* value-prof.c: New.
[official-gcc.git] / gcc / reg-stack.c
blob5b3a359d606f139b6f259a533bb94b323814a385
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx nan;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p PARAMS ((rtx pat));
240 static void straighten_stack PARAMS ((rtx, stack));
241 static void pop_stack PARAMS ((stack, int));
242 static rtx *get_true_reg PARAMS ((rtx *));
244 static int check_asm_stack_operands PARAMS ((rtx));
245 static int get_asm_operand_n_inputs PARAMS ((rtx));
246 static rtx stack_result PARAMS ((tree));
247 static void replace_reg PARAMS ((rtx *, int));
248 static void remove_regno_note PARAMS ((rtx, enum reg_note,
249 unsigned int));
250 static int get_hard_regnum PARAMS ((stack, rtx));
251 static rtx emit_pop_insn PARAMS ((rtx, stack, rtx,
252 enum emit_where));
253 static void emit_swap_insn PARAMS ((rtx, stack, rtx));
254 static void move_for_stack_reg PARAMS ((rtx, stack, rtx));
255 static int swap_rtx_condition_1 PARAMS ((rtx));
256 static int swap_rtx_condition PARAMS ((rtx));
257 static void compare_for_stack_reg PARAMS ((rtx, stack, rtx));
258 static void subst_stack_regs_pat PARAMS ((rtx, stack, rtx));
259 static void subst_asm_stack_regs PARAMS ((rtx, stack));
260 static void subst_stack_regs PARAMS ((rtx, stack));
261 static void change_stack PARAMS ((rtx, stack, stack,
262 enum emit_where));
263 static int convert_regs_entry PARAMS ((void));
264 static void convert_regs_exit PARAMS ((void));
265 static int convert_regs_1 PARAMS ((FILE *, basic_block));
266 static int convert_regs_2 PARAMS ((FILE *, basic_block));
267 static int convert_regs PARAMS ((FILE *));
268 static void print_stack PARAMS ((FILE *, stack));
269 static rtx next_flags_user PARAMS ((rtx));
270 static void record_label_references PARAMS ((rtx, rtx));
271 static bool compensate_edge PARAMS ((edge, FILE *));
273 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275 static int
276 stack_regs_mentioned_p (pat)
277 rtx pat;
279 const char *fmt;
280 int i;
282 if (STACK_REG_P (pat))
283 return 1;
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
288 if (fmt[i] == 'E')
290 int j;
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
300 return 0;
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
306 stack_regs_mentioned (insn)
307 rtx insn;
309 unsigned int uid, max;
310 int test;
312 if (! INSN_P (insn) || !stack_regs_mentioned_data)
313 return 0;
315 uid = INSN_UID (insn);
316 max = VARRAY_SIZE (stack_regs_mentioned_data);
317 if (uid >= max)
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max = uid + uid / 20;
322 VARRAY_GROW (stack_regs_mentioned_data, max);
325 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
326 if (test == 0)
328 /* This insn has yet to be examined. Do so now. */
329 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
330 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
333 return test == 1;
336 static rtx ix86_flags_rtx;
338 static rtx
339 next_flags_user (insn)
340 rtx insn;
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != current_block->end)
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (GET_CODE (insn) == CALL_INSN)
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers,
359 after this insn. */
361 static void
362 straighten_stack (insn, regstack)
363 rtx insn;
364 stack regstack;
366 struct stack_def temp_stack;
367 int top;
369 /* If there is only a single register on the stack, then the stack is
370 already in increasing order and no reorganization is needed.
372 Similarly if the stack is empty. */
373 if (regstack->top <= 0)
374 return;
376 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
378 for (top = temp_stack.top = regstack->top; top >= 0; top--)
379 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
381 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
384 /* Pop a register from the stack. */
386 static void
387 pop_stack (regstack, regno)
388 stack regstack;
389 int regno;
391 int top = regstack->top;
393 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
394 regstack->top--;
395 /* If regno was not at the top of stack then adjust stack. */
396 if (regstack->reg [top] != regno)
398 int i;
399 for (i = regstack->top; i >= 0; i--)
400 if (regstack->reg [i] == regno)
402 int j;
403 for (j = i; j < top; j++)
404 regstack->reg [j] = regstack->reg [j + 1];
405 break;
410 /* Convert register usage from "flat" register file usage to a "stack
411 register file. FIRST is the first insn in the function, FILE is the
412 dump file, if used.
414 Construct a CFG and run life analysis. Then convert each insn one
415 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
416 code duplication created when the converter inserts pop insns on
417 the edges. */
419 bool
420 reg_to_stack (first, file)
421 rtx first;
422 FILE *file;
424 basic_block bb;
425 int i;
426 int max_uid;
428 /* Clean up previous run. */
429 stack_regs_mentioned_data = 0;
431 /* See if there is something to do. Flow analysis is quite
432 expensive so we might save some compilation time. */
433 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
434 if (regs_ever_live[i])
435 break;
436 if (i > LAST_STACK_REG)
437 return false;
439 /* Ok, floating point instructions exist. If not optimizing,
440 build the CFG and run life analysis.
441 Also need to rebuild life when superblock scheduling is done
442 as it don't update liveness yet. */
443 if (!optimize
444 || (flag_sched2_use_superblocks
445 && flag_schedule_insns_after_reload))
447 count_or_remove_death_notes (NULL, 1);
448 life_analysis (first, file, PROP_DEATH_NOTES);
450 mark_dfs_back_edges ();
452 /* Set up block info for each basic block. */
453 alloc_aux_for_blocks (sizeof (struct block_info_def));
454 FOR_EACH_BB_REVERSE (bb)
456 edge e;
457 for (e = bb->pred; e; e = e->pred_next)
458 if (!(e->flags & EDGE_DFS_BACK)
459 && e->src != ENTRY_BLOCK_PTR)
460 BLOCK_INFO (bb)->predecessors++;
463 /* Create the replacement registers up front. */
464 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
466 enum machine_mode mode;
467 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
468 mode != VOIDmode;
469 mode = GET_MODE_WIDER_MODE (mode))
470 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
471 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
472 mode != VOIDmode;
473 mode = GET_MODE_WIDER_MODE (mode))
474 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
477 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
479 /* A QNaN for initializing uninitialized variables.
481 ??? We can't load from constant memory in PIC mode, because
482 we're inserting these instructions before the prologue and
483 the PIC register hasn't been set up. In that case, fall back
484 on zero, which we can get from `ldz'. */
486 if (flag_pic)
487 nan = CONST0_RTX (SFmode);
488 else
490 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
491 nan = force_const_mem (SFmode, nan);
494 /* Allocate a cache for stack_regs_mentioned. */
495 max_uid = get_max_uid ();
496 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
497 "stack_regs_mentioned cache");
499 convert_regs (file);
501 free_aux_for_blocks ();
502 return true;
505 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
506 label's chain of references, and note which insn contains each
507 reference. */
509 static void
510 record_label_references (insn, pat)
511 rtx insn, pat;
513 enum rtx_code code = GET_CODE (pat);
514 int i;
515 const char *fmt;
517 if (code == LABEL_REF)
519 rtx label = XEXP (pat, 0);
520 rtx ref;
522 if (GET_CODE (label) != CODE_LABEL)
523 abort ();
525 /* If this is an undefined label, LABEL_REFS (label) contains
526 garbage. */
527 if (INSN_UID (label) == 0)
528 return;
530 /* Don't make a duplicate in the code_label's chain. */
532 for (ref = LABEL_REFS (label);
533 ref && ref != label;
534 ref = LABEL_NEXTREF (ref))
535 if (CONTAINING_INSN (ref) == insn)
536 return;
538 CONTAINING_INSN (pat) = insn;
539 LABEL_NEXTREF (pat) = LABEL_REFS (label);
540 LABEL_REFS (label) = pat;
542 return;
545 fmt = GET_RTX_FORMAT (code);
546 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
548 if (fmt[i] == 'e')
549 record_label_references (insn, XEXP (pat, i));
550 if (fmt[i] == 'E')
552 int j;
553 for (j = 0; j < XVECLEN (pat, i); j++)
554 record_label_references (insn, XVECEXP (pat, i, j));
559 /* Return a pointer to the REG expression within PAT. If PAT is not a
560 REG, possible enclosed by a conversion rtx, return the inner part of
561 PAT that stopped the search. */
563 static rtx *
564 get_true_reg (pat)
565 rtx *pat;
567 for (;;)
568 switch (GET_CODE (*pat))
570 case SUBREG:
571 /* Eliminate FP subregister accesses in favor of the
572 actual FP register in use. */
574 rtx subreg;
575 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
577 int regno_off = subreg_regno_offset (REGNO (subreg),
578 GET_MODE (subreg),
579 SUBREG_BYTE (*pat),
580 GET_MODE (*pat));
581 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
582 GET_MODE (subreg));
583 default:
584 return pat;
587 case FLOAT:
588 case FIX:
589 case FLOAT_EXTEND:
590 pat = & XEXP (*pat, 0);
594 /* Set if we find any malformed asms in a block. */
595 static bool any_malformed_asm;
597 /* There are many rules that an asm statement for stack-like regs must
598 follow. Those rules are explained at the top of this file: the rule
599 numbers below refer to that explanation. */
601 static int
602 check_asm_stack_operands (insn)
603 rtx insn;
605 int i;
606 int n_clobbers;
607 int malformed_asm = 0;
608 rtx body = PATTERN (insn);
610 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
611 char implicitly_dies[FIRST_PSEUDO_REGISTER];
612 int alt;
614 rtx *clobber_reg = 0;
615 int n_inputs, n_outputs;
617 /* Find out what the constraints require. If no constraint
618 alternative matches, this asm is malformed. */
619 extract_insn (insn);
620 constrain_operands (1);
621 alt = which_alternative;
623 preprocess_constraints ();
625 n_inputs = get_asm_operand_n_inputs (body);
626 n_outputs = recog_data.n_operands - n_inputs;
628 if (alt < 0)
630 malformed_asm = 1;
631 /* Avoid further trouble with this insn. */
632 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
633 return 0;
636 /* Strip SUBREGs here to make the following code simpler. */
637 for (i = 0; i < recog_data.n_operands; i++)
638 if (GET_CODE (recog_data.operand[i]) == SUBREG
639 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
640 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
642 /* Set up CLOBBER_REG. */
644 n_clobbers = 0;
646 if (GET_CODE (body) == PARALLEL)
648 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
650 for (i = 0; i < XVECLEN (body, 0); i++)
651 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
653 rtx clobber = XVECEXP (body, 0, i);
654 rtx reg = XEXP (clobber, 0);
656 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
657 reg = SUBREG_REG (reg);
659 if (STACK_REG_P (reg))
661 clobber_reg[n_clobbers] = reg;
662 n_clobbers++;
667 /* Enforce rule #4: Output operands must specifically indicate which
668 reg an output appears in after an asm. "=f" is not allowed: the
669 operand constraints must select a class with a single reg.
