1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "insn-config.h"
42 #include "diagnostic-core.h"
44 #include "addresses.h"
48 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
50 #define regno_save_mode \
51 (this_target_reload->x_regno_save_mode)
52 #define cached_reg_save_code \
53 (this_target_reload->x_cached_reg_save_code)
54 #define cached_reg_restore_code \
55 (this_target_reload->x_cached_reg_restore_code)
57 /* For each hard register, a place on the stack where it can be saved,
61 regno_save_mem
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
63 /* The number of elements in the subsequent array. */
64 static int save_slots_num
;
66 /* Allocated slots so far. */
67 static rtx save_slots
[FIRST_PSEUDO_REGISTER
];
69 /* Set of hard regs currently residing in save area (during insn scan). */
71 static HARD_REG_SET hard_regs_saved
;
73 /* Number of registers currently in hard_regs_saved. */
75 static int n_regs_saved
;
77 /* Computed by mark_referenced_regs, all regs referenced in a given
79 static HARD_REG_SET referenced_regs
;
82 typedef void refmarker_fn (rtx
*loc
, machine_mode mode
, int hardregno
,
85 static int reg_save_code (int, machine_mode
);
86 static int reg_restore_code (int, machine_mode
);
88 struct saved_hard_reg
;
89 static void initiate_saved_hard_regs (void);
90 static void new_saved_hard_reg (int, int);
91 static void finish_saved_hard_regs (void);
92 static int saved_hard_reg_compare_func (const void *, const void *);
94 static void mark_set_regs (rtx
, const_rtx
, void *);
95 static void mark_referenced_regs (rtx
*, refmarker_fn
*mark
, void *mark_arg
);
96 static refmarker_fn mark_reg_as_referenced
;
97 static refmarker_fn replace_reg_with_saved_mem
;
98 static int insert_save (struct insn_chain
*, int, int, HARD_REG_SET
*,
100 static int insert_restore (struct insn_chain
*, int, int, int,
102 static struct insn_chain
*insert_one_insn (struct insn_chain
*, int, int,
104 static void add_stored_regs (rtx
, const_rtx
, void *);
108 static GTY(()) rtx savepat
;
109 static GTY(()) rtx restpat
;
110 static GTY(()) rtx test_reg
;
111 static GTY(()) rtx test_mem
;
112 static GTY(()) rtx_insn
*saveinsn
;
113 static GTY(()) rtx_insn
*restinsn
;
115 /* Return the INSN_CODE used to save register REG in mode MODE. */
117 reg_save_code (int reg
, machine_mode mode
)
120 if (cached_reg_save_code
[reg
][mode
])
121 return cached_reg_save_code
[reg
][mode
];
122 if (!HARD_REGNO_MODE_OK (reg
, mode
))
124 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
125 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
126 below silences a warning. */
127 gcc_assert (reg
< FIRST_PSEUDO_REGISTER
);
128 cached_reg_save_code
[reg
][mode
] = -1;
129 cached_reg_restore_code
[reg
][mode
] = -1;
133 /* Update the register number and modes of the register
134 and memory operand. */
135 set_mode_and_regno (test_reg
, mode
, reg
);
136 PUT_MODE (test_mem
, mode
);
138 /* Force re-recognition of the modified insns. */
139 INSN_CODE (saveinsn
) = -1;
140 INSN_CODE (restinsn
) = -1;
142 cached_reg_save_code
[reg
][mode
] = recog_memoized (saveinsn
);
143 cached_reg_restore_code
[reg
][mode
] = recog_memoized (restinsn
);
145 /* Now extract both insns and see if we can meet their
146 constraints. We don't know here whether the save and restore will
147 be in size- or speed-tuned code, so just use the set of enabled
149 ok
= (cached_reg_save_code
[reg
][mode
] != -1
150 && cached_reg_restore_code
[reg
][mode
] != -1);
153 extract_insn (saveinsn
);
154 ok
= constrain_operands (1, get_enabled_alternatives (saveinsn
));
155 extract_insn (restinsn
);
156 ok
&= constrain_operands (1, get_enabled_alternatives (restinsn
));
161 cached_reg_save_code
[reg
][mode
] = -1;
162 cached_reg_restore_code
[reg
][mode
] = -1;
164 gcc_assert (cached_reg_save_code
[reg
][mode
]);
165 return cached_reg_save_code
[reg
][mode
];
168 /* Return the INSN_CODE used to restore register REG in mode MODE. */
170 reg_restore_code (int reg
, machine_mode mode
)
172 if (cached_reg_restore_code
[reg
][mode
])
173 return cached_reg_restore_code
[reg
][mode
];
174 /* Populate our cache. */
175 reg_save_code (reg
, mode
);
176 return cached_reg_restore_code
[reg
][mode
];
179 /* Initialize for caller-save.
181 Look at all the hard registers that are used by a call and for which
182 reginfo.c has not already excluded from being used across a call.
