1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 94-95, 97, 98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
24 #include "insn-config.h"
27 #include "hard-reg-set.h"
29 #include "basic-block.h"
35 #define MAX_MOVE_MAX MOVE_MAX
38 #ifndef MIN_UNITS_PER_WORD
39 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
42 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
44 /* Modes for each hard register that we can save. The smallest mode is wide
45 enough to save the entire contents of the register. When saving the
46 register because it is live we first try to save in multi-register modes.
47 If that is not possible the save is done one register at a time. */
49 static enum machine_mode
50 regno_save_mode
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
52 /* For each hard register, a place on the stack where it can be saved,
56 regno_save_mem
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
58 /* We will only make a register eligible for caller-save if it can be
59 saved in its widest mode with a simple SET insn as long as the memory
60 address is valid. We record the INSN_CODE is those insns here since
61 when we emit them, the addresses might not be valid, so they might not
65 reg_save_code
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
67 reg_restore_code
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
69 /* Set of hard regs currently residing in save area (during insn scan). */
71 static HARD_REG_SET hard_regs_saved
;
73 /* Number of registers currently in hard_regs_saved. */
75 static int n_regs_saved
;
77 /* Computed by mark_referenced_regs, all regs referenced in a given
79 static HARD_REG_SET referenced_regs
;
81 /* Computed in mark_set_regs, holds all registers set by the current
83 static HARD_REG_SET this_insn_sets
;
86 static void mark_set_regs
PROTO((rtx
, rtx
));
87 static void mark_referenced_regs
PROTO((rtx
));
88 static int insert_save
PROTO((struct insn_chain
*, int, int,
90 static int insert_restore
PROTO((struct insn_chain
*, int, int,
92 static void insert_one_insn
PROTO((struct insn_chain
*, int,
93 enum insn_code
, rtx
));
95 /* Initialize for caller-save.
97 Look at all the hard registers that are used by a call and for which
98 regclass.c has not already excluded from being used across a call.
100 Ensure that we can find a mode to save the register and that there is a
101 simple insn to save and restore the register. This latter check avoids
102 problems that would occur if we tried to save the MQ register of some
103 machines directly into memory. */
108 char *first_obj
= (char *) oballoc (0);
114 /* First find all the registers that we need to deal with and all
115 the modes that they can have. If we can't find a mode to use,
116 we can't have the register live over calls. */
118 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
120 if (call_used_regs
[i
] && ! call_fixed_regs
[i
])
122 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
124 regno_save_mode
[i
][j
] = HARD_REGNO_CALLER_SAVE_MODE (i
, j
);
125 if (regno_save_mode
[i
][j
] == VOIDmode
&& j
== 1)
127 call_fixed_regs
[i
] = 1;
128 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
133 regno_save_mode
[i
][1] = VOIDmode
;
136 /* The following code tries to approximate the conditions under which
137 we can easily save and restore a register without scratch registers or
138 other complexities. It will usually work, except under conditions where
139 the validity of an insn operand is dependent on the address offset.
