1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "fold-const.h"
34 #include "insn-config.h"
36 #include "insn-codes.h"
45 #include "diagnostic-core.h"
48 /* Simplification and canonicalization of RTL. */
50 /* Much code operates on (low, high) pairs; the low value is an
51 unsigned wide int, the high value a signed wide int. We
52 occasionally need to sign extend from low to high as if low were a
54 #define HWI_SIGN_EXTEND(low) \
55 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
57 static rtx
neg_const_int (machine_mode
, const_rtx
);
58 static bool plus_minus_operand_p (const_rtx
);
59 static rtx
simplify_plus_minus (enum rtx_code
, machine_mode
, rtx
, rtx
);
60 static rtx
simplify_immed_subreg (machine_mode
, rtx
, machine_mode
,
62 static rtx
simplify_associative_operation (enum rtx_code
, machine_mode
,
64 static rtx
simplify_relational_operation_1 (enum rtx_code
, machine_mode
,
65 machine_mode
, rtx
, rtx
);
66 static rtx
simplify_unary_operation_1 (enum rtx_code
, machine_mode
, rtx
);
67 static rtx
simplify_binary_operation_1 (enum rtx_code
, machine_mode
,
70 /* Negate a CONST_INT rtx, truncating (because a conversion from a
71 maximally negative number can overflow). */
73 neg_const_int (machine_mode mode
, const_rtx i
)
75 return gen_int_mode (-(unsigned HOST_WIDE_INT
) INTVAL (i
), mode
);
78 /* Test whether expression, X, is an immediate constant that represents
79 the most significant bit of machine mode MODE. */
82 mode_signbit_p (machine_mode mode
, const_rtx x
)
84 unsigned HOST_WIDE_INT val
;
87 if (GET_MODE_CLASS (mode
) != MODE_INT
)
90 width
= GET_MODE_PRECISION (mode
);
94 if (width
<= HOST_BITS_PER_WIDE_INT
97 #if TARGET_SUPPORTS_WIDE_INT
98 else if (CONST_WIDE_INT_P (x
))
101 unsigned int elts
= CONST_WIDE_INT_NUNITS (x
);
102 if (elts
!= (width
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
)
104 for (i
= 0; i
< elts
- 1; i
++)
105 if (CONST_WIDE_INT_ELT (x
, i
) != 0)
107 val
= CONST_WIDE_INT_ELT (x
, elts
- 1);
108 width
%= HOST_BITS_PER_WIDE_INT
;
110 width
= HOST_BITS_PER_WIDE_INT
;
113 else if (width
<= HOST_BITS_PER_DOUBLE_INT
114 && CONST_DOUBLE_AS_INT_P (x
)
115 && CONST_DOUBLE_LOW (x
) == 0)
117 val
= CONST_DOUBLE_HIGH (x
);
118 width
-= HOST_BITS_PER_WIDE_INT
;
122 /* X is not an integer constant. */
125 if (width
< HOST_BITS_PER_WIDE_INT
)
126 val
&= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
127 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
130 /* Test whether VAL is equal to the most significant bit of mode MODE
131 (after masking with the mode mask of MODE). Returns false if the
132 precision of MODE is too large to handle. */
135 val_signbit_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
139 if (GET_MODE_CLASS (mode
) != MODE_INT
)
142 width
= GET_MODE_PRECISION (mode
);
143 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
146 val
&= GET_MODE_MASK (mode
);
147 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
150 /* Test whether the most significant bit of mode MODE is set in VAL.
151 Returns false if the precision of MODE is too large to handle. */
153 val_signbit_known_set_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
157 if (GET_MODE_CLASS (mode
) != MODE_INT
)
160 width
= GET_MODE_PRECISION (mode
);
161 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
164 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
168 /* Test whether the most significant bit of mode MODE is clear in VAL.
169 Returns false if the precision of MODE is too large to handle. */
171 val_signbit_known_clear_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
175 if (GET_MODE_CLASS (mode
) != MODE_INT
)
178 width
= GET_MODE_PRECISION (mode
);
179 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
182 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
186 /* Make a binary operation by properly ordering the operands and
187 seeing if the expression folds. */
190 simplify_gen_binary (enum rtx_code code
, machine_mode mode
, rtx op0
,
195 /* If this simplifies, do it. */
196 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
200 /* Put complex operands first and constants second if commutative. */
201 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
202 && swap_commutative_operands_p (op0
, op1
))
203 std::swap (op0
, op1
);
205 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
208 /* If X is a MEM referencing the constant pool, return the real value.
209 Otherwise return X. */
211 avoid_constant_pool_reference (rtx x
)
215 HOST_WIDE_INT offset
= 0;
217 switch (GET_CODE (x
))
223 /* Handle float extensions of constant pool references. */
225 c
= avoid_constant_pool_reference (tmp
);
226 if (c
!= tmp
&& CONST_DOUBLE_AS_FLOAT_P (c
))
230 REAL_VALUE_FROM_CONST_DOUBLE (d
, c
);
231 return CONST_DOUBLE_FROM_REAL_VALUE (d
, GET_MODE (x
));
239 if (GET_MODE (x
) == BLKmode
)
244 /* Call target hook to avoid the effects of -fpic etc.... */
245 addr
= targetm
.delegitimize_address (addr
);
247 /* Split the address into a base and integer offset. */
248 if (GET_CODE (addr
) == CONST
249 && GET_CODE (XEXP (addr
, 0)) == PLUS
250 && CONST_INT_P (XEXP (XEXP (addr
, 0), 1)))
252 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
253 addr
= XEXP (XEXP (addr
, 0), 0);
256 if (GET_CODE (addr
) == LO_SUM
)
257 addr
= XEXP (addr
, 1);
259 /* If this is a constant pool reference, we can turn it into its
260 constant and hope that simplifications happen. */
261 if (GET_CODE (addr
) == SYMBOL_REF
262 && CONSTANT_POOL_ADDRESS_P (addr
))
264 c
= get_pool_constant (addr
);
265 cmode
= get_pool_mode (addr
);
267 /* If we're accessing the constant in a different mode than it was
268 originally stored, attempt to fix that up via subreg simplifications.
269 If that fails we have no choice but to return the original memory. */
270 if ((offset
!= 0 || cmode
!= GET_MODE (x
))
271 && offset
>= 0 && offset
< GET_MODE_SIZE (cmode
))
273 rtx tem
= simplify_subreg (GET_MODE (x
), c
, cmode
, offset
);
274 if (tem
&& CONSTANT_P (tem
))
284 /* Simplify a MEM based on its attributes. This is the default
285 delegitimize_address target hook, and it's recommended that every
286 overrider call it. */
289 delegitimize_mem_from_attrs (rtx x
)
291 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
292 use their base addresses as equivalent. */
295 && MEM_OFFSET_KNOWN_P (x
))
297 tree decl
= MEM_EXPR (x
);
298 machine_mode mode
= GET_MODE (x
);
299 HOST_WIDE_INT offset
= 0;
301 switch (TREE_CODE (decl
))
311 case ARRAY_RANGE_REF
:
316 case VIEW_CONVERT_EXPR
:
318 HOST_WIDE_INT bitsize
, bitpos
;
320 int unsignedp
, volatilep
= 0;
322 decl
= get_inner_reference (decl
, &bitsize
, &bitpos
, &toffset
,
323 &mode
, &unsignedp
, &volatilep
, false);
324 if (bitsize
!= GET_MODE_BITSIZE (mode
)
325 || (bitpos
% BITS_PER_UNIT
)
326 || (toffset
&& !tree_fits_shwi_p (toffset
)))
330 offset
+= bitpos
/ BITS_PER_UNIT
;
332 offset
+= tree_to_shwi (toffset
);
339 && mode
== GET_MODE (x
)
340 && TREE_CODE (decl
) == VAR_DECL
341 && (TREE_STATIC (decl
)
342 || DECL_THREAD_LOCAL_P (decl
))
343 && DECL_RTL_SET_P (decl
)
344 && MEM_P (DECL_RTL (decl
)))
348 offset
+= MEM_OFFSET (x
);
350 newx
= DECL_RTL (decl
);
354 rtx n
= XEXP (newx
, 0), o
= XEXP (x
, 0);
356 /* Avoid creating a new MEM needlessly if we already had
357 the same address. We do if there's no OFFSET and the
358 old address X is identical to NEWX, or if X is of the
359 form (plus NEWX OFFSET), or the NEWX is of the form
360 (plus Y (const_int Z)) and X is that with the offset
361 added: (plus Y (const_int Z+OFFSET)). */
363 || (GET_CODE (o
) == PLUS
364 && GET_CODE (XEXP (o
, 1)) == CONST_INT
365 && (offset
== INTVAL (XEXP (o
, 1))
366 || (GET_CODE (n
) == PLUS
367 && GET_CODE (XEXP (n
, 1)) == CONST_INT
368 && (INTVAL (XEXP (n
, 1)) + offset
369 == INTVAL (XEXP (o
, 1)))
370 && (n
= XEXP (n
, 0))))
371 && (o
= XEXP (o
, 0))))
372 && rtx_equal_p (o
, n
)))
373 x
= adjust_address_nv (newx
, mode
, offset
);
375 else if (GET_MODE (x
) == GET_MODE (newx
)
384 /* Make a unary operation by first seeing if it folds and otherwise making
385 the specified operation. */
388 simplify_gen_unary (enum rtx_code code
, machine_mode mode
, rtx op
,
389 machine_mode op_mode
)
393 /* If this simplifies, use it. */
394 if ((tem
= simplify_unary_operation (code
, mode
, op
, op_mode
)) != 0)
397 return gen_rtx_fmt_e (code
, mode
, op
);
400 /* Likewise for ternary operations. */
403 simplify_gen_ternary (enum rtx_code code
, machine_mode mode
,
404 machine_mode op0_mode
, rtx op0
, rtx op1
, rtx op2
)
408 /* If this simplifies, use it. */
409 if (0 != (tem
= simplify_ternary_operation (code
, mode
, op0_mode
,
413 return gen_rtx_fmt_eee (code
, mode
, op0
, op1
, op2
);
416 /* Likewise, for relational operations.
