1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "rtl-error.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
39 #include "sched-int.h"
40 #include "langhooks.h"
41 #include "rtlhooks-def.h"
46 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
58 o the scheduler works after register allocation (but can be also tuned
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
118 Computing available expressions
119 ===============================
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
135 Choosing the best expression
136 ============================
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
149 Scheduling the best expression
150 ==============================
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
162 Finalizing the schedule
163 =======================
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
169 Dependence analysis changes
170 ===========================
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
181 Initialization changes
182 ======================
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
253 /* True when pipelining is enabled. */
256 /* True if bookkeeping is enabled. */
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename
;
263 /* Definitions of local types and macros. */
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
268 /* The expression is not changed. */
271 /* Not changed, but requires a new destination register. */
274 /* Cannot be moved. */
277 /* Changed (substituted or speculated). */
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
284 /* What we are searching for. */
287 /* The occurrence counter. */
291 typedef struct rtx_search_arg
*rtx_search_arg_p
;
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
297 /* For every mode, this stores registers available for use with
299 HARD_REG_SET regs_for_mode
[NUM_MACHINE_MODES
];
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok
[NUM_MACHINE_MODES
];
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename
[FIRST_PSEUDO_REGISTER
];
309 /* For every mode, this stores registers not available due to
311 HARD_REG_SET regs_for_call_clobbered
[NUM_MACHINE_MODES
];
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used
;
317 /* Stack registers. */
318 HARD_REG_SET stack_regs
;
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs
;
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming
;
332 /* Whether this code motion path crosses a call. */
336 /* A global structure that contains the needed information about harg
338 static struct hard_regs_data sel_hrd
;
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
347 struct cmpd_local_params
349 /* Local params used in move_op_* functions. */
351 /* Edges for bookkeeping generation. */
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged
, c_expr_local
;
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns
;
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn
: 1;
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
371 /* Destination register. */
374 /* Current C_EXPR. */
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
386 /* True if we scheduled an insn with different register. */
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
393 /* Set of registers unavailable on the code motion path. */
396 /* Pointer to the list of original insns definitions. */
397 def_list_t
*original_insns
;
399 /* True if a code motion path contains a CALL insn. */
403 typedef struct fur_static_params
*fur_static_params_p
;
404 typedef struct cmpd_local_params
*cmpd_local_params_p
;
405 typedef struct moveop_static_params
*moveop_static_params_p
;
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
411 /* Called on enter to the basic block. */
412 int (*on_enter
) (insn_t
, cmpd_local_params_p
, void *, bool);
414 /* Called when original expr is found. */
415 void (*orig_expr_found
) (insn_t
, expr_t
, cmpd_local_params_p
, void *);
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found
) (insn_t
, av_set_t
, void *);
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs
) (insn_t
, insn_t
, int, cmpd_local_params_p
, void *);
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs
) (cmpd_local_params_p
, void *);
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend
) (insn_t
, void *);
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn
) (insn_t
, cmpd_local_params_p
, void *);
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name
;
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 struct code_motion_path_driver_info_def
*code_motion_path_driver_info
;
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks
, fur_hooks
;
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
455 int sched_emulate_haifa_p
;
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
463 /* Current fences. */
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p
;
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence
;
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid
;
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads
;
483 bitmap_head
*forced_ebb_heads
= &_forced_ebb_heads
;
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule
= NULL
;
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first
= false;
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size
= 0;
494 /* Whether we can issue more instructions. */
495 static int can_issue_more
;
497 /* Maximum software lookahead window size, reduced when rescheduling after
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled
;
504 /* A vector of expressions is used to be able to sort them. */
505 static vec
<expr_t
> vec_av_set
= vNULL
;
507 /* A vector of vinsns is used to hold temporary lists of vinsns. */
508 typedef vec
<vinsn_t
> vinsn_vec_t
;
510 /* This vector has the exprs which may still present in av_sets, but actually
511 can't be moved up due to bookkeeping created during code motion to another
512 fence. See comment near the call to update_and_record_unavailable_insns
513 for the detailed explanations. */
514 static vinsn_vec_t vec_bookkeeping_blocked_vinsns
= vinsn_vec_t ();
516 /* This vector has vinsns which are scheduled with renaming on the first fence
517 and then seen on the second. For expressions with such vinsns, target
518 availability information may be wrong. */
519 static vinsn_vec_t vec_target_unavailable_vinsns
= vinsn_vec_t ();
521 /* Vector to store temporary nops inserted in move_op to prevent removal
523 static vec
<insn_t
> vec_temp_moveop_nops
= vNULL
;
525 /* These bitmaps record original instructions scheduled on the current
526 iteration and bookkeeping copies created by them. */
527 static bitmap current_originators
= NULL
;
528 static bitmap current_copies
= NULL
;
530 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
531 visit them afterwards. */
532 static bitmap code_motion_visited_blocks
= NULL
;
534 /* Variables to accumulate different statistics. */
536 /* The number of bookkeeping copies created. */
537 static int stat_bookkeeping_copies
;
539 /* The number of insns that required bookkeeiping for their scheduling. */
540 static int stat_insns_needed_bookkeeping
;
542 /* The number of insns that got renamed. */
543 static int stat_renamed_scheduled
;
545 /* The number of substitutions made during scheduling. */
546 static int stat_substitutions_total
;
549 /* Forward declarations of static functions. */
550 static bool rtx_ok_for_substitution_p (rtx
, rtx
);
551 static int sel_rank_for_schedule (const void *, const void *);
552 static av_set_t
find_sequential_best_exprs (bnd_t
, expr_t
, bool);
553 static basic_block
find_block_for_bookkeeping (edge e1
, edge e2
, bool lax
);
555 static rtx
get_dest_from_orig_ops (av_set_t
);
556 static basic_block
generate_bookkeeping_insn (expr_t
, edge
, edge
);
557 static bool find_used_regs (insn_t
, av_set_t
, regset
, struct reg_rename
*,
559 static bool move_op (insn_t
, av_set_t
, expr_t
, rtx
, expr_t
, bool*);
560 static int code_motion_path_driver (insn_t
, av_set_t
, ilist_t
,
561 cmpd_local_params_p
, void *);
562 static void sel_sched_region_1 (void);
563 static void sel_sched_region_2 (int);
564 static av_set_t
compute_av_set_inside_bb (insn_t
, ilist_t
, int, bool);
566 static void debug_state (state_t
);
569 /* Functions that work with fences. */
571 /* Advance one cycle on FENCE. */
573 advance_one_cycle (fence_t fence
)
579 advance_state (FENCE_STATE (fence
));
580 cycle
= ++FENCE_CYCLE (fence
);
581 FENCE_ISSUED_INSNS (fence
) = 0;
582 FENCE_STARTS_CYCLE_P (fence
) = 1;
583 can_issue_more
= issue_rate
;
584 FENCE_ISSUE_MORE (fence
) = can_issue_more
;
586 for (i
= 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence
), i
, &insn
); )
588 if (INSN_READY_CYCLE (insn
) < cycle
)
590 remove_from_deps (FENCE_DC (fence
), insn
);
591 FENCE_EXECUTING_INSNS (fence
)->unordered_remove (i
);
596 if (sched_verbose
>= 2)
598 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence
));
599 debug_state (FENCE_STATE (fence
));
603 /* Returns true when SUCC in a fallthru bb of INSN, possibly
604 skipping empty basic blocks. */
606 in_fallthru_bb_p (rtx_insn
*insn
, rtx succ
)
608 basic_block bb
= BLOCK_FOR_INSN (insn
);
611 if (bb
== BLOCK_FOR_INSN (succ
))
614 e
= find_fallthru_edge_from (bb
);
620 while (sel_bb_empty_p (bb
))
623 return bb
== BLOCK_FOR_INSN (succ
);
626 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
627 When a successor will continue a ebb, transfer all parameters of a fence
628 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
629 of scheduling helping to distinguish between the old and the new code. */
631 extract_new_fences_from (flist_t old_fences
, flist_tail_t new_fences
,
634 bool was_here_p
= false;
639 fence_t fence
= FLIST_FENCE (old_fences
);
642 /* Get the only element of FENCE_BNDS (fence). */
643 FOR_EACH_INSN (insn
, ii
, FENCE_BNDS (fence
))
645 gcc_assert (!was_here_p
);
648 gcc_assert (was_here_p
&& insn
!= NULL_RTX
);
650 /* When in the "middle" of the block, just move this fence
652 bb
= BLOCK_FOR_INSN (insn
);
653 if (! sel_bb_end_p (insn
)
654 || (single_succ_p (bb
)
655 && single_pred_p (single_succ (bb
))))
659 succ
= (sel_bb_end_p (insn
)
660 ? sel_bb_head (single_succ (bb
))
663 if (INSN_SEQNO (succ
) > 0
664 && INSN_SEQNO (succ
) <= orig_max_seqno
665 && INSN_SCHED_TIMES (succ
) <= 0)
667 FENCE_INSN (fence
) = succ
;
668 move_fence_to_fences (old_fences
, new_fences
);
670 if (sched_verbose
>= 1)
671 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
672 INSN_UID (insn
), INSN_UID (succ
), BLOCK_NUM (succ
));
677 /* Otherwise copy fence's structures to (possibly) multiple successors. */
678 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
680 int seqno
= INSN_SEQNO (succ
);
682 if (0 < seqno
&& seqno
<= orig_max_seqno
683 && (pipelining_p
|| INSN_SCHED_TIMES (succ
) <= 0))
685 bool b
= (in_same_ebb_p (insn
, succ
)
686 || in_fallthru_bb_p (insn
, succ
));
688 if (sched_verbose
>= 1)
689 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
690 INSN_UID (insn
), INSN_UID (succ
),
691 BLOCK_NUM (succ
), b
? "continue" : "reset");
694 add_dirty_fence_to_fences (new_fences
, succ
, fence
);
697 /* Mark block of the SUCC as head of the new ebb. */
698 bitmap_set_bit (forced_ebb_heads
, BLOCK_NUM (succ
));
699 add_clean_fence_to_fences (new_fences
, succ
, fence
);
706 /* Functions to support substitution. */
708 /* Returns whether INSN with dependence status DS is eligible for
709 substitution, i.e. it's a copy operation x := y, and RHS that is
710 moved up through this insn should be substituted. */
712 can_substitute_through_p (insn_t insn
, ds_t ds
)
714 /* We can substitute only true dependencies. */
715 if ((ds
& DEP_OUTPUT
)
718 || ! INSN_LHS (insn
))
721 /* Now we just need to make sure the INSN_RHS consists of only one
723 if (REG_P (INSN_LHS (insn
))
724 && REG_P (INSN_RHS (insn
)))
729 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
730 source (if INSN is eligible for substitution). Returns TRUE if
731 substitution was actually performed, FALSE otherwise. Substitution might
732 be not performed because it's either EXPR' vinsn doesn't contain INSN's
733 destination or the resulting insn is invalid for the target machine.
734 When UNDO is true, perform unsubstitution instead (the difference is in
735 the part of rtx on which validate_replace_rtx is called). */
737 substitute_reg_in_expr (expr_t expr
, insn_t insn
, bool undo
)
741 vinsn_t
*vi
= &EXPR_VINSN (expr
);
742 bool has_rhs
= VINSN_RHS (*vi
) != NULL
;
745 /* Do not try to replace in SET_DEST. Although we'll choose new
746 register for the RHS, we don't want to change RHS' original reg.
747 If the insn is not SET, we may still be able to substitute something
748 in it, and if we're here (don't have deps), it doesn't write INSN's
752 : &PATTERN (VINSN_INSN_RTX (*vi
)));
753 old
= undo
? INSN_RHS (insn
) : INSN_LHS (insn
);
755 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
756 if (rtx_ok_for_substitution_p (old
, *where
))
761 /* We should copy these rtxes before substitution. */
762 new_rtx
= copy_rtx (undo
? INSN_LHS (insn
) : INSN_RHS (insn
));
763 new_insn
= create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi
));
765 /* Where we'll replace.
766 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
767 used instead of SET_SRC. */
768 where_replace
= (has_rhs
769 ? &SET_SRC (PATTERN (new_insn
))
770 : &PATTERN (new_insn
));
773 = validate_replace_rtx_part_nosimplify (old
, new_rtx
, where_replace
,
776 /* ??? Actually, constrain_operands result depends upon choice of
777 destination register. E.g. if we allow single register to be an rhs,
778 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
779 in invalid insn dx=dx, so we'll loose this rhs here.
780 Just can't come up with significant testcase for this, so just
781 leaving it for now. */
784 change_vinsn_in_expr (expr
,
785 create_vinsn_from_insn_rtx (new_insn
, false));
787 /* Do not allow clobbering the address register of speculative
789 if ((EXPR_SPEC_DONE_DS (expr
) & SPECULATIVE
)
790 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr
)),
791 expr_dest_reg (expr
)))
792 EXPR_TARGET_AVAILABLE (expr
) = false;
803 /* Return the number of places WHAT appears within WHERE.
804 Bail out when we found a reference occupying several hard registers. */
806 count_occurrences_equiv (const_rtx what
, const_rtx where
)
809 subrtx_iterator::array_type array
;
810 FOR_EACH_SUBRTX (iter
, array
, where
, NONCONST
)
813 if (REG_P (x
) && REGNO (x
) == REGNO (what
))
815 /* Bail out if mode is different or more than one register is
817 if (GET_MODE (x
) != GET_MODE (what
) || REG_NREGS (x
) > 1)
821 else if (GET_CODE (x
) == SUBREG
822 && (!REG_P (SUBREG_REG (x
))
823 || REGNO (SUBREG_REG (x
)) == REGNO (what
)))
824 /* ??? Do not support substituting regs inside subregs. In that case,
825 simplify_subreg will be called by validate_replace_rtx, and
826 unsubstitution will fail later. */
832 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
834 rtx_ok_for_substitution_p (rtx what
, rtx where
)
836 return (count_occurrences_equiv (what
, where
) > 0);
840 /* Functions to support register renaming. */
842 /* Substitute VI's set source with REGNO. Returns newly created pattern
843 that has REGNO as its source. */
845 create_insn_rtx_with_rhs (vinsn_t vi
, rtx rhs_rtx
)
851 lhs_rtx
= copy_rtx (VINSN_LHS (vi
));
853 pattern
= gen_rtx_SET (lhs_rtx
, rhs_rtx
);
854 insn_rtx
= create_insn_rtx_from_pattern (pattern
, NULL_RTX
);
859 /* Returns whether INSN's src can be replaced with register number
860 NEW_SRC_REG. E.g. the following insn is valid for i386:
862 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
863 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
864 (reg:SI 0 ax [orig:770 c1 ] [770]))
865 (const_int 288 [0x120])) [0 str S1 A8])
866 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
869 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
870 because of operand constraints:
872 (define_insn "*movqi_1"
873 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
874 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
877 So do constrain_operands here, before choosing NEW_SRC_REG as best
881 replace_src_with_reg_ok_p (insn_t insn
, rtx new_src_reg
)
883 vinsn_t vi
= INSN_VINSN (insn
);
888 gcc_assert (VINSN_SEPARABLE_P (vi
));
890 get_dest_and_mode (insn
, &dst_loc
, &mode
);
891 gcc_assert (mode
== GET_MODE (new_src_reg
));
893 if (REG_P (dst_loc
) && REGNO (new_src_reg
) == REGNO (dst_loc
))
896 /* See whether SET_SRC can be replaced with this register. */
897 validate_change (insn
, &SET_SRC (PATTERN (insn
)), new_src_reg
, 1);
898 res
= verify_changes (0);
904 /* Returns whether INSN still be valid after replacing it's DEST with
907 replace_dest_with_reg_ok_p (insn_t insn
, rtx new_reg
)
909 vinsn_t vi
= INSN_VINSN (insn
);
912 /* We should deal here only with separable insns. */
913 gcc_assert (VINSN_SEPARABLE_P (vi
));
914 gcc_assert (GET_MODE (VINSN_LHS (vi
)) == GET_MODE (new_reg
));
916 /* See whether SET_DEST can be replaced with this register. */
917 validate_change (insn
, &SET_DEST (PATTERN (insn
)), new_reg
, 1);
918 res
= verify_changes (0);
924 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
926 create_insn_rtx_with_lhs (vinsn_t vi
, rtx lhs_rtx
)
932 rhs_rtx
= copy_rtx (VINSN_RHS (vi
));
934 pattern
= gen_rtx_SET (lhs_rtx
, rhs_rtx
);
935 insn_rtx
= create_insn_rtx_from_pattern (pattern
, NULL_RTX
);
940 /* Substitute lhs in the given expression EXPR for the register with number
941 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
943 replace_dest_with_reg_in_expr (expr_t expr
, rtx new_reg
)
948 insn_rtx
= create_insn_rtx_with_lhs (EXPR_VINSN (expr
), new_reg
);
949 vinsn
= create_vinsn_from_insn_rtx (insn_rtx
, false);
951 change_vinsn_in_expr (expr
, vinsn
);
952 EXPR_WAS_RENAMED (expr
) = 1;
953 EXPR_TARGET_AVAILABLE (expr
) = 1;
956 /* Returns whether VI writes either one of the USED_REGS registers or,
957 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
959 vinsn_writes_one_of_regs_p (vinsn_t vi
, regset used_regs
,
960 HARD_REG_SET unavailable_hard_regs
)
963 reg_set_iterator rsi
;
965 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi
), 0, regno
, rsi
)
967 if (REGNO_REG_SET_P (used_regs
, regno
))
969 if (HARD_REGISTER_NUM_P (regno
)
970 && TEST_HARD_REG_BIT (unavailable_hard_regs
, regno
))
974 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi
), 0, regno
, rsi
)
976 if (REGNO_REG_SET_P (used_regs
, regno
))
978 if (HARD_REGISTER_NUM_P (regno
)
979 && TEST_HARD_REG_BIT (unavailable_hard_regs
, regno
))
986 /* Returns register class of the output register in INSN.
987 Returns NO_REGS for call insns because some targets have constraints on
988 destination register of a call insn.
990 Code adopted from regrename.c::build_def_use. */
991 static enum reg_class
992 get_reg_class (rtx_insn
*insn
)
996 extract_constrain_insn (insn
);
997 preprocess_constraints (insn
);
998 n_ops
= recog_data
.n_operands
;
1000 const operand_alternative
*op_alt
= which_op_alt ();
1001 if (asm_noperands (PATTERN (insn
)) > 0)
1003 for (i
= 0; i
< n_ops
; i
++)
1004 if (recog_data
.operand_type
[i
] == OP_OUT
)
1006 rtx
*loc
= recog_data
.operand_loc
[i
];
1008 enum reg_class cl
= alternative_class (op_alt
, i
);
1011 && REGNO (op
) == ORIGINAL_REGNO (op
))
1017 else if (!CALL_P (insn
))
1019 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
1021 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
1022 enum reg_class cl
= alternative_class (op_alt
, opn
);
1024 if (recog_data
.operand_type
[opn
] == OP_OUT
||
1025 recog_data
.operand_type
[opn
] == OP_INOUT
)
1031 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1032 may result in returning NO_REGS, cause flags is written implicitly through
1033 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1037 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1039 init_hard_regno_rename (int regno
)
1043 SET_HARD_REG_BIT (sel_hrd
.regs_for_rename
[regno
], regno
);
1045 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1047 /* We are not interested in renaming in other regs. */
1048 if (!TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
))
1051 if (HARD_REGNO_RENAME_OK (regno
, cur_reg
))
1052 SET_HARD_REG_BIT (sel_hrd
.regs_for_rename
[regno
], cur_reg
);
1056 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1059 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED
, int to ATTRIBUTE_UNUSED
)
1061 /* Check whether this is all calculated. */
1062 if (TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], from
))
1063 return TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], to
);
1065 init_hard_regno_rename (from
);
1067 return TEST_HARD_REG_BIT (sel_hrd
.regs_for_rename
[from
], to
);
1070 /* Calculate set of registers that are capable of holding MODE. */
1072 init_regs_for_mode (machine_mode mode
)
1076 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_mode
[mode
]);
1077 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_call_clobbered
[mode
]);
1079 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1084 /* See whether it accepts all modes that occur in
1086 if (! HARD_REGNO_MODE_OK (cur_reg
, mode
))
1089 nregs
= hard_regno_nregs
[cur_reg
][mode
];
1091 for (i
= nregs
- 1; i
>= 0; --i
)
1092 if (fixed_regs
[cur_reg
+ i
]
1093 || global_regs
[cur_reg
+ i
]
1094 /* Can't use regs which aren't saved by
1096 || !TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
+ i
)
1097 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1098 it affects aliasing globally and invalidates all AV sets. */
1099 || get_reg_base_value (cur_reg
+ i
)
1100 #ifdef LEAF_REGISTERS
1101 /* We can't use a non-leaf register if we're in a
1104 && !LEAF_REGISTERS
[cur_reg
+ i
])
1112 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg
, mode
))
1113 SET_HARD_REG_BIT (sel_hrd
.regs_for_call_clobbered
[mode
],
1116 /* If the CUR_REG passed all the checks above,
1118 SET_HARD_REG_BIT (sel_hrd
.regs_for_mode
[mode
], cur_reg
);
1121 sel_hrd
.regs_for_mode_ok
[mode
] = true;
1124 /* Init all register sets gathered in HRD. */
1126 init_hard_regs_data (void)
1131 CLEAR_HARD_REG_SET (sel_hrd
.regs_ever_used
);
1132 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1133 if (df_regs_ever_live_p (cur_reg
) || call_used_regs
[cur_reg
])
1134 SET_HARD_REG_BIT (sel_hrd
.regs_ever_used
, cur_reg
);
1136 /* Initialize registers that are valid based on mode when this is
1138 for (cur_mode
= 0; cur_mode
< NUM_MACHINE_MODES
; cur_mode
++)
1139 sel_hrd
.regs_for_mode_ok
[cur_mode
] = false;
1141 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1142 for (cur_reg
= 0; cur_reg
< FIRST_PSEUDO_REGISTER
; cur_reg
++)
1143 CLEAR_HARD_REG_SET (sel_hrd
.regs_for_rename
[cur_reg
]);
1146 CLEAR_HARD_REG_SET (sel_hrd
.stack_regs
);
1148 for (cur_reg
= FIRST_STACK_REG
; cur_reg
<= LAST_STACK_REG
; cur_reg
++)
1149 SET_HARD_REG_BIT (sel_hrd
.stack_regs
, cur_reg
);
1153 /* Mark hardware regs in REG_RENAME_P that are not suitable
1154 for renaming rhs in INSN due to hardware restrictions (register class,
1155 modes compatibility etc). This doesn't affect original insn's dest reg,
1156 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1157 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1158 Registers that are in used_regs are always marked in
1159 unavailable_hard_regs as well. */
1162 mark_unavailable_hard_regs (def_t def
, struct reg_rename
*reg_rename_p
,
1163 regset used_regs ATTRIBUTE_UNUSED
)
1166 enum reg_class cl
= NO_REGS
;
1168 unsigned cur_reg
, regno
;
1169 hard_reg_set_iterator hrsi
;
1171 gcc_assert (GET_CODE (PATTERN (def
->orig_insn
)) == SET
);
1172 gcc_assert (reg_rename_p
);
1174 orig_dest
= SET_DEST (PATTERN (def
->orig_insn
));
1176 /* We have decided not to rename 'mem = something;' insns, as 'something'
1177 is usually a register. */
1178 if (!REG_P (orig_dest
))
1181 regno
= REGNO (orig_dest
);
1183 /* If before reload, don't try to work with pseudos. */
1184 if (!reload_completed
&& !HARD_REGISTER_NUM_P (regno
))
1187 if (reload_completed
)
1188 cl
= get_reg_class (def
->orig_insn
);
1190 /* Stop if the original register is one of the fixed_regs, global_regs or
1191 frame pointer, or we could not discover its class. */
1192 if (fixed_regs
[regno
]
1193 || global_regs
[regno
]
1194 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
&& frame_pointer_needed
1195 && regno
== HARD_FRAME_POINTER_REGNUM
)
1196 || (HARD_FRAME_POINTER_REGNUM
&& frame_pointer_needed
1197 && regno
== FRAME_POINTER_REGNUM
)
1198 || (reload_completed
&& cl
== NO_REGS
))
1200 SET_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
);
1202 /* Give a chance for original register, if it isn't in used_regs. */
1203 if (!def
->crosses_call
)
1204 CLEAR_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
, regno
);
1209 /* If something allocated on stack in this function, mark frame pointer
1210 register unavailable, considering also modes.
1211 FIXME: it is enough to do this once per all original defs. */
1212 if (frame_pointer_needed
)
1214 add_to_hard_reg_set (®_rename_p
->unavailable_hard_regs
,
1215 Pmode
, FRAME_POINTER_REGNUM
);
1217 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
1218 add_to_hard_reg_set (®_rename_p
->unavailable_hard_regs
,
1219 Pmode
, HARD_FRAME_POINTER_REGNUM
);
1223 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1224 is equivalent to as if all stack regs were in this set.
1225 I.e. no stack register can be renamed, and even if it's an original
1226 register here we make sure it won't be lifted over it's previous def
1227 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1228 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1229 if (IN_RANGE (REGNO (orig_dest
), FIRST_STACK_REG
, LAST_STACK_REG
)
1230 && REGNO_REG_SET_P (used_regs
, FIRST_STACK_REG
))
1231 IOR_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
,
1232 sel_hrd
.stack_regs
);
1235 /* If there's a call on this path, make regs from call_used_reg_set
1237 if (def
->crosses_call
)
1238 IOR_HARD_REG_SET (reg_rename_p
->unavailable_hard_regs
,
1241 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1242 but not register classes. */
1243 if (!reload_completed
)
1246 /* Leave regs as 'available' only from the current
1248 COPY_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1249 reg_class_contents
[cl
]);
1251 mode
= GET_MODE (orig_dest
);
1253 /* Leave only registers available for this mode. */
1254 if (!sel_hrd
.regs_for_mode_ok
[mode
])
1255 init_regs_for_mode (mode
);
1256 AND_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1257 sel_hrd
.regs_for_mode
[mode
]);
1259 /* Exclude registers that are partially call clobbered. */
1260 if (def
->crosses_call
1261 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
))
1262 AND_COMPL_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1263 sel_hrd
.regs_for_call_clobbered
[mode
]);
1265 /* Leave only those that are ok to rename. */
1266 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1272 nregs
= hard_regno_nregs
[cur_reg
][mode
];
1273 gcc_assert (nregs
> 0);
1275 for (i
= nregs
- 1; i
>= 0; --i
)
1276 if (! sel_hard_regno_rename_ok (regno
+ i
, cur_reg
+ i
))
1280 CLEAR_HARD_REG_BIT (reg_rename_p
->available_for_renaming
,
1284 AND_COMPL_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1285 reg_rename_p
->unavailable_hard_regs
);
1287 /* Regno is always ok from the renaming part of view, but it really
1288 could be in *unavailable_hard_regs already, so set it here instead
1290 SET_HARD_REG_BIT (reg_rename_p
->available_for_renaming
, regno
);
1293 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1294 best register more recently than REG2. */
1295 static int reg_rename_tick
[FIRST_PSEUDO_REGISTER
];
1297 /* Indicates the number of times renaming happened before the current one. */
1298 static int reg_rename_this_tick
;
1300 /* Choose the register among free, that is suitable for storing
1303 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1304 originally appears. There could be multiple original operations
1305 for single rhs since we moving it up and merging along different
1308 Some code is adapted from regrename.c (regrename_optimize).
1309 If original register is available, function returns it.
1310 Otherwise it performs the checks, so the new register should
1311 comply with the following:
1312 - it should not violate any live ranges (such registers are in
1313 REG_RENAME_P->available_for_renaming set);
1314 - it should not be in the HARD_REGS_USED regset;
1315 - it should be in the class compatible with original uses;
1316 - it should not be clobbered through reference with different mode;
1317 - if we're in the leaf function, then the new register should
1318 not be in the LEAF_REGISTERS;
1321 If several registers meet the conditions, the register with smallest
1322 tick is returned to achieve more even register allocation.