184 Ensure that we can find a mode to save the register and that there is a
185 simple insn to save and restore the register. This latter check avoids
186 problems that would occur if we tried to save the MQ register of some
187 machines directly into memory. */
190 init_caller_save (void)
197 if (caller_save_initialized_p
)
200 caller_save_initialized_p
= true;
202 CLEAR_HARD_REG_SET (no_caller_save_reg_set
);
203 /* First find all the registers that we need to deal with and all
204 the modes that they can have. If we can't find a mode to use,
205 we can't have the register live over calls. */
207 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
209 if (call_used_regs
[i
]
210 && !TEST_HARD_REG_BIT (call_fixed_reg_set
, i
))
212 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
214 regno_save_mode
[i
][j
] = HARD_REGNO_CALLER_SAVE_MODE (i
, j
,
216 if (regno_save_mode
[i
][j
] == VOIDmode
&& j
== 1)
218 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
223 regno_save_mode
[i
][1] = VOIDmode
;
226 /* The following code tries to approximate the conditions under which
227 we can easily save and restore a register without scratch registers or
228 other complexities. It will usually work, except under conditions where
229 the validity of an insn operand is dependent on the address offset.
230 No such cases are currently known.
232 We first find a typical offset from some BASE_REG_CLASS register.
233 This address is chosen by finding the first register in the class
234 and by finding the smallest power of two that is a valid offset from
235 that register in every mode we will use to save registers. */
237 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
238 if (TEST_HARD_REG_BIT
240 [(int) base_reg_class (regno_save_mode
[i
][1], ADDR_SPACE_GENERIC
,
241 PLUS
, CONST_INT
)], i
))
244 gcc_assert (i
< FIRST_PSEUDO_REGISTER
);
246 addr_reg
= gen_rtx_REG (Pmode
, i
);
248 for (offset
= 1 << (HOST_BITS_PER_INT
/ 2); offset
; offset
>>= 1)
250 address
= gen_rtx_PLUS (Pmode
, addr_reg
, gen_int_mode (offset
, Pmode
));
252 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
253 if (regno_save_mode
[i
][1] != VOIDmode
254 && ! strict_memory_address_p (regno_save_mode
[i
][1], address
))
257 if (i
== FIRST_PSEUDO_REGISTER
)
261 /* If we didn't find a valid address, we must use register indirect. */
265 /* Next we try to form an insn to save and restore the register. We
266 see if such an insn is recognized and meets its constraints.
268 To avoid lots of unnecessary RTL allocation, we construct all the RTL
269 once, then modify the memory and register operands in-place. */
271 test_reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
272 test_mem
= gen_rtx_MEM (word_mode
, address
);
273 savepat
= gen_rtx_SET (test_mem
, test_reg
);
274 restpat
= gen_rtx_SET (test_reg
, test_mem
);
276 saveinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, savepat
, 0, -1, 0);
277 restinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, restpat
, 0, -1, 0);
279 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
280 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
281 if (reg_save_code (i
,regno_save_mode
[i
][j
]) == -1)
283 regno_save_mode
[i
][j
] = VOIDmode
;
286 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
287 if (call_used_regs
[i
])
288 SET_HARD_REG_BIT (no_caller_save_reg_set
, i
);
295 /* Initialize save areas by showing that we haven't allocated any yet. */
298 init_save_areas (void)
302 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
303 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
304 regno_save_mem
[i
][j
] = 0;
309 /* The structure represents a hard register which should be saved
310 through the call. It is used when the integrated register
311 allocator (IRA) is used and sharing save slots is on. */
312 struct saved_hard_reg
314 /* Order number starting with 0. */
316 /* The hard regno. */
318 /* Execution frequency of all calls through which given hard
319 register should be saved. */
321 /* Stack slot reserved to save the hard register through calls. */
323 /* True if it is first hard register in the chain of hard registers
324 sharing the same stack slot. */
326 /* Order number of the next hard register structure with the same
327 slot in the chain. -1 represents end of the chain. */
331 /* Map: hard register number to the corresponding structure. */
332 static struct saved_hard_reg
*hard_reg_map
[FIRST_PSEUDO_REGISTER
];
334 /* The number of all structures representing hard registers should be
335 saved, in order words, the number of used elements in the following
337 static int saved_regs_num
;
339 /* Pointers to all the structures. Index is the order number of the
340 corresponding structure. */
341 static struct saved_hard_reg
*all_saved_regs
[FIRST_PSEUDO_REGISTER
];
343 /* First called function for work with saved hard registers. */
345 initiate_saved_hard_regs (void)
350 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
351 hard_reg_map
[i
] = NULL
;
354 /* Allocate and return new saved hard register with given REGNO and
357 new_saved_hard_reg (int regno
, int call_freq
)
359 struct saved_hard_reg
*saved_reg
;
362 = (struct saved_hard_reg
*) xmalloc (sizeof (struct saved_hard_reg
));
363 hard_reg_map
[regno
] = all_saved_regs
[saved_regs_num
] = saved_reg
;
364 saved_reg
->num
= saved_regs_num
++;
365 saved_reg
->hard_regno
= regno
;
366 saved_reg
->call_freq
= call_freq
;
367 saved_reg
->first_p
= FALSE
;
368 saved_reg
->next
= -1;
371 /* Free memory allocated for the saved hard registers. */
373 finish_saved_hard_regs (void)
377 for (i
= 0; i
< saved_regs_num
; i
++)
378 free (all_saved_regs
[i
]);
381 /* The function is used to sort the saved hard register structures
382 according their frequency. */
384 saved_hard_reg_compare_func (const void *v1p
, const void *v2p
)
386 const struct saved_hard_reg
*p1
= *(struct saved_hard_reg
* const *) v1p
;
387 const struct saved_hard_reg
*p2
= *(struct saved_hard_reg
* const *) v2p
;
389 if (flag_omit_frame_pointer
)
391 if (p1
->call_freq
- p2
->call_freq
!= 0)
392 return p1
->call_freq
- p2
->call_freq
;
394 else if (p2
->call_freq
- p1
->call_freq
!= 0)
395 return p2
->call_freq
- p1
->call_freq
;
397 return p1
->num
- p2
->num
;
400 /* Allocate save areas for any hard registers that might need saving.