417 CMP_MODE specifies mode comparison is done in. */
420 simplify_gen_relational (enum rtx_code code
, machine_mode mode
,
421 machine_mode cmp_mode
, rtx op0
, rtx op1
)
425 if (0 != (tem
= simplify_relational_operation (code
, mode
, cmp_mode
,
429 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
432 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
433 and simplify the result. If FN is non-NULL, call this callback on each
434 X, if it returns non-NULL, replace X with its return value and simplify the
438 simplify_replace_fn_rtx (rtx x
, const_rtx old_rtx
,
439 rtx (*fn
) (rtx
, const_rtx
, void *), void *data
)
441 enum rtx_code code
= GET_CODE (x
);
442 machine_mode mode
= GET_MODE (x
);
443 machine_mode op_mode
;
445 rtx op0
, op1
, op2
, newx
, op
;
449 if (__builtin_expect (fn
!= NULL
, 0))
451 newx
= fn (x
, old_rtx
, data
);
455 else if (rtx_equal_p (x
, old_rtx
))
456 return copy_rtx ((rtx
) data
);
458 switch (GET_RTX_CLASS (code
))
462 op_mode
= GET_MODE (op0
);
463 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
464 if (op0
== XEXP (x
, 0))
466 return simplify_gen_unary (code
, mode
, op0
, op_mode
);
470 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
471 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
472 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
474 return simplify_gen_binary (code
, mode
, op0
, op1
);
477 case RTX_COMM_COMPARE
:
480 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
481 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
482 op1
= simplify_replace_fn_rtx (op1
, old_rtx
, fn
, data
);
483 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
485 return simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
488 case RTX_BITFIELD_OPS
:
490 op_mode
= GET_MODE (op0
);
491 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
492 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
493 op2
= simplify_replace_fn_rtx (XEXP (x
, 2), old_rtx
, fn
, data
);
494 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
496 if (op_mode
== VOIDmode
)
497 op_mode
= GET_MODE (op0
);
498 return simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
503 op0
= simplify_replace_fn_rtx (SUBREG_REG (x
), old_rtx
, fn
, data
);
504 if (op0
== SUBREG_REG (x
))
506 op0
= simplify_gen_subreg (GET_MODE (x
), op0
,
507 GET_MODE (SUBREG_REG (x
)),
509 return op0
? op0
: x
;
516 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
517 if (op0
== XEXP (x
, 0))
519 return replace_equiv_address_nv (x
, op0
);
521 else if (code
== LO_SUM
)
523 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
524 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
526 /* (lo_sum (high x) y) -> y where x and y have the same base. */
527 if (GET_CODE (op0
) == HIGH
)
529 rtx base0
, base1
, offset0
, offset1
;
530 split_const (XEXP (op0
, 0), &base0
, &offset0
);
531 split_const (op1
, &base1
, &offset1
);
532 if (rtx_equal_p (base0
, base1
))
536 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
538 return gen_rtx_LO_SUM (mode
, op0
, op1
);
547 fmt
= GET_RTX_FORMAT (code
);
548 for (i
= 0; fmt
[i
]; i
++)
553 newvec
= XVEC (newx
, i
);
554 for (j
= 0; j
< GET_NUM_ELEM (vec
); j
++)
556 op
= simplify_replace_fn_rtx (RTVEC_ELT (vec
, j
),
558 if (op
!= RTVEC_ELT (vec
, j
))
562 newvec
= shallow_copy_rtvec (vec
);
564 newx
= shallow_copy_rtx (x
);
565 XVEC (newx
, i
) = newvec
;
567 RTVEC_ELT (newvec
, j
) = op
;
575 op
= simplify_replace_fn_rtx (XEXP (x
, i
), old_rtx
, fn
, data
);
576 if (op
!= XEXP (x
, i
))
579 newx
= shallow_copy_rtx (x
);
588 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
589 resulting RTX. Return a new RTX which is as simplified as possible. */
592 simplify_replace_rtx (rtx x
, const_rtx old_rtx
, rtx new_rtx
)
594 return simplify_replace_fn_rtx (x
, old_rtx
, 0, new_rtx
);
597 /* Try to simplify a MODE truncation of OP, which has OP_MODE.
598 Only handle cases where the truncated value is inherently an rvalue.
600 RTL provides two ways of truncating a value:
602 1. a lowpart subreg. This form is only a truncation when both
603 the outer and inner modes (here MODE and OP_MODE respectively)
604 are scalar integers, and only then when the subreg is used as
607 It is only valid to form such truncating subregs if the
608 truncation requires no action by the target. The onus for
609 proving this is on the creator of the subreg -- e.g. the
610 caller to simplify_subreg or simplify_gen_subreg -- and typically
611 involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
613 2. a TRUNCATE. This form handles both scalar and compound integers.
615 The first form is preferred where valid. However, the TRUNCATE
616 handling in simplify_unary_operation turns the second form into the
617 first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
618 so it is generally safe to form rvalue truncations using:
620 simplify_gen_unary (TRUNCATE, ...)
622 and leave simplify_unary_operation to work out which representation
625 Because of the proof requirements on (1), simplify_truncation must
626 also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
627 regardless of whether the outer truncation came from a SUBREG or a
628 TRUNCATE. For example, if the caller has proven that an SImode
633 is a no-op and can be represented as a subreg, it does not follow
634 that SImode truncations of X and Y are also no-ops. On a target
635 like 64-bit MIPS that requires SImode values to be stored in
636 sign-extended form, an SImode truncation of:
638 (and:DI (reg:DI X) (const_int 63))
640 is trivially a no-op because only the lower 6 bits can be set.
641 However, X is still an arbitrary 64-bit number and so we cannot
642 assume that truncating it too is a no-op. */
645 simplify_truncation (machine_mode mode
, rtx op
,
646 machine_mode op_mode
)
648 unsigned int precision
= GET_MODE_UNIT_PRECISION (mode
);
649 unsigned int op_precision
= GET_MODE_UNIT_PRECISION (op_mode
);
650 gcc_assert (precision
<= op_precision
);
652 /* Optimize truncations of zero and sign extended values. */
653 if (GET_CODE (op
) == ZERO_EXTEND
654 || GET_CODE (op
) == SIGN_EXTEND
)
656 /* There are three possibilities. If MODE is the same as the
657 origmode, we can omit both the extension and the subreg.
658 If MODE is not larger than the origmode, we can apply the
659 truncation without the extension. Finally, if the outermode
660 is larger than the origmode, we can just extend to the appropriate
662 machine_mode origmode
= GET_MODE (XEXP (op
, 0));
663 if (mode
== origmode
)
665 else if (precision
<= GET_MODE_UNIT_PRECISION (origmode
))
666 return simplify_gen_unary (TRUNCATE
, mode
,
667 XEXP (op
, 0), origmode
);
669 return simplify_gen_unary (GET_CODE (op
), mode
,
670 XEXP (op
, 0), origmode
);
673 /* If the machine can perform operations in the truncated mode, distribute
674 the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
675 (op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
677 && (!WORD_REGISTER_OPERATIONS
|| precision
>= BITS_PER_WORD
)
678 && (GET_CODE (op
) == PLUS
679 || GET_CODE (op
) == MINUS
680 || GET_CODE (op
) == MULT
))
682 rtx op0
= simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 0), op_mode
);
685 rtx op1
= simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 1), op_mode
);
687 return simplify_gen_binary (GET_CODE (op
), mode
, op0
, op1
);
691 /* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
692 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
693 the outer subreg is effectively a truncation to the original mode. */
694 if ((GET_CODE (op
) == LSHIFTRT
695 || GET_CODE (op
) == ASHIFTRT
)
696 /* Ensure that OP_MODE is at least twice as wide as MODE
697 to avoid the possibility that an outer LSHIFTRT shifts by more
698 than the sign extension's sign_bit_copies and introduces zeros
699 into the high bits of the result. */
700 && 2 * precision
<= op_precision
701 && CONST_INT_P (XEXP (op
, 1))
702 && GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
703 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
704 && UINTVAL (XEXP (op
, 1)) < precision
)
705 return simplify_gen_binary (ASHIFTRT
, mode
,
706 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
708 /* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
709 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
710 the outer subreg is effectively a truncation to the original mode. */
711 if ((GET_CODE (op
) == LSHIFTRT
712 || GET_CODE (op
) == ASHIFTRT
)
713 && CONST_INT_P (XEXP (op
, 1))
714 && GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
715 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
716 && UINTVAL (XEXP (op
, 1)) < precision
)
717 return simplify_gen_binary (LSHIFTRT
, mode
,
718 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
720 /* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
721 to (ashift:QI (x:QI) C), where C is a suitable small constant and
722 the outer subreg is effectively a truncation to the original mode. */
723 if (GET_CODE (op
) == ASHIFT
724 && CONST_INT_P (XEXP (op
, 1))
725 && (GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
726 || GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
)
727 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
728 && UINTVAL (XEXP (op
, 1)) < precision
)
729 return simplify_gen_binary (ASHIFT
, mode
,
730 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
732 /* Recognize a word extraction from a multi-word subreg. */
733 if ((GET_CODE (op
) == LSHIFTRT
734 || GET_CODE (op
) == ASHIFTRT
)
735 && SCALAR_INT_MODE_P (mode
)
736 && SCALAR_INT_MODE_P (op_mode
)
737 && precision
>= BITS_PER_WORD
738 && 2 * precision
<= op_precision
739 && CONST_INT_P (XEXP (op
, 1))
740 && (INTVAL (XEXP (op
, 1)) & (precision
- 1)) == 0
741 && UINTVAL (XEXP (op
, 1)) < op_precision
)
743 int byte
= subreg_lowpart_offset (mode
, op_mode
);
744 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
745 return simplify_gen_subreg (mode
, XEXP (op
, 0), op_mode
,
747 ? byte
- shifted_bytes
748 : byte
+ shifted_bytes
));
751 /* If we have a TRUNCATE of a right shift of MEM, make a new MEM
752 and try replacing the TRUNCATE and shift with it. Don't do this
753 if the MEM has a mode-dependent address. */
754 if ((GET_CODE (op
) == LSHIFTRT
755 || GET_CODE (op
) == ASHIFTRT
)
756 && SCALAR_INT_MODE_P (op_mode
)
757 && MEM_P (XEXP (op
, 0))
758 && CONST_INT_P (XEXP (op
, 1))
759 && (INTVAL (XEXP (op
, 1)) % GET_MODE_BITSIZE (mode
)) == 0
760 && INTVAL (XEXP (op
, 1)) > 0
761 && INTVAL (XEXP (op
, 1)) < GET_MODE_BITSIZE (op_mode
)
762 && ! mode_dependent_address_p (XEXP (XEXP (op
, 0), 0),
763 MEM_ADDR_SPACE (XEXP (op
, 0)))
764 && ! MEM_VOLATILE_P (XEXP (op
, 0))
765 && (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
766 || WORDS_BIG_ENDIAN
== BYTES_BIG_ENDIAN
))
768 int byte
= subreg_lowpart_offset (mode
, op_mode
);
769 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
770 return adjust_address_nv (XEXP (op
, 0), mode
,
772 ? byte
- shifted_bytes
773 : byte
+ shifted_bytes
));
776 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
777 (OP:SI foo:SI) if OP is NEG or ABS. */
778 if ((GET_CODE (op
) == ABS
779 || GET_CODE (op
) == NEG
)
780 && (GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
781 || GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
)
782 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
783 return simplify_gen_unary (GET_CODE (op
), mode
,
784 XEXP (XEXP (op
, 0), 0), mode
);
786 /* (truncate:A (subreg:B (truncate:C X) 0)) is
788 if (GET_CODE (op
) == SUBREG
789 && SCALAR_INT_MODE_P (mode
)
790 && SCALAR_INT_MODE_P (op_mode
)
791 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op
)))
792 && GET_CODE (SUBREG_REG (op
)) == TRUNCATE
793 && subreg_lowpart_p (op
))
795 rtx inner
= XEXP (SUBREG_REG (op
), 0);
796 if (GET_MODE_PRECISION (mode
)
797 <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
))))
798 return simplify_gen_unary (TRUNCATE
, mode
, inner
, GET_MODE (inner
));
800 /* If subreg above is paradoxical and C is narrower
801 than A, return (subreg:A (truncate:C X) 0). */
802 return simplify_gen_subreg (mode
, SUBREG_REG (op
),
803 GET_MODE (SUBREG_REG (op
)), 0);
806 /* (truncate:A (truncate:B X)) is (truncate:A X). */
807 if (GET_CODE (op
) == TRUNCATE
)
808 return simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 0),
809 GET_MODE (XEXP (op
, 0)));