671 Also enforce rule #5: Output operands must start at the top of
672 the reg-stack: output operands may not "skip" a reg. */
674 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
675 for (i = 0; i < n_outputs; i++)
676 if (STACK_REG_P (recog_data.operand[i]))
678 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
680 error_for_asm (insn, "output constraint %d must specify a single register", i);
681 malformed_asm = 1;
683 else
685 int j;
687 for (j = 0; j < n_clobbers; j++)
688 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
690 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
691 i, reg_names [REGNO (clobber_reg[j])]);
692 malformed_asm = 1;
693 break;
695 if (j == n_clobbers)
696 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
701 /* Search for first non-popped reg. */
702 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
703 if (! reg_used_as_output[i])
704 break;
706 /* If there are any other popped regs, that's an error. */
707 for (; i < LAST_STACK_REG + 1; i++)
708 if (reg_used_as_output[i])
709 break;
711 if (i != LAST_STACK_REG + 1)
713 error_for_asm (insn, "output regs must be grouped at top of stack");
714 malformed_asm = 1;
717 /* Enforce rule #2: All implicitly popped input regs must be closer
718 to the top of the reg-stack than any input that is not implicitly
719 popped. */
721 memset (implicitly_dies, 0, sizeof (implicitly_dies));
722 for (i = n_outputs; i < n_outputs + n_inputs; i++)
723 if (STACK_REG_P (recog_data.operand[i]))
725 /* An input reg is implicitly popped if it is tied to an
726 output, or if there is a CLOBBER for it. */
727 int j;
729 for (j = 0; j < n_clobbers; j++)
730 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
731 break;
733 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
734 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
737 /* Search for first non-popped reg. */
738 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
739 if (! implicitly_dies[i])
740 break;
742 /* If there are any other popped regs, that's an error. */
743 for (; i < LAST_STACK_REG + 1; i++)
744 if (implicitly_dies[i])
745 break;
747 if (i != LAST_STACK_REG + 1)
749 error_for_asm (insn,
750 "implicitly popped regs must be grouped at top of stack");
751 malformed_asm = 1;
754 /* Enforce rule #3: If any input operand uses the "f" constraint, all
755 output constraints must use the "&" earlyclobber.
757 ??? Detect this more deterministically by having constrain_asm_operands
758 record any earlyclobber. */
760 for (i = n_outputs; i < n_outputs + n_inputs; i++)
761 if (recog_op_alt[i][alt].matches == -1)
763 int j;
765 for (j = 0; j < n_outputs; j++)
766 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
768 error_for_asm (insn,
769 "output operand %d must use `&' constraint", j);
770 malformed_asm = 1;
774 if (malformed_asm)
776 /* Avoid further trouble with this insn. */
777 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
778 any_malformed_asm = true;
779 return 0;
782 return 1;
785 /* Calculate the number of inputs and outputs in BODY, an
786 asm_operands. N_OPERANDS is the total number of operands, and
787 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
788 placed. */
790 static int
791 get_asm_operand_n_inputs (body)
792 rtx body;
794 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
795 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
797 else if (GET_CODE (body) == ASM_OPERANDS)
798 return ASM_OPERANDS_INPUT_LENGTH (body);
800 else if (GET_CODE (body) == PARALLEL
801 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
802 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
804 else if (GET_CODE (body) == PARALLEL
805 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
806 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
808 abort ();
811 /* If current function returns its result in an fp stack register,
812 return the REG. Otherwise, return 0. */
814 static rtx
815 stack_result (decl)
816 tree decl;
818 rtx result;
820 /* If the value is supposed to be returned in memory, then clearly
821 it is not returned in a stack register. */
822 if (aggregate_value_p (DECL_RESULT (decl)))
823 return 0;
825 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
826 if (result != 0)
828 #ifdef FUNCTION_OUTGOING_VALUE
829 result
830 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
831 #else
832 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
833 #endif
836 return result != 0 && STACK_REG_P (result) ? result : 0;
841 * This section deals with stack register substitution, and forms the second
842 * pass over the RTL.
845 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
846 the desired hard REGNO. */
848 static void
849 replace_reg (reg, regno)
850 rtx *reg;
851 int regno;
853 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
854 || ! STACK_REG_P (*reg))
855 abort ();
857 switch (GET_MODE_CLASS (GET_MODE (*reg)))
859 default: abort ();
860 case MODE_FLOAT:
861 case MODE_COMPLEX_FLOAT:;
864 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
867 /* Remove a note of type NOTE, which must be found, for register
868 number REGNO from INSN. Remove only one such note. */
870 static void
871 remove_regno_note (insn, note, regno)
872 rtx insn;
873 enum reg_note note;
874 unsigned int regno;
876 rtx *note_link, this;
878 note_link = &REG_NOTES (insn);
879 for (this = *note_link; this; this = XEXP (this, 1))
880 if (REG_NOTE_KIND (this) == note
881 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
883 *note_link = XEXP (this, 1);
884 return;
886 else
887 note_link = &XEXP (this, 1);
889 abort ();
892 /* Find the hard register number of virtual register REG in REGSTACK.
893 The hard register number is relative to the top of the stack. -1 is
894 returned if the register is not found. */
896 static int
897 get_hard_regnum (regstack, reg)
898 stack regstack;
899 rtx reg;
901 int i;
903 if (! STACK_REG_P (reg))
904 abort ();
906 for (i = regstack->top; i >= 0; i--)
907 if (regstack->reg[i] == REGNO (reg))
908 break;
910 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
913 /* Emit an insn to pop virtual register REG before or after INSN.
