1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "insn-config.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
38 #include "diagnostic-core.h"
43 #include "tree-pass.h"
49 #ifndef HAVE_conditional_move
50 #define HAVE_conditional_move 0
62 #ifndef MAX_CONDITIONAL_EXECUTE
63 #define MAX_CONDITIONAL_EXECUTE \
64 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
68 #define IFCVT_MULTIPLE_DUMPS 1
70 #define NULL_BLOCK ((basic_block) NULL)
72 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
73 static int num_possible_if_blocks
;
75 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 static int num_updated_if_blocks
;
79 /* # of changes made. */
80 static int num_true_changes
;
82 /* Whether conditional execution changes were made. */
83 static int cond_exec_changed_p
;
85 /* Forward references. */
86 static int count_bb_insns (const_basic_block
);
87 static bool cheap_bb_rtx_cost_p (const_basic_block
, int);
88 static rtx
first_active_insn (basic_block
);
89 static rtx
last_active_insn (basic_block
, int);
90 static rtx
find_active_insn_before (basic_block
, rtx
);
91 static rtx
find_active_insn_after (basic_block
, rtx
);
92 static basic_block
block_fallthru (basic_block
);
93 static int cond_exec_process_insns (ce_if_block_t
*, rtx
, rtx
, rtx
, rtx
, int);
94 static rtx
cond_exec_get_condition (rtx
);
95 static rtx
noce_get_condition (rtx
, rtx
*, bool);
96 static int noce_operand_ok (const_rtx
);
97 static void merge_if_block (ce_if_block_t
*);
98 static int find_cond_trap (basic_block
, edge
, edge
);
99 static basic_block
find_if_header (basic_block
, int);
100 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
101 static int noce_find_if_block (basic_block
, edge
, edge
, int);
102 static int cond_exec_find_if_block (ce_if_block_t
*);
103 static int find_if_case_1 (basic_block
, edge
, edge
);
104 static int find_if_case_2 (basic_block
, edge
, edge
);
105 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
107 static void noce_emit_move_insn (rtx
, rtx
);
108 static rtx
block_has_only_trap (basic_block
);
110 /* Count the number of non-jump active insns in BB. */
113 count_bb_insns (const_basic_block bb
)
116 rtx insn
= BB_HEAD (bb
);
120 if (CALL_P (insn
) || NONJUMP_INSN_P (insn
))
123 if (insn
== BB_END (bb
))
125 insn
= NEXT_INSN (insn
);
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated. */
136 cheap_bb_rtx_cost_p (const_basic_block bb
, int max_cost
)
139 rtx insn
= BB_HEAD (bb
);
140 bool speed
= optimize_bb_for_speed_p (bb
);
144 if (NONJUMP_INSN_P (insn
))
146 int cost
= insn_rtx_cost (PATTERN (insn
), speed
);
150 /* If this instruction is the load or set of a "stack" register,
151 such as a floating point register on x87, then the cost of
152 speculatively executing this insn may need to include
153 the additional cost of popping its result off of the
154 register stack. Unfortunately, correctly recognizing and
155 accounting for this additional overhead is tricky, so for
156 now we simply prohibit such speculative execution. */
159 rtx set
= single_set (insn
);
160 if (set
&& STACK_REG_P (SET_DEST (set
)))
166 if (count
>= max_cost
)
169 else if (CALL_P (insn
))
172 if (insn
== BB_END (bb
))
174 insn
= NEXT_INSN (insn
);
180 /* Return the first non-jump active insn in the basic block. */
183 first_active_insn (basic_block bb
)
185 rtx insn
= BB_HEAD (bb
);
189 if (insn
== BB_END (bb
))
191 insn
= NEXT_INSN (insn
);
194 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
196 if (insn
== BB_END (bb
))
198 insn
= NEXT_INSN (insn
);
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
210 last_active_insn (basic_block bb
, int skip_use_p
)
212 rtx insn
= BB_END (bb
);
213 rtx head
= BB_HEAD (bb
);
217 || DEBUG_INSN_P (insn
)
219 && NONJUMP_INSN_P (insn
)
220 && GET_CODE (PATTERN (insn
)) == USE
))
224 insn
= PREV_INSN (insn
);
233 /* Return the active insn before INSN inside basic block CURR_BB. */
236 find_active_insn_before (basic_block curr_bb
, rtx insn
)
238 if (!insn
|| insn
== BB_HEAD (curr_bb
))
241 while ((insn
= PREV_INSN (insn
)) != NULL_RTX
)
243 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
246 /* No other active insn all the way to the start of the basic block. */
247 if (insn
== BB_HEAD (curr_bb
))
254 /* Return the active insn after INSN inside basic block CURR_BB. */
257 find_active_insn_after (basic_block curr_bb
, rtx insn
)
259 if (!insn
|| insn
== BB_END (curr_bb
))
262 while ((insn
= NEXT_INSN (insn
)) != NULL_RTX
)
264 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
267 /* No other active insn all the way to the end of the basic block. */
268 if (insn
== BB_END (curr_bb
))
275 /* Return the basic block reached by falling though the basic block BB. */
278 block_fallthru (basic_block bb
)
280 edge e
= find_fallthru_edge (bb
->succs
);
282 return (e
) ? e
->dest
: NULL_BLOCK
;
285 /* Go through a bunch of insns, converting them to conditional
286 execution format if possible. Return TRUE if all of the non-note
287 insns were processed. */
290 cond_exec_process_insns (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
,
291 /* if block information */rtx start
,
292 /* first insn to look at */rtx end
,
293 /* last insn to look at */rtx test
,
294 /* conditional execution test */rtx prob_val
,
295 /* probability of branch taken. */int mod_ok
)
297 int must_be_last
= FALSE
;
305 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
307 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
310 gcc_assert(NONJUMP_INSN_P (insn
) || CALL_P (insn
));
312 /* Remove USE insns that get in the way. */
313 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
315 /* ??? Ug. Actually unlinking the thing is problematic,
316 given what we'd have to coordinate with our callers. */
317 SET_INSN_DELETED (insn
);
321 /* Last insn wasn't last? */
325 if (modified_in_p (test
, insn
))
332 /* Now build the conditional form of the instruction. */
333 pattern
= PATTERN (insn
);
334 xtest
= copy_rtx (test
);
336 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
338 if (GET_CODE (pattern
) == COND_EXEC
)
340 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
343 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
344 COND_EXEC_TEST (pattern
));
345 pattern
= COND_EXEC_CODE (pattern
);
348 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
350 /* If the machine needs to modify the insn being conditionally executed,
351 say for example to force a constant integer operand into a temp
352 register, do so here. */
353 #ifdef IFCVT_MODIFY_INSN
354 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
359 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
361 if (CALL_P (insn
) && prob_val
)
362 validate_change (insn
, ®_NOTES (insn
),
363 alloc_EXPR_LIST (REG_BR_PROB
, prob_val
,
364 REG_NOTES (insn
)), 1);
374 /* Return the condition for a jump. Do not do any special processing. */
377 cond_exec_get_condition (rtx jump
)
381 if (any_condjump_p (jump
))
382 test_if
= SET_SRC (pc_set (jump
));
385 cond
= XEXP (test_if
, 0);
387 /* If this branches to JUMP_LABEL when the condition is false,
388 reverse the condition. */
389 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
390 && XEXP (XEXP (test_if
, 2), 0) == JUMP_LABEL (jump
))
392 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
396 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
403 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
404 to conditional execution. Return TRUE if we were successful at
405 converting the block. */
408 cond_exec_process_if_block (ce_if_block_t
* ce_info
,
409 /* if block information */int do_multiple_p
)
411 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
412 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
413 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
414 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
415 rtx then_start
; /* first insn in THEN block */
416 rtx then_end
; /* last insn + 1 in THEN block */
417 rtx else_start
= NULL_RTX
; /* first insn in ELSE block or NULL */
418 rtx else_end
= NULL_RTX
; /* last insn + 1 in ELSE block */
419 int max
; /* max # of insns to convert. */
420 int then_mod_ok
; /* whether conditional mods are ok in THEN */
421 rtx true_expr
; /* test for else block insns */
422 rtx false_expr
; /* test for then block insns */
423 rtx true_prob_val
; /* probability of else block */
424 rtx false_prob_val
; /* probability of then block */
425 rtx then_last_head
= NULL_RTX
; /* Last match at the head of THEN */
426 rtx else_last_head
= NULL_RTX
; /* Last match at the head of ELSE */
427 rtx then_first_tail
= NULL_RTX
; /* First match at the tail of THEN */
428 rtx else_first_tail
= NULL_RTX
; /* First match at the tail of ELSE */
429 int then_n_insns
, else_n_insns
, n_insns
;
430 enum rtx_code false_code
;
432 /* If test is comprised of && or || elements, and we've failed at handling
433 all of them together, just use the last test if it is the special case of
434 && elements without an ELSE block. */
435 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
437 if (else_bb
|| ! ce_info
->and_and_p
)
440 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
441 ce_info
->num_multiple_test_blocks
= 0;
442 ce_info
->num_and_and_blocks
= 0;
443 ce_info
->num_or_or_blocks
= 0;
446 /* Find the conditional jump to the ELSE or JOIN part, and isolate
448 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
452 /* If the conditional jump is more than just a conditional jump,
453 then we can not do conditional execution conversion on this block. */
454 if (! onlyjump_p (BB_END (test_bb
)))
457 /* Collect the bounds of where we're to search, skipping any labels, jumps
458 and notes at the beginning and end of the block. Then count the total
459 number of insns and see if it is small enough to convert. */
460 then_start
= first_active_insn (then_bb
);
461 then_end
= last_active_insn (then_bb
, TRUE
);
462 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
463 n_insns
= then_n_insns
;
464 max
= MAX_CONDITIONAL_EXECUTE
;
471 else_start
= first_active_insn (else_bb
);
472 else_end
= last_active_insn (else_bb
, TRUE
);
473 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
474 n_insns
+= else_n_insns
;
476 /* Look for matching sequences at the head and tail of the two blocks,
477 and limit the range of insns to be converted if possible. */
478 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
479 &then_first_tail
, &else_first_tail
);
480 if (then_first_tail
== BB_HEAD (then_bb
))
481 then_start
= then_end
= NULL_RTX
;
482 if (else_first_tail
== BB_HEAD (else_bb
))
483 else_start
= else_end
= NULL_RTX
;
488 then_end
= find_active_insn_before (then_bb
, then_first_tail
);
490 else_end
= find_active_insn_before (else_bb
, else_first_tail
);
491 n_insns
-= 2 * n_matching
;
494 if (then_start
&& else_start
)
496 int longest_match
= MIN (then_n_insns
- n_matching
,
497 else_n_insns
- n_matching
);
499 = flow_find_head_matching_sequence (then_bb
, else_bb
,
508 /* We won't pass the insns in the head sequence to
509 cond_exec_process_insns, so we need to test them here
510 to make sure that they don't clobber the condition. */
511 for (insn
= BB_HEAD (then_bb
);
512 insn
!= NEXT_INSN (then_last_head
);
513 insn
= NEXT_INSN (insn
))
514 if (!LABEL_P (insn
) && !NOTE_P (insn
)
515 && !DEBUG_INSN_P (insn
)
516 && modified_in_p (test_expr
, insn
))
520 if (then_last_head
== then_end
)
521 then_start
= then_end
= NULL_RTX
;
522 if (else_last_head
== else_end
)
523 else_start
= else_end
= NULL_RTX
;
528 then_start
= find_active_insn_after (then_bb
, then_last_head
);
530 else_start
= find_active_insn_after (else_bb
, else_last_head
);
531 n_insns
-= 2 * n_matching
;
539 /* Map test_expr/test_jump into the appropriate MD tests to use on
540 the conditionally executed code. */
542 true_expr
= test_expr
;
544 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
545 if (false_code
!= UNKNOWN
)
546 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
547 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
549 false_expr
= NULL_RTX
;
551 #ifdef IFCVT_MODIFY_TESTS
552 /* If the machine description needs to modify the tests, such as setting a
553 conditional execution register from a comparison, it can do so here. */
554 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
556 /* See if the conversion failed. */
557 if (!true_expr
|| !false_expr
)
561 true_prob_val
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
564 true_prob_val
= XEXP (true_prob_val
, 0);
565 false_prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (true_prob_val
));
568 false_prob_val
= NULL_RTX
;
570 /* If we have && or || tests, do them here. These tests are in the adjacent
571 blocks after the first block containing the test. */
572 if (ce_info
->num_multiple_test_blocks
> 0)
574 basic_block bb
= test_bb
;
575 basic_block last_test_bb
= ce_info
->last_test_bb
;
584 enum rtx_code f_code
;
586 bb
= block_fallthru (bb
);
587 start
= first_active_insn (bb
);
588 end
= last_active_insn (bb
, TRUE
);
590 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
591 false_prob_val
, FALSE
))
594 /* If the conditional jump is more than just a conditional jump, then
595 we can not do conditional execution conversion on this block. */
596 if (! onlyjump_p (BB_END (bb
)))
599 /* Find the conditional jump and isolate the test. */
600 t
= cond_exec_get_condition (BB_END (bb
));
604 f_code
= reversed_comparison_code (t
, BB_END (bb
));
605 if (f_code
== UNKNOWN
)
608 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
609 if (ce_info
->and_and_p
)
611 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
612 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
616 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
617 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
620 /* If the machine description needs to modify the tests, such as
621 setting a conditional execution register from a comparison, it can
623 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
624 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
626 /* See if the conversion failed. */
634 while (bb
!= last_test_bb
);
637 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
638 on then THEN block. */
639 then_mod_ok
= (else_bb
== NULL_BLOCK
);
641 /* Go through the THEN and ELSE blocks converting the insns if possible
642 to conditional execution. */
646 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
647 false_expr
, false_prob_val
,
651 if (else_bb
&& else_end
652 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
653 true_expr
, true_prob_val
, TRUE
))
656 /* If we cannot apply the changes, fail. Do not go through the normal fail
657 processing, since apply_change_group will call cancel_changes. */
658 if (! apply_change_group ())
660 #ifdef IFCVT_MODIFY_CANCEL
661 /* Cancel any machine dependent changes. */
662 IFCVT_MODIFY_CANCEL (ce_info
);
667 #ifdef IFCVT_MODIFY_FINAL
668 /* Do any machine dependent final modifications. */
669 IFCVT_MODIFY_FINAL (ce_info
);
672 /* Conversion succeeded. */
674 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
675 n_insns
, (n_insns
== 1) ? " was" : "s were");
677 /* Merge the blocks! If we had matching sequences, make sure to delete one
678 copy at the appropriate location first: delete the copy in the THEN branch
679 for a tail sequence so that the remaining one is executed last for both
680 branches, and delete the copy in the ELSE branch for a head sequence so
681 that the remaining one is executed first for both branches. */
684 rtx from
= then_first_tail
;
686 from
= find_active_insn_after (then_bb
, from
);
687 delete_insn_chain (from
, BB_END (then_bb
), false);
690 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
692 merge_if_block (ce_info
);
693 cond_exec_changed_p
= TRUE
;
697 #ifdef IFCVT_MODIFY_CANCEL
698 /* Cancel any machine dependent changes. */
699 IFCVT_MODIFY_CANCEL (ce_info
);
706 /* Used by noce_process_if_block to communicate with its subroutines.