814 /* Try to simplify a unary operation CODE whose output mode is to be
815 MODE with input operand OP whose mode was originally OP_MODE.
816 Return zero if no simplification can be made. */
818 simplify_unary_operation (enum rtx_code code
, machine_mode mode
,
819 rtx op
, machine_mode op_mode
)
823 trueop
= avoid_constant_pool_reference (op
);
825 tem
= simplify_const_unary_operation (code
, mode
, trueop
, op_mode
);
829 return simplify_unary_operation_1 (code
, mode
, op
);
832 /* Perform some simplifications we can do even if the operands
835 simplify_unary_operation_1 (enum rtx_code code
, machine_mode mode
, rtx op
)
837 enum rtx_code reversed
;
843 /* (not (not X)) == X. */
844 if (GET_CODE (op
) == NOT
)
847 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
848 comparison is all ones. */
849 if (COMPARISON_P (op
)
850 && (mode
== BImode
|| STORE_FLAG_VALUE
== -1)
851 && ((reversed
= reversed_comparison_code (op
, NULL_RTX
)) != UNKNOWN
))
852 return simplify_gen_relational (reversed
, mode
, VOIDmode
,
853 XEXP (op
, 0), XEXP (op
, 1));
855 /* (not (plus X -1)) can become (neg X). */
856 if (GET_CODE (op
) == PLUS
857 && XEXP (op
, 1) == constm1_rtx
)
858 return simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
860 /* Similarly, (not (neg X)) is (plus X -1). */
861 if (GET_CODE (op
) == NEG
)
862 return simplify_gen_binary (PLUS
, mode
, XEXP (op
, 0),
865 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
866 if (GET_CODE (op
) == XOR
867 && CONST_INT_P (XEXP (op
, 1))
868 && (temp
= simplify_unary_operation (NOT
, mode
,
869 XEXP (op
, 1), mode
)) != 0)
870 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
872 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
873 if (GET_CODE (op
) == PLUS
874 && CONST_INT_P (XEXP (op
, 1))
875 && mode_signbit_p (mode
, XEXP (op
, 1))
876 && (temp
= simplify_unary_operation (NOT
, mode
,
877 XEXP (op
, 1), mode
)) != 0)
878 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
881 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
882 operands other than 1, but that is not valid. We could do a
883 similar simplification for (not (lshiftrt C X)) where C is
884 just the sign bit, but this doesn't seem common enough to
886 if (GET_CODE (op
) == ASHIFT
887 && XEXP (op
, 0) == const1_rtx
)
889 temp
= simplify_gen_unary (NOT
, mode
, const1_rtx
, mode
);
890 return simplify_gen_binary (ROTATE
, mode
, temp
, XEXP (op
, 1));
893 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
894 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
895 so we can perform the above simplification. */
896 if (STORE_FLAG_VALUE
== -1
897 && GET_CODE (op
) == ASHIFTRT
898 && CONST_INT_P (XEXP (op
, 1))
899 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
900 return simplify_gen_relational (GE
, mode
, VOIDmode
,
901 XEXP (op
, 0), const0_rtx
);
904 if (GET_CODE (op
) == SUBREG
905 && subreg_lowpart_p (op
)
906 && (GET_MODE_SIZE (GET_MODE (op
))
907 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op
))))
908 && GET_CODE (SUBREG_REG (op
)) == ASHIFT
909 && XEXP (SUBREG_REG (op
), 0) == const1_rtx
)
911 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op
));
914 x
= gen_rtx_ROTATE (inner_mode
,
915 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
917 XEXP (SUBREG_REG (op
), 1));
918 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, x
);
923 /* Apply De Morgan's laws to reduce number of patterns for machines
924 with negating logical insns (and-not, nand, etc.). If result has
925 only one NOT, put it first, since that is how the patterns are
927 if (GET_CODE (op
) == IOR
|| GET_CODE (op
) == AND
)
929 rtx in1
= XEXP (op
, 0), in2
= XEXP (op
, 1);
930 machine_mode op_mode
;
932 op_mode
= GET_MODE (in1
);
933 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
935 op_mode
= GET_MODE (in2
);
936 if (op_mode
== VOIDmode
)
938 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
940 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
941 std::swap (in1
, in2
);
943 return gen_rtx_fmt_ee (GET_CODE (op
) == IOR
? AND
: IOR
,
947 /* (not (bswap x)) -> (bswap (not x)). */
948 if (GET_CODE (op
) == BSWAP
)
950 rtx x
= simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
951 return simplify_gen_unary (BSWAP
, mode
, x
, mode
);
956 /* (neg (neg X)) == X. */
957 if (GET_CODE (op
) == NEG
)
960 /* (neg (x ? (neg y) : y)) == !x ? (neg y) : y.
961 If comparison is not reversible use
963 if (GET_CODE (op
) == IF_THEN_ELSE
)
965 rtx cond
= XEXP (op
, 0);
966 rtx true_rtx
= XEXP (op
, 1);
967 rtx false_rtx
= XEXP (op
, 2);
969 if ((GET_CODE (true_rtx
) == NEG
970 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
971 || (GET_CODE (false_rtx
) == NEG
972 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
)))
974 if (reversed_comparison_code (cond
, NULL_RTX
) != UNKNOWN
)
975 temp
= reversed_comparison (cond
, mode
);
979 std::swap (true_rtx
, false_rtx
);
981 return simplify_gen_ternary (IF_THEN_ELSE
, mode
,
982 mode
, temp
, true_rtx
, false_rtx
);
986 /* (neg (plus X 1)) can become (not X). */
987 if (GET_CODE (op
) == PLUS
988 && XEXP (op
, 1) == const1_rtx
)
989 return simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
991 /* Similarly, (neg (not X)) is (plus X 1). */
992 if (GET_CODE (op
) == NOT
)
993 return simplify_gen_binary (PLUS
, mode
, XEXP (op
, 0),
996 /* (neg (minus X Y)) can become (minus Y X). This transformation
997 isn't safe for modes with signed zeros, since if X and Y are
998 both +0, (minus Y X) is the same as (minus X Y). If the
999 rounding mode is towards +infinity (or -infinity) then the two
1000 expressions will be rounded differently. */
1001 if (GET_CODE (op
) == MINUS
1002 && !HONOR_SIGNED_ZEROS (mode
)
1003 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1004 return simplify_gen_binary (MINUS
, mode
, XEXP (op
, 1), XEXP (op
, 0));
1006 if (GET_CODE (op
) == PLUS
1007 && !HONOR_SIGNED_ZEROS (mode
)
1008 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1010 /* (neg (plus A C)) is simplified to (minus -C A). */
1011 if (CONST_SCALAR_INT_P (XEXP (op
, 1))
1012 || CONST_DOUBLE_AS_FLOAT_P (XEXP (op
, 1)))
1014 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 1), mode
);
1016 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 0));
1019 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
1020 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
1021 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 1));
1024 /* (neg (mult A B)) becomes (mult A (neg B)).