401 We take a conservative approach here and look for call-clobbered hard
402 registers that are assigned to pseudos that cross calls. This may
403 overestimate slightly (especially if some of these registers are later
404 used as spill registers), but it should not be significant.
406 For IRA we use priority coloring to decrease stack slots needed for
407 saving hard registers through calls. We build conflicts for them
412 In the fallback case we should iterate backwards across all possible
413 modes for the save, choosing the largest available one instead of
414 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
416 We do not try to use "move multiple" instructions that exist
417 on some machines (such as the 68k moveml). It could be a win to try
418 and use them when possible. The hard part is doing it in a way that is
419 machine independent since they might be saving non-consecutive
420 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
423 setup_save_areas (void)
426 HARD_REG_SET hard_regs_used
;
427 struct saved_hard_reg
*saved_reg
;
429 struct insn_chain
*chain
, *next
;
431 HARD_REG_SET hard_regs_to_save
, used_regs
, this_insn_sets
;
432 reg_set_iterator rsi
;
434 CLEAR_HARD_REG_SET (hard_regs_used
);
436 /* Find every CALL_INSN and record which hard regs are live across the
437 call into HARD_REG_MAP and HARD_REGS_USED. */
438 initiate_saved_hard_regs ();
439 /* Create hard reg saved regs. */
440 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
447 || find_reg_note (insn
, REG_NORETURN
, NULL
))
449 freq
= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn
));
450 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
451 &chain
->live_throughout
);
452 get_call_reg_set_usage (insn
, &used_regs
, call_used_reg_set
);
454 /* Record all registers set in this call insn. These don't
455 need to be saved. N.B. the call insn might set a subreg
456 of a multi-hard-reg pseudo; then the pseudo is considered
457 live during the call, but the subreg that is set
459 CLEAR_HARD_REG_SET (this_insn_sets
);
460 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
461 /* Sibcalls are considered to set the return value. */
462 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
463 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
465 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
466 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
467 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
468 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
469 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
471 if (hard_reg_map
[regno
] != NULL
)
472 hard_reg_map
[regno
]->call_freq
+= freq
;
474 new_saved_hard_reg (regno
, freq
);
475 SET_HARD_REG_BIT (hard_regs_used
, regno
);
477 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
479 cheap
= XEXP (cheap
, 0);
480 /* Look through all live pseudos, mark their hard registers. */
481 EXECUTE_IF_SET_IN_REG_SET
482 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
484 int r
= reg_renumber
[regno
];
487 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
490 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
491 for (; r
< bound
; r
++)
492 if (TEST_HARD_REG_BIT (used_regs
, r
))
494 if (hard_reg_map
[r
] != NULL
)
495 hard_reg_map
[r
]->call_freq
+= freq
;
497 new_saved_hard_reg (r
, freq
);
498 SET_HARD_REG_BIT (hard_regs_to_save
, r
);
499 SET_HARD_REG_BIT (hard_regs_used
, r
);
504 /* If requested, figure out which hard regs can share save slots. */
505 if (optimize
&& flag_ira_share_save_slots
)
508 char *saved_reg_conflicts
;
510 struct saved_hard_reg
*saved_reg2
, *saved_reg3
;
511 int call_saved_regs_num
;
512 struct saved_hard_reg
*call_saved_regs
[FIRST_PSEUDO_REGISTER
];
514 int prev_save_slots_num
;
515 rtx prev_save_slots
[FIRST_PSEUDO_REGISTER
];
517 /* Find saved hard register conflicts. */
518 saved_reg_conflicts
= (char *) xmalloc (saved_regs_num
* saved_regs_num
);
519 memset (saved_reg_conflicts
, 0, saved_regs_num
* saved_regs_num
);
520 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
523 call_saved_regs_num
= 0;
527 || find_reg_note (insn
, REG_NORETURN
, NULL
))
530 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
532 cheap
= XEXP (cheap
, 0);
534 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
535 &chain
->live_throughout
);
536 get_call_reg_set_usage (insn
, &used_regs
, call_used_reg_set
);
538 /* Record all registers set in this call insn. These don't
539 need to be saved. N.B. the call insn might set a subreg
540 of a multi-hard-reg pseudo; then the pseudo is considered
541 live during the call, but the subreg that is set
543 CLEAR_HARD_REG_SET (this_insn_sets
);
544 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
545 /* Sibcalls are considered to set the return value,
546 compare df-scan.c:df_get_call_refs. */
547 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