1324 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1326 If no register satisfies the above conditions, NULL_RTX is returned. */
1328 choose_best_reg_1 (HARD_REG_SET hard_regs_used
,
1329 struct reg_rename
*reg_rename_p
,
1330 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1334 machine_mode mode
= VOIDmode
;
1335 unsigned regno
, i
, n
;
1336 hard_reg_set_iterator hrsi
;
1337 def_list_iterator di
;
1340 /* If original register is available, return it. */
1341 *is_orig_reg_p_ptr
= true;
1343 FOR_EACH_DEF (def
, di
, original_insns
)
1345 rtx orig_dest
= SET_DEST (PATTERN (def
->orig_insn
));
1347 gcc_assert (REG_P (orig_dest
));
1349 /* Check that all original operations have the same mode.
1350 This is done for the next loop; if we'd return from this
1351 loop, we'd check only part of them, but in this case
1352 it doesn't matter. */
1353 if (mode
== VOIDmode
)
1354 mode
= GET_MODE (orig_dest
);
1355 gcc_assert (mode
== GET_MODE (orig_dest
));
1357 regno
= REGNO (orig_dest
);
1358 for (i
= 0, n
= hard_regno_nregs
[regno
][mode
]; i
< n
; i
++)
1359 if (TEST_HARD_REG_BIT (hard_regs_used
, regno
+ i
))
1362 /* All hard registers are available. */
1365 gcc_assert (mode
!= VOIDmode
);
1367 /* Hard registers should not be shared. */
1368 return gen_rtx_REG (mode
, regno
);
1372 *is_orig_reg_p_ptr
= false;
1375 /* Among all available regs choose the register that was
1376 allocated earliest. */
1377 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p
->available_for_renaming
,
1379 if (! TEST_HARD_REG_BIT (hard_regs_used
, cur_reg
))
1381 /* Check that all hard regs for mode are available. */
1382 for (i
= 1, n
= hard_regno_nregs
[cur_reg
][mode
]; i
< n
; i
++)
1383 if (TEST_HARD_REG_BIT (hard_regs_used
, cur_reg
+ i
)
1384 || !TEST_HARD_REG_BIT (reg_rename_p
->available_for_renaming
,
1391 /* All hard registers are available. */
1392 if (best_new_reg
< 0
1393 || reg_rename_tick
[cur_reg
] < reg_rename_tick
[best_new_reg
])
1395 best_new_reg
= cur_reg
;
1397 /* Return immediately when we know there's no better reg. */
1398 if (! reg_rename_tick
[best_new_reg
])
1403 if (best_new_reg
>= 0)
1405 /* Use the check from the above loop. */
1406 gcc_assert (mode
!= VOIDmode
);
1407 return gen_rtx_REG (mode
, best_new_reg
);
1413 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1414 assumptions about available registers in the function. */
1416 choose_best_reg (HARD_REG_SET hard_regs_used
, struct reg_rename
*reg_rename_p
,
1417 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1419 rtx best_reg
= choose_best_reg_1 (hard_regs_used
, reg_rename_p
,
1420 original_insns
, is_orig_reg_p_ptr
);
1422 /* FIXME loop over hard_regno_nregs here. */
1423 gcc_assert (best_reg
== NULL_RTX
1424 || TEST_HARD_REG_BIT (sel_hrd
.regs_ever_used
, REGNO (best_reg
)));
1429 /* Choose the pseudo register for storing rhs value. As this is supposed
1430 to work before reload, we return either the original register or make
1431 the new one. The parameters are the same that in choose_nest_reg_1
1432 functions, except that USED_REGS may contain pseudos.
1433 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1435 TODO: take into account register pressure while doing this. Up to this
1436 moment, this function would never return NULL for pseudos, but we should
1437 not rely on this. */
1439 choose_best_pseudo_reg (regset used_regs
,
1440 struct reg_rename
*reg_rename_p
,
1441 def_list_t original_insns
, bool *is_orig_reg_p_ptr
)
1443 def_list_iterator i
;
1445 machine_mode mode
= VOIDmode
;
1446 bool bad_hard_regs
= false;
1448 /* We should not use this after reload. */
1449 gcc_assert (!reload_completed
);
1451 /* If original register is available, return it. */
1452 *is_orig_reg_p_ptr
= true;
1454 FOR_EACH_DEF (def
, i
, original_insns
)
1456 rtx dest
= SET_DEST (PATTERN (def
->orig_insn
));
1459 gcc_assert (REG_P (dest
));
1461 /* Check that all original operations have the same mode. */
1462 if (mode
== VOIDmode
)
1463 mode
= GET_MODE (dest
);
1465 gcc_assert (mode
== GET_MODE (dest
));
1466 orig_regno
= REGNO (dest
);
1468 if (!REGNO_REG_SET_P (used_regs
, orig_regno
))
1470 if (orig_regno
< FIRST_PSEUDO_REGISTER
)
1472 gcc_assert (df_regs_ever_live_p (orig_regno
));
1474 /* For hard registers, we have to check hardware imposed
1475 limitations (frame/stack registers, calls crossed). */
1476 if (!TEST_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
,
1479 /* Don't let register cross a call if it doesn't already
1480 cross one. This condition is written in accordance with
1481 that in sched-deps.c sched_analyze_reg(). */
1482 if (!reg_rename_p
->crosses_call
1483 || REG_N_CALLS_CROSSED (orig_regno
) > 0)
1484 return gen_rtx_REG (mode
, orig_regno
);
1487 bad_hard_regs
= true;
1494 *is_orig_reg_p_ptr
= false;
1496 /* We had some original hard registers that couldn't be used.
1497 Those were likely special. Don't try to create a pseudo. */
1501 /* We haven't found a register from original operations. Get a new one.
1502 FIXME: control register pressure somehow. */
1504 rtx new_reg
= gen_reg_rtx (mode
);
1506 gcc_assert (mode
!= VOIDmode
);
1508 max_regno
= max_reg_num ();
1509 maybe_extend_reg_info_p ();
1510 REG_N_CALLS_CROSSED (REGNO (new_reg
)) = reg_rename_p
->crosses_call
? 1 : 0;
1516 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1517 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1519 verify_target_availability (expr_t expr
, regset used_regs
,
1520 struct reg_rename
*reg_rename_p
)
1522 unsigned n
, i
, regno
;
1524 bool target_available
, live_available
, hard_available
;
1526 if (!REG_P (EXPR_LHS (expr
)) || EXPR_TARGET_AVAILABLE (expr
) < 0)
1529 regno
= expr_dest_regno (expr
);
1530 mode
= GET_MODE (EXPR_LHS (expr
));
1531 target_available
= EXPR_TARGET_AVAILABLE (expr
) == 1;
1532 n
= HARD_REGISTER_NUM_P (regno
) ? hard_regno_nregs
[regno
][mode
] : 1;
1534 live_available
= hard_available
= true;
1535 for (i
= 0; i
< n
; i
++)
1537 if (bitmap_bit_p (used_regs
, regno
+ i
))
1538 live_available
= false;
1539 if (TEST_HARD_REG_BIT (reg_rename_p
->unavailable_hard_regs
, regno
+ i
))
1540 hard_available
= false;
1543 /* When target is not available, it may be due to hard register
1544 restrictions, e.g. crosses calls, so we check hard_available too. */
1545 if (target_available
)
1546 gcc_assert (live_available
);
1548 /* Check only if we haven't scheduled something on the previous fence,
1549 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1550 and having more than one fence, we may end having targ_un in a block
1551 in which successors target register is actually available.
1553 The last condition handles the case when a dependence from a call insn
1554 was created in sched-deps.c for insns with destination registers that
1555 never crossed a call before, but do cross one after our code motion.
1557 FIXME: in the latter case, we just uselessly called find_used_regs,
1558 because we can't move this expression with any other register
1560 gcc_assert (scheduled_something_on_previous_fence
|| !live_available
1562 || (!reload_completed
&& reg_rename_p
->crosses_call
1563 && REG_N_CALLS_CROSSED (regno
) == 0));
1566 /* Collect unavailable registers due to liveness for EXPR from BNDS
1567 into USED_REGS. Save additional information about available
1568 registers and unavailable due to hardware restriction registers
1569 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1572 collect_unavailable_regs_from_bnds (expr_t expr
, blist_t bnds
, regset used_regs
,
1573 struct reg_rename
*reg_rename_p
,
1574 def_list_t
*original_insns
)
1576 for (; bnds
; bnds
= BLIST_NEXT (bnds
))
1579 av_set_t orig_ops
= NULL
;
1580 bnd_t bnd
= BLIST_BND (bnds
);
1582 /* If the chosen best expr doesn't belong to current boundary,
1584 if (!av_set_is_in_p (BND_AV1 (bnd
), EXPR_VINSN (expr
)))
1587 /* Put in ORIG_OPS all exprs from this boundary that became
1589 orig_ops
= find_sequential_best_exprs (bnd
, expr
, false);
1591 /* Compute used regs and OR it into the USED_REGS. */
1592 res
= find_used_regs (BND_TO (bnd
), orig_ops
, used_regs
,
1593 reg_rename_p
, original_insns
);
1595 /* FIXME: the assert is true until we'd have several boundaries. */
1597 av_set_clear (&orig_ops
);
1601 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1602 If BEST_REG is valid, replace LHS of EXPR with it. */
1604 try_replace_dest_reg (ilist_t orig_insns
, rtx best_reg
, expr_t expr
)
1606 /* Try whether we'll be able to generate the insn
1607 'dest := best_reg' at the place of the original operation. */
1608 for (; orig_insns
; orig_insns
= ILIST_NEXT (orig_insns
))
1610 insn_t orig_insn
= DEF_LIST_DEF (orig_insns
)->orig_insn
;
1612 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn
)));
1614 if (REGNO (best_reg
) != REGNO (INSN_LHS (orig_insn
))
1615 && (! replace_src_with_reg_ok_p (orig_insn
, best_reg
)
1616 || ! replace_dest_with_reg_ok_p (orig_insn
, best_reg
)))
1620 /* Make sure that EXPR has the right destination
1622 if (expr_dest_regno (expr
) != REGNO (best_reg
))
1623 replace_dest_with_reg_in_expr (expr
, best_reg
);
1625 EXPR_TARGET_AVAILABLE (expr
) = 1;
1630 /* Select and assign best register to EXPR searching from BNDS.
1631 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1632 Return FALSE if no register can be chosen, which could happen when:
1633 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1634 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1635 that are used on the moving path. */
1637 find_best_reg_for_expr (expr_t expr
, blist_t bnds
, bool *is_orig_reg_p
)
1639 static struct reg_rename reg_rename_data
;
1642 def_list_t original_insns
= NULL
;
1645 *is_orig_reg_p
= false;
1647 /* Don't bother to do anything if this insn doesn't set any registers. */
1648 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr
)))
1649 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr
))))
1652 used_regs
= get_clear_regset_from_pool ();
1653 CLEAR_HARD_REG_SET (reg_rename_data
.unavailable_hard_regs
);
1655 collect_unavailable_regs_from_bnds (expr
, bnds
, used_regs
, ®_rename_data
,
1658 #ifdef ENABLE_CHECKING
1659 /* If after reload, make sure we're working with hard regs here. */
1660 if (reload_completed
)
1662 reg_set_iterator rsi
;
1665 EXECUTE_IF_SET_IN_REG_SET (used_regs
, FIRST_PSEUDO_REGISTER
, i
, rsi
)
1670 if (EXPR_SEPARABLE_P (expr
))
1672 rtx best_reg
= NULL_RTX
;
1673 /* Check that we have computed availability of a target register
1675 verify_target_availability (expr
, used_regs
, ®_rename_data
);
1677 /* Turn everything in hard regs after reload. */
1678 if (reload_completed
)
1680 HARD_REG_SET hard_regs_used
;
1681 REG_SET_TO_HARD_REG_SET (hard_regs_used
, used_regs
);
1683 /* Join hard registers unavailable due to register class
1684 restrictions and live range intersection. */
1685 IOR_HARD_REG_SET (hard_regs_used
,
1686 reg_rename_data
.unavailable_hard_regs
);
1688 best_reg
= choose_best_reg (hard_regs_used
, ®_rename_data
,
1689 original_insns
, is_orig_reg_p
);
1692 best_reg
= choose_best_pseudo_reg (used_regs
, ®_rename_data
,
1693 original_insns
, is_orig_reg_p
);
1697 else if (*is_orig_reg_p
)
1699 /* In case of unification BEST_REG may be different from EXPR's LHS
1700 when EXPR's LHS is unavailable, and there is another LHS among
1702 reg_ok
= try_replace_dest_reg (original_insns
, best_reg
, expr
);
1706 /* Forbid renaming of low-cost insns. */
1707 if (sel_vinsn_cost (EXPR_VINSN (expr
)) < 2)
1710 reg_ok
= try_replace_dest_reg (original_insns
, best_reg
, expr
);
1715 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1716 any of the HARD_REGS_USED set. */
1717 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr
), used_regs
,
1718 reg_rename_data
.unavailable_hard_regs
))
1721 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) <= 0);
1726 gcc_assert (EXPR_TARGET_AVAILABLE (expr
) != 0);
1730 ilist_clear (&original_insns
);
1731 return_regset_to_pool (used_regs
);
1737 /* Return true if dependence described by DS can be overcomed. */
1739 can_speculate_dep_p (ds_t ds
)
1741 if (spec_info
== NULL
)
1744 /* Leave only speculative data. */
1751 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1752 that we can overcome. */
1753 ds_t spec_mask
= spec_info
->mask
;
1755 if ((ds
& spec_mask
) != ds
)
1759 if (ds_weak (ds
) < spec_info
->data_weakness_cutoff
)
1765 /* Get a speculation check instruction.
1766 C_EXPR is a speculative expression,
1767 CHECK_DS describes speculations that should be checked,
1768 ORIG_INSN is the original non-speculative insn in the stream. */
1770 create_speculation_check (expr_t c_expr
, ds_t check_ds
, insn_t orig_insn
)
1775 basic_block recovery_block
;
1778 /* Create a recovery block if target is going to emit branchy check, or if
1779 ORIG_INSN was speculative already. */
1780 if (targetm
.sched
.needs_block_p (check_ds
)
1781 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn
)) != 0)
1783 recovery_block
= sel_create_recovery_block (orig_insn
);
1784 label
= BB_HEAD (recovery_block
);
1788 recovery_block
= NULL
;
1792 /* Get pattern of the check. */
1793 check_pattern
= targetm
.sched
.gen_spec_check (EXPR_INSN_RTX (c_expr
), label
,
1796 gcc_assert (check_pattern
!= NULL
);
1799 insn_rtx
= create_insn_rtx_from_pattern (check_pattern
, label
);
1801 insn
= sel_gen_insn_from_rtx_after (insn_rtx
, INSN_EXPR (orig_insn
),
1802 INSN_SEQNO (orig_insn
), orig_insn
);
1804 /* Make check to be non-speculative. */
1805 EXPR_SPEC_DONE_DS (INSN_EXPR (insn
)) = 0;
1806 INSN_SPEC_CHECKED_DS (insn
) = check_ds
;
1808 /* Decrease priority of check by difference of load/check instruction
1810 EXPR_PRIORITY (INSN_EXPR (insn
)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn
))
1811 - sel_vinsn_cost (INSN_VINSN (insn
)));
1813 /* Emit copy of original insn (though with replaced target register,
1814 if needed) to the recovery block. */
1815 if (recovery_block
!= NULL
)
1819 twin_rtx
= copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr
)));
1820 twin_rtx
= create_insn_rtx_from_pattern (twin_rtx
, NULL_RTX
);
1821 sel_gen_recovery_insn_from_rtx_after (twin_rtx
,
1822 INSN_EXPR (orig_insn
),
1824 bb_note (recovery_block
));
1827 /* If we've generated a data speculation check, make sure
1828 that all the bookkeeping instruction we'll create during
1829 this move_op () will allocate an ALAT entry so that the
1831 In case of control speculation we must convert C_EXPR to control
1832 speculative mode, because failing to do so will bring us an exception
1833 thrown by the non-control-speculative load. */
1834 check_ds
= ds_get_max_dep_weak (check_ds
);
1835 speculate_expr (c_expr
, check_ds
);
1840 /* True when INSN is a "regN = regN" copy. */
1842 identical_copy_p (rtx_insn
*insn
)
1846 pat
= PATTERN (insn
);
1848 if (GET_CODE (pat
) != SET
)
1851 lhs
= SET_DEST (pat
);
1855 rhs
= SET_SRC (pat
);
1859 return REGNO (lhs
) == REGNO (rhs
);
1862 /* Undo all transformations on *AV_PTR that were done when
1863 moving through INSN. */
1865 undo_transformations (av_set_t
*av_ptr
, rtx_insn
*insn
)
1867 av_set_iterator av_iter
;
1869 av_set_t new_set
= NULL
;
1871 /* First, kill any EXPR that uses registers set by an insn. This is
1872 required for correctness. */
1873 FOR_EACH_EXPR_1 (expr
, av_iter
, av_ptr
)
1874 if (!sched_insns_conditions_mutex_p (insn
, EXPR_INSN_RTX (expr
))
1875 && bitmap_intersect_p (INSN_REG_SETS (insn
),
1876 VINSN_REG_USES (EXPR_VINSN (expr
)))
1877 /* When an insn looks like 'r1 = r1', we could substitute through
1878 it, but the above condition will still hold. This happened with
1879 gcc.c-torture/execute/961125-1.c. */
1880 && !identical_copy_p (insn
))
1882 if (sched_verbose
>= 6)
1883 sel_print ("Expr %d removed due to use/set conflict\n",
1884 INSN_UID (EXPR_INSN_RTX (expr
)));
1885 av_set_iter_remove (&av_iter
);
1888 /* Undo transformations looking at the history vector. */
1889 FOR_EACH_EXPR (expr
, av_iter
, *av_ptr
)
1891 int index
= find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr
),
1892 insn
, EXPR_VINSN (expr
), true);
1896 expr_history_def
*phist
;
1898 phist
= &EXPR_HISTORY_OF_CHANGES (expr
)[index
];
1900 switch (phist
->type
)
1902 case TRANS_SPECULATION
:
1904 ds_t old_ds
, new_ds
;
1906 /* Compute the difference between old and new speculative
1907 statuses: that's what we need to check.
1908 Earlier we used to assert that the status will really
1909 change. This no longer works because only the probability
1910 bits in the status may have changed during compute_av_set,
1911 and in the case of merging different probabilities of the
1912 same speculative status along different paths we do not
1913 record this in the history vector. */
1914 old_ds
= phist
->spec_ds
;
1915 new_ds
= EXPR_SPEC_DONE_DS (expr
);
1917 old_ds
&= SPECULATIVE
;
1918 new_ds
&= SPECULATIVE
;
1921 EXPR_SPEC_TO_CHECK_DS (expr
) |= new_ds
;
1924 case TRANS_SUBSTITUTION
:
1926 expr_def _tmp_expr
, *tmp_expr
= &_tmp_expr
;
1930 new_vi
= phist
->old_expr_vinsn
;
1932 gcc_assert (VINSN_SEPARABLE_P (new_vi
)
1933 == EXPR_SEPARABLE_P (expr
));
1934 copy_expr (tmp_expr
, expr
);
1936 if (vinsn_equal_p (phist
->new_expr_vinsn
,
1937 EXPR_VINSN (tmp_expr
)))
1938 change_vinsn_in_expr (tmp_expr
, new_vi
);
1940 /* This happens when we're unsubstituting on a bookkeeping
1941 copy, which was in turn substituted. The history is wrong
1942 in this case. Do it the hard way. */
1943 add
= substitute_reg_in_expr (tmp_expr
, insn
, true);
1945 av_set_add (&new_set
, tmp_expr
);
1946 clear_expr (tmp_expr
);
1956 av_set_union_and_clear (av_ptr
, &new_set
, NULL
);
1960 /* Moveup_* helpers for code motion and computing av sets. */
1962 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1963 The difference from the below function is that only substitution is
1965 static enum MOVEUP_EXPR_CODE
1966 moveup_expr_inside_insn_group (expr_t expr
, insn_t through_insn
)
1968 vinsn_t vi
= EXPR_VINSN (expr
);
1972 /* Do this only inside insn group. */
1973 gcc_assert (INSN_SCHED_CYCLE (through_insn
) > 0);
1975 full_ds
= has_dependence_p (expr
, through_insn
, &has_dep_p
);
1977 return MOVEUP_EXPR_SAME
;
1979 /* Substitution is the possible choice in this case. */
1980 if (has_dep_p
[DEPS_IN_RHS
])
1982 /* Can't substitute UNIQUE VINSNs. */
1983 gcc_assert (!VINSN_UNIQUE_P (vi
));
1985 if (can_substitute_through_p (through_insn
,
1986 has_dep_p
[DEPS_IN_RHS
])
1987 && substitute_reg_in_expr (expr
, through_insn
, false))
1989 EXPR_WAS_SUBSTITUTED (expr
) = true;
1990 return MOVEUP_EXPR_CHANGED
;
1993 /* Don't care about this, as even true dependencies may be allowed
1994 in an insn group. */
1995 return MOVEUP_EXPR_SAME
;
1998 /* This can catch output dependencies in COND_EXECs. */
1999 if (has_dep_p
[DEPS_IN_INSN
])
2000 return MOVEUP_EXPR_NULL
;
2002 /* This is either an output or an anti dependence, which usually have
2003 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2005 gcc_assert (has_dep_p
[DEPS_IN_LHS
]);
2006 return MOVEUP_EXPR_AS_RHS
;
2009 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2010 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2011 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2012 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2013 && !sel_insn_is_speculation_check (through_insn))
2015 /* True when a conflict on a target register was found during moveup_expr. */
2016 static bool was_target_conflict
= false;
2018 /* Return true when moving a debug INSN across THROUGH_INSN will
2019 create a bookkeeping block. We don't want to create such blocks,
2020 for they would cause codegen differences between compilations with
2021 and without debug info. */
2024 moving_insn_creates_bookkeeping_block_p (insn_t insn
,
2025 insn_t through_insn
)
2027 basic_block bbi
, bbt
;
2029 edge_iterator ei1
, ei2
;
2031 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn
))
2033 if (sched_verbose
>= 9)
2034 sel_print ("no bookkeeping required: ");
2038 bbi
= BLOCK_FOR_INSN (insn
);
2040 if (EDGE_COUNT (bbi
->preds
) == 1)
2042 if (sched_verbose
>= 9)
2043 sel_print ("only one pred edge: ");
2047 bbt
= BLOCK_FOR_INSN (through_insn
);
2049 FOR_EACH_EDGE (e1
, ei1
, bbt
->succs
)
2051 FOR_EACH_EDGE (e2
, ei2
, bbi
->preds
)
2053 if (find_block_for_bookkeeping (e1
, e2
, TRUE
))
2055 if (sched_verbose
>= 9)
2056 sel_print ("found existing block: ");
2062 if (sched_verbose
>= 9)
2063 sel_print ("would create bookkeeping block: ");
2068 /* Return true when the conflict with newly created implicit clobbers
2069 between EXPR and THROUGH_INSN is found because of renaming. */
2071 implicit_clobber_conflict_p (insn_t through_insn
, expr_t expr
)
2076 hard_reg_set_iterator hrsi
;
2080 /* Make a new pseudo register. */
2081 reg
= gen_reg_rtx (GET_MODE (EXPR_LHS (expr
)));
2082 max_regno
= max_reg_num ();
2083 maybe_extend_reg_info_p ();
2085 /* Validate a change and bail out early. */
2086 insn
= EXPR_INSN_RTX (expr
);
2087 validate_change (insn
, &SET_DEST (PATTERN (insn
)), reg
, true);
2088 valid
= verify_changes (0);
2092 if (sched_verbose
>= 6)
2093 sel_print ("implicit clobbers failed validation, ");
2097 /* Make a new insn with it. */
2098 rhs
= copy_rtx (VINSN_RHS (EXPR_VINSN (expr
)));
2099 pat
= gen_rtx_SET (reg
, rhs
);
2101 insn
= emit_insn (pat
);
2104 /* Calculate implicit clobbers. */
2105 extract_insn (insn
);
2106 preprocess_constraints (insn
);
2107 ira_implicitly_set_insn_hard_regs (&temp
);
2108 AND_COMPL_HARD_REG_SET (temp
, ira_no_alloc_regs
);
2110 /* If any implicit clobber registers intersect with regular ones in
2111 through_insn, we have a dependency and thus bail out. */
2112 EXECUTE_IF_SET_IN_HARD_REG_SET (temp
, 0, regno
, hrsi
)
2114 vinsn_t vi
= INSN_VINSN (through_insn
);
2115 if (bitmap_bit_p (VINSN_REG_SETS (vi
), regno
)
2116 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi
), regno
)
2117 || bitmap_bit_p (VINSN_REG_USES (vi
), regno
))
2124 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2125 performing necessary transformations. Record the type of transformation
2126 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2127 permit all dependencies except true ones, and try to remove those
2128 too via forward substitution. All cases when a non-eliminable
2129 non-zero cost dependency exists inside an insn group will be fixed
2130 in tick_check_p instead. */
2131 static enum MOVEUP_EXPR_CODE
2132 moveup_expr (expr_t expr
, insn_t through_insn
, bool inside_insn_group
,
2133 enum local_trans_type
*ptrans_type
)
2135 vinsn_t vi
= EXPR_VINSN (expr
);
2136 insn_t insn
= VINSN_INSN_RTX (vi
);
2137 bool was_changed
= false;
2138 bool as_rhs
= false;
2142 /* ??? We use dependencies of non-debug insns on debug insns to
2143 indicate that the debug insns need to be reset if the non-debug
2144 insn is pulled ahead of it. It's hard to figure out how to
2145 introduce such a notion in sel-sched, but it already fails to
2146 support debug insns in other ways, so we just go ahead and
2147 let the deug insns go corrupt for now. */
2148 if (DEBUG_INSN_P (through_insn
) && !DEBUG_INSN_P (insn
))
2149 return MOVEUP_EXPR_SAME
;
2151 /* When inside_insn_group, delegate to the helper. */
2152 if (inside_insn_group
)
2153 return moveup_expr_inside_insn_group (expr
, through_insn
);
2155 /* Deal with unique insns and control dependencies. */
2156 if (VINSN_UNIQUE_P (vi
))
2158 /* We can move jumps without side-effects or jumps that are
2159 mutually exclusive with instruction THROUGH_INSN (all in cases
2160 dependencies allow to do so and jump is not speculative). */
2161 if (control_flow_insn_p (insn
))
2163 basic_block fallthru_bb
;
2165 /* Do not move checks and do not move jumps through other
2167 if (control_flow_insn_p (through_insn
)
2168 || sel_insn_is_speculation_check (insn
))
2169 return MOVEUP_EXPR_NULL
;
2171 /* Don't move jumps through CFG joins. */
2172 if (bookkeeping_can_be_created_if_moved_through_p (through_insn
))
2173 return MOVEUP_EXPR_NULL
;
2175 /* The jump should have a clear fallthru block, and
2176 this block should be in the current region. */
2177 if ((fallthru_bb
= fallthru_bb_of_jump (insn
)) == NULL
2178 || ! in_current_region_p (fallthru_bb
))
2179 return MOVEUP_EXPR_NULL
;
2181 /* And it should be mutually exclusive with through_insn. */
2182 if (! sched_insns_conditions_mutex_p (insn
, through_insn
)
2183 && ! DEBUG_INSN_P (through_insn
))
2184 return MOVEUP_EXPR_NULL
;
2187 /* Don't move what we can't move. */
2188 if (EXPR_CANT_MOVE (expr
)
2189 && BLOCK_FOR_INSN (through_insn
) != BLOCK_FOR_INSN (insn
))
2190 return MOVEUP_EXPR_NULL
;
2192 /* Don't move SCHED_GROUP instruction through anything.