1025 This works even for floating-point values. */
1026 if (GET_CODE (op
) == MULT
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1029 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 1), mode
);
1030 return simplify_gen_binary (MULT
, mode
, XEXP (op
, 0), temp
);
1033 /* NEG commutes with ASHIFT since it is multiplication. Only do
1034 this if we can then eliminate the NEG (e.g., if the operand
1036 if (GET_CODE (op
) == ASHIFT
)
1038 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 0), mode
);
1040 return simplify_gen_binary (ASHIFT
, mode
, temp
, XEXP (op
, 1));
1043 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
1044 C is equal to the width of MODE minus 1. */
1045 if (GET_CODE (op
) == ASHIFTRT
1046 && CONST_INT_P (XEXP (op
, 1))
1047 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
1048 return simplify_gen_binary (LSHIFTRT
, mode
,
1049 XEXP (op
, 0), XEXP (op
, 1));
1051 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
1052 C is equal to the width of MODE minus 1. */
1053 if (GET_CODE (op
) == LSHIFTRT
1054 && CONST_INT_P (XEXP (op
, 1))
1055 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
1056 return simplify_gen_binary (ASHIFTRT
, mode
,
1057 XEXP (op
, 0), XEXP (op
, 1));
1059 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
1060 if (GET_CODE (op
) == XOR
1061 && XEXP (op
, 1) == const1_rtx
1062 && nonzero_bits (XEXP (op
, 0), mode
) == 1)
1063 return plus_constant (mode
, XEXP (op
, 0), -1);
1065 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
1066 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
1067 if (GET_CODE (op
) == LT
1068 && XEXP (op
, 1) == const0_rtx
1069 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op
, 0))))
1071 machine_mode inner
= GET_MODE (XEXP (op
, 0));
1072 int isize
= GET_MODE_PRECISION (inner
);
1073 if (STORE_FLAG_VALUE
== 1)
1075 temp
= simplify_gen_binary (ASHIFTRT
, inner
, XEXP (op
, 0),
1076 GEN_INT (isize
- 1));
1079 if (GET_MODE_PRECISION (mode
) > isize
)
1080 return simplify_gen_unary (SIGN_EXTEND
, mode
, temp
, inner
);
1081 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
1083 else if (STORE_FLAG_VALUE
== -1)
1085 temp
= simplify_gen_binary (LSHIFTRT
, inner
, XEXP (op
, 0),
1086 GEN_INT (isize
- 1));
1089 if (GET_MODE_PRECISION (mode
) > isize
)
1090 return simplify_gen_unary (ZERO_EXTEND
, mode
, temp
, inner
);
1091 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
1097 /* Don't optimize (lshiftrt (mult ...)) as it would interfere
1098 with the umulXi3_highpart patterns. */
1099 if (GET_CODE (op
) == LSHIFTRT
1100 && GET_CODE (XEXP (op
, 0)) == MULT
)
1103 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1105 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op
)))
1107 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1111 /* We can't handle truncation to a partial integer mode here
1112 because we don't know the real bitsize of the partial
1117 if (GET_MODE (op
) != VOIDmode
)
1119 temp
= simplify_truncation (mode
, op
, GET_MODE (op
));
1124 /* If we know that the value is already truncated, we can
1125 replace the TRUNCATE with a SUBREG. */
1126 if (GET_MODE_NUNITS (mode
) == 1
1127 && (TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op
))
1128 || truncated_to_mode (mode
, op
)))
1130 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1135 /* A truncate of a comparison can be replaced with a subreg if
1136 STORE_FLAG_VALUE permits. This is like the previous test,
1137 but it works even if the comparison is done in a mode larger
1138 than HOST_BITS_PER_WIDE_INT. */
1139 if (HWI_COMPUTABLE_MODE_P (mode
)
1140 && COMPARISON_P (op
)
1141 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
1143 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1148 /* A truncate of a memory is just loading the low part of the memory
1149 if we are not changing the meaning of the address. */
1150 if (GET_CODE (op
) == MEM
1151 && !VECTOR_MODE_P (mode
)
1152 && !MEM_VOLATILE_P (op
)
1153 && !mode_dependent_address_p (XEXP (op
, 0), MEM_ADDR_SPACE (op
)))
1155 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1162 case FLOAT_TRUNCATE
:
1163 if (DECIMAL_FLOAT_MODE_P (mode
))
1166 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
1167 if (GET_CODE (op
) == FLOAT_EXTEND
1168 && GET_MODE (XEXP (op
, 0)) == mode
)
1169 return XEXP (op
, 0);
1171 /* (float_truncate:SF (float_truncate:DF foo:XF))
1172 = (float_truncate:SF foo:XF).
1173 This may eliminate double rounding, so it is unsafe.
1175 (float_truncate:SF (float_extend:XF foo:DF))
1176 = (float_truncate:SF foo:DF).
1178 (float_truncate:DF (float_extend:XF foo:SF))
1179 = (float_extend:DF foo:SF). */
1180 if ((GET_CODE (op
) == FLOAT_TRUNCATE
1181 && flag_unsafe_math_optimizations
)
1182 || GET_CODE (op
) == FLOAT_EXTEND
)
1183 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op
,
1185 > GET_MODE_SIZE (mode
)
1186 ? FLOAT_TRUNCATE
: FLOAT_EXTEND
,
1188 XEXP (op
, 0), mode
);
1190 /* (float_truncate (float x)) is (float x) */
1191 if ((GET_CODE (op
) == FLOAT
|| GET_CODE (op
) == UNSIGNED_FLOAT
)
1192 && (flag_unsafe_math_optimizations
1193 || (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1194 && ((unsigned)significand_size (GET_MODE (op
))
1195 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0)))
1196 - num_sign_bit_copies (XEXP (op
, 0),
1197 GET_MODE (XEXP (op
, 0))))))))
1198 return simplify_gen_unary (GET_CODE (op
), mode
,
1200 GET_MODE (XEXP (op
, 0)));
1202 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
1203 (OP:SF foo:SF) if OP is NEG or ABS. */
1204 if ((GET_CODE (op
) == ABS
1205 || GET_CODE (op
) == NEG
)
1206 && GET_CODE (XEXP (op
, 0)) == FLOAT_EXTEND
1207 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
1208 return simplify_gen_unary (GET_CODE (op
), mode
,
1209 XEXP (XEXP (op
, 0), 0), mode
);
1211 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
1212 is (float_truncate:SF x). */
1213 if (GET_CODE (op
) == SUBREG
1214 && subreg_lowpart_p (op
)
1215 && GET_CODE (SUBREG_REG (op
)) == FLOAT_TRUNCATE
)
1216 return SUBREG_REG (op
);
1220 if (DECIMAL_FLOAT_MODE_P (mode
))
1223 /* (float_extend (float_extend x)) is (float_extend x)
1225 (float_extend (float x)) is (float x) assuming that double
1226 rounding can't happen.
1228 if (GET_CODE (op
) == FLOAT_EXTEND
1229 || ((GET_CODE (op
) == FLOAT
|| GET_CODE (op
) == UNSIGNED_FLOAT
)
1230 && SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1231 && ((unsigned)significand_size (GET_MODE (op
))
1232 >= (GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0)))
1233 - num_sign_bit_copies (XEXP (op
, 0),
1234 GET_MODE (XEXP (op
, 0)))))))
1235 return simplify_gen_unary (GET_CODE (op
), mode
,
1237 GET_MODE (XEXP (op
, 0)));
1242 /* (abs (neg <foo>)) -> (abs <foo>) */
1243 if (GET_CODE (op
) == NEG
)
1244 return simplify_gen_unary (ABS
, mode
, XEXP (op
, 0),
1245 GET_MODE (XEXP (op
, 0)));
1247 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
1249 if (GET_MODE (op
) == VOIDmode
)
1252 /* If operand is something known to be positive, ignore the ABS. */
1253 if (GET_CODE (op
) == FFS
|| GET_CODE (op
) == ABS
1254 || val_signbit_known_clear_p (GET_MODE (op
),
1255 nonzero_bits (op
, GET_MODE (op
))))
1258 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
1259 if (num_sign_bit_copies (op
, mode
) == GET_MODE_PRECISION (mode
))
1260 return gen_rtx_NEG (mode
, op
);
1265 /* (ffs (*_extend <X>)) = (ffs <X>) */
1266 if (GET_CODE (op
) == SIGN_EXTEND
1267 || GET_CODE (op
) == ZERO_EXTEND
)
1268 return simplify_gen_unary (FFS
, mode
, XEXP (op
, 0),
1269 GET_MODE (XEXP (op
, 0)));
1273 switch (GET_CODE (op
))
1277 /* (popcount (zero_extend <X>)) = (popcount <X>) */
1278 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
1279 GET_MODE (XEXP (op
, 0)));
1283 /* Rotations don't affect popcount. */
1284 if (!side_effects_p (XEXP (op
, 1)))
1285 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
1286 GET_MODE (XEXP (op
, 0)));
1295 switch (GET_CODE (op
))
1301 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1302 GET_MODE (XEXP (op
, 0)));
1306 /* Rotations don't affect parity. */
1307 if (!side_effects_p (XEXP (op
, 1)))
1308 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1309 GET_MODE (XEXP (op
, 0)));
1318 /* (bswap (bswap x)) -> x. */
1319 if (GET_CODE (op
) == BSWAP
)
1320 return XEXP (op
, 0);
1324 /* (float (sign_extend <X>)) = (float <X>). */
1325 if (GET_CODE (op
) == SIGN_EXTEND
)
1326 return simplify_gen_unary (FLOAT
, mode
, XEXP (op
, 0),
1327 GET_MODE (XEXP (op
, 0)));
1331 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1332 becomes just the MINUS if its mode is MODE. This allows
1333 folding switch statements on machines using casesi (such as
1335 if (GET_CODE (op
) == TRUNCATE
1336 && GET_MODE (XEXP (op
, 0)) == mode
1337 && GET_CODE (XEXP (op
, 0)) == MINUS
1338 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
1339 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
1340 return XEXP (op
, 0);
1342 /* Extending a widening multiplication should be canonicalized to
1343 a wider widening multiplication. */
1344 if (GET_CODE (op
) == MULT
)
1346 rtx lhs
= XEXP (op
, 0);
1347 rtx rhs
= XEXP (op
, 1);
1348 enum rtx_code lcode
= GET_CODE (lhs
);
1349 enum rtx_code rcode
= GET_CODE (rhs
);
1351 /* Widening multiplies usually extend both operands, but sometimes
1352 they use a shift to extract a portion of a register. */
1353 if ((lcode
== SIGN_EXTEND
1354 || (lcode
== ASHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1355 && (rcode
== SIGN_EXTEND
1356 || (rcode
== ASHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1358 machine_mode lmode
= GET_MODE (lhs
);
1359 machine_mode rmode
= GET_MODE (rhs
);
1362 if (lcode
== ASHIFTRT
)
1363 /* Number of bits not shifted off the end. */
1364 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1365 else /* lcode == SIGN_EXTEND */
1366 /* Size of inner mode. */
1367 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1369 if (rcode
== ASHIFTRT
)
1370 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1371 else /* rcode == SIGN_EXTEND */
1372 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1374 /* We can only widen multiplies if the result is mathematiclly
1375 equivalent. I.e. if overflow was impossible. */
1376 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1377 return simplify_gen_binary
1379 simplify_gen_unary (SIGN_EXTEND
, mode
, lhs
, lmode
),
1380 simplify_gen_unary (SIGN_EXTEND
, mode
, rhs
, rmode
));
1384 /* Check for a sign extension of a subreg of a promoted
1385 variable, where the promotion is sign-extended, and the
1386 target mode is the same as the variable's promotion. */
1387 if (GET_CODE (op
) == SUBREG
1388 && SUBREG_PROMOTED_VAR_P (op
)
1389 && SUBREG_PROMOTED_SIGNED_P (op
)
1390 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1392 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1397 /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
1398 (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1399 if (GET_CODE (op
) == SIGN_EXTEND
|| GET_CODE (op
) == ZERO_EXTEND
)
1401 gcc_assert (GET_MODE_PRECISION (mode
)
1402 > GET_MODE_PRECISION (GET_MODE (op
)));
1403 return simplify_gen_unary (GET_CODE (op
), mode
, XEXP (op
, 0),
1404 GET_MODE (XEXP (op
, 0)));