548 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
550 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
551 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
552 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
553 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
554 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
556 gcc_assert (hard_reg_map
[regno
] != NULL
);
557 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[regno
];
559 /* Look through all live pseudos, mark their hard registers. */
560 EXECUTE_IF_SET_IN_REG_SET
561 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
563 int r
= reg_renumber
[regno
];
566 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
569 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
570 for (; r
< bound
; r
++)
571 if (TEST_HARD_REG_BIT (used_regs
, r
))
572 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[r
];
574 for (i
= 0; i
< call_saved_regs_num
; i
++)
576 saved_reg
= call_saved_regs
[i
];
577 for (j
= 0; j
< call_saved_regs_num
; j
++)
580 saved_reg2
= call_saved_regs
[j
];
581 saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
583 = saved_reg_conflicts
[saved_reg2
->num
* saved_regs_num
589 /* Sort saved hard regs. */
590 qsort (all_saved_regs
, saved_regs_num
, sizeof (struct saved_hard_reg
*),
591 saved_hard_reg_compare_func
);
592 /* Initiate slots available from the previous reload
594 prev_save_slots_num
= save_slots_num
;
595 memcpy (prev_save_slots
, save_slots
, save_slots_num
* sizeof (rtx
));
597 /* Allocate stack slots for the saved hard registers. */
598 for (i
= 0; i
< saved_regs_num
; i
++)
600 saved_reg
= all_saved_regs
[i
];
601 regno
= saved_reg
->hard_regno
;
602 for (j
= 0; j
< i
; j
++)
604 saved_reg2
= all_saved_regs
[j
];
605 if (! saved_reg2
->first_p
)
607 slot
= saved_reg2
->slot
;
608 for (k
= j
; k
>= 0; k
= next_k
)
610 saved_reg3
= all_saved_regs
[k
];
611 next_k
= saved_reg3
->next
;
612 if (saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
617 && (GET_MODE_SIZE (regno_save_mode
[regno
][1])
618 <= GET_MODE_SIZE (regno_save_mode
619 [saved_reg2
->hard_regno
][1])))
623 (slot
, regno_save_mode
[saved_reg
->hard_regno
][1], 0);
624 regno_save_mem
[regno
][1] = saved_reg
->slot
;
625 saved_reg
->next
= saved_reg2
->next
;
626 saved_reg2
->next
= i
;
627 if (dump_file
!= NULL
)
628 fprintf (dump_file
, "%d uses slot of %d\n",
629 regno
, saved_reg2
->hard_regno
);
635 saved_reg
->first_p
= TRUE
;
636 for (best_slot_num
= -1, j
= 0; j
< prev_save_slots_num
; j
++)
638 slot
= prev_save_slots
[j
];
639 if (slot
== NULL_RTX
)
641 if (GET_MODE_SIZE (regno_save_mode
[regno
][1])
642 <= GET_MODE_SIZE (GET_MODE (slot
))
643 && best_slot_num
< 0)
645 if (GET_MODE (slot
) == regno_save_mode
[regno
][1])
648 if (best_slot_num
>= 0)
650 saved_reg
->slot
= prev_save_slots
[best_slot_num
];
654 regno_save_mode
[saved_reg
->hard_regno
][1], 0);
655 if (dump_file
!= NULL
)
657 "%d uses a slot from prev iteration\n", regno
);
658 prev_save_slots
[best_slot_num
] = NULL_RTX
;
659 if (best_slot_num
+ 1 == prev_save_slots_num
)
660 prev_save_slots_num
--;
665 = assign_stack_local_1
666 (regno_save_mode
[regno
][1],
667 GET_MODE_SIZE (regno_save_mode
[regno
][1]), 0,
669 if (dump_file
!= NULL
)
670 fprintf (dump_file
, "%d uses a new slot\n", regno
);
672 regno_save_mem
[regno
][1] = saved_reg
->slot
;
673 save_slots
[save_slots_num
++] = saved_reg
->slot
;
676 free (saved_reg_conflicts
);
677 finish_saved_hard_regs ();
681 /* We are not sharing slots.
683 Run through all the call-used hard-registers and allocate
684 space for each in the caller-save area. Try to allocate space
685 in a manner which allows multi-register saves/restores to be done. */
687 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
688 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
692 /* If no mode exists for this size, try another. Also break out
693 if we have already saved this hard register. */
694 if (regno_save_mode
[i
][j
] == VOIDmode
|| regno_save_mem
[i
][1] != 0)
697 /* See if any register in this group has been saved. */
698 for (k
= 0; k
< j
; k
++)
699 if (regno_save_mem
[i
+ k
][1])
707 for (k
= 0; k
< j
; k
++)
708 if (! TEST_HARD_REG_BIT (hard_regs_used
, i
+ k
))
716 /* We have found an acceptable mode to store in. Since
717 hard register is always saved in the widest mode
718 available, the mode may be wider than necessary, it is
719 OK to reduce the alignment of spill space. We will
720 verify that it is equal to or greater than required
721 when we restore and save the hard register in
722 insert_restore and insert_save. */
724 = assign_stack_local_1 (regno_save_mode
[i
][j
],
725 GET_MODE_SIZE (regno_save_mode
[i
][j
]),
726 0, ASLK_REDUCE_ALIGN
);
728 /* Setup single word save area just in case... */
729 for (k
= 0; k
< j
; k
++)
730 /* This should not depend on WORDS_BIG_ENDIAN.
