_flag (x, code, XEXP (cond, 0),
828 XEXP (cond, 1), VOIDmode,
829 (code == LTU || code == LEU
830 || code == GEU || code == GTU), normalize);
833 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
834 X is the destination/target and Y is the value to copy. */
836 static void
837 noce_emit_move_insn (rtx x, rtx y)
839 enum machine_mode outmode;
840 rtx outer, inner;
841 int bitpos;
843 if (GET_CODE (x) != STRICT_LOW_PART)
845 rtx seq, insn, target;
846 optab ot;
848 start_sequence ();
849 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
850 otherwise construct a suitable SET pattern ourselves. */
851 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
852 ? emit_move_insn (x, y)
853 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
854 seq = get_insns ();
855 end_sequence ();
857 if (recog_memoized (insn) <= 0)
859 if (GET_CODE (x) == ZERO_EXTRACT)
861 rtx op = XEXP (x, 0);
862 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
863 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
865 /* store_bit_field expects START to be relative to
866 BYTES_BIG_ENDIAN and adjusts this value for machines with
867 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
868 invoke store_bit_field again it is necessary to have the START
869 value from the first call. */
870 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
872 if (MEM_P (op))
873 start = BITS_PER_UNIT - start - size;
874 else
876 gcc_assert (REG_P (op));
877 start = BITS_PER_WORD - start - size;
881 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
882 store_bit_field (op, size, start, GET_MODE (x), y);
883 return;
886 switch (GET_RTX_CLASS (GET_CODE (y)))
888 case RTX_UNARY:
889 ot = code_to_optab[GET_CODE (y)];
890 if (ot)
892 start_sequence ();
893 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
894 if (target != NULL_RTX)
896 if (target != x)
897 emit_move_insn (x, target);
898 seq = get_insns ();
900 end_sequence ();
902 break;
904 case RTX_BIN_ARITH:
905 case RTX_COMM_ARITH:
906 ot = code_to_optab[GET_CODE (y)];
907 if (ot)
909 start_sequence ();
910 target = expand_binop (GET_MODE (y), ot,
911 XEXP (y, 0), XEXP (y, 1),
912 x, 0, OPTAB_DIRECT);
913 if (target != NULL_RTX)
915 if (target != x)
916 emit_move_insn (x, target);
917 seq = get_insns ();
919 end_sequence ();
921 break;
923 default:
924 break;
928 emit_insn (seq);
929 return;
932 outer = XEXP (x, 0);
933 inner = XEXP (outer, 0);
934 outmode = GET_MODE (outer);
935 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
936 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
939 /* Return sequence of instructions generated by if conversion. This
940 function calls end_sequence() to end the current stream, ensures
941 that are instructions are unshared, recognizable non-jump insns.
942 On failure, this function returns a NULL_RTX. */
944 static rtx
945 end_ifcvt_sequence (struct noce_if_info *if_info)
947 rtx insn;
948 rtx seq = get_insns ();
950 set_used_flags (if_info->x);
951 set_used_flags (if_info->cond);
952 unshare_all_rtl_in_chain (seq);
953 end_sequence ();
955 /* Make sure that all of the instructions emitted are recognizable,
956 and that we haven't introduced a new jump instruction.
957 As an exercise for the reader, build a general mechanism that
958 allows proper placement of required clobbers. */
959 for (insn = seq; insn; insn = NEXT_INSN (insn))
960 if (JUMP_P (insn)
961 || recog_memoized (insn) == -1)
962 return NULL_RTX;
964 return seq;
967 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
968 "if (a == b) x = a; else x = b" into "x = b". */
970 static int
971 noce_try_move (struct noce_if_info *if_info)
973 rtx cond = if_info->cond;
974 enum rtx_code code = GET_CODE (cond);
975 rtx y, seq;
977 if (code != NE && code != EQ)
978 return FALSE;
980 /* This optimization isn't valid if either A or B could be a NaN
981 or a signed zero. */
982 if (HONOR_NANS (GET_MODE (if_info->x))
983 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
984 return FALSE;
986 /* Check whether the operands of the comparison are A and in
987 either order. */
988 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
989 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
990 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
991 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
993 y = (code == EQ) ? if_info->a : if_info->b;
995 /* Avoid generating the move if the source is the destination. */
996 if (! rtx_equal_p (if_info->x, y))
998 start_sequence ();
999 noce_emit_move_insn (if_info->x, y);
1000 seq = end_ifcvt_sequence (if_info);
1001 if (!seq)
1002 return FALSE;
1004 emit_insn_before_setloc (seq, if_info->jump,
1005 INSN_LOCATOR (if_info->insn_a));
1007 return TRUE;
1009 return FALSE;
1012 /* Convert "if (test) x = 1; else x = 0".
1014 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1015 tried in noce_try_store_flag_constants after noce_try_cmove has had
1016 a go at the conversion. */
1018 static int
1019 noce_try_store_flag (struct noce_if_info *if_info)
1021 int reversep;
1022 rtx target, seq;
1024 if (CONST_INT_P (if_info->b)
1025 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1026 && if_info->a == const0_rtx)
1027 reversep = 0;
1028 else if (if_info->b == const0_rtx
1029 && CONST_INT_P (if_info->a)
1030 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1031 && (reversed_comparison_code (if_info->cond, if_info->jump)
1032 != UNKNOWN))
1033 reversep = 1;
1034 else
1035 return FALSE;
1037 start_sequence ();
1039 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1040 if (target)
1042 if (target != if_info->x)
1043 noce_emit_move_insn (if_info->x, target);
1045 seq = end_ifcvt_sequence (if_info);
1046 if (! seq)
1047 return FALSE;
1049 emit_insn_before_setloc (seq, if_info->jump,
1050 INSN_LOCATOR (if_info->insn_a));
1051 return TRUE;
1053 else
1055 end_sequence ();
1056 return FALSE;
1060 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1062 static int
1063 noce_try_store_flag_constants (struct noce_if_info *if_info)
1065 rtx target, seq;
1066 int reversep;
1067 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1068 int normalize, can_reverse;
1069 enum machine_mode mode;
1071 if (CONST_INT_P (if_info->a)
1072 && CONST_INT_P (if_info->b))
1074 mode = GET_MODE (if_info->x);
1075 ifalse = INTVAL (if_info->a);
1076 itrue = INTVAL (if_info->b);
1078 /* Make sure we can represent the difference between the two values. */
1079 if ((itrue - ifalse > 0)
1080 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1081 return FALSE;
1083 diff = trunc_int_for_mode (itrue - ifalse, mode);
1085 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1086 != UNKNOWN);
1088 reversep = 0;
1089 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1090 normalize = 0;
1091 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1092 && (STORE_FLAG_VALUE == 1
1093 || if_info->branch_cost >= 2))
1094 normalize = 1;
1095 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1096 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1097 normalize = 1, reversep = 1;
1098 else if (itrue == -1
1099 && (STORE_FLAG_VALUE == -1
1100 || if_info->branch_cost >= 2))
1101 normalize = -1;
1102 else if (ifalse == -1 && can_reverse
1103 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1104 normalize = -1, reversep = 1;
1105 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1106 || if_info->branch_cost >= 3)
1107 normalize = -1;
1108 else
1109 return FALSE;
1111 if (reversep)
1113 tmp = itrue; itrue = ifalse; ifalse = tmp;
1114 diff = trunc_int_for_mode (-diff, mode);
1117 start_sequence ();
1118 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1119 if (! target)
1121 end_sequence ();
1122 return FALSE;
1125 /* if (test) x = 3; else x = 4;
1126 => x = 3 + (test == 0); */
1127 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1129 target = expand_simple_binop (mode,
1130 (diff == STORE_FLAG_VALUE
1131 ? PLUS : MINUS),
1132 GEN_INT (ifalse), target, if_info->x, 0,
1133 OPTAB_WIDEN);
1136 /* if (test) x = 8; else x = 0;
1137 => x = (test != 0) << 3; */
1138 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1140 target = expand_simple_binop (mode, ASHIFT,
1141 target, GEN_INT (tmp), if_info->x, 0,
1142 OPTAB_WIDEN);
1145 /* if (test) x = -1; else x = b;
1146 => x = -(test != 0) | b; */
1147 else if (itrue == -1)
1149 target = expand_simple_binop (mode, IOR,
1150 target, GEN_INT (ifalse), if_info->x, 0,
1151 OPTAB_WIDEN);
1154 /* if (test) x = a; else x = b;
1155 => x = (-(test != 0) & (b - a)) + a; */
1156 else
1158 target = expand_simple_binop (mode, AND,
1159 target, GEN_INT (diff), if_info->x, 0,
1160 OPTAB_WIDEN);
1161 if (target)
1162 target = expand_simple_binop (mode, PLUS,
1163 target, GEN_INT (ifalse),
1164 if_info->x, 0, OPTAB_WIDEN);
1167 if (! target)
1169 end_sequence ();
1170 return FALSE;
1173 if (target != if_info->x)
1174 noce_emit_move_insn (if_info->x, target);
1176 seq = end_ifcvt_sequence (if_info);
1177 if (!seq)
1178 return FALSE;
1180 emit_insn_before_setloc (seq, if_info->jump,
1181 INSN_LOCATOR (if_info->insn_a));
1182 return TRUE;
1185 return FALSE;
1188 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1189 similarly for "foo--". */
1191 static int
1192 noce_try_addcc (struct noce_if_info *if_info)
1194 rtx target, seq;
1195 int subtract, normalize;
1197 if (GET_CODE (if_info->a) == PLUS
1198 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1199 && (reversed_comparison_code (if_info->cond, if_info->jump)
1200 != UNKNOWN))
1202 rtx cond = if_info->cond;
1203 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1205 /* First try to use addcc pattern. */
1206 if (general_operand (XEXP (cond, 0), VOIDmode)
1207 && general_operand (XEXP (cond, 1), VOIDmode))
1209 start_sequence ();
1210 target = emit_conditional_add (if_info->x, code,
1211 XEXP (cond, 0),
1212 XEXP (cond, 1),
1213 VOIDmode,
1214 if_info->b,
1215 XEXP (if_info->a, 1),
1216 GET_MODE (if_info->x),
1217 (code == LTU || code == GEU
1218 || code == LEU || code == GTU));
1219 if (target)
1221 if (target != if_info->x)
1222 noce_emit_move_insn (if_info->x, target);
1224 seq = end_ifcvt_sequence (if_info);
1225 if (!seq)
1226 return FALSE;
1228 emit_insn_before_setloc (seq, if_info->jump,
1229 INSN_LOCATOR (if_info->insn_a));
1230 return TRUE;
1232 end_sequence ();
1235 /* If that fails, construct conditional increment or decrement using
1236 setcc. */
1237 if (if_info->branch_cost >= 2
1238 && (XEXP (if_info->a, 1) == const1_rtx
1239 || XEXP (if_info->a, 1) == constm1_rtx))
1241 start_sequence ();
1242 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1243 subtract = 0, normalize = 0;
1244 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1245 subtract = 1, normalize = 0;
1246 else
1247 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1250 target = noce_emit_store_flag (if_info,
1251 gen_reg_rtx (GET_MODE (if_info->x)),
1252 1, normalize);
1254 if (target)
1255 target = expand_simple_binop (GET_MODE (if_info->x),
1256 subtract ? MINUS : PLUS,
1257 if_info->b, target, if_info->x,
1258 0, OPTAB_WIDEN);
1259 if (target)
1261 if (target != if_info->x)
1262 noce_emit_move_insn (if_info->x, target);
1264 seq = end_ifcvt_sequence (if_info);
1265 if (!seq)
1266 return FALSE;
1268 emit_insn_before_setloc (seq, if_info->jump,
1269 INSN_LOCATOR (if_info->insn_a));
1270 return TRUE;
1272 end_sequence ();
1276 return FALSE;
1279 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1281 static int
1282 noce_try_store_flag_mask (struct noce_if_info *if_info)
1284 rtx target, seq;
1285 int reversep;
1287 reversep = 0;
1288 if ((if_info->branch_cost >= 2
1289 || STORE_FLAG_VALUE == -1)
1290 && ((if_info->a == const0_rtx
1291 && rtx_equal_p (if_info->b, if_info->x))
1292 || ((reversep = (reversed_comparison_code (if_info->cond,
1293 if_info->jump)
1294 != UNKNOWN))
1295 && if_info->b == const0_rtx
1296 && rtx_equal_p (if_info->a, if_info->x))))
1298 start_sequence ();
1299 target = noce_emit_store_flag (if_info,
1300 gen_reg_rtx (GET_MODE (if_info->x)),
1301 reversep, -1);
1302 if (target)
1303 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1304 if_info->x,
1305 target, if_info->x, 0,
1306 OPTAB_WIDEN);
1308 if (target)
1310 if (target != if_info->x)
1311 noce_emit_move_insn (if_info->x, target);
1313 seq = end_ifcvt_sequence (if_info);
1314 if (!seq)
1315 return FALSE;
1317 emit_insn_before_setloc (seq, if_info->jump,
1318 INSN_LOCATOR (if_info->insn_a));
1319 return TRUE;
1322 end_sequence ();
1325 return FALSE;
1328 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1330 static rtx
1331 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1332 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1334 rtx target ATTRIBUTE_UNUSED;
1335 int unsignedp ATTRIBUTE_UNUSED;
1337 /* If earliest == jump, try to build the cmove insn directly.