1407 /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
1408 is (sign_extend:M (subreg:O <X>)) if there is mode with
1409 GET_MODE_BITSIZE (N) - I bits.
1410 (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1411 is similarly (zero_extend:M (subreg:O <X>)). */
1412 if ((GET_CODE (op
) == ASHIFTRT
|| GET_CODE (op
) == LSHIFTRT
)
1413 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1414 && CONST_INT_P (XEXP (op
, 1))
1415 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1416 && GET_MODE_BITSIZE (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1419 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op
))
1420 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1421 gcc_assert (GET_MODE_BITSIZE (mode
)
1422 > GET_MODE_BITSIZE (GET_MODE (op
)));
1423 if (tmode
!= BLKmode
)
1426 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1428 return simplify_gen_unary (GET_CODE (op
) == ASHIFTRT
1429 ? SIGN_EXTEND
: ZERO_EXTEND
,
1430 mode
, inner
, tmode
);
1434 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1435 /* As we do not know which address space the pointer is referring to,
1436 we can do this only if the target does not support different pointer
1437 or address modes depending on the address space. */
1438 if (target_default_pointer_address_modes_p ()
1439 && ! POINTERS_EXTEND_UNSIGNED
1440 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1442 || (GET_CODE (op
) == SUBREG
1443 && REG_P (SUBREG_REG (op
))
1444 && REG_POINTER (SUBREG_REG (op
))
1445 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1446 return convert_memory_address (Pmode
, op
);
1451 /* Check for a zero extension of a subreg of a promoted
1452 variable, where the promotion is zero-extended, and the
1453 target mode is the same as the variable's promotion. */
1454 if (GET_CODE (op
) == SUBREG
1455 && SUBREG_PROMOTED_VAR_P (op
)
1456 && SUBREG_PROMOTED_UNSIGNED_P (op
)
1457 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1459 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1464 /* Extending a widening multiplication should be canonicalized to
1465 a wider widening multiplication. */
1466 if (GET_CODE (op
) == MULT
)
1468 rtx lhs
= XEXP (op
, 0);
1469 rtx rhs
= XEXP (op
, 1);
1470 enum rtx_code lcode
= GET_CODE (lhs
);
1471 enum rtx_code rcode
= GET_CODE (rhs
);
1473 /* Widening multiplies usually extend both operands, but sometimes
1474 they use a shift to extract a portion of a register. */
1475 if ((lcode
== ZERO_EXTEND
1476 || (lcode
== LSHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1477 && (rcode
== ZERO_EXTEND
1478 || (rcode
== LSHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1480 machine_mode lmode
= GET_MODE (lhs
);
1481 machine_mode rmode
= GET_MODE (rhs
);
1484 if (lcode
== LSHIFTRT
)
1485 /* Number of bits not shifted off the end. */
1486 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1487 else /* lcode == ZERO_EXTEND */
1488 /* Size of inner mode. */
1489 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1491 if (rcode
== LSHIFTRT
)
1492 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1493 else /* rcode == ZERO_EXTEND */
1494 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1496 /* We can only widen multiplies if the result is mathematiclly
1497 equivalent. I.e. if overflow was impossible. */
1498 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1499 return simplify_gen_binary
1501 simplify_gen_unary (ZERO_EXTEND
, mode
, lhs
, lmode
),
1502 simplify_gen_unary (ZERO_EXTEND
, mode
, rhs
, rmode
));
1506 /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1507 if (GET_CODE (op
) == ZERO_EXTEND
)
1508 return simplify_gen_unary (ZERO_EXTEND
, mode
, XEXP (op
, 0),
1509 GET_MODE (XEXP (op
, 0)));
1511 /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1512 is (zero_extend:M (subreg:O <X>)) if there is mode with
1513 GET_MODE_PRECISION (N) - I bits. */
1514 if (GET_CODE (op
) == LSHIFTRT
1515 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1516 && CONST_INT_P (XEXP (op
, 1))
1517 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1518 && GET_MODE_PRECISION (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1521 = mode_for_size (GET_MODE_PRECISION (GET_MODE (op
))
1522 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1523 if (tmode
!= BLKmode
)
1526 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1528 return simplify_gen_unary (ZERO_EXTEND
, mode
, inner
, tmode
);
1532 /* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
1533 (zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
1535 (zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
1536 (and:SI (reg:SI) (const_int 63)). */
1537 if (GET_CODE (op
) == SUBREG
1538 && GET_MODE_PRECISION (GET_MODE (op
))
1539 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1540 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1541 <= HOST_BITS_PER_WIDE_INT
1542 && GET_MODE_PRECISION (mode
)
1543 >= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1544 && subreg_lowpart_p (op
)
1545 && (nonzero_bits (SUBREG_REG (op
), GET_MODE (SUBREG_REG (op
)))
1546 & ~GET_MODE_MASK (GET_MODE (op
))) == 0)
1548 if (GET_MODE_PRECISION (mode
)
1549 == GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
))))
1550 return SUBREG_REG (op
);
1551 return simplify_gen_unary (ZERO_EXTEND
, mode
, SUBREG_REG (op
),
1552 GET_MODE (SUBREG_REG (op
)));
1555 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1556 /* As we do not know which address space the pointer is referring to,
1557 we can do this only if the target does not support different pointer
1558 or address modes depending on the address space. */
1559 if (target_default_pointer_address_modes_p ()
1560 && POINTERS_EXTEND_UNSIGNED
> 0
1561 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1563 || (GET_CODE (op
) == SUBREG
1564 && REG_P (SUBREG_REG (op
))
1565 && REG_POINTER (SUBREG_REG (op
))
1566 && GET_MODE (SUBREG_REG (op
)) == Pmode
)))
1567 return convert_memory_address (Pmode
, op
);
1578 /* Try to compute the value of a unary operation CODE whose output mode is to
1579 be MODE with input operand OP whose mode was originally OP_MODE.
1580 Return zero if the value cannot be computed. */
1582 simplify_const_unary_operation (enum rtx_code code
, machine_mode mode
,
1583 rtx op
, machine_mode op_mode
)
1585 unsigned int width
= GET_MODE_PRECISION (mode
);
1587 if (code
== VEC_DUPLICATE
)
1589 gcc_assert (VECTOR_MODE_P (mode
));
1590 if (GET_MODE (op
) != VOIDmode
)
1592 if (!VECTOR_MODE_P (GET_MODE (op
)))
1593 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE (op
));
1595 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE_INNER
1598 if (CONST_SCALAR_INT_P (op
) || CONST_DOUBLE_AS_FLOAT_P (op
)
1599 || GET_CODE (op
) == CONST_VECTOR
)
1601 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
1602 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1603 rtvec v
= rtvec_alloc (n_elts
);
1606 if (GET_CODE (op
) != CONST_VECTOR
)
1607 for (i
= 0; i
< n_elts
; i
++)
1608 RTVEC_ELT (v
, i
) = op
;
1611 machine_mode inmode
= GET_MODE (op
);
1612 int in_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (inmode
));
1613 unsigned in_n_elts
= (GET_MODE_SIZE (inmode
) / in_elt_size
);
1615 gcc_assert (in_n_elts
< n_elts
);
1616 gcc_assert ((n_elts
% in_n_elts
) == 0);
1617 for (i
= 0; i
< n_elts
; i
++)
1618 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (op
, i
% in_n_elts
);
1620 return gen_rtx_CONST_VECTOR (mode
, v
);
1624 if (VECTOR_MODE_P (mode
) && GET_CODE (op
) == CONST_VECTOR
)
1626 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
1627 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1628 machine_mode opmode
= GET_MODE (op
);
1629 int op_elt_size
= GET_MODE_SIZE (GET_MODE_INNER (opmode
));
1630 unsigned op_n_elts
= (GET_MODE_SIZE (opmode
) / op_elt_size
);
1631 rtvec v
= rtvec_alloc (n_elts
);
1634 gcc_assert (op_n_elts
== n_elts
);
1635 for (i
= 0; i
< n_elts
; i
++)
1637 rtx x
= simplify_unary_operation (code
, GET_MODE_INNER (mode
),
1638 CONST_VECTOR_ELT (op
, i
),
1639 GET_MODE_INNER (opmode
));
1642 RTVEC_ELT (v
, i
) = x
;
1644 return gen_rtx_CONST_VECTOR (mode
, v
);
1647 /* The order of these tests is critical so that, for example, we don't
1648 check the wrong mode (input vs. output) for a conversion operation,