731 The order of words in regs is the same as in memory. */
732 regno_save_mem
[i
+ k
][1]
733 = adjust_address_nv (regno_save_mem
[i
][j
],
734 regno_save_mode
[i
+ k
][1],
739 /* Now loop again and set the alias set of any save areas we made to
740 the alias set used to represent frame objects. */
741 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
742 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
743 if (regno_save_mem
[i
][j
] != 0)
744 set_mem_alias_set (regno_save_mem
[i
][j
], get_frame_alias_set ());
749 /* Find the places where hard regs are live across calls and save them. */
752 save_call_clobbered_regs (void)
754 struct insn_chain
*chain
, *next
, *last
= NULL
;
755 machine_mode save_mode
[FIRST_PSEUDO_REGISTER
];
757 /* Computed in mark_set_regs, holds all registers set by the current
759 HARD_REG_SET this_insn_sets
;
761 CLEAR_HARD_REG_SET (hard_regs_saved
);
764 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
766 rtx_insn
*insn
= chain
->insn
;
767 enum rtx_code code
= GET_CODE (insn
);
771 gcc_assert (!chain
->is_caller_save_insn
);
773 if (NONDEBUG_INSN_P (insn
))
775 /* If some registers have been saved, see if INSN references
776 any of them. We must restore them before the insn if so. */
781 HARD_REG_SET this_insn_sets
;
783 if (code
== JUMP_INSN
)
784 /* Restore all registers if this is a JUMP_INSN. */
785 COPY_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
788 CLEAR_HARD_REG_SET (referenced_regs
);
789 mark_referenced_regs (&PATTERN (insn
),
790 mark_reg_as_referenced
, NULL
);
791 AND_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
794 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
795 if (TEST_HARD_REG_BIT (referenced_regs
, regno
))
796 regno
+= insert_restore (chain
, 1, regno
, MOVE_MAX_WORDS
,
798 /* If a saved register is set after the call, this means we no
799 longer should restore it. This can happen when parts of a
800 multi-word pseudo do not conflict with other pseudos, so
801 IRA may allocate the same hard register for both. One may
802 be live across the call, while the other is set
804 CLEAR_HARD_REG_SET (this_insn_sets
);
805 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
806 AND_COMPL_HARD_REG_SET (hard_regs_saved
, this_insn_sets
);
809 if (code
== CALL_INSN
810 && ! SIBLING_CALL_P (insn
)
811 && ! find_reg_note (insn
, REG_NORETURN
, NULL
))
814 HARD_REG_SET hard_regs_to_save
;
815 HARD_REG_SET call_def_reg_set
;
816 reg_set_iterator rsi
;
819 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
821 cheap
= XEXP (cheap
, 0);
823 /* Use the register life information in CHAIN to compute which
824 regs are live during the call. */
825 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
826 &chain
->live_throughout
);
827 /* Save hard registers always in the widest mode available. */
828 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
829 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
830 save_mode
[regno
] = regno_save_mode
[regno
][1];
832 save_mode
[regno
] = VOIDmode
;
834 /* Look through all live pseudos, mark their hard registers
835 and choose proper mode for saving. */
836 EXECUTE_IF_SET_IN_REG_SET
837 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
839 int r
= reg_renumber
[regno
];
843 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
845 nregs
= hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
846 mode
= HARD_REGNO_CALLER_SAVE_MODE
847 (r
, nregs
, PSEUDO_REGNO_MODE (regno
));
848 if (GET_MODE_BITSIZE (mode
)
849 > GET_MODE_BITSIZE (save_mode
[r
]))
852 SET_HARD_REG_BIT (hard_regs_to_save
, r
+ nregs
);
855 /* Record all registers set in this call insn. These don't need
856 to be saved. N.B. the call insn might set a subreg of a
857 multi-hard-reg pseudo; then the pseudo is considered live
858 during the call, but the subreg that is set isn't. */
859 CLEAR_HARD_REG_SET (this_insn_sets
);
860 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
862 /* Compute which hard regs must be saved before this call. */
863 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, call_fixed_reg_set
);
864 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, this_insn_sets
);
865 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, hard_regs_saved
);
866 get_call_reg_set_usage (insn
, &call_def_reg_set
,
868 AND_HARD_REG_SET (hard_regs_to_save
, call_def_reg_set
);
870 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
871 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
872 regno
+= insert_save (chain
, 1, regno
, &hard_regs_to_save
, save_mode
);
874 /* Must recompute n_regs_saved. */
876 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
877 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
881 && HARD_REGISTER_P (cheap
)
882 && TEST_HARD_REG_BIT (call_used_reg_set
, REGNO (cheap
)))
885 rtx pat
= PATTERN (insn
);
886 if (GET_CODE (pat
) == PARALLEL
)
887 pat
= XVECEXP (pat
, 0, 0);
888 dest
= SET_DEST (pat
);
889 /* For multiple return values dest is PARALLEL.
890 Currently we handle only single return value case. */
893 newpat
= gen_rtx_SET (cheap
, copy_rtx (dest
));
894 chain
= insert_one_insn (chain
, 0, -1, newpat
);
900 else if (DEBUG_INSN_P (insn
) && n_regs_saved
)
901 mark_referenced_regs (&PATTERN (insn
),
902 replace_reg_with_saved_mem
,
905 if (chain
->next
== 0 || chain
->next
->block
!= chain
->block
)
908 /* At the end of the basic block, we must restore any registers that
909 remain saved. If the last insn in the block is a JUMP_INSN, put
910 the restore before the insn, otherwise, put it after the insn. */
913 && DEBUG_INSN_P (insn
)
915 && last
->block
== chain
->block
)
917 rtx_insn
*ins
, *prev
;
918 basic_block bb
= BLOCK_FOR_INSN (insn
);
920 /* When adding hard reg restores after a DEBUG_INSN, move
921 all notes between last real insn and this DEBUG_INSN after
922 the DEBUG_INSN, otherwise we could get code
923 -g/-g0 differences. */
924 for (ins
= PREV_INSN (insn
); ins
!= last
->insn
; ins
= prev
)
926 prev
= PREV_INSN (ins
);
929 SET_NEXT_INSN (prev
) = NEXT_INSN (ins
);
930 SET_PREV_INSN (NEXT_INSN (ins
)) = prev
;
931 SET_PREV_INSN (ins
) = insn
;
932 SET_NEXT_INSN (ins
) = NEXT_INSN (insn
);
933 SET_NEXT_INSN (insn
) = ins
;
935 SET_PREV_INSN (NEXT_INSN (ins
)) = ins
;
936 if (BB_END (bb
) == insn
)
940 gcc_assert (DEBUG_INSN_P (ins
));
946 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
947 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
948 regno
+= insert_restore (chain
, JUMP_P (insn
),
949 regno
, MOVE_MAX_WORDS
, save_mode
);
954 /* Here from note_stores, or directly from save_call_clobbered_regs, when
955 an insn stores a value in a register.