1338 This is helpful when combine has created some complex condition
1339 (like for alpha's cmovlbs) that we can't hope to regenerate
1340 through the normal interface. */
1342 if (if_info->cond_earliest == if_info->jump)
1344 rtx tmp;
1346 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1347 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1348 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1350 start_sequence ();
1351 tmp = emit_insn (tmp);
1353 if (recog_memoized (tmp) >= 0)
1355 tmp = get_insns ();
1356 end_sequence ();
1357 emit_insn (tmp);
1359 return x;
1362 end_sequence ();
1365 /* Don't even try if the comparison operands are weird. */
1366 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1367 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1368 return NULL_RTX;
1370 #if HAVE_conditional_move
1371 unsignedp = (code == LTU || code == GEU
1372 || code == LEU || code == GTU);
1374 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1375 vtrue, vfalse, GET_MODE (x),
1376 unsignedp);
1377 if (target)
1378 return target;
1380 /* We might be faced with a situation like:
1382 x = (reg:M TARGET)
1383 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1384 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1386 We can't do a conditional move in mode M, but it's possible that we
1387 could do a conditional move in mode N instead and take a subreg of
1388 the result.
1390 If we can't create new pseudos, though, don't bother. */
1391 if (reload_completed)
1392 return NULL_RTX;
1394 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1396 rtx reg_vtrue = SUBREG_REG (vtrue);
1397 rtx reg_vfalse = SUBREG_REG (vfalse);
1398 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1399 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1400 rtx promoted_target;
1402 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1403 || byte_vtrue != byte_vfalse
1404 || (SUBREG_PROMOTED_VAR_P (vtrue)
1405 != SUBREG_PROMOTED_VAR_P (vfalse))
1406 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1407 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1408 return NULL_RTX;
1410 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1412 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1413 VOIDmode, reg_vtrue, reg_vfalse,
1414 GET_MODE (reg_vtrue), unsignedp);
1415 /* Nope, couldn't do it in that mode either. */
1416 if (!target)
1417 return NULL_RTX;
1419 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1420 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1421 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1422 emit_move_insn (x, target);
1423 return x;
1425 else
1426 return NULL_RTX;
1427 #else
1428 /* We'll never get here, as noce_process_if_block doesn't call the
1429 functions involved. Ifdef code, however, should be discouraged
1430 because it leads to typos in the code not selected. However,
1431 emit_conditional_move won't exist either. */
1432 return NULL_RTX;
1433 #endif
1436 /* Try only simple constants and registers here. More complex cases
1437 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1438 has had a go at it. */
1440 static int
1441 noce_try_cmove (struct noce_if_info *if_info)
1443 enum rtx_code code;
1444 rtx target, seq;
1446 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1447 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1449 start_sequence ();
1451 code = GET_CODE (if_info->cond);
1452 target = noce_emit_cmove (if_info, if_info->x, code,
1453 XEXP (if_info->cond, 0),
1454 XEXP (if_info->cond, 1),
1455 if_info->a, if_info->b);
1457 if (target)
1459 if (target != if_info->x)
1460 noce_emit_move_insn (if_info->x, target);
1462 seq = end_ifcvt_sequence (if_info);
1463 if (!seq)
1464 return FALSE;
1466 emit_insn_before_setloc (seq, if_info->jump,
1467 INSN_LOCATOR (if_info->insn_a));
1468 return TRUE;
1470 else
1472 end_sequence ();
1473 return FALSE;
1477 return FALSE;
1480 /* Try more complex cases involving conditional_move. */
1482 static int
1483 noce_try_cmove_arith (struct noce_if_info *if_info)
1485 rtx a = if_info->a;
1486 rtx b = if_info->b;
1487 rtx x = if_info->x;
1488 rtx orig_a, orig_b;
1489 rtx insn_a, insn_b;
1490 rtx tmp, target;
1491 int is_mem = 0;
1492 int insn_cost;
1493 enum rtx_code code;
1495 /* A conditional move from two memory sources is equivalent to a
1496 conditional on their addresses followed by a load. Don't do this
1497 early because it'll screw alias analysis. Note that we've
1498 already checked for no side effects. */
1499 /* ??? FIXME: Magic number 5. */
1500 if (cse_not_expected
1501 && MEM_P (a) && MEM_P (b)
1502 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1503 && if_info->branch_cost >= 5)
1505 enum machine_mode address_mode
1506 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1508 a = XEXP (a, 0);
1509 b = XEXP (b, 0);
1510 x = gen_reg_rtx (address_mode);
1511 is_mem = 1;
1514 /* ??? We could handle this if we knew that a load from A or B could
1515 not fault. This is also true if we've already loaded
1516 from the address along the path from ENTRY. */
1517 else if (may_trap_p (a) || may_trap_p (b))
1518 return FALSE;
1520 /* if (test) x = a + b; else x = c - d;
1521 => y = a + b;
1522 x = c - d;
1523 if (test)
1524 x = y;
1527 code = GET_CODE (if_info->cond);
1528 insn_a = if_info->insn_a;
1529 insn_b = if_info->insn_b;
1531 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1532 if insn_rtx_cost can't be estimated. */
1533 if (insn_a)
1535 insn_cost
1536 = insn_rtx_cost (PATTERN (insn_a),
1537 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1538 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1539 return FALSE;
1541 else
1542 insn_cost = 0;
1544 if (insn_b)
1546 insn_cost
1547 += insn_rtx_cost (PATTERN (insn_b),
1548 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1549 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1550 return FALSE;
1553 /* Possibly rearrange operands to make things come out more natural. */
1554 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1556 int reversep = 0;
1557 if (rtx_equal_p (b, x))
1558 reversep = 1;
1559 else if (general_operand (b, GET_MODE (b)))
1560 reversep = 1;
1562 if (reversep)
1564 code = reversed_comparison_code (if_info->cond, if_info->jump);
1565 tmp = a, a = b, b = tmp;
1566 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1570 start_sequence ();
1572 orig_a = a;
1573 orig_b = b;
1575 /* If either operand is complex, load it into a register first.
1576 The best way to do this is to copy the original insn. In this
1577 way we preserve any clobbers etc that the insn may have had.
1578 This is of course not possible in the IS_MEM case. */
1579 if (! general_operand (a, GET_MODE (a)))
1581 rtx set;
1583 if (is_mem)
1585 tmp = gen_reg_rtx (GET_MODE (a));
1586 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1588 else if (! insn_a)
1589 goto end_seq_and_fail;
1590 else
1592 a = gen_reg_rtx (GET_MODE (a));
1593 tmp = copy_rtx (insn_a);
1594 set = single_set (tmp);
1595 SET_DEST (set) = a;
1596 tmp = emit_insn (PATTERN (tmp));
1598 if (recog_memoized (tmp) < 0)
1599 goto end_seq_and_fail;
1601 if (! general_operand (b, GET_MODE (b)))
1603 rtx set, last;
1605 if (is_mem)
1607 tmp = gen_reg_rtx (GET_MODE (b));
1608 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1610 else if (! insn_b)
1611 goto end_seq_and_fail;
1612 else
1614 b = gen_reg_rtx (GET_MODE (b));
1615 tmp = copy_rtx (insn_b);
1616 set = single_set (tmp);
1617 SET_DEST (set) = b;
1618 tmp = PATTERN (tmp);
1621 /* If insn to set up A clobbers any registers B depends on, try to
1622 swap insn that sets up A with the one that sets up B. If even
1623 that doesn't help, punt. */
1624 last = get_last_insn ();
1625 if (last && modified_in_p (orig_b, last))
1627 tmp = emit_insn_before (tmp, get_insns ());
1628 if (modified_in_p (orig_a, tmp))
1629 goto end_seq_and_fail;
1631 else
1632 tmp = emit_insn (tmp);
1634 if (recog_memoized (tmp) < 0)
1635 goto end_seq_and_fail;
1638 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1639 XEXP (if_info->cond, 1), a, b);
1641 if (! target)
1642 goto end_seq_and_fail;
1644 /* If we're handling a memory for above, emit the load now. */
1645 if (is_mem)
1647 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1649 /* Copy over flags as appropriate. */
1650 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1651 MEM_VOLATILE_P (tmp) = 1;
1652 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1653 MEM_IN_STRUCT_P (tmp) = 1;
1654 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1655 MEM_SCALAR_P (tmp) = 1;
1656 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1657 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1658 set_mem_align (tmp,
1659 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1661 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1662 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1664 noce_emit_move_insn (if_info->x, tmp);
1666 else if (target != x)
1667 noce_emit_move_insn (x, target);
1669 tmp = end_ifcvt_sequence (if_info);
1670 if (!tmp)
1671 return FALSE;
1673 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1674 return TRUE;
1676 end_seq_and_fail:
1677 end_sequence ();
1678 return FALSE;
1681 /* For most cases, the simplified condition we found is the best
1682 choice, but this is not the case for the min/max/abs transforms.
1683 For these we wish to know that it is A or B in the condition. */
1685 static rtx
1686 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1687 rtx *earliest)
1689 rtx cond, set, insn;
1690 int reverse;
1692 /* If target is already mentioned in the known condition, return it. */
1693 if (reg_mentioned_p (target, if_info->cond))
1695 *earliest = if_info->cond_earliest;
1696 return if_info->cond;
1699 set = pc_set (if_info->jump);
1700 cond = XEXP (SET_SRC (set), 0);
1701 reverse
1702 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1703 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1704 if (if_info->then_else_reversed)
1705 reverse = !reverse;
1707 /* If we're looking for a constant, try to make the conditional
1708 have that constant in it. There are two reasons why it may
1709 not have the constant we want:
1711 1. GCC may have needed to put the constant in a register, because
1712 the target can't compare directly against that constant. For
1713 this case, we look for a SET immediately before the comparison
1714 that puts a constant in that register.
1716 2. GCC may have canonicalized the conditional, for example
1717 replacing "if x < 4" with "if x <= 3". We can undo that (or
1718 make equivalent types of changes) to get the constants we need
1719 if they're off by one in the right direction. */
1721 if (CONST_INT_P (target))
1723 enum rtx_code code = GET_CODE (if_info->cond);
1724 rtx op_a = XEXP (if_info->cond, 0);
1725 rtx op_b = XEXP (if_info->cond, 1);
1726 rtx prev_insn;
1728 /* First, look to see if we put a constant in a register. */
1729 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1730 if (prev_insn
1731 && BLOCK_FOR_INSN (prev_insn)
1732 == BLOCK_FOR_INSN (if_info->cond_earliest)
1733 && INSN_P (prev_insn)
1734 && GET_CODE (PATTERN (prev_insn)) == SET)
1736 rtx src = find_reg_equal_equiv_note (prev_insn);
1737 if (!src)
1738 src = SET_SRC (PATTERN (prev_insn));
1739 if (CONST_INT_P (src))
1741 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1742 op_a = src;
1743 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1744 op_b = src;
1746 if (CONST_INT_P (op_a))
1748 rtx tmp = op_a;
1749 op_a = op_b;
1750 op_b = tmp;
1751 code = swap_condition (code);
1756 /* Now, look to see if we can get the right constant by
1757 adjusting the conditional. */
1758 if (CONST_INT_P (op_b))
1760 HOST_WIDE_INT desired_val = INTVAL (target);
1761 HOST_WIDE_INT actual_val = INTVAL (op_b);
1763 switch (code)
1765 case LT:
1766 if (actual_val == desired_val + 1)
1768 code = LE;
1769 op_b = GEN_INT (desired_val);
1771 break;
1772 case LE:
1773 if (actual_val == desired_val - 1)
1775 code = LT;
1776 op_b = GEN_INT (desired_val);
1778 break;
1779 case GT:
1780 if (actual_val == desired_val - 1)
1782 code = GE;
1783 op_b = GEN_INT (desired_val);
1785 break;
1786 case GE:
1787 if (actual_val == desired_val + 1)
1789 code = GT;
1790 op_b = GEN_INT (desired_val);
1792 break;
1793 default:
1794 break;
1798 /* If we made any changes, generate a new conditional that is
1799 equivalent to what we started with, but has the right
1800 constants in it. */
1801 if (code != GET_CODE (if_info->cond)
1802 || op_a != XEXP (if_info->cond, 0)
1803 || op_b != XEXP (if_info->cond, 1))
1805 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1806 *earliest = if_info->cond_earliest;
1807 return cond;
1811 cond = canonicalize_condition (if_info->jump, cond, reverse,
1812 earliest, target, false, true);
1813 if (! cond || ! reg_mentioned_p (target, cond))
1814 return NULL;
1816 /* We almost certainly searched back to a different place.