914 REGSTACK is the stack state after INSN and is updated to reflect this
915 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
916 is represented as a SET whose destination is the register to be popped
917 and source is the top of stack. A death note for the top of stack
918 cases the movdf pattern to pop. */
920 static rtx
921 emit_pop_insn (insn, regstack, reg, where)
922 rtx insn;
923 stack regstack;
924 rtx reg;
925 enum emit_where where;
927 rtx pop_insn, pop_rtx;
928 int hard_regno;
930 /* For complex types take care to pop both halves. These may survive in
931 CLOBBER and USE expressions. */
932 if (COMPLEX_MODE_P (GET_MODE (reg)))
934 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
935 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
937 pop_insn = NULL_RTX;
938 if (get_hard_regnum (regstack, reg1) >= 0)
939 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
940 if (get_hard_regnum (regstack, reg2) >= 0)
941 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
942 if (!pop_insn)
943 abort ();
944 return pop_insn;
947 hard_regno = get_hard_regnum (regstack, reg);
949 if (hard_regno < FIRST_STACK_REG)
950 abort ();
952 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
953 FP_MODE_REG (FIRST_STACK_REG, DFmode));
955 if (where == EMIT_AFTER)
956 pop_insn = emit_insn_after (pop_rtx, insn);
957 else
958 pop_insn = emit_insn_before (pop_rtx, insn);
960 REG_NOTES (pop_insn)
961 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
962 REG_NOTES (pop_insn));
964 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
965 = regstack->reg[regstack->top];
966 regstack->top -= 1;
967 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
969 return pop_insn;
972 /* Emit an insn before or after INSN to swap virtual register REG with
973 the top of stack. REGSTACK is the stack state before the swap, and
974 is updated to reflect the swap. A swap insn is represented as a
975 PARALLEL of two patterns: each pattern moves one reg to the other.
977 If REG is already at the top of the stack, no insn is emitted. */
979 static void
980 emit_swap_insn (insn, regstack, reg)
981 rtx insn;
982 stack regstack;
983 rtx reg;
985 int hard_regno;
986 rtx swap_rtx;
987 int tmp, other_reg; /* swap regno temps */
988 rtx i1; /* the stack-reg insn prior to INSN */
989 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
991 hard_regno = get_hard_regnum (regstack, reg);
993 if (hard_regno < FIRST_STACK_REG)
994 abort ();
995 if (hard_regno == FIRST_STACK_REG)
996 return;
998 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
1000 tmp = regstack->reg[other_reg];
1001 regstack->reg[other_reg] = regstack->reg[regstack->top];
1002 regstack->reg[regstack->top] = tmp;
1004 /* Find the previous insn involving stack regs, but don't pass a
1005 block boundary. */
1006 i1 = NULL;
1007 if (current_block && insn != current_block->head)
1009 rtx tmp = PREV_INSN (insn);
1010 rtx limit = PREV_INSN (current_block->head);
1011 while (tmp != limit)
1013 if (GET_CODE (tmp) == CODE_LABEL
1014 || GET_CODE (tmp) == CALL_INSN
1015 || NOTE_INSN_BASIC_BLOCK_P (tmp)
1016 || (GET_CODE (tmp) == INSN
1017 && stack_regs_mentioned (tmp)))
1019 i1 = tmp;
1020 break;
1022 tmp = PREV_INSN (tmp);
1026 if (i1 != NULL_RTX
1027 && (i1set = single_set (i1)) != NULL_RTX)
1029 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1030 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1032 /* If the previous register stack push was from the reg we are to
1033 swap with, omit the swap. */
1035 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1036 && GET_CODE (i1src) == REG
1037 && REGNO (i1src) == (unsigned) hard_regno - 1
1038 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1039 return;
1041 /* If the previous insn wrote to the reg we are to swap with,
1042 omit the swap. */
1044 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1045 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1046 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1047 return;
1050 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1051 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1053 if (i1)
1054 emit_insn_after (swap_rtx, i1);
1055 else if (current_block)
1056 emit_insn_before (swap_rtx, current_block->head);
1057 else
1058 emit_insn_before (swap_rtx, insn);
1061 /* Handle a move to or from a stack register in PAT, which is in INSN.
1062 REGSTACK is the current stack. */
1064 static void
1065 move_for_stack_reg (insn, regstack, pat)
1066 rtx insn;
1067 stack regstack;
1068 rtx pat;
1070 rtx *psrc = get_true_reg (&SET_SRC (pat));
1071 rtx *pdest = get_true_reg (&SET_DEST (pat));
1072 rtx src, dest;
1073 rtx note;
1075 src = *psrc; dest = *pdest;
1077 if (STACK_REG_P (src) && STACK_REG_P (dest))
1079 /* Write from one stack reg to another. If SRC dies here, then
1080 just change the register mapping and delete the insn. */
1082 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1083 if (note)
1085 int i;
1087 /* If this is a no-op move, there must not be a REG_DEAD note. */
1088 if (REGNO (src) == REGNO (dest))
1089 abort ();
1091 for (i = regstack->top; i >= 0; i--)
1092 if (regstack->reg[i] == REGNO (src))
1093 break;
1095 /* The source must be live, and the dest must be dead. */
1096 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1097 abort ();
1099 /* It is possible that the dest is unused after this insn.
1100 If so, just pop the src. */
1102 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1104 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1106 delete_insn (insn);
1107 return;
1110 regstack->reg[i] = REGNO (dest);
1112 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1113 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1115 delete_insn (insn);
1117 return;
1120 /* The source reg does not die. */
1122 /* If this appears to be a no-op move, delete it, or else it
1123 will confuse the machine description output patterns. But if
1124 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1125 for REG_UNUSED will not work for deleted insns. */
1127 if (REGNO (src) == REGNO (dest))
1129 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1130 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1132 delete_insn (insn);
1133 return;
1136 /* The destination ought to be dead. */
1137 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1138 abort ();
1140 replace_reg (psrc, get_hard_regnum (regstack, src));
1142 regstack->reg[++regstack->top] = REGNO (dest);
1143 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1144 replace_reg (pdest, FIRST_STACK_REG);
1146 else if (STACK_REG_P (src))
1148 /* Save from a stack reg to MEM, or possibly integer reg. Since
1149 only top of stack may be saved, emit an exchange first if
1150 needs be. */
1152 emit_swap_insn (insn, regstack, src);
1154 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1155 if (note)
1157 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1158 regstack->top--;
1159 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1161 else if ((GET_MODE (src) == XFmode || GET_MODE (src) == TFmode)
1162 && regstack->top < REG_STACK_SIZE - 1)
1164 /* A 387 cannot write an XFmode value to a MEM without
1165 clobbering the source reg. The output code can handle
1166 this by reading back the value from the MEM.
1167 But it is more efficient to use a temp register if one is
1168 available. Push the source value here if the register
1169 stack is not full, and then write the value to memory via
1170 a pop. */
1171 rtx push_rtx, push_insn;
1172 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1174 if (GET_MODE (src) == TFmode)
1175 push_rtx = gen_movtf (top_stack_reg, top_stack_reg);
1176 else
1177 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1178 push_insn = emit_insn_before (push_rtx, insn);
1179 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1180 REG_NOTES (insn));
1183 replace_reg (psrc, FIRST_STACK_REG);
1185 else if (STACK_REG_P (dest))
1187 /* Load from MEM, or possibly integer REG or constant, into the
1188 stack regs. The actual target is always the top of the
1189 stack. The stack mapping is changed to reflect that DEST is
1190 now at top of stack. */
1192 /* The destination ought to be dead. */
1193 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1194 abort ();
1196 if (regstack->top >= REG_STACK_SIZE)
1197 abort ();
1199 regstack->reg[++regstack->top] = REGNO (dest);
1200 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1201 replace_reg (pdest, FIRST_STACK_REG);
1203 else
1204 abort ();
1207 /* Swap the condition on a branch, if there is one. Return true if we
1208 found a condition to swap. False if the condition was not used as
1209 such. */
1211 static int
1212 swap_rtx_condition_1 (pat)
1213 rtx pat;
1215 const char *fmt;
1216 int i, r = 0;
1218 if (GET_RTX_CLASS (GET_CODE (pat)) == '<')
1220 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1221 r = 1;
1223 else
1225 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1226 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1228 if (fmt[i] == 'E')
1230 int j;
1232 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1233 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1235 else if (fmt[i] == 'e')
1236 r |= swap_rtx_condition_1 (XEXP (pat, i));
1240 return r;
1243 static int
1244 swap_rtx_condition (insn)
1245 rtx insn;
1247 rtx pat = PATTERN (insn);
1249 /* We're looking for a single set to cc0 or an HImode temporary. */
1251 if (GET_CODE (pat) == SET
1252 && GET_CODE (SET_DEST (pat)) == REG
1253 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1255 insn = next_flags_user (insn);
1256 if (insn == NULL_RTX)
1257 return 0;
1258 pat = PATTERN (insn);
1261 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1262 not doing anything with the cc value right now. We may be able to
1263 search for one though. */
1265 if (GET_CODE (pat) == SET
1266 && GET_CODE (SET_SRC (pat)) == UNSPEC
1267 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1269 rtx dest = SET_DEST (pat);
1271 /* Search forward looking for the first use of this value.