708 The subroutines know that A and B may be evaluated freely. They
709 know that X is a register. They should insert new instructions
710 before cond_earliest. */
714 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
715 basic_block test_bb
, then_bb
, else_bb
, join_bb
;
717 /* The jump that ends TEST_BB. */
720 /* The jump condition. */
723 /* New insns should be inserted before this one. */
726 /* Insns in the THEN and ELSE block. There is always just this
727 one insns in those blocks. The insns are single_set insns.
728 If there was no ELSE block, INSN_B is the last insn before
729 COND_EARLIEST, or NULL_RTX. In the former case, the insn
730 operands are still valid, as if INSN_B was moved down below
734 /* The SET_SRC of INSN_A and INSN_B. */
737 /* The SET_DEST of INSN_A. */
740 /* True if this if block is not canonical. In the canonical form of
741 if blocks, the THEN_BB is the block reached via the fallthru edge
742 from TEST_BB. For the noce transformations, we allow the symmetric
744 bool then_else_reversed
;
746 /* Estimated cost of the particular branch instruction. */
750 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
751 static int noce_try_move (struct noce_if_info
*);
752 static int noce_try_store_flag (struct noce_if_info
*);
753 static int noce_try_addcc (struct noce_if_info
*);
754 static int noce_try_store_flag_constants (struct noce_if_info
*);
755 static int noce_try_store_flag_mask (struct noce_if_info
*);
756 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
758 static int noce_try_cmove (struct noce_if_info
*);
759 static int noce_try_cmove_arith (struct noce_if_info
*);
760 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx
*);
761 static int noce_try_minmax (struct noce_if_info
*);
762 static int noce_try_abs (struct noce_if_info
*);
763 static int noce_try_sign_mask (struct noce_if_info
*);
765 /* Helper function for noce_try_store_flag*. */
768 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
771 rtx cond
= if_info
->cond
;
775 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
776 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
778 /* If earliest == jump, or when the condition is complex, try to
779 build the store_flag insn directly. */
783 rtx set
= pc_set (if_info
->jump
);
784 cond
= XEXP (SET_SRC (set
), 0);
785 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
786 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
))
787 reversep
= !reversep
;
788 if (if_info
->then_else_reversed
)
789 reversep
= !reversep
;
793 code
= reversed_comparison_code (cond
, if_info
->jump
);
795 code
= GET_CODE (cond
);
797 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
798 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
802 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
804 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
807 tmp
= emit_insn (tmp
);
809 if (recog_memoized (tmp
) >= 0)
815 if_info
->cond_earliest
= if_info
->jump
;
823 /* Don't even try if the comparison operands or the mode of X are weird. */
824 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
827 return emit_store_flag (x
, code
, XEXP (cond
, 0),
828 XEXP (cond
, 1), VOIDmode
,
829 (code
== LTU
|| code
== LEU
830 || code
== GEU
|| code
== GTU
), normalize
);
833 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
834 X is the destination/target and Y is the value to copy. */
837 noce_emit_move_insn (rtx x
, rtx y
)
839 enum machine_mode outmode
;
843 if (GET_CODE (x
) != STRICT_LOW_PART
)
845 rtx seq
, insn
, target
;
849 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
850 otherwise construct a suitable SET pattern ourselves. */
851 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
852 ? emit_move_insn (x
, y
)
853 : emit_insn (gen_rtx_SET (VOIDmode
, x
, y
));
857 if (recog_memoized (insn
) <= 0)
859 if (GET_CODE (x
) == ZERO_EXTRACT
)
861 rtx op
= XEXP (x
, 0);
862 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
863 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
865 /* store_bit_field expects START to be relative to
866 BYTES_BIG_ENDIAN and adjusts this value for machines with
867 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
868 invoke store_bit_field again it is necessary to have the START
869 value from the first call. */
870 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
873 start
= BITS_PER_UNIT
- start
- size
;
876 gcc_assert (REG_P (op
));
877 start
= BITS_PER_WORD
- start
- size
;
881 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
882 store_bit_field (op
, size
, start
, GET_MODE (x
), y
);
886 switch (GET_RTX_CLASS (GET_CODE (y
)))
889 ot
= code_to_optab
[GET_CODE (y
)];
893 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
894 if (target
!= NULL_RTX
)
897 emit_move_insn (x
, target
);
906 ot
= code_to_optab
[GET_CODE (y
)];
910 target
= expand_binop (GET_MODE (y
), ot
,
911 XEXP (y
, 0), XEXP (y
, 1),
913 if (target
!= NULL_RTX
)
916 emit_move_insn (x
, target
);
933 inner
= XEXP (outer
, 0);
934 outmode
= GET_MODE (outer
);
935 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
936 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
, outmode
, y
);
939 /* Return sequence of instructions generated by if conversion. This
940 function calls end_sequence() to end the current stream, ensures
941 that are instructions are unshared, recognizable non-jump insns.
942 On failure, this function returns a NULL_RTX. */
945 end_ifcvt_sequence (struct noce_if_info
*if_info
)
948 rtx seq
= get_insns ();
950 set_used_flags (if_info
->x
);
951 set_used_flags (if_info
->cond
);
952 unshare_all_rtl_in_chain (seq
);
955 /* Make sure that all of the instructions emitted are recognizable,
956 and that we haven't introduced a new jump instruction.
957 As an exercise for the reader, build a general mechanism that
958 allows proper placement of required clobbers. */
959 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
961 || recog_memoized (insn
) == -1)
967 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
968 "if (a == b) x = a; else x = b" into "x = b". */
971 noce_try_move (struct noce_if_info
*if_info
)
973 rtx cond
= if_info
->cond
;
974 enum rtx_code code
= GET_CODE (cond
);
977 if (code
!= NE
&& code
!= EQ
)
980 /* This optimization isn't valid if either A or B could be a NaN
982 if (HONOR_NANS (GET_MODE (if_info
->x
))
983 || HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
986 /* Check whether the operands of the comparison are A and in
988 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
989 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
990 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
991 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
993 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
995 /* Avoid generating the move if the source is the destination. */
996 if (! rtx_equal_p (if_info
->x
, y
))
999 noce_emit_move_insn (if_info
->x
, y
);
1000 seq
= end_ifcvt_sequence (if_info
);
1004 emit_insn_before_setloc (seq
, if_info
->jump
,
1005 INSN_LOCATOR (if_info
->insn_a
));
1012 /* Convert "if (test) x = 1; else x = 0".
1014 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1015 tried in noce_try_store_flag_constants after noce_try_cmove has had
1016 a go at the conversion. */
1019 noce_try_store_flag (struct noce_if_info
*if_info
)
1024 if (CONST_INT_P (if_info
->b
)
1025 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
1026 && if_info
->a
== const0_rtx
)
1028 else if (if_info
->b
== const0_rtx
1029 && CONST_INT_P (if_info
->a
)
1030 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
1031 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1039 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1042 if (target
!= if_info
->x
)
1043 noce_emit_move_insn (if_info
->x
, target
);
1045 seq
= end_ifcvt_sequence (if_info
);
1049 emit_insn_before_setloc (seq
, if_info
->jump
,
1050 INSN_LOCATOR (if_info
->insn_a
));
1060 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1063 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1067 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1068 int normalize
, can_reverse
;
1069 enum machine_mode mode
;
1071 if (CONST_INT_P (if_info
->a
)
1072 && CONST_INT_P (if_info
->b
))
1074 mode
= GET_MODE (if_info
->x
);
1075 ifalse
= INTVAL (if_info
->a
);
1076 itrue
= INTVAL (if_info
->b
);
1078 /* Make sure we can represent the difference between the two values. */
1079 if ((itrue
- ifalse
> 0)
1080 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1083 diff
= trunc_int_for_mode (itrue
- ifalse
, mode
);
1085 can_reverse
= (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1089 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1091 else if (ifalse
== 0 && exact_log2 (itrue
) >= 0
1092 && (STORE_FLAG_VALUE
== 1
1093 || if_info
->branch_cost
>= 2))
1095 else if (itrue
== 0 && exact_log2 (ifalse
) >= 0 && can_reverse
1096 && (STORE_FLAG_VALUE
== 1 || if_info
->branch_cost
>= 2))
1097 normalize
= 1, reversep
= 1;
1098 else if (itrue
== -1
1099 && (STORE_FLAG_VALUE
== -1
1100 || if_info
->branch_cost
>= 2))
1102 else if (ifalse
== -1 && can_reverse
1103 && (STORE_FLAG_VALUE
== -1 || if_info
->branch_cost
>= 2))
1104 normalize
= -1, reversep
= 1;
1105 else if ((if_info
->branch_cost
>= 2 && STORE_FLAG_VALUE
== -1)
1106 || if_info
->branch_cost
>= 3)
1113 tmp
= itrue
; itrue
= ifalse
; ifalse
= tmp
;
1114 diff
= trunc_int_for_mode (-diff
, mode
);
1118 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1125 /* if (test) x = 3; else x = 4;
1126 => x = 3 + (test == 0); */
1127 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1129 target
= expand_simple_binop (mode
,
1130 (diff
== STORE_FLAG_VALUE
1132 GEN_INT (ifalse
), target
, if_info
->x
, 0,
1136 /* if (test) x = 8; else x = 0;
1137 => x = (test != 0) << 3; */
1138 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1140 target
= expand_simple_binop (mode
, ASHIFT
,
1141 target
, GEN_INT (tmp
), if_info
->x
, 0,
1145 /* if (test) x = -1; else x = b;
1146 => x = -(test != 0) | b; */
1147 else if (itrue
== -1)
1149 target
= expand_simple_binop (mode
, IOR
,
1150 target
, GEN_INT (ifalse
), if_info
->x
, 0,
1154 /* if (test) x = a; else x = b;
1155 => x = (-(test != 0) & (b - a)) + a; */
1158 target
= expand_simple_binop (mode
, AND
,
1159 target
, GEN_INT (diff
), if_info
->x
, 0,
1162 target
= expand_simple_binop (mode
, PLUS
,
1163 target
, GEN_INT (ifalse
),
1164 if_info
->x
, 0, OPTAB_WIDEN
);
1173 if (target
!= if_info
->x
)
1174 noce_emit_move_insn (if_info
->x
, target
);
1176 seq
= end_ifcvt_sequence (if_info
);
1180 emit_insn_before_setloc (seq
, if_info
->jump
,
1181 INSN_LOCATOR (if_info
->insn_a
));
1188 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1189 similarly for "foo--". */
1192 noce_try_addcc (struct noce_if_info
*if_info
)
1195 int subtract
, normalize
;
1197 if (GET_CODE (if_info
->a
) == PLUS
1198 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1199 && (reversed_comparison_code (if_info
->cond
, if_info
->jump
)
1202 rtx cond
= if_info
->cond
;
1203 enum rtx_code code
= reversed_comparison_code (cond
, if_info
->jump
);
1205 /* First try to use addcc pattern. */
1206 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1207 && general_operand (XEXP (cond
, 1), VOIDmode
))
1210 target
= emit_conditional_add (if_info
->x
, code
,
1215 XEXP (if_info
->a
, 1),
1216 GET_MODE (if_info
->x
),
1217 (code
== LTU
|| code
== GEU
1218 || code
== LEU
|| code
== GTU
));
1221 if (target
!= if_info
->x
)
1222 noce_emit_move_insn (if_info
->x
, target
);
1224 seq
= end_ifcvt_sequence (if_info
);
1228 emit_insn_before_setloc (seq
, if_info
->jump
,
1229 INSN_LOCATOR (if_info
->insn_a
));
1235 /* If that fails, construct conditional increment or decrement using
1237 if (if_info
->branch_cost
>= 2
1238 && (XEXP (if_info
->a
, 1) == const1_rtx
1239 || XEXP (if_info
->a
, 1) == constm1_rtx
))
1242 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1243 subtract
= 0, normalize
= 0;
1244 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1245 subtract
= 1, normalize
= 0;
1247 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1250 target
= noce_emit_store_flag (if_info
,
1251 gen_reg_rtx (GET_MODE (if_info
->x
)),
1255 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1256 subtract
? MINUS
: PLUS
,
1257 if_info
->b
, target
, if_info
->x
,
1261 if (target
!= if_info
->x
)
1262 noce_emit_move_insn (if_info
->x
, target
);
1264 seq
= end_ifcvt_sequence (if_info
);
1268 emit_insn_before_setloc (seq
, if_info
->jump
,
1269 INSN_LOCATOR (if_info
->insn_a
));
1279 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1282 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1288 if ((if_info
->branch_cost
>= 2
1289 || STORE_FLAG_VALUE
== -1)
1290 && ((if_info
->a
== const0_rtx
1291 && rtx_equal_p (if_info
->b
, if_info
->x
))
1292 || ((reversep
= (reversed_comparison_code (if_info
->cond
,
1295 && if_info
->b
== const0_rtx
1296 && rtx_equal_p (if_info
->a
, if_info
->x
))))
1299 target
= noce_emit_store_flag (if_info
,
1300 gen_reg_rtx (GET_MODE (if_info
->x
)),
1303 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1305 target
, if_info
->x
, 0,
1310 if (target
!= if_info
->x
)
1311 noce_emit_move_insn (if_info
->x
, target
);
1313 seq
= end_ifcvt_sequence (if_info
);
1317 emit_insn_before_setloc (seq
, if_info
->jump
,
1318 INSN_LOCATOR (if_info
->insn_a
));
1328 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1331 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1332 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1334 rtx target ATTRIBUTE_UNUSED
;
1335 int unsignedp ATTRIBUTE_UNUSED
;
1337 /* If earliest == jump, try to build the cmove insn directly.