1817 Need to re-verify correct lifetimes. */
1819 /* X may not be mentioned in the range (cond_earliest, jump]. */
1820 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1821 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1822 return NULL;
1824 /* A and B may not be modified in the range [cond_earliest, jump). */
1825 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1826 if (INSN_P (insn)
1827 && (modified_in_p (if_info->a, insn)
1828 || modified_in_p (if_info->b, insn)))
1829 return NULL;
1831 return cond;
1834 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1836 static int
1837 noce_try_minmax (struct noce_if_info *if_info)
1839 rtx cond, earliest, target, seq;
1840 enum rtx_code code, op;
1841 int unsignedp;
1843 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1844 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1845 to get the target to tell us... */
1846 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1847 || HONOR_NANS (GET_MODE (if_info->x)))
1848 return FALSE;
1850 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1851 if (!cond)
1852 return FALSE;
1854 /* Verify the condition is of the form we expect, and canonicalize
1855 the comparison code. */
1856 code = GET_CODE (cond);
1857 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1859 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1860 return FALSE;
1862 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1864 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1865 return FALSE;
1866 code = swap_condition (code);
1868 else
1869 return FALSE;
1871 /* Determine what sort of operation this is. Note that the code is for
1872 a taken branch, so the code->operation mapping appears backwards. */
1873 switch (code)
1875 case LT:
1876 case LE:
1877 case UNLT:
1878 case UNLE:
1879 op = SMAX;
1880 unsignedp = 0;
1881 break;
1882 case GT:
1883 case GE:
1884 case UNGT:
1885 case UNGE:
1886 op = SMIN;
1887 unsignedp = 0;
1888 break;
1889 case LTU:
1890 case LEU:
1891 op = UMAX;
1892 unsignedp = 1;
1893 break;
1894 case GTU:
1895 case GEU:
1896 op = UMIN;
1897 unsignedp = 1;
1898 break;
1899 default:
1900 return FALSE;
1903 start_sequence ();
1905 target = expand_simple_binop (GET_MODE (if_info->x), op,
1906 if_info->a, if_info->b,
1907 if_info->x, unsignedp, OPTAB_WIDEN);
1908 if (! target)
1910 end_sequence ();
1911 return FALSE;
1913 if (target != if_info->x)
1914 noce_emit_move_insn (if_info->x, target);
1916 seq = end_ifcvt_sequence (if_info);
1917 if (!seq)
1918 return FALSE;
1920 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1921 if_info->cond = cond;
1922 if_info->cond_earliest = earliest;
1924 return TRUE;
1927 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1928 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1929 etc. */
1931 static int
1932 noce_try_abs (struct noce_if_info *if_info)
1934 rtx cond, earliest, target, seq, a, b, c;
1935 int negate;
1936 bool one_cmpl = false;
1938 /* Reject modes with signed zeros. */
1939 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1940 return FALSE;
1942 /* Recognize A and B as constituting an ABS or NABS. The canonical
1943 form is a branch around the negation, taken when the object is the
1944 first operand of a comparison against 0 that evaluates to true. */
1945 a = if_info->a;
1946 b = if_info->b;
1947 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1948 negate = 0;
1949 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1951 c = a; a = b; b = c;
1952 negate = 1;
1954 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1956 negate = 0;
1957 one_cmpl = true;
1959 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1961 c = a; a = b; b = c;
1962 negate = 1;
1963 one_cmpl = true;
1965 else
1966 return FALSE;
1968 cond = noce_get_alt_condition (if_info, b, &earliest);
1969 if (!cond)
1970 return FALSE;
1972 /* Verify the condition is of the form we expect. */
1973 if (rtx_equal_p (XEXP (cond, 0), b))
1974 c = XEXP (cond, 1);
1975 else if (rtx_equal_p (XEXP (cond, 1), b))
1977 c = XEXP (cond, 0);
1978 negate = !negate;
1980 else
1981 return FALSE;
1983 /* Verify that C is zero. Search one step backward for a
1984 REG_EQUAL note or a simple source if necessary. */
1985 if (REG_P (c))
1987 rtx set, insn = prev_nonnote_insn (earliest);
1988 if (insn
1989 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1990 && (set = single_set (insn))
1991 && rtx_equal_p (SET_DEST (set), c))
1993 rtx note = find_reg_equal_equiv_note (insn);
1994 if (note)
1995 c = XEXP (note, 0);
1996 else
1997 c = SET_SRC (set);
1999 else
2000 return FALSE;
2002 if (MEM_P (c)
2003 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2004 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2005 c = get_pool_constant (XEXP (c, 0));
2007 /* Work around funny ideas get_condition has wrt canonicalization.
2008 Note that these rtx constants are known to be CONST_INT, and
2009 therefore imply integer comparisons. */
2010 if (c == constm1_rtx && GET_CODE (cond) == GT)
2012 else if (c == const1_rtx && GET_CODE (cond) == LT)
2014 else if (c != CONST0_RTX (GET_MODE (b)))
2015 return FALSE;
2017 /* Determine what sort of operation this is. */
2018 switch (GET_CODE (cond))
2020 case LT:
2021 case LE:
2022 case UNLT:
2023 case UNLE:
2024 negate = !negate;
2025 break;
2026 case GT:
2027 case GE:
2028 case UNGT:
2029 case UNGE:
2030 break;
2031 default:
2032 return FALSE;
2035 start_sequence ();
2036 if (one_cmpl)
2037 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2038 if_info->x);
2039 else
2040 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2042 /* ??? It's a quandary whether cmove would be better here, especially
2043 for integers. Perhaps combine will clean things up. */
2044 if (target && negate)
2046 if (one_cmpl)
2047 target = expand_simple_unop (GET_MODE (target), NOT, target,
2048 if_info->x, 0);
2049 else
2050 target = expand_simple_unop (GET_MODE (target), NEG, target,
2051 if_info->x, 0);
2054 if (! target)
2056 end_sequence ();
2057 return FALSE;
2060 if (target != if_info->x)
2061 noce_emit_move_insn (if_info->x, target);
2063 seq = end_ifcvt_sequence (if_info);
2064 if (!seq)
2065 return FALSE;
2067 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2068 if_info->cond = cond;
2069 if_info->cond_earliest = earliest;
2071 return TRUE;
2074 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2076 static int
2077 noce_try_sign_mask (struct noce_if_info *if_info)
2079 rtx cond, t, m, c, seq;
2080 enum machine_mode mode;
2081 enum rtx_code code;
2082 bool t_unconditional;
2084 cond = if_info->cond;
2085 code = GET_CODE (cond);
2086 m = XEXP (cond, 0);
2087 c = XEXP (cond, 1);
2089 t = NULL_RTX;
2090 if (if_info->a == const0_rtx)
2092 if ((code == LT && c == const0_rtx)
2093 || (code == LE && c == constm1_rtx))
2094 t = if_info->b;
2096 else if (if_info->b == const0_rtx)
2098 if ((code == GE && c == const0_rtx)
2099 || (code == GT && c == constm1_rtx))
2100 t = if_info->a;
2103 if (! t || side_effects_p (t))
2104 return FALSE;
2106 /* We currently don't handle different modes. */
2107 mode = GET_MODE (t);
2108 if (GET_MODE (m) != mode)
2109 return FALSE;
2111 /* This is only profitable if T is unconditionally executed/evaluated in the
2112 original insn sequence or T is cheap. The former happens if B is the
2113 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2114 INSN_B which can happen for e.g. conditional stores to memory. For the
2115 cost computation use the block TEST_BB where the evaluation will end up
2116 after the transformation. */
2117 t_unconditional =
2118 (t == if_info->b
2119 && (if_info->insn_b == NULL_RTX
2120 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2121 if (!(t_unconditional
2122 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2123 < COSTS_N_INSNS (2))))
2124 return FALSE;
2126 start_sequence ();
2127 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2128 "(signed) m >> 31" directly. This benefits targets with specialized
2129 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2130 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2131 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2132 : NULL_RTX;
2134 if (!t)
2136 end_sequence ();
2137 return FALSE;
2140 noce_emit_move_insn (if_info->x, t);
2142 seq = end_ifcvt_sequence (if_info);
2143 if (!seq)
2144 return FALSE;
2146 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2147 return TRUE;
2151 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2152 transformations. */
2154 static int
2155 noce_try_bitop (struct noce_if_info *if_info)
2157 rtx cond, x, a, result, seq;
2158 enum machine_mode mode;
2159 enum rtx_code code;
2160 int bitnum;
2162 x = if_info->x;
2163 cond = if_info->cond;
2164 code = GET_CODE (cond);
2166 /* Check for no else condition. */
2167 if (! rtx_equal_p (x, if_info->b))
2168 return FALSE;
2170 /* Check for a suitable condition. */
2171 if (code != NE && code != EQ)
2172 return FALSE;
2173 if (XEXP (cond, 1) != const0_rtx)
2174 return FALSE;
2175 cond = XEXP (cond, 0);
2177 /* ??? We could also handle AND here. */
2178 if (GET_CODE (cond) == ZERO_EXTRACT)
2180 if (XEXP (cond, 1) != const1_rtx
2181 || !CONST_INT_P (XEXP (cond, 2))
2182 || ! rtx_equal_p (x, XEXP (cond, 0)))
2183 return FALSE;
2184 bitnum = INTVAL (XEXP (cond, 2));
2185 mode = GET_MODE (x);
2186 if (BITS_BIG_ENDIAN)
2187 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2188 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2189 return FALSE;
2191 else
2192 return FALSE;
2194 a = if_info->a;
2195 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2197 /* Check for "if (X & C) x = x op C". */
2198 if (! rtx_equal_p (x, XEXP (a, 0))
2199 || !CONST_INT_P (XEXP (a, 1))
2200 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2201 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2202 return FALSE;
2204 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2205 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2206 if (GET_CODE (a) == IOR)
2207 result = (code == NE) ? a : NULL_RTX;
2208 else if (code == NE)
2210 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2211 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2212 result = simplify_gen_binary (IOR, mode, x, result);
2214 else
2216 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2217 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2218 result = simplify_gen_binary (AND, mode, x, result);
2221 else if (GET_CODE (a) == AND)
2223 /* Check for "if (X & C) x &= ~C". */
2224 if (! rtx_equal_p (x, XEXP (a, 0))
2225 || !CONST_INT_P (XEXP (a, 1))
2226 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2227 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2228 return FALSE;
2230 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2231 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2232 result = (code == EQ) ? a : NULL_RTX;
2234 else
2235 return FALSE;
2237 if (result)
2239 start_sequence ();
2240 noce_emit_move_insn (x, result);
2241 seq = end_ifcvt_sequence (if_info);
2242 if (!seq)
2243 return FALSE;
2245 emit_insn_before_setloc (seq, if_info->jump,
2246 INSN_LOCATOR (if_info->insn_a));
2248 return TRUE;
2252 /* Similar to get_condition, only the resulting condition must be
2253 valid at JUMP, instead of at EARLIEST.