1272 Stop at block boundaries. */
1273 while (insn != current_block->end)
1275 insn = NEXT_INSN (insn);
1276 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1277 break;
1278 if (GET_CODE (insn) == CALL_INSN)
1279 return 0;
1282 /* So we've found the insn using this value. If it is anything
1283 other than sahf, aka unspec 10, or the value does not die
1284 (meaning we'd have to search further), then we must give up. */
1285 pat = PATTERN (insn);
1286 if (GET_CODE (pat) != SET
1287 || GET_CODE (SET_SRC (pat)) != UNSPEC
1288 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1289 || ! dead_or_set_p (insn, dest))
1290 return 0;
1292 /* Now we are prepared to handle this as a normal cc0 setter. */
1293 insn = next_flags_user (insn);
1294 if (insn == NULL_RTX)
1295 return 0;
1296 pat = PATTERN (insn);
1299 if (swap_rtx_condition_1 (pat))
1301 int fail = 0;
1302 INSN_CODE (insn) = -1;
1303 if (recog_memoized (insn) == -1)
1304 fail = 1;
1305 /* In case the flags don't die here, recurse to try fix
1306 following user too. */
1307 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1309 insn = next_flags_user (insn);
1310 if (!insn || !swap_rtx_condition (insn))
1311 fail = 1;
1313 if (fail)
1315 swap_rtx_condition_1 (pat);
1316 return 0;
1318 return 1;
1320 return 0;
1323 /* Handle a comparison. Special care needs to be taken to avoid
1324 causing comparisons that a 387 cannot do correctly, such as EQ.
1326 Also, a pop insn may need to be emitted. The 387 does have an
1327 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1328 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1329 set up. */
1331 static void
1332 compare_for_stack_reg (insn, regstack, pat_src)
1333 rtx insn;
1334 stack regstack;
1335 rtx pat_src;
1337 rtx *src1, *src2;
1338 rtx src1_note, src2_note;
1339 rtx flags_user;
1341 src1 = get_true_reg (&XEXP (pat_src, 0));
1342 src2 = get_true_reg (&XEXP (pat_src, 1));
1343 flags_user = next_flags_user (insn);
1345 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1346 registers that die in this insn - move those to stack top first. */
1347 if ((! STACK_REG_P (*src1)
1348 || (STACK_REG_P (*src2)
1349 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1350 && swap_rtx_condition (insn))
1352 rtx temp;
1353 temp = XEXP (pat_src, 0);
1354 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1355 XEXP (pat_src, 1) = temp;
1357 src1 = get_true_reg (&XEXP (pat_src, 0));
1358 src2 = get_true_reg (&XEXP (pat_src, 1));
1360 INSN_CODE (insn) = -1;
1363 /* We will fix any death note later. */
1365 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1367 if (STACK_REG_P (*src2))
1368 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1369 else
1370 src2_note = NULL_RTX;
1372 emit_swap_insn (insn, regstack, *src1);
1374 replace_reg (src1, FIRST_STACK_REG);
1376 if (STACK_REG_P (*src2))
1377 replace_reg (src2, get_hard_regnum (regstack, *src2));
1379 if (src1_note)
1381 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1382 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1385 /* If the second operand dies, handle that. But if the operands are
1386 the same stack register, don't bother, because only one death is
1387 needed, and it was just handled. */
1389 if (src2_note
1390 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1391 && REGNO (*src1) == REGNO (*src2)))
1393 /* As a special case, two regs may die in this insn if src2 is
1394 next to top of stack and the top of stack also dies. Since
1395 we have already popped src1, "next to top of stack" is really
1396 at top (FIRST_STACK_REG) now. */
1398 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1399 && src1_note)
1401 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1402 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1404 else
1406 /* The 386 can only represent death of the first operand in
1407 the case handled above. In all other cases, emit a separate
1408 pop and remove the death note from here. */
1410 /* link_cc0_insns (insn); */
1412 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1414 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1415 EMIT_AFTER);
1420 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1421 is the current register layout. */
1423 static void
1424 subst_stack_regs_pat (insn, regstack, pat)
1425 rtx insn;
1426 stack regstack;
1427 rtx pat;
1429 rtx *dest, *src;
1431 switch (GET_CODE (pat))
1433 case USE:
1434 /* Deaths in USE insns can happen in non optimizing compilation.
1435 Handle them by popping the dying register. */
1436 src = get_true_reg (&XEXP (pat, 0));
1437 if (STACK_REG_P (*src)
1438 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1440 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1441 return;
1443 /* ??? Uninitialized USE should not happen. */
1444 else if (get_hard_regnum (regstack, *src) == -1)
1445 abort ();
1446 break;
1448 case CLOBBER:
1450 rtx note;
1452 dest = get_true_reg (&XEXP (pat, 0));
1453 if (STACK_REG_P (*dest))
1455 note = find_reg_note (insn, REG_DEAD, *dest);
1457 if (pat != PATTERN (insn))
1459 /* The fix_truncdi_1 pattern wants to be able to allocate
1460 it's own scratch register. It does this by clobbering
1461 an fp reg so that it is assured of an empty reg-stack
1462 register. If the register is live, kill it now.
1463 Remove the DEAD/UNUSED note so we don't try to kill it
1464 later too. */
1466 if (note)
1467 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1468 else
1470 note = find_reg_note (insn, REG_UNUSED, *dest);
1471 if (!note)
1472 abort ();
1474 remove_note (insn, note);
1475 replace_reg (dest, LAST_STACK_REG);
1477 else
1479 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1480 indicates an uninitialized value. Because reload removed
1481 all other clobbers, this must be due to a function
1482 returning without a value. Load up a NaN. */
1484 if (! note
1485 && get_hard_regnum (regstack, *dest) == -1)
1487 pat = gen_rtx_SET (VOIDmode,
1488 FP_MODE_REG (REGNO (*dest), SFmode),
1489 nan);
1490 PATTERN (insn) = pat;
1491 move_for_stack_reg (insn, regstack, pat);
1493 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1494 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1496 pat = gen_rtx_SET (VOIDmode,
1497 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1498 nan);
1499 PATTERN (insn) = pat;
1500 move_for_stack_reg (insn, regstack, pat);
1504 break;
1507 case SET:
1509 rtx *src1 = (rtx *) 0, *src2;
1510 rtx src1_note, src2_note;
1511 rtx pat_src;
1513 dest = get_true_reg (&SET_DEST (pat));
1514 src = get_true_reg (&SET_SRC (pat));
1515 pat_src = SET_SRC (pat);
1517 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1518 if (STACK_REG_P (*src)
1519 || (STACK_REG_P (*dest)
1520 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1521 || GET_CODE (*src) == CONST_DOUBLE)))
1523 move_for_stack_reg (insn, regstack, pat);
1524 break;
1527 switch (GET_CODE (pat_src))
1529 case COMPARE:
1530 compare_for_stack_reg (insn, regstack, pat_src);
1531 break;
1533 case CALL:
1535 int count;
1536 for (count = HARD_REGNO_NREGS (REGNO (*dest), GET_MODE (*dest));
1537 --count >= 0;)
1539 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1540 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1543 replace_reg (dest, FIRST_STACK_REG);
1544 break;
1546 case REG:
1547 /* This is a `tstM2' case. */
1548 if (*dest != cc0_rtx)
1549 abort ();
1550 src1 = src;
1552 /* Fall through. */
1554 case FLOAT_TRUNCATE:
1555 case SQRT:
1556 case ABS:
1557 case NEG:
1558 /* These insns only operate on the top of the stack. DEST might
1559 be cc0_rtx if we're processing a tstM pattern. Also, it's
1560 possible that the tstM case results in a REG_DEAD note on the
1561 source. */
1563 if (src1 == 0)
1564 src1 = get_true_reg (&XEXP (pat_src, 0));
1566 emit_swap_insn (insn, regstack, *src1);
1568 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1570 if (STACK_REG_P (*dest))
1571 replace_reg (dest, FIRST_STACK_REG);
1573 if (src1_note)
1575 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1576 regstack->top--;
1577 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1580 replace_reg (src1, FIRST_STACK_REG);
1581 break;
1583 case MINUS:
1584 case DIV:
1585 /* On i386, reversed forms of subM3 and divM3 exist for
1586 MODE_FLOAT, so the same code that works for addM3 and mulM3
1587 can be used. */
1588 case MULT:
1589 case PLUS:
1590 /* These insns can accept the top of stack as a destination
1591 from a stack reg or mem, or can use the top of stack as a
1592 source and some other stack register (possibly top of stack)
1593 as a destination. */
1595 src1 = get_true_reg (&XEXP (pat_src, 0));
1596 src2 = get_true_reg (&XEXP (pat_src, 1));
1598 /* We will fix any death note later. */
1600 if (STACK_REG_P (*src1))
1601 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1602 else
1603 src1_note = NULL_RTX;
1604 if (STACK_REG_P (*src2))
1605 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1606 else
1607 src2_note = NULL_RTX;
1609 /* If either operand is not a stack register, then the dest
1610 must be top of stack. */
1612 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1613 emit_swap_insn (insn, regstack, *dest);
1614 else
1616 /* Both operands are REG. If neither operand is already
1617 at the top of stack, choose to make the one that is the dest
1618 the new top of stack. */
1620 int src1_hard_regnum, src2_hard_regnum;
1622 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1623 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1624 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1625 abort ();
1627 if (src1_hard_regnum != FIRST_STACK_REG
1628 && src2_hard_regnum != FIRST_STACK_REG)
1629 emit_swap_insn (insn, regstack, *dest);
1632 if (STACK_REG_P (*src1))
1633 replace_reg (src1, get_hard_regnum (regstack, *src1));
1634 if (STACK_REG_P (*src2))
1635 replace_reg (src2, get_hard_regnum (regstack, *src2));
1637 if (src1_note)
1639 rtx src1_reg = XEXP (src1_note, 0);
1641 /* If the register that dies is at the top of stack, then
1642 the destination is somewhere else - merely substitute it.