1338 This is helpful when combine has created some complex condition
1339 (like for alpha's cmovlbs) that we can't hope to regenerate
1340 through the normal interface. */
1342 if (if_info
->cond_earliest
== if_info
->jump
)
1346 tmp
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1347 tmp
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
), tmp
, vtrue
, vfalse
);
1348 tmp
= gen_rtx_SET (VOIDmode
, x
, tmp
);
1351 tmp
= emit_insn (tmp
);
1353 if (recog_memoized (tmp
) >= 0)
1365 /* Don't even try if the comparison operands are weird. */
1366 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1367 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1370 #if HAVE_conditional_move
1371 unsignedp
= (code
== LTU
|| code
== GEU
1372 || code
== LEU
|| code
== GTU
);
1374 target
= emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1375 vtrue
, vfalse
, GET_MODE (x
),
1380 /* We might be faced with a situation like:
1383 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1384 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1386 We can't do a conditional move in mode M, but it's possible that we
1387 could do a conditional move in mode N instead and take a subreg of
1390 If we can't create new pseudos, though, don't bother. */
1391 if (reload_completed
)
1394 if (GET_CODE (vtrue
) == SUBREG
&& GET_CODE (vfalse
) == SUBREG
)
1396 rtx reg_vtrue
= SUBREG_REG (vtrue
);
1397 rtx reg_vfalse
= SUBREG_REG (vfalse
);
1398 unsigned int byte_vtrue
= SUBREG_BYTE (vtrue
);
1399 unsigned int byte_vfalse
= SUBREG_BYTE (vfalse
);
1400 rtx promoted_target
;
1402 if (GET_MODE (reg_vtrue
) != GET_MODE (reg_vfalse
)
1403 || byte_vtrue
!= byte_vfalse
1404 || (SUBREG_PROMOTED_VAR_P (vtrue
)
1405 != SUBREG_PROMOTED_VAR_P (vfalse
))
1406 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue
)
1407 != SUBREG_PROMOTED_UNSIGNED_P (vfalse
)))
1410 promoted_target
= gen_reg_rtx (GET_MODE (reg_vtrue
));
1412 target
= emit_conditional_move (promoted_target
, code
, cmp_a
, cmp_b
,
1413 VOIDmode
, reg_vtrue
, reg_vfalse
,
1414 GET_MODE (reg_vtrue
), unsignedp
);
1415 /* Nope, couldn't do it in that mode either. */
1419 target
= gen_rtx_SUBREG (GET_MODE (vtrue
), promoted_target
, byte_vtrue
);
1420 SUBREG_PROMOTED_VAR_P (target
) = SUBREG_PROMOTED_VAR_P (vtrue
);
1421 SUBREG_PROMOTED_UNSIGNED_SET (target
, SUBREG_PROMOTED_UNSIGNED_P (vtrue
));
1422 emit_move_insn (x
, target
);
1428 /* We'll never get here, as noce_process_if_block doesn't call the
1429 functions involved. Ifdef code, however, should be discouraged
1430 because it leads to typos in the code not selected. However,
1431 emit_conditional_move won't exist either. */
1436 /* Try only simple constants and registers here. More complex cases
1437 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1438 has had a go at it. */
1441 noce_try_cmove (struct noce_if_info
*if_info
)
1446 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1447 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1451 code
= GET_CODE (if_info
->cond
);
1452 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1453 XEXP (if_info
->cond
, 0),
1454 XEXP (if_info
->cond
, 1),
1455 if_info
->a
, if_info
->b
);
1459 if (target
!= if_info
->x
)
1460 noce_emit_move_insn (if_info
->x
, target
);
1462 seq
= end_ifcvt_sequence (if_info
);
1466 emit_insn_before_setloc (seq
, if_info
->jump
,
1467 INSN_LOCATOR (if_info
->insn_a
));
1480 /* Try more complex cases involving conditional_move. */
1483 noce_try_cmove_arith (struct noce_if_info
*if_info
)
1495 /* A conditional move from two memory sources is equivalent to a
1496 conditional on their addresses followed by a load. Don't do this
1497 early because it'll screw alias analysis. Note that we've
1498 already checked for no side effects. */
1499 /* ??? FIXME: Magic number 5. */
1500 if (cse_not_expected
1501 && MEM_P (a
) && MEM_P (b
)
1502 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
)
1503 && if_info
->branch_cost
>= 5)
1505 enum machine_mode address_mode
1506 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (a
));
1510 x
= gen_reg_rtx (address_mode
);
1514 /* ??? We could handle this if we knew that a load from A or B could
1515 not fault. This is also true if we've already loaded
1516 from the address along the path from ENTRY. */
1517 else if (may_trap_p (a
) || may_trap_p (b
))
1520 /* if (test) x = a + b; else x = c - d;
1527 code
= GET_CODE (if_info
->cond
);
1528 insn_a
= if_info
->insn_a
;
1529 insn_b
= if_info
->insn_b
;
1531 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1532 if insn_rtx_cost can't be estimated. */
1536 = insn_rtx_cost (PATTERN (insn_a
),
1537 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a
)));
1538 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1547 += insn_rtx_cost (PATTERN (insn_b
),
1548 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b
)));
1549 if (insn_cost
== 0 || insn_cost
> COSTS_N_INSNS (if_info
->branch_cost
))
1553 /* Possibly rearrange operands to make things come out more natural. */
1554 if (reversed_comparison_code (if_info
->cond
, if_info
->jump
) != UNKNOWN
)
1557 if (rtx_equal_p (b
, x
))
1559 else if (general_operand (b
, GET_MODE (b
)))
1564 code
= reversed_comparison_code (if_info
->cond
, if_info
->jump
);
1565 tmp
= a
, a
= b
, b
= tmp
;
1566 tmp
= insn_a
, insn_a
= insn_b
, insn_b
= tmp
;
1575 /* If either operand is complex, load it into a register first.
1576 The best way to do this is to copy the original insn. In this
1577 way we preserve any clobbers etc that the insn may have had.
1578 This is of course not possible in the IS_MEM case. */
1579 if (! general_operand (a
, GET_MODE (a
)))
1585 tmp
= gen_reg_rtx (GET_MODE (a
));
1586 tmp
= emit_insn (gen_rtx_SET (VOIDmode
, tmp
, a
));
1589 goto end_seq_and_fail
;
1592 a
= gen_reg_rtx (GET_MODE (a
));
1593 tmp
= copy_rtx (insn_a
);
1594 set
= single_set (tmp
);
1596 tmp
= emit_insn (PATTERN (tmp
));
1598 if (recog_memoized (tmp
) < 0)
1599 goto end_seq_and_fail
;
1601 if (! general_operand (b
, GET_MODE (b
)))
1607 tmp
= gen_reg_rtx (GET_MODE (b
));
1608 tmp
= gen_rtx_SET (VOIDmode
, tmp
, b
);
1611 goto end_seq_and_fail
;
1614 b
= gen_reg_rtx (GET_MODE (b
));
1615 tmp
= copy_rtx (insn_b
);
1616 set
= single_set (tmp
);
1618 tmp
= PATTERN (tmp
);
1621 /* If insn to set up A clobbers any registers B depends on, try to
1622 swap insn that sets up A with the one that sets up B. If even
1623 that doesn't help, punt. */
1624 last
= get_last_insn ();
1625 if (last
&& modified_in_p (orig_b
, last
))
1627 tmp
= emit_insn_before (tmp
, get_insns ());
1628 if (modified_in_p (orig_a
, tmp
))
1629 goto end_seq_and_fail
;
1632 tmp
= emit_insn (tmp
);
1634 if (recog_memoized (tmp
) < 0)
1635 goto end_seq_and_fail
;
1638 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (if_info
->cond
, 0),
1639 XEXP (if_info
->cond
, 1), a
, b
);
1642 goto end_seq_and_fail
;
1644 /* If we're handling a memory for above, emit the load now. */
1647 tmp
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
1649 /* Copy over flags as appropriate. */
1650 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
1651 MEM_VOLATILE_P (tmp
) = 1;
1652 if (MEM_IN_STRUCT_P (if_info
->a
) && MEM_IN_STRUCT_P (if_info
->b
))
1653 MEM_IN_STRUCT_P (tmp
) = 1;
1654 if (MEM_SCALAR_P (if_info
->a
) && MEM_SCALAR_P (if_info
->b
))
1655 MEM_SCALAR_P (tmp
) = 1;
1656 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
1657 set_mem_alias_set (tmp
, MEM_ALIAS_SET (if_info
->a
));
1659 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
1661 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
1662 set_mem_addr_space (tmp
, MEM_ADDR_SPACE (if_info
->a
));
1664 noce_emit_move_insn (if_info
->x
, tmp
);
1666 else if (target
!= x
)
1667 noce_emit_move_insn (x
, target
);
1669 tmp
= end_ifcvt_sequence (if_info
);
1673 emit_insn_before_setloc (tmp
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1681 /* For most cases, the simplified condition we found is the best
1682 choice, but this is not the case for the min/max/abs transforms.
1683 For these we wish to know that it is A or B in the condition. */
1686 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
1689 rtx cond
, set
, insn
;
1692 /* If target is already mentioned in the known condition, return it. */
1693 if (reg_mentioned_p (target
, if_info
->cond
))
1695 *earliest
= if_info
->cond_earliest
;
1696 return if_info
->cond
;
1699 set
= pc_set (if_info
->jump
);
1700 cond
= XEXP (SET_SRC (set
), 0);
1702 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
1703 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (if_info
->jump
);
1704 if (if_info
->then_else_reversed
)
1707 /* If we're looking for a constant, try to make the conditional
1708 have that constant in it. There are two reasons why it may
1709 not have the constant we want:
1711 1. GCC may have needed to put the constant in a register, because
1712 the target can't compare directly against that constant. For
1713 this case, we look for a SET immediately before the comparison
1714 that puts a constant in that register.