140 No such cases are currently known.
142 We first find a typical offset from some BASE_REG_CLASS register.
143 This address is chosen by finding the first register in the class
144 and by finding the smallest power of two that is a valid offset from
145 that register in every mode we will use to save registers. */
147 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
148 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) BASE_REG_CLASS
], i
))
151 if (i
== FIRST_PSEUDO_REGISTER
)
154 addr_reg
= gen_rtx_REG (Pmode
, i
);
156 for (offset
= 1 << (HOST_BITS_PER_INT
/ 2); offset
; offset
>>= 1)
158 address
= gen_rtx_PLUS (Pmode
, addr_reg
, GEN_INT (offset
));
160 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
161 if (regno_save_mode
[i
][1] != VOIDmode
162 && ! strict_memory_address_p (regno_save_mode
[i
][1], address
))
165 if (i
== FIRST_PSEUDO_REGISTER
)
169 /* If we didn't find a valid address, we must use register indirect. */
173 /* Next we try to form an insn to save and restore the register. We
174 see if such an insn is recognized and meets its constraints. */
178 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
179 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
180 if (regno_save_mode
[i
][j
] != VOIDmode
)
182 rtx mem
= gen_rtx_MEM (regno_save_mode
[i
][j
], address
);
183 rtx reg
= gen_rtx_REG (regno_save_mode
[i
][j
], i
);
184 rtx savepat
= gen_rtx_SET (VOIDmode
, mem
, reg
);
185 rtx restpat
= gen_rtx_SET (VOIDmode
, reg
, mem
);
186 rtx saveinsn
= emit_insn (savepat
);
187 rtx restinsn
= emit_insn (restpat
);
190 reg_save_code
[i
][j
] = recog_memoized (saveinsn
);
191 reg_restore_code
[i
][j
] = recog_memoized (restinsn
);
193 /* Now extract both insns and see if we can meet their
195 ok
= (reg_save_code
[i
][j
] != (enum insn_code
)-1
196 && reg_restore_code
[i
][j
] != (enum insn_code
)-1);
199 extract_insn (saveinsn
);
200 ok
= constrain_operands (1);
201 extract_insn (restinsn
);
202 ok
&= constrain_operands (1);
207 regno_save_mode
[i
][j
] = VOIDmode
;
210 call_fixed_regs
[i
] = 1;
211 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
221 /* Initialize save areas by showing that we haven't allocated any yet. */
228 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
229 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
230 regno_save_mem
[i
][j
] = 0;
233 /* Allocate save areas for any hard registers that might need saving.
234 We take a conservative approach here and look for call-clobbered hard
235 registers that are assigned to pseudos that cross calls. This may
236 overestimate slightly (especially if some of these registers are later
237 used as spill registers), but it should not be significant.
241 In the fallback case we should iterate backwards across all possible
242 modes for the save, choosing the largest available one instead of
243 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
245 We do not try to use "move multiple" instructions that exist
246 on some machines (such as the 68k moveml). It could be a win to try
247 and use them when possible. The hard part is doing it in a way that is
248 machine independent since they might be saving non-consecutive
249 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
255 HARD_REG_SET hard_regs_used
;
257 /* Allocate space in the save area for the largest multi-register
258 pseudos first, then work backwards to single register
261 /* Find and record all call-used hard-registers in this function. */
262 CLEAR_HARD_REG_SET (hard_regs_used
);
263 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
264 if (reg_renumber
[i
] >= 0 && REG_N_CALLS_CROSSED (i
) > 0)
266 int regno
= reg_renumber
[i
];
268 = regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (regno_reg_rtx
[i
]));
269 int nregs
= endregno
- regno
;
271 for (j
= 0; j
< nregs
; j
++)
273 if (call_used_regs
[regno
+j
])
274 SET_HARD_REG_BIT (hard_regs_used
, regno
+j
);
278 /* Now run through all the call-used hard-registers and allocate
279 space for them in the caller-save area. Try to allocate space
280 in a manner which allows multi-register saves/restores to be done. */
282 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
283 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
287 /* If no mode exists for this size, try another. Also break out
288 if we have already saved this hard register. */
289 if (regno_save_mode
[i
][j
] == VOIDmode
|| regno_save_mem
[i
][1] != 0)
292 /* See if any register in this group has been saved. */
293 for (k
= 0; k
< j
; k
++)
294 if (regno_save_mem
[i
+ k
][1])
302 for (k
= 0; k
< j
; k
++)
303 if (! TEST_HARD_REG_BIT (hard_regs_used
, i
+ k
))
311 /* We have found an acceptable mode to store in. */
313 = assign_stack_local (regno_save_mode
[i
][j
],
314 GET_MODE_SIZE (regno_save_mode
[i
][j
]), 0);
316 /* Setup single word save area just in case... */
317 for (k
= 0; k
< j
; k
++)
319 /* This should not depend on WORDS_BIG_ENDIAN.