1643 But if the reg that dies is not at top of stack, then
1644 move the top of stack to the dead reg, as though we had
1645 done the insn and then a store-with-pop. */
1647 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, get_hard_regnum (regstack, *dest));
1652 else
1654 int regno = get_hard_regnum (regstack, src1_reg);
1656 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1657 replace_reg (dest, regno);
1659 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1660 = regstack->reg[regstack->top];
1663 CLEAR_HARD_REG_BIT (regstack->reg_set,
1664 REGNO (XEXP (src1_note, 0)));
1665 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1666 regstack->top--;
1668 else if (src2_note)
1670 rtx src2_reg = XEXP (src2_note, 0);
1671 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1673 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1674 replace_reg (dest, get_hard_regnum (regstack, *dest));
1676 else
1678 int regno = get_hard_regnum (regstack, src2_reg);
1680 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1681 replace_reg (dest, regno);
1683 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1684 = regstack->reg[regstack->top];
1687 CLEAR_HARD_REG_BIT (regstack->reg_set,
1688 REGNO (XEXP (src2_note, 0)));
1689 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1690 regstack->top--;
1692 else
1694 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1695 replace_reg (dest, get_hard_regnum (regstack, *dest));
1698 /* Keep operand 1 matching with destination. */
1699 if (GET_RTX_CLASS (GET_CODE (pat_src)) == 'c'
1700 && REG_P (*src1) && REG_P (*src2)
1701 && REGNO (*src1) != REGNO (*dest))
1703 int tmp = REGNO (*src1);
1704 replace_reg (src1, REGNO (*src2));
1705 replace_reg (src2, tmp);
1707 break;
1709 case UNSPEC:
1710 switch (XINT (pat_src, 1))
1712 case UNSPEC_SIN:
1713 case UNSPEC_COS:
1714 case UNSPEC_FRNDINT:
1715 case UNSPEC_F2XM1:
1716 /* These insns only operate on the top of the stack. */
1718 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1720 emit_swap_insn (insn, regstack, *src1);
1722 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1724 if (STACK_REG_P (*dest))
1725 replace_reg (dest, FIRST_STACK_REG);
1727 if (src1_note)
1729 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1730 regstack->top--;
1731 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1734 replace_reg (src1, FIRST_STACK_REG);
1735 break;
1737 case UNSPEC_FPATAN:
1738 case UNSPEC_FYL2X:
1739 case UNSPEC_FSCALE:
1740 /* These insns operate on the top two stack slots. */
1742 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1743 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1745 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1746 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1749 struct stack_def temp_stack;
1750 int regno, j, k, temp;
1752 temp_stack = *regstack;
1754 /* Place operand 1 at the top of stack. */
1755 regno = get_hard_regnum (&temp_stack, *src1);
1756 if (regno < 0)
1757 abort ();
1758 if (regno != FIRST_STACK_REG)
1760 k = temp_stack.top - (regno - FIRST_STACK_REG);
1761 j = temp_stack.top;
1763 temp = temp_stack.reg[k];
1764 temp_stack.reg[k] = temp_stack.reg[j];
1765 temp_stack.reg[j] = temp;
1768 /* Place operand 2 next on the stack. */
1769 regno = get_hard_regnum (&temp_stack, *src2);
1770 if (regno < 0)
1771 abort ();
1772 if (regno != FIRST_STACK_REG + 1)
1774 k = temp_stack.top - (regno - FIRST_STACK_REG);
1775 j = temp_stack.top - 1;
1777 temp = temp_stack.reg[k];
1778 temp_stack.reg[k] = temp_stack.reg[j];
1779 temp_stack.reg[j] = temp;
1782 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1785 replace_reg (src1, FIRST_STACK_REG);
1786 replace_reg (src2, FIRST_STACK_REG + 1);
1788 if (src1_note)
1789 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1790 if (src2_note)
1791 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1793 /* Pop both input operands from the stack. */
1794 CLEAR_HARD_REG_BIT (regstack->reg_set,
1795 regstack->reg[regstack->top]);
1796 CLEAR_HARD_REG_BIT (regstack->reg_set,
1797 regstack->reg[regstack->top - 1]);
1798 regstack->top -= 2;
1800 /* Push the result back onto the stack. */
1801 regstack->reg[++regstack->top] = REGNO (*dest);
1802 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1803 replace_reg (dest, FIRST_STACK_REG);
1804 break;
1806 case UNSPEC_SAHF:
1807 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1808 The combination matches the PPRO fcomi instruction. */
1810 pat_src = XVECEXP (pat_src, 0, 0);
1811 if (GET_CODE (pat_src) != UNSPEC
1812 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1813 abort ();
1814 /* FALLTHRU */
1816 case UNSPEC_FNSTSW:
1817 /* Combined fcomp+fnstsw generated for doing well with
1818 CSE. When optimizing this would have been broken
1819 up before now. */
1821 pat_src = XVECEXP (pat_src, 0, 0);
1822 if (GET_CODE (pat_src) != COMPARE)
1823 abort ();
1825 compare_for_stack_reg (insn, regstack, pat_src);
1826 break;
1828 default:
1829 abort ();
1831 break;
1833 case IF_THEN_ELSE:
1834 /* This insn requires the top of stack to be the destination. */
1836 src1 = get_true_reg (&XEXP (pat_src, 1));
1837 src2 = get_true_reg (&XEXP (pat_src, 2));
1839 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1840 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1842 /* If the comparison operator is an FP comparison operator,
1843 it is handled correctly by compare_for_stack_reg () who
1844 will move the destination to the top of stack. But if the
1845 comparison operator is not an FP comparison operator, we
1846 have to handle it here. */
1847 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1848 && REGNO (*dest) != regstack->reg[regstack->top])
1850 /* In case one of operands is the top of stack and the operands
1851 dies, it is safe to make it the destination operand by
1852 reversing the direction of cmove and avoid fxch. */
1853 if ((REGNO (*src1) == regstack->reg[regstack->top]
1854 && src1_note)
1855 || (REGNO (*src2) == regstack->reg[regstack->top]
1856 && src2_note))
1858 int idx1 = (get_hard_regnum (regstack, *src1)
1859 - FIRST_STACK_REG);
1860 int idx2 = (get_hard_regnum (regstack, *src2)
1861 - FIRST_STACK_REG);
1863 /* Make reg-stack believe that the operands are already
1864 swapped on the stack */
1865 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1866 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1868 /* Reverse condition to compensate the operand swap.
1869 i386 do have comparison always reversible. */
1870 PUT_CODE (XEXP (pat_src, 0),
1871 reversed_comparison_code (XEXP (pat_src, 0), insn));
1873 else
1874 emit_swap_insn (insn, regstack, *dest);
1878 rtx src_note [3];
1879 int i;
1881 src_note[0] = 0;
1882 src_note[1] = src1_note;
1883 src_note[2] = src2_note;
1885 if (STACK_REG_P (*src1))
1886 replace_reg (src1, get_hard_regnum (regstack, *src1));
1887 if (STACK_REG_P (*src2))
1888 replace_reg (src2, get_hard_regnum (regstack, *src2));
1890 for (i = 1; i <= 2; i++)
1891 if (src_note [i])
1893 int regno = REGNO (XEXP (src_note[i], 0));
1895 /* If the register that dies is not at the top of
1896 stack, then move the top of stack to the dead reg */
1897 if (regno != regstack->reg[regstack->top])
1899 remove_regno_note (insn, REG_DEAD, regno);
1900 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1901 EMIT_AFTER);
1903 else
1904 /* Top of stack never dies, as it is the
1905 destination. */
1906 abort ();
1910 /* Make dest the top of stack. Add dest to regstack if
1911 not present. */
1912 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1913 regstack->reg[++regstack->top] = REGNO (*dest);
1914 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1915 replace_reg (dest, FIRST_STACK_REG);
1916 break;
1918 default:
1919 abort ();
1921 break;
1924 default:
1925 break;
1929 /* Substitute hard regnums for any stack regs in INSN, which has
1930 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1931 before the insn, and is updated with changes made here.