1716 2. GCC may have canonicalized the conditional, for example
1717 replacing "if x < 4" with "if x <= 3". We can undo that (or
1718 make equivalent types of changes) to get the constants we need
1719 if they're off by one in the right direction. */
1721 if (CONST_INT_P (target
))
1723 enum rtx_code code
= GET_CODE (if_info
->cond
);
1724 rtx op_a
= XEXP (if_info
->cond
, 0);
1725 rtx op_b
= XEXP (if_info
->cond
, 1);
1728 /* First, look to see if we put a constant in a register. */
1729 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
1731 && BLOCK_FOR_INSN (prev_insn
)
1732 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
1733 && INSN_P (prev_insn
)
1734 && GET_CODE (PATTERN (prev_insn
)) == SET
)
1736 rtx src
= find_reg_equal_equiv_note (prev_insn
);
1738 src
= SET_SRC (PATTERN (prev_insn
));
1739 if (CONST_INT_P (src
))
1741 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
1743 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
1746 if (CONST_INT_P (op_a
))
1751 code
= swap_condition (code
);
1756 /* Now, look to see if we can get the right constant by
1757 adjusting the conditional. */
1758 if (CONST_INT_P (op_b
))
1760 HOST_WIDE_INT desired_val
= INTVAL (target
);
1761 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
1766 if (actual_val
== desired_val
+ 1)
1769 op_b
= GEN_INT (desired_val
);
1773 if (actual_val
== desired_val
- 1)
1776 op_b
= GEN_INT (desired_val
);
1780 if (actual_val
== desired_val
- 1)
1783 op_b
= GEN_INT (desired_val
);
1787 if (actual_val
== desired_val
+ 1)
1790 op_b
= GEN_INT (desired_val
);
1798 /* If we made any changes, generate a new conditional that is
1799 equivalent to what we started with, but has the right
1801 if (code
!= GET_CODE (if_info
->cond
)
1802 || op_a
!= XEXP (if_info
->cond
, 0)
1803 || op_b
!= XEXP (if_info
->cond
, 1))
1805 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
1806 *earliest
= if_info
->cond_earliest
;
1811 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
1812 earliest
, target
, false, true);
1813 if (! cond
|| ! reg_mentioned_p (target
, cond
))
1816 /* We almost certainly searched back to a different place.
1817 Need to re-verify correct lifetimes. */
1819 /* X may not be mentioned in the range (cond_earliest, jump]. */
1820 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
1821 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
1824 /* A and B may not be modified in the range [cond_earliest, jump). */
1825 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
1827 && (modified_in_p (if_info
->a
, insn
)
1828 || modified_in_p (if_info
->b
, insn
)))
1834 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1837 noce_try_minmax (struct noce_if_info
*if_info
)
1839 rtx cond
, earliest
, target
, seq
;
1840 enum rtx_code code
, op
;
1843 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1844 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1845 to get the target to tell us... */
1846 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
))
1847 || HONOR_NANS (GET_MODE (if_info
->x
)))
1850 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
1854 /* Verify the condition is of the form we expect, and canonicalize
1855 the comparison code. */
1856 code
= GET_CODE (cond
);
1857 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
1859 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
1862 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
1864 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
1866 code
= swap_condition (code
);
1871 /* Determine what sort of operation this is. Note that the code is for
1872 a taken branch, so the code->operation mapping appears backwards. */
1905 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
1906 if_info
->a
, if_info
->b
,
1907 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
1913 if (target
!= if_info
->x
)
1914 noce_emit_move_insn (if_info
->x
, target
);
1916 seq
= end_ifcvt_sequence (if_info
);
1920 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
1921 if_info
->cond
= cond
;
1922 if_info
->cond_earliest
= earliest
;
1927 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1928 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1932 noce_try_abs (struct noce_if_info
*if_info
)
1934 rtx cond
, earliest
, target
, seq
, a
, b
, c
;
1936 bool one_cmpl
= false;
1938 /* Reject modes with signed zeros. */
1939 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info
->x
)))
1942 /* Recognize A and B as constituting an ABS or NABS. The canonical
1943 form is a branch around the negation, taken when the object is the
1944 first operand of a comparison against 0 that evaluates to true. */
1947 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
1949 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
1951 c
= a
; a
= b
; b
= c
;
1954 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
1959 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
1961 c
= a
; a
= b
; b
= c
;
1968 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
1972 /* Verify the condition is of the form we expect. */
1973 if (rtx_equal_p (XEXP (cond
, 0), b
))
1975 else if (rtx_equal_p (XEXP (cond
, 1), b
))
1983 /* Verify that C is zero. Search one step backward for a
1984 REG_EQUAL note or a simple source if necessary. */
1987 rtx set
, insn
= prev_nonnote_insn (earliest
);
1989 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
1990 && (set
= single_set (insn
))
1991 && rtx_equal_p (SET_DEST (set
), c
))
1993 rtx note
= find_reg_equal_equiv_note (insn
);
2003 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
2004 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
2005 c
= get_pool_constant (XEXP (c
, 0));
2007 /* Work around funny ideas get_condition has wrt canonicalization.
2008 Note that these rtx constants are known to be CONST_INT, and
2009 therefore imply integer comparisons. */
2010 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
2012 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
2014 else if (c
!= CONST0_RTX (GET_MODE (b
)))
2017 /* Determine what sort of operation this is. */
2018 switch (GET_CODE (cond
))
2037 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
2040 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
2042 /* ??? It's a quandary whether cmove would be better here, especially
2043 for integers. Perhaps combine will clean things up. */
2044 if (target
&& negate
)
2047 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
2050 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
2060 if (target
!= if_info
->x
)
2061 noce_emit_move_insn (if_info
->x
, target
);
2063 seq
= end_ifcvt_sequence (if_info
);
2067 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
2068 if_info
->cond
= cond
;
2069 if_info
->cond_earliest
= earliest
;
2074 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2077 noce_try_sign_mask (struct noce_if_info
*if_info
)
2079 rtx cond
, t
, m
, c
, seq
;
2080 enum machine_mode mode
;
2082 bool t_unconditional
;
2084 cond
= if_info
->cond
;
2085 code
= GET_CODE (cond
);
2090 if (if_info
->a
== const0_rtx
)
2092 if ((code
== LT
&& c
== const0_rtx
)
2093 || (code
== LE
&& c
== constm1_rtx
))
2096 else if (if_info
->b
== const0_rtx
)
2098 if ((code
== GE
&& c
== const0_rtx
)
2099 || (code
== GT
&& c
== constm1_rtx
))
2103 if (! t
|| side_effects_p (t
))
2106 /* We currently don't handle different modes. */
2107 mode
= GET_MODE (t
);
2108 if (GET_MODE (m
) != mode
)
2111 /* This is only profitable if T is unconditionally executed/evaluated in the
2112 original insn sequence or T is cheap. The former happens if B is the
2113 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2114 INSN_B which can happen for e.g. conditional stores to memory. For the
2115 cost computation use the block TEST_BB where the evaluation will end up
2116 after the transformation. */
2119 && (if_info
->insn_b
== NULL_RTX
2120 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2121 if (!(t_unconditional
2122 || (rtx_cost (t
, SET
, optimize_bb_for_speed_p (if_info
->test_bb
))
2123 < COSTS_N_INSNS (2))))
2127 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2128 "(signed) m >> 31" directly. This benefits targets with specialized
2129 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2130 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2131 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2140 noce_emit_move_insn (if_info
->x
, t
);
2142 seq
= end_ifcvt_sequence (if_info
);
2146 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATOR (if_info
->insn_a
));
2151 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2155 noce_try_bitop (struct noce_if_info
*if_info
)
2157 rtx cond
, x
, a
, result
, seq
;
2158 enum machine_mode mode
;
2163 cond
= if_info
->cond
;
2164 code
= GET_CODE (cond
);
2166 /* Check for no else condition. */
2167 if (! rtx_equal_p (x
, if_info
->b
))
2170 /* Check for a suitable condition. */
2171 if (code
!= NE
&& code
!= EQ
)
2173 if (XEXP (cond
, 1) != const0_rtx
)
2175 cond
= XEXP (cond
, 0);
2177 /* ??? We could also handle AND here. */
2178 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2180 if (XEXP (cond
, 1) != const1_rtx
2181 || !CONST_INT_P (XEXP (cond
, 2))
2182 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2184 bitnum
= INTVAL (XEXP (cond
, 2));
2185 mode
= GET_MODE (x
);
2186 if (BITS_BIG_ENDIAN
)
2187 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2188 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2195 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2197 /* Check for "if (X & C) x = x op C". */
2198 if (! rtx_equal_p (x
, XEXP (a
, 0))
2199 || !CONST_INT_P (XEXP (a
, 1))
2200 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2201 != (unsigned HOST_WIDE_INT
) 1 << bitnum
)
2204 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2205 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2206 if (GET_CODE (a
) == IOR
)
2207 result
= (code
== NE
) ? a
: NULL_RTX
;
2208 else if (code
== NE
)
2210 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2211 result
= gen_int_mode ((HOST_WIDE_INT
) 1 << bitnum
, mode
);
2212 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2216 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2217 result
= gen_int_mode (~((HOST_WIDE_INT
) 1 << bitnum
), mode
);
2218 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2221 else if (GET_CODE (a
) == AND
)
2223 /* Check for "if (X & C) x &= ~C". */
2224 if (! rtx_equal_p (x
, XEXP (a
, 0))
2225 || !CONST_INT_P (XEXP (a
, 1))
2226 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2227 != (~((HOST_WIDE_INT
) 1 << bitnum
) & GET_MODE_MASK (mode
)))
2230 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2231 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2232 result
= (code
== EQ
) ? a
: NULL_RTX
;
2240 noce_emit_move_insn (x
, result
);
2241 seq
= end_ifcvt_sequence (if_info
);
2245 emit_insn_before_setloc (seq
, if_info
->jump
,
2246 INSN_LOCATOR (if_info
->insn_a
));
2252 /* Similar to get_condition, only the resulting condition must be
2253 valid at JUMP, instead of at EARLIEST.
2255 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2256 THEN block of the caller, and we have to reverse the condition. */
2259 noce_get_condition (rtx jump
, rtx
*earliest
, bool then_else_reversed
)
2264 if (! any_condjump_p (jump
))
2267 set
= pc_set (jump
);
2269 /* If this branches to JUMP_LABEL when the condition is false,
2270 reverse the condition. */
2271 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2272 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
));
2274 /* We may have to reverse because the caller's if block is not canonical,
2275 i.e. the THEN block isn't the fallthrough block for the TEST block
2276 (see find_if_header). */
2277 if (then_else_reversed
)
2280 /* If the condition variable is a register and is MODE_INT, accept it. */
2282 cond
= XEXP (SET_SRC (set
), 0);
2283 tmp
= XEXP (cond
, 0);
2284 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
)
2289 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2290 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2294 /* Otherwise, fall back on canonicalize_condition to do the dirty
2295 work of manipulating MODE_CC values and COMPARE rtx codes. */
2296 tmp
= canonicalize_condition (jump
, cond
, reverse
, earliest
,
2297 NULL_RTX
, false, true);
2299 /* We don't handle side-effects in the condition, like handling
2300 REG_INC notes and making sure no duplicate conditions are emitted. */
2301 if (tmp
!= NULL_RTX
&& side_effects_p (tmp
))
2307 /* Return true if OP is ok for if-then-else processing. */
2310 noce_operand_ok (const_rtx op
)
2312 /* We special-case memories, so handle any of them with
2313 no address side effects. */
2315 return ! side_effects_p (XEXP (op
, 0));
2317 if (side_effects_p (op
))
2320 return ! may_trap_p (op
);
2323 /* Return true if a write into MEM may trap or fault. */
2326 noce_mem_write_may_trap_or_fault_p (const_rtx mem
)
2330 if (MEM_READONLY_P (mem
))
2333 if (may_trap_or_fault_p (mem
))
2336 addr
= XEXP (mem
, 0);
2338 /* Call target hook to avoid the effects of -fpic etc.... */
2339 addr
= targetm
.delegitimize_address (addr
);
2342 switch (GET_CODE (addr
))
2350 addr
= XEXP (addr
, 0);
2354 addr
= XEXP (addr
, 1);
2357 if (CONST_INT_P (XEXP (addr
, 1)))
2358 addr
= XEXP (addr
, 0);
2365 if (SYMBOL_REF_DECL (addr
)
2366 && decl_readonly_section (SYMBOL_REF_DECL (addr
), 0))
2376 /* Return whether we can use store speculation for MEM. TOP_BB is the
2377 basic block above the conditional block where we are considering
2378 doing the speculative store. We look for whether MEM is set
2379 unconditionally later in the function. */
2382 noce_can_store_speculate_p (basic_block top_bb
, const_rtx mem
)
2384 basic_block dominator
;
2386 for (dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, top_bb
);
2388 dominator
= get_immediate_dominator (CDI_POST_DOMINATORS
, dominator
))
2392 FOR_BB_INSNS (dominator
, insn
)
2394 /* If we see something that might be a memory barrier, we
2395 have to stop looking. Even if the MEM is set later in
2396 the function, we still don't want to set it
2397 unconditionally before the barrier. */
2399 && (volatile_insn_p (PATTERN (insn
))
2400 || (CALL_P (insn
) && (!RTL_CONST_CALL_P (insn
)))))
2403 if (memory_modified_in_insn_p (mem
, insn
))
2405 if (modified_in_p (XEXP (mem
, 0), insn
))
2414 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2415 it without using conditional execution. Return TRUE if we were successful
2416 at converting the block. */
2419 noce_process_if_block (struct noce_if_info
*if_info
)
2421 basic_block test_bb
= if_info
->test_bb
; /* test block */
2422 basic_block then_bb
= if_info
->then_bb
; /* THEN */
2423 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
2424 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
2425 rtx jump
= if_info
->jump
;
2426 rtx cond
= if_info
->cond
;
2429 rtx orig_x
, x
, a
, b
;
2431 /* We're looking for patterns of the form
2433 (1) if (...) x = a; else x = b;
2434 (2) x = b; if (...) x = a;
2435 (3) if (...) x = a; // as if with an initial x = x.