320 The order of words in regs is the same as in memory. */
321 rtx temp
= gen_rtx_MEM (regno_save_mode
[i
+k
][1],
322 XEXP (regno_save_mem
[i
][j
], 0));
324 regno_save_mem
[i
+k
][1]
325 = adj_offsettable_operand (temp
, k
* UNITS_PER_WORD
);
330 /* Find the places where hard regs are live across calls and save them. */
332 save_call_clobbered_regs ()
334 struct insn_chain
*chain
, *next
;
336 CLEAR_HARD_REG_SET (hard_regs_saved
);
339 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
341 rtx insn
= chain
->insn
;
342 enum rtx_code code
= GET_CODE (insn
);
346 if (chain
->is_caller_save_insn
)
349 if (GET_RTX_CLASS (code
) == 'i')
351 /* If some registers have been saved, see if INSN references
352 any of them. We must restore them before the insn if so. */
358 if (code
== JUMP_INSN
)
359 /* Restore all registers if this is a JUMP_INSN. */
360 COPY_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
363 CLEAR_HARD_REG_SET (referenced_regs
);
364 mark_referenced_regs (PATTERN (insn
));
365 AND_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
368 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
369 if (TEST_HARD_REG_BIT (referenced_regs
, regno
))
370 regno
+= insert_restore (chain
, 1, regno
, MOVE_MAX_WORDS
);
373 if (code
== CALL_INSN
)
377 HARD_REG_SET hard_regs_to_save
;
379 /* Use the register life information in CHAIN to compute which
380 regs are live before the call. */
381 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
, chain
->live_before
);
382 compute_use_by_pseudos (&hard_regs_to_save
, chain
->live_before
);
384 /* Record all registers set in this call insn. These don't need
386 CLEAR_HARD_REG_SET (this_insn_sets
);
387 note_stores (PATTERN (insn
), mark_set_regs
);
389 /* Compute which hard regs must be saved before this call. */
390 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, call_fixed_reg_set
);
391 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, this_insn_sets
);
392 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, hard_regs_saved
);
393 AND_HARD_REG_SET (hard_regs_to_save
, call_used_reg_set
);
395 /* Registers used for function parameters need not be saved. */
396 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
!= 0;
401 if (GET_CODE (XEXP (x
, 0)) != USE
)
403 y
= XEXP (XEXP (x
, 0), 0);
404 if (GET_CODE (y
) != REG
)
407 if (REGNO (y
) >= FIRST_PSEUDO_REGISTER
)
409 nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (y
));
411 CLEAR_HARD_REG_BIT (hard_regs_to_save
, regno
+ nregs
);
414 /* Neither do registers for which we find a death note. */
415 for (x
= REG_NOTES (insn
); x
!= 0; x
= XEXP (x
, 1))
419 if (REG_NOTE_KIND (x
) != REG_DEAD
)
421 if (GET_CODE (y
) != REG
)
425 if (regno
>= FIRST_PSEUDO_REGISTER
)
426 regno
= reg_renumber
[regno
];
429 nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (y
));
431 CLEAR_HARD_REG_BIT (hard_regs_to_save
, regno
+ nregs
);
434 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
435 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
436 regno
+= insert_save (chain
, 1, regno
, &hard_regs_to_save
);
438 /* Must recompute n_regs_saved. */
440 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
441 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
446 if (chain
->next
== 0 || chain
->next
->block
> chain
->block
)
449 /* At the end of the basic block, we must restore any registers that
450 remain saved. If the last insn in the block is a JUMP_INSN, put
451 the restore before the insn, otherwise, put it after the insn. */
454 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
455 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
456 regno
+= insert_restore (chain
, GET_CODE (insn
) == JUMP_INSN
,
457 regno
, MOVE_MAX_WORDS
);
462 /* Here from note_stores when an insn stores a value in a register.