1933 There are several requirements and assumptions about the use of
1934 stack-like regs in asm statements. These rules are enforced by
1935 record_asm_stack_regs; see comments there for details. Any
1936 asm_operands left in the RTL at this point may be assume to meet the
1937 requirements, since record_asm_stack_regs removes any problem asm. */
1939 static void
1940 subst_asm_stack_regs (insn, regstack)
1941 rtx insn;
1942 stack regstack;
1944 rtx body = PATTERN (insn);
1945 int alt;
1947 rtx *note_reg; /* Array of note contents */
1948 rtx **note_loc; /* Address of REG field of each note */
1949 enum reg_note *note_kind; /* The type of each note */
1951 rtx *clobber_reg = 0;
1952 rtx **clobber_loc = 0;
1954 struct stack_def temp_stack;
1955 int n_notes;
1956 int n_clobbers;
1957 rtx note;
1958 int i;
1959 int n_inputs, n_outputs;
1961 if (! check_asm_stack_operands (insn))
1962 return;
1964 /* Find out what the constraints required. If no constraint
1965 alternative matches, that is a compiler bug: we should have caught
1966 such an insn in check_asm_stack_operands. */
1967 extract_insn (insn);
1968 constrain_operands (1);
1969 alt = which_alternative;
1971 preprocess_constraints ();
1973 n_inputs = get_asm_operand_n_inputs (body);
1974 n_outputs = recog_data.n_operands - n_inputs;
1976 if (alt < 0)
1977 abort ();
1979 /* Strip SUBREGs here to make the following code simpler. */
1980 for (i = 0; i < recog_data.n_operands; i++)
1981 if (GET_CODE (recog_data.operand[i]) == SUBREG
1982 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
1984 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1985 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1988 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1990 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1991 i++;
1993 note_reg = (rtx *) alloca (i * sizeof (rtx));
1994 note_loc = (rtx **) alloca (i * sizeof (rtx *));
1995 note_kind = (enum reg_note *) alloca (i * sizeof (enum reg_note));
1997 n_notes = 0;
1998 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2000 rtx reg = XEXP (note, 0);
2001 rtx *loc = & XEXP (note, 0);
2003 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2005 loc = & SUBREG_REG (reg);
2006 reg = SUBREG_REG (reg);
2009 if (STACK_REG_P (reg)
2010 && (REG_NOTE_KIND (note) == REG_DEAD
2011 || REG_NOTE_KIND (note) == REG_UNUSED))
2013 note_reg[n_notes] = reg;
2014 note_loc[n_notes] = loc;
2015 note_kind[n_notes] = REG_NOTE_KIND (note);
2016 n_notes++;
2020 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2022 n_clobbers = 0;
2024 if (GET_CODE (body) == PARALLEL)
2026 clobber_reg = (rtx *) alloca (XVECLEN (body, 0) * sizeof (rtx));
2027 clobber_loc = (rtx **) alloca (XVECLEN (body, 0) * sizeof (rtx *));
2029 for (i = 0; i < XVECLEN (body, 0); i++)
2030 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2032 rtx clobber = XVECEXP (body, 0, i);
2033 rtx reg = XEXP (clobber, 0);
2034 rtx *loc = & XEXP (clobber, 0);
2036 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2038 loc = & SUBREG_REG (reg);
2039 reg = SUBREG_REG (reg);
2042 if (STACK_REG_P (reg))
2044 clobber_reg[n_clobbers] = reg;
2045 clobber_loc[n_clobbers] = loc;
2046 n_clobbers++;
2051 temp_stack = *regstack;
2053 /* Put the input regs into the desired place in TEMP_STACK. */
2055 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2056 if (STACK_REG_P (recog_data.operand[i])
2057 && reg_class_subset_p (recog_op_alt[i][alt].class,
2058 FLOAT_REGS)
2059 && recog_op_alt[i][alt].class != FLOAT_REGS)
2061 /* If an operand needs to be in a particular reg in
2062 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2063 these constraints are for single register classes, and
2064 reload guaranteed that operand[i] is already in that class,
2065 we can just use REGNO (recog_data.operand[i]) to know which
2066 actual reg this operand needs to be in. */
2068 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2070 if (regno < 0)
2071 abort ();
2073 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2075 /* recog_data.operand[i] is not in the right place. Find
2076 it and swap it with whatever is already in I's place.
2077 K is where recog_data.operand[i] is now. J is where it
2078 should be. */
2079 int j, k, temp;
2081 k = temp_stack.top - (regno - FIRST_STACK_REG);
2082 j = (temp_stack.top
2083 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2085 temp = temp_stack.reg[k];
2086 temp_stack.reg[k] = temp_stack.reg[j];
2087 temp_stack.reg[j] = temp;
2091 /* Emit insns before INSN to make sure the reg-stack is in the right
2092 order. */
2094 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2096 /* Make the needed input register substitutions. Do death notes and
2097 clobbers too, because these are for inputs, not outputs. */
2099 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2100 if (STACK_REG_P (recog_data.operand[i]))
2102 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2104 if (regnum < 0)
2105 abort ();
2107 replace_reg (recog_data.operand_loc[i], regnum);
2110 for (i = 0; i < n_notes; i++)
2111 if (note_kind[i] == REG_DEAD)
2113 int regnum = get_hard_regnum (regstack, note_reg[i]);
2115 if (regnum < 0)
2116 abort ();
2118 replace_reg (note_loc[i], regnum);
2121 for (i = 0; i < n_clobbers; i++)
2123 /* It's OK for a CLOBBER to reference a reg that is not live.
2124 Don't try to replace it in that case. */
2125 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2127 if (regnum >= 0)
2129 /* Sigh - clobbers always have QImode. But replace_reg knows
2130 that these regs can't be MODE_INT and will abort. Just put
2131 the right reg there without calling replace_reg. */
2133 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2137 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2139 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2140 if (STACK_REG_P (recog_data.operand[i]))
2142 /* An input reg is implicitly popped if it is tied to an
2143 output, or if there is a CLOBBER for it. */
2144 int j;
2146 for (j = 0; j < n_clobbers; j++)
2147 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2148 break;
2150 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2152 /* recog_data.operand[i] might not be at the top of stack.
2153 But that's OK, because all we need to do is pop the
2154 right number of regs off of the top of the reg-stack.
2155 record_asm_stack_regs guaranteed that all implicitly
2156 popped regs were grouped at the top of the reg-stack. */
2158 CLEAR_HARD_REG_BIT (regstack->reg_set,
2159 regstack->reg[regstack->top]);
2160 regstack->top--;
2164 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2165 Note that there isn't any need to substitute register numbers.
2166 ??? Explain why this is true. */
2168 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2170 /* See if there is an output for this hard reg. */
2171 int j;
2173 for (j = 0; j < n_outputs; j++)
2174 if (STACK_REG_P (recog_data.operand[j])
2175 && REGNO (recog_data.operand[j]) == (unsigned) i)
2177 regstack->reg[++regstack->top] = i;
2178 SET_HARD_REG_BIT (regstack->reg_set, i);
2179 break;
2183 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2184 input that the asm didn't implicitly pop. If the asm didn't
2185 implicitly pop an input reg, that reg will still be live.
2187 Note that we can't use find_regno_note here: the register numbers
2188 in the death notes have already been substituted. */
2190 for (i = 0; i < n_outputs; i++)
2191 if (STACK_REG_P (recog_data.operand[i]))
2193 int j;
2195 for (j = 0; j < n_notes; j++)
2196 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2197 && note_kind[j] == REG_UNUSED)
2199 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2200 EMIT_AFTER);
2201 break;
2205 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2206 if (STACK_REG_P (recog_data.operand[i]))
2208 int j;
2210 for (j = 0; j < n_notes; j++)
2211 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2212 && note_kind[j] == REG_DEAD
2213 && TEST_HARD_REG_BIT (regstack->reg_set,
2214 REGNO (recog_data.operand[i])))
2216 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2217 EMIT_AFTER);
2218 break;
2223 /* Substitute stack hard reg numbers for stack virtual registers in
2224 INSN. Non-stack register numbers are not changed. REGSTACK is the
2225 current stack content. Insns may be emitted as needed to arrange the
2226 stack for the 387 based on the contents of the insn. */
2228 static void
2229 subst_stack_regs (insn, regstack)
2230 rtx insn;
2231 stack regstack;
2233 rtx *note_link, note;
2234 int i;
2236 if (GET_CODE (insn) == CALL_INSN)
2238 int top = regstack->top;
2240 /* If there are any floating point parameters to be passed in
2241 registers for this call, make sure they are in the right
2242 order. */
2244 if (top >= 0)
2246 straighten_stack (PREV_INSN (insn), regstack);
2248 /* Now mark the arguments as dead after the call. */
2250 while (regstack->top >= 0)
2252 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2253 regstack->top--;
2258 /* Do the actual substitution if any stack regs are mentioned.
2259 Since we only record whether entire insn mentions stack regs, and
2260 subst_stack_regs_pat only works for patterns that contain stack regs,
2261 we must check each pattern in a parallel here. A call_value_pop could
2262 fail otherwise. */
2264 if (stack_regs_mentioned (insn))
2266 int n_operands = asm_noperands (PATTERN (insn));
2267 if (n_operands >= 0)
2269 /* This insn is an `asm' with operands. Decode the operands,
2270 decide how many are inputs, and do register substitution.