2437 The later patterns require jumps to be more expensive.
2439 ??? For future expansion, look for multiple X in such patterns. */
2441 /* Look for one of the potential sets. */
2442 insn_a
= first_active_insn (then_bb
);
2444 || insn_a
!= last_active_insn (then_bb
, FALSE
)
2445 || (set_a
= single_set (insn_a
)) == NULL_RTX
)
2448 x
= SET_DEST (set_a
);
2449 a
= SET_SRC (set_a
);
2451 /* Look for the other potential set. Make sure we've got equivalent
2453 /* ??? This is overconservative. Storing to two different mems is
2454 as easy as conditionally computing the address. Storing to a
2455 single mem merely requires a scratch memory to use as one of the
2456 destination addresses; often the memory immediately below the
2457 stack pointer is available for this. */
2461 insn_b
= first_active_insn (else_bb
);
2463 || insn_b
!= last_active_insn (else_bb
, FALSE
)
2464 || (set_b
= single_set (insn_b
)) == NULL_RTX
2465 || ! rtx_equal_p (x
, SET_DEST (set_b
)))
2470 insn_b
= prev_nonnote_nondebug_insn (if_info
->cond_earliest
);
2471 /* We're going to be moving the evaluation of B down from above
2472 COND_EARLIEST to JUMP. Make sure the relevant data is still
2475 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
2476 || !NONJUMP_INSN_P (insn_b
)
2477 || (set_b
= single_set (insn_b
)) == NULL_RTX
2478 || ! rtx_equal_p (x
, SET_DEST (set_b
))
2479 || ! noce_operand_ok (SET_SRC (set_b
))
2480 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
2481 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
2482 /* Likewise with X. In particular this can happen when
2483 noce_get_condition looks farther back in the instruction
2484 stream than one might expect. */
2485 || reg_overlap_mentioned_p (x
, cond
)
2486 || reg_overlap_mentioned_p (x
, a
)
2487 || modified_between_p (x
, insn_b
, jump
))
2488 insn_b
= set_b
= NULL_RTX
;
2491 /* If x has side effects then only the if-then-else form is safe to
2492 convert. But even in that case we would need to restore any notes
2493 (such as REG_INC) at then end. That can be tricky if
2494 noce_emit_move_insn expands to more than one insn, so disable the
2495 optimization entirely for now if there are side effects. */
2496 if (side_effects_p (x
))
2499 b
= (set_b
? SET_SRC (set_b
) : x
);
2501 /* Only operate on register destinations, and even then avoid extending
2502 the lifetime of hard registers on small register class machines. */
2505 || (HARD_REGISTER_P (x
)
2506 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
2508 if (GET_MODE (x
) == BLKmode
)
2511 if (GET_CODE (x
) == ZERO_EXTRACT
2512 && (!CONST_INT_P (XEXP (x
, 1))
2513 || !CONST_INT_P (XEXP (x
, 2))))
2516 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
2517 ? XEXP (x
, 0) : x
));
2520 /* Don't operate on sources that may trap or are volatile. */
2521 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
2525 /* Set up the info block for our subroutines. */
2526 if_info
->insn_a
= insn_a
;
2527 if_info
->insn_b
= insn_b
;
2532 /* Try optimizations in some approximation of a useful order. */
2533 /* ??? Should first look to see if X is live incoming at all. If it
2534 isn't, we don't need anything but an unconditional set. */
2536 /* Look and see if A and B are really the same. Avoid creating silly
2537 cmove constructs that no one will fix up later. */
2538 if (rtx_equal_p (a
, b
))
2540 /* If we have an INSN_B, we don't have to create any new rtl. Just
2541 move the instruction that we already have. If we don't have an
2542 INSN_B, that means that A == X, and we've got a noop move. In
2543 that case don't do anything and let the code below delete INSN_A. */
2544 if (insn_b
&& else_bb
)
2548 if (else_bb
&& insn_b
== BB_END (else_bb
))
2549 BB_END (else_bb
) = PREV_INSN (insn_b
);
2550 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
2552 /* If there was a REG_EQUAL note, delete it since it may have been
2553 true due to this insn being after a jump. */
2554 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
2555 remove_note (insn_b
, note
);
2559 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2560 x must be executed twice. */
2561 else if (insn_b
&& side_effects_p (orig_x
))
2568 if (!set_b
&& MEM_P (orig_x
))
2570 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2571 for optimizations if writing to x may trap or fault,
2572 i.e. it's a memory other than a static var or a stack slot,
2573 is misaligned on strict aligned machines or is read-only. If
2574 x is a read-only memory, then the program is valid only if we
2575 avoid the store into it. If there are stores on both the
2576 THEN and ELSE arms, then we can go ahead with the conversion;
2577 either the program is broken, or the condition is always
2578 false such that the other memory is selected. */
2579 if (noce_mem_write_may_trap_or_fault_p (orig_x
))
2582 /* Avoid store speculation: given "if (...) x = a" where x is a
2583 MEM, we only want to do the store if x is always set
2584 somewhere in the function. This avoids cases like
2585 if (pthread_mutex_trylock(mutex))
2587 where we only want global_variable to be changed if the mutex
2588 is held. FIXME: This should ideally be expressed directly in
2590 if (!noce_can_store_speculate_p (test_bb
, orig_x
))
2594 if (noce_try_move (if_info
))
2596 if (noce_try_store_flag (if_info
))
2598 if (noce_try_bitop (if_info
))
2600 if (noce_try_minmax (if_info
))
2602 if (noce_try_abs (if_info
))
2604 if (HAVE_conditional_move
2605 && noce_try_cmove (if_info
))
2607 if (! targetm
.have_conditional_execution ())
2609 if (noce_try_store_flag_constants (if_info
))
2611 if (noce_try_addcc (if_info
))
2613 if (noce_try_store_flag_mask (if_info
))
2615 if (HAVE_conditional_move
2616 && noce_try_cmove_arith (if_info
))
2618 if (noce_try_sign_mask (if_info
))
2622 if (!else_bb
&& set_b
)
2624 insn_b
= set_b
= NULL_RTX
;
2633 /* If we used a temporary, fix it up now. */
2639 noce_emit_move_insn (orig_x
, x
);
2641 set_used_flags (orig_x
);
2642 unshare_all_rtl_in_chain (seq
);
2645 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATOR (insn_a
));
2648 /* The original THEN and ELSE blocks may now be removed. The test block
2649 must now jump to the join block. If the test block and the join block
2650 can be merged, do so. */
2653 delete_basic_block (else_bb
);
2657 remove_edge (find_edge (test_bb
, join_bb
));
2659 remove_edge (find_edge (then_bb
, join_bb
));
2660 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2661 delete_basic_block (then_bb
);
2664 if (can_merge_blocks_p (test_bb
, join_bb
))
2666 merge_blocks (test_bb
, join_bb
);
2670 num_updated_if_blocks
++;
2674 /* Check whether a block is suitable for conditional move conversion.
2675 Every insn must be a simple set of a register to a constant or a
2676 register. For each assignment, store the value in the array VALS,
2677 indexed by register number, then store the register number in
2678 REGS. COND is the condition we will test. */
2681 check_cond_move_block (basic_block bb
, rtx
*vals
, VEC (int, heap
) **regs
,
2686 /* We can only handle simple jumps at the end of the basic block.
2687 It is almost impossible to update the CFG otherwise. */
2689 if (JUMP_P (insn
) && !onlyjump_p (insn
))
2692 FOR_BB_INSNS (bb
, insn
)
2696 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2698 set
= single_set (insn
);
2702 dest
= SET_DEST (set
);
2703 src
= SET_SRC (set
);
2705 || (HARD_REGISTER_P (dest
)
2706 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
2709 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
2712 if (side_effects_p (src
) || side_effects_p (dest
))
2715 if (may_trap_p (src
) || may_trap_p (dest
))
2718 /* Don't try to handle this if the source register was
2719 modified earlier in the block. */
2721 && vals
[REGNO (src
)] != NULL
)
2722 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
2723 && vals
[REGNO (SUBREG_REG (src
))] != NULL
))
2726 /* Don't try to handle this if the destination register was
2727 modified earlier in the block. */
2728 if (vals
[REGNO (dest
)] != NULL
)
2731 /* Don't try to handle this if the condition uses the
2732 destination register. */
2733 if (reg_overlap_mentioned_p (dest
, cond
))
2736 /* Don't try to handle this if the source register is modified
2737 later in the block. */
2738 if (!CONSTANT_P (src
)
2739 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
2742 vals
[REGNO (dest
)] = src
;
2744 VEC_safe_push (int, heap
, *regs
, REGNO (dest
));
2750 /* Given a basic block BB suitable for conditional move conversion,
2751 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2752 register values depending on COND, emit the insns in the block as
2753 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2754 processed. The caller has started a sequence for the conversion.
2755 Return true if successful, false if something goes wrong. */
2758 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
2759 basic_block bb
, rtx cond
,
2760 rtx
*then_vals
, rtx
*else_vals
,
2764 rtx insn
, cond_arg0
, cond_arg1
;
2766 code
= GET_CODE (cond
);
2767 cond_arg0
= XEXP (cond
, 0);
2768 cond_arg1
= XEXP (cond
, 1);
2770 FOR_BB_INSNS (bb
, insn
)
2772 rtx set
, target
, dest
, t
, e
;
2775 /* ??? Maybe emit conditional debug insn? */
2776 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
2778 set
= single_set (insn
);
2779 gcc_assert (set
&& REG_P (SET_DEST (set
)));
2781 dest
= SET_DEST (set
);
2782 regno
= REGNO (dest
);
2784 t
= then_vals
[regno
];
2785 e
= else_vals
[regno
];
2789 /* If this register was set in the then block, we already
2790 handled this case there. */
2803 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
2809 noce_emit_move_insn (dest
, target
);
2815 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2816 it using only conditional moves. Return TRUE if we were successful at
2817 converting the block. */
2820 cond_move_process_if_block (struct noce_if_info
*if_info
)
2822 basic_block test_bb
= if_info
->test_bb
;
2823 basic_block then_bb
= if_info
->then_bb
;
2824 basic_block else_bb
= if_info
->else_bb
;
2825 basic_block join_bb
= if_info
->join_bb
;
2826 rtx jump
= if_info
->jump
;
2827 rtx cond
= if_info
->cond
;
2829 int max_reg
, size
, c
, reg
;
2832 VEC (int, heap
) *then_regs
= NULL
;
2833 VEC (int, heap
) *else_regs
= NULL
;
2836 /* Build a mapping for each block to the value used for each
2838 max_reg
= max_reg_num ();
2839 size
= (max_reg
+ 1) * sizeof (rtx
);
2840 then_vals
= (rtx
*) alloca (size
);
2841 else_vals
= (rtx
*) alloca (size
);
2842 memset (then_vals
, 0, size
);
2843 memset (else_vals
, 0, size
);
2845 /* Make sure the blocks are suitable. */
2846 if (!check_cond_move_block (then_bb
, then_vals
, &then_regs
, cond
)
2848 && !check_cond_move_block (else_bb
, else_vals
, &else_regs
, cond
)))
2850 VEC_free (int, heap
, then_regs
);
2851 VEC_free (int, heap
, else_regs
);
2855 /* Make sure the blocks can be used together. If the same register
2856 is set in both blocks, and is not set to a constant in both
2857 cases, then both blocks must set it to the same register. We
2858 have already verified that if it is set to a register, that the
2859 source register does not change after the assignment. Also count
2860 the number of registers set in only one of the blocks. */
2862 FOR_EACH_VEC_ELT (int, then_regs
, i
, reg
)
2864 if (!then_vals
[reg
] && !else_vals
[reg
])
2867 if (!else_vals
[reg
])
2871 if (!CONSTANT_P (then_vals
[reg
])
2872 && !CONSTANT_P (else_vals
[reg
])
2873 && !rtx_equal_p (then_vals
[reg
], else_vals
[reg
]))
2875 VEC_free (int, heap
, then_regs
);
2876 VEC_free (int, heap
, else_regs
);
2882 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2883 FOR_EACH_VEC_ELT (int, else_regs
, i
, reg
)
2884 if (!then_vals
[reg
])
2887 /* Make sure it is reasonable to convert this block. What matters
2888 is the number of assignments currently made in only one of the
2889 branches, since if we convert we are going to always execute
2891 if (c
> MAX_CONDITIONAL_EXECUTE
)
2893 VEC_free (int, heap
, then_regs
);
2894 VEC_free (int, heap
, else_regs
);
2898 /* Try to emit the conditional moves. First do the then block,
2899 then do anything left in the else blocks. */
2901 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
2902 then_vals
, else_vals
, false)
2904 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
2905 then_vals
, else_vals
, true)))
2908 VEC_free (int, heap
, then_regs
);
2909 VEC_free (int, heap
, else_regs
);
2912 seq
= end_ifcvt_sequence (if_info
);
2915 VEC_free (int, heap
, then_regs
);
2916 VEC_free (int, heap
, else_regs
);
2920 loc_insn
= first_active_insn (then_bb
);
2923 loc_insn
= first_active_insn (else_bb
);
2924 gcc_assert (loc_insn
);
2926 emit_insn_before_setloc (seq
, jump
, INSN_LOCATOR (loc_insn
));
2930 delete_basic_block (else_bb
);
2934 remove_edge (find_edge (test_bb
, join_bb
));
2936 remove_edge (find_edge (then_bb
, join_bb
));
2937 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
2938 delete_basic_block (then_bb
);
2941 if (can_merge_blocks_p (test_bb
, join_bb
))
2943 merge_blocks (test_bb
, join_bb
);
2947 num_updated_if_blocks
++;
2949 VEC_free (int, heap
, then_regs
);
2950 VEC_free (int, heap
, else_regs
);
2955 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2956 IF-THEN-ELSE-JOIN block.