2255 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2256 THEN block of the caller, and we have to reverse the condition. */
2258 static rtx
2259 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2261 rtx cond, set, tmp;
2262 bool reverse;
2264 if (! any_condjump_p (jump))
2265 return NULL_RTX;
2267 set = pc_set (jump);
2269 /* If this branches to JUMP_LABEL when the condition is false,
2270 reverse the condition. */
2271 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2272 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2274 /* We may have to reverse because the caller's if block is not canonical,
2275 i.e. the THEN block isn't the fallthrough block for the TEST block
2276 (see find_if_header). */
2277 if (then_else_reversed)
2278 reverse = !reverse;
2280 /* If the condition variable is a register and is MODE_INT, accept it. */
2282 cond = XEXP (SET_SRC (set), 0);
2283 tmp = XEXP (cond, 0);
2284 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2286 *earliest = jump;
2288 if (reverse)
2289 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2290 GET_MODE (cond), tmp, XEXP (cond, 1));
2291 return cond;
2294 /* Otherwise, fall back on canonicalize_condition to do the dirty
2295 work of manipulating MODE_CC values and COMPARE rtx codes. */
2296 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2297 NULL_RTX, false, true);
2299 /* We don't handle side-effects in the condition, like handling
2300 REG_INC notes and making sure no duplicate conditions are emitted. */
2301 if (tmp != NULL_RTX && side_effects_p (tmp))
2302 return NULL_RTX;
2304 return tmp;
2307 /* Return true if OP is ok for if-then-else processing. */
2309 static int
2310 noce_operand_ok (const_rtx op)
2312 /* We special-case memories, so handle any of them with
2313 no address side effects. */
2314 if (MEM_P (op))
2315 return ! side_effects_p (XEXP (op, 0));
2317 if (side_effects_p (op))
2318 return FALSE;
2320 return ! may_trap_p (op);
2323 /* Return true if a write into MEM may trap or fault. */
2325 static bool
2326 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2328 rtx addr;
2330 if (MEM_READONLY_P (mem))
2331 return true;
2333 if (may_trap_or_fault_p (mem))
2334 return true;
2336 addr = XEXP (mem, 0);
2338 /* Call target hook to avoid the effects of -fpic etc.... */
2339 addr = targetm.delegitimize_address (addr);
2341 while (addr)
2342 switch (GET_CODE (addr))
2344 case CONST:
2345 case PRE_DEC:
2346 case PRE_INC:
2347 case POST_DEC:
2348 case POST_INC:
2349 case POST_MODIFY:
2350 addr = XEXP (addr, 0);
2351 break;
2352 case LO_SUM:
2353 case PRE_MODIFY:
2354 addr = XEXP (addr, 1);
2355 break;
2356 case PLUS:
2357 if (CONST_INT_P (XEXP (addr, 1)))
2358 addr = XEXP (addr, 0);
2359 else
2360 return false;
2361 break;
2362 case LABEL_REF:
2363 return true;
2364 case SYMBOL_REF:
2365 if (SYMBOL_REF_DECL (addr)
2366 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2367 return true;
2368 return false;
2369 default:
2370 return false;
2373 return false;
2376 /* Return whether we can use store speculation for MEM. TOP_BB is the
2377 basic block above the conditional block where we are considering
2378 doing the speculative store. We look for whether MEM is set
2379 unconditionally later in the function. */
2381 static bool
2382 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2384 basic_block dominator;
2386 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2387 dominator != NULL;
2388 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2390 rtx insn;
2392 FOR_BB_INSNS (dominator, insn)
2394 /* If we see something that might be a memory barrier, we
2395 have to stop looking. Even if the MEM is set later in
2396 the function, we still don't want to set it
2397 unconditionally before the barrier. */
2398 if (INSN_P (insn)
2399 && (volatile_insn_p (PATTERN (insn))
2400 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2401 return false;
2403 if (memory_modified_in_insn_p (mem, insn))
2404 return true;
2405 if (modified_in_p (XEXP (mem, 0), insn))
2406 return false;
2411 return false;
2414 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2415 it without using conditional execution. Return TRUE if we were successful
2416 at converting the block. */
2418 static int
2419 noce_process_if_block (struct noce_if_info *if_info)
2421 basic_block test_bb = if_info->test_bb; /* test block */
2422 basic_block then_bb = if_info->then_bb; /* THEN */
2423 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2424 basic_block join_bb = if_info->join_bb; /* JOIN */
2425 rtx jump = if_info->jump;
2426 rtx cond = if_info->cond;
2427 rtx insn_a, insn_b;
2428 rtx set_a, set_b;
2429 rtx orig_x, x, a, b;
2431 /* We're looking for patterns of the form
2433 (1) if (...) x = a; else x = b;
2434 (2) x = b; if (...) x = a;
2435 (3) if (...) x = a; // as if with an initial x = x.
2437 The later patterns require jumps to be more expensive.
2439 ??? For future expansion, look for multiple X in such patterns. */
2441 /* Look for one of the potential sets. */
2442 insn_a = first_active_insn (then_bb);
2443 if (! insn_a
2444 || insn_a != last_active_insn (then_bb, FALSE)
2445 || (set_a = single_set (insn_a)) == NULL_RTX)
2446 return FALSE;
2448 x = SET_DEST (set_a);
2449 a = SET_SRC (set_a);
2451 /* Look for the other potential set. Make sure we've got equivalent
2452 destinations. */
2453 /* ??? This is overconservative. Storing to two different mems is
2454 as easy as conditionally computing the address. Storing to a
2455 single mem merely requires a scratch memory to use as one of the
2456 destination addresses; often the memory immediately below the
2457 stack pointer is available for this. */
2458 set_b = NULL_RTX;
2459 if (else_bb)
2461 insn_b = first_active_insn (else_bb);
2462 if (! insn_b
2463 || insn_b != last_active_insn (else_bb, FALSE)
2464 || (set_b = single_set (insn_b)) == NULL_RTX
2465 || ! rtx_equal_p (x, SET_DEST (set_b)))
2466 return FALSE;
2468 else
2470 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2471 /* We're going to be moving the evaluation of B down from above
2472 COND_EARLIEST to JUMP. Make sure the relevant data is still
2473 intact. */
2474 if (! insn_b
2475 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2476 || !NONJUMP_INSN_P (insn_b)
2477 || (set_b = single_set (insn_b)) == NULL_RTX
2478 || ! rtx_equal_p (x, SET_DEST (set_b))
2479 || ! noce_operand_ok (SET_SRC (set_b))
2480 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2481 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2482 /* Likewise with X. In particular this can happen when
2483 noce_get_condition looks farther back in the instruction
2484 stream than one might expect. */
2485 || reg_overlap_mentioned_p (x, cond)
2486 || reg_overlap_mentioned_p (x, a)
2487 || modified_between_p (x, insn_b, jump))
2488 insn_b = set_b = NULL_RTX;
2491 /* If x has side effects then only the if-then-else form is safe to
2492 convert. But even in that case we would need to restore any notes
2493 (such as REG_INC) at then end. That can be tricky if
2494 noce_emit_move_insn expands to more than one insn, so disable the
2495 optimization entirely for now if there are side effects. */
2496 if (side_effects_p (x))
2497 return FALSE;
2499 b = (set_b ? SET_SRC (set_b) : x);
2501 /* Only operate on register destinations, and even then avoid extending
2502 the lifetime of hard registers on small register class machines. */
2503 orig_x = x;
2504 if (!REG_P (x)
2505 || (HARD_REGISTER_P (x)
2506 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2508 if (GET_MODE (x) == BLKmode)
2509 return FALSE;
2511 if (GET_CODE (x) == ZERO_EXTRACT
2512 && (!CONST_INT_P (XEXP (x, 1))
2513 || !CONST_INT_P (XEXP (x, 2))))
2514 return FALSE;
2516 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2517 ? XEXP (x, 0) : x));
2520 /* Don't operate on sources that may trap or are volatile. */
2521 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2522 return FALSE;
2524 retry:
2525 /* Set up the info block for our subroutines. */
2526 if_info->insn_a = insn_a;
2527 if_info->insn_b = insn_b;
2528 if_info->x = x;
2529 if_info->a = a;
2530 if_info->b = b;
2532 /* Try optimizations in some approximation of a useful order. */
2533 /* ??? Should first look to see if X is live incoming at all. If it
2534 isn't, we don't need anything but an unconditional set. */
2536 /* Look and see if A and B are really the same. Avoid creating silly
2537 cmove constructs that no one will fix up later. */
2538 if (rtx_equal_p (a, b))
2540 /* If we have an INSN_B, we don't have to create any new rtl. Just
2541 move the instruction that we already have. If we don't have an
2542 INSN_B, that means that A == X, and we've got a noop move. In
2543 that case don't do anything and let the code below delete INSN_A. */
2544 if (insn_b && else_bb)
2546 rtx note;
2548 if (else_bb && insn_b == BB_END (else_bb))
2549 BB_END (else_bb) = PREV_INSN (insn_b);
2550 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2552 /* If there was a REG_EQUAL note, delete it since it may have been
2553 true due to this insn being after a jump. */
2554 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2555 remove_note (insn_b, note);
2557 insn_b = NULL_RTX;
2559 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2560 x must be executed twice. */
2561 else if (insn_b && side_effects_p (orig_x))
2562 return FALSE;
2564 x = orig_x;
2565 goto success;
2568 if (!set_b && MEM_P (orig_x))
2570 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2571 for optimizations if writing to x may trap or fault,
2572 i.e. it's a memory other than a static var or a stack slot,
2573 is misaligned on strict aligned machines or is read-only. If
2574 x is a read-only memory, then the program is valid only if we
2575 avoid the store into it. If there are stores on both the
2576 THEN and ELSE arms, then we can go ahead with the conversion;
2577 either the program is broken, or the condition is always
2578 false such that the other memory is selected. */
2579 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2580 return FALSE;
2582 /* Avoid store speculation: given "if (...) x = a" where x is a
2583 MEM, we only want to do the store if x is always set
2584 somewhere in the function. This avoids cases like
2585 if (pthread_mutex_trylock(mutex))
2586 ++global_variable;
2587 where we only want global_variable to be changed if the mutex
2588 is held. FIXME: This should ideally be expressed directly in
2589 RTL somehow. */
2590 if (!noce_can_store_speculate_p (test_bb, orig_x))
2591 return FALSE;
2594 if (noce_try_move (if_info))
2595 goto success;
2596 if (noce_try_store_flag (if_info))
2597 goto success;
2598 if (noce_try_bitop (if_info))
2599 goto success;
2600 if (noce_try_minmax (if_info))
2601 goto success;
2602 if (noce_try_abs (if_info))
2603 goto success;
2604 if (HAVE_conditional_move
2605 && noce_try_cmove (if_info))
2606 goto success;
2607 if (! targetm.have_conditional_execution ())
2609 if (noce_try_store_flag_constants (if_info))
2610 goto success;
2611 if (noce_try_addcc (if_info))
2612 goto success;
2613 if (noce_try_store_flag_mask (if_info))
2614 goto success;
2615 if (HAVE_conditional_move
2616 && noce_try_cmove_arith (if_info))
2617 goto success;
2618 if (noce_try_sign_mask (if_info))
2619 goto success;
2622 if (!else_bb && set_b)
2624 insn_b = set_b = NULL_RTX;
2625 b = orig_x;
2626 goto retry;
2629 return FALSE;
2631 success:
2633 /* If we used a temporary, fix it up now. */
2634 if (orig_x != x)
2636 rtx seq;
2638 start_sequence ();
2639 noce_emit_move_insn (orig_x, x);
2640 seq = get_insns ();
2641 set_used_flags (orig_x);
2642 unshare_all_rtl_in_chain (seq);
2643 end_sequence ();
2645 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2648 /* The original THEN and ELSE blocks may now be removed. The test block
2649 must now jump to the join block. If the test block and the join block
2650 can be merged, do so. */
2651 if (else_bb)
2653 delete_basic_block (else_bb);
2654 num_true_changes++;
2656 else
2657 remove_edge (find_edge (test_bb, join_bb));
2659 remove_edge (find_edge (then_bb, join_bb));
2660 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2661 delete_basic_block (then_bb);
2662 num_true_changes++;
2664 if (can_merge_blocks_p (test_bb, join_bb))
2666 merge_blocks (test_bb, join_bb);
2667 num_true_changes++;
2670 num_updated_if_blocks++;
2671 return TRUE;
2674 /* Check whether a block is suitable for conditional move conversion.
2675 Every insn must be a simple set of a register to a constant or a
2676 register. For each assignment, store the value in the array VALS,
2677 indexed by register number, then store the register number in
2678 REGS. COND is the condition we will test. */
2680 static int
2681 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2682 rtx cond)
2684 rtx insn;
2686 /* We can only handle simple jumps at the end of the basic block.