956 Set the proper bit or bits in this_insn_sets. All pseudos that have
957 been assigned hard regs have had their register number changed already,
958 so we can ignore pseudos. */
960 mark_set_regs (rtx reg
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
962 int regno
, endregno
, i
;
963 HARD_REG_SET
*this_insn_sets
= (HARD_REG_SET
*) data
;
965 if (GET_CODE (reg
) == SUBREG
)
967 rtx inner
= SUBREG_REG (reg
);
968 if (!REG_P (inner
) || REGNO (inner
) >= FIRST_PSEUDO_REGISTER
)
970 regno
= subreg_regno (reg
);
971 endregno
= regno
+ subreg_nregs (reg
);
974 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
977 endregno
= END_REGNO (reg
);
982 for (i
= regno
; i
< endregno
; i
++)
983 SET_HARD_REG_BIT (*this_insn_sets
, i
);
986 /* Here from note_stores when an insn stores a value in a register.
987 Set the proper bit or bits in the passed regset. All pseudos that have
988 been assigned hard regs have had their register number changed already,
989 so we can ignore pseudos. */
991 add_stored_regs (rtx reg
, const_rtx setter
, void *data
)
993 int regno
, endregno
, i
;
994 machine_mode mode
= GET_MODE (reg
);
997 if (GET_CODE (setter
) == CLOBBER
)
1000 if (GET_CODE (reg
) == SUBREG
1001 && REG_P (SUBREG_REG (reg
))
1002 && REGNO (SUBREG_REG (reg
)) < FIRST_PSEUDO_REGISTER
)
1004 offset
= subreg_regno_offset (REGNO (SUBREG_REG (reg
)),
1005 GET_MODE (SUBREG_REG (reg
)),
1008 regno
= REGNO (SUBREG_REG (reg
)) + offset
;
1009 endregno
= regno
+ subreg_nregs (reg
);
1013 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
1016 regno
= REGNO (reg
) + offset
;
1017 endregno
= end_hard_regno (mode
, regno
);
1020 for (i
= regno
; i
< endregno
; i
++)
1021 SET_REGNO_REG_SET ((regset
) data
, i
);
1024 /* Walk X and record all referenced registers in REFERENCED_REGS. */
1026 mark_referenced_regs (rtx
*loc
, refmarker_fn
*mark
, void *arg
)
1028 enum rtx_code code
= GET_CODE (*loc
);
1033 mark_referenced_regs (&SET_SRC (*loc
), mark
, arg
);
1034 if (code
== SET
|| code
== CLOBBER
)
1036 loc
= &SET_DEST (*loc
);
1037 code
= GET_CODE (*loc
);
1038 if ((code
== REG
&& REGNO (*loc
) < FIRST_PSEUDO_REGISTER
)
1039 || code
== PC
|| code
== CC0
1040 || (code
== SUBREG
&& REG_P (SUBREG_REG (*loc
))
1041 && REGNO (SUBREG_REG (*loc
)) < FIRST_PSEUDO_REGISTER
1042 /* If we're setting only part of a multi-word register,
1043 we shall mark it as referenced, because the words
1044 that are not being set should be restored. */
1045 && ((GET_MODE_SIZE (GET_MODE (*loc
))
1046 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
))))
1047 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
)))
1048 <= UNITS_PER_WORD
))))
1051 if (code
== MEM
|| code
== SUBREG
)
1053 loc
= &XEXP (*loc
, 0);
1054 code
= GET_CODE (*loc
);
1059 int regno
= REGNO (*loc
);
1060 int hardregno
= (regno
< FIRST_PSEUDO_REGISTER
? regno
1061 : reg_renumber
[regno
]);
1064 mark (loc
, GET_MODE (*loc
), hardregno
, arg
);
1066 /* ??? Will we ever end up with an equiv expression in a debug
1067 insn, that would have required restoring a reg, or will
1068 reload take care of it for us? */
1070 /* If this is a pseudo that did not get a hard register, scan its
1071 memory location, since it might involve the use of another
1072 register, which might be saved. */
1073 else if (reg_equiv_mem (regno
) != 0)
1074 mark_referenced_regs (&XEXP (reg_equiv_mem (regno
), 0), mark
, arg
);
1075 else if (reg_equiv_address (regno
) != 0)
1076 mark_referenced_regs (®_equiv_address (regno
), mark
, arg
);
1080 fmt
= GET_RTX_FORMAT (code
);
1081 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1084 mark_referenced_regs (&XEXP (*loc
, i
), mark
, arg
);
1085 else if (fmt
[i
] == 'E')
1086 for (j
= XVECLEN (*loc
, i
) - 1; j
>= 0; j
--)
1087 mark_referenced_regs (&XVECEXP (*loc
, i
, j
), mark
, arg
);
1091 /* Parameter function for mark_referenced_regs() that adds registers
1092 present in the insn and in equivalent mems and addresses to
1096 mark_reg_as_referenced (rtx
*loc ATTRIBUTE_UNUSED
,
1099 void *arg ATTRIBUTE_UNUSED
)
1101 add_to_hard_reg_set (&referenced_regs
, mode
, hardregno
);
1104 /* Parameter function for mark_referenced_regs() that replaces
1105 registers referenced in a debug_insn that would have been restored,
1106 should it be a non-debug_insn, with their save locations. */
1109 replace_reg_with_saved_mem (rtx
*loc
,
1114 unsigned int i
, nregs
= hard_regno_nregs
[regno
][mode
];
1116 machine_mode
*save_mode
= (machine_mode
*)arg
;
1118 for (i
= 0; i
< nregs
; i
++)
1119 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1122 /* If none of the registers in the range would need restoring, we're
1128 if (!TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1132 && regno_save_mem
[regno
][nregs
])
1134 mem
= copy_rtx (regno_save_mem
[regno