2193 If we don't force this, then it will be possible to start
2194 scheduling a sched_group before all its dependencies are
2196 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2197 as late as possible through rank_for_schedule. */
2198 if (SCHED_GROUP_P (insn
))
2199 return MOVEUP_EXPR_NULL
;
2202 gcc_assert (!control_flow_insn_p (insn
));
2204 /* Don't move debug insns if this would require bookkeeping. */
2205 if (DEBUG_INSN_P (insn
)
2206 && BLOCK_FOR_INSN (through_insn
) != BLOCK_FOR_INSN (insn
)
2207 && moving_insn_creates_bookkeeping_block_p (insn
, through_insn
))
2208 return MOVEUP_EXPR_NULL
;
2210 /* Deal with data dependencies. */
2211 was_target_conflict
= false;
2212 full_ds
= has_dependence_p (expr
, through_insn
, &has_dep_p
);
2215 if (!CANT_MOVE_TRAPPING (expr
, through_insn
))
2216 return MOVEUP_EXPR_SAME
;
2220 /* We can move UNIQUE insn up only as a whole and unchanged,
2221 so it shouldn't have any dependencies. */
2222 if (VINSN_UNIQUE_P (vi
))
2223 return MOVEUP_EXPR_NULL
;
2226 if (full_ds
!= 0 && can_speculate_dep_p (full_ds
))
2230 res
= speculate_expr (expr
, full_ds
);
2233 /* Speculation was successful. */
2235 was_changed
= (res
> 0);
2237 was_target_conflict
= true;
2239 *ptrans_type
= TRANS_SPECULATION
;
2240 sel_clear_has_dependence ();
2244 if (has_dep_p
[DEPS_IN_INSN
])
2245 /* We have some dependency that cannot be discarded. */
2246 return MOVEUP_EXPR_NULL
;
2248 if (has_dep_p
[DEPS_IN_LHS
])
2250 /* Only separable insns can be moved up with the new register.
2251 Anyways, we should mark that the original register is
2253 if (!enable_schedule_as_rhs_p
|| !EXPR_SEPARABLE_P (expr
))
2254 return MOVEUP_EXPR_NULL
;
2256 /* When renaming a hard register to a pseudo before reload, extra
2257 dependencies can occur from the implicit clobbers of the insn.
2258 Filter out such cases here. */
2259 if (!reload_completed
&& REG_P (EXPR_LHS (expr
))
2260 && HARD_REGISTER_P (EXPR_LHS (expr
))
2261 && implicit_clobber_conflict_p (through_insn
, expr
))
2263 if (sched_verbose
>= 6)
2264 sel_print ("implicit clobbers conflict detected, ");
2265 return MOVEUP_EXPR_NULL
;
2267 EXPR_TARGET_AVAILABLE (expr
) = false;
2268 was_target_conflict
= true;
2272 /* At this point we have either separable insns, that will be lifted
2273 up only as RHSes, or non-separable insns with no dependency in lhs.
2274 If dependency is in RHS, then try to perform substitution and move up
2281 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2282 moved above y=x assignment as z=x*2.
2284 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2285 side can be moved because of the output dependency. The operation was
2286 cropped to its rhs above. */
2287 if (has_dep_p
[DEPS_IN_RHS
])
2289 ds_t
*rhs_dsp
= &has_dep_p
[DEPS_IN_RHS
];
2291 /* Can't substitute UNIQUE VINSNs. */
2292 gcc_assert (!VINSN_UNIQUE_P (vi
));
2294 if (can_speculate_dep_p (*rhs_dsp
))
2298 res
= speculate_expr (expr
, *rhs_dsp
);
2301 /* Speculation was successful. */
2303 was_changed
= (res
> 0);
2305 was_target_conflict
= true;
2307 *ptrans_type
= TRANS_SPECULATION
;
2310 return MOVEUP_EXPR_NULL
;
2312 else if (can_substitute_through_p (through_insn
,
2314 && substitute_reg_in_expr (expr
, through_insn
, false))
2316 /* ??? We cannot perform substitution AND speculation on the same
2318 gcc_assert (!was_changed
);
2321 *ptrans_type
= TRANS_SUBSTITUTION
;
2322 EXPR_WAS_SUBSTITUTED (expr
) = true;
2325 return MOVEUP_EXPR_NULL
;
2328 /* Don't move trapping insns through jumps.
2329 This check should be at the end to give a chance to control speculation
2330 to perform its duties. */
2331 if (CANT_MOVE_TRAPPING (expr
, through_insn
))
2332 return MOVEUP_EXPR_NULL
;
2335 ? MOVEUP_EXPR_CHANGED
2337 ? MOVEUP_EXPR_AS_RHS
2338 : MOVEUP_EXPR_SAME
));
2341 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2342 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2343 that can exist within a parallel group. Write to RES the resulting
2344 code for moveup_expr. */
2346 try_bitmap_cache (expr_t expr
, insn_t insn
,
2347 bool inside_insn_group
,
2348 enum MOVEUP_EXPR_CODE
*res
)
2350 int expr_uid
= INSN_UID (EXPR_INSN_RTX (expr
));
2352 /* First check whether we've analyzed this situation already. */
2353 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn
), expr_uid
))
2355 if (bitmap_bit_p (INSN_FOUND_DEPS (insn
), expr_uid
))
2357 if (sched_verbose
>= 6)
2358 sel_print ("removed (cached)\n");
2359 *res
= MOVEUP_EXPR_NULL
;
2364 if (sched_verbose
>= 6)
2365 sel_print ("unchanged (cached)\n");
2366 *res
= MOVEUP_EXPR_SAME
;
2370 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn
), expr_uid
))
2372 if (inside_insn_group
)
2374 if (sched_verbose
>= 6)
2375 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2376 *res
= MOVEUP_EXPR_SAME
;
2381 EXPR_TARGET_AVAILABLE (expr
) = false;
2383 /* This is the only case when propagation result can change over time,
2384 as we can dynamically switch off scheduling as RHS. In this case,
2385 just check the flag to reach the correct decision. */
2386 if (enable_schedule_as_rhs_p
)
2388 if (sched_verbose
>= 6)
2389 sel_print ("unchanged (as RHS, cached)\n");
2390 *res
= MOVEUP_EXPR_AS_RHS
;
2395 if (sched_verbose
>= 6)
2396 sel_print ("removed (cached as RHS, but renaming"
2397 " is now disabled)\n");
2398 *res
= MOVEUP_EXPR_NULL
;
2406 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2407 if successful. Write to RES the resulting code for moveup_expr. */
2409 try_transformation_cache (expr_t expr
, insn_t insn
,
2410 enum MOVEUP_EXPR_CODE
*res
)
2412 struct transformed_insns
*pti
2413 = (struct transformed_insns
*)
2414 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn
),
2416 VINSN_HASH_RTX (EXPR_VINSN (expr
)));
2419 /* This EXPR was already moved through this insn and was
2420 changed as a result. Fetch the proper data from
2422 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2423 INSN_UID (insn
), pti
->type
,
2424 pti
->vinsn_old
, pti
->vinsn_new
,
2425 EXPR_SPEC_DONE_DS (expr
));
2427 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti
->vinsn_new
)))
2428 pti
->vinsn_new
= vinsn_copy (pti
->vinsn_new
, true);
2429 change_vinsn_in_expr (expr
, pti
->vinsn_new
);
2430 if (pti
->was_target_conflict
)
2431 EXPR_TARGET_AVAILABLE (expr
) = false;
2432 if (pti
->type
== TRANS_SPECULATION
)
2434 EXPR_SPEC_DONE_DS (expr
) = pti
->ds
;
2435 EXPR_NEEDS_SPEC_CHECK_P (expr
) |= pti
->needs_check
;
2438 if (sched_verbose
>= 6)
2440 sel_print ("changed (cached): ");
2445 *res
= MOVEUP_EXPR_CHANGED
;
2452 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2454 update_bitmap_cache (expr_t expr
, insn_t insn
, bool inside_insn_group
,
2455 enum MOVEUP_EXPR_CODE res
)
2457 int expr_uid
= INSN_UID (EXPR_INSN_RTX (expr
));
2459 /* Do not cache result of propagating jumps through an insn group,
2460 as it is always true, which is not useful outside the group. */
2461 if (inside_insn_group
)
2464 if (res
== MOVEUP_EXPR_NULL
)
2466 bitmap_set_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2467 bitmap_set_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2469 else if (res
== MOVEUP_EXPR_SAME
)
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2472 bitmap_clear_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2474 else if (res
== MOVEUP_EXPR_AS_RHS
)
2476 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn
), expr_uid
);
2477 bitmap_set_bit (INSN_FOUND_DEPS (insn
), expr_uid
);
2483 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2484 and transformation type TRANS_TYPE. */
2486 update_transformation_cache (expr_t expr
, insn_t insn
,
2487 bool inside_insn_group
,
2488 enum local_trans_type trans_type
,
2489 vinsn_t expr_old_vinsn
)
2491 struct transformed_insns
*pti
;
2493 if (inside_insn_group
)
2496 pti
= XNEW (struct transformed_insns
);
2497 pti
->vinsn_old
= expr_old_vinsn
;
2498 pti
->vinsn_new
= EXPR_VINSN (expr
);
2499 pti
->type
= trans_type
;
2500 pti
->was_target_conflict
= was_target_conflict
;
2501 pti
->ds
= EXPR_SPEC_DONE_DS (expr
);
2502 pti
->needs_check
= EXPR_NEEDS_SPEC_CHECK_P (expr
);
2503 vinsn_attach (pti
->vinsn_old
);
2504 vinsn_attach (pti
->vinsn_new
);
2505 *((struct transformed_insns
**)
2506 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn
),
2507 pti
, VINSN_HASH_RTX (expr_old_vinsn
),
2511 /* Same as moveup_expr, but first looks up the result of
2512 transformation in caches. */
2513 static enum MOVEUP_EXPR_CODE
2514 moveup_expr_cached (expr_t expr
, insn_t insn
, bool inside_insn_group
)
2516 enum MOVEUP_EXPR_CODE res
;
2517 bool got_answer
= false;
2519 if (sched_verbose
>= 6)
2521 sel_print ("Moving ");
2523 sel_print (" through %d: ", INSN_UID (insn
));
2526 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr
))
2527 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr
)))
2528 == EXPR_INSN_RTX (expr
)))
2529 /* Don't use cached information for debug insns that are heads of
2531 else if (try_bitmap_cache (expr
, insn
, inside_insn_group
, &res
))
2532 /* When inside insn group, we do not want remove stores conflicting
2533 with previosly issued loads. */
2534 got_answer
= ! inside_insn_group
|| res
!= MOVEUP_EXPR_NULL
;
2535 else if (try_transformation_cache (expr
, insn
, &res
))
2540 /* Invoke moveup_expr and record the results. */
2541 vinsn_t expr_old_vinsn
= EXPR_VINSN (expr
);
2542 ds_t expr_old_spec_ds
= EXPR_SPEC_DONE_DS (expr
);
2543 int expr_uid
= INSN_UID (VINSN_INSN_RTX (expr_old_vinsn
));
2544 bool unique_p
= VINSN_UNIQUE_P (expr_old_vinsn
);
2545 enum local_trans_type trans_type
= TRANS_SUBSTITUTION
;
2547 /* ??? Invent something better than this. We can't allow old_vinsn
2548 to go, we need it for the history vector. */
2549 vinsn_attach (expr_old_vinsn
);
2551 res
= moveup_expr (expr
, insn
, inside_insn_group
,
2555 case MOVEUP_EXPR_NULL
:
2556 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2557 if (sched_verbose
>= 6)
2558 sel_print ("removed\n");
2561 case MOVEUP_EXPR_SAME
:
2562 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2563 if (sched_verbose
>= 6)
2564 sel_print ("unchanged\n");
2567 case MOVEUP_EXPR_AS_RHS
:
2568 gcc_assert (!unique_p
|| inside_insn_group
);
2569 update_bitmap_cache (expr
, insn
, inside_insn_group
, res
);
2570 if (sched_verbose
>= 6)
2571 sel_print ("unchanged (as RHS)\n");
2574 case MOVEUP_EXPR_CHANGED
:
2575 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr
)) != expr_uid
2576 || EXPR_SPEC_DONE_DS (expr
) != expr_old_spec_ds
);
2577 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr
),
2578 INSN_UID (insn
), trans_type
,
2579 expr_old_vinsn
, EXPR_VINSN (expr
),
2581 update_transformation_cache (expr
, insn
, inside_insn_group
,
2582 trans_type
, expr_old_vinsn
);
2583 if (sched_verbose
>= 6)
2585 sel_print ("changed: ");
2594 vinsn_detach (expr_old_vinsn
);
2600 /* Moves an av set AVP up through INSN, performing necessary
2603 moveup_set_expr (av_set_t
*avp
, insn_t insn
, bool inside_insn_group
)
2608 FOR_EACH_EXPR_1 (expr
, i
, avp
)
2611 switch (moveup_expr_cached (expr
, insn
, inside_insn_group
))
2613 case MOVEUP_EXPR_SAME
:
2614 case MOVEUP_EXPR_AS_RHS
:
2617 case MOVEUP_EXPR_NULL
:
2618 av_set_iter_remove (&i
);
2621 case MOVEUP_EXPR_CHANGED
:
2622 expr
= merge_with_other_exprs (avp
, &i
, expr
);
2631 /* Moves AVP set along PATH. */
2633 moveup_set_inside_insn_group (av_set_t
*avp
, ilist_t path
)
2637 if (sched_verbose
>= 6)
2638 sel_print ("Moving expressions up in the insn group...\n");
2641 last_cycle
= INSN_SCHED_CYCLE (ILIST_INSN (path
));
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path
)) == last_cycle
)
2645 moveup_set_expr (avp
, ILIST_INSN (path
), true);
2646 path
= ILIST_NEXT (path
);
2650 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2652 equal_after_moveup_path_p (expr_t expr
, ilist_t path
, expr_t expr_vliw
)
2654 expr_def _tmp
, *tmp
= &_tmp
;
2658 copy_expr_onside (tmp
, expr
);
2659 last_cycle
= path
? INSN_SCHED_CYCLE (ILIST_INSN (path
)) : 0;
2662 && INSN_SCHED_CYCLE (ILIST_INSN (path
)) == last_cycle
)
2664 res
= (moveup_expr_cached (tmp
, ILIST_INSN (path
), true)
2665 != MOVEUP_EXPR_NULL
);
2666 path
= ILIST_NEXT (path
);
2671 vinsn_t tmp_vinsn
= EXPR_VINSN (tmp
);
2672 vinsn_t expr_vliw_vinsn
= EXPR_VINSN (expr_vliw
);
2674 if (tmp_vinsn
!= expr_vliw_vinsn
)
2675 res
= vinsn_equal_p (tmp_vinsn
, expr_vliw_vinsn
);
2683 /* Functions that compute av and lv sets. */
2685 /* Returns true if INSN is not a downward continuation of the given path P in
2686 the current stage. */
2688 is_ineligible_successor (insn_t insn
, ilist_t p
)
2692 /* Check if insn is not deleted. */
2693 if (PREV_INSN (insn
) && NEXT_INSN (PREV_INSN (insn
)) != insn
)
2695 else if (NEXT_INSN (insn
) && PREV_INSN (NEXT_INSN (insn
)) != insn
)
2698 /* If it's the first insn visited, then the successor is ok. */
2702 prev_insn
= ILIST_INSN (p
);
2704 if (/* a backward edge. */
2705 INSN_SEQNO (insn
) < INSN_SEQNO (prev_insn
)
2706 /* is already visited. */
2707 || (INSN_SEQNO (insn
) == INSN_SEQNO (prev_insn
)
2708 && (ilist_is_in_p (p
, insn
)
2709 /* We can reach another fence here and still seqno of insn
2710 would be equal to seqno of prev_insn. This is possible
2711 when prev_insn is a previously created bookkeeping copy.
2712 In that case it'd get a seqno of insn. Thus, check here
2713 whether insn is in current fence too. */
2714 || IN_CURRENT_FENCE_P (insn
)))
2715 /* Was already scheduled on this round. */
2716 || (INSN_SEQNO (insn
) > INSN_SEQNO (prev_insn
)
2717 && IN_CURRENT_FENCE_P (insn
))
2718 /* An insn from another fence could also be
2719 scheduled earlier even if this insn is not in
2720 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2722 && INSN_SCHED_TIMES (insn
) > 0))
2728 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2729 of handling multiple successors and properly merging its av_sets. P is
2730 the current path traversed. WS is the size of lookahead window.
2731 Return the av set computed. */
2733 compute_av_set_at_bb_end (insn_t insn
, ilist_t p
, int ws
)
2735 struct succs_info
*sinfo
;
2736 av_set_t expr_in_all_succ_branches
= NULL
;
2738 insn_t succ
, zero_succ
= NULL
;
2739 av_set_t av1
= NULL
;
2741 gcc_assert (sel_bb_end_p (insn
));
2743 /* Find different kind of successors needed for correct computing of
2744 SPEC and TARGET_AVAILABLE attributes. */
2745 sinfo
= compute_succs_info (insn
, SUCCS_NORMAL
);
2748 if (sched_verbose
>= 6)
2750 sel_print ("successors of bb end (%d): ", INSN_UID (insn
));
2751 dump_insn_vector (sinfo
->succs_ok
);
2753 if (sinfo
->succs_ok_n
!= sinfo
->all_succs_n
)
2754 sel_print ("real successors num: %d\n", sinfo
->all_succs_n
);
2757 /* Add insn to the tail of current path. */
2758 ilist_add (&p
, insn
);
2760 FOR_EACH_VEC_ELT (sinfo
->succs_ok
, is
, succ
)
2764 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2765 succ_set
= compute_av_set_inside_bb (succ
, p
, ws
, true);
2767 av_set_split_usefulness (succ_set
,
2768 sinfo
->probs_ok
[is
],
2771 if (sinfo
->all_succs_n
> 1)
2773 /* Find EXPR'es that came from *all* successors and save them
2774 into expr_in_all_succ_branches. This set will be used later
2775 for calculating speculation attributes of EXPR'es. */
2778 expr_in_all_succ_branches
= av_set_copy (succ_set
);
2780 /* Remember the first successor for later. */
2788 FOR_EACH_EXPR_1 (expr
, i
, &expr_in_all_succ_branches
)
2789 if (!av_set_is_in_p (succ_set
, EXPR_VINSN (expr
)))
2790 av_set_iter_remove (&i
);
2794 /* Union the av_sets. Check liveness restrictions on target registers
2795 in special case of two successors. */
2796 if (sinfo
->succs_ok_n
== 2 && is
== 1)
2798 basic_block bb0
= BLOCK_FOR_INSN (zero_succ
);
2799 basic_block bb1
= BLOCK_FOR_INSN (succ
);
2801 gcc_assert (BB_LV_SET_VALID_P (bb0
) && BB_LV_SET_VALID_P (bb1
));
2802 av_set_union_and_live (&av1
, &succ_set
,
2808 av_set_union_and_clear (&av1
, &succ_set
, insn
);
2811 /* Check liveness restrictions via hard way when there are more than
2813 if (sinfo
->succs_ok_n
> 2)
2814 FOR_EACH_VEC_ELT (sinfo
->succs_ok
, is
, succ
)
2816 basic_block succ_bb
= BLOCK_FOR_INSN (succ
);
2818 gcc_assert (BB_LV_SET_VALID_P (succ_bb
));
2819 mark_unavailable_targets (av1
, BB_AV_SET (succ_bb
),
2820 BB_LV_SET (succ_bb
));
2823 /* Finally, check liveness restrictions on paths leaving the region. */
2824 if (sinfo
->all_succs_n
> sinfo
->succs_ok_n
)
2825 FOR_EACH_VEC_ELT (sinfo
->succs_other
, is
, succ
)
2826 mark_unavailable_targets
2827 (av1
, NULL
, BB_LV_SET (BLOCK_FOR_INSN (succ
)));
2829 if (sinfo
->all_succs_n
> 1)
2834 /* Increase the spec attribute of all EXPR'es that didn't come
2835 from all successors. */
2836 FOR_EACH_EXPR (expr
, i
, av1
)
2837 if (!av_set_is_in_p (expr_in_all_succ_branches
, EXPR_VINSN (expr
)))
2840 av_set_clear (&expr_in_all_succ_branches
);
2842 /* Do not move conditional branches through other
2843 conditional branches. So, remove all conditional
2844 branches from av_set if current operator is a conditional
2846 av_set_substract_cond_branches (&av1
);
2850 free_succs_info (sinfo
);
2852 if (sched_verbose
>= 6)
2854 sel_print ("av_succs (%d): ", INSN_UID (insn
));
2862 /* This function computes av_set for the FIRST_INSN by dragging valid
2863 av_set through all basic block insns either from the end of basic block
2864 (computed using compute_av_set_at_bb_end) or from the insn on which
2865 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2866 below the basic block and handling conditional branches.
2867 FIRST_INSN - the basic block head, P - path consisting of the insns
2868 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2869 and bb ends are added to the path), WS - current window size,
2870 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2872 compute_av_set_inside_bb (insn_t first_insn
, ilist_t p
, int ws
,
2877 insn_t bb_end
= sel_bb_end (BLOCK_FOR_INSN (first_insn
));
2878 insn_t after_bb_end
= NEXT_INSN (bb_end
);
2881 basic_block cur_bb
= BLOCK_FOR_INSN (first_insn
);
2883 /* Return NULL if insn is not on the legitimate downward path. */
2884 if (is_ineligible_successor (first_insn
, p
))
2886 if (sched_verbose
>= 6)
2887 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn
));
2892 /* If insn already has valid av(insn) computed, just return it. */
2893 if (AV_SET_VALID_P (first_insn
))
2897 if (sel_bb_head_p (first_insn
))
2898 av_set
= BB_AV_SET (BLOCK_FOR_INSN (first_insn
));
2902 if (sched_verbose
>= 6)
2904 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn
));
2905 dump_av_set (av_set
);
2909 return need_copy_p
? av_set_copy (av_set
) : av_set
;
2912 ilist_add (&p
, first_insn
);
2914 /* As the result after this loop have completed, in LAST_INSN we'll
2915 have the insn which has valid av_set to start backward computation
2916 from: it either will be NULL because on it the window size was exceeded
2917 or other valid av_set as returned by compute_av_set for the last insn
2918 of the basic block. */
2919 for (last_insn
= first_insn
; last_insn
!= after_bb_end
;
2920 last_insn
= NEXT_INSN (last_insn
))
2922 /* We may encounter valid av_set not only on bb_head, but also on
2923 those insns on which previously MAX_WS was exceeded. */
2924 if (AV_SET_VALID_P (last_insn
))
2926 if (sched_verbose
>= 6)
2927 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn
));
2931 /* The special case: the last insn of the BB may be an
2932 ineligible_successor due to its SEQ_NO that was set on
2933 it as a bookkeeping. */
2934 if (last_insn
!= first_insn
2935 && is_ineligible_successor (last_insn
, p
))
2937 if (sched_verbose
>= 6)
2938 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn
));
2942 if (DEBUG_INSN_P (last_insn
))
2945 if (end_ws
> max_ws
)
2947 /* We can reach max lookahead size at bb_header, so clean av_set
2949 INSN_WS_LEVEL (last_insn
) = global_level
;
2951 if (sched_verbose
>= 6)
2952 sel_print ("Insn %d is beyond the software lookahead window size\n",
2953 INSN_UID (last_insn
));
2960 /* Get the valid av_set into AV above the LAST_INSN to start backward
2961 computation from. It either will be empty av_set or av_set computed from
2962 the successors on the last insn of the current bb. */
2963 if (last_insn
!= after_bb_end
)
2967 /* This is needed only to obtain av_sets that are identical to
2968 those computed by the old compute_av_set version. */
2969 if (last_insn
== first_insn
&& !INSN_NOP_P (last_insn
))
2970 av_set_add (&av
, INSN_EXPR (last_insn
));
2973 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2974 av
= compute_av_set_at_bb_end (bb_end
, p
, end_ws
);
2976 /* Compute av_set in AV starting from below the LAST_INSN up to
2977 location above the FIRST_INSN. */
2978 for (cur_insn
= PREV_INSN (last_insn
); cur_insn
!= PREV_INSN (first_insn
);
2979 cur_insn
= PREV_INSN (cur_insn
))
2980 if (!INSN_NOP_P (cur_insn
))
2984 moveup_set_expr (&av
, cur_insn
, false);
2986 /* If the expression for CUR_INSN is already in the set,
2987 replace it by the new one. */
2988 expr
= av_set_lookup (av
, INSN_VINSN (cur_insn
));
2992 copy_expr (expr
, INSN_EXPR (cur_insn
));
2995 av_set_add (&av
, INSN_EXPR (cur_insn
));
2998 /* Clear stale bb_av_set. */
2999 if (sel_bb_head_p (first_insn
))
3001 av_set_clear (&BB_AV_SET (cur_bb
));
3002 BB_AV_SET (cur_bb
) = need_copy_p
? av_set_copy (av
) : av
;
3003 BB_AV_LEVEL (cur_bb
) = global_level
;
3006 if (sched_verbose
>= 6)
3008 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn
));
3017 /* Compute av set before INSN.
3018 INSN - the current operation (actual rtx INSN)
3019 P - the current path, which is list of insns visited so far
3020 WS - software lookahead window size.
3021 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3022 if we want to save computed av_set in s_i_d, we should make a copy of it.
3024 In the resulting set we will have only expressions that don't have delay
3025 stalls and nonsubstitutable dependences. */
3027 compute_av_set (insn_t insn
, ilist_t p
, int ws
, bool unique_p
)
3029 return compute_av_set_inside_bb (insn
, p
, ws
, unique_p
);
3032 /* Propagate a liveness set LV through INSN. */
3034 propagate_lv_set (regset lv
, insn_t insn
)
3036 gcc_assert (INSN_P (insn
));
3038 if (INSN_NOP_P (insn
))
3041 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn
), insn
, lv
);
3044 /* Return livness set at the end of BB. */
3046 compute_live_after_bb (basic_block bb
)
3050 regset lv
= get_clear_regset_from_pool ();
3052 gcc_assert (!ignore_first
);
3054 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3055 if (sel_bb_empty_p (e
->dest
))
3057 if (! BB_LV_SET_VALID_P (e
->dest
))
3060 gcc_assert (BB_LV_SET (e
->dest
) == NULL
);
3061 BB_LV_SET (e
->dest
) = compute_live_after_bb (e
->dest
);
3062 BB_LV_SET_VALID_P (e
->dest
) = true;
3064 IOR_REG_SET (lv
, BB_LV_SET (e
->dest
));
3067 IOR_REG_SET (lv
, compute_live (sel_bb_head (e
->dest
)));
3072 /* Compute the set of all live registers at the point before INSN and save
3073 it at INSN if INSN is bb header. */
3075 compute_live (insn_t insn
)
3077 basic_block bb
= BLOCK_FOR_INSN (insn
);
3081 /* Return the valid set if we're already on it. */
3086 if (sel_bb_head_p (insn
) && BB_LV_SET_VALID_P (bb
))
3087 src
= BB_LV_SET (bb
);
3090 gcc_assert (in_current_region_p (bb
));
3091 if (INSN_LIVE_VALID_P (insn
))
3092 src
= INSN_LIVE (insn
);
3097 lv
= get_regset_from_pool ();
3098 COPY_REG_SET (lv
, src
);
3100 if (sel_bb_head_p (insn
) && ! BB_LV_SET_VALID_P (bb
))
3102 COPY_REG_SET (BB_LV_SET (bb
), lv
);
3103 BB_LV_SET_VALID_P (bb
) = true;
3106 return_regset_to_pool (lv
);
3111 /* We've skipped the wrong lv_set. Don't skip the right one. */
3112 ignore_first
= false;
3113 gcc_assert (in_current_region_p (bb
));
3115 /* Find a valid LV set in this block or below, if needed.