1649 such as FIX. At some point, this should be simplified. */
1651 if (code
== FLOAT
&& CONST_SCALAR_INT_P (op
))
1655 if (op_mode
== VOIDmode
)
1657 /* CONST_INT have VOIDmode as the mode. We assume that all
1658 the bits of the constant are significant, though, this is
1659 a dangerous assumption as many times CONST_INTs are
1660 created and used with garbage in the bits outside of the
1661 precision of the implied mode of the const_int. */
1662 op_mode
= MAX_MODE_INT
;
1665 real_from_integer (&d
, mode
, std::make_pair (op
, op_mode
), SIGNED
);
1666 d
= real_value_truncate (mode
, d
);
1667 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1669 else if (code
== UNSIGNED_FLOAT
&& CONST_SCALAR_INT_P (op
))
1673 if (op_mode
== VOIDmode
)
1675 /* CONST_INT have VOIDmode as the mode. We assume that all
1676 the bits of the constant are significant, though, this is
1677 a dangerous assumption as many times CONST_INTs are
1678 created and used with garbage in the bits outside of the
1679 precision of the implied mode of the const_int. */
1680 op_mode
= MAX_MODE_INT
;
1683 real_from_integer (&d
, mode
, std::make_pair (op
, op_mode
), UNSIGNED
);
1684 d
= real_value_truncate (mode
, d
);
1685 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1688 if (CONST_SCALAR_INT_P (op
) && width
> 0)
1691 machine_mode imode
= op_mode
== VOIDmode
? mode
: op_mode
;
1692 rtx_mode_t op0
= std::make_pair (op
, imode
);
1695 #if TARGET_SUPPORTS_WIDE_INT == 0
1696 /* This assert keeps the simplification from producing a result
1697 that cannot be represented in a CONST_DOUBLE but a lot of
1698 upstream callers expect that this function never fails to
1699 simplify something and so you if you added this to the test
1700 above the code would die later anyway. If this assert
1701 happens, you just need to make the port support wide int. */
1702 gcc_assert (width
<= HOST_BITS_PER_DOUBLE_INT
);
1708 result
= wi::bit_not (op0
);
1712 result
= wi::neg (op0
);
1716 result
= wi::abs (op0
);
1720 result
= wi::shwi (wi::ffs (op0
), mode
);
1724 if (wi::ne_p (op0
, 0))
1725 int_value
= wi::clz (op0
);
1726 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode
, int_value
))
1727 int_value
= GET_MODE_PRECISION (mode
);
1728 result
= wi::shwi (int_value
, mode
);
1732 result
= wi::shwi (wi::clrsb (op0
), mode
);
1736 if (wi::ne_p (op0
, 0))
1737 int_value
= wi::ctz (op0
);
1738 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, int_value
))
1739 int_value
= GET_MODE_PRECISION (mode
);
1740 result
= wi::shwi (int_value
, mode
);
1744 result
= wi::shwi (wi::popcount (op0
), mode
);
1748 result
= wi::shwi (wi::parity (op0
), mode
);
1752 result
= wide_int (op0
).bswap ();
1757 result
= wide_int::from (op0
, width
, UNSIGNED
);
1761 result
= wide_int::from (op0
, width
, SIGNED
);
1769 return immed_wide_int_const (result
, mode
);
1772 else if (CONST_DOUBLE_AS_FLOAT_P (op
)
1773 && SCALAR_FLOAT_MODE_P (mode
)
1774 && SCALAR_FLOAT_MODE_P (GET_MODE (op
)))
1777 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1784 d
= real_value_abs (&d
);
1787 d
= real_value_negate (&d
);
1789 case FLOAT_TRUNCATE
:
1790 d
= real_value_truncate (mode
, d
);
1793 /* All this does is change the mode, unless changing
1795 if (GET_MODE_CLASS (mode
) != GET_MODE_CLASS (GET_MODE (op
)))
1796 real_convert (&d
, mode
, &d
);
1799 real_arithmetic (&d
, FIX_TRUNC_EXPR
, &d
, NULL
);
1806 real_to_target (tmp
, &d
, GET_MODE (op
));
1807 for (i
= 0; i
< 4; i
++)
1809 real_from_target (&d
, tmp
, mode
);
1815 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
1817 else if (CONST_DOUBLE_AS_FLOAT_P (op
)
1818 && SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1819 && GET_MODE_CLASS (mode
) == MODE_INT
1822 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1823 operators are intentionally left unspecified (to ease implementation
1824 by target backends), for consistency, this routine implements the
1825 same semantics for constant folding as used by the middle-end. */
1827 /* This was formerly used only for non-IEEE float.
1828 eggert@twinsun.com says it is safe for IEEE also. */
1829 REAL_VALUE_TYPE x
, t
;
1830 REAL_VALUE_FROM_CONST_DOUBLE (x
, op
);
1831 wide_int wmax
, wmin
;
1832 /* This is part of the abi to real_to_integer, but we check
1833 things before making this call. */
1839 if (REAL_VALUE_ISNAN (x
))
1842 /* Test against the signed upper bound. */
1843 wmax
= wi::max_value (width
, SIGNED
);
1844 real_from_integer (&t
, VOIDmode
, wmax
, SIGNED
);
1845 if (REAL_VALUES_LESS (t
, x
))
1846 return immed_wide_int_const (wmax
, mode
);
1848 /* Test against the signed lower bound. */
1849 wmin
= wi::min_value (width
, SIGNED
);
1850 real_from_integer (&t
, VOIDmode
, wmin
, SIGNED
);
1851 if (REAL_VALUES_LESS (x
, t
))
1852 return immed_wide_int_const (wmin
, mode
);
1854 return immed_wide_int_const (real_to_integer (&x
, &fail
, width
), mode
);
1858 if (REAL_VALUE_ISNAN (x
) || REAL_VALUE_NEGATIVE (x
))
1861 /* Test against the unsigned upper bound. */
1862 wmax
= wi::max_value (width
, UNSIGNED
);
1863 real_from_integer (&t
, VOIDmode
, wmax
, UNSIGNED
);
1864 if (REAL_VALUES_LESS (t
, x
))
1865 return immed_wide_int_const (wmax
, mode
);
1867 return immed_wide_int_const (real_to_integer (&x
, &fail
, width
),
1879 /* Subroutine of simplify_binary_operation to simplify a binary operation
1880 CODE that can commute with byte swapping, with result mode MODE and
1881 operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
1882 Return zero if no simplification or canonicalization is possible. */
1885 simplify_byte_swapping_operation (enum rtx_code code
, machine_mode mode
,
1890 /* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
1891 if (GET_CODE (op0
) == BSWAP
&& CONST_SCALAR_INT_P (op1
))
1893 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0),
1894 simplify_gen_unary (BSWAP
, mode
, op1
, mode
));
1895 return simplify_gen_unary (BSWAP
, mode
, tem
, mode
);
1898 /* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
1899 if (GET_CODE (op0
) == BSWAP
&& GET_CODE (op1
) == BSWAP
)
1901 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
1902 return simplify_gen_unary (BSWAP
, mode
, tem
, mode
);
1908 /* Subroutine of simplify_binary_operation to simplify a commutative,
1909 associative binary operation CODE with result mode MODE, operating
1910 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1911 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1912 canonicalization is possible. */
1915 simplify_associative_operation (enum rtx_code code
, machine_mode mode
,
1920 /* Linearize the operator to the left. */
1921 if (GET_CODE (op1
) == code
)
1923 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1924 if (GET_CODE (op0
) == code
)
1926 tem
= simplify_gen_binary (code
, mode
, op0
, XEXP (op1
, 0));
1927 return simplify_gen_binary (code
, mode
, tem
, XEXP (op1
, 1));
1930 /* "a op (b op c)" becomes "(b op c) op a". */
1931 if (! swap_commutative_operands_p (op1
, op0
))
1932 return simplify_gen_binary (code
, mode
, op1
, op0
);
1934 std::swap (op0
, op1
);
1937 if (GET_CODE (op0
) == code
)
1939 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1940 if (swap_commutative_operands_p (XEXP (op0
, 1), op1
))
1942 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), op1
);
1943 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1946 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1947 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 1), op1
);
1949 return simplify_gen_binary (code
, mode
, XEXP (op0
, 0), tem
);
1951 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1952 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 0), op1
);
1954 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
1961 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1962 and OP1. Return 0 if no simplification is possible.
1964 Don't use this for relational operations such as EQ or LT.
1965 Use simplify_relational_operation instead. */
1967 simplify_binary_operation (enum rtx_code code
, machine_mode mode
,
1970 rtx trueop0
, trueop1
;
1973 /* Relational operations don't work here. We must know the mode
1974 of the operands in order to do the comparison correctly.