][nregs
]);
1136 if (nregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]])
1137 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1139 if (GET_MODE (mem
) != mode
)
1141 /* This is gen_lowpart_if_possible(), but without validating
1142 the newly-formed address. */
1145 if (WORDS_BIG_ENDIAN
)
1146 offset
= (MAX (GET_MODE_SIZE (GET_MODE (mem
)), UNITS_PER_WORD
)
1147 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1148 if (BYTES_BIG_ENDIAN
)
1149 /* Adjust the address so that the address-after-the-data is
1151 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1152 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (mem
))));
1154 mem
= adjust_address_nv (mem
, mode
, offset
);
1159 mem
= gen_rtx_CONCATN (mode
, rtvec_alloc (nregs
));
1160 for (i
= 0; i
< nregs
; i
++)
1161 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1163 gcc_assert (regno_save_mem
[regno
+ i
][1]);
1164 XVECEXP (mem
, 0, i
) = copy_rtx (regno_save_mem
[regno
+ i
][1]);
1168 machine_mode smode
= save_mode
[regno
];
1169 gcc_assert (smode
!= VOIDmode
);
1170 if (hard_regno_nregs
[regno
][smode
] > 1)
1171 smode
= mode_for_size (GET_MODE_SIZE (mode
) / nregs
,
1172 GET_MODE_CLASS (mode
), 0);
1173 XVECEXP (mem
, 0, i
) = gen_rtx_REG (smode
, regno
+ i
);
1177 gcc_assert (GET_MODE (mem
) == mode
);
1182 /* Insert a sequence of insns to restore. Place these insns in front of
1183 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1184 the maximum number of registers which should be restored during this call.
1185 It should never be less than 1 since we only work with entire registers.
1187 Note that we have verified in init_caller_save that we can do this
1188 with a simple SET, so use it. Set INSN_CODE to what we save there
1189 since the address might not be valid so the insn might not be recognized.
1190 These insns will be reloaded and have register elimination done by
1191 find_reload, so we need not worry about that here.
1193 Return the extra number of registers saved. */
1196 insert_restore (struct insn_chain
*chain
, int before_p
, int regno
,
1197 int maxrestore
, machine_mode
*save_mode
)
1202 unsigned int numregs
= 0;
1203 struct insn_chain
*new_chain
;
1206 /* A common failure mode if register status is not correct in the
1207 RTL is for this routine to be called with a REGNO we didn't
1208 expect to save. That will cause us to write an insn with a (nil)
1209 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1210 later, check for this common case here instead. This will remove
1211 one step in debugging such problems. */
1212 gcc_assert (regno_save_mem
[regno
][1]);
1214 /* Get the pattern to emit and update our status.
1216 See if we can restore `maxrestore' registers at once. Work
1217 backwards to the single register case. */
1218 for (i
= maxrestore
; i
> 0; i
--)
1223 if (regno_save_mem
[regno
][i
] == 0)
1226 for (j
= 0; j
< i
; j
++)
1227 if (! TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ j
))
1232 /* Must do this one restore at a time. */
1240 mem
= regno_save_mem
[regno
][numregs
];
1241 if (save_mode
[regno
] != VOIDmode
1242 && save_mode
[regno
] != GET_MODE (mem
)
1243 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1244 /* Check that insn to restore REGNO in save_mode[regno] is
1246 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1247 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1249 mem
= copy_rtx (mem
);
1251 /* Verify that the alignment of spill space is equal to or greater
1253 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1254 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1256 pat
= gen_rtx_SET (gen_rtx_REG (GET_MODE (mem
), regno
), mem
);
1257 code
= reg_restore_code (regno
, GET_MODE (mem
));
1258 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1260 /* Clear status for all registers we restored. */
1261 for (k
= 0; k
< i
; k
++)
1263 CLEAR_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1264 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1268 /* Tell our callers how many extra registers we saved/restored. */
1272 /* Like insert_restore above, but save registers instead. */
1275 insert_save (struct insn_chain
*chain
, int before_p
, int regno
,
1276 HARD_REG_SET (*to_save
), machine_mode
*save_mode
)
1282 unsigned int numregs
= 0;
1283 struct insn_chain
*new_chain
;
1286 /* A common failure mode if register status is not correct in the
1287 RTL is for this routine to be called with a REGNO we didn't
1288 expect to save. That will cause us to write an insn with a (nil)
1289 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1290 later, check for this common case here. This will remove one
1291 step in debugging such problems. */
1292 gcc_assert (regno_save_mem
[regno
][1]);
1294 /* Get the pattern to emit and update our status.