3116 Start searching from the next insn: either ignore_first is true, or
3117 INSN doesn't have a correct live set. */
3118 temp
= NEXT_INSN (insn
);
3119 final
= NEXT_INSN (BB_END (bb
));
3120 while (temp
!= final
&& ! INSN_LIVE_VALID_P (temp
))
3121 temp
= NEXT_INSN (temp
);
3124 lv
= compute_live_after_bb (bb
);
3125 temp
= PREV_INSN (temp
);
3129 lv
= get_regset_from_pool ();
3130 COPY_REG_SET (lv
, INSN_LIVE (temp
));
3133 /* Put correct lv sets on the insns which have bad sets. */
3134 final
= PREV_INSN (insn
);
3135 while (temp
!= final
)
3137 propagate_lv_set (lv
, temp
);
3138 COPY_REG_SET (INSN_LIVE (temp
), lv
);
3139 INSN_LIVE_VALID_P (temp
) = true;
3140 temp
= PREV_INSN (temp
);
3143 /* Also put it in a BB. */
3144 if (sel_bb_head_p (insn
))
3146 basic_block bb
= BLOCK_FOR_INSN (insn
);
3148 COPY_REG_SET (BB_LV_SET (bb
), lv
);
3149 BB_LV_SET_VALID_P (bb
) = true;
3152 /* We return LV to the pool, but will not clear it there. Thus we can
3153 legimatelly use LV till the next use of regset_pool_get (). */
3154 return_regset_to_pool (lv
);
3158 /* Update liveness sets for INSN. */
3160 update_liveness_on_insn (rtx_insn
*insn
)
3162 ignore_first
= true;
3163 compute_live (insn
);
3166 /* Compute liveness below INSN and write it into REGS. */
3168 compute_live_below_insn (rtx_insn
*insn
, regset regs
)
3173 FOR_EACH_SUCC_1 (succ
, si
, insn
, SUCCS_ALL
)
3174 IOR_REG_SET (regs
, compute_live (succ
));
3177 /* Update the data gathered in av and lv sets starting from INSN. */
3179 update_data_sets (rtx_insn
*insn
)
3181 update_liveness_on_insn (insn
);
3182 if (sel_bb_head_p (insn
))
3184 gcc_assert (AV_LEVEL (insn
) != 0);
3185 BB_AV_LEVEL (BLOCK_FOR_INSN (insn
)) = -1;
3186 compute_av_set (insn
, NULL
, 0, 0);
3191 /* Helper for move_op () and find_used_regs ().
3192 Return speculation type for which a check should be created on the place
3193 of INSN. EXPR is one of the original ops we are searching for. */
3195 get_spec_check_type_for_insn (insn_t insn
, expr_t expr
)
3198 ds_t already_checked_ds
= EXPR_SPEC_DONE_DS (INSN_EXPR (insn
));
3200 to_check_ds
= EXPR_SPEC_TO_CHECK_DS (expr
);
3202 if (targetm
.sched
.get_insn_checked_ds
)
3203 already_checked_ds
|= targetm
.sched
.get_insn_checked_ds (insn
);
3205 if (spec_info
!= NULL
3206 && (spec_info
->flags
& SEL_SCHED_SPEC_DONT_CHECK_CONTROL
))
3207 already_checked_ds
|= BEGIN_CONTROL
;
3209 already_checked_ds
= ds_get_speculation_types (already_checked_ds
);
3211 to_check_ds
&= ~already_checked_ds
;
3216 /* Find the set of registers that are unavailable for storing expres
3217 while moving ORIG_OPS up on the path starting from INSN due to
3218 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3220 All the original operations found during the traversal are saved in the
3221 ORIGINAL_INSNS list.
3223 REG_RENAME_P denotes the set of hardware registers that
3224 can not be used with renaming due to the register class restrictions,
3225 mode restrictions and other (the register we'll choose should be
3226 compatible class with the original uses, shouldn't be in call_used_regs,
3227 should be HARD_REGNO_RENAME_OK etc).
3229 Returns TRUE if we've found all original insns, FALSE otherwise.
3231 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3232 to traverse the code motion paths. This helper function finds registers
3233 that are not available for storing expres while moving ORIG_OPS up on the
3234 path starting from INSN. A register considered as used on the moving path,
3235 if one of the following conditions is not satisfied:
3237 (1) a register not set or read on any path from xi to an instance of
3238 the original operation,
3239 (2) not among the live registers of the point immediately following the
3240 first original operation on a given downward path, except for the
3241 original target register of the operation,
3242 (3) not live on the other path of any conditional branch that is passed
3243 by the operation, in case original operations are not present on
3244 both paths of the conditional branch.
3246 All the original operations found during the traversal are saved in the
3247 ORIGINAL_INSNS list.
3249 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3250 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3251 to unavailable hard regs at the point original operation is found. */
3254 find_used_regs (insn_t insn
, av_set_t orig_ops
, regset used_regs
,
3255 struct reg_rename
*reg_rename_p
, def_list_t
*original_insns
)
3257 def_list_iterator i
;
3260 bool needs_spec_check_p
= false;
3262 av_set_iterator expr_iter
;
3263 struct fur_static_params sparams
;
3264 struct cmpd_local_params lparams
;
3266 /* We haven't visited any blocks yet. */
3267 bitmap_clear (code_motion_visited_blocks
);
3269 /* Init parameters for code_motion_path_driver. */
3270 sparams
.crosses_call
= false;
3271 sparams
.original_insns
= original_insns
;
3272 sparams
.used_regs
= used_regs
;
3274 /* Set the appropriate hooks and data. */
3275 code_motion_path_driver_info
= &fur_hooks
;
3277 res
= code_motion_path_driver (insn
, orig_ops
, NULL
, &lparams
, &sparams
);
3279 reg_rename_p
->crosses_call
|= sparams
.crosses_call
;
3281 gcc_assert (res
== 1);
3282 gcc_assert (original_insns
&& *original_insns
);
3284 /* ??? We calculate whether an expression needs a check when computing
3285 av sets. This information is not as precise as it could be due to
3286 merging this bit in merge_expr. We can do better in find_used_regs,
3287 but we want to avoid multiple traversals of the same code motion
3289 FOR_EACH_EXPR (expr
, expr_iter
, orig_ops
)
3290 needs_spec_check_p
|= EXPR_NEEDS_SPEC_CHECK_P (expr
);
3292 /* Mark hardware regs in REG_RENAME_P that are not suitable
3293 for renaming expr in INSN due to hardware restrictions (register class,
3294 modes compatibility etc). */
3295 FOR_EACH_DEF (def
, i
, *original_insns
)
3297 vinsn_t vinsn
= INSN_VINSN (def
->orig_insn
);
3299 if (VINSN_SEPARABLE_P (vinsn
))
3300 mark_unavailable_hard_regs (def
, reg_rename_p
, used_regs
);
3302 /* Do not allow clobbering of ld.[sa] address in case some of the
3303 original operations need a check. */
3304 if (needs_spec_check_p
)
3305 IOR_REG_SET (used_regs
, VINSN_REG_USES (vinsn
));
3312 /* Functions to choose the best insn from available ones. */
3314 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3316 sel_target_adjust_priority (expr_t expr
)
3318 int priority
= EXPR_PRIORITY (expr
);
3321 if (targetm
.sched
.adjust_priority
)
3322 new_priority
= targetm
.sched
.adjust_priority (EXPR_INSN_RTX (expr
), priority
);
3324 new_priority
= priority
;
3326 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3327 EXPR_PRIORITY_ADJ (expr
) = new_priority
- EXPR_PRIORITY (expr
);
3329 gcc_assert (EXPR_PRIORITY_ADJ (expr
) >= 0);
3331 if (sched_verbose
>= 4)
3332 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3333 INSN_UID (EXPR_INSN_RTX (expr
)), EXPR_PRIORITY (expr
),
3334 EXPR_PRIORITY_ADJ (expr
), new_priority
);
3336 return new_priority
;
3339 /* Rank two available exprs for schedule. Never return 0 here. */
3341 sel_rank_for_schedule (const void *x
, const void *y
)
3343 expr_t tmp
= *(const expr_t
*) y
;
3344 expr_t tmp2
= *(const expr_t
*) x
;
3345 insn_t tmp_insn
, tmp2_insn
;
3346 vinsn_t tmp_vinsn
, tmp2_vinsn
;
3349 tmp_vinsn
= EXPR_VINSN (tmp
);
3350 tmp2_vinsn
= EXPR_VINSN (tmp2
);
3351 tmp_insn
= EXPR_INSN_RTX (tmp
);
3352 tmp2_insn
= EXPR_INSN_RTX (tmp2
);
3354 /* Schedule debug insns as early as possible. */
3355 if (DEBUG_INSN_P (tmp_insn
) && !DEBUG_INSN_P (tmp2_insn
))
3357 else if (DEBUG_INSN_P (tmp2_insn
))
3360 /* Prefer SCHED_GROUP_P insns to any others. */
3361 if (SCHED_GROUP_P (tmp_insn
) != SCHED_GROUP_P (tmp2_insn
))
3363 if (VINSN_UNIQUE_P (tmp_vinsn
) && VINSN_UNIQUE_P (tmp2_vinsn
))
3364 return SCHED_GROUP_P (tmp2_insn
) ? 1 : -1;
3366 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3367 cannot be cloned. */
3368 if (VINSN_UNIQUE_P (tmp2_vinsn
))
3373 /* Discourage scheduling of speculative checks. */
3374 val
= (sel_insn_is_speculation_check (tmp_insn
)
3375 - sel_insn_is_speculation_check (tmp2_insn
));
3379 /* Prefer not scheduled insn over scheduled one. */
3380 if (EXPR_SCHED_TIMES (tmp
) > 0 || EXPR_SCHED_TIMES (tmp2
) > 0)
3382 val
= EXPR_SCHED_TIMES (tmp
) - EXPR_SCHED_TIMES (tmp2
);
3387 /* Prefer jump over non-jump instruction. */
3388 if (control_flow_insn_p (tmp_insn
) && !control_flow_insn_p (tmp2_insn
))
3390 else if (control_flow_insn_p (tmp2_insn
) && !control_flow_insn_p (tmp_insn
))
3393 /* Prefer an expr with greater priority. */
3394 if (EXPR_USEFULNESS (tmp
) != 0 && EXPR_USEFULNESS (tmp2
) != 0)
3396 int p2
= EXPR_PRIORITY (tmp2
) + EXPR_PRIORITY_ADJ (tmp2
),
3397 p1
= EXPR_PRIORITY (tmp
) + EXPR_PRIORITY_ADJ (tmp
);
3399 val
= p2
* EXPR_USEFULNESS (tmp2
) - p1
* EXPR_USEFULNESS (tmp
);
3402 val
= EXPR_PRIORITY (tmp2
) - EXPR_PRIORITY (tmp
)
3403 + EXPR_PRIORITY_ADJ (tmp2
) - EXPR_PRIORITY_ADJ (tmp
);
3407 if (spec_info
!= NULL
&& spec_info
->mask
!= 0)
3408 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3414 ds1
= EXPR_SPEC_DONE_DS (tmp
);
3416 dw1
= ds_weak (ds1
);
3420 ds2
= EXPR_SPEC_DONE_DS (tmp2
);
3422 dw2
= ds_weak (ds2
);
3427 if (dw
> (NO_DEP_WEAK
/ 8) || dw
< -(NO_DEP_WEAK
/ 8))
3431 /* Prefer an old insn to a bookkeeping insn. */
3432 if (INSN_UID (tmp_insn
) < first_emitted_uid
3433 && INSN_UID (tmp2_insn
) >= first_emitted_uid
)
3435 if (INSN_UID (tmp_insn
) >= first_emitted_uid
3436 && INSN_UID (tmp2_insn
) < first_emitted_uid
)
3439 /* Prefer an insn with smaller UID, as a last resort.
3440 We can't safely use INSN_LUID as it is defined only for those insns
3441 that are in the stream. */
3442 return INSN_UID (tmp_insn
) - INSN_UID (tmp2_insn
);
3445 /* Filter out expressions from av set pointed to by AV_PTR
3446 that are pipelined too many times. */
3448 process_pipelined_exprs (av_set_t
*av_ptr
)
3453 /* Don't pipeline already pipelined code as that would increase
3454 number of unnecessary register moves. */
3455 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3457 if (EXPR_SCHED_TIMES (expr
)
3458 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES
))
3459 av_set_iter_remove (&si
);
3463 /* Filter speculative insns from AV_PTR if we don't want them. */
3465 process_spec_exprs (av_set_t
*av_ptr
)
3470 if (spec_info
== NULL
)
3473 /* Scan *AV_PTR to find out if we want to consider speculative
3474 instructions for scheduling. */
3475 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3479 ds
= EXPR_SPEC_DONE_DS (expr
);
3481 /* The probability of a success is too low - don't speculate. */
3482 if ((ds
& SPECULATIVE
)
3483 && (ds_weak (ds
) < spec_info
->data_weakness_cutoff
3484 || EXPR_USEFULNESS (expr
) < spec_info
->control_weakness_cutoff
3485 || (pipelining_p
&& false
3487 && (ds
& CONTROL_SPEC
))))
3489 av_set_iter_remove (&si
);
3495 /* Search for any use-like insns in AV_PTR and decide on scheduling
3496 them. Return one when found, and NULL otherwise.
3497 Note that we check here whether a USE could be scheduled to avoid
3498 an infinite loop later. */
3500 process_use_exprs (av_set_t
*av_ptr
)
3504 bool uses_present_p
= false;
3505 bool try_uses_p
= true;
3507 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3509 /* This will also initialize INSN_CODE for later use. */
3510 if (recog_memoized (EXPR_INSN_RTX (expr
)) < 0)
3512 /* If we have a USE in *AV_PTR that was not scheduled yet,
3513 do so because it will do good only. */
3514 if (EXPR_SCHED_TIMES (expr
) <= 0)
3516 if (EXPR_TARGET_AVAILABLE (expr
) == 1)
3519 av_set_iter_remove (&si
);
3523 gcc_assert (pipelining_p
);
3525 uses_present_p
= true;
3534 /* If we don't want to schedule any USEs right now and we have some
3535 in *AV_PTR, remove them, else just return the first one found. */
3538 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3539 if (INSN_CODE (EXPR_INSN_RTX (expr
)) < 0)
3540 av_set_iter_remove (&si
);
3544 FOR_EACH_EXPR_1 (expr
, si
, av_ptr
)
3546 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr
)) < 0);
3548 if (EXPR_TARGET_AVAILABLE (expr
) == 1)
3551 av_set_iter_remove (&si
);
3559 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3560 EXPR's history of changes. */
3562 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec
, expr_t expr
)
3564 vinsn_t vinsn
, expr_vinsn
;
3568 /* Start with checking expr itself and then proceed with all the old forms
3569 of expr taken from its history vector. */
3570 for (i
= 0, expr_vinsn
= EXPR_VINSN (expr
);
3572 expr_vinsn
= (i
< EXPR_HISTORY_OF_CHANGES (expr
).length ()
3573 ? EXPR_HISTORY_OF_CHANGES (expr
)[i
++].old_expr_vinsn
3575 FOR_EACH_VEC_ELT (vinsn_vec
, n
, vinsn
)
3576 if (VINSN_SEPARABLE_P (vinsn
))
3578 if (vinsn_equal_p (vinsn
, expr_vinsn
))
3583 /* For non-separable instructions, the blocking insn can have
3584 another pattern due to substitution, and we can't choose
3585 different register as in the above case. Check all registers
3586 being written instead. */
3587 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn
),
3588 VINSN_REG_SETS (expr_vinsn
)))
3595 #ifdef ENABLE_CHECKING
3596 /* Return true if either of expressions from ORIG_OPS can be blocked
3597 by previously created bookkeeping code. STATIC_PARAMS points to static
3598 parameters of move_op. */
3600 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops
, void *static_params
)
3603 av_set_iterator iter
;
3604 moveop_static_params_p sparams
;
3606 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3607 created while scheduling on another fence. */
3608 FOR_EACH_EXPR (expr
, iter
, orig_ops
)
3609 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns
, expr
))
3612 gcc_assert (code_motion_path_driver_info
== &move_op_hooks
);
3613 sparams
= (moveop_static_params_p
) static_params
;
3615 /* Expressions can be also blocked by bookkeeping created during current
3617 if (bitmap_bit_p (current_copies
, INSN_UID (sparams
->failed_insn
)))
3618 FOR_EACH_EXPR (expr
, iter
, orig_ops
)
3619 if (moveup_expr_cached (expr
, sparams
->failed_insn
, false) != MOVEUP_EXPR_NULL
)
3622 /* Expressions in ORIG_OPS may have wrong destination register due to
3623 renaming. Check with the right register instead. */
3624 if (sparams
->dest
&& REG_P (sparams
->dest
))
3626 rtx reg
= sparams
->dest
;
3627 vinsn_t failed_vinsn
= INSN_VINSN (sparams
->failed_insn
);
3629 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn
), reg
)
3630 || register_unavailable_p (VINSN_REG_USES (failed_vinsn
), reg
)
3631 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn
), reg
))
3639 /* Clear VINSN_VEC and detach vinsns. */
3641 vinsn_vec_clear (vinsn_vec_t
*vinsn_vec
)
3643 unsigned len
= vinsn_vec
->length ();
3649 FOR_EACH_VEC_ELT (*vinsn_vec
, n
, vinsn
)
3650 vinsn_detach (vinsn
);
3651 vinsn_vec
->block_remove (0, len
);
3655 /* Add the vinsn of EXPR to the VINSN_VEC. */
3657 vinsn_vec_add (vinsn_vec_t
*vinsn_vec
, expr_t expr
)
3659 vinsn_attach (EXPR_VINSN (expr
));
3660 vinsn_vec
->safe_push (EXPR_VINSN (expr
));
3663 /* Free the vector representing blocked expressions. */
3665 vinsn_vec_free (vinsn_vec_t
&vinsn_vec
)
3667 vinsn_vec
.release ();
3670 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672 void sel_add_to_insn_priority (rtx insn
, int amount
)
3674 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)) += amount
;
3676 if (sched_verbose
>= 2)
3677 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3678 INSN_UID (insn
), amount
, EXPR_PRIORITY (INSN_EXPR (insn
)),
3679 EXPR_PRIORITY_ADJ (INSN_EXPR (insn
)));
3682 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3683 true if there is something to schedule. BNDS and FENCE are current
3684 boundaries and fence, respectively. If we need to stall for some cycles
3685 before an expr from AV would become available, write this number to
3688 fill_vec_av_set (av_set_t av
, blist_t bnds
, fence_t fence
,
3693 int sched_next_worked
= 0, stalled
, n
;
3694 static int av_max_prio
, est_ticks_till_branch
;
3695 int min_need_stall
= -1;
3696 deps_t dc
= BND_DC (BLIST_BND (bnds
));
3698 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3699 already scheduled. */
3703 /* Empty vector from the previous stuff. */
3704 if (vec_av_set
.length () > 0)
3705 vec_av_set
.block_remove (0, vec_av_set
.length ());
3707 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3709 gcc_assert (vec_av_set
.is_empty ());
3710 FOR_EACH_EXPR (expr
, si
, av
)
3712 vec_av_set
.safe_push (expr
);
3714 gcc_assert (EXPR_PRIORITY_ADJ (expr
) == 0 || *pneed_stall
);
3716 /* Adjust priority using target backend hook. */
3717 sel_target_adjust_priority (expr
);
3720 /* Sort the vector. */
3721 vec_av_set
.qsort (sel_rank_for_schedule
);
3723 /* We record maximal priority of insns in av set for current instruction
3725 if (FENCE_STARTS_CYCLE_P (fence
))
3726 av_max_prio
= est_ticks_till_branch
= INT_MIN
;
3728 /* Filter out inappropriate expressions. Loop's direction is reversed to
3729 visit "best" instructions first. We assume that vec::unordered_remove
3730 moves last element in place of one being deleted. */
3731 for (n
= vec_av_set
.length () - 1, stalled
= 0; n
>= 0; n
--)
3733 expr_t expr
= vec_av_set
[n
];
3734 insn_t insn
= EXPR_INSN_RTX (expr
);
3735 signed char target_available
;
3736 bool is_orig_reg_p
= true;
3737 int need_cycles
, new_prio
;
3738 bool fence_insn_p
= INSN_UID (insn
) == INSN_UID (FENCE_INSN (fence
));
3740 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3741 if (FENCE_SCHED_NEXT (fence
) && insn
!= FENCE_SCHED_NEXT (fence
))
3743 vec_av_set
.unordered_remove (n
);
3747 /* Set number of sched_next insns (just in case there
3748 could be several). */
3749 if (FENCE_SCHED_NEXT (fence
))
3750 sched_next_worked
++;
3752 /* Check all liveness requirements and try renaming.
3753 FIXME: try to minimize calls to this. */
3754 target_available
= EXPR_TARGET_AVAILABLE (expr
);
3756 /* If insn was already scheduled on the current fence,
3757 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3758 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns
, expr
)
3760 target_available
= -1;
3762 /* If the availability of the EXPR is invalidated by the insertion of
3763 bookkeeping earlier, make sure that we won't choose this expr for
3764 scheduling if it's not separable, and if it is separable, then
3765 we have to recompute the set of available registers for it. */
3766 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns
, expr
))
3768 vec_av_set
.unordered_remove (n
);
3769 if (sched_verbose
>= 4)
3770 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3775 if (target_available
== true)
3777 /* Do nothing -- we can use an existing register. */
3778 is_orig_reg_p
= EXPR_SEPARABLE_P (expr
);
3780 else if (/* Non-separable instruction will never
3781 get another register. */
3782 (target_available
== false
3783 && !EXPR_SEPARABLE_P (expr
))
3784 /* Don't try to find a register for low-priority expression. */
3785 || (int) vec_av_set
.length () - 1 - n
>= max_insns_to_rename
3786 /* ??? FIXME: Don't try to rename data speculation. */
3787 || (EXPR_SPEC_DONE_DS (expr
) & BEGIN_DATA
)
3788 || ! find_best_reg_for_expr (expr
, bnds
, &is_orig_reg_p
))
3790 vec_av_set
.unordered_remove (n
);
3791 if (sched_verbose
>= 4)
3792 sel_print ("Expr %d has no suitable target register\n",
3795 /* A fence insn should not get here. */
3796 gcc_assert (!fence_insn_p
);
3800 /* At this point a fence insn should always be available. */
3801 gcc_assert (!fence_insn_p
3802 || INSN_UID (FENCE_INSN (fence
)) == INSN_UID (EXPR_INSN_RTX (expr
)));
3804 /* Filter expressions that need to be renamed or speculated when
3805 pipelining, because compensating register copies or speculation
3806 checks are likely to be placed near the beginning of the loop,
3808 if (pipelining_p
&& EXPR_ORIG_SCHED_CYCLE (expr
) > 0
3809 && (!is_orig_reg_p
|| EXPR_SPEC_DONE_DS (expr
) != 0))
3811 /* Estimation of number of cycles until loop branch for
3812 renaming/speculation to be successful. */
3813 int need_n_ticks_till_branch
= sel_vinsn_cost (EXPR_VINSN (expr
));
3815 if ((int) current_loop_nest
->ninsns
< 9)
3817 vec_av_set
.unordered_remove (n
);
3818 if (sched_verbose
>= 4)
3819 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 if ((int) current_loop_nest
->ninsns
- num_insns_scheduled
3825 < need_n_ticks_till_branch
* issue_rate
/ 2
3826 && est_ticks_till_branch
< need_n_ticks_till_branch
)
3828 vec_av_set
.unordered_remove (n
);
3829 if (sched_verbose
>= 4)
3830 sel_print ("Pipelining expr %d will likely cause stall\n",
3836 /* We want to schedule speculation checks as late as possible. Discard
3837 them from av set if there are instructions with higher priority. */
3838 if (sel_insn_is_speculation_check (insn
)
3839 && EXPR_PRIORITY (expr
) < av_max_prio
)
3842 min_need_stall
= min_need_stall
< 0 ? 1 : MIN (min_need_stall
, 1);
3843 vec_av_set
.unordered_remove (n
);
3844 if (sched_verbose
>= 4)
3845 sel_print ("Delaying speculation check %d until its first use\n",
3850 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3851 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3852 av_max_prio
= MAX (av_max_prio
, EXPR_PRIORITY (expr
));
3854 /* Don't allow any insns whose data is not yet ready.
3855 Check first whether we've already tried them and failed. */
3856 if (INSN_UID (insn
) < FENCE_READY_TICKS_SIZE (fence
))
3858 need_cycles
= (FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]
3859 - FENCE_CYCLE (fence
));
3860 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3861 est_ticks_till_branch
= MAX (est_ticks_till_branch
,
3862 EXPR_PRIORITY (expr
) + need_cycles
);
3864 if (need_cycles
> 0)
3867 min_need_stall
= (min_need_stall
< 0
3869 : MIN (min_need_stall
, need_cycles
));
3870 vec_av_set
.unordered_remove (n
);
3872 if (sched_verbose
>= 4)
3873 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3875 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]);
3880 /* Now resort to dependence analysis to find whether EXPR might be
3881 stalled due to dependencies from FENCE's context. */
3882 need_cycles
= tick_check_p (expr
, dc
, fence
);
3883 new_prio
= EXPR_PRIORITY (expr
) + EXPR_PRIORITY_ADJ (expr
) + need_cycles
;
3885 if (EXPR_ORIG_SCHED_CYCLE (expr
) <= 0)
3886 est_ticks_till_branch
= MAX (est_ticks_till_branch
,
3889 if (need_cycles
> 0)
3891 if (INSN_UID (insn
) >= FENCE_READY_TICKS_SIZE (fence
))
3893 int new_size
= INSN_UID (insn
) * 3 / 2;
3895 FENCE_READY_TICKS (fence
)
3896 = (int *) xrecalloc (FENCE_READY_TICKS (fence
),
3897 new_size
, FENCE_READY_TICKS_SIZE (fence
),
3900 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]
3901 = FENCE_CYCLE (fence
) + need_cycles
;
3904 min_need_stall
= (min_need_stall
< 0
3906 : MIN (min_need_stall
, need_cycles
));
3908 vec_av_set
.unordered_remove (n
);
3910 if (sched_verbose
>= 4)
3911 sel_print ("Expr %d is not ready yet until cycle %d\n",
3913 FENCE_READY_TICKS (fence
)[INSN_UID (insn
)]);
3917 if (sched_verbose
>= 4)
3918 sel_print ("Expr %d is ok\n", INSN_UID (insn
));
3922 /* Clear SCHED_NEXT. */
3923 if (FENCE_SCHED_NEXT (fence
))
3925 gcc_assert (sched_next_worked
== 1);
3926 FENCE_SCHED_NEXT (fence
) = NULL
;
3929 /* No need to stall if this variable was not initialized. */
3930 if (min_need_stall
< 0)
3933 if (vec_av_set
.is_empty ())
3935 /* We need to set *pneed_stall here, because later we skip this code
3936 when ready list is empty. */
3937 *pneed_stall
= min_need_stall
;
3941 gcc_assert (min_need_stall
== 0);
3943 /* Sort the vector. */
3944 vec_av_set
.qsort (sel_rank_for_schedule
);
3946 if (sched_verbose
>= 4)
3948 sel_print ("Total ready exprs: %d, stalled: %d\n",
3949 vec_av_set
.length (), stalled
);
3950 sel_print ("Sorted av set (%d): ", vec_av_set
.length ());
3951 FOR_EACH_VEC_ELT (vec_av_set
, n
, expr
)
3960 /* Convert a vectored and sorted av set to the ready list that
3961 the rest of the backend wants to see. */
3963 convert_vec_av_set_to_ready (void)
3968 /* Allocate and fill the ready list from the sorted vector. */
3969 ready
.n_ready
= vec_av_set
.length ();
3970 ready
.first
= ready
.n_ready
- 1;
3972 gcc_assert (ready
.n_ready
> 0);
3974 if (ready
.n_ready
> max_issue_size
)
3976 max_issue_size
= ready
.n_ready
;
3977 sched_extend_ready_list (ready
.n_ready
);
3980 FOR_EACH_VEC_ELT (vec_av_set
, n
, expr
)
3982 vinsn_t vi
= EXPR_VINSN (expr
);
3983 insn_t insn
= VINSN_INSN_RTX (vi
);
3986 ready
.vec
[n
] = insn
;
3990 /* Initialize ready list from *AV_PTR for the max_issue () call.