2958 If so, we'll try to convert the insns to not require the branch,
2959 using only transformations that do not require conditional execution.
2961 Return TRUE if we were successful at converting the block. */
2964 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
2967 basic_block then_bb
, else_bb
, join_bb
;
2968 bool then_else_reversed
= false;
2971 struct noce_if_info if_info
;
2973 /* We only ever should get here before reload. */
2974 gcc_assert (!reload_completed
);
2976 /* Recognize an IF-THEN-ELSE-JOIN block. */
2977 if (single_pred_p (then_edge
->dest
)
2978 && single_succ_p (then_edge
->dest
)
2979 && single_pred_p (else_edge
->dest
)
2980 && single_succ_p (else_edge
->dest
)
2981 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
2983 then_bb
= then_edge
->dest
;
2984 else_bb
= else_edge
->dest
;
2985 join_bb
= single_succ (then_bb
);
2987 /* Recognize an IF-THEN-JOIN block. */
2988 else if (single_pred_p (then_edge
->dest
)
2989 && single_succ_p (then_edge
->dest
)
2990 && single_succ (then_edge
->dest
) == else_edge
->dest
)
2992 then_bb
= then_edge
->dest
;
2993 else_bb
= NULL_BLOCK
;
2994 join_bb
= else_edge
->dest
;
2996 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2997 of basic blocks in cfglayout mode does not matter, so the fallthrough
2998 edge can go to any basic block (and not just to bb->next_bb, like in
3000 else if (single_pred_p (else_edge
->dest
)
3001 && single_succ_p (else_edge
->dest
)
3002 && single_succ (else_edge
->dest
) == then_edge
->dest
)
3004 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3005 To make this work, we have to invert the THEN and ELSE blocks
3006 and reverse the jump condition. */
3007 then_bb
= else_edge
->dest
;
3008 else_bb
= NULL_BLOCK
;
3009 join_bb
= single_succ (then_bb
);
3010 then_else_reversed
= true;
3013 /* Not a form we can handle. */
3016 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3017 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3020 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3023 num_possible_if_blocks
++;
3028 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3029 (else_bb
) ? "-ELSE" : "",
3030 pass
, test_bb
->index
, then_bb
->index
);
3033 fprintf (dump_file
, ", else %d", else_bb
->index
);
3035 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
3038 /* If the conditional jump is more than just a conditional
3039 jump, then we can not do if-conversion on this block. */
3040 jump
= BB_END (test_bb
);
3041 if (! onlyjump_p (jump
))
3044 /* If this is not a standard conditional jump, we can't parse it. */
3045 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
3049 /* We must be comparing objects whose modes imply the size. */
3050 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3053 /* Initialize an IF_INFO struct to pass around. */
3054 memset (&if_info
, 0, sizeof if_info
);
3055 if_info
.test_bb
= test_bb
;
3056 if_info
.then_bb
= then_bb
;
3057 if_info
.else_bb
= else_bb
;
3058 if_info
.join_bb
= join_bb
;
3059 if_info
.cond
= cond
;
3060 if_info
.cond_earliest
= cond_earliest
;
3061 if_info
.jump
= jump
;
3062 if_info
.then_else_reversed
= then_else_reversed
;
3063 if_info
.branch_cost
= BRANCH_COST (optimize_bb_for_speed_p (test_bb
),
3064 predictable_edge_p (then_edge
));
3066 /* Do the real work. */
3068 if (noce_process_if_block (&if_info
))
3071 if (HAVE_conditional_move
3072 && cond_move_process_if_block (&if_info
))
3079 /* Merge the blocks and mark for local life update. */
3082 merge_if_block (struct ce_if_block
* ce_info
)
3084 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
3085 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
3086 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
3087 basic_block join_bb
= ce_info
->join_bb
; /* join block */
3088 basic_block combo_bb
;
3090 /* All block merging is done into the lower block numbers. */
3093 df_set_bb_dirty (test_bb
);
3095 /* Merge any basic blocks to handle && and || subtests. Each of
3096 the blocks are on the fallthru path from the predecessor block. */
3097 if (ce_info
->num_multiple_test_blocks
> 0)
3099 basic_block bb
= test_bb
;
3100 basic_block last_test_bb
= ce_info
->last_test_bb
;
3101 basic_block fallthru
= block_fallthru (bb
);
3106 fallthru
= block_fallthru (bb
);
3107 merge_blocks (combo_bb
, bb
);
3110 while (bb
!= last_test_bb
);
3113 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3114 label, but it might if there were || tests. That label's count should be
3115 zero, and it normally should be removed. */
3119 merge_blocks (combo_bb
, then_bb
);
3123 /* The ELSE block, if it existed, had a label. That label count
3124 will almost always be zero, but odd things can happen when labels
3125 get their addresses taken. */
3128 merge_blocks (combo_bb
, else_bb
);
3132 /* If there was no join block reported, that means it was not adjacent
3133 to the others, and so we cannot merge them. */
3137 rtx last
= BB_END (combo_bb
);
3139 /* The outgoing edge for the current COMBO block should already
3140 be correct. Verify this. */
3141 if (EDGE_COUNT (combo_bb
->succs
) == 0)
3142 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
3143 || (NONJUMP_INSN_P (last
)
3144 && GET_CODE (PATTERN (last
)) == TRAP_IF
3145 && (TRAP_CONDITION (PATTERN (last
))
3146 == const_true_rtx
)));
3149 /* There should still be something at the end of the THEN or ELSE
3150 blocks taking us to our final destination. */
3151 gcc_assert (JUMP_P (last
)
3152 || (EDGE_SUCC (combo_bb
, 0)->dest
== EXIT_BLOCK_PTR
3154 && SIBLING_CALL_P (last
))
3155 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
3156 && can_throw_internal (last
)));
3159 /* The JOIN block may have had quite a number of other predecessors too.
3160 Since we've already merged the TEST, THEN and ELSE blocks, we should
3161 have only one remaining edge from our if-then-else diamond. If there
3162 is more than one remaining edge, it must come from elsewhere. There
3163 may be zero incoming edges if the THEN block didn't actually join
3164 back up (as with a call to a non-return function). */
3165 else if (EDGE_COUNT (join_bb
->preds
) < 2
3166 && join_bb
!= EXIT_BLOCK_PTR
)
3168 /* We can merge the JOIN cleanly and update the dataflow try
3169 again on this pass.*/
3170 merge_blocks (combo_bb
, join_bb
);
3175 /* We cannot merge the JOIN. */
3177 /* The outgoing edge for the current COMBO block should already
3178 be correct. Verify this. */
3179 gcc_assert (single_succ_p (combo_bb
)
3180 && single_succ (combo_bb
) == join_bb
);
3182 /* Remove the jump and cruft from the end of the COMBO block. */
3183 if (join_bb
!= EXIT_BLOCK_PTR
)
3184 tidy_fallthru_edge (single_succ_edge (combo_bb
));
3187 num_updated_if_blocks
++;
3190 /* Find a block ending in a simple IF condition and try to transform it
3191 in some way. When converting a multi-block condition, put the new code
3192 in the first such block and delete the rest. Return a pointer to this
3193 first block if some transformation was done. Return NULL otherwise. */
3196 find_if_header (basic_block test_bb
, int pass
)
3198 ce_if_block_t ce_info
;
3202 /* The kind of block we're looking for has exactly two successors. */
3203 if (EDGE_COUNT (test_bb
->succs
) != 2)
3206 then_edge
= EDGE_SUCC (test_bb
, 0);
3207 else_edge
= EDGE_SUCC (test_bb
, 1);
3209 if (df_get_bb_dirty (then_edge
->dest
))
3211 if (df_get_bb_dirty (else_edge
->dest
))
3214 /* Neither edge should be abnormal. */
3215 if ((then_edge
->flags
& EDGE_COMPLEX
)
3216 || (else_edge
->flags
& EDGE_COMPLEX
))
3219 /* Nor exit the loop. */
3220 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
3221 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
3224 /* The THEN edge is canonically the one that falls through. */
3225 if (then_edge
->flags
& EDGE_FALLTHRU
)
3227 else if (else_edge
->flags
& EDGE_FALLTHRU
)
3230 else_edge
= then_edge
;
3234 /* Otherwise this must be a multiway branch of some sort. */
3237 memset (&ce_info
, 0, sizeof (ce_info
));
3238 ce_info
.test_bb
= test_bb
;
3239 ce_info
.then_bb
= then_edge
->dest
;
3240 ce_info
.else_bb
= else_edge
->dest
;
3241 ce_info
.pass
= pass
;
3243 #ifdef IFCVT_INIT_EXTRA_FIELDS
3244 IFCVT_INIT_EXTRA_FIELDS (&ce_info
);
3247 if (!reload_completed
3248 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
3251 if (reload_completed
3252 && targetm
.have_conditional_execution ()
3253 && cond_exec_find_if_block (&ce_info
))
3257 && optab_handler (ctrap_optab
, word_mode
) != CODE_FOR_nothing
3258 && find_cond_trap (test_bb
, then_edge
, else_edge
))
3261 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
3262 && (reload_completed
|| !targetm
.have_conditional_execution ()))
3264 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
3266 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
3274 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
3275 /* Set this so we continue looking. */
3276 cond_exec_changed_p
= TRUE
;
3277 return ce_info
.test_bb
;
3280 /* Return true if a block has two edges, one of which falls through to the next
3281 block, and the other jumps to a specific block, so that we can tell if the
3282 block is part of an && test or an || test. Returns either -1 or the number
3283 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3286 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
3289 int fallthru_p
= FALSE
;
3296 if (!cur_bb
|| !target_bb
)
3299 /* If no edges, obviously it doesn't jump or fallthru. */
3300 if (EDGE_COUNT (cur_bb
->succs
) == 0)
3303 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
3305 if (cur_edge
->flags
& EDGE_COMPLEX
)
3306 /* Anything complex isn't what we want. */
3309 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
3312 else if (cur_edge
->dest
== target_bb
)
3319 if ((jump_p
& fallthru_p
) == 0)
3322 /* Don't allow calls in the block, since this is used to group && and ||
3323 together for conditional execution support. ??? we should support
3324 conditional execution support across calls for IA-64 some day, but
3325 for now it makes the code simpler. */
3326 end
= BB_END (cur_bb
);
3327 insn
= BB_HEAD (cur_bb
);
3329 while (insn
!= NULL_RTX
)
3336 && !DEBUG_INSN_P (insn
)
3337 && GET_CODE (PATTERN (insn
)) != USE
3338 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3344 insn
= NEXT_INSN (insn
);
3350 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3351 block. If so, we'll try to convert the insns to not require the branch.