1975 Assuming a full word can give incorrect results.
1976 Consider comparing 128 with -128 in QImode. */
1977 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMPARE
);
1978 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
);
1980 /* Make sure the constant is second. */
1981 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
1982 && swap_commutative_operands_p (op0
, op1
))
1983 std::swap (op0
, op1
);
1985 trueop0
= avoid_constant_pool_reference (op0
);
1986 trueop1
= avoid_constant_pool_reference (op1
);
1988 tem
= simplify_const_binary_operation (code
, mode
, trueop0
, trueop1
);
1991 return simplify_binary_operation_1 (code
, mode
, op0
, op1
, trueop0
, trueop1
);
1994 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1995 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1996 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1997 actual constants. */
2000 simplify_binary_operation_1 (enum rtx_code code
, machine_mode mode
,
2001 rtx op0
, rtx op1
, rtx trueop0
, rtx trueop1
)
2003 rtx tem
, reversed
, opleft
, opright
;
2005 unsigned int width
= GET_MODE_PRECISION (mode
);
2007 /* Even if we can't compute a constant result,
2008 there are some cases worth simplifying. */
2013 /* Maybe simplify x + 0 to x. The two expressions are equivalent
2014 when x is NaN, infinite, or finite and nonzero. They aren't
2015 when x is -0 and the rounding mode is not towards -infinity,
2016 since (-0) + 0 is then 0. */
2017 if (!HONOR_SIGNED_ZEROS (mode
) && trueop1
== CONST0_RTX (mode
))
2020 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
2021 transformations are safe even for IEEE. */
2022 if (GET_CODE (op0
) == NEG
)
2023 return simplify_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
2024 else if (GET_CODE (op1
) == NEG
)
2025 return simplify_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
2027 /* (~a) + 1 -> -a */
2028 if (INTEGRAL_MODE_P (mode
)
2029 && GET_CODE (op0
) == NOT
2030 && trueop1
== const1_rtx
)
2031 return simplify_gen_unary (NEG
, mode
, XEXP (op0
, 0), mode
);
2033 /* Handle both-operands-constant cases. We can only add
2034 CONST_INTs to constants since the sum of relocatable symbols
2035 can't be handled by most assemblers. Don't add CONST_INT
2036 to CONST_INT since overflow won't be computed properly if wider
2037 than HOST_BITS_PER_WIDE_INT. */
2039 if ((GET_CODE (op0
) == CONST
2040 || GET_CODE (op0
) == SYMBOL_REF
2041 || GET_CODE (op0
) == LABEL_REF
)
2042 && CONST_INT_P (op1
))
2043 return plus_constant (mode
, op0
, INTVAL (op1
));
2044 else if ((GET_CODE (op1
) == CONST
2045 || GET_CODE (op1
) == SYMBOL_REF
2046 || GET_CODE (op1
) == LABEL_REF
)
2047 && CONST_INT_P (op0
))
2048 return plus_constant (mode
, op1
, INTVAL (op0
));
2050 /* See if this is something like X * C - X or vice versa or
2051 if the multiplication is written as a shift. If so, we can
2052 distribute and make a new multiply, shift, or maybe just
2053 have X (if C is 2 in the example above). But don't make
2054 something more expensive than we had before. */
2056 if (SCALAR_INT_MODE_P (mode
))
2058 rtx lhs
= op0
, rhs
= op1
;
2060 wide_int coeff0
= wi::one (GET_MODE_PRECISION (mode
));
2061 wide_int coeff1
= wi::one (GET_MODE_PRECISION (mode
));
2063 if (GET_CODE (lhs
) == NEG
)
2065 coeff0
= wi::minus_one (GET_MODE_PRECISION (mode
));
2066 lhs
= XEXP (lhs
, 0);
2068 else if (GET_CODE (lhs
) == MULT
2069 && CONST_SCALAR_INT_P (XEXP (lhs
, 1)))
2071 coeff0
= std::make_pair (XEXP (lhs
, 1), mode
);
2072 lhs
= XEXP (lhs
, 0);
2074 else if (GET_CODE (lhs
) == ASHIFT
2075 && CONST_INT_P (XEXP (lhs
, 1))
2076 && INTVAL (XEXP (lhs
, 1)) >= 0
2077 && INTVAL (XEXP (lhs
, 1)) < GET_MODE_PRECISION (mode
))
2079 coeff0
= wi::set_bit_in_zero (INTVAL (XEXP (lhs
, 1)),
2080 GET_MODE_PRECISION (mode
));
2081 lhs
= XEXP (lhs
, 0);
2084 if (GET_CODE (rhs
) == NEG
)
2086 coeff1
= wi::minus_one (GET_MODE_PRECISION (mode
));
2087 rhs
= XEXP (rhs
, 0);
2089 else if (GET_CODE (rhs
) == MULT
2090 && CONST_INT_P (XEXP (rhs
, 1)))
2092 coeff1
= std::make_pair (XEXP (rhs
, 1), mode
);
2093 rhs
= XEXP (rhs
, 0);
2095 else if (GET_CODE (rhs
) == ASHIFT
2096 && CONST_INT_P (XEXP (rhs
, 1))
2097 && INTVAL (XEXP (rhs
, 1)) >= 0
2098 && INTVAL (XEXP (rhs
, 1)) < GET_MODE_PRECISION (mode
))
2100 coeff1
= wi::set_bit_in_zero (INTVAL (XEXP (rhs
, 1)),
2101 GET_MODE_PRECISION (mode
));
2102 rhs
= XEXP (rhs
, 0);
2105 if (rtx_equal_p (lhs
, rhs
))
2107 rtx orig
= gen_rtx_PLUS (mode
, op0
, op1
);
2109 bool speed
= optimize_function_for_speed_p (cfun
);
2111 coeff
= immed_wide_int_const (coeff0
+ coeff1
, mode
);
2113 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2114 return (set_src_cost (tem
, mode
, speed
)
2115 <= set_src_cost (orig
, mode
, speed
) ? tem
: 0);
2119 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
2120 if (CONST_SCALAR_INT_P (op1
)
2121 && GET_CODE (op0
) == XOR
2122 && CONST_SCALAR_INT_P (XEXP (op0
, 1))
2123 && mode_signbit_p (mode
, op1
))
2124 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2125 simplify_gen_binary (XOR
, mode
, op1
,
2128 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
2129 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2130 && GET_CODE (op0
) == MULT
2131 && GET_CODE (XEXP (op0
, 0)) == NEG
)
2135 in1
= XEXP (XEXP (op0
, 0), 0);
2136 in2
= XEXP (op0
, 1);
2137 return simplify_gen_binary (MINUS
, mode
, op1
,
2138 simplify_gen_binary (MULT
, mode
,
2142 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
2143 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
2145 if (COMPARISON_P (op0
)
2146 && ((STORE_FLAG_VALUE
== -1 && trueop1
== const1_rtx
)
2147 || (STORE_FLAG_VALUE
== 1 && trueop1
== constm1_rtx
))
2148 && (reversed
= reversed_comparison (op0
, mode
)))
2150 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
2152 /* If one of the operands is a PLUS or a MINUS, see if we can
2153 simplify this by the associative law.
2154 Don't use the associative law for floating point.
2155 The inaccuracy makes it nonassociative,
2156 and subtle programs can break if operations are associated. */
2158 if (INTEGRAL_MODE_P (mode
)
2159 && (plus_minus_operand_p (op0
)
2160 || plus_minus_operand_p (op1
))
2161 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2164 /* Reassociate floating point addition only when the user
2165 specifies associative math operations. */
2166 if (FLOAT_MODE_P (mode
)
2167 && flag_associative_math
)
2169 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2176 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
2177 if (((GET_CODE (op0
) == GT
&& GET_CODE (op1
) == LT
)
2178 || (GET_CODE (op0
) == GTU
&& GET_CODE (op1
) == LTU
))
2179 && XEXP (op0
, 1) == const0_rtx
&& XEXP (op1
, 1) == const0_rtx
)
2181 rtx xop00
= XEXP (op0
, 0);
2182 rtx xop10
= XEXP (op1
, 0);
2184 if (GET_CODE (xop00
) == CC0
&& GET_CODE (xop10
) == CC0
)
2187 if (REG_P (xop00
) && REG_P (xop10
)
2188 && GET_MODE (xop00
) == GET_MODE (xop10
)
2189 && REGNO (xop00
) == REGNO (xop10
)
2190 && GET_MODE_CLASS (GET_MODE (xop00
)) == MODE_CC
2191 && GET_MODE_CLASS (GET_MODE (xop10
)) == MODE_CC
)
2197 /* We can't assume x-x is 0 even with non-IEEE floating point,
2198 but since it is zero except in very strange circumstances, we
2199 will treat it as zero with -ffinite-math-only. */
2200 if (rtx_equal_p (trueop0
, trueop1
)
2201 && ! side_effects_p (op0
)
2202 && (!FLOAT_MODE_P (mode
) || !HONOR_NANS (mode
)))
2203 return CONST0_RTX (mode
);
2205 /* Change subtraction from zero into negation. (0 - x) is the
2206 same as -x when x is NaN, infinite, or finite and nonzero.
2207 But if the mode has signed zeros, and does not round towards
2208 -infinity, then 0 - 0 is 0, not -0. */
2209 if (!HONOR_SIGNED_ZEROS (mode
) && trueop0
== CONST0_RTX (mode
))
2210 return simplify_gen_unary (NEG
, mode
, op1
, mode
);
2212 /* (-1 - a) is ~a. */
2213 if (trueop0
== constm1_rtx
)
2214 return simplify_gen_unary (NOT
, mode
, op1
, mode
);
2216 /* Subtracting 0 has no effect unless the mode has signed zeros
2217 and supports rounding towards -infinity. In such a case,
2219 if (!(HONOR_SIGNED_ZEROS (mode
)
2220 && HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
2221 && trueop1
== CONST0_RTX (mode
))
2224 /* See if this is something like X * C - X or vice versa or
2225 if the multiplication is written as a shift. If so, we can
2226 distribute and make a new multiply, shift, or maybe just
2227 have X (if C is 2 in the example above). But don't make
2228 something more expensive than we had before. */
2230 if (SCALAR_INT_MODE_P (mode
))
2232 rtx lhs
= op0
, rhs
= op1
;
2234 wide_int coeff0
= wi::one (GET_MODE_PRECISION (mode
));
2235 wide_int negcoeff1
= wi::minus_one (GET_MODE_PRECISION (mode
));
2237 if (GET_CODE (lhs
) == NEG
)
2239 coeff0
= wi::minus_one (GET_MODE_PRECISION (mode
));
2240 lhs
= XEXP (lhs
, 0);
2242 else if (GET_CODE (lhs
) == MULT
2243 && CONST_SCALAR_INT_P (XEXP (lhs
, 1)))
2245 coeff0
= std::make_pair (XEXP (lhs
, 1), mode
);
2246 lhs
= XEXP (lhs
, 0);
2248 else if (GET_CODE (lhs
) == ASHIFT
2249 && CONST_INT_P (XEXP (lhs
, 1))
2250 && INTVAL (XEXP (lhs
, 1)) >= 0
2251 && INTVAL (XEXP (lhs
, 1)) < GET_MODE_PRECISION (mode
))
2253 coeff0
= wi::set_bit_in_zero (INTVAL (XEXP (lhs
, 1)),
2254 GET_MODE_PRECISION (mode
));
2255 lhs
= XEXP (lhs
, 0);
2258 if (GET_CODE (rhs
) == NEG
)
2260 negcoeff1
= wi::one (GET_MODE_PRECISION (mode
));
2261 rhs
= XEXP (rhs
, 0);
2263 else if (GET_CODE (rhs
) == MULT
2264 && CONST_INT_P (XEXP (rhs
, 1)))
2266 negcoeff1
= wi::neg (std::make_pair (XEXP (rhs
, 1), mode
));
2267 rhs
= XEXP (rhs
, 0);
2269 else if (GET_CODE (rhs
) == ASHIFT
2270 && CONST_INT_P (XEXP (rhs
, 1))
2271 && INTVAL (XEXP (rhs
, 1)) >= 0
2272 && INTVAL (XEXP (rhs
, 1)) < GET_MODE_PRECISION (mode
))
2274 negcoeff1
= wi::set_bit_in_zero (INTVAL (XEXP (rhs
, 1)),
2275 GET_MODE_PRECISION (mode
));
2276 negcoeff1
= -negcoeff1
;
2277 rhs
= XEXP (rhs
, 0);
2280 if (rtx_equal_p (lhs
, rhs
))
2282 rtx orig
= gen_rtx_MINUS (mode
, op0
, op1
);
2284 bool speed
= optimize_function_for_speed_p (cfun
);
2286 coeff
= immed_wide_int_const (coeff0
+ negcoeff1
, mode
);
2288 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2289 return (set_src_cost (tem
, mode
, speed
)
2290 <= set_src_cost (orig
, mode
, speed
) ? tem
: 0);
2294 /* (a - (-b)) -> (a + b). True even for IEEE. */
2295 if (GET_CODE (op1
) == NEG
)
2296 return simplify_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
2298 /* (-x - c) may be simplified as (-c - x). */
2299 if (GET_CODE (op0
) == NEG
2300 && (CONST_SCALAR_INT_P (op1
) || CONST_DOUBLE_AS_FLOAT_P (op1
)))
2302 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2304 return simplify_gen_binary (MINUS
, mode
, tem
, XEXP (op0
, 0));
2307 /* Don't let a relocatable value get a negative coeff. */
2308 if (CONST_INT_P (op1
) && GET_MODE (op0
) != VOIDmode
)
2309 return simplify_gen_binary (PLUS
, mode
,
2311 neg_const_int (mode
, op1
));
2313 /* (x - (x & y)) -> (x & ~y) */
2314 if (INTEGRAL_MODE_P (mode
) && GET_CODE (op1
) == AND
)
2316 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
2318 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 1),
2319 GET_MODE (XEXP (op1
, 1)));
2320 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2322 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
2324 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 0),
2325 GET_MODE (XEXP (op1
, 0)));
2326 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2330 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2331 by reversing the comparison code if valid. */
2332 if (STORE_FLAG_VALUE
== 1
2333 && trueop0
== const1_rtx
2334 && COMPARISON_P (op1
)
2335 && (reversed
= reversed_comparison (op1
, mode
)))
2338 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2339 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2340 && GET_CODE (op1
) == MULT
2341 && GET_CODE (XEXP (op1
, 0)) == NEG
)
2345 in1
= XEXP (XEXP (op1
, 0), 0);
2346 in2
= XEXP (op1
, 1);
2347 return simplify_gen_binary (PLUS
, mode
,
2348 simplify_gen_binary (MULT
, mode
,
2353 /* Canonicalize (minus (neg A) (mult B C)) to
2354 (minus (mult (neg B) C) A). */
2355 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2356 && GET_CODE (op1
) == MULT
2357 && GET_CODE (op0
) == NEG
)
2361 in1
= simplify_gen_unary (NEG
, mode
, XEXP (op1
, 0), mode
);
2362 in2
= XEXP (op1
, 1);
2363 return simplify_gen_binary (MINUS
, mode
,
2364 simplify_gen_binary (MULT
, mode
,
2369 /* If one of the operands is a PLUS or a MINUS, see if we can
2370 simplify this by the associative law. This will, for example,
2371 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2372 Don't use the associative law for floating point.