3991 If any unrecognizable insn found in *AV_PTR, return it (and skip
3992 max_issue). BND and FENCE are current boundary and fence,
3993 respectively. If we need to stall for some cycles before an expr
3994 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3996 fill_ready_list (av_set_t
*av_ptr
, blist_t bnds
, fence_t fence
,
4001 /* We do not support multiple boundaries per fence. */
4002 gcc_assert (BLIST_NEXT (bnds
) == NULL
);
4004 /* Process expressions required special handling, i.e. pipelined,
4005 speculative and recog() < 0 expressions first. */
4006 process_pipelined_exprs (av_ptr
);
4007 process_spec_exprs (av_ptr
);
4009 /* A USE could be scheduled immediately. */
4010 expr
= process_use_exprs (av_ptr
);
4017 /* Turn the av set to a vector for sorting. */
4018 if (! fill_vec_av_set (*av_ptr
, bnds
, fence
, pneed_stall
))
4024 /* Build the final ready list. */
4025 convert_vec_av_set_to_ready ();
4029 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4031 sel_dfa_new_cycle (insn_t insn
, fence_t fence
)
4033 int last_scheduled_cycle
= FENCE_LAST_SCHEDULED_INSN (fence
)
4034 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence
))
4035 : FENCE_CYCLE (fence
) - 1;
4039 if (!targetm
.sched
.dfa_new_cycle
)
4042 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4044 while (!sort_p
&& targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
,
4045 insn
, last_scheduled_cycle
,
4046 FENCE_CYCLE (fence
), &sort_p
))
4048 memcpy (FENCE_STATE (fence
), curr_state
, dfa_state_size
);
4049 advance_one_cycle (fence
);
4050 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4057 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4058 we can issue. FENCE is the current fence. */
4060 invoke_reorder_hooks (fence_t fence
)
4063 bool ran_hook
= false;
4065 /* Call the reorder hook at the beginning of the cycle, and call
4066 the reorder2 hook in the middle of the cycle. */
4067 if (FENCE_ISSUED_INSNS (fence
) == 0)
4069 if (targetm
.sched
.reorder
4070 && !SCHED_GROUP_P (ready_element (&ready
, 0))
4071 && ready
.n_ready
> 1)
4073 /* Don't give reorder the most prioritized insn as it can break
4079 = targetm
.sched
.reorder (sched_dump
, sched_verbose
,
4080 ready_lastpos (&ready
),
4081 &ready
.n_ready
, FENCE_CYCLE (fence
));
4089 /* Initialize can_issue_more for variable_issue. */
4090 issue_more
= issue_rate
;
4092 else if (targetm
.sched
.reorder2
4093 && !SCHED_GROUP_P (ready_element (&ready
, 0)))
4095 if (ready
.n_ready
== 1)
4097 targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
4098 ready_lastpos (&ready
),
4099 &ready
.n_ready
, FENCE_CYCLE (fence
));
4106 targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
4108 ? ready_lastpos (&ready
) : NULL
,
4109 &ready
.n_ready
, FENCE_CYCLE (fence
));
4118 issue_more
= FENCE_ISSUE_MORE (fence
);
4120 /* Ensure that ready list and vec_av_set are in line with each other,
4121 i.e. vec_av_set[i] == ready_element (&ready, i). */
4122 if (issue_more
&& ran_hook
)
4125 rtx_insn
**arr
= ready
.vec
;
4126 expr_t
*vec
= vec_av_set
.address ();
4128 for (i
= 0, n
= ready
.n_ready
; i
< n
; i
++)
4129 if (EXPR_INSN_RTX (vec
[i
]) != arr
[i
])
4131 for (j
= i
; j
< n
; j
++)
4132 if (EXPR_INSN_RTX (vec
[j
]) == arr
[i
])
4136 std::swap (vec
[i
], vec
[j
]);
4143 /* Return an EXPR corresponding to INDEX element of ready list, if
4144 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4145 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4146 ready.vec otherwise. */
4147 static inline expr_t
4148 find_expr_for_ready (int index
, bool follow_ready_element
)
4153 real_index
= follow_ready_element
? ready
.first
- index
: index
;
4155 expr
= vec_av_set
[real_index
];
4156 gcc_assert (ready
.vec
[real_index
] == EXPR_INSN_RTX (expr
));
4161 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4162 of such insns found. */
4164 invoke_dfa_lookahead_guard (void)
4168 = targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
!= NULL
;
4170 if (sched_verbose
>= 2)
4171 sel_print ("ready after reorder: ");
4173 for (i
= 0, n
= 0; i
< ready
.n_ready
; i
++)
4179 /* In this loop insn is Ith element of the ready list given by
4180 ready_element, not Ith element of ready.vec. */
4181 insn
= ready_element (&ready
, i
);
4183 if (! have_hook
|| i
== 0)
4186 r
= targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard (insn
, i
);
4188 gcc_assert (INSN_CODE (insn
) >= 0);
4190 /* Only insns with ready_try = 0 can get here
4191 from fill_ready_list. */
4192 gcc_assert (ready_try
[i
] == 0);
4197 expr
= find_expr_for_ready (i
, true);
4199 if (sched_verbose
>= 2)
4201 dump_vinsn (EXPR_VINSN (expr
));
4202 sel_print (":%d; ", ready_try
[i
]);
4206 if (sched_verbose
>= 2)
4211 /* Calculate the number of privileged insns and return it. */
4213 calculate_privileged_insns (void)
4215 expr_t cur_expr
, min_spec_expr
= NULL
;
4216 int privileged_n
= 0, i
;
4218 for (i
= 0; i
< ready
.n_ready
; i
++)
4223 if (! min_spec_expr
)
4224 min_spec_expr
= find_expr_for_ready (i
, true);
4226 cur_expr
= find_expr_for_ready (i
, true);
4228 if (EXPR_SPEC (cur_expr
) > EXPR_SPEC (min_spec_expr
))
4234 if (i
== ready
.n_ready
)
4237 if (sched_verbose
>= 2)
4238 sel_print ("privileged_n: %d insns with SPEC %d\n",
4239 privileged_n
, privileged_n
? EXPR_SPEC (min_spec_expr
) : -1);
4240 return privileged_n
;
4243 /* Call the rest of the hooks after the choice was made. Return
4244 the number of insns that still can be issued given that the current
4245 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4246 and the insn chosen for scheduling, respectively. */
4248 invoke_aftermath_hooks (fence_t fence
, rtx_insn
*best_insn
, int issue_more
)
4250 gcc_assert (INSN_P (best_insn
));
4252 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4253 sel_dfa_new_cycle (best_insn
, fence
);
4255 if (targetm
.sched
.variable_issue
)
4257 memcpy (curr_state
, FENCE_STATE (fence
), dfa_state_size
);
4259 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
, best_insn
,
4261 memcpy (FENCE_STATE (fence
), curr_state
, dfa_state_size
);
4263 else if (GET_CODE (PATTERN (best_insn
)) != USE
4264 && GET_CODE (PATTERN (best_insn
)) != CLOBBER
)
4270 /* Estimate the cost of issuing INSN on DFA state STATE. */
4272 estimate_insn_cost (rtx_insn
*insn
, state_t state
)
4274 static state_t temp
= NULL
;
4278 temp
= xmalloc (dfa_state_size
);
4280 memcpy (temp
, state
, dfa_state_size
);
4281 cost
= state_transition (temp
, insn
);
4290 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4291 This function properly handles ASMs, USEs etc. */
4293 get_expr_cost (expr_t expr
, fence_t fence
)
4295 rtx_insn
*insn
= EXPR_INSN_RTX (expr
);
4297 if (recog_memoized (insn
) < 0)
4299 if (!FENCE_STARTS_CYCLE_P (fence
)
4300 && INSN_ASM_P (insn
))
4301 /* This is asm insn which is tryed to be issued on the
4302 cycle not first. Issue it on the next cycle. */
4305 /* A USE insn, or something else we don't need to
4306 understand. We can't pass these directly to
4307 state_transition because it will trigger a
4308 fatal error for unrecognizable insns. */
4312 return estimate_insn_cost (insn
, FENCE_STATE (fence
));
4315 /* Find the best insn for scheduling, either via max_issue or just take
4316 the most prioritized available. */
4318 choose_best_insn (fence_t fence
, int privileged_n
, int *index
)
4322 if (dfa_lookahead
> 0)
4324 cycle_issued_insns
= FENCE_ISSUED_INSNS (fence
);
4325 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4326 can_issue
= max_issue (&ready
, privileged_n
,
4327 FENCE_STATE (fence
), true, index
);
4328 if (sched_verbose
>= 2)
4329 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4330 can_issue
, FENCE_ISSUED_INSNS (fence
));
4334 /* We can't use max_issue; just return the first available element. */
4337 for (i
= 0; i
< ready
.n_ready
; i
++)
4339 expr_t expr
= find_expr_for_ready (i
, true);
4341 if (get_expr_cost (expr
, fence
) < 1)
4343 can_issue
= can_issue_more
;
4346 if (sched_verbose
>= 2)
4347 sel_print ("using %dth insn from the ready list\n", i
+ 1);
4353 if (i
== ready
.n_ready
)
4363 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4364 BNDS and FENCE are current boundaries and scheduling fence respectively.
4365 Return the expr found and NULL if nothing can be issued atm.
4366 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4368 find_best_expr (av_set_t
*av_vliw_ptr
, blist_t bnds
, fence_t fence
,
4373 /* Choose the best insn for scheduling via:
4374 1) sorting the ready list based on priority;
4375 2) calling the reorder hook;
4376 3) calling max_issue. */
4377 best
= fill_ready_list (av_vliw_ptr
, bnds
, fence
, pneed_stall
);
4378 if (best
== NULL
&& ready
.n_ready
> 0)
4380 int privileged_n
, index
;
4382 can_issue_more
= invoke_reorder_hooks (fence
);
4383 if (can_issue_more
> 0)
4385 /* Try choosing the best insn until we find one that is could be
4386 scheduled due to liveness restrictions on its destination register.
4387 In the future, we'd like to choose once and then just probe insns
4388 in the order of their priority. */
4389 invoke_dfa_lookahead_guard ();
4390 privileged_n
= calculate_privileged_insns ();
4391 can_issue_more
= choose_best_insn (fence
, privileged_n
, &index
);
4393 best
= find_expr_for_ready (index
, true);
4395 /* We had some available insns, so if we can't issue them,
4397 if (can_issue_more
== 0)
4406 can_issue_more
= invoke_aftermath_hooks (fence
, EXPR_INSN_RTX (best
),
4408 if (targetm
.sched
.variable_issue
4409 && can_issue_more
== 0)
4413 if (sched_verbose
>= 2)
4417 sel_print ("Best expression (vliw form): ");
4419 sel_print ("; cycle %d\n", FENCE_CYCLE (fence
));
4422 sel_print ("No best expr found!\n");
4429 /* Functions that implement the core of the scheduler. */
4432 /* Emit an instruction from EXPR with SEQNO and VINSN after
4435 emit_insn_from_expr_after (expr_t expr
, vinsn_t vinsn
, int seqno
,
4436 insn_t place_to_insert
)
4438 /* This assert fails when we have identical instructions
4439 one of which dominates the other. In this case move_op ()
4440 finds the first instruction and doesn't search for second one.
4441 The solution would be to compute av_set after the first found
4442 insn and, if insn present in that set, continue searching.
4443 For now we workaround this issue in move_op. */
4444 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr
)));
4446 if (EXPR_WAS_RENAMED (expr
))
4448 unsigned regno
= expr_dest_regno (expr
);
4450 if (HARD_REGISTER_NUM_P (regno
))
4452 df_set_regs_ever_live (regno
, true);
4453 reg_rename_tick
[regno
] = ++reg_rename_this_tick
;
4457 return sel_gen_insn_from_expr_after (expr
, vinsn
, seqno
,
4461 /* Return TRUE if BB can hold bookkeeping code. */
4463 block_valid_for_bookkeeping_p (basic_block bb
)
4465 insn_t bb_end
= BB_END (bb
);
4467 if (!in_current_region_p (bb
) || EDGE_COUNT (bb
->succs
) > 1)
4470 if (INSN_P (bb_end
))
4472 if (INSN_SCHED_TIMES (bb_end
) > 0)
4476 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end
));
4481 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4482 into E2->dest, except from E1->src (there may be a sequence of empty basic
4483 blocks between E1->src and E2->dest). Return found block, or NULL if new
4484 one must be created. If LAX holds, don't assume there is a simple path
4485 from E1->src to E2->dest. */
4487 find_block_for_bookkeeping (edge e1
, edge e2
, bool lax
)
4489 basic_block candidate_block
= NULL
;
4492 /* Loop over edges from E1 to E2, inclusive. */
4493 for (e
= e1
; !lax
|| e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
); e
=
4494 EDGE_SUCC (e
->dest
, 0))
4496 if (EDGE_COUNT (e
->dest
->preds
) == 2)
4498 if (candidate_block
== NULL
)
4499 candidate_block
= (EDGE_PRED (e
->dest
, 0) == e
4500 ? EDGE_PRED (e
->dest
, 1)->src
4501 : EDGE_PRED (e
->dest
, 0)->src
);
4503 /* Found additional edge leading to path from e1 to e2
4507 else if (EDGE_COUNT (e
->dest
->preds
) > 2)
4508 /* Several edges leading to path from e1 to e2 from aside. */
4512 return ((!lax
|| candidate_block
)
4513 && block_valid_for_bookkeeping_p (candidate_block
)
4517 if (lax
&& EDGE_COUNT (e
->dest
->succs
) != 1)
4527 /* Create new basic block for bookkeeping code for path(s) incoming into
4528 E2->dest, except from E1->src. Return created block. */
4530 create_block_for_bookkeeping (edge e1
, edge e2
)
4532 basic_block new_bb
, bb
= e2
->dest
;
4534 /* Check that we don't spoil the loop structure. */
4535 if (current_loop_nest
)
4537 basic_block latch
= current_loop_nest
->latch
;
4539 /* We do not split header. */
4540 gcc_assert (e2
->dest
!= current_loop_nest
->header
);
4542 /* We do not redirect the only edge to the latch block. */
4543 gcc_assert (e1
->dest
!= latch
4544 || !single_pred_p (latch
)
4545 || e1
!= single_pred_edge (latch
));
4548 /* Split BB to insert BOOK_INSN there. */
4549 new_bb
= sched_split_block (bb
, NULL
);
4551 /* Move note_list from the upper bb. */
4552 gcc_assert (BB_NOTE_LIST (new_bb
) == NULL_RTX
);
4553 BB_NOTE_LIST (new_bb
) = BB_NOTE_LIST (bb
);
4554 BB_NOTE_LIST (bb
) = NULL
;
4556 gcc_assert (e2
->dest
== bb
);
4558 /* Skip block for bookkeeping copy when leaving E1->src. */
4559 if (e1
->flags
& EDGE_FALLTHRU
)
4560 sel_redirect_edge_and_branch_force (e1
, new_bb
);
4562 sel_redirect_edge_and_branch (e1
, new_bb
);
4564 gcc_assert (e1
->dest
== new_bb
);
4565 gcc_assert (sel_bb_empty_p (bb
));
4567 /* To keep basic block numbers in sync between debug and non-debug
4568 compilations, we have to rotate blocks here. Consider that we
4569 started from (a,b)->d, (c,d)->e, and d contained only debug
4570 insns. It would have been removed before if the debug insns
4571 weren't there, so we'd have split e rather than d. So what we do
4572 now is to swap the block numbers of new_bb and
4573 single_succ(new_bb) == e, so that the insns that were in e before
4574 get the new block number. */
4576 if (MAY_HAVE_DEBUG_INSNS
)
4579 insn_t insn
= sel_bb_head (new_bb
);
4582 if (DEBUG_INSN_P (insn
)
4583 && single_succ_p (new_bb
)
4584 && (succ
= single_succ (new_bb
))
4585 && succ
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
4586 && DEBUG_INSN_P ((last
= sel_bb_end (new_bb
))))
4588 while (insn
!= last
&& (DEBUG_INSN_P (insn
) || NOTE_P (insn
)))
4589 insn
= NEXT_INSN (insn
);
4593 sel_global_bb_info_def gbi
;
4594 sel_region_bb_info_def rbi
;
4596 if (sched_verbose
>= 2)
4597 sel_print ("Swapping block ids %i and %i\n",
4598 new_bb
->index
, succ
->index
);
4600 std::swap (new_bb
->index
, succ
->index
);
4602 SET_BASIC_BLOCK_FOR_FN (cfun
, new_bb
->index
, new_bb
);
4603 SET_BASIC_BLOCK_FOR_FN (cfun
, succ
->index
, succ
);
4605 memcpy (&gbi
, SEL_GLOBAL_BB_INFO (new_bb
), sizeof (gbi
));
4606 memcpy (SEL_GLOBAL_BB_INFO (new_bb
), SEL_GLOBAL_BB_INFO (succ
),
4608 memcpy (SEL_GLOBAL_BB_INFO (succ
), &gbi
, sizeof (gbi
));
4610 memcpy (&rbi
, SEL_REGION_BB_INFO (new_bb
), sizeof (rbi
));
4611 memcpy (SEL_REGION_BB_INFO (new_bb
), SEL_REGION_BB_INFO (succ
),
4613 memcpy (SEL_REGION_BB_INFO (succ
), &rbi
, sizeof (rbi
));
4615 std::swap (BLOCK_TO_BB (new_bb
->index
),
4616 BLOCK_TO_BB (succ
->index
));
4618 std::swap (CONTAINING_RGN (new_bb
->index
),
4619 CONTAINING_RGN (succ
->index
));
4621 for (int i
= 0; i
< current_nr_blocks
; i
++)
4622 if (BB_TO_BLOCK (i
) == succ
->index
)
4623 BB_TO_BLOCK (i
) = new_bb
->index
;
4624 else if (BB_TO_BLOCK (i
) == new_bb
->index
)
4625 BB_TO_BLOCK (i
) = succ
->index
;
4627 FOR_BB_INSNS (new_bb
, insn
)
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = new_bb
->index
;
4631 FOR_BB_INSNS (succ
, insn
)
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn
)) = succ
->index
;
4635 if (bitmap_clear_bit (code_motion_visited_blocks
, new_bb
->index
))
4636 bitmap_set_bit (code_motion_visited_blocks
, succ
->index
);
4638 gcc_assert (LABEL_P (BB_HEAD (new_bb
))
4639 && LABEL_P (BB_HEAD (succ
)));
4641 if (sched_verbose
>= 4)
4642 sel_print ("Swapping code labels %i and %i\n",
4643 CODE_LABEL_NUMBER (BB_HEAD (new_bb
)),
4644 CODE_LABEL_NUMBER (BB_HEAD (succ
)));
4646 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb
)),
4647 CODE_LABEL_NUMBER (BB_HEAD (succ
)));
4655 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4656 into E2->dest, except from E1->src. If the returned insn immediately
4657 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4659 find_place_for_bookkeeping (edge e1
, edge e2
, fence_t
*fence_to_rewind
)
4661 insn_t place_to_insert
;
4662 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4663 create new basic block, but insert bookkeeping there. */
4664 basic_block book_block
= find_block_for_bookkeeping (e1
, e2
, FALSE
);
4668 place_to_insert
= BB_END (book_block
);
4670 /* Don't use a block containing only debug insns for
4671 bookkeeping, this causes scheduling differences between debug
4672 and non-debug compilations, for the block would have been
4674 if (DEBUG_INSN_P (place_to_insert
))
4676 rtx_insn
*insn
= sel_bb_head (book_block
);
4678 while (insn
!= place_to_insert
&&
4679 (DEBUG_INSN_P (insn
) || NOTE_P (insn
)))
4680 insn
= NEXT_INSN (insn
);
4682 if (insn
== place_to_insert
)
4689 book_block
= create_block_for_bookkeeping (e1
, e2
);
4690 place_to_insert
= BB_END (book_block
);
4691 if (sched_verbose
>= 9)
4692 sel_print ("New block is %i, split from bookkeeping block %i\n",
4693 EDGE_SUCC (book_block
, 0)->dest
->index
, book_block
->index
);
4697 if (sched_verbose
>= 9)
4698 sel_print ("Pre-existing bookkeeping block is %i\n", book_block
->index
);
4701 *fence_to_rewind
= NULL
;
4702 /* If basic block ends with a jump, insert bookkeeping code right before it.
4703 Notice if we are crossing a fence when taking PREV_INSN. */
4704 if (INSN_P (place_to_insert
) && control_flow_insn_p (place_to_insert
))
4706 *fence_to_rewind
= flist_lookup (fences
, place_to_insert
);
4707 place_to_insert
= PREV_INSN (place_to_insert
);
4710 return place_to_insert
;
4713 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4716 find_seqno_for_bookkeeping (insn_t place_to_insert
, insn_t join_point
)
4720 /* Check if we are about to insert bookkeeping copy before a jump, and use
4721 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4722 rtx_insn
*next
= NEXT_INSN (place_to_insert
);
4725 && BLOCK_FOR_INSN (next
) == BLOCK_FOR_INSN (place_to_insert
))
4727 gcc_assert (INSN_SCHED_TIMES (next
) == 0);
4728 seqno
= INSN_SEQNO (next
);
4730 else if (INSN_SEQNO (join_point
) > 0)
4731 seqno
= INSN_SEQNO (join_point
);
4734 seqno
= get_seqno_by_preds (place_to_insert
);
4736 /* Sometimes the fences can move in such a way that there will be
4737 no instructions with positive seqno around this bookkeeping.
4738 This means that there will be no way to get to it by a regular
4739 fence movement. Never mind because we pick up such pieces for
4740 rescheduling anyways, so any positive value will do for now. */
4743 gcc_assert (pipelining_p
);
4748 gcc_assert (seqno
> 0);
4752 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4753 NEW_SEQNO to it. Return created insn. */
4755 emit_bookkeeping_insn (insn_t place_to_insert
, expr_t c_expr
, int new_seqno
)
4757 rtx_insn
*new_insn_rtx
= create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr
));
4760 = create_vinsn_from_insn_rtx (new_insn_rtx
,
4761 VINSN_UNIQUE_P (EXPR_VINSN (c_expr
)));
4763 insn_t new_insn
= emit_insn_from_expr_after (c_expr
, new_vinsn
, new_seqno
,
4766 INSN_SCHED_TIMES (new_insn
) = 0;
4767 bitmap_set_bit (current_copies
, INSN_UID (new_insn
));
4772 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4773 E2->dest, except from E1->src (there may be a sequence of empty blocks
4774 between E1->src and E2->dest). Return block containing the copy.
4775 All scheduler data is initialized for the newly created insn. */
4777 generate_bookkeeping_insn (expr_t c_expr
, edge e1
, edge e2
)
4779 insn_t join_point
, place_to_insert
, new_insn
;
4781 bool need_to_exchange_data_sets
;
4782 fence_t fence_to_rewind
;
4784 if (sched_verbose
>= 4)
4785 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1
->src
->index
,
4788 join_point
= sel_bb_head (e2
->dest
);
4789 place_to_insert
= find_place_for_bookkeeping (e1
, e2
, &fence_to_rewind
);
4790 new_seqno
= find_seqno_for_bookkeeping (place_to_insert
, join_point
);
4791 need_to_exchange_data_sets
4792 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert
));
4794 new_insn
= emit_bookkeeping_insn (place_to_insert
, c_expr
, new_seqno
);
4796 if (fence_to_rewind
)
4797 FENCE_INSN (fence_to_rewind
) = new_insn
;
4799 /* When inserting bookkeeping insn in new block, av sets should be
4800 following: old basic block (that now holds bookkeeping) data sets are
4801 the same as was before generation of bookkeeping, and new basic block
4802 (that now hold all other insns of old basic block) data sets are
4803 invalid. So exchange data sets for these basic blocks as sel_split_block
4804 mistakenly exchanges them in this case. Cannot do it earlier because
4805 when single instruction is added to new basic block it should hold NULL
4807 if (need_to_exchange_data_sets
)
4808 exchange_data_sets (BLOCK_FOR_INSN (new_insn
),
4809 BLOCK_FOR_INSN (join_point
));
4811 stat_bookkeeping_copies
++;
4812 return BLOCK_FOR_INSN (new_insn
);
4815 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4816 on FENCE, but we are unable to copy them. */
4818 remove_insns_that_need_bookkeeping (fence_t fence
, av_set_t
*av_ptr
)
4823 /* An expression does not need bookkeeping if it is available on all paths
4824 from current block to original block and current block dominates
4825 original block. We check availability on all paths by examining
4826 EXPR_SPEC; this is not equivalent, because it may be positive even
4827 if expr is available on all paths (but if expr is not available on
4828 any path, EXPR_SPEC will be positive). */
4830 FOR_EACH_EXPR_1 (expr
, i
, av_ptr
)
4832 if (!control_flow_insn_p (EXPR_INSN_RTX (expr
))
4833 && (!bookkeeping_p
|| VINSN_UNIQUE_P (EXPR_VINSN (expr
)))
4834 && (EXPR_SPEC (expr
)
4835 || !EXPR_ORIG_BB_INDEX (expr
)
4836 || !dominated_by_p (CDI_DOMINATORS
,
4837 BASIC_BLOCK_FOR_FN (cfun
,
4838 EXPR_ORIG_BB_INDEX (expr
)),
4839 BLOCK_FOR_INSN (FENCE_INSN (fence
)))))
4841 if (sched_verbose
>= 4)
4842 sel_print ("Expr %d removed because it would need bookkeeping, which "
4843 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr
)));
4844 av_set_iter_remove (&i
);
4849 /* Moving conditional jump through some instructions.
4853 ... <- current scheduling point
4854 NOTE BASIC BLOCK: <- bb header
4855 (p8) add r14=r14+0x9;;
4861 We can schedule jump one cycle earlier, than mov, because they cannot be
4862 executed together as their predicates are mutually exclusive.
4864 This is done in this way: first, new fallthrough basic block is created
4865 after jump (it is always can be done, because there already should be a
4866 fallthrough block, where control flow goes in case of predicate being true -
4867 in our example; otherwise there should be a dependence between those
4868 instructions and jump and we cannot schedule jump right now);
4869 next, all instructions between jump and current scheduling point are moved
4870 to this new block. And the result is this:
4873 (!p8) jump L1 <- current scheduling point
4874 NOTE BASIC BLOCK: <- bb header
4875 (p8) add r14=r14+0x9;;
4881 move_cond_jump (rtx_insn
*insn
, bnd_t bnd
)
4884 basic_block block_from
, block_next
, block_new
, block_bnd
, bb
;
4885 rtx_insn
*next
, *prev
, *link
, *head
;
4887 block_from
= BLOCK_FOR_INSN (insn
);
4888 block_bnd
= BLOCK_FOR_INSN (BND_TO (bnd
));
4889 prev
= BND_TO (bnd
);
4891 #ifdef ENABLE_CHECKING
4892 /* Moving of jump should not cross any other jumps or beginnings of new
4893 basic blocks. The only exception is when we move a jump through
4894 mutually exclusive insns along fallthru edges. */
4895 if (block_from
!= block_bnd
)
4898 for (link
= PREV_INSN (insn
); link
!= PREV_INSN (prev
);
4899 link
= PREV_INSN (link
))
4902 gcc_assert (sched_insns_conditions_mutex_p (insn
, link
));
4903 if (BLOCK_FOR_INSN (link
) && BLOCK_FOR_INSN (link
) != bb
)
4905 gcc_assert (single_pred (bb
) == BLOCK_FOR_INSN (link
));
4906 bb
= BLOCK_FOR_INSN (link
);
4912 /* Jump is moved to the boundary. */
4913 next
= PREV_INSN (insn
);
4914 BND_TO (bnd
) = insn
;
4916 ft_edge
= find_fallthru_edge_from (block_from
);
4917 block_next
= ft_edge
->dest
;
4918 /* There must be a fallthrough block (or where should go
4919 control flow in case of false jump predicate otherwise?). */
4920 gcc_assert (block_next
);
4922 /* Create new empty basic block after source block. */
4923 block_new
= sel_split_edge (ft_edge
);
4924 gcc_assert (block_new
->next_bb
== block_next
4925 && block_from
->next_bb
== block_new
);
4927 /* Move all instructions except INSN to BLOCK_NEW. */
4929 head
= BB_HEAD (block_new
);
4930 while (bb
!= block_from
->next_bb
)
4932 rtx_insn
*from
, *to
;
4933 from
= bb
== block_bnd
? prev
: sel_bb_head (bb
);
4934 to
= bb
== block_from
? next
: sel_bb_end (bb
);
4936 /* The jump being moved can be the first insn in the block.