463 Set the proper bit or bits in this_insn_sets. All pseudos that have
464 been assigned hard regs have had their register number changed already,
465 so we can ignore pseudos. */
467 mark_set_regs (reg
, setter
)
469 rtx setter ATTRIBUTE_UNUSED
;
471 register int regno
, endregno
, i
;
472 enum machine_mode mode
= GET_MODE (reg
);
475 if (GET_CODE (reg
) == SUBREG
)
477 word
= SUBREG_WORD (reg
);
478 reg
= SUBREG_REG (reg
);
481 if (GET_CODE (reg
) != REG
|| REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
484 regno
= REGNO (reg
) + word
;
485 endregno
= regno
+ HARD_REGNO_NREGS (regno
, mode
);
487 for (i
= regno
; i
< endregno
; i
++)
488 SET_HARD_REG_BIT (this_insn_sets
, i
);
491 /* Walk X and record all referenced registers in REFERENCED_REGS. */
493 mark_referenced_regs (x
)
496 enum rtx_code code
= GET_CODE (x
);
501 mark_referenced_regs (SET_SRC (x
));
502 if (code
== SET
|| code
== CLOBBER
)
506 if (code
== REG
|| code
== PC
|| code
== CC0
507 || (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
510 if (code
== MEM
|| code
== SUBREG
)
518 int regno
= REGNO (x
);
519 int hardregno
= (regno
< FIRST_PSEUDO_REGISTER
? regno
520 : reg_renumber
[regno
]);
524 int nregs
= HARD_REGNO_NREGS (hardregno
, GET_MODE (x
));
526 SET_HARD_REG_BIT (referenced_regs
, hardregno
+ nregs
);
528 /* If this is a pseudo that did not get a hard register, scan its
529 memory location, since it might involve the use of another
530 register, which might be saved. */
531 else if (reg_equiv_mem
[regno
] != 0)
532 mark_referenced_regs (XEXP (reg_equiv_mem
[regno
], 0));
533 else if (reg_equiv_address
[regno
] != 0)
534 mark_referenced_regs (reg_equiv_address
[regno
]);
538 fmt
= GET_RTX_FORMAT (code
);
539 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
542 mark_referenced_regs (XEXP (x
, i
));
543 else if (fmt
[i
] == 'E')
544 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
545 mark_referenced_regs (XVECEXP (x
, i
, j
));
549 /* Insert a sequence of insns to restore. Place these insns in front of
550 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
551 the maximum number of registers which should be restored during this call.
552 It should never be less than 1 since we only work with entire registers.
554 Note that we have verified in init_caller_save that we can do this
555 with a simple SET, so use it. Set INSN_CODE to what we save there
556 since the address might not be valid so the insn might not be recognized.
557 These insns will be reloaded and have register elimination done by
558 find_reload, so we need not worry about that here.
560 Return the extra number of registers saved. */
563 insert_restore (chain
, before_p
, regno
, maxrestore
)
564 struct insn_chain
*chain
;
571 enum insn_code code
= CODE_FOR_nothing
;
574 /* A common failure mode if register status is not correct in the RTL
575 is for this routine to be called with a REGNO we didn't expect to
576 save. That will cause us to write an insn with a (nil) SET_DEST
577 or SET_SRC. Instead of doing so and causing a crash later, check
578 for this common case and abort here instead. This will remove one
579 step in debugging such problems. */
581 if (regno_save_mem
[regno
][1] == 0)
584 /* Get the pattern to emit and update our status.