3352 Return TRUE if we were successful at converting the block. */
3355 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
3357 basic_block test_bb
= ce_info
->test_bb
;
3358 basic_block then_bb
= ce_info
->then_bb
;
3359 basic_block else_bb
= ce_info
->else_bb
;
3360 basic_block join_bb
= NULL_BLOCK
;
3365 ce_info
->last_test_bb
= test_bb
;
3367 /* We only ever should get here after reload,
3368 and if we have conditional execution. */
3369 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
3371 /* Discover if any fall through predecessors of the current test basic block
3372 were && tests (which jump to the else block) or || tests (which jump to
3374 if (single_pred_p (test_bb
)
3375 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
3377 basic_block bb
= single_pred (test_bb
);
3378 basic_block target_bb
;
3379 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
3382 /* Determine if the preceding block is an && or || block. */
3383 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
3385 ce_info
->and_and_p
= TRUE
;
3386 target_bb
= else_bb
;
3388 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
3390 ce_info
->and_and_p
= FALSE
;
3391 target_bb
= then_bb
;
3394 target_bb
= NULL_BLOCK
;
3396 if (target_bb
&& n_insns
<= max_insns
)
3398 int total_insns
= 0;
3401 ce_info
->last_test_bb
= test_bb
;
3403 /* Found at least one && or || block, look for more. */
3406 ce_info
->test_bb
= test_bb
= bb
;
3407 total_insns
+= n_insns
;
3410 if (!single_pred_p (bb
))
3413 bb
= single_pred (bb
);
3414 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
3416 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
3418 ce_info
->num_multiple_test_blocks
= blocks
;
3419 ce_info
->num_multiple_test_insns
= total_insns
;
3421 if (ce_info
->and_and_p
)
3422 ce_info
->num_and_and_blocks
= blocks
;
3424 ce_info
->num_or_or_blocks
= blocks
;
3428 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3429 other than any || blocks which jump to the THEN block. */
3430 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
3433 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3434 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
3436 if (cur_edge
->flags
& EDGE_COMPLEX
)
3440 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
3442 if (cur_edge
->flags
& EDGE_COMPLEX
)
3446 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3447 if (EDGE_COUNT (then_bb
->succs
) > 0
3448 && (!single_succ_p (then_bb
)
3449 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
3450 || (epilogue_completed
3451 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
3454 /* If the THEN block has no successors, conditional execution can still
3455 make a conditional call. Don't do this unless the ELSE block has
3456 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3457 Check for the last insn of the THEN block being an indirect jump, which
3458 is listed as not having any successors, but confuses the rest of the CE
3459 code processing. ??? we should fix this in the future. */
3460 if (EDGE_COUNT (then_bb
->succs
) == 0)
3462 if (single_pred_p (else_bb
))
3464 rtx last_insn
= BB_END (then_bb
);
3467 && NOTE_P (last_insn
)
3468 && last_insn
!= BB_HEAD (then_bb
))
3469 last_insn
= PREV_INSN (last_insn
);
3472 && JUMP_P (last_insn
)
3473 && ! simplejump_p (last_insn
))
3477 else_bb
= NULL_BLOCK
;
3483 /* If the THEN block's successor is the other edge out of the TEST block,
3484 then we have an IF-THEN combo without an ELSE. */
3485 else if (single_succ (then_bb
) == else_bb
)
3488 else_bb
= NULL_BLOCK
;
3491 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3492 has exactly one predecessor and one successor, and the outgoing edge
3493 is not complex, then we have an IF-THEN-ELSE combo. */
3494 else if (single_succ_p (else_bb
)
3495 && single_succ (then_bb
) == single_succ (else_bb
)
3496 && single_pred_p (else_bb
)
3497 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
3498 && !(epilogue_completed
3499 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
3500 join_bb
= single_succ (else_bb
);
3502 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3506 num_possible_if_blocks
++;
3511 "\nIF-THEN%s block found, pass %d, start block %d "
3512 "[insn %d], then %d [%d]",
3513 (else_bb
) ? "-ELSE" : "",
3516 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
3518 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
3521 fprintf (dump_file
, ", else %d [%d]",
3523 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
3525 fprintf (dump_file
, ", join %d [%d]",
3527 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
3529 if (ce_info
->num_multiple_test_blocks
> 0)
3530 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
3531 ce_info
->num_multiple_test_blocks
,
3532 (ce_info
->and_and_p
) ? "&&" : "||",
3533 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
3534 ce_info
->last_test_bb
->index
,
3535 ((BB_HEAD (ce_info
->last_test_bb
))
3536 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
3539 fputc ('\n', dump_file
);
3542 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3543 first condition for free, since we've already asserted that there's a
3544 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3545 we checked the FALLTHRU flag, those are already adjacent to the last IF
3547 /* ??? As an enhancement, move the ELSE block. Have to deal with
3548 BLOCK notes, if by no other means than backing out the merge if they
3549 exist. Sticky enough I don't want to think about it now. */
3551 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
3553 if ((next
= next
->next_bb
) != join_bb
&& join_bb
!= EXIT_BLOCK_PTR
)
3561 /* Do the real work. */
3563 ce_info
->else_bb
= else_bb
;
3564 ce_info
->join_bb
= join_bb
;
3566 /* If we have && and || tests, try to first handle combining the && and ||
3567 tests into the conditional code, and if that fails, go back and handle
3568 it without the && and ||, which at present handles the && case if there
3569 was no ELSE block. */
3570 if (cond_exec_process_if_block (ce_info
, TRUE
))
3573 if (ce_info
->num_multiple_test_blocks
)
3577 if (cond_exec_process_if_block (ce_info
, FALSE
))
3584 /* Convert a branch over a trap, or a branch
3585 to a trap, into a conditional trap. */
3588 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
3590 basic_block then_bb
= then_edge
->dest
;
3591 basic_block else_bb
= else_edge
->dest
;
3592 basic_block other_bb
, trap_bb
;
3593 rtx trap
, jump
, cond
, cond_earliest
, seq
;
3596 /* Locate the block with the trap instruction. */
3597 /* ??? While we look for no successors, we really ought to allow
3598 EH successors. Need to fix merge_if_block for that to work. */
3599 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
3600 trap_bb
= then_bb
, other_bb
= else_bb
;
3601 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
3602 trap_bb
= else_bb
, other_bb
= then_bb
;
3608 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
3609 test_bb
->index
, trap_bb
->index
);
3612 /* If this is not a standard conditional jump, we can't parse it. */
3613 jump
= BB_END (test_bb
);
3614 cond
= noce_get_condition (jump
, &cond_earliest
, false);
3618 /* If the conditional jump is more than just a conditional jump, then
3619 we can not do if-conversion on this block. */
3620 if (! onlyjump_p (jump
))
3623 /* We must be comparing objects whose modes imply the size. */
3624 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
3627 /* Reverse the comparison code, if necessary. */
3628 code
= GET_CODE (cond
);
3629 if (then_bb
== trap_bb
)
3631 code
= reversed_comparison_code (cond
, jump
);
3632 if (code
== UNKNOWN
)
3636 /* Attempt to generate the conditional trap. */
3637 seq
= gen_cond_trap (code
, copy_rtx (XEXP (cond
, 0)),
3638 copy_rtx (XEXP (cond
, 1)),
3639 TRAP_CODE (PATTERN (trap
)));
3643 /* Emit the new insns before cond_earliest. */
3644 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATOR (trap
));
3646 /* Delete the trap block if possible. */
3647 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
3648 df_set_bb_dirty (test_bb
);
3649 df_set_bb_dirty (then_bb
);
3650 df_set_bb_dirty (else_bb
);
3652 if (EDGE_COUNT (trap_bb
->preds
) == 0)
3654 delete_basic_block (trap_bb
);
3658 /* Wire together the blocks again. */
3659 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3660 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
3665 lab
= JUMP_LABEL (jump
);
3666 newjump
= emit_jump_insn_after (gen_jump (lab
), jump
);
3667 LABEL_NUSES (lab
) += 1;
3668 JUMP_LABEL (newjump
) = lab
;
3669 emit_barrier_after (newjump
);
3673 if (can_merge_blocks_p (test_bb
, other_bb
))
3675 merge_blocks (test_bb
, other_bb
);
3679 num_updated_if_blocks
++;
3683 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3687 block_has_only_trap (basic_block bb
)
3691 /* We're not the exit block. */
3692 if (bb
== EXIT_BLOCK_PTR
)
3695 /* The block must have no successors. */
3696 if (EDGE_COUNT (bb
->succs
) > 0)
3699 /* The only instruction in the THEN block must be the trap. */
3700 trap
= first_active_insn (bb
);
3701 if (! (trap
== BB_END (bb
)
3702 && GET_CODE (PATTERN (trap
)) == TRAP_IF
3703 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
3709 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3710 transformable, but not necessarily the other. There need be no
3713 Return TRUE if we were successful at converting the block.
3715 Cases we'd like to look at:
3718 if (test) goto over; // x not live
3726 if (! test) goto label;
3729 if (test) goto E; // x not live
3743 (3) // This one's really only interesting for targets that can do
3744 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3745 // it results in multiple branches on a cache line, which often
3746 // does not sit well with predictors.
3748 if (test1) goto E; // predicted not taken
3764 (A) Don't do (2) if the branch is predicted against the block we're
3765 eliminating. Do it anyway if we can eliminate a branch; this requires
3766 that the sole successor of the eliminated block postdominate the other
3769 (B) With CE, on (3) we can steal from both sides of the if, creating
3778 Again, this is most useful if J postdominates.
3780 (C) CE substitutes for helpful life information.
3782 (D) These heuristics need a lot of work. */
3784 /* Tests for case 1 above. */
3787 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3789 basic_block then_bb
= then_edge
->dest
;
3790 basic_block else_bb
= else_edge
->dest
;
3794 /* If we are partitioning hot/cold basic blocks, we don't want to
3795 mess up unconditional or indirect jumps that cross between hot
3798 Basic block partitioning may result in some jumps that appear to
3799 be optimizable (or blocks that appear to be mergeable), but which really
3800 must be left untouched (they are required to make it safely across
3801 partition boundaries). See the comments at the top of
3802 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3804 if ((BB_END (then_bb
)
3805 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3806 || (BB_END (test_bb
)
3807 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3808 || (BB_END (else_bb
)
3809 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3813 /* THEN has one successor. */
3814 if (!single_succ_p (then_bb
))
3817 /* THEN does not fall through, but is not strange either. */
3818 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
3821 /* THEN has one predecessor. */
3822 if (!single_pred_p (then_bb
))
3825 /* THEN must do something. */
3826 if (forwarder_block_p (then_bb
))
3829 num_possible_if_blocks
++;
3832 "\nIF-CASE-1 found, start %d, then %d\n",
3833 test_bb
->index
, then_bb
->index
);
3835 /* THEN is small. */
3836 if (! cheap_bb_rtx_cost_p (then_bb
,
3837 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
3838 predictable_edge_p (then_edge
)))))
3841 /* Registers set are dead, or are predicable. */
3842 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
3843 single_succ (then_bb
), 1))
3846 /* Conversion went ok, including moving the insns and fixing up the
3847 jump. Adjust the CFG to match. */
3849 /* We can avoid creating a new basic block if then_bb is immediately
3850 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3853 if (then_bb
->next_bb
== else_bb
3854 && then_bb
->prev_bb
== test_bb
3855 && else_bb
!= EXIT_BLOCK_PTR
)
3857 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
3861 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
3864 df_set_bb_dirty (test_bb
);
3865 df_set_bb_dirty (else_bb
);
3867 then_bb_index
= then_bb
->index
;
3868 delete_basic_block (then_bb
);
3870 /* Make rest of code believe that the newly created block is the THEN_BB
3871 block we removed. */
3874 df_bb_replace (then_bb_index
, new_bb
);
3875 /* Since the fallthru edge was redirected from test_bb to new_bb,
3876 we need to ensure that new_bb is in the same partition as
3877 test bb (you can not fall through across section boundaries). */
3878 BB_COPY_PARTITION (new_bb
, test_bb
);
3882 num_updated_if_blocks
++;
3887 /* Test for case 2 above. */
3890 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
3892 basic_block then_bb
= then_edge
->dest
;
3893 basic_block else_bb
= else_edge
->dest
;
3897 /* If we are partitioning hot/cold basic blocks, we don't want to
3898 mess up unconditional or indirect jumps that cross between hot
3901 Basic block partitioning may result in some jumps that appear to
3902 be optimizable (or blocks that appear to be mergeable), but which really
3903 must be left untouched (they are required to make it safely across
3904 partition boundaries). See the comments at the top of
3905 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3907 if ((BB_END (then_bb
)
3908 && find_reg_note (BB_END (then_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3909 || (BB_END (test_bb
)
3910 && find_reg_note (BB_END (test_bb
), REG_CROSSING_JUMP
, NULL_RTX
))
3911 || (BB_END (else_bb
)
3912 && find_reg_note (BB_END (else_bb
), REG_CROSSING_JUMP
,
3916 /* ELSE has one successor. */
3917 if (!single_succ_p (else_bb
))
3920 else_succ
= single_succ_edge (else_bb
);
3922 /* ELSE outgoing edge is not complex. */
3923 if (else_succ
->flags
& EDGE_COMPLEX
)
3926 /* ELSE has one predecessor. */
3927 if (!single_pred_p (else_bb
))
3930 /* THEN is not EXIT. */
3931 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
3934 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3935 note
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
3936 if (note
&& INTVAL (XEXP (note
, 0)) >= REG_BR_PROB_BASE
/ 2)
3938 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
3939 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
3945 num_possible_if_blocks
++;
3948 "\nIF-CASE-2 found, start %d, else %d\n",
3949 test_bb
->index
, else_bb
->index
);
3951 /* ELSE is small. */
3952 if (! cheap_bb_rtx_cost_p (else_bb
,
3953 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
3954 predictable_edge_p (else_edge
)))))
3957 /* Registers set are dead, or are predicable. */
3958 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
->dest
, 0))
3961 /* Conversion went ok, including moving the insns and fixing up the
3962 jump. Adjust the CFG to match. */
3964 df_set_bb_dirty (test_bb
);
3965 df_set_bb_dirty (then_bb
);
3966 delete_basic_block (else_bb
);
3969 num_updated_if_blocks
++;
3971 /* ??? We may now fallthru from one of THEN's successors into a join
3972 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3977 /* Used by the code above to perform the actual rtl transformations.