2687 It is almost impossible to update the CFG otherwise. */
2688 insn = BB_END (bb);
2689 if (JUMP_P (insn) && !onlyjump_p (insn))
2690 return FALSE;
2692 FOR_BB_INSNS (bb, insn)
2694 rtx set, dest, src;
2696 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2697 continue;
2698 set = single_set (insn);
2699 if (!set)
2700 return FALSE;
2702 dest = SET_DEST (set);
2703 src = SET_SRC (set);
2704 if (!REG_P (dest)
2705 || (HARD_REGISTER_P (dest)
2706 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2707 return FALSE;
2709 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2710 return FALSE;
2712 if (side_effects_p (src) || side_effects_p (dest))
2713 return FALSE;
2715 if (may_trap_p (src) || may_trap_p (dest))
2716 return FALSE;
2718 /* Don't try to handle this if the source register was
2719 modified earlier in the block. */
2720 if ((REG_P (src)
2721 && vals[REGNO (src)] != NULL)
2722 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2723 && vals[REGNO (SUBREG_REG (src))] != NULL))
2724 return FALSE;
2726 /* Don't try to handle this if the destination register was
2727 modified earlier in the block. */
2728 if (vals[REGNO (dest)] != NULL)
2729 return FALSE;
2731 /* Don't try to handle this if the condition uses the
2732 destination register. */
2733 if (reg_overlap_mentioned_p (dest, cond))
2734 return FALSE;
2736 /* Don't try to handle this if the source register is modified
2737 later in the block. */
2738 if (!CONSTANT_P (src)
2739 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2740 return FALSE;
2742 vals[REGNO (dest)] = src;
2744 VEC_safe_push (int, heap, *regs, REGNO (dest));
2747 return TRUE;
2750 /* Given a basic block BB suitable for conditional move conversion,
2751 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2752 register values depending on COND, emit the insns in the block as
2753 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2754 processed. The caller has started a sequence for the conversion.
2755 Return true if successful, false if something goes wrong. */
2757 static bool
2758 cond_move_convert_if_block (struct noce_if_info *if_infop,
2759 basic_block bb, rtx cond,
2760 rtx *then_vals, rtx *else_vals,
2761 bool else_block_p)
2763 enum rtx_code code;
2764 rtx insn, cond_arg0, cond_arg1;
2766 code = GET_CODE (cond);
2767 cond_arg0 = XEXP (cond, 0);
2768 cond_arg1 = XEXP (cond, 1);
2770 FOR_BB_INSNS (bb, insn)
2772 rtx set, target, dest, t, e;
2773 unsigned int regno;
2775 /* ??? Maybe emit conditional debug insn? */
2776 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2777 continue;
2778 set = single_set (insn);
2779 gcc_assert (set && REG_P (SET_DEST (set)));
2781 dest = SET_DEST (set);
2782 regno = REGNO (dest);
2784 t = then_vals[regno];
2785 e = else_vals[regno];
2787 if (else_block_p)
2789 /* If this register was set in the then block, we already
2790 handled this case there. */
2791 if (t)
2792 continue;
2793 t = dest;
2794 gcc_assert (e);
2796 else
2798 gcc_assert (t);
2799 if (!e)
2800 e = dest;
2803 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2804 t, e);
2805 if (!target)
2806 return false;
2808 if (target != dest)
2809 noce_emit_move_insn (dest, target);
2812 return true;
2815 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2816 it using only conditional moves. Return TRUE if we were successful at
2817 converting the block. */
2819 static int
2820 cond_move_process_if_block (struct noce_if_info *if_info)
2822 basic_block test_bb = if_info->test_bb;
2823 basic_block then_bb = if_info->then_bb;
2824 basic_block else_bb = if_info->else_bb;
2825 basic_block join_bb = if_info->join_bb;
2826 rtx jump = if_info->jump;
2827 rtx cond = if_info->cond;
2828 rtx seq, loc_insn;
2829 int max_reg, size, c, reg;
2830 rtx *then_vals;
2831 rtx *else_vals;
2832 VEC (int, heap) *then_regs = NULL;
2833 VEC (int, heap) *else_regs = NULL;
2834 unsigned int i;
2836 /* Build a mapping for each block to the value used for each
2837 register. */
2838 max_reg = max_reg_num ();
2839 size = (max_reg + 1) * sizeof (rtx);
2840 then_vals = (rtx *) alloca (size);
2841 else_vals = (rtx *) alloca (size);
2842 memset (then_vals, 0, size);
2843 memset (else_vals, 0, size);
2845 /* Make sure the blocks are suitable. */
2846 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2847 || (else_bb
2848 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2850 VEC_free (int, heap, then_regs);
2851 VEC_free (int, heap, else_regs);
2852 return FALSE;
2855 /* Make sure the blocks can be used together. If the same register
2856 is set in both blocks, and is not set to a constant in both
2857 cases, then both blocks must set it to the same register. We
2858 have already verified that if it is set to a register, that the
2859 source register does not change after the assignment. Also count
2860 the number of registers set in only one of the blocks. */
2861 c = 0;
2862 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2864 if (!then_vals[reg] && !else_vals[reg])
2865 continue;
2867 if (!else_vals[reg])
2868 ++c;
2869 else
2871 if (!CONSTANT_P (then_vals[reg])
2872 && !CONSTANT_P (else_vals[reg])
2873 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2875 VEC_free (int, heap, then_regs);
2876 VEC_free (int, heap, else_regs);
2877 return FALSE;
2882 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2883 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2884 if (!then_vals[reg])
2885 ++c;
2887 /* Make sure it is reasonable to convert this block. What matters
2888 is the number of assignments currently made in only one of the
2889 branches, since if we convert we are going to always execute
2890 them. */
2891 if (c > MAX_CONDITIONAL_EXECUTE)
2893 VEC_free (int, heap, then_regs);
2894 VEC_free (int, heap, else_regs);
2895 return FALSE;
2898 /* Try to emit the conditional moves. First do the then block,
2899 then do anything left in the else blocks. */
2900 start_sequence ();
2901 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2902 then_vals, else_vals, false)
2903 || (else_bb
2904 && !cond_move_convert_if_block (if_info, else_bb, cond,
2905 then_vals, else_vals, true)))
2907 end_sequence ();
2908 VEC_free (int, heap, then_regs);
2909 VEC_free (int, heap, else_regs);
2910 return FALSE;
2912 seq = end_ifcvt_sequence (if_info);
2913 if (!seq)
2915 VEC_free (int, heap, then_regs);
2916 VEC_free (int, heap, else_regs);
2917 return FALSE;
2920 loc_insn = first_active_insn (then_bb);
2921 if (!loc_insn)
2923 loc_insn = first_active_insn (else_bb);
2924 gcc_assert (loc_insn);
2926 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2928 if (else_bb)
2930 delete_basic_block (else_bb);
2931 num_true_changes++;
2933 else
2934 remove_edge (find_edge (test_bb, join_bb));
2936 remove_edge (find_edge (then_bb, join_bb));
2937 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2938 delete_basic_block (then_bb);
2939 num_true_changes++;
2941 if (can_merge_blocks_p (test_bb, join_bb))
2943 merge_blocks (test_bb, join_bb);
2944 num_true_changes++;
2947 num_updated_if_blocks++;
2949 VEC_free (int, heap, then_regs);
2950 VEC_free (int, heap, else_regs);
2951 return TRUE;
2955 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2956 IF-THEN-ELSE-JOIN block.
2958 If so, we'll try to convert the insns to not require the branch,
2959 using only transformations that do not require conditional execution.
2961 Return TRUE if we were successful at converting the block. */
2963 static int
2964 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2965 int pass)
2967 basic_block then_bb, else_bb, join_bb;
2968 bool then_else_reversed = false;
2969 rtx jump, cond;
2970 rtx cond_earliest;
2971 struct noce_if_info if_info;
2973 /* We only ever should get here before reload. */
2974 gcc_assert (!reload_completed);
2976 /* Recognize an IF-THEN-ELSE-JOIN block. */
2977 if (single_pred_p (then_edge->dest)
2978 && single_succ_p (then_edge->dest)
2979 && single_pred_p (else_edge->dest)
2980 && single_succ_p (else_edge->dest)
2981 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2983 then_bb = then_edge->dest;
2984 else_bb = else_edge->dest;
2985 join_bb = single_succ (then_bb);
2987 /* Recognize an IF-THEN-JOIN block. */
2988 else if (single_pred_p (then_edge->dest)
2989 && single_succ_p (then_edge->dest)
2990 && single_succ (then_edge->dest) == else_edge->dest)
2992 then_bb = then_edge->dest;
2993 else_bb = NULL_BLOCK;
2994 join_bb = else_edge->dest;
2996 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2997 of basic blocks in cfglayout mode does not matter, so the fallthrough
2998 edge can go to any basic block (and not just to bb->next_bb, like in
2999 cfgrtl mode). */
3000 else if (single_pred_p (else_edge->dest)
3001 && single_succ_p (else_edge->dest)
3002 && single_succ (else_edge->dest) == then_edge->dest)
3004 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3005 To make this work, we have to invert the THEN and ELSE blocks
3006 and reverse the jump condition. */
3007 then_bb = else_edge->dest;
3008 else_bb = NULL_BLOCK;
3009 join_bb = single_succ (then_bb);
3010 then_else_reversed = true;
3012 else
3013 /* Not a form we can handle. */
3014 return FALSE;
3016 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3017 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3018 return FALSE;
3019 if (else_bb
3020 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3021 return FALSE;
3023 num_possible_if_blocks++;
3025 if (dump_file)
3027 fprintf (dump_file,
3028 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3029 (else_bb) ? "-ELSE" : "",
3030 pass, test_bb->index, then_bb->index);
3032 if (else_bb)
3033 fprintf (dump_file, ", else %d", else_bb->index);
3035 fprintf (dump_file, ", join %d\n", join_bb->index);
3038 /* If the conditional jump is more than just a conditional
3039 jump, then we can not do if-conversion on this block. */
3040 jump = BB_END (test_bb);
3041 if (! onlyjump_p (jump))
3042 return FALSE;
3044 /* If this is not a standard conditional jump, we can't parse it. */
3045 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3046 if (!cond)
3047 return FALSE;
3049 /* We must be comparing objects whose modes imply the size. */
3050 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3051 return FALSE;
3053 /* Initialize an IF_INFO struct to pass around. */
3054 memset (&if_info, 0, sizeof if_info);
3055 if_info.test_bb = test_bb;
3056 if_info.then_bb = then_bb;
3057 if_info.else_bb = else_bb;
3058 if_info.join_bb = join_bb;
3059 if_info.cond = cond;
3060 if_info.cond_earliest = cond_earliest;
3061 if_info.jump = jump;
3062 if_info.then_else_reversed = then_else_reversed;
3063 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3064 predictable_edge_p (then_edge));
3066 /* Do the real work. */
3068 if (noce_process_if_block (&if_info))
3069 return TRUE;
3071 if (HAVE_conditional_move
3072 && cond_move_process_if_block (&if_info))
3073 return TRUE;
3075 return FALSE;
3079 /* Merge the blocks and mark for local life update. */
3081 static void
3082 merge_if_block (struct ce_if_block * ce_info)
3084 basic_block test_bb = ce_info->test_bb; /* last test block */
3085 basic_block then_bb = ce_info->then_bb; /* THEN */
3086 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3087 basic_block join_bb = ce_info->join_bb; /* join block */
3088 basic_block combo_bb;
3090 /* All block merging is done into the lower block numbers. */
3092 combo_bb = test_bb;
3093 df_set_bb_dirty (test_bb);
3095 /* Merge any basic blocks to handle && and || subtests. Each of
3096 the blocks are on the fallthru path from the predecessor block. */
3097 if (ce_info->num_multiple_test_blocks > 0)
3099 basic_block bb = test_bb;
3100 basic_block last_test_bb = ce_info->last_test_bb;
3101 basic_block fallthru = block_fallthru (bb);
3105 bb = fallthru;
3106 fallthru = block_fallthru (bb);
3107 merge_blocks (combo_bb, bb);
3108 num_true_changes++;
3110 while (bb != last_test_bb);
3113 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3114 label, but it might if there were || tests. That label's count should be
3115 zero, and it normally should be removed. */
3117 if (then_bb)
3119 merge_blocks (combo_bb, then_bb);
3120 num_true_changes++;
3123 /* The ELSE block, if it existed, had a label. That label count
3124 will almost always be zero, but odd things can happen when labels
3125 get their addresses taken. */
3126 if (else_bb)
3128 merge_blocks (combo_bb, else_bb);
3129 num_true_changes++;
3132 /* If there was no join block reported, that means it was not adjacent
3133 to the others, and so we cannot merge them. */
3135 if (! join_bb)
3137 rtx last = BB_END (combo_bb);
3139 /* The outgoing edge for the current COMBO block should already
3140 be correct. Verify this. */
3141 if (EDGE_COUNT (combo_bb->succs) == 0)
3142 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3143 || (NONJUMP_INSN_P (last)
3144 && GET_CODE (PATTERN (last)) == TRAP_IF
3145 && (TRAP_CONDITION (PATTERN (last))
3146 == const_true_rtx)));
3148 else
3149 /* There should still be something at the end of the THEN or ELSE
3150 blocks taking us to our final destination. */
3151 gcc_assert (JUMP_P (last)
3152 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3153 && CALL_P (last)
3154 && SIBLING_CALL_P (last))
3155 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3156 && can_throw_internal (last)));
3159 /* The JOIN block may have had quite a number of other predecessors too.