4937 In this case we don't have to move anything in this block. */
4938 if (NEXT_INSN (to
) != from
)
4940 reorder_insns (from
, to
, head
);
4942 for (link
= to
; link
!= head
; link
= PREV_INSN (link
))
4943 EXPR_ORIG_BB_INDEX (INSN_EXPR (link
)) = block_new
->index
;
4947 /* Cleanup possibly empty blocks left. */
4948 block_next
= bb
->next_bb
;
4949 if (bb
!= block_from
)
4950 tidy_control_flow (bb
, false);
4954 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4955 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new
)));
4957 gcc_assert (!sel_bb_empty_p (block_from
)
4958 && !sel_bb_empty_p (block_new
));
4960 /* Update data sets for BLOCK_NEW to represent that INSN and
4961 instructions from the other branch of INSN is no longer
4962 available at BLOCK_NEW. */
4963 BB_AV_LEVEL (block_new
) = global_level
;
4964 gcc_assert (BB_LV_SET (block_new
) == NULL
);
4965 BB_LV_SET (block_new
) = get_clear_regset_from_pool ();
4966 update_data_sets (sel_bb_head (block_new
));
4968 /* INSN is a new basic block header - so prepare its data
4969 structures and update availability and liveness sets. */
4970 update_data_sets (insn
);
4972 if (sched_verbose
>= 4)
4973 sel_print ("Moving jump %d\n", INSN_UID (insn
));
4976 /* Remove nops generated during move_op for preventing removal of empty
4979 remove_temp_moveop_nops (bool full_tidying
)
4984 FOR_EACH_VEC_ELT (vec_temp_moveop_nops
, i
, insn
)
4986 gcc_assert (INSN_NOP_P (insn
));
4987 return_nop_to_pool (insn
, full_tidying
);
4990 /* Empty the vector. */
4991 if (vec_temp_moveop_nops
.length () > 0)
4992 vec_temp_moveop_nops
.block_remove (0, vec_temp_moveop_nops
.length ());
4995 /* Records the maximal UID before moving up an instruction. Used for
4996 distinguishing between bookkeeping copies and original insns. */
4997 static int max_uid_before_move_op
= 0;
4999 /* Remove from AV_VLIW_P all instructions but next when debug counter
5000 tells us so. Next instruction is fetched from BNDS. */
5002 remove_insns_for_debug (blist_t bnds
, av_set_t
*av_vliw_p
)
5004 if (! dbg_cnt (sel_sched_insn_cnt
))
5005 /* Leave only the next insn in av_vliw. */
5007 av_set_iterator av_it
;
5009 bnd_t bnd
= BLIST_BND (bnds
);
5010 insn_t next
= BND_TO (bnd
);
5012 gcc_assert (BLIST_NEXT (bnds
) == NULL
);
5014 FOR_EACH_EXPR_1 (expr
, av_it
, av_vliw_p
)
5015 if (EXPR_INSN_RTX (expr
) != next
)
5016 av_set_iter_remove (&av_it
);
5020 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5021 the computed set to *AV_VLIW_P. */
5023 compute_av_set_on_boundaries (fence_t fence
, blist_t bnds
, av_set_t
*av_vliw_p
)
5025 if (sched_verbose
>= 2)
5027 sel_print ("Boundaries: ");
5032 for (; bnds
; bnds
= BLIST_NEXT (bnds
))
5034 bnd_t bnd
= BLIST_BND (bnds
);
5036 insn_t bnd_to
= BND_TO (bnd
);
5038 /* Rewind BND->TO to the basic block header in case some bookkeeping
5039 instructions were inserted before BND->TO and it needs to be
5041 if (sel_bb_head_p (bnd_to
))
5042 gcc_assert (INSN_SCHED_TIMES (bnd_to
) == 0);
5044 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to
)) == 0)
5046 bnd_to
= PREV_INSN (bnd_to
);
5047 if (sel_bb_head_p (bnd_to
))
5051 if (BND_TO (bnd
) != bnd_to
)
5053 gcc_assert (FENCE_INSN (fence
) == BND_TO (bnd
));
5054 FENCE_INSN (fence
) = bnd_to
;
5055 BND_TO (bnd
) = bnd_to
;
5058 av_set_clear (&BND_AV (bnd
));
5059 BND_AV (bnd
) = compute_av_set (BND_TO (bnd
), NULL
, 0, true);
5061 av_set_clear (&BND_AV1 (bnd
));
5062 BND_AV1 (bnd
) = av_set_copy (BND_AV (bnd
));
5064 moveup_set_inside_insn_group (&BND_AV1 (bnd
), NULL
);
5066 av1_copy
= av_set_copy (BND_AV1 (bnd
));
5067 av_set_union_and_clear (av_vliw_p
, &av1_copy
, NULL
);
5070 if (sched_verbose
>= 2)
5072 sel_print ("Available exprs (vliw form): ");
5073 dump_av_set (*av_vliw_p
);
5078 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5079 expression. When FOR_MOVEOP is true, also replace the register of
5080 expressions found with the register from EXPR_VLIW. */
5082 find_sequential_best_exprs (bnd_t bnd
, expr_t expr_vliw
, bool for_moveop
)
5084 av_set_t expr_seq
= NULL
;
5088 FOR_EACH_EXPR (expr
, i
, BND_AV (bnd
))
5090 if (equal_after_moveup_path_p (expr
, NULL
, expr_vliw
))
5094 /* The sequential expression has the right form to pass
5095 to move_op except when renaming happened. Put the
5096 correct register in EXPR then. */
5097 if (EXPR_SEPARABLE_P (expr
) && REG_P (EXPR_LHS (expr
)))
5099 if (expr_dest_regno (expr
) != expr_dest_regno (expr_vliw
))
5101 replace_dest_with_reg_in_expr (expr
, EXPR_LHS (expr_vliw
));
5102 stat_renamed_scheduled
++;
5104 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5105 This is needed when renaming came up with original
5107 else if (EXPR_TARGET_AVAILABLE (expr
)
5108 != EXPR_TARGET_AVAILABLE (expr_vliw
))
5110 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw
) == 1);
5111 EXPR_TARGET_AVAILABLE (expr
) = 1;
5114 if (EXPR_WAS_SUBSTITUTED (expr
))
5115 stat_substitutions_total
++;
5118 av_set_add (&expr_seq
, expr
);
5120 /* With substitution inside insn group, it is possible
5121 that more than one expression in expr_seq will correspond
5122 to expr_vliw. In this case, choose one as the attempt to
5123 move both leads to miscompiles. */
5128 if (for_moveop
&& sched_verbose
>= 2)
5130 sel_print ("Best expression(s) (sequential form): ");
5131 dump_av_set (expr_seq
);
5139 /* Move nop to previous block. */
5140 static void ATTRIBUTE_UNUSED
5141 move_nop_to_previous_block (insn_t nop
, basic_block prev_bb
)
5143 insn_t prev_insn
, next_insn
;
5145 gcc_assert (sel_bb_head_p (nop
)
5146 && prev_bb
== BLOCK_FOR_INSN (nop
)->prev_bb
);
5147 rtx_note
*note
= bb_note (BLOCK_FOR_INSN (nop
));
5148 prev_insn
= sel_bb_end (prev_bb
);
5149 next_insn
= NEXT_INSN (nop
);
5150 gcc_assert (prev_insn
!= NULL_RTX
5151 && PREV_INSN (note
) == prev_insn
);
5153 SET_NEXT_INSN (prev_insn
) = nop
;
5154 SET_PREV_INSN (nop
) = prev_insn
;
5156 SET_PREV_INSN (note
) = nop
;
5157 SET_NEXT_INSN (note
) = next_insn
;
5159 SET_NEXT_INSN (nop
) = note
;
5160 SET_PREV_INSN (next_insn
) = note
;
5162 BB_END (prev_bb
) = nop
;
5163 BLOCK_FOR_INSN (nop
) = prev_bb
;
5166 /* Prepare a place to insert the chosen expression on BND. */
5168 prepare_place_to_insert (bnd_t bnd
)
5170 insn_t place_to_insert
;
5172 /* Init place_to_insert before calling move_op, as the later
5173 can possibly remove BND_TO (bnd). */
5174 if (/* If this is not the first insn scheduled. */
5177 /* Add it after last scheduled. */
5178 place_to_insert
= ILIST_INSN (BND_PTR (bnd
));
5179 if (DEBUG_INSN_P (place_to_insert
))
5181 ilist_t l
= BND_PTR (bnd
);
5182 while ((l
= ILIST_NEXT (l
)) &&
5183 DEBUG_INSN_P (ILIST_INSN (l
)))
5186 place_to_insert
= NULL
;
5190 place_to_insert
= NULL
;
5192 if (!place_to_insert
)
5194 /* Add it before BND_TO. The difference is in the
5195 basic block, where INSN will be added. */
5196 place_to_insert
= get_nop_from_pool (BND_TO (bnd
));
5197 gcc_assert (BLOCK_FOR_INSN (place_to_insert
)
5198 == BLOCK_FOR_INSN (BND_TO (bnd
)));
5201 return place_to_insert
;
5204 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5205 Return the expression to emit in C_EXPR. */
5207 move_exprs_to_boundary (bnd_t bnd
, expr_t expr_vliw
,
5208 av_set_t expr_seq
, expr_t c_expr
)
5210 bool b
, should_move
;
5213 int n_bookkeeping_copies_before_moveop
;
5215 /* Make a move. This call will remove the original operation,
5216 insert all necessary bookkeeping instructions and update the
5217 data sets. After that all we have to do is add the operation
5218 at before BND_TO (BND). */
5219 n_bookkeeping_copies_before_moveop
= stat_bookkeeping_copies
;
5220 max_uid_before_move_op
= get_max_uid ();
5221 bitmap_clear (current_copies
);
5222 bitmap_clear (current_originators
);
5224 b
= move_op (BND_TO (bnd
), expr_seq
, expr_vliw
,
5225 get_dest_from_orig_ops (expr_seq
), c_expr
, &should_move
);
5227 /* We should be able to find the expression we've chosen for
5231 if (stat_bookkeeping_copies
> n_bookkeeping_copies_before_moveop
)
5232 stat_insns_needed_bookkeeping
++;
5234 EXECUTE_IF_SET_IN_BITMAP (current_copies
, 0, book_uid
, bi
)
5239 /* We allocate these bitmaps lazily. */
5240 if (! INSN_ORIGINATORS_BY_UID (book_uid
))
5241 INSN_ORIGINATORS_BY_UID (book_uid
) = BITMAP_ALLOC (NULL
);
5243 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid
),
5244 current_originators
);
5246 /* Transitively add all originators' originators. */
5247 EXECUTE_IF_SET_IN_BITMAP (current_originators
, 0, uid
, bi
)
5248 if (INSN_ORIGINATORS_BY_UID (uid
))
5249 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid
),
5250 INSN_ORIGINATORS_BY_UID (uid
));
5257 /* Debug a DFA state as an array of bytes. */
5259 debug_state (state_t state
)
5262 unsigned int i
, size
= dfa_state_size
;
5264 sel_print ("state (%u):", size
);
5265 for (i
= 0, p
= (unsigned char *) state
; i
< size
; i
++)
5266 sel_print (" %d", p
[i
]);
5270 /* Advance state on FENCE with INSN. Return true if INSN is
5271 an ASM, and we should advance state once more. */
5273 advance_state_on_fence (fence_t fence
, insn_t insn
)
5277 if (recog_memoized (insn
) >= 0)
5280 state_t temp_state
= alloca (dfa_state_size
);
5282 gcc_assert (!INSN_ASM_P (insn
));
5285 memcpy (temp_state
, FENCE_STATE (fence
), dfa_state_size
);
5286 res
= state_transition (FENCE_STATE (fence
), insn
);
5287 gcc_assert (res
< 0);
5289 if (memcmp (temp_state
, FENCE_STATE (fence
), dfa_state_size
))
5291 FENCE_ISSUED_INSNS (fence
)++;
5293 /* We should never issue more than issue_rate insns. */
5294 if (FENCE_ISSUED_INSNS (fence
) > issue_rate
)
5300 /* This could be an ASM insn which we'd like to schedule
5301 on the next cycle. */
5302 asm_p
= INSN_ASM_P (insn
);
5303 if (!FENCE_STARTS_CYCLE_P (fence
) && asm_p
)
5304 advance_one_cycle (fence
);
5307 if (sched_verbose
>= 2)
5308 debug_state (FENCE_STATE (fence
));
5309 if (!DEBUG_INSN_P (insn
))
5310 FENCE_STARTS_CYCLE_P (fence
) = 0;
5311 FENCE_ISSUE_MORE (fence
) = can_issue_more
;
5315 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5316 is nonzero if we need to stall after issuing INSN. */
5318 update_fence_and_insn (fence_t fence
, insn_t insn
, int need_stall
)
5322 /* First, reflect that something is scheduled on this fence. */
5323 asm_p
= advance_state_on_fence (fence
, insn
);
5324 FENCE_LAST_SCHEDULED_INSN (fence
) = insn
;
5325 vec_safe_push (FENCE_EXECUTING_INSNS (fence
), insn
);
5326 if (SCHED_GROUP_P (insn
))
5328 FENCE_SCHED_NEXT (fence
) = INSN_SCHED_NEXT (insn
);
5329 SCHED_GROUP_P (insn
) = 0;
5332 FENCE_SCHED_NEXT (fence
) = NULL
;
5333 if (INSN_UID (insn
) < FENCE_READY_TICKS_SIZE (fence
))
5334 FENCE_READY_TICKS (fence
) [INSN_UID (insn
)] = 0;
5336 /* Set instruction scheduling info. This will be used in bundling,
5337 pipelining, tick computations etc. */
5338 ++INSN_SCHED_TIMES (insn
);
5339 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn
)) = true;
5340 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn
)) = FENCE_CYCLE (fence
);
5341 INSN_AFTER_STALL_P (insn
) = FENCE_AFTER_STALL_P (fence
);
5342 INSN_SCHED_CYCLE (insn
) = FENCE_CYCLE (fence
);
5344 /* This does not account for adjust_cost hooks, just add the biggest
5345 constant the hook may add to the latency. TODO: make this
5346 a target dependent constant. */
5347 INSN_READY_CYCLE (insn
)
5348 = INSN_SCHED_CYCLE (insn
) + (INSN_CODE (insn
) < 0
5350 : maximal_insn_latency (insn
) + 1);
5352 /* Change these fields last, as they're used above. */
5353 FENCE_AFTER_STALL_P (fence
) = 0;
5354 if (asm_p
|| need_stall
)
5355 advance_one_cycle (fence
);
5357 /* Indicate that we've scheduled something on this fence. */
5358 FENCE_SCHEDULED_P (fence
) = true;
5359 scheduled_something_on_previous_fence
= true;
5361 /* Print debug information when insn's fields are updated. */
5362 if (sched_verbose
>= 2)
5364 sel_print ("Scheduling insn: ");
5365 dump_insn_1 (insn
, 1);
5370 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5371 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5374 update_boundaries (fence_t fence
, bnd_t bnd
, insn_t insn
, blist_t
*bndsp
,
5375 blist_t
*bnds_tailp
)
5380 advance_deps_context (BND_DC (bnd
), insn
);
5381 FOR_EACH_SUCC_1 (succ
, si
, insn
,
5382 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
5384 ilist_t ptr
= ilist_copy (BND_PTR (bnd
));
5386 ilist_add (&ptr
, insn
);
5388 if (DEBUG_INSN_P (insn
) && sel_bb_end_p (insn
)
5389 && is_ineligible_successor (succ
, ptr
))
5395 if (FENCE_INSN (fence
) == insn
&& !sel_bb_end_p (insn
))
5397 if (sched_verbose
>= 9)
5398 sel_print ("Updating fence insn from %i to %i\n",
5399 INSN_UID (insn
), INSN_UID (succ
));
5400 FENCE_INSN (fence
) = succ
;
5402 blist_add (bnds_tailp
, succ
, ptr
, BND_DC (bnd
));
5403 bnds_tailp
= &BLIST_NEXT (*bnds_tailp
);
5406 blist_remove (bndsp
);
5410 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5412 schedule_expr_on_boundary (bnd_t bnd
, expr_t expr_vliw
, int seqno
)
5415 expr_t c_expr
= XALLOCA (expr_def
);
5416 insn_t place_to_insert
;
5420 expr_seq
= find_sequential_best_exprs (bnd
, expr_vliw
, true);
5422 /* In case of scheduling a jump skipping some other instructions,
5423 prepare CFG. After this, jump is at the boundary and can be
5424 scheduled as usual insn by MOVE_OP. */
5425 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw
)))
5427 insn
= EXPR_INSN_RTX (expr_vliw
);
5429 /* Speculative jumps are not handled. */
5430 if (insn
!= BND_TO (bnd
)
5431 && !sel_insn_is_speculation_check (insn
))
5432 move_cond_jump (insn
, bnd
);
5435 /* Find a place for C_EXPR to schedule. */
5436 place_to_insert
= prepare_place_to_insert (bnd
);
5437 should_move
= move_exprs_to_boundary (bnd
, expr_vliw
, expr_seq
, c_expr
);
5438 clear_expr (c_expr
);
5440 /* Add the instruction. The corner case to care about is when
5441 the expr_seq set has more than one expr, and we chose the one that
5442 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5443 we can't use it. Generate the new vinsn. */
5444 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw
)))
5448 vinsn_new
= vinsn_copy (EXPR_VINSN (expr_vliw
), false);
5449 change_vinsn_in_expr (expr_vliw
, vinsn_new
);
5450 should_move
= false;
5453 insn
= sel_move_insn (expr_vliw
, seqno
, place_to_insert
);
5455 insn
= emit_insn_from_expr_after (expr_vliw
, NULL
, seqno
,
5458 /* Return the nops generated for preserving of data sets back
5460 if (INSN_NOP_P (place_to_insert
))
5461 return_nop_to_pool (place_to_insert
, !DEBUG_INSN_P (insn
));
5462 remove_temp_moveop_nops (!DEBUG_INSN_P (insn
));
5464 av_set_clear (&expr_seq
);
5466 /* Save the expression scheduled so to reset target availability if we'll
5467 meet it later on the same fence. */
5468 if (EXPR_WAS_RENAMED (expr_vliw
))
5469 vinsn_vec_add (&vec_target_unavailable_vinsns
, INSN_EXPR (insn
));
5471 /* Check that the recent movement didn't destroyed loop
5473 gcc_assert (!pipelining_p
5474 || current_loop_nest
== NULL
5475 || loop_latch_edge (current_loop_nest
));
5479 /* Stall for N cycles on FENCE. */
5481 stall_for_cycles (fence_t fence
, int n
)
5485 could_more
= n
> 1 || FENCE_ISSUED_INSNS (fence
) < issue_rate
;
5487 advance_one_cycle (fence
);
5489 FENCE_AFTER_STALL_P (fence
) = 1;
5492 /* Gather a parallel group of insns at FENCE and assign their seqno
5493 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5494 list for later recalculation of seqnos. */
5496 fill_insns (fence_t fence
, int seqno
, ilist_t
**scheduled_insns_tailpp
)
5498 blist_t bnds
= NULL
, *bnds_tailp
;
5499 av_set_t av_vliw
= NULL
;
5500 insn_t insn
= FENCE_INSN (fence
);
5502 if (sched_verbose
>= 2)
5503 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5504 INSN_UID (insn
), FENCE_CYCLE (fence
));
5506 blist_add (&bnds
, insn
, NULL
, FENCE_DC (fence
));
5507 bnds_tailp
= &BLIST_NEXT (bnds
);
5508 set_target_context (FENCE_TC (fence
));
5509 can_issue_more
= FENCE_ISSUE_MORE (fence
);
5510 target_bb
= INSN_BB (insn
);
5512 /* Do while we can add any operation to the current group. */
5515 blist_t
*bnds_tailp1
, *bndsp
;
5517 int need_stall
= false;
5518 int was_stall
= 0, scheduled_insns
= 0;
5519 int max_insns
= pipelining_p
? issue_rate
: 2 * issue_rate
;
5520 int max_stall
= pipelining_p
? 1 : 3;
5521 bool last_insn_was_debug
= false;
5522 bool was_debug_bb_end_p
= false;
5524 compute_av_set_on_boundaries (fence
, bnds
, &av_vliw
);
5525 remove_insns_that_need_bookkeeping (fence
, &av_vliw
);
5526 remove_insns_for_debug (bnds
, &av_vliw
);
5528 /* Return early if we have nothing to schedule. */
5529 if (av_vliw
== NULL
)
5532 /* Choose the best expression and, if needed, destination register
5536 expr_vliw
= find_best_expr (&av_vliw
, bnds
, fence
, &need_stall
);
5537 if (! expr_vliw
&& need_stall
)
5539 /* All expressions required a stall. Do not recompute av sets
5540 as we'll get the same answer (modulo the insns between
5541 the fence and its boundary, which will not be available for
5543 If we are going to stall for too long, break to recompute av
5544 sets and bring more insns for pipelining. */
5546 if (need_stall
<= 3)
5547 stall_for_cycles (fence
, need_stall
);
5550 stall_for_cycles (fence
, 1);
5555 while (! expr_vliw
&& need_stall
);
5557 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5560 av_set_clear (&av_vliw
);
5565 bnds_tailp1
= bnds_tailp
;
5568 /* This code will be executed only once until we'd have several
5569 boundaries per fence. */
5571 bnd_t bnd
= BLIST_BND (*bndsp
);
5573 if (!av_set_is_in_p (BND_AV1 (bnd
), EXPR_VINSN (expr_vliw
)))
5575 bndsp
= &BLIST_NEXT (*bndsp
);
5579 insn
= schedule_expr_on_boundary (bnd
, expr_vliw
, seqno
);
5580 last_insn_was_debug
= DEBUG_INSN_P (insn
);
5581 if (last_insn_was_debug
)
5582 was_debug_bb_end_p
= (insn
== BND_TO (bnd
) && sel_bb_end_p (insn
));
5583 update_fence_and_insn (fence
, insn
, need_stall
);
5584 bnds_tailp
= update_boundaries (fence
, bnd
, insn
, bndsp
, bnds_tailp
);
5586 /* Add insn to the list of scheduled on this cycle instructions. */
5587 ilist_add (*scheduled_insns_tailpp
, insn
);
5588 *scheduled_insns_tailpp
= &ILIST_NEXT (**scheduled_insns_tailpp
);
5590 while (*bndsp
!= *bnds_tailp1
);
5592 av_set_clear (&av_vliw
);
5593 if (!last_insn_was_debug
)
5596 /* We currently support information about candidate blocks only for
5597 one 'target_bb' block. Hence we can't schedule after jump insn,
5598 as this will bring two boundaries and, hence, necessity to handle
5599 information for two or more blocks concurrently. */
5600 if ((last_insn_was_debug
? was_debug_bb_end_p
: sel_bb_end_p (insn
))
5602 && (was_stall
>= max_stall
5603 || scheduled_insns
>= max_insns
)))
5608 gcc_assert (!FENCE_BNDS (fence
));
5610 /* Update boundaries of the FENCE. */
5613 ilist_t ptr
= BND_PTR (BLIST_BND (bnds
));
5617 insn
= ILIST_INSN (ptr
);
5619 if (!ilist_is_in_p (FENCE_BNDS (fence
), insn
))
5620 ilist_add (&FENCE_BNDS (fence
), insn
);
5623 blist_remove (&bnds
);
5626 /* Update target context on the fence. */
5627 reset_target_context (FENCE_TC (fence
), false);
5630 /* All exprs in ORIG_OPS must have the same destination register or memory.
5631 Return that destination. */
5633 get_dest_from_orig_ops (av_set_t orig_ops
)
5635 rtx dest
= NULL_RTX
;
5636 av_set_iterator av_it
;
5638 bool first_p
= true;
5640 FOR_EACH_EXPR (expr
, av_it
, orig_ops
)
5642 rtx x
= EXPR_LHS (expr
);
5650 gcc_assert (dest
== x
5651 || (dest
!= NULL_RTX
&& x
!= NULL_RTX
5652 && rtx_equal_p (dest
, x
)));
5658 /* Update data sets for the bookkeeping block and record those expressions
5659 which become no longer available after inserting this bookkeeping. */
5661 update_and_record_unavailable_insns (basic_block book_block
)
5664 av_set_t old_av_set
= NULL
;
5666 rtx_insn
*bb_end
= sel_bb_end (book_block
);
5668 /* First, get correct liveness in the bookkeeping block. The problem is
5669 the range between the bookeeping insn and the end of block. */
5670 update_liveness_on_insn (bb_end
);
5671 if (control_flow_insn_p (bb_end
))
5672 update_liveness_on_insn (PREV_INSN (bb_end
));
5674 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5675 fence above, where we may choose to schedule an insn which is
5676 actually blocked from moving up with the bookkeeping we create here. */
5677 if (AV_SET_VALID_P (sel_bb_head (book_block
)))
5679 old_av_set
= av_set_copy (BB_AV_SET (book_block
));
5680 update_data_sets (sel_bb_head (book_block
));
5682 /* Traverse all the expressions in the old av_set and check whether
5683 CUR_EXPR is in new AV_SET. */
5684 FOR_EACH_EXPR (cur_expr
, i
, old_av_set
)
5686 expr_t new_expr
= av_set_lookup (BB_AV_SET (book_block
),
5687 EXPR_VINSN (cur_expr
));
5690 /* In this case, we can just turn off the E_T_A bit, but we can't
5691 represent this information with the current vector. */
5692 || EXPR_TARGET_AVAILABLE (new_expr
)
5693 != EXPR_TARGET_AVAILABLE (cur_expr
))
5694 /* Unfortunately, the below code could be also fired up on
5695 separable insns, e.g. when moving insns through the new
5696 speculation check as in PR 53701. */
5697 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns
, cur_expr
);
5700 av_set_clear (&old_av_set
);
5704 /* The main effect of this function is that sparams->c_expr is merged
5705 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5706 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5707 lparams->c_expr_merged is copied back to sparams->c_expr after all
5708 successors has been traversed. lparams->c_expr_local is an expr allocated
5709 on stack in the caller function, and is used if there is more than one
5712 SUCC is one of the SUCCS_NORMAL successors of INSN,
5713 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5714 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5716 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED
,
5717 insn_t succ ATTRIBUTE_UNUSED
,
5718 int moveop_drv_call_res
,
5719 cmpd_local_params_p lparams
, void *static_params
)
5721 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
5723 /* Nothing to do, if original expr wasn't found below. */
5724 if (moveop_drv_call_res
!= 1)
5727 /* If this is a first successor. */
5728 if (!lparams
->c_expr_merged
)
5730 lparams
->c_expr_merged
= sparams
->c_expr
;
5731 sparams
->c_expr
= lparams
->c_expr_local
;
5735 /* We must merge all found expressions to get reasonable
5736 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5737 do so then we can first find the expr with epsilon
5738 speculation success probability and only then with the
5739 good probability. As a result the insn will get epsilon
5740 probability and will never be scheduled because of
5741 weakness_cutoff in find_best_expr.
5743 We call merge_expr_data here instead of merge_expr
5744 because due to speculation C_EXPR and X may have the
5745 same insns with different speculation types. And as of
5746 now such insns are considered non-equal.