586 See if we can restore `maxrestore' registers at once. Work
587 backwards to the single register case. */
588 for (i
= maxrestore
; i
> 0; i
--)
593 if (regno_save_mem
[regno
][i
] == 0)
596 for (j
= 0; j
< i
; j
++)
597 if (! TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ j
))
602 /* Must do this one restore at a time */
606 pat
= gen_rtx_SET (VOIDmode
,
607 gen_rtx_REG (GET_MODE (regno_save_mem
[regno
][i
]),
609 regno_save_mem
[regno
][i
]);
610 code
= reg_restore_code
[regno
][i
];
612 /* Clear status for all registers we restored. */
613 for (k
= 0; k
< i
; k
++)
615 CLEAR_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
623 insert_one_insn (chain
, before_p
, code
, pat
);
625 /* Tell our callers how many extra registers we saved/restored */
629 /* Like insert_restore above, but save registers instead. */
631 insert_save (chain
, before_p
, regno
, to_save
)
632 struct insn_chain
*chain
;
635 HARD_REG_SET
*to_save
;
639 enum insn_code code
= CODE_FOR_nothing
;
642 /* A common failure mode if register status is not correct in the RTL
643 is for this routine to be called with a REGNO we didn't expect to
644 save. That will cause us to write an insn with a (nil) SET_DEST
645 or SET_SRC. Instead of doing so and causing a crash later, check
646 for this common case and abort here instead. This will remove one
647 step in debugging such problems. */
649 if (regno_save_mem
[regno
][1] == 0)
652 /* Get the pattern to emit and update our status.
654 See if we can save several registers with a single instruction.
655 Work backwards to the single register case. */
656 for (i
= MOVE_MAX_WORDS
; i
> 0; i
--)
660 if (regno_save_mem
[regno
][i
] == 0)
663 for (j
= 0; j
< i
; j
++)
664 if (! TEST_HARD_REG_BIT (*to_save
, regno
+ j
))
669 /* Must do this one save at a time */
673 pat
= gen_rtx_SET (VOIDmode
, regno_save_mem
[regno
][i
],
674 gen_rtx_REG (GET_MODE (regno_save_mem
[regno
][i
]),
676 code
= reg_save_code
[regno
][i
];
678 /* Set hard_regs_saved for all the registers we saved. */
679 for (k
= 0; k
< i
; k
++)
681 SET_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
689 insert_one_insn (chain
, before_p
, code
, pat
);
691 /* Tell our callers how many extra registers we saved/restored */
695 /* Emit a new caller-save insn and set the code. */
697 insert_one_insn (chain
, before_p
, code
, pat
)
698 struct insn_chain
*chain
;
703 rtx insn
= chain
->insn
;
704 struct insn_chain
*new;
707 /* If INSN references CC0, put our insns in front of the insn that sets
708 CC0. This is always safe, since the only way we could be passed an
709 insn that references CC0 is for a restore, and doing a restore earlier
710 isn't a problem. We do, however, assume here that CALL_INSNs don't
711 reference CC0. Guard against non-INSN's like CODE_LABEL. */
713 if ((GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
)
715 && reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
716 chain
= chain
->prev
, insn
= chain
->insn
;
719 new = new_insn_chain ();
722 new->prev
= chain
->prev
;
724 new->prev
->next
= new;
726 reload_insn_chain
= new;
730 new->insn
= emit_insn_before (pat
, insn
);
731 /* ??? It would be nice if we could exclude the already / still saved
732 registers from the live sets. */
733 COPY_REG_SET (new->live_before
, chain
->live_before
);
734 COPY_REG_SET (new->live_after
, chain
->live_before
);
735 if (chain
->insn
== BLOCK_HEAD (chain
->block
))
736 BLOCK_HEAD (chain
->block
) = new->insn
;
740 new->next
= chain
->next
;
742 new->next
->prev
= new;
745 new->insn
= emit_insn_after (pat
, insn
);
746 /* ??? It would be nice if we could exclude the already / still saved
747 registers from the live sets, and observe REG_UNUSED notes. */
748 COPY_REG_SET (new->live_before
, chain
->live_after
);
749 COPY_REG_SET (new->live_after
, chain
->live_after
);
750 if (chain
->insn
== BLOCK_END (chain
->block
))
751 BLOCK_END (chain
->block
) = new->insn
;
753 new->block
= chain
->block
;
754 new->is_caller_save_insn
= 1;
756 INSN_CODE (new->insn
) = code
;