2271 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2273 subst_asm_stack_regs (insn, regstack);
2274 return;
2277 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2278 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2280 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2281 subst_stack_regs_pat (insn, regstack,
2282 XVECEXP (PATTERN (insn), 0, i));
2284 else
2285 subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2288 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2289 REG_UNUSED will already have been dealt with, so just return. */
2291 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2292 return;
2294 /* If there is a REG_UNUSED note on a stack register on this insn,
2295 the indicated reg must be popped. The REG_UNUSED note is removed,
2296 since the form of the newly emitted pop insn references the reg,
2297 making it no longer `unset'. */
2299 note_link = &REG_NOTES (insn);
2300 for (note = *note_link; note; note = XEXP (note, 1))
2301 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2303 *note_link = XEXP (note, 1);
2304 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2306 else
2307 note_link = &XEXP (note, 1);
2310 /* Change the organization of the stack so that it fits a new basic
2311 block. Some registers might have to be popped, but there can never be
2312 a register live in the new block that is not now live.
2314 Insert any needed insns before or after INSN, as indicated by
2315 WHERE. OLD is the original stack layout, and NEW is the desired
2316 form. OLD is updated to reflect the code emitted, ie, it will be
2317 the same as NEW upon return.
2319 This function will not preserve block_end[]. But that information
2320 is no longer needed once this has executed. */
2322 static void
2323 change_stack (insn, old, new, where)
2324 rtx insn;
2325 stack old;
2326 stack new;
2327 enum emit_where where;
2329 int reg;
2330 int update_end = 0;
2332 /* We will be inserting new insns "backwards". If we are to insert
2333 after INSN, find the next insn, and insert before it. */
2335 if (where == EMIT_AFTER)
2337 if (current_block && current_block->end == insn)
2338 update_end = 1;
2339 insn = NEXT_INSN (insn);
2342 /* Pop any registers that are not needed in the new block. */
2344 for (reg = old->top; reg >= 0; reg--)
2345 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2346 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2347 EMIT_BEFORE);
2349 if (new->top == -2)
2351 /* If the new block has never been processed, then it can inherit
2352 the old stack order. */
2354 new->top = old->top;
2355 memcpy (new->reg, old->reg, sizeof (new->reg));
2357 else
2359 /* This block has been entered before, and we must match the
2360 previously selected stack order. */
2362 /* By now, the only difference should be the order of the stack,
2363 not their depth or liveliness. */
2365 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2366 abort ();
2367 win:
2368 if (old->top != new->top)
2369 abort ();
2371 /* If the stack is not empty (new->top != -1), loop here emitting
2372 swaps until the stack is correct.
2374 The worst case number of swaps emitted is N + 2, where N is the
2375 depth of the stack. In some cases, the reg at the top of
2376 stack may be correct, but swapped anyway in order to fix
2377 other regs. But since we never swap any other reg away from
2378 its correct slot, this algorithm will converge. */
2380 if (new->top != -1)
2383 /* Swap the reg at top of stack into the position it is
2384 supposed to be in, until the correct top of stack appears. */
2386 while (old->reg[old->top] != new->reg[new->top])
2388 for (reg = new->top; reg >= 0; reg--)
2389 if (new->reg[reg] == old->reg[old->top])
2390 break;
2392 if (reg == -1)
2393 abort ();
2395 emit_swap_insn (insn, old,
2396 FP_MODE_REG (old->reg[reg], DFmode));
2399 /* See if any regs remain incorrect. If so, bring an
2400 incorrect reg to the top of stack, and let the while loop
2401 above fix it. */
2403 for (reg = new->top; reg >= 0; reg--)
2404 if (new->reg[reg] != old->reg[reg])
2406 emit_swap_insn (insn, old,
2407 FP_MODE_REG (old->reg[reg], DFmode));
2408 break;
2410 } while (reg >= 0);
2412 /* At this point there must be no differences. */
2414 for (reg = old->top; reg >= 0; reg--)
2415 if (old->reg[reg] != new->reg[reg])
2416 abort ();
2419 if (update_end)
2420 current_block->end = PREV_INSN (insn);
2423 /* Print stack configuration. */
2425 static void
2426 print_stack (file, s)
2427 FILE *file;
2428 stack s;
2430 if (! file)
2431 return;
2433 if (s->top == -2)
2434 fprintf (file, "uninitialized\n");
2435 else if (s->top == -1)
2436 fprintf (file, "empty\n");
2437 else
2439 int i;
2440 fputs ("[ ", file);
2441 for (i = 0; i <= s->top; ++i)
2442 fprintf (file, "%d ", s->reg[i]);
2443 fputs ("]\n", file);
2447 /* This function was doing life analysis. We now let the regular live
2448 code do it's job, so we only need to check some extra invariants
2449 that reg-stack expects. Primary among these being that all registers
2450 are initialized before use.
2452 The function returns true when code was emitted to CFG edges and
2453 commit_edge_insertions needs to be called. */
2455 static int
2456 convert_regs_entry ()
2458 int inserted = 0;
2459 edge e;
2460 basic_block block;
2462 FOR_EACH_BB_REVERSE (block)
2464 block_info bi = BLOCK_INFO (block);
2465 int reg;
2467 /* Set current register status at last instruction `uninitialized'. */
2468 bi->stack_in.top = -2;
2470 /* Copy live_at_end and live_at_start into temporaries. */
2471 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2473 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2474 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2475 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2476 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2480 /* Load something into each stack register live at function entry.
2481 Such live registers can be caused by uninitialized variables or
2482 functions not returning values on all paths. In order to keep
2483 the push/pop code happy, and to not scrog the register stack, we
2484 must put something in these registers. Use a QNaN.
2486 Note that we are inserting converted code here. This code is
2487 never seen by the convert_regs pass. */
2489 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2491 basic_block block = e->dest;
2492 block_info bi = BLOCK_INFO (block);
2493 int reg, top = -1;
2495 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2496 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2498 rtx init;
2500 bi->stack_in.reg[++top] = reg;
2502 init = gen_rtx_SET (VOIDmode,
2503 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2504 nan);
2505 insert_insn_on_edge (init, e);
2506 inserted = 1;
2509 bi->stack_in.top = top;
2512 return inserted;
2515 /* Construct the desired stack for function exit. This will either
2516 be `empty', or the function return value at top-of-stack. */
2518 static void
2519 convert_regs_exit ()
2521 int value_reg_low, value_reg_high;
2522 stack output_stack;
2523 rtx retvalue;
2525 retvalue = stack_result (current_function_decl);
2526 value_reg_low = value_reg_high = -1;
2527 if (retvalue)
2529 value_reg_low = REGNO (retvalue);
2530 value_reg_high = value_reg_low
2531 + HARD_REGNO_NREGS (value_reg_low, GET_MODE (retvalue)) - 1;
2534 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2535 if (value_reg_low == -1)
2536 output_stack->top = -1;
2537 else
2539 int reg;
2541 output_stack->top = value_reg_high - value_reg_low;
2542 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2544 output_stack->reg[value_reg_high - reg] = reg;
2545 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2550 /* Adjust the stack of this block on exit to match the stack of the
2551 target block, or copy stack info into the stack of the successor
2552 of the successor hasn't been processed yet. */
2553 static bool
2554 compensate_edge (e, file)
2555 edge e;
2556 FILE *file;
2558 basic_block block = e->src, target = e->dest;
2559 block_info bi = BLOCK_INFO (block);
2560 struct stack_def regstack, tmpstack;
2561 stack target_stack = &BLOCK_INFO (target)->stack_in;
2562 int reg;
2564 current_block = block;
2565 regstack = bi->stack_out;
2566 if (file)
2567 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2569 if (target_stack->top == -2)
2571 /* The target block hasn't had a stack order selected.
2572 We need merely ensure that no pops are needed. */
2573 for (reg = regstack.top; reg >= 0; --reg)
2574 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2575 break;
2577 if (reg == -1)
2579 if (file)
2580 fprintf (file, "new block; copying stack position\n");
2582 /* change_stack kills values in regstack. */
2583 tmpstack = regstack;
2585 change_stack (block->end, &tmpstack, target_stack, EMIT_AFTER);
2586 return false;
2589 if (file)
2590 fprintf (file, "new block; pops needed\n");
2592 else
2594 if (target_stack->top == regstack.top)
2596 for (reg = target_stack->top; reg >= 0; --reg)
2597 if (target_stack->reg[reg] != regstack.reg[reg])
2598 break;
2600 if (reg == -1)
2602 if (file)
2603 fprintf (file, "no changes needed\n");
2604 return false;
2608 if (file)
2610 fprintf (file, "correcting stack to ");
2611 print_stack (file, target_stack);
2615 /* Care for non-call EH edges specially. The normal return path have
2616 values in registers. These will be popped en masse by the unwind
2617 library. */
2618 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2619 target_stack->top = -1;
2621 /* Other calls may appear to have values live in st(0), but the
2622 abnormal return path will not have actually loaded the values. */
2623 else if (e->flags & EDGE_ABNORMAL_CALL)
2625 /* Assert that the lifetimes are as we expect -- one value
2626 live at st(0) on the end of the source block, and no
2627 values live at the beginning of the destination block. */
2628 HARD_REG_SET tmp;
2630 CLEAR_HARD_REG_SET (tmp);
2631 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2632 abort ();
2633 eh1:
2635 /* We are sure that there is st(0) live, otherwise we won't compensate.