5748 However, EXPR_SCHED_TIMES is different -- we must get
5749 SCHED_TIMES from a real insn, not a bookkeeping copy.
5750 We force this here. Instead, we may consider merging
5751 SCHED_TIMES to the maximum instead of minimum in the
5753 int old_times
= EXPR_SCHED_TIMES (lparams
->c_expr_merged
);
5755 merge_expr_data (lparams
->c_expr_merged
, sparams
->c_expr
, NULL
);
5756 if (EXPR_SCHED_TIMES (sparams
->c_expr
) == 0)
5757 EXPR_SCHED_TIMES (lparams
->c_expr_merged
) = old_times
;
5759 clear_expr (sparams
->c_expr
);
5763 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5765 SUCC is one of the SUCCS_NORMAL successors of INSN,
5766 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5767 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5768 STATIC_PARAMS contain USED_REGS set. */
5770 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED
, insn_t succ
,
5771 int moveop_drv_call_res
,
5772 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
5773 void *static_params
)
5776 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
5778 /* Here we compute live regsets only for branches that do not lie
5779 on the code motion paths. These branches correspond to value
5780 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5781 for such branches code_motion_path_driver is not called. */
5782 if (moveop_drv_call_res
!= 0)
5785 /* Mark all registers that do not meet the following condition:
5786 (3) not live on the other path of any conditional branch
5787 that is passed by the operation, in case original
5788 operations are not present on both paths of the
5789 conditional branch. */
5790 succ_live
= compute_live (succ
);
5791 IOR_REG_SET (sparams
->used_regs
, succ_live
);
5794 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5797 move_op_after_merge_succs (cmpd_local_params_p lp
, void *sparams
)
5799 moveop_static_params_p sp
= (moveop_static_params_p
) sparams
;
5801 sp
->c_expr
= lp
->c_expr_merged
;
5804 /* Track bookkeeping copies created, insns scheduled, and blocks for
5805 rescheduling when INSN is found by move_op. */
5807 track_scheduled_insns_and_blocks (rtx_insn
*insn
)
5809 /* Even if this insn can be a copy that will be removed during current move_op,
5810 we still need to count it as an originator. */
5811 bitmap_set_bit (current_originators
, INSN_UID (insn
));
5813 if (!bitmap_clear_bit (current_copies
, INSN_UID (insn
)))
5815 /* Note that original block needs to be rescheduled, as we pulled an
5816 instruction out of it. */
5817 if (INSN_SCHED_TIMES (insn
) > 0)
5818 bitmap_set_bit (blocks_to_reschedule
, BLOCK_FOR_INSN (insn
)->index
);
5819 else if (INSN_UID (insn
) < first_emitted_uid
&& !DEBUG_INSN_P (insn
))
5820 num_insns_scheduled
++;
5823 /* For instructions we must immediately remove insn from the
5824 stream, so subsequent update_data_sets () won't include this
5826 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5827 if (INSN_UID (insn
) > max_uid_before_move_op
)
5828 stat_bookkeeping_copies
--;
5831 /* Emit a register-register copy for INSN if needed. Return true if
5832 emitted one. PARAMS is the move_op static parameters. */
5834 maybe_emit_renaming_copy (rtx_insn
*insn
,
5835 moveop_static_params_p params
)
5837 bool insn_emitted
= false;
5840 /* Bail out early when expression can not be renamed at all. */
5841 if (!EXPR_SEPARABLE_P (params
->c_expr
))
5844 cur_reg
= expr_dest_reg (params
->c_expr
);
5845 gcc_assert (cur_reg
&& params
->dest
&& REG_P (params
->dest
));
5847 /* If original operation has expr and the register chosen for
5848 that expr is not original operation's dest reg, substitute
5849 operation's right hand side with the register chosen. */
5850 if (REGNO (params
->dest
) != REGNO (cur_reg
))
5852 insn_t reg_move_insn
, reg_move_insn_rtx
;
5854 reg_move_insn_rtx
= create_insn_rtx_with_rhs (INSN_VINSN (insn
),
5856 reg_move_insn
= sel_gen_insn_from_rtx_after (reg_move_insn_rtx
,
5860 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn
)) = 0;
5861 replace_dest_with_reg_in_expr (params
->c_expr
, params
->dest
);
5863 insn_emitted
= true;
5864 params
->was_renamed
= true;
5867 return insn_emitted
;
5870 /* Emit a speculative check for INSN speculated as EXPR if needed.
5871 Return true if we've emitted one. PARAMS is the move_op static
5874 maybe_emit_speculative_check (rtx_insn
*insn
, expr_t expr
,
5875 moveop_static_params_p params
)
5877 bool insn_emitted
= false;
5881 check_ds
= get_spec_check_type_for_insn (insn
, expr
);
5884 /* A speculation check should be inserted. */
5885 x
= create_speculation_check (params
->c_expr
, check_ds
, insn
);
5886 insn_emitted
= true;
5890 EXPR_SPEC_DONE_DS (INSN_EXPR (insn
)) = 0;
5894 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x
)) == 0
5895 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x
)) == 0);
5896 return insn_emitted
;
5899 /* Handle transformations that leave an insn in place of original
5900 insn such as renaming/speculation. Return true if one of such
5901 transformations actually happened, and we have emitted this insn. */
5903 handle_emitting_transformations (rtx_insn
*insn
, expr_t expr
,
5904 moveop_static_params_p params
)
5906 bool insn_emitted
= false;
5908 insn_emitted
= maybe_emit_renaming_copy (insn
, params
);
5909 insn_emitted
|= maybe_emit_speculative_check (insn
, expr
, params
);
5911 return insn_emitted
;
5914 /* If INSN is the only insn in the basic block (not counting JUMP,
5915 which may be a jump to next insn, and DEBUG_INSNs), we want to
5916 leave a NOP there till the return to fill_insns. */
5919 need_nop_to_preserve_insn_bb (rtx_insn
*insn
)
5921 insn_t bb_head
, bb_end
, bb_next
, in_next
;
5922 basic_block bb
= BLOCK_FOR_INSN (insn
);
5924 bb_head
= sel_bb_head (bb
);
5925 bb_end
= sel_bb_end (bb
);
5927 if (bb_head
== bb_end
)
5930 while (bb_head
!= bb_end
&& DEBUG_INSN_P (bb_head
))
5931 bb_head
= NEXT_INSN (bb_head
);
5933 if (bb_head
== bb_end
)
5936 while (bb_head
!= bb_end
&& DEBUG_INSN_P (bb_end
))
5937 bb_end
= PREV_INSN (bb_end
);
5939 if (bb_head
== bb_end
)
5942 bb_next
= NEXT_INSN (bb_head
);
5943 while (bb_next
!= bb_end
&& DEBUG_INSN_P (bb_next
))
5944 bb_next
= NEXT_INSN (bb_next
);
5946 if (bb_next
== bb_end
&& JUMP_P (bb_end
))
5949 in_next
= NEXT_INSN (insn
);
5950 while (DEBUG_INSN_P (in_next
))
5951 in_next
= NEXT_INSN (in_next
);
5953 if (IN_CURRENT_FENCE_P (in_next
))
5959 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5960 is not removed but reused when INSN is re-emitted. */
5962 remove_insn_from_stream (rtx_insn
*insn
, bool only_disconnect
)
5964 /* If there's only one insn in the BB, make sure that a nop is
5965 inserted into it, so the basic block won't disappear when we'll
5966 delete INSN below with sel_remove_insn. It should also survive
5967 till the return to fill_insns. */
5968 if (need_nop_to_preserve_insn_bb (insn
))
5970 insn_t nop
= get_nop_from_pool (insn
);
5971 gcc_assert (INSN_NOP_P (nop
));
5972 vec_temp_moveop_nops
.safe_push (nop
);
5975 sel_remove_insn (insn
, only_disconnect
, false);
5978 /* This function is called when original expr is found.
5979 INSN - current insn traversed, EXPR - the corresponding expr found.
5980 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5981 is static parameters of move_op. */
5983 move_op_orig_expr_found (insn_t insn
, expr_t expr
,
5984 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
5985 void *static_params
)
5987 bool only_disconnect
;
5988 moveop_static_params_p params
= (moveop_static_params_p
) static_params
;
5990 copy_expr_onside (params
->c_expr
, INSN_EXPR (insn
));
5991 track_scheduled_insns_and_blocks (insn
);
5992 handle_emitting_transformations (insn
, expr
, params
);
5993 only_disconnect
= params
->uid
== INSN_UID (insn
);
5995 /* Mark that we've disconnected an insn. */
5996 if (only_disconnect
)
5998 remove_insn_from_stream (insn
, only_disconnect
);
6001 /* The function is called when original expr is found.
6002 INSN - current insn traversed, EXPR - the corresponding expr found,
6003 crosses_call and original_insns in STATIC_PARAMS are updated. */
6005 fur_orig_expr_found (insn_t insn
, expr_t expr ATTRIBUTE_UNUSED
,
6006 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
6007 void *static_params
)
6009 fur_static_params_p params
= (fur_static_params_p
) static_params
;
6013 params
->crosses_call
= true;
6015 def_list_add (params
->original_insns
, insn
, params
->crosses_call
);
6017 /* Mark the registers that do not meet the following condition:
6018 (2) not among the live registers of the point
6019 immediately following the first original operation on
6020 a given downward path, except for the original target
6021 register of the operation. */
6022 tmp
= get_clear_regset_from_pool ();
6023 compute_live_below_insn (insn
, tmp
);
6024 AND_COMPL_REG_SET (tmp
, INSN_REG_SETS (insn
));
6025 AND_COMPL_REG_SET (tmp
, INSN_REG_CLOBBERS (insn
));
6026 IOR_REG_SET (params
->used_regs
, tmp
);
6027 return_regset_to_pool (tmp
);
6029 /* (*1) We need to add to USED_REGS registers that are read by
6030 INSN's lhs. This may lead to choosing wrong src register.
6031 E.g. (scheduling const expr enabled):
6033 429: ax=0x0 <- Can't use AX for this expr (0x0)
6040 /* FIXME: see comment above and enable MEM_P
6041 in vinsn_separable_p. */
6042 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn
))
6043 || !MEM_P (INSN_LHS (insn
)));
6046 /* This function is called on the ascending pass, before returning from
6047 current basic block. */
6049 move_op_at_first_insn (insn_t insn
, cmpd_local_params_p lparams
,
6050 void *static_params
)
6052 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6053 basic_block book_block
= NULL
;
6055 /* When we have removed the boundary insn for scheduling, which also
6056 happened to be the end insn in its bb, we don't need to update sets. */
6057 if (!lparams
->removed_last_insn
6059 && sel_bb_head_p (insn
))
6061 /* We should generate bookkeeping code only if we are not at the
6062 top level of the move_op. */
6063 if (sel_num_cfg_preds_gt_1 (insn
))
6064 book_block
= generate_bookkeeping_insn (sparams
->c_expr
,
6065 lparams
->e1
, lparams
->e2
);
6066 /* Update data sets for the current insn. */
6067 update_data_sets (insn
);
6070 /* If bookkeeping code was inserted, we need to update av sets of basic
6071 block that received bookkeeping. After generation of bookkeeping insn,
6072 bookkeeping block does not contain valid av set because we are not following
6073 the original algorithm in every detail with regards to e.g. renaming
6074 simple reg-reg copies. Consider example:
6076 bookkeeping block scheduling fence
6086 We try to schedule insn "r1 := r3" on the current
6087 scheduling fence. Also, note that av set of bookkeeping block
6088 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6089 been scheduled, the CFG is as follows:
6092 bookkeeping block scheduling fence
6102 Here, insn "r1 := r3" was scheduled at the current scheduling point
6103 and bookkeeping code was generated at the bookeeping block. This
6104 way insn "r1 := r2" is no longer available as a whole instruction
6105 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6106 This situation is handled by calling update_data_sets.
6108 Since update_data_sets is called only on the bookkeeping block, and
6109 it also may have predecessors with av_sets, containing instructions that
6110 are no longer available, we save all such expressions that become
6111 unavailable during data sets update on the bookkeeping block in
6112 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6113 expressions for scheduling. This allows us to avoid recomputation of
6114 av_sets outside the code motion path. */
6117 update_and_record_unavailable_insns (book_block
);
6119 /* If INSN was previously marked for deletion, it's time to do it. */
6120 if (lparams
->removed_last_insn
)
6121 insn
= PREV_INSN (insn
);
6123 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6124 kill a block with a single nop in which the insn should be emitted. */
6126 tidy_control_flow (BLOCK_FOR_INSN (insn
), true);
6129 /* This function is called on the ascending pass, before returning from the
6130 current basic block. */
6132 fur_at_first_insn (insn_t insn
,
6133 cmpd_local_params_p lparams ATTRIBUTE_UNUSED
,
6134 void *static_params ATTRIBUTE_UNUSED
)
6136 gcc_assert (!sel_bb_head_p (insn
) || AV_SET_VALID_P (insn
)
6137 || AV_LEVEL (insn
) == -1);
6140 /* Called on the backward stage of recursion to call moveup_expr for insn
6141 and sparams->c_expr. */
6143 move_op_ascend (insn_t insn
, void *static_params
)
6145 enum MOVEUP_EXPR_CODE res
;
6146 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6148 if (! INSN_NOP_P (insn
))
6150 res
= moveup_expr_cached (sparams
->c_expr
, insn
, false);
6151 gcc_assert (res
!= MOVEUP_EXPR_NULL
);
6154 /* Update liveness for this insn as it was invalidated. */
6155 update_liveness_on_insn (insn
);
6158 /* This function is called on enter to the basic block.
6159 Returns TRUE if this block already have been visited and
6160 code_motion_path_driver should return 1, FALSE otherwise. */
6162 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED
, cmpd_local_params_p local_params
,
6163 void *static_params
, bool visited_p
)
6165 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
6169 /* If we have found something below this block, there should be at
6170 least one insn in ORIGINAL_INSNS. */
6171 gcc_assert (*sparams
->original_insns
);
6173 /* Adjust CROSSES_CALL, since we may have come to this block along
6175 DEF_LIST_DEF (*sparams
->original_insns
)->crosses_call
6176 |= sparams
->crosses_call
;
6179 local_params
->old_original_insns
= *sparams
->original_insns
;
6184 /* Same as above but for move_op. */
6186 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED
,
6187 cmpd_local_params_p local_params ATTRIBUTE_UNUSED
,
6188 void *static_params ATTRIBUTE_UNUSED
, bool visited_p
)
6195 /* This function is called while descending current basic block if current
6196 insn is not the original EXPR we're searching for.
6198 Return value: FALSE, if code_motion_path_driver should perform a local
6199 cleanup and return 0 itself;
6200 TRUE, if code_motion_path_driver should continue. */
6202 move_op_orig_expr_not_found (insn_t insn
, av_set_t orig_ops ATTRIBUTE_UNUSED
,
6203 void *static_params
)
6205 moveop_static_params_p sparams
= (moveop_static_params_p
) static_params
;
6207 #ifdef ENABLE_CHECKING
6208 sparams
->failed_insn
= insn
;
6211 /* If we're scheduling separate expr, in order to generate correct code
6212 we need to stop the search at bookkeeping code generated with the
6213 same destination register or memory. */
6214 if (lhs_of_insn_equals_to_dest_p (insn
, sparams
->dest
))
6219 /* This function is called while descending current basic block if current
6220 insn is not the original EXPR we're searching for.
6222 Return value: TRUE (code_motion_path_driver should continue). */
6224 fur_orig_expr_not_found (insn_t insn
, av_set_t orig_ops
, void *static_params
)
6228 av_set_iterator avi
;
6229 fur_static_params_p sparams
= (fur_static_params_p
) static_params
;
6232 sparams
->crosses_call
= true;
6233 else if (DEBUG_INSN_P (insn
))
6236 /* If current insn we are looking at cannot be executed together
6237 with original insn, then we can skip it safely.
6239 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6240 INSN = (!p6) r14 = r14 + 1;
6242 Here we can schedule ORIG_OP with lhs = r14, though only
6243 looking at the set of used and set registers of INSN we must
6244 forbid it. So, add set/used in INSN registers to the
6245 untouchable set only if there is an insn in ORIG_OPS that can
6248 FOR_EACH_EXPR (r
, avi
, orig_ops
)
6249 if (!sched_insns_conditions_mutex_p (insn
, EXPR_INSN_RTX (r
)))
6255 /* Mark all registers that do not meet the following condition:
6256 (1) Not set or read on any path from xi to an instance of the
6257 original operation. */
6260 IOR_REG_SET (sparams
->used_regs
, INSN_REG_SETS (insn
));
6261 IOR_REG_SET (sparams
->used_regs
, INSN_REG_USES (insn
));
6262 IOR_REG_SET (sparams
->used_regs
, INSN_REG_CLOBBERS (insn
));
6268 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6269 struct code_motion_path_driver_info_def move_op_hooks
= {
6271 move_op_orig_expr_found
,
6272 move_op_orig_expr_not_found
,
6273 move_op_merge_succs
,
6274 move_op_after_merge_succs
,
6276 move_op_at_first_insn
,
6281 /* Hooks and data to perform find_used_regs operations
6282 with code_motion_path_driver. */
6283 struct code_motion_path_driver_info_def fur_hooks
= {
6285 fur_orig_expr_found
,
6286 fur_orig_expr_not_found
,
6288 NULL
, /* fur_after_merge_succs */
6289 NULL
, /* fur_ascend */
6295 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6296 code_motion_path_driver is called recursively. Original operation
6297 was found at least on one path that is starting with one of INSN's
6298 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6299 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6300 of either move_op or find_used_regs depending on the caller.
6302 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6303 know for sure at this point. */
6305 code_motion_process_successors (insn_t insn
, av_set_t orig_ops
,
6306 ilist_t path
, void *static_params
)
6309 succ_iterator succ_i
;
6315 struct cmpd_local_params lparams
;
6318 lparams
.c_expr_local
= &_x
;
6319 lparams
.c_expr_merged
= NULL
;
6321 /* We need to process only NORMAL succs for move_op, and collect live
6322 registers from ALL branches (including those leading out of the
6323 region) for find_used_regs.
6325 In move_op, there can be a case when insn's bb number has changed
6326 due to created bookkeeping. This happens very rare, as we need to
6327 move expression from the beginning to the end of the same block.
6328 Rescan successors in this case. */
6331 bb
= BLOCK_FOR_INSN (insn
);
6332 old_index
= bb
->index
;
6333 old_succs
= EDGE_COUNT (bb
->succs
);
6335 FOR_EACH_SUCC_1 (succ
, succ_i
, insn
, code_motion_path_driver_info
->succ_flags
)
6339 lparams
.e1
= succ_i
.e1
;
6340 lparams
.e2
= succ_i
.e2
;
6342 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 if (succ_i
.current_flags
== SUCCS_NORMAL
)
6345 b
= code_motion_path_driver (succ
, orig_ops
, path
, &lparams
,
6350 /* Merge c_expres found or unify live register sets from different
6352 code_motion_path_driver_info
->merge_succs (insn
, succ
, b
, &lparams
,
6356 else if (b
== -1 && res
!= 1)
6359 /* We have simplified the control flow below this point. In this case,
6360 the iterator becomes invalid. We need to try again.
6361 If we have removed the insn itself, it could be only an
6362 unconditional jump. Thus, do not rescan but break immediately --
6363 we have already visited the only successor block. */
6364 if (!BLOCK_FOR_INSN (insn
))
6366 if (sched_verbose
>= 6)
6367 sel_print ("Not doing rescan: already visited the only successor"
6368 " of block %d\n", old_index
);
6371 if (BLOCK_FOR_INSN (insn
)->index
!= old_index
6372 || EDGE_COUNT (bb
->succs
) != old_succs
)
6374 if (sched_verbose
>= 6)
6375 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6376 INSN_UID (insn
), BLOCK_FOR_INSN (insn
)->index
);
6377 insn
= sel_bb_end (BLOCK_FOR_INSN (insn
));
6382 #ifdef ENABLE_CHECKING
6383 /* Here, RES==1 if original expr was found at least for one of the
6384 successors. After the loop, RES may happen to have zero value
6385 only if at some point the expr searched is present in av_set, but is
6386 not found below. In most cases, this situation is an error.
6387 The exception is when the original operation is blocked by
6388 bookkeeping generated for another fence or for another path in current
6390 gcc_assert (res
== 1
6392 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops
,
6397 /* Merge data, clean up, etc. */
6398 if (res
!= -1 && code_motion_path_driver_info
->after_merge_succs
)
6399 code_motion_path_driver_info
->after_merge_succs (&lparams
, static_params
);
6405 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6406 is the pointer to the av set with expressions we were looking for,
6407 PATH_P is the pointer to the traversed path. */
6409 code_motion_path_driver_cleanup (av_set_t
*orig_ops_p
, ilist_t
*path_p
)
6411 ilist_remove (path_p
);
6412 av_set_clear (orig_ops_p
);
6415 /* The driver function that implements move_op or find_used_regs
6416 functionality dependent whether code_motion_path_driver_INFO is set to
6417 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6418 of code (CFG traversal etc) that are shared among both functions. INSN
6419 is the insn we're starting the search from, ORIG_OPS are the expressions
6420 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6421 parameters of the driver, and STATIC_PARAMS are static parameters of
6424 Returns whether original instructions were found. Note that top-level
6425 code_motion_path_driver always returns true. */
6427 code_motion_path_driver (insn_t insn
, av_set_t orig_ops
, ilist_t path
,
6428 cmpd_local_params_p local_params_in
,
6429 void *static_params
)
6432 basic_block bb
= BLOCK_FOR_INSN (insn
);
6433 insn_t first_insn
, bb_tail
, before_first
;
6434 bool removed_last_insn
= false;
6436 if (sched_verbose
>= 6)
6438 sel_print ("%s (", code_motion_path_driver_info
->routine_name
);
6441 dump_av_set (orig_ops
);
6445 gcc_assert (orig_ops
);
6447 /* If no original operations exist below this insn, return immediately. */
6448 if (is_ineligible_successor (insn
, path
))
6450 if (sched_verbose
>= 6)
6451 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn
));
6455 /* The block can have invalid av set, in which case it was created earlier
6456 during move_op. Return immediately. */
6457 if (sel_bb_head_p (insn
))
6459 if (! AV_SET_VALID_P (insn
))
6461 if (sched_verbose
>= 6)
6462 sel_print ("Returned from block %d as it had invalid av set\n",
6467 if (bitmap_bit_p (code_motion_visited_blocks
, bb
->index
))
6469 /* We have already found an original operation on this branch, do not
6470 go any further and just return TRUE here. If we don't stop here,
6471 function can have exponential behaviour even on the small code
6472 with many different paths (e.g. with data speculation and
6473 recovery blocks). */
6474 if (sched_verbose
>= 6)
6475 sel_print ("Block %d already visited in this traversal\n", bb
->index
);
6476 if (code_motion_path_driver_info
->on_enter
)
6477 return code_motion_path_driver_info
->on_enter (insn
,
6484 if (code_motion_path_driver_info
->on_enter
)
6485 code_motion_path_driver_info
->on_enter (insn
, local_params_in
,
6486 static_params
, false);
6487 orig_ops
= av_set_copy (orig_ops
);
6489 /* Filter the orig_ops set. */
6490 if (AV_SET_VALID_P (insn
))
6491 av_set_code_motion_filter (&orig_ops
, AV_SET (insn
));
6493 /* If no more original ops, return immediately. */
6496 if (sched_verbose
>= 6)
6497 sel_print ("No intersection with av set of block %d\n", bb
->index
);
6501 /* For non-speculative insns we have to leave only one form of the
6502 original operation, because if we don't, we may end up with
6503 different C_EXPRes and, consequently, with bookkeepings for different
6504 expression forms along the same code motion path. That may lead to
6505 generation of incorrect code. So for each code motion we stick to
6506 the single form of the instruction, except for speculative insns
6507 which we need to keep in different forms with all speculation
6509 av_set_leave_one_nonspec (&orig_ops
);
6511 /* It is not possible that all ORIG_OPS are filtered out. */
6512 gcc_assert (orig_ops
);
6514 /* It is enough to place only heads and tails of visited basic blocks into
6516 ilist_add (&path
, insn
);
6518 bb_tail
= sel_bb_end (bb
);
6520 /* Descend the basic block in search of the original expr; this part
6521 corresponds to the part of the original move_op procedure executed
6522 before the recursive call. */
6525 /* Look at the insn and decide if it could be an ancestor of currently
6526 scheduling operation. If it is so, then the insn "dest = op" could
6527 either be replaced with "dest = reg", because REG now holds the result
6528 of OP, or just removed, if we've scheduled the insn as a whole.
6530 If this insn doesn't contain currently scheduling OP, then proceed
6531 with searching and look at its successors. Operations we're searching
6532 for could have changed when moving up through this insn via
6533 substituting. In this case, perform unsubstitution on them first.
6535 When traversing the DAG below this insn is finished, insert
6536 bookkeeping code, if the insn is a joint point, and remove
6539 expr
= av_set_lookup (orig_ops
, INSN_VINSN (insn
));
6542 insn_t last_insn
= PREV_INSN (insn
);
6544 /* We have found the original operation. */
6545 if (sched_verbose
>= 6)
6546 sel_print ("Found original operation at insn %d\n", INSN_UID (insn
));
6548 code_motion_path_driver_info
->orig_expr_found
6549 (insn
, expr
, local_params_in
, static_params
);
6551 /* Step back, so on the way back we'll start traversing from the
6552 previous insn (or we'll see that it's bb_note and skip that
6554 if (insn
== first_insn
)
6556 first_insn
= NEXT_INSN (last_insn
);
6557 removed_last_insn
= sel_bb_end_p (last_insn
);
6564 /* We haven't found the original expr, continue descending the basic
6566 if (code_motion_path_driver_info
->orig_expr_not_found
6567 (insn
, orig_ops
, static_params
))
6569 /* Av set ops could have been changed when moving through this
6570 insn. To find them below it, we have to un-substitute them. */
6571 undo_transformations (&orig_ops
, insn
);
6575 /* Clean up and return, if the hook tells us to do so. It may
6576 happen if we've encountered the previously created
6578 code_motion_path_driver_cleanup (&orig_ops
, &path
);
6582 gcc_assert (orig_ops
);
6585 /* Stop at insn if we got to the end of BB. */
6586 if (insn
== bb_tail
)
6589 insn
= NEXT_INSN (insn
);
6592 /* Here INSN either points to the insn before the original insn (may be
6593 bb_note, if original insn was a bb_head) or to the bb_end. */
6597 rtx_insn
*last_insn
= PREV_INSN (insn
);
6600 gcc_assert (insn
== sel_bb_end (bb
));
6602 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6603 it's already in PATH then). */
6604 if (insn
!= first_insn
)
6606 ilist_add (&path
, insn
);
6607 added_to_path
= true;
6610 added_to_path
= false;
6612 /* Process_successors should be able to find at least one
6613 successor for which code_motion_path_driver returns TRUE. */
6614 res
= code_motion_process_successors (insn
, orig_ops
,
6615 path
, static_params
);
6617 /* Jump in the end of basic block could have been removed or replaced
6618 during code_motion_process_successors, so recompute insn as the
6620 if (NEXT_INSN (last_insn
) != insn
)
6622 insn
= sel_bb_end (bb
);
6623 first_insn
= sel_bb_head (bb
);
6626 /* Remove bb tail from path. */
6628 ilist_remove (&path
);
6632 /* This is the case when one of the original expr is no longer available
6633 due to bookkeeping created on this branch with the same register.
6634 In the original algorithm, which doesn't have update_data_sets call
6635 on a bookkeeping block, it would simply result in returning
6636 FALSE when we've encountered a previously generated bookkeeping
6637 insn in moveop_orig_expr_not_found. */
6638 code_motion_path_driver_cleanup (&orig_ops
, &path
);
6643 /* Don't need it any more. */
6644 av_set_clear (&orig_ops
);
6646 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6647 the beginning of the basic block. */
6648 before_first
= PREV_INSN (first_insn
);
6649 while (insn
!= before_first
)
6651 if (code_motion_path_driver_info
->ascend
)
6652 code_motion_path_driver_info
->ascend (insn
, static_params
);
6654 insn
= PREV_INSN (insn
);
6657 /* Now we're at the bb head. */
6659 ilist_remove (&path
);
6660 local_params_in
->removed_last_insn
= removed_last_insn
;
6661 code_motion_path_driver_info
->at_first_insn (insn
, local_params_in
, static_params
);
6663 /* This should be the very last operation as at bb head we could change
6664 the numbering by creating bookkeeping blocks. */
6665 if (removed_last_insn
)
6666 insn
= PREV_INSN (insn
);
6668 /* If we have simplified the control flow and removed the first jump insn,
6669 there's no point in marking this block in the visited blocks bitmap. */
6670 if (BLOCK_FOR_INSN (insn
))
6671 bitmap_set_bit (code_motion_visited_blocks
, BLOCK_FOR_INSN (insn
)->index
);
6675 /* Move up the operations from ORIG_OPS set traversing the dag starting
6676 from INSN. PATH represents the edges traversed so far.