1296 See if we can save several registers with a single instruction.
1297 Work backwards to the single register case. */
1298 for (i
= MOVE_MAX_WORDS
; i
> 0; i
--)
1302 if (regno_save_mem
[regno
][i
] == 0)
1305 for (j
= 0; j
< i
; j
++)
1306 if (! TEST_HARD_REG_BIT (*to_save
, regno
+ j
))
1311 /* Must do this one save at a time. */
1319 mem
= regno_save_mem
[regno
][numregs
];
1320 if (save_mode
[regno
] != VOIDmode
1321 && save_mode
[regno
] != GET_MODE (mem
)
1322 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1323 /* Check that insn to save REGNO in save_mode[regno] is
1325 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1326 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1328 mem
= copy_rtx (mem
);
1330 /* Verify that the alignment of spill space is equal to or greater
1332 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1333 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1335 pat
= gen_rtx_SET (mem
, gen_rtx_REG (GET_MODE (mem
), regno
));
1336 code
= reg_save_code (regno
, GET_MODE (mem
));
1337 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1339 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1340 for (k
= 0; k
< numregs
; k
++)
1342 SET_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1343 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1347 /* Tell our callers how many extra registers we saved/restored. */
1351 /* A note_uses callback used by insert_one_insn. Add the hard-register
1352 equivalent of each REG to regset DATA. */
1355 add_used_regs (rtx
*loc
, void *data
)
1357 subrtx_iterator::array_type array
;
1358 FOR_EACH_SUBRTX (iter
, array
, *loc
, NONCONST
)
1360 const_rtx x
= *iter
;
1363 unsigned int regno
= REGNO (x
);
1364 if (HARD_REGISTER_NUM_P (regno
))
1365 bitmap_set_range ((regset
) data
, regno
,
1366 hard_regno_nregs
[regno
][GET_MODE (x
)]);
1368 gcc_checking_assert (reg_renumber
[regno
] < 0);
1373 /* Emit a new caller-save insn and set the code. */
1374 static struct insn_chain
*
1375 insert_one_insn (struct insn_chain
*chain
, int before_p
, int code
, rtx pat
)
1377 rtx_insn
*insn
= chain
->insn
;
1378 struct insn_chain
*new_chain
;
1380 /* If INSN references CC0, put our insns in front of the insn that sets
1381 CC0. This is always safe, since the only way we could be passed an
1382 insn that references CC0 is for a restore, and doing a restore earlier
1383 isn't a problem. We do, however, assume here that CALL_INSNs don't
1384 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1386 if (HAVE_cc0
&& (NONJUMP_INSN_P (insn
) || JUMP_P (insn
))
1388 && reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1389 chain
= chain
->prev
, insn
= chain
->insn
;
1391 new_chain
= new_insn_chain ();
1396 new_chain
->prev
= chain
->prev
;
1397 if (new_chain
->prev
!= 0)
1398 new_chain
->prev
->next
= new_chain
;
1400 reload_insn_chain
= new_chain
;
1402 chain
->prev
= new_chain
;
1403 new_chain
->next
= chain
;
1404 new_chain
->insn
= emit_insn_before (pat
, insn
);
1405 /* ??? It would be nice if we could exclude the already / still saved
1406 registers from the live sets. */
1407 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1408 note_uses (&PATTERN (chain
->insn
), add_used_regs
,
1409 &new_chain
->live_throughout
);
1410 /* If CHAIN->INSN is a call, then the registers which contain
1411 the arguments to the function are live in the new insn. */
1412 if (CALL_P (chain
->insn
))
1413 for (link
= CALL_INSN_FUNCTION_USAGE (chain
->insn
);
1415 link
= XEXP (link
, 1))
1416 note_uses (&XEXP (link
, 0), add_used_regs
,
1417 &new_chain
->live_throughout
);
1419 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1420 if (chain
->insn
== BB_HEAD (BASIC_BLOCK_FOR_FN (cfun
, chain
->block
)))
1421 BB_HEAD (BASIC_BLOCK_FOR_FN (cfun
, chain
->block
)) = new_chain
->insn
;
1425 new_chain
->next
= chain
->next
;
1426 if (new_chain
->next
!= 0)
1427 new_chain
->next
->prev
= new_chain
;
1428 chain
->next
= new_chain
;
1429 new_chain
->prev
= chain
;
1430 new_chain
->insn
= emit_insn_after (pat
, insn
);
1431 /* ??? It would be nice if we could exclude the already / still saved
1432 registers from the live sets, and observe REG_UNUSED notes. */
1433 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1434 /* Registers that are set in CHAIN->INSN live in the new insn.
1435 (Unless there is a REG_UNUSED note for them, but we don't
1436 look for them here.) */
1437 note_stores (PATTERN (chain
->insn
), add_stored_regs
,
1438 &new_chain
->live_throughout
);
1439 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1440 if (chain
->insn
== BB_END (BASIC_BLOCK_FOR_FN (cfun
, chain
->block
)))
1441 BB_END (BASIC_BLOCK_FOR_FN (cfun
, chain
->block
)) = new_chain
->insn
;
1443 new_chain
->block
= chain
->block
;
1444 new_chain
->is_caller_save_insn
= 1;
1446 INSN_CODE (new_chain
->insn
) = code
;
1449 #include "gt-caller-save.h"