2636 For complex return values, we may have st(1) live as well. */
2637 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2638 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2639 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2640 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2641 abort ();
2642 eh2:
2644 target_stack->top = -1;
2647 /* It is better to output directly to the end of the block
2648 instead of to the edge, because emit_swap can do minimal
2649 insn scheduling. We can do this when there is only one
2650 edge out, and it is not abnormal. */
2651 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2653 /* change_stack kills values in regstack. */
2654 tmpstack = regstack;
2656 change_stack (block->end, &tmpstack, target_stack,
2657 (GET_CODE (block->end) == JUMP_INSN
2658 ? EMIT_BEFORE : EMIT_AFTER));
2660 else
2662 rtx seq, after;
2664 /* We don't support abnormal edges. Global takes care to
2665 avoid any live register across them, so we should never
2666 have to insert instructions on such edges. */
2667 if (e->flags & EDGE_ABNORMAL)
2668 abort ();
2670 current_block = NULL;
2671 start_sequence ();
2673 /* ??? change_stack needs some point to emit insns after. */
2674 after = emit_note (NULL, NOTE_INSN_DELETED);
2676 tmpstack = regstack;
2677 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2679 seq = get_insns ();
2680 end_sequence ();
2682 insert_insn_on_edge (seq, e);
2683 return true;
2685 return false;
2688 /* Convert stack register references in one block. */
2690 static int
2691 convert_regs_1 (file, block)
2692 FILE *file;
2693 basic_block block;
2695 struct stack_def regstack;
2696 block_info bi = BLOCK_INFO (block);
2697 int inserted, reg;
2698 rtx insn, next;
2699 edge e, beste = NULL;
2701 inserted = 0;
2702 any_malformed_asm = false;
2704 /* Find the edge we will copy stack from. It should be the most frequent
2705 one as it will get cheapest after compensation code is generated,
2706 if multiple such exists, take one with largest count, prefer critical
2707 one (as splitting critical edges is more expensive), or one with lowest
2708 index, to avoid random changes with different orders of the edges. */
2709 for (e = block->pred; e ; e = e->pred_next)
2711 if (e->flags & EDGE_DFS_BACK)
2713 else if (! beste)
2714 beste = e;
2715 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2716 beste = e;
2717 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2719 else if (beste->count < e->count)
2720 beste = e;
2721 else if (beste->count > e->count)
2723 else if ((EDGE_CRITICAL_P (e) != 0)
2724 != (EDGE_CRITICAL_P (beste) != 0))
2726 if (EDGE_CRITICAL_P (e))
2727 beste = e;
2729 else if (e->src->index < beste->src->index)
2730 beste = e;
2733 /* Entry block does have stack already initialized. */
2734 if (bi->stack_in.top == -2)
2735 inserted |= compensate_edge (beste, file);
2736 else
2737 beste = NULL;
2739 current_block = block;
2741 if (file)
2743 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2744 print_stack (file, &bi->stack_in);
2747 /* Process all insns in this block. Keep track of NEXT so that we
2748 don't process insns emitted while substituting in INSN. */
2749 next = block->head;
2750 regstack = bi->stack_in;
2753 insn = next;
2754 next = NEXT_INSN (insn);
2756 /* Ensure we have not missed a block boundary. */
2757 if (next == NULL)
2758 abort ();
2759 if (insn == block->end)
2760 next = NULL;
2762 /* Don't bother processing unless there is a stack reg
2763 mentioned or if it's a CALL_INSN. */
2764 if (stack_regs_mentioned (insn)
2765 || GET_CODE (insn) == CALL_INSN)
2767 if (file)
2769 fprintf (file, " insn %d input stack: ",
2770 INSN_UID (insn));
2771 print_stack (file, &regstack);
2773 subst_stack_regs (insn, &regstack);
2776 while (next);
2778 if (file)
2780 fprintf (file, "Expected live registers [");
2781 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2782 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2783 fprintf (file, " %d", reg);
2784 fprintf (file, " ]\nOutput stack: ");
2785 print_stack (file, &regstack);
2788 insn = block->end;
2789 if (GET_CODE (insn) == JUMP_INSN)
2790 insn = PREV_INSN (insn);
2792 /* If the function is declared to return a value, but it returns one
2793 in only some cases, some registers might come live here. Emit
2794 necessary moves for them. */
2796 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2798 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2799 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2801 rtx set;
2803 if (file)
2805 fprintf (file, "Emitting insn initializing reg %d\n",
2806 reg);
2809 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2810 nan);
2811 insn = emit_insn_after (set, insn);
2812 subst_stack_regs (insn, &regstack);
2816 /* Something failed if the stack lives don't match. If we had malformed
2817 asms, we zapped the instruction itself, but that didn't produce the
2818 same pattern of register kills as before. */
2819 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2820 if (!any_malformed_asm)
2821 abort ();
2822 win:
2823 bi->stack_out = regstack;
2825 /* Compensate the back edges, as those wasn't visited yet. */
2826 for (e = block->succ; e ; e = e->succ_next)
2828 if (e->flags & EDGE_DFS_BACK
2829 || (e->dest == EXIT_BLOCK_PTR))
2831 if (!BLOCK_INFO (e->dest)->done
2832 && e->dest != block)
2833 abort ();
2834 inserted |= compensate_edge (e, file);
2837 for (e = block->pred; e ; e = e->pred_next)
2839 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2840 && e->src != ENTRY_BLOCK_PTR)
2842 if (!BLOCK_INFO (e->src)->done)
2843 abort ();
2844 inserted |= compensate_edge (e, file);
2848 return inserted;
2851 /* Convert registers in all blocks reachable from BLOCK. */
2853 static int
2854 convert_regs_2 (file, block)
2855 FILE *file;
2856 basic_block block;
2858 basic_block *stack, *sp;
2859 int inserted;
2861 stack = (basic_block *) xmalloc (sizeof (*stack) * n_basic_blocks);
2862 sp = stack;
2864 *sp++ = block;
2866 inserted = 0;
2869 edge e;
2871 block = *--sp;
2872 inserted |= convert_regs_1 (file, block);
2873 BLOCK_INFO (block)->done = 1;
2875 for (e = block->succ; e ; e = e->succ_next)
2876 if (! (e->flags & EDGE_DFS_BACK))
2878 BLOCK_INFO (e->dest)->predecessors--;
2879 if (!BLOCK_INFO (e->dest)->predecessors)
2880 *sp++ = e->dest;
2883 while (sp != stack);
2885 return inserted;
2888 /* Traverse all basic blocks in a function, converting the register
2889 references in each insn from the "flat" register file that gcc uses,
2890 to the stack-like registers the 387 uses. */
2892 static int
2893 convert_regs (file)
2894 FILE *file;
2896 int inserted;
2897 basic_block b;
2898 edge e;
2900 /* Initialize uninitialized registers on function entry. */
2901 inserted = convert_regs_entry ();
2903 /* Construct the desired stack for function exit. */
2904 convert_regs_exit ();
2905 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2907 /* ??? Future: process inner loops first, and give them arbitrary
2908 initial stacks which emit_swap_insn can modify. This ought to
2909 prevent double fxch that aften appears at the head of a loop. */
2911 /* Process all blocks reachable from all entry points. */
2912 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2913 inserted |= convert_regs_2 (file, e->dest);
2915 /* ??? Process all unreachable blocks. Though there's no excuse
2916 for keeping these even when not optimizing. */
2917 FOR_EACH_BB (b)
2919 block_info bi = BLOCK_INFO (b);
2921 if (! bi->done)
2923 int reg;
2925 /* Create an arbitrary input stack. */
2926 bi->stack_in.top = -1;
2927 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2928 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2929 bi->stack_in.reg[++bi->stack_in.top] = reg;
2931 inserted |= convert_regs_2 (file, b);
2934 clear_aux_for_blocks ();
2936 fixup_abnormal_edges ();
2937 if (inserted)
2938 commit_edge_insertions ();
2940 if (file)
2941 fputc ('\n', file);
2943 return inserted;
2945 #endif /* STACK_REGS */
2947 #include "gt-reg-stack.h"