6677 DEST is the register chosen for scheduling the current expr. Insert
6678 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6679 C_EXPR is how it looks like at the given cfg point.
6680 Set *SHOULD_MOVE to indicate whether we have only disconnected
6681 one of the insns found.
6683 Returns whether original instructions were found, which is asserted
6684 to be true in the caller. */
6686 move_op (insn_t insn
, av_set_t orig_ops
, expr_t expr_vliw
,
6687 rtx dest
, expr_t c_expr
, bool *should_move
)
6689 struct moveop_static_params sparams
;
6690 struct cmpd_local_params lparams
;
6693 /* Init params for code_motion_path_driver. */
6694 sparams
.dest
= dest
;
6695 sparams
.c_expr
= c_expr
;
6696 sparams
.uid
= INSN_UID (EXPR_INSN_RTX (expr_vliw
));
6697 #ifdef ENABLE_CHECKING
6698 sparams
.failed_insn
= NULL
;
6700 sparams
.was_renamed
= false;
6703 /* We haven't visited any blocks yet. */
6704 bitmap_clear (code_motion_visited_blocks
);
6706 /* Set appropriate hooks and data. */
6707 code_motion_path_driver_info
= &move_op_hooks
;
6708 res
= code_motion_path_driver (insn
, orig_ops
, NULL
, &lparams
, &sparams
);
6710 gcc_assert (res
!= -1);
6712 if (sparams
.was_renamed
)
6713 EXPR_WAS_RENAMED (expr_vliw
) = true;
6715 *should_move
= (sparams
.uid
== -1);
6721 /* Functions that work with regions. */
6723 /* Current number of seqno used in init_seqno and init_seqno_1. */
6724 static int cur_seqno
;
6726 /* A helper for init_seqno. Traverse the region starting from BB and
6727 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6728 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6730 init_seqno_1 (basic_block bb
, sbitmap visited_bbs
, bitmap blocks_to_reschedule
)
6732 int bbi
= BLOCK_TO_BB (bb
->index
);
6737 rtx_note
*note
= bb_note (bb
);
6738 bitmap_set_bit (visited_bbs
, bbi
);
6739 if (blocks_to_reschedule
)
6740 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
6742 FOR_EACH_SUCC_1 (succ_insn
, si
, BB_END (bb
),
6743 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
6745 basic_block succ
= BLOCK_FOR_INSN (succ_insn
);
6746 int succ_bbi
= BLOCK_TO_BB (succ
->index
);
6748 gcc_assert (in_current_region_p (succ
));
6750 if (!bitmap_bit_p (visited_bbs
, succ_bbi
))
6752 gcc_assert (succ_bbi
> bbi
);
6754 init_seqno_1 (succ
, visited_bbs
, blocks_to_reschedule
);
6756 else if (blocks_to_reschedule
)
6757 bitmap_set_bit (forced_ebb_heads
, succ
->index
);
6760 for (insn
= BB_END (bb
); insn
!= note
; insn
= PREV_INSN (insn
))
6761 INSN_SEQNO (insn
) = cur_seqno
--;
6764 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6765 blocks on which we're rescheduling when pipelining, FROM is the block where
6766 traversing region begins (it may not be the head of the region when
6767 pipelining, but the head of the loop instead).
6769 Returns the maximal seqno found. */
6771 init_seqno (bitmap blocks_to_reschedule
, basic_block from
)
6773 sbitmap visited_bbs
;
6777 visited_bbs
= sbitmap_alloc (current_nr_blocks
);
6779 if (blocks_to_reschedule
)
6781 bitmap_ones (visited_bbs
);
6782 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule
, 0, bbi
, bi
)
6784 gcc_assert (BLOCK_TO_BB (bbi
) < current_nr_blocks
);
6785 bitmap_clear_bit (visited_bbs
, BLOCK_TO_BB (bbi
));
6790 bitmap_clear (visited_bbs
);
6791 from
= EBB_FIRST_BB (0);
6794 cur_seqno
= sched_max_luid
- 1;
6795 init_seqno_1 (from
, visited_bbs
, blocks_to_reschedule
);
6797 /* cur_seqno may be positive if the number of instructions is less than
6798 sched_max_luid - 1 (when rescheduling or if some instructions have been
6799 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6800 gcc_assert (cur_seqno
>= 0);
6802 sbitmap_free (visited_bbs
);
6803 return sched_max_luid
- 1;
6806 /* Initialize scheduling parameters for current region. */
6808 sel_setup_region_sched_flags (void)
6810 enable_schedule_as_rhs_p
= 1;
6812 pipelining_p
= (bookkeeping_p
6813 && (flag_sel_sched_pipelining
!= 0)
6814 && current_loop_nest
!= NULL
6815 && loop_has_exit_edges (current_loop_nest
));
6816 max_insns_to_rename
= PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME
);
6820 /* Return true if all basic blocks of current region are empty. */
6822 current_region_empty_p (void)
6825 for (i
= 0; i
< current_nr_blocks
; i
++)
6826 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
))))
6832 /* Prepare and verify loop nest for pipelining. */
6834 setup_current_loop_nest (int rgn
, bb_vec_t
*bbs
)
6836 current_loop_nest
= get_loop_nest_for_rgn (rgn
);
6838 if (!current_loop_nest
)
6841 /* If this loop has any saved loop preheaders from nested loops,
6842 add these basic blocks to the current region. */
6843 sel_add_loop_preheaders (bbs
);
6845 /* Check that we're starting with a valid information. */
6846 gcc_assert (loop_latch_edge (current_loop_nest
));
6847 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest
));
6850 /* Compute instruction priorities for current region. */
6852 sel_compute_priorities (int rgn
)
6854 sched_rgn_compute_dependencies (rgn
);
6856 /* Compute insn priorities in haifa style. Then free haifa style
6857 dependencies that we've calculated for this. */
6858 compute_priorities ();
6860 if (sched_verbose
>= 5)
6861 debug_rgn_dependencies (0);
6866 /* Init scheduling data for RGN. Returns true when this region should not
6869 sel_region_init (int rgn
)
6874 rgn_setup_region (rgn
);
6876 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6877 do region initialization here so the region can be bundled correctly,
6878 but we'll skip the scheduling in sel_sched_region (). */
6879 if (current_region_empty_p ())
6882 bbs
.create (current_nr_blocks
);
6884 for (i
= 0; i
< current_nr_blocks
; i
++)
6885 bbs
.quick_push (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
)));
6889 if (flag_sel_sched_pipelining
)
6890 setup_current_loop_nest (rgn
, &bbs
);
6892 sel_setup_region_sched_flags ();
6894 /* Initialize luids and dependence analysis which both sel-sched and haifa
6896 sched_init_luids (bbs
);
6897 sched_deps_init (false);
6899 /* Initialize haifa data. */
6900 rgn_setup_sched_infos ();
6901 sel_set_sched_flags ();
6902 haifa_init_h_i_d (bbs
);
6904 sel_compute_priorities (rgn
);
6905 init_deps_global ();
6907 /* Main initialization. */
6908 sel_setup_sched_infos ();
6909 sel_init_global_and_expr (bbs
);
6913 blocks_to_reschedule
= BITMAP_ALLOC (NULL
);
6915 /* Init correct liveness sets on each instruction of a single-block loop.
6916 This is the only situation when we can't update liveness when calling
6917 compute_live for the first insn of the loop. */
6918 if (current_loop_nest
)
6921 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (0)))
6925 if (current_nr_blocks
== header
+ 1)
6926 update_liveness_on_insn
6927 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (header
))));
6930 /* Set hooks so that no newly generated insn will go out unnoticed. */
6931 sel_register_cfg_hooks ();
6933 /* !!! We call target.sched.init () for the whole region, but we invoke
6934 targetm.sched.finish () for every ebb. */
6935 if (targetm
.sched
.init
)
6936 /* None of the arguments are actually used in any target. */
6937 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
6939 first_emitted_uid
= get_max_uid () + 1;
6940 preheader_removed
= false;
6942 /* Reset register allocation ticks array. */
6943 memset (reg_rename_tick
, 0, sizeof reg_rename_tick
);
6944 reg_rename_this_tick
= 0;
6946 bitmap_initialize (forced_ebb_heads
, 0);
6947 bitmap_clear (forced_ebb_heads
);
6950 current_copies
= BITMAP_ALLOC (NULL
);
6951 current_originators
= BITMAP_ALLOC (NULL
);
6952 code_motion_visited_blocks
= BITMAP_ALLOC (NULL
);
6957 /* Simplify insns after the scheduling. */
6959 simplify_changed_insns (void)
6963 for (i
= 0; i
< current_nr_blocks
; i
++)
6965 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, BB_TO_BLOCK (i
));
6968 FOR_BB_INSNS (bb
, insn
)
6971 expr_t expr
= INSN_EXPR (insn
);
6973 if (EXPR_WAS_SUBSTITUTED (expr
))
6974 validate_simplify_insn (insn
);
6979 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6980 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6981 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6983 find_ebb_boundaries (basic_block bb
, bitmap scheduled_blocks
)
6985 rtx_insn
*head
, *tail
;
6986 basic_block bb1
= bb
;
6987 if (sched_verbose
>= 2)
6988 sel_print ("Finishing schedule in bbs: ");
6992 bitmap_set_bit (scheduled_blocks
, BLOCK_TO_BB (bb1
->index
));
6994 if (sched_verbose
>= 2)
6995 sel_print ("%d; ", bb1
->index
);
6997 while (!bb_ends_ebb_p (bb1
) && (bb1
= bb_next_bb (bb1
)));
6999 if (sched_verbose
>= 2)
7002 get_ebb_head_tail (bb
, bb1
, &head
, &tail
);
7004 current_sched_info
->head
= head
;
7005 current_sched_info
->tail
= tail
;
7006 current_sched_info
->prev_head
= PREV_INSN (head
);
7007 current_sched_info
->next_tail
= NEXT_INSN (tail
);
7010 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7012 reset_sched_cycles_in_current_ebb (void)
7015 int haifa_last_clock
= -1;
7016 int haifa_clock
= 0;
7017 int issued_insns
= 0;
7020 if (targetm
.sched
.init
)
7022 /* None of the arguments are actually used in any target.
7023 NB: We should have md_reset () hook for cases like this. */
7024 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
7027 state_reset (curr_state
);
7028 advance_state (curr_state
);
7030 for (insn
= current_sched_info
->head
;
7031 insn
!= current_sched_info
->next_tail
;
7032 insn
= NEXT_INSN (insn
))
7034 int cost
, haifa_cost
;
7036 bool asm_p
, real_insn
, after_stall
, all_issued
;
7043 real_insn
= recog_memoized (insn
) >= 0;
7044 clock
= INSN_SCHED_CYCLE (insn
);
7046 cost
= clock
- last_clock
;
7048 /* Initialize HAIFA_COST. */
7051 asm_p
= INSN_ASM_P (insn
);
7054 /* This is asm insn which *had* to be scheduled first
7058 /* This is a use/clobber insn. It should not change
7063 haifa_cost
= estimate_insn_cost (insn
, curr_state
);
7065 /* Stall for whatever cycles we've stalled before. */
7067 if (INSN_AFTER_STALL_P (insn
) && cost
> haifa_cost
)
7072 all_issued
= issued_insns
== issue_rate
;
7073 if (haifa_cost
== 0 && all_issued
)
7079 while (haifa_cost
--)
7081 advance_state (curr_state
);
7085 if (sched_verbose
>= 2)
7087 sel_print ("advance_state (state_transition)\n");
7088 debug_state (curr_state
);
7091 /* The DFA may report that e.g. insn requires 2 cycles to be
7092 issued, but on the next cycle it says that insn is ready
7093 to go. Check this here. */
7097 && estimate_insn_cost (insn
, curr_state
) == 0)
7100 /* When the data dependency stall is longer than the DFA stall,
7101 and when we have issued exactly issue_rate insns and stalled,
7102 it could be that after this longer stall the insn will again
7103 become unavailable to the DFA restrictions. Looks strange
7104 but happens e.g. on x86-64. So recheck DFA on the last
7106 if ((after_stall
|| all_issued
)
7109 haifa_cost
= estimate_insn_cost (insn
, curr_state
);
7113 if (sched_verbose
>= 2)
7114 sel_print ("haifa clock: %d\n", haifa_clock
);
7117 gcc_assert (haifa_cost
== 0);
7119 if (sched_verbose
>= 2)
7120 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn
), haifa_cost
);
7122 if (targetm
.sched
.dfa_new_cycle
)
7123 while (targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
, insn
,
7124 haifa_last_clock
, haifa_clock
,
7127 advance_state (curr_state
);
7130 if (sched_verbose
>= 2)
7132 sel_print ("advance_state (dfa_new_cycle)\n");
7133 debug_state (curr_state
);
7134 sel_print ("haifa clock: %d\n", haifa_clock
+ 1);
7140 static state_t temp
= NULL
;
7143 temp
= xmalloc (dfa_state_size
);
7144 memcpy (temp
, curr_state
, dfa_state_size
);
7146 cost
= state_transition (curr_state
, insn
);
7147 if (memcmp (temp
, curr_state
, dfa_state_size
))
7150 if (sched_verbose
>= 2)
7152 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn
),
7154 debug_state (curr_state
);
7156 gcc_assert (cost
< 0);
7159 if (targetm
.sched
.variable_issue
)
7160 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
, insn
, 0);
7162 INSN_SCHED_CYCLE (insn
) = haifa_clock
;
7165 haifa_last_clock
= haifa_clock
;
7169 /* Put TImode markers on insns starting a new issue group. */
7173 int last_clock
= -1;
7176 for (insn
= current_sched_info
->head
; insn
!= current_sched_info
->next_tail
;
7177 insn
= NEXT_INSN (insn
))
7184 clock
= INSN_SCHED_CYCLE (insn
);
7185 cost
= (last_clock
== -1) ? 1 : clock
- last_clock
;
7187 gcc_assert (cost
>= 0);
7190 && GET_CODE (PATTERN (insn
)) != USE
7191 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
7193 if (reload_completed
&& cost
> 0)
7194 PUT_MODE (insn
, TImode
);
7199 if (sched_verbose
>= 2)
7200 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn
), cost
);
7204 /* Perform MD_FINISH on EBBs comprising current region. When
7205 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7206 to produce correct sched cycles on insns. */
7208 sel_region_target_finish (bool reset_sched_cycles_p
)
7211 bitmap scheduled_blocks
= BITMAP_ALLOC (NULL
);
7213 for (i
= 0; i
< current_nr_blocks
; i
++)
7215 if (bitmap_bit_p (scheduled_blocks
, i
))
7218 /* While pipelining outer loops, skip bundling for loop
7219 preheaders. Those will be rescheduled in the outer loop. */
7220 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i
)))
7223 find_ebb_boundaries (EBB_FIRST_BB (i
), scheduled_blocks
);
7225 if (no_real_insns_p (current_sched_info
->head
, current_sched_info
->tail
))
7228 if (reset_sched_cycles_p
)
7229 reset_sched_cycles_in_current_ebb ();
7231 if (targetm
.sched
.init
)
7232 targetm
.sched
.init (sched_dump
, sched_verbose
, -1);
7236 if (targetm
.sched
.finish
)
7238 targetm
.sched
.finish (sched_dump
, sched_verbose
);
7240 /* Extend luids so that insns generated by the target will
7242 sched_extend_luids ();
7246 BITMAP_FREE (scheduled_blocks
);
7249 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7250 is true, make an additional pass emulating scheduler to get correct insn
7251 cycles for md_finish calls. */
7253 sel_region_finish (bool reset_sched_cycles_p
)
7255 simplify_changed_insns ();
7256 sched_finish_ready_list ();
7259 /* Free the vectors. */
7260 vec_av_set
.release ();
7261 BITMAP_FREE (current_copies
);
7262 BITMAP_FREE (current_originators
);
7263 BITMAP_FREE (code_motion_visited_blocks
);
7264 vinsn_vec_free (vec_bookkeeping_blocked_vinsns
);
7265 vinsn_vec_free (vec_target_unavailable_vinsns
);
7267 /* If LV_SET of the region head should be updated, do it now because
7268 there will be no other chance. */
7273 FOR_EACH_SUCC_1 (insn
, si
, bb_note (EBB_FIRST_BB (0)),
7274 SUCCS_NORMAL
| SUCCS_SKIP_TO_LOOP_EXITS
)
7276 basic_block bb
= BLOCK_FOR_INSN (insn
);
7278 if (!BB_LV_SET_VALID_P (bb
))
7279 compute_live (insn
);
7283 /* Emulate the Haifa scheduler for bundling. */
7284 if (reload_completed
)
7285 sel_region_target_finish (reset_sched_cycles_p
);
7287 sel_finish_global_and_expr ();
7289 bitmap_clear (forced_ebb_heads
);
7293 finish_deps_global ();
7294 sched_finish_luids ();
7298 BITMAP_FREE (blocks_to_reschedule
);
7300 sel_unregister_cfg_hooks ();
7306 /* Functions that implement the scheduler driver. */
7308 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7309 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7310 of insns scheduled -- these would be postprocessed later. */
7312 schedule_on_fences (flist_t fences
, int max_seqno
,
7313 ilist_t
**scheduled_insns_tailpp
)
7315 flist_t old_fences
= fences
;
7317 if (sched_verbose
>= 1)
7319 sel_print ("\nScheduling on fences: ");
7320 dump_flist (fences
);
7324 scheduled_something_on_previous_fence
= false;
7325 for (; fences
; fences
= FLIST_NEXT (fences
))
7327 fence_t fence
= NULL
;
7330 bool first_p
= true;
7332 /* Choose the next fence group to schedule.
7333 The fact that insn can be scheduled only once
7334 on the cycle is guaranteed by two properties:
7335 1. seqnos of parallel groups decrease with each iteration.
7336 2. If is_ineligible_successor () sees the larger seqno, it
7337 checks if candidate insn is_in_current_fence_p (). */
7338 for (fences2
= old_fences
; fences2
; fences2
= FLIST_NEXT (fences2
))
7340 fence_t f
= FLIST_FENCE (fences2
);
7342 if (!FENCE_PROCESSED_P (f
))
7344 int i
= INSN_SEQNO (FENCE_INSN (f
));
7346 if (first_p
|| i
> seqno
)
7353 /* ??? Seqnos of different groups should be different. */
7354 gcc_assert (1 || i
!= seqno
);
7360 /* As FENCE is nonnull, SEQNO is initialized. */
7361 seqno
-= max_seqno
+ 1;
7362 fill_insns (fence
, seqno
, scheduled_insns_tailpp
);
7363 FENCE_PROCESSED_P (fence
) = true;
7366 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7367 don't need to keep bookkeeping-invalidated and target-unavailable
7369 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns
);
7370 vinsn_vec_clear (&vec_target_unavailable_vinsns
);
7373 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7375 find_min_max_seqno (flist_t fences
, int *min_seqno
, int *max_seqno
)
7377 *min_seqno
= *max_seqno
= INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences
)));
7379 /* The first element is already processed. */
7380 while ((fences
= FLIST_NEXT (fences
)))
7382 int seqno
= INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences
)));
7384 if (*min_seqno
> seqno
)
7386 else if (*max_seqno
< seqno
)
7391 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7393 calculate_new_fences (flist_t fences
, int orig_max_seqno
, int *ptime
)
7395 flist_t old_fences
= fences
;
7396 struct flist_tail_def _new_fences
, *new_fences
= &_new_fences
;
7399 flist_tail_init (new_fences
);
7400 for (; fences
; fences
= FLIST_NEXT (fences
))
7402 fence_t fence
= FLIST_FENCE (fences
);
7405 if (!FENCE_BNDS (fence
))
7407 /* This fence doesn't have any successors. */
7408 if (!FENCE_SCHEDULED_P (fence
))
7410 /* Nothing was scheduled on this fence. */
7413 insn
= FENCE_INSN (fence
);
7414 seqno
= INSN_SEQNO (insn
);
7415 gcc_assert (seqno
> 0 && seqno
<= orig_max_seqno
);
7417 if (sched_verbose
>= 1)
7418 sel_print ("Fence %d[%d] has not changed\n",
7421 move_fence_to_fences (fences
, new_fences
);
7425 extract_new_fences_from (fences
, new_fences
, orig_max_seqno
);
7426 max_time
= MAX (max_time
, FENCE_CYCLE (fence
));
7429 flist_clear (&old_fences
);
7431 return FLIST_TAIL_HEAD (new_fences
);
7434 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7435 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7436 the highest seqno used in a region. Return the updated highest seqno. */
7438 update_seqnos_and_stage (int min_seqno
, int max_seqno
,
7439 int highest_seqno_in_use
,
7440 ilist_t
*pscheduled_insns
)
7446 /* Actually, new_hs is the seqno of the instruction, that was
7447 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7448 if (*pscheduled_insns
)
7450 new_hs
= (INSN_SEQNO (ILIST_INSN (*pscheduled_insns
))
7451 + highest_seqno_in_use
+ max_seqno
- min_seqno
+ 2);
7452 gcc_assert (new_hs
> highest_seqno_in_use
);
7455 new_hs
= highest_seqno_in_use
;
7457 FOR_EACH_INSN (insn
, ii
, *pscheduled_insns
)
7459 gcc_assert (INSN_SEQNO (insn
) < 0);
7460 INSN_SEQNO (insn
) += highest_seqno_in_use
+ max_seqno
- min_seqno
+ 2;
7461 gcc_assert (INSN_SEQNO (insn
) <= new_hs
);
7463 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7464 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7465 require > 1GB of memory e.g. on limit-fnargs.c. */
7467 free_data_for_scheduled_insn (insn
);
7470 ilist_clear (pscheduled_insns
);
7476 /* The main driver for scheduling a region. This function is responsible
7477 for correct propagation of fences (i.e. scheduling points) and creating
7478 a group of parallel insns at each of them. It also supports
7479 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7482 sel_sched_region_2 (int orig_max_seqno
)
7484 int highest_seqno_in_use
= orig_max_seqno
;
7487 stat_bookkeeping_copies
= 0;
7488 stat_insns_needed_bookkeeping
= 0;
7489 stat_renamed_scheduled
= 0;
7490 stat_substitutions_total
= 0;
7491 num_insns_scheduled
= 0;
7495 int min_seqno
, max_seqno
;
7496 ilist_t scheduled_insns
= NULL
;
7497 ilist_t
*scheduled_insns_tailp
= &scheduled_insns
;
7499 find_min_max_seqno (fences
, &min_seqno
, &max_seqno
);
7500 schedule_on_fences (fences
, max_seqno
, &scheduled_insns_tailp
);
7501 fences
= calculate_new_fences (fences
, orig_max_seqno
, &max_time
);
7502 highest_seqno_in_use
= update_seqnos_and_stage (min_seqno
, max_seqno
,
7503 highest_seqno_in_use
,
7507 if (sched_verbose
>= 1)
7509 sel_print ("Total scheduling time: %d cycles\n", max_time
);
7510 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7511 "bookkeeping, %d insns renamed, %d insns substituted\n",
7512 stat_bookkeeping_copies
,
7513 stat_insns_needed_bookkeeping
,
7514 stat_renamed_scheduled
,
7515 stat_substitutions_total
);
7519 /* Schedule a region. When pipelining, search for possibly never scheduled
7520 bookkeeping code and schedule it. Reschedule pipelined code without
7521 pipelining after. */
7523 sel_sched_region_1 (void)
7527 /* Remove empty blocks that might be in the region from the beginning. */
7528 purge_empty_blocks ();
7530 orig_max_seqno
= init_seqno (NULL
, NULL
);
7531 gcc_assert (orig_max_seqno
>= 1);
7533 /* When pipelining outer loops, create fences on the loop header,
7536 if (current_loop_nest
)
7537 init_fences (BB_END (EBB_FIRST_BB (0)));
7539 init_fences (bb_note (EBB_FIRST_BB (0)));
7542 sel_sched_region_2 (orig_max_seqno
);
7544 gcc_assert (fences
== NULL
);
7550 struct flist_tail_def _new_fences
;
7551 flist_tail_t new_fences
= &_new_fences
;
7554 pipelining_p
= false;
7555 max_ws
= MIN (max_ws
, issue_rate
* 3 / 2);
7556 bookkeeping_p
= false;
7557 enable_schedule_as_rhs_p
= false;
7559 /* Schedule newly created code, that has not been scheduled yet. */
7566 for (i
= 0; i
< current_nr_blocks
; i
++)
7568 basic_block bb
= EBB_FIRST_BB (i
);
7570 if (bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
7572 if (! bb_ends_ebb_p (bb
))
7573 bitmap_set_bit (blocks_to_reschedule
, bb_next_bb (bb
)->index
);
7574 if (sel_bb_empty_p (bb
))
7576 bitmap_clear_bit (blocks_to_reschedule
, bb
->index
);
7579 clear_outdated_rtx_info (bb
);
7580 if (sel_insn_is_speculation_check (BB_END (bb
))
7581 && JUMP_P (BB_END (bb
)))
7582 bitmap_set_bit (blocks_to_reschedule
,
7583 BRANCH_EDGE (bb
)->dest
->index
);
7585 else if (! sel_bb_empty_p (bb
)
7586 && INSN_SCHED_TIMES (sel_bb_head (bb
)) <= 0)
7587 bitmap_set_bit (blocks_to_reschedule
, bb
->index
);
7590 for (i
= 0; i
< current_nr_blocks
; i
++)
7592 bb
= EBB_FIRST_BB (i
);
7594 /* While pipelining outer loops, skip bundling for loop
7595 preheaders. Those will be rescheduled in the outer
7597 if (sel_is_loop_preheader_p (bb
))
7599 clear_outdated_rtx_info (bb
);
7603 if (bitmap_bit_p (blocks_to_reschedule
, bb
->index
))
7605 flist_tail_init (new_fences
);
7607 orig_max_seqno
= init_seqno (blocks_to_reschedule
, bb
);
7609 /* Mark BB as head of the new ebb. */
7610 bitmap_set_bit (forced_ebb_heads
, bb
->index
);
7612 gcc_assert (fences
== NULL
);
7614 init_fences (bb_note (bb
));
7616 sel_sched_region_2 (orig_max_seqno
);
7626 /* Schedule the RGN region. */
7628 sel_sched_region (int rgn
)
7631 bool reset_sched_cycles_p
;
7633 if (sel_region_init (rgn
))
7636 if (sched_verbose
>= 1)
7637 sel_print ("Scheduling region %d\n", rgn
);
7639 schedule_p
= (!sched_is_disabled_for_current_region_p ()
7640 && dbg_cnt (sel_sched_region_cnt
));
7641 reset_sched_cycles_p
= pipelining_p
;
7643 sel_sched_region_1 ();
7645 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7646 reset_sched_cycles_p
= true;
7648 sel_region_finish (reset_sched_cycles_p
);
7651 /* Perform global init for the scheduler. */
7653 sel_global_init (void)
7655 calculate_dominance_info (CDI_DOMINATORS
);
7656 alloc_sched_pools ();
7658 /* Setup the infos for sched_init. */
7659 sel_setup_sched_infos ();
7660 setup_sched_dump ();
7662 sched_rgn_init (false);
7666 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7668 can_issue_more
= issue_rate
;
7670 sched_extend_target ();
7671 sched_deps_init (true);
7672 setup_nop_and_exit_insns ();
7673 sel_extend_global_bb_info ();
7675 init_hard_regs_data ();
7678 /* Free the global data of the scheduler. */
7680 sel_global_finish (void)
7682 free_bb_note_pool ();
7684 sel_finish_global_bb_info ();
7686 free_regset_pool ();
7687 free_nop_and_exit_insns ();
7689 sched_rgn_finish ();
7690 sched_deps_finish ();
7694 sel_finish_pipelining ();
7696 free_sched_pools ();
7697 free_dominance_info (CDI_DOMINATORS
);
7700 /* Return true when we need to skip selective scheduling. Used for debugging. */
7702 maybe_skip_selective_scheduling (void)
7704 return ! dbg_cnt (sel_sched_cnt
);
7707 /* The entry point. */
7709 run_selective_scheduling (void)
7713 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
7718 for (rgn
= 0; rgn
< nr_regions
; rgn
++)
7719 sel_sched_region (rgn
);
7721 sel_global_finish ();