3160 Since we've already merged the TEST, THEN and ELSE blocks, we should
3161 have only one remaining edge from our if-then-else diamond. If there
3162 is more than one remaining edge, it must come from elsewhere. There
3163 may be zero incoming edges if the THEN block didn't actually join
3164 back up (as with a call to a non-return function). */
3165 else if (EDGE_COUNT (join_bb->preds) < 2
3166 && join_bb != EXIT_BLOCK_PTR)
3168 /* We can merge the JOIN cleanly and update the dataflow try
3169 again on this pass.*/
3170 merge_blocks (combo_bb, join_bb);
3171 num_true_changes++;
3173 else
3175 /* We cannot merge the JOIN. */
3177 /* The outgoing edge for the current COMBO block should already
3178 be correct. Verify this. */
3179 gcc_assert (single_succ_p (combo_bb)
3180 && single_succ (combo_bb) == join_bb);
3182 /* Remove the jump and cruft from the end of the COMBO block. */
3183 if (join_bb != EXIT_BLOCK_PTR)
3184 tidy_fallthru_edge (single_succ_edge (combo_bb));
3187 num_updated_if_blocks++;
3190 /* Find a block ending in a simple IF condition and try to transform it
3191 in some way. When converting a multi-block condition, put the new code
3192 in the first such block and delete the rest. Return a pointer to this
3193 first block if some transformation was done. Return NULL otherwise. */
3195 static basic_block
3196 find_if_header (basic_block test_bb, int pass)
3198 ce_if_block_t ce_info;
3199 edge then_edge;
3200 edge else_edge;
3202 /* The kind of block we're looking for has exactly two successors. */
3203 if (EDGE_COUNT (test_bb->succs) != 2)
3204 return NULL;
3206 then_edge = EDGE_SUCC (test_bb, 0);
3207 else_edge = EDGE_SUCC (test_bb, 1);
3209 if (df_get_bb_dirty (then_edge->dest))
3210 return NULL;
3211 if (df_get_bb_dirty (else_edge->dest))
3212 return NULL;
3214 /* Neither edge should be abnormal. */
3215 if ((then_edge->flags & EDGE_COMPLEX)
3216 || (else_edge->flags & EDGE_COMPLEX))
3217 return NULL;
3219 /* Nor exit the loop. */
3220 if ((then_edge->flags & EDGE_LOOP_EXIT)
3221 || (else_edge->flags & EDGE_LOOP_EXIT))
3222 return NULL;
3224 /* The THEN edge is canonically the one that falls through. */
3225 if (then_edge->flags & EDGE_FALLTHRU)
3227 else if (else_edge->flags & EDGE_FALLTHRU)
3229 edge e = else_edge;
3230 else_edge = then_edge;
3231 then_edge = e;
3233 else
3234 /* Otherwise this must be a multiway branch of some sort. */
3235 return NULL;
3237 memset (&ce_info, 0, sizeof (ce_info));
3238 ce_info.test_bb = test_bb;
3239 ce_info.then_bb = then_edge->dest;
3240 ce_info.else_bb = else_edge->dest;
3241 ce_info.pass = pass;
3243 #ifdef IFCVT_INIT_EXTRA_FIELDS
3244 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3245 #endif
3247 if (!reload_completed
3248 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3249 goto success;
3251 if (reload_completed
3252 && targetm.have_conditional_execution ()
3253 && cond_exec_find_if_block (&ce_info))
3254 goto success;
3256 if (HAVE_trap
3257 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3258 && find_cond_trap (test_bb, then_edge, else_edge))
3259 goto success;
3261 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3262 && (reload_completed || !targetm.have_conditional_execution ()))
3264 if (find_if_case_1 (test_bb, then_edge, else_edge))
3265 goto success;
3266 if (find_if_case_2 (test_bb, then_edge, else_edge))
3267 goto success;
3270 return NULL;
3272 success:
3273 if (dump_file)
3274 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3275 /* Set this so we continue looking. */
3276 cond_exec_changed_p = TRUE;
3277 return ce_info.test_bb;
3280 /* Return true if a block has two edges, one of which falls through to the next
3281 block, and the other jumps to a specific block, so that we can tell if the
3282 block is part of an && test or an || test. Returns either -1 or the number
3283 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3285 static int
3286 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3288 edge cur_edge;
3289 int fallthru_p = FALSE;
3290 int jump_p = FALSE;
3291 rtx insn;
3292 rtx end;
3293 int n_insns = 0;
3294 edge_iterator ei;
3296 if (!cur_bb || !target_bb)
3297 return -1;
3299 /* If no edges, obviously it doesn't jump or fallthru. */
3300 if (EDGE_COUNT (cur_bb->succs) == 0)
3301 return FALSE;
3303 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3305 if (cur_edge->flags & EDGE_COMPLEX)
3306 /* Anything complex isn't what we want. */
3307 return -1;
3309 else if (cur_edge->flags & EDGE_FALLTHRU)
3310 fallthru_p = TRUE;
3312 else if (cur_edge->dest == target_bb)
3313 jump_p = TRUE;
3315 else
3316 return -1;
3319 if ((jump_p & fallthru_p) == 0)
3320 return -1;
3322 /* Don't allow calls in the block, since this is used to group && and ||
3323 together for conditional execution support. ??? we should support
3324 conditional execution support across calls for IA-64 some day, but
3325 for now it makes the code simpler. */
3326 end = BB_END (cur_bb);
3327 insn = BB_HEAD (cur_bb);
3329 while (insn != NULL_RTX)
3331 if (CALL_P (insn))
3332 return -1;
3334 if (INSN_P (insn)
3335 && !JUMP_P (insn)
3336 && !DEBUG_INSN_P (insn)
3337 && GET_CODE (PATTERN (insn)) != USE
3338 && GET_CODE (PATTERN (insn)) != CLOBBER)
3339 n_insns++;
3341 if (insn == end)
3342 break;
3344 insn = NEXT_INSN (insn);
3347 return n_insns;
3350 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3351 block. If so, we'll try to convert the insns to not require the branch.
3352 Return TRUE if we were successful at converting the block. */
3354 static int
3355 cond_exec_find_if_block (struct ce_if_block * ce_info)
3357 basic_block test_bb = ce_info->test_bb;
3358 basic_block then_bb = ce_info->then_bb;
3359 basic_block else_bb = ce_info->else_bb;
3360 basic_block join_bb = NULL_BLOCK;
3361 edge cur_edge;
3362 basic_block next;
3363 edge_iterator ei;
3365 ce_info->last_test_bb = test_bb;
3367 /* We only ever should get here after reload,
3368 and if we have conditional execution. */
3369 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3371 /* Discover if any fall through predecessors of the current test basic block
3372 were && tests (which jump to the else block) or || tests (which jump to
3373 the then block). */
3374 if (single_pred_p (test_bb)
3375 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3377 basic_block bb = single_pred (test_bb);
3378 basic_block target_bb;
3379 int max_insns = MAX_CONDITIONAL_EXECUTE;
3380 int n_insns;
3382 /* Determine if the preceding block is an && or || block. */
3383 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3385 ce_info->and_and_p = TRUE;
3386 target_bb = else_bb;
3388 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3390 ce_info->and_and_p = FALSE;
3391 target_bb = then_bb;
3393 else
3394 target_bb = NULL_BLOCK;
3396 if (target_bb && n_insns <= max_insns)
3398 int total_insns = 0;
3399 int blocks = 0;
3401 ce_info->last_test_bb = test_bb;
3403 /* Found at least one && or || block, look for more. */
3406 ce_info->test_bb = test_bb = bb;
3407 total_insns += n_insns;
3408 blocks++;
3410 if (!single_pred_p (bb))
3411 break;
3413 bb = single_pred (bb);
3414 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3416 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3418 ce_info->num_multiple_test_blocks = blocks;
3419 ce_info->num_multiple_test_insns = total_insns;
3421 if (ce_info->and_and_p)
3422 ce_info->num_and_and_blocks = blocks;
3423 else
3424 ce_info->num_or_or_blocks = blocks;
3428 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3429 other than any || blocks which jump to the THEN block. */
3430 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3431 return FALSE;
3433 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3434 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3436 if (cur_edge->flags & EDGE_COMPLEX)
3437 return FALSE;
3440 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3442 if (cur_edge->flags & EDGE_COMPLEX)
3443 return FALSE;
3446 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3447 if (EDGE_COUNT (then_bb->succs) > 0
3448 && (!single_succ_p (then_bb)
3449 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3450 || (epilogue_completed
3451 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3452 return FALSE;
3454 /* If the THEN block has no successors, conditional execution can still
3455 make a conditional call. Don't do this unless the ELSE block has
3456 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3457 Check for the last insn of the THEN block being an indirect jump, which
3458 is listed as not having any successors, but confuses the rest of the CE
3459 code processing. ??? we should fix this in the future. */
3460 if (EDGE_COUNT (then_bb->succs) == 0)
3462 if (single_pred_p (else_bb))
3464 rtx last_insn = BB_END (then_bb);
3466 while (last_insn
3467 && NOTE_P (last_insn)
3468 && last_insn != BB_HEAD (then_bb))
3469 last_insn = PREV_INSN (last_insn);
3471 if (last_insn
3472 && JUMP_P (last_insn)
3473 && ! simplejump_p (last_insn))
3474 return FALSE;
3476 join_bb = else_bb;
3477 else_bb = NULL_BLOCK;
3479 else
3480 return FALSE;
3483 /* If the THEN block's successor is the other edge out of the TEST block,
3484 then we have an IF-THEN combo without an ELSE. */
3485 else if (single_succ (then_bb) == else_bb)
3487 join_bb = else_bb;
3488 else_bb = NULL_BLOCK;
3491 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3492 has exactly one predecessor and one successor, and the outgoing edge
3493 is not complex, then we have an IF-THEN-ELSE combo. */
3494 else if (single_succ_p (else_bb)
3495 && single_succ (then_bb) == single_succ (else_bb)
3496 && single_pred_p (else_bb)
3497 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3498 && !(epilogue_completed
3499 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3500 join_bb = single_succ (else_bb);
3502 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3503 else
3504 return FALSE;
3506 num_possible_if_blocks++;
3508 if (dump_file)
3510 fprintf (dump_file,
3511 "\nIF-THEN%s block found, pass %d, start block %d "
3512 "[insn %d], then %d [%d]",
3513 (else_bb) ? "-ELSE" : "",
3514 ce_info->pass,
3515 test_bb->index,
3516 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3517 then_bb->index,
3518 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3520 if (else_bb)
3521 fprintf (dump_file, ", else %d [%d]",
3522 else_bb->index,
3523 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3525 fprintf (dump_file, ", join %d [%d]",
3526 join_bb->index,
3527 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3529 if (ce_info->num_multiple_test_blocks > 0)
3530 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3531 ce_info->num_multiple_test_blocks,
3532 (ce_info->and_and_p) ? "&&" : "||",
3533 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3534 ce_info->last_test_bb->index,
3535 ((BB_HEAD (ce_info->last_test_bb))
3536 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3537 : -1));
3539 fputc ('\n', dump_file);
3542 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3543 first condition for free, since we've already asserted that there's a
3544 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3545 we checked the FALLTHRU flag, those are already adjacent to the last IF
3546 block. */
3547 /* ??? As an enhancement, move the ELSE block. Have to deal with
3548 BLOCK notes, if by no other means than backing out the merge if they
3549 exist. Sticky enough I don't want to think about it now. */
3550 next = then_bb;
3551 if (else_bb && (next = next->next_bb) != else_bb)
3552 return FALSE;
3553 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3555 if (else_bb)
3556 join_bb = NULL;
3557 else
3558 return FALSE;