3978 Return TRUE if successful.
3980 TEST_BB is the block containing the conditional branch. MERGE_BB
3981 is the block containing the code to manipulate. NEW_DEST is the
3982 label TEST_BB should be branching to after the conversion.
3983 REVERSEP is true if the sense of the branch should be reversed. */
3986 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
3987 basic_block other_bb
, basic_block new_dest
, int reversep
)
3989 rtx head
, end
, jump
, earliest
= NULL_RTX
, old_dest
, new_label
= NULL_RTX
;
3990 bitmap merge_set
= NULL
;
3991 /* Number of pending changes. */
3992 int n_validated_changes
= 0;
3994 jump
= BB_END (test_bb
);
3996 /* Find the extent of the real code in the merge block. */
3997 head
= BB_HEAD (merge_bb
);
3998 end
= BB_END (merge_bb
);
4000 while (DEBUG_INSN_P (end
) && end
!= head
)
4001 end
= PREV_INSN (end
);
4003 /* If merge_bb ends with a tablejump, predicating/moving insn's
4004 into test_bb and then deleting merge_bb will result in the jumptable
4005 that follows merge_bb being removed along with merge_bb and then we
4006 get an unresolved reference to the jumptable. */
4007 if (tablejump_p (end
, NULL
, NULL
))
4011 head
= NEXT_INSN (head
);
4012 while (DEBUG_INSN_P (head
) && head
!= end
)
4013 head
= NEXT_INSN (head
);
4018 head
= end
= NULL_RTX
;
4021 head
= NEXT_INSN (head
);
4022 while (DEBUG_INSN_P (head
) && head
!= end
)
4023 head
= NEXT_INSN (head
);
4030 head
= end
= NULL_RTX
;
4033 end
= PREV_INSN (end
);
4034 while (DEBUG_INSN_P (end
) && end
!= head
)
4035 end
= PREV_INSN (end
);
4038 /* Disable handling dead code by conditional execution if the machine needs
4039 to do anything funny with the tests, etc. */
4040 #ifndef IFCVT_MODIFY_TESTS
4041 if (targetm
.have_conditional_execution ())
4043 /* In the conditional execution case, we have things easy. We know
4044 the condition is reversible. We don't have to check life info
4045 because we're going to conditionally execute the code anyway.
4046 All that's left is making sure the insns involved can actually
4051 cond
= cond_exec_get_condition (jump
);
4055 prob_val
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
4057 prob_val
= XEXP (prob_val
, 0);
4061 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
4064 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
4067 prob_val
= GEN_INT (REG_BR_PROB_BASE
- INTVAL (prob_val
));
4070 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
4071 && verify_changes (0))
4072 n_validated_changes
= num_validated_changes ();
4080 /* If we allocated new pseudos (e.g. in the conditional move
4081 expander called from noce_emit_cmove), we must resize the
4083 if (max_regno
< max_reg_num ())
4084 max_regno
= max_reg_num ();
4086 /* Try the NCE path if the CE path did not result in any changes. */
4087 if (n_validated_changes
== 0)
4093 /* In the non-conditional execution case, we have to verify that there
4094 are no trapping operations, no calls, no references to memory, and
4095 that any registers modified are dead at the branch site. */
4097 if (!any_condjump_p (jump
))
4100 /* Find the extent of the conditional. */
4101 cond
= noce_get_condition (jump
, &earliest
, false);
4105 live
= BITMAP_ALLOC (®_obstack
);
4106 simulate_backwards_to_point (merge_bb
, live
, end
);
4107 success
= can_move_insns_across (head
, end
, earliest
, jump
,
4109 df_get_live_in (other_bb
), NULL
);
4114 /* Collect the set of registers set in MERGE_BB. */
4115 merge_set
= BITMAP_ALLOC (®_obstack
);
4117 FOR_BB_INSNS (merge_bb
, insn
)
4118 if (NONDEBUG_INSN_P (insn
))
4119 df_simulate_find_defs (insn
, merge_set
);
4123 /* We don't want to use normal invert_jump or redirect_jump because
4124 we don't want to delete_insn called. Also, we want to do our own
4125 change group management. */
4127 old_dest
= JUMP_LABEL (jump
);
4128 if (other_bb
!= new_dest
)
4130 new_label
= block_label (new_dest
);
4132 ? ! invert_jump_1 (jump
, new_label
)
4133 : ! redirect_jump_1 (jump
, new_label
))
4137 if (verify_changes (n_validated_changes
))
4138 confirm_change_group ();
4142 if (other_bb
!= new_dest
)
4144 redirect_jump_2 (jump
, old_dest
, new_label
, 0, reversep
);
4146 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
4149 gcov_type count
, probability
;
4150 count
= BRANCH_EDGE (test_bb
)->count
;
4151 BRANCH_EDGE (test_bb
)->count
= FALLTHRU_EDGE (test_bb
)->count
;
4152 FALLTHRU_EDGE (test_bb
)->count
= count
;
4153 probability
= BRANCH_EDGE (test_bb
)->probability
;
4154 BRANCH_EDGE (test_bb
)->probability
4155 = FALLTHRU_EDGE (test_bb
)->probability
;
4156 FALLTHRU_EDGE (test_bb
)->probability
= probability
;
4157 update_br_prob_note (test_bb
);
4161 /* Move the insns out of MERGE_BB to before the branch. */
4166 if (end
== BB_END (merge_bb
))
4167 BB_END (merge_bb
) = PREV_INSN (head
);
4169 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4170 notes being moved might become invalid. */
4176 if (! INSN_P (insn
))
4178 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
4181 set
= single_set (insn
);
4182 if (!set
|| !function_invariant_p (SET_SRC (set
))
4183 || !function_invariant_p (XEXP (note
, 0)))
4184 remove_note (insn
, note
);
4185 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
4187 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4188 notes referring to the registers being set might become invalid. */
4194 EXECUTE_IF_SET_IN_BITMAP (merge_set
, 0, i
, bi
)
4195 remove_reg_equal_equiv_notes_for_regno (i
);
4197 BITMAP_FREE (merge_set
);
4200 reorder_insns (head
, end
, PREV_INSN (earliest
));
4203 /* Remove the jump and edge if we can. */
4204 if (other_bb
== new_dest
)
4207 remove_edge (BRANCH_EDGE (test_bb
));
4208 /* ??? Can't merge blocks here, as then_bb is still in use.
4209 At minimum, the merge will get done just before bb-reorder. */
4218 BITMAP_FREE (merge_set
);
4223 /* Main entry point for all if-conversion. */
4233 df_live_add_problem ();
4234 df_live_set_all_dirty ();
4237 num_possible_if_blocks
= 0;
4238 num_updated_if_blocks
= 0;
4239 num_true_changes
= 0;
4241 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
4242 mark_loop_exit_edges ();
4243 loop_optimizer_finalize ();
4244 free_dominance_info (CDI_DOMINATORS
);
4246 /* Compute postdominators. */
4247 calculate_dominance_info (CDI_POST_DOMINATORS
);
4249 df_set_flags (DF_LR_RUN_DCE
);
4251 /* Go through each of the basic blocks looking for things to convert. If we
4252 have conditional execution, we make multiple passes to allow us to handle
4253 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4258 /* Only need to do dce on the first pass. */
4259 df_clear_flags (DF_LR_RUN_DCE
);
4260 cond_exec_changed_p
= FALSE
;
4263 #ifdef IFCVT_MULTIPLE_DUMPS
4264 if (dump_file
&& pass
> 1)
4265 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
4271 while (!df_get_bb_dirty (bb
)
4272 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
4276 #ifdef IFCVT_MULTIPLE_DUMPS
4277 if (dump_file
&& cond_exec_changed_p
)
4279 if (dump_flags
& TDF_SLIM
)
4280 print_rtl_slim_with_bb (dump_file
, get_insns (), dump_flags
);
4282 print_rtl_with_bb (dump_file
, get_insns ());
4286 while (cond_exec_changed_p
);
4288 #ifdef IFCVT_MULTIPLE_DUMPS
4290 fprintf (dump_file
, "\n\n========== no more changes\n");
4293 free_dominance_info (CDI_POST_DOMINATORS
);
4298 clear_aux_for_blocks ();
4300 /* If we allocated new pseudos, we must resize the array for sched1. */
4301 if (max_regno
< max_reg_num ())
4302 max_regno
= max_reg_num ();
4304 /* Write the final stats. */
4305 if (dump_file
&& num_possible_if_blocks
> 0)
4308 "\n%d possible IF blocks searched.\n",
4309 num_possible_if_blocks
);
4311 "%d IF blocks converted.\n",
4312 num_updated_if_blocks
);
4314 "%d true changes made.\n\n\n",
4319 df_remove_problem (df_live
);
4321 #ifdef ENABLE_CHECKING
4322 verify_flow_info ();
4327 gate_handle_if_conversion (void)
4329 return (optimize
> 0)
4330 && dbg_cnt (if_conversion
);
4333 /* If-conversion and CFG cleanup. */
4335 rest_of_handle_if_conversion (void)
4337 if (flag_if_conversion
)
4340 dump_flow_info (dump_file
, dump_flags
);
4341 cleanup_cfg (CLEANUP_EXPENSIVE
);
4349 struct rtl_opt_pass pass_rtl_ifcvt
=
4354 gate_handle_if_conversion
, /* gate */
4355 rest_of_handle_if_conversion
, /* execute */
4358 0, /* static_pass_number */
4359 TV_IFCVT
, /* tv_id */
4360 0, /* properties_required */
4361 0, /* properties_provided */
4362 0, /* properties_destroyed */
4363 0, /* todo_flags_start */
4364 TODO_df_finish
| TODO_verify_rtl_sharing
|
4365 TODO_dump_func
/* todo_flags_finish */
4370 gate_handle_if_after_combine (void)
4372 return optimize
> 0 && flag_if_conversion
4373 && dbg_cnt (if_after_combine
);
4377 /* Rerun if-conversion, as combine may have simplified things enough
4378 to now meet sequence length restrictions. */
4380 rest_of_handle_if_after_combine (void)
4386 struct rtl_opt_pass pass_if_after_combine
=
4391 gate_handle_if_after_combine
, /* gate */
4392 rest_of_handle_if_after_combine
, /* execute */
4395 0, /* static_pass_number */
4396 TV_IFCVT
, /* tv_id */
4397 0, /* properties_required */
4398 0, /* properties_provided */
4399 0, /* properties_destroyed */
4400 0, /* todo_flags_start */
4401 TODO_df_finish
| TODO_verify_rtl_sharing
|
4403 TODO_ggc_collect
/* todo_flags_finish */
4409 gate_handle_if_after_reload (void)
4411 return optimize
> 0 && flag_if_conversion2
4412 && dbg_cnt (if_after_reload
);
4416 rest_of_handle_if_after_reload (void)
4423 struct rtl_opt_pass pass_if_after_reload
=
4428 gate_handle_if_after_reload
, /* gate */
4429 rest_of_handle_if_after_reload
, /* execute */
4432 0, /* static_pass_number */
4433 TV_IFCVT2
, /* tv_id */
4434 0, /* properties_required */
4435 0, /* properties_provided */
4436 0, /* properties_destroyed */
4437 0, /* todo_flags_start */
4438 TODO_df_finish
| TODO_verify_rtl_sharing
|
4440 TODO_ggc_collect
/* todo_flags_finish */