3561 /* Do the real work. */
3563 ce_info->else_bb = else_bb;
3564 ce_info->join_bb = join_bb;
3566 /* If we have && and || tests, try to first handle combining the && and ||
3567 tests into the conditional code, and if that fails, go back and handle
3568 it without the && and ||, which at present handles the && case if there
3569 was no ELSE block. */
3570 if (cond_exec_process_if_block (ce_info, TRUE))
3571 return TRUE;
3573 if (ce_info->num_multiple_test_blocks)
3575 cancel_changes (0);
3577 if (cond_exec_process_if_block (ce_info, FALSE))
3578 return TRUE;
3581 return FALSE;
3584 /* Convert a branch over a trap, or a branch
3585 to a trap, into a conditional trap. */
3587 static int
3588 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3590 basic_block then_bb = then_edge->dest;
3591 basic_block else_bb = else_edge->dest;
3592 basic_block other_bb, trap_bb;
3593 rtx trap, jump, cond, cond_earliest, seq;
3594 enum rtx_code code;
3596 /* Locate the block with the trap instruction. */
3597 /* ??? While we look for no successors, we really ought to allow
3598 EH successors. Need to fix merge_if_block for that to work. */
3599 if ((trap = block_has_only_trap (then_bb)) != NULL)
3600 trap_bb = then_bb, other_bb = else_bb;
3601 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3602 trap_bb = else_bb, other_bb = then_bb;
3603 else
3604 return FALSE;
3606 if (dump_file)
3608 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3609 test_bb->index, trap_bb->index);
3612 /* If this is not a standard conditional jump, we can't parse it. */
3613 jump = BB_END (test_bb);
3614 cond = noce_get_condition (jump, &cond_earliest, false);
3615 if (! cond)
3616 return FALSE;
3618 /* If the conditional jump is more than just a conditional jump, then
3619 we can not do if-conversion on this block. */
3620 if (! onlyjump_p (jump))
3621 return FALSE;
3623 /* We must be comparing objects whose modes imply the size. */
3624 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3625 return FALSE;
3627 /* Reverse the comparison code, if necessary. */
3628 code = GET_CODE (cond);
3629 if (then_bb == trap_bb)
3631 code = reversed_comparison_code (cond, jump);
3632 if (code == UNKNOWN)
3633 return FALSE;
3636 /* Attempt to generate the conditional trap. */
3637 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3638 copy_rtx (XEXP (cond, 1)),
3639 TRAP_CODE (PATTERN (trap)));
3640 if (seq == NULL)
3641 return FALSE;
3643 /* Emit the new insns before cond_earliest. */
3644 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3646 /* Delete the trap block if possible. */
3647 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3648 df_set_bb_dirty (test_bb);
3649 df_set_bb_dirty (then_bb);
3650 df_set_bb_dirty (else_bb);
3652 if (EDGE_COUNT (trap_bb->preds) == 0)
3654 delete_basic_block (trap_bb);
3655 num_true_changes++;
3658 /* Wire together the blocks again. */
3659 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3660 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3661 else
3663 rtx lab, newjump;
3665 lab = JUMP_LABEL (jump);
3666 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3667 LABEL_NUSES (lab) += 1;
3668 JUMP_LABEL (newjump) = lab;
3669 emit_barrier_after (newjump);
3671 delete_insn (jump);
3673 if (can_merge_blocks_p (test_bb, other_bb))
3675 merge_blocks (test_bb, other_bb);
3676 num_true_changes++;
3679 num_updated_if_blocks++;
3680 return TRUE;
3683 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3684 return it. */
3686 static rtx
3687 block_has_only_trap (basic_block bb)
3689 rtx trap;
3691 /* We're not the exit block. */
3692 if (bb == EXIT_BLOCK_PTR)
3693 return NULL_RTX;
3695 /* The block must have no successors. */
3696 if (EDGE_COUNT (bb->succs) > 0)
3697 return NULL_RTX;
3699 /* The only instruction in the THEN block must be the trap. */
3700 trap = first_active_insn (bb);
3701 if (! (trap == BB_END (bb)
3702 && GET_CODE (PATTERN (trap)) == TRAP_IF
3703 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3704 return NULL_RTX;
3706 return trap;
3709 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3710 transformable, but not necessarily the other. There need be no
3711 JOIN block.
3713 Return TRUE if we were successful at converting the block.
3715 Cases we'd like to look at:
3718 if (test) goto over; // x not live
3719 x = a;
3720 goto label;
3721 over:
3723 becomes
3725 x = a;
3726 if (! test) goto label;
3729 if (test) goto E; // x not live
3730 x = big();
3731 goto L;
3733 x = b;
3734 goto M;
3736 becomes
3738 x = b;
3739 if (test) goto M;
3740 x = big();
3741 goto L;
3743 (3) // This one's really only interesting for targets that can do
3744 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3745 // it results in multiple branches on a cache line, which often
3746 // does not sit well with predictors.
3748 if (test1) goto E; // predicted not taken
3749 x = a;
3750 if (test2) goto F;
3753 x = b;
3756 becomes
3758 x = a;
3759 if (test1) goto E;
3760 if (test2) goto F;
3762 Notes:
3764 (A) Don't do (2) if the branch is predicted against the block we're
3765 eliminating. Do it anyway if we can eliminate a branch; this requires
3766 that the sole successor of the eliminated block postdominate the other
3767 side of the if.
3769 (B) With CE, on (3) we can steal from both sides of the if, creating
3771 if (test1) x = a;
3772 if (!test1) x = b;
3773 if (test1) goto J;
3774 if (test2) goto F;
3778 Again, this is most useful if J postdominates.
3780 (C) CE substitutes for helpful life information.
3782 (D) These heuristics need a lot of work. */
3784 /* Tests for case 1 above. */
3786 static int
3787 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3789 basic_block then_bb = then_edge->dest;
3790 basic_block else_bb = else_edge->dest;
3791 basic_block new_bb;
3792 int then_bb_index;
3794 /* If we are partitioning hot/cold basic blocks, we don't want to
3795 mess up unconditional or indirect jumps that cross between hot
3796 and cold sections.
3798 Basic block partitioning may result in some jumps that appear to
3799 be optimizable (or blocks that appear to be mergeable), but which really
3800 must be left untouched (they are required to make it safely across
3801 partition boundaries). See the comments at the top of
3802 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3804 if ((BB_END (then_bb)
3805 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3806 || (BB_END (test_bb)
3807 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3808 || (BB_END (else_bb)
3809 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3810 NULL_RTX)))
3811 return FALSE;
3813 /* THEN has one successor. */
3814 if (!single_succ_p (then_bb))
3815 return FALSE;
3817 /* THEN does not fall through, but is not strange either. */
3818 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3819 return FALSE;
3821 /* THEN has one predecessor. */
3822 if (!single_pred_p (then_bb))
3823 return FALSE;
3825 /* THEN must do something. */
3826 if (forwarder_block_p (then_bb))
3827 return FALSE;
3829 num_possible_if_blocks++;
3830 if (dump_file)
3831 fprintf (dump_file,
3832 "\nIF-CASE-1 found, start %d, then %d\n",
3833 test_bb->index, then_bb->index);
3835 /* THEN is small. */
3836 if (! cheap_bb_rtx_cost_p (then_bb,
3837 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3838 predictable_edge_p (then_edge)))))
3839 return FALSE;
3841 /* Registers set are dead, or are predicable. */
3842 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3843 single_succ (then_bb), 1))
3844 return FALSE;
3846 /* Conversion went ok, including moving the insns and fixing up the
3847 jump. Adjust the CFG to match. */
3849 /* We can avoid creating a new basic block if then_bb is immediately
3850 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3851 thru to else_bb. */
3853 if (then_bb->next_bb == else_bb
3854 && then_bb->prev_bb == test_bb
3855 && else_bb != EXIT_BLOCK_PTR)
3857 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3858 new_bb = 0;
3860 else
3861 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3862 else_bb);
3864 df_set_bb_dirty (test_bb);
3865 df_set_bb_dirty (else_bb);
3867 then_bb_index = then_bb->index;
3868 delete_basic_block (then_bb);
3870 /* Make rest of code believe that the newly created block is the THEN_BB
3871 block we removed. */
3872 if (new_bb)
3874 df_bb_replace (then_bb_index, new_bb);
3875 /* Since the fallthru edge was redirected from test_bb to new_bb,
3876 we need to ensure that new_bb is in the same partition as
3877 test bb (you can not fall through across section boundaries). */
3878 BB_COPY_PARTITION (new_bb, test_bb);
3881 num_true_changes++;
3882 num_updated_if_blocks++;
3884 return TRUE;
3887 /* Test for case 2 above. */
3889 static int
3890 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3892 basic_block then_bb = then_edge->dest;
3893 basic_block else_bb = else_edge->dest;
3894 edge else_succ;
3895 rtx note;
3897 /* If we are partitioning hot/cold basic blocks, we don't want to
3898 mess up unconditional or indirect jumps that cross between hot
3899 and cold sections.
3901 Basic block partitioning may result in some jumps that appear to
3902 be optimizable (or blocks that appear to be mergeable), but which really
3903 must be left untouched (they are required to make it safely across
3904 partition boundaries). See the comments at the top of
3905 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3907 if ((BB_END (then_bb)
3908 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3909 || (BB_END (test_bb)
3910 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3911 || (BB_END (else_bb)
3912 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3913 NULL_RTX)))
3914 return FALSE;
3916 /* ELSE has one successor. */
3917 if (!single_succ_p (else_bb))
3918 return FALSE;
3919 else
3920 else_succ = single_succ_edge (else_bb);
3922 /* ELSE outgoing edge is not complex. */
3923 if (else_succ->flags & EDGE_COMPLEX)
3924 return FALSE;
3926 /* ELSE has one predecessor. */
3927 if (!single_pred_p (else_bb))
3928 return FALSE;
3930 /* THEN is not EXIT. */
3931 if (then_bb->index < NUM_FIXED_BLOCKS)
3932 return FALSE;
3934 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3935 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3936 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3938 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3939 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3940 else_succ->dest))
3942 else
3943 return FALSE;
3945 num_possible_if_blocks++;
3946 if (dump_file)
3947 fprintf (dump_file,
3948 "\nIF-CASE-2 found, start %d, else %d\n",
3949 test_bb->index, else_bb->index);
3951 /* ELSE is small. */
3952 if (! cheap_bb_rtx_cost_p (else_bb,
3953 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3954 predictable_edge_p (else_edge)))))
3955 return FALSE;
3957 /* Registers set are dead, or are predicable. */
3958 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3959 return FALSE;
3961 /* Conversion went ok, including moving the insns and fixing up the
3962 jump. Adjust the CFG to match. */
3964 df_set_bb_dirty (test_bb);
3965 df_set_bb_dirty (then_bb);
3966 delete_basic_block (else_bb);
3968 num_true_changes++;
3969 num_updated_if_blocks++;
3971 /* ??? We may now fallthru from one of THEN's successors into a join
3972 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3974 return TRUE;
3977 /* Used by the code above to perform the actual rtl transformations.
3978 Return TRUE if successful.
3980 TEST_BB is the block containing the conditional branch. MERGE_BB
3981 is the block containing the code to manipulate. NEW_DEST is the
3982 label TEST_BB should be branching to after the conversion.
3983 REVERSEP is true if the sense of the branch should be reversed. */
3985 static int
3986 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3987 basic_block other_bb, basic_block new_dest, int reversep)
3989 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3990 bitmap merge_set = NULL;
3991 /* Number of pending changes. */
3992 int n_validated_changes = 0;
3994 jump = BB_END (test_bb);
3996 /* Find the extent of the real code in the merge block. */
3997 head = BB_HEAD (merge_bb);
3998 end = BB_END (merge_bb);
4000 while (DEBUG_INSN_P (end) && end != head)
4001 end = PREV_INSN (end);
4003 /* If merge_bb ends with a tablejump, predicating/moving insn's
4004 into test_bb and then deleting merge_bb will result in the jumptable
4005 that follows merge_bb being removed along with merge_bb and then we
4006 get an unresolved reference to the jumptable. */
4007 if (tablejump_p (end, NULL, NULL))
4008 return FALSE;
4010 if (LABEL_P (head))
4011 head = NEXT_INSN (head);
4012 while (DEBUG_INSN_P (head) && head != end)
4013 head = NEXT_INSN (head);
4014 if (NOTE_P (head))
4016 if (head == end)
4018 head = end = NULL_RTX;
4019 goto no_body;
4021 head = NEXT_INSN (head);
4022 while (DEBUG_INSN_P (head) && head != end)
4023 head = NEXT_INSN (head);
4026 if (JUMP_P (end))
4028 if (head == end)
4030 head = end = NULL_RTX;
4031 goto no_body;
4033 end = PREV_INSN (end);
4034 while (DEBUG_INSN_P (end) && end != head)
4035 end = PREV_INSN (end);
4038 /* Disable handling dead code by conditional execution if the machine needs
4039 to do anything funny with the tests, etc. */
4040 #ifndef IFCVT_MODIFY_TESTS
4041 if (targetm.have_conditional_execution ())
4043 /* In the conditional execution case, we have things easy. We know
4044 the condition is reversible. We don't have to check life info
4045 because we're going to conditionally execute the code anyway.
4046 All that's left is making sure the insns involved can actually
4047 be predicated. */
4049 rtx cond, prob_val;
4051 cond = cond_exec_get_condition (jump);
4052 if (! cond)
4053 return FALSE;
4055 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4056 if (prob_val)
4057 prob_val = XEXP (prob_val, 0);
4059 if (reversep)
4061 enum rtx_code rev = reversed_comparison_code (cond, jump);
4062 if (rev == UNKNOWN)
4063 return FALSE;
4064 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4065 XEXP (cond, 1));
4066 if (prob_val)
4067 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4070 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4071 && verify_changes (0))
4072 n_validated_changes = num_validated_changes ();
4073 else
4074 cancel_changes (0);
4076 earliest = jump;
4078 #endif
4080 /* If we allocated new pseudos (e.g. in the conditional move
4081 expander called from noce_emit_cmove), we must resize the
4082 array first. */
4083 if (max_regno < max_reg_num ())
4084 max_regno = max_reg_num ();
4086 /* Try the NCE path if the CE path did not result in any changes. */
4087 if (n_validated_changes == 0)
4089 rtx cond, insn;
4090 regset live;
4091 bool success;
4093 /* In the non-conditional execution case, we have to verify that there
4094 are no trapping operations, no calls, no references to memory, and
4095 that any registers modified are dead at the branch site. */
4097 if (!any_condjump_p (jump))
4098 return FALSE;
4100 /* Find the extent of the conditional. */
4101 cond = noce_get_condition (jump, &earliest, false);
4102 if (!cond)
4103 return FALSE;
4105 live = BITMAP_ALLOC (&reg_obstack);
4106 simulate_backwards_to_point (merge_bb, live, end);
4107 success = can_move_insns_across (head, end, earliest, jump,
4108 merge_bb, live,
4109 df_get_live_in (other_bb), NULL);
4110 BITMAP_FREE (live);
4111 if (!success)
4112 return FALSE;
4114 /* Collect the set of registers set in MERGE_BB. */
4115 merge_set = BITMAP_ALLOC (&reg_obstack);
4117 FOR_BB_INSNS (merge_bb, insn)
4118 if (NONDEBUG_INSN_P (insn))
4119 df_simulate_find_defs (insn, merge_set);
4122 no_body:
4123 /* We don't want to use normal invert_jump or redirect_jump because
4124 we don't want to delete_insn called. Also, we want to do our own
4125 change group management. */
4127 old_dest = JUMP_LABEL (jump);
4128 if (other_bb != new_dest)
4130 new_label = block_label (new_dest);
4131 if (reversep
4132 ? ! invert_jump_1 (jump, new_label)
4133 : ! redirect_jump_1 (jump, new_label))
4134 goto cancel;
4137 if (verify_changes (n_validated_changes))
4138 confirm_change_group ();
4139 else
4140 goto cancel;
4142 if (other_bb != new_dest)
4144 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4146 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4147 if (reversep)
4149 gcov_type count, probability;
4150 count = BRANCH_EDGE (test_bb)->count;
4151 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4152 FALLTHRU_EDGE (test_bb)->count = count;
4153 probability = BRANCH_EDGE (test_bb)->probability;
4154 BRANCH_EDGE (test_bb)->probability
4155 = FALLTHRU_EDGE (test_bb)->probability;
4156 FALLTHRU_EDGE (test_bb)->probability = probability;
4157 update_br_prob_note (test_bb);
4161 /* Move the insns out of MERGE_BB to before the branch. */
4162 if (head != NULL)
4164 rtx insn;
4166 if (end == BB_END (merge_bb))
4167 BB_END (merge_bb) = PREV_INSN (head);
4169 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4170 notes being moved might become invalid. */
4171 insn = head;
4174 rtx note, set;
4176 if (! INSN_P (insn))
4177 continue;
4178 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4179 if (! note)
4180 continue;
4181 set = single_set (insn);
4182 if (!set || !function_invariant_p (SET_SRC (set))
4183 || !function_invariant_p (XEXP (note, 0)))
4184 remove_note (insn, note);
4185 } while (insn != end && (insn = NEXT_INSN (insn)));
4187 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4188 notes referring to the registers being set might become invalid. */
4189 if (merge_set)
4191 unsigned i;
4192 bitmap_iterator bi;
4194 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4195 remove_reg_equal_equiv_notes_for_regno (i);
4197 BITMAP_FREE (merge_set);
4200 reorder_insns (head, end, PREV_INSN (earliest));
4203 /* Remove the jump and edge if we can. */
4204 if (other_bb == new_dest)
4206 delete_insn (jump);
4207 remove_edge (BRANCH_EDGE (test_bb));
4208 /* ??? Can't merge blocks here, as then_bb is still in use.
4209 At minimum, the merge will get done just before bb-reorder. */
4212 return TRUE;
4214 cancel:
4215 cancel_changes (0);
4217 if (merge_set)
4218 BITMAP_FREE (merge_set);
4220 return FALSE;
4223 /* Main entry point for all if-conversion. */
4225 static void
4226 if_convert (void)
4228 basic_block bb;
4229 int pass;
4231 if (optimize == 1)
4233 df_live_add_problem ();
4234 df_live_set_all_dirty ();
4237 num_possible_if_blocks = 0;
4238 num_updated_if_blocks = 0;
4239 num_true_changes = 0;
4241 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4242 mark_loop_exit_edges ();
4243 loop_optimizer_finalize ();
4244 free_dominance_info (CDI_DOMINATORS);
4246 /* Compute postdominators. */
4247 calculate_dominance_info (CDI_POST_DOMINATORS);
4249 df_set_flags (DF_LR_RUN_DCE);
4251 /* Go through each of the basic blocks looking for things to convert. If we
4252 have conditional execution, we make multiple passes to allow us to handle
4253 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4254 pass = 0;
4257 df_analyze ();
4258 /* Only need to do dce on the first pass. */
4259 df_clear_flags (DF_LR_RUN_DCE);
4260 cond_exec_changed_p = FALSE;
4261 pass++;
4263 #ifdef IFCVT_MULTIPLE_DUMPS
4264 if (dump_file && pass > 1)
4265 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4266 #endif
4268 FOR_EACH_BB (bb)
4270 basic_block new_bb;
4271 while (!df_get_bb_dirty (bb)
4272 && (new_bb = find_if_header (bb, pass)) != NULL)
4273 bb = new_bb;
4276 #ifdef IFCVT_MULTIPLE_DUMPS
4277 if (dump_file && cond_exec_changed_p)
4279 if (dump_flags & TDF_SLIM)
4280 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4281 else
4282 print_rtl_with_bb (dump_file, get_insns ());
4284 #endif
4286 while (cond_exec_changed_p);
4288 #ifdef IFCVT_MULTIPLE_DUMPS
4289 if (dump_file)
4290 fprintf (dump_file, "\n\n========== no more changes\n");
4291 #endif
4293 free_dominance_info (CDI_POST_DOMINATORS);
4295 if (dump_file)
4296 fflush (dump_file);
4298 clear_aux_for_blocks ();
4300 /* If we allocated new pseudos, we must resize the array for sched1. */
4301 if (max_regno < max_reg_num ())
4302 max_regno = max_reg_num ();
4304 /* Write the final stats. */
4305 if (dump_file && num_possible_if_blocks > 0)
4307 fprintf (dump_file,
4308 "\n%d possible IF blocks searched.\n",
4309 num_possible_if_blocks);
4310 fprintf (dump_file,
4311 "%d IF blocks converted.\n",
4312 num_updated_if_blocks);
4313 fprintf (dump_file,
4314 "%d true changes made.\n\n\n",
4315 num_true_changes);
4318 if (optimize == 1)
4319 df_remove_problem (df_live);
4321 #ifdef ENABLE_CHECKING
4322 verify_flow_info ();
4323 #endif
4326 static bool
4327 gate_handle_if_conversion (void)
4329 return (optimize > 0)
4330 && dbg_cnt (if_conversion);
4333 /* If-conversion and CFG cleanup. */
4334 static unsigned int
4335 rest_of_handle_if_conversion (void)
4337 if (flag_if_conversion)
4339 if (dump_file)
4340 dump_flow_info (dump_file, dump_flags);
4341 cleanup_cfg (CLEANUP_EXPENSIVE);
4342 if_convert ();
4345 cleanup_cfg (0);
4346 return 0;
4349 struct rtl_opt_pass pass_rtl_ifcvt =
4352 RTL_PASS,
4353 "ce1", /* name */
4354 gate_handle_if_conversion, /* gate */
4355 rest_of_handle_if_conversion, /* execute */
4356 NULL, /* sub */
4357 NULL, /* next */
4358 0, /* static_pass_number */
4359 TV_IFCVT, /* tv_id */
4360 0, /* properties_required */
4361 0, /* properties_provided */
4362 0, /* properties_destroyed */
4363 0, /* todo_flags_start */
4364 TODO_df_finish | TODO_verify_rtl_sharing |
4365 TODO_dump_func /* todo_flags_finish */
4369 static bool
4370 gate_handle_if_after_combine (void)
4372 return optimize > 0 && flag_if_conversion
4373 && dbg_cnt (if_after_combine);
4377 /* Rerun if-conversion, as combine may have simplified things enough
4378 to now meet sequence length restrictions. */
4379 static unsigned int
4380 rest_of_handle_if_after_combine (void)
4382 if_convert ();
4383 return 0;
4386 struct rtl_opt_pass pass_if_after_combine =
4389 RTL_PASS,
4390 "ce2", /* name */
4391 gate_handle_if_after_combine, /* gate */
4392 rest_of_handle_if_after_combine, /* execute */
4393 NULL, /* sub */
4394 NULL, /* next */
4395 0, /* static_pass_number */
4396 TV_IFCVT, /* tv_id */
4397 0, /* properties_required */
4398 0, /* properties_provided */
4399 0, /* properties_destroyed */
4400 0, /* todo_flags_start */
4401 TODO_df_finish | TODO_verify_rtl_sharing |
4402 TODO_dump_func |
4403 TODO_ggc_collect /* todo_flags_finish */
4408 static bool
4409 gate_handle_if_after_reload (void)
4411 return optimize > 0 && flag_if_conversion2
4412 && dbg_cnt (if_after_reload);
4415 static unsigned int
4416 rest_of_handle_if_after_reload (void)
4418 if_convert ();
4419 return 0;
4423 struct rtl_opt_pass pass_if_after_reload =
4426 RTL_PASS,
4427 "ce3", /* name */
4428 gate_handle_if_after_reload, /* gate */
4429 rest_of_handle_if_after_reload, /* execute */
4430 NULL, /* sub */
4431 NULL, /* next */
4432 0, /* static_pass_number */
4433 TV_IFCVT2, /* tv_id */
4434 0, /* properties_required */
4435 0, /* properties_provided */
4436 0, /* properties_destroyed */
4437 0, /* todo_flags_start */
4438 TODO_df_finish | TODO_verify_rtl_sharing |
4439 TODO_dump_func |
4440 TODO_ggc_collect /* todo_flags_finish */