2373 The inaccuracy makes it nonassociative,
2374 and subtle programs can break if operations are associated. */
2376 if (INTEGRAL_MODE_P (mode
)
2377 && (plus_minus_operand_p (op0
)
2378 || plus_minus_operand_p (op1
))
2379 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2384 if (trueop1
== constm1_rtx
)
2385 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2387 if (GET_CODE (op0
) == NEG
)
2389 rtx temp
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2390 /* If op1 is a MULT as well and simplify_unary_operation
2391 just moved the NEG to the second operand, simplify_gen_binary
2392 below could through simplify_associative_operation move
2393 the NEG around again and recurse endlessly. */
2395 && GET_CODE (op1
) == MULT
2396 && GET_CODE (temp
) == MULT
2397 && XEXP (op1
, 0) == XEXP (temp
, 0)
2398 && GET_CODE (XEXP (temp
, 1)) == NEG
2399 && XEXP (op1
, 1) == XEXP (XEXP (temp
, 1), 0))
2402 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), temp
);
2404 if (GET_CODE (op1
) == NEG
)
2406 rtx temp
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
2407 /* If op0 is a MULT as well and simplify_unary_operation
2408 just moved the NEG to the second operand, simplify_gen_binary
2409 below could through simplify_associative_operation move
2410 the NEG around again and recurse endlessly. */
2412 && GET_CODE (op0
) == MULT
2413 && GET_CODE (temp
) == MULT
2414 && XEXP (op0
, 0) == XEXP (temp
, 0)
2415 && GET_CODE (XEXP (temp
, 1)) == NEG
2416 && XEXP (op0
, 1) == XEXP (XEXP (temp
, 1), 0))
2419 return simplify_gen_binary (MULT
, mode
, temp
, XEXP (op1
, 0));
2422 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2423 x is NaN, since x * 0 is then also NaN. Nor is it valid
2424 when the mode has signed zeros, since multiplying a negative
2425 number by 0 will give -0, not 0. */
2426 if (!HONOR_NANS (mode
)
2427 && !HONOR_SIGNED_ZEROS (mode
)
2428 && trueop1
== CONST0_RTX (mode
)
2429 && ! side_effects_p (op0
))
2432 /* In IEEE floating point, x*1 is not equivalent to x for
2434 if (!HONOR_SNANS (mode
)
2435 && trueop1
== CONST1_RTX (mode
))
2438 /* Convert multiply by constant power of two into shift. */
2439 if (CONST_SCALAR_INT_P (trueop1
))
2441 val
= wi::exact_log2 (std::make_pair (trueop1
, mode
));
2443 return simplify_gen_binary (ASHIFT
, mode
, op0
, GEN_INT (val
));
2446 /* x*2 is x+x and x*(-1) is -x */
2447 if (CONST_DOUBLE_AS_FLOAT_P (trueop1
)
2448 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1
))
2449 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1
))
2450 && GET_MODE (op0
) == mode
)
2453 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
2455 if (REAL_VALUES_EQUAL (d
, dconst2
))
2456 return simplify_gen_binary (PLUS
, mode
, op0
, copy_rtx (op0
));
2458 if (!HONOR_SNANS (mode
)
2459 && REAL_VALUES_EQUAL (d
, dconstm1
))
2460 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2463 /* Optimize -x * -x as x * x. */
2464 if (FLOAT_MODE_P (mode
)
2465 && GET_CODE (op0
) == NEG
2466 && GET_CODE (op1
) == NEG
2467 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2468 && !side_effects_p (XEXP (op0
, 0)))
2469 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2471 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2472 if (SCALAR_FLOAT_MODE_P (mode
)
2473 && GET_CODE (op0
) == ABS
2474 && GET_CODE (op1
) == ABS
2475 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2476 && !side_effects_p (XEXP (op0
, 0)))
2477 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2479 /* Reassociate multiplication, but for floating point MULTs
2480 only when the user specifies unsafe math optimizations. */
2481 if (! FLOAT_MODE_P (mode
)
2482 || flag_unsafe_math_optimizations
)
2484 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2491 if (trueop1
== CONST0_RTX (mode
))
2493 if (INTEGRAL_MODE_P (mode
)
2494 && trueop1
== CONSTM1_RTX (mode
)
2495 && !side_effects_p (op0
))
2497 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2499 /* A | (~A) -> -1 */
2500 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2501 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2502 && ! side_effects_p (op0
)
2503 && SCALAR_INT_MODE_P (mode
))
2506 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2507 if (CONST_INT_P (op1
)
2508 && HWI_COMPUTABLE_MODE_P (mode
)
2509 && (nonzero_bits (op0
, mode
) & ~UINTVAL (op1
)) == 0
2510 && !side_effects_p (op0
))
2513 /* Canonicalize (X & C1) | C2. */
2514 if (GET_CODE (op0
) == AND
2515 && CONST_INT_P (trueop1
)
2516 && CONST_INT_P (XEXP (op0
, 1)))
2518 HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
2519 HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
2520 HOST_WIDE_INT c2
= INTVAL (trueop1
);
2522 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2524 && !side_effects_p (XEXP (op0
, 0)))
2527 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2528 if (((c1
|c2
) & mask
) == mask
)
2529 return simplify_gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
);
2531 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2532 if (((c1
& ~c2
) & mask
) != (c1
& mask
))
2534 tem
= simplify_gen_binary (AND
, mode
, XEXP (op0
, 0),
2535 gen_int_mode (c1
& ~c2
, mode
));
2536 return simplify_gen_binary (IOR
, mode
, tem
, op1
);
2540 /* Convert (A & B) | A to A. */
2541 if (GET_CODE (op0
) == AND
2542 && (rtx_equal_p (XEXP (op0
, 0), op1
)
2543 || rtx_equal_p (XEXP (op0
, 1), op1
))
2544 && ! side_effects_p (XEXP (op0
, 0))
2545 && ! side_effects_p (XEXP (op0
, 1)))
2548 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2549 mode size to (rotate A CX). */
2551 if (GET_CODE (op1
) == ASHIFT
2552 || GET_CODE (op1
) == SUBREG
)
2563 if (GET_CODE (opleft
) == ASHIFT
&& GET_CODE (opright
) == LSHIFTRT
2564 && rtx_equal_p (XEXP (opleft
, 0), XEXP (opright
, 0))
2565 && CONST_INT_P (XEXP (opleft
, 1))
2566 && CONST_INT_P (XEXP (opright
, 1))
2567 && (INTVAL (XEXP (opleft
, 1)) + INTVAL (XEXP (opright
, 1))
2568 == GET_MODE_PRECISION (mode
)))
2569 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0), XEXP (opleft
, 1));
2571 /* Same, but for ashift that has been "simplified" to a wider mode
2572 by simplify_shift_const. */
2574 if (GET_CODE (opleft
) == SUBREG
2575 && GET_CODE (SUBREG_REG (opleft
)) == ASHIFT
2576 && GET_CODE (opright
) == LSHIFTRT
2577 && GET_CODE (XEXP (opright
, 0)) == SUBREG
2578 && GET_MODE (opleft
) == GET_MODE (XEXP (opright
, 0))
2579 && SUBREG_BYTE (opleft
) == SUBREG_BYTE (XEXP (opright
, 0))
2580 && (GET_MODE_SIZE (GET_MODE (opleft
))
2581 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft
))))
2582 && rtx_equal_p (XEXP (SUBREG_REG (opleft
), 0),
2583 SUBREG_REG (XEXP (opright
, 0)))
2584 && CONST_INT_P (XEXP (SUBREG_REG (opleft
), 1))
2585 && CONST_INT_P (XEXP (opright
, 1))
2586 && (INTVAL (XEXP (SUBREG_REG (opleft
), 1)) + INTVAL (XEXP (opright
, 1))
2587 == GET_MODE_PRECISION (mode
)))
2588 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0),
2589 XEXP (SUBREG_REG (opleft
), 1));
2591 /* If we have (ior (and (X C1) C2)), simplify this by making
2592 C1 as small as possible if C1 actually changes. */
2593 if (CONST_INT_P (op1
)
2594 && (HWI_COMPUTABLE_MODE_P (mode
)
2595 || INTVAL (op1
) > 0)
2596 && GET_CODE (op0
) == AND
2597 && CONST_INT_P (XEXP (op0
, 1))
2598 && CONST_INT_P (op1
)
2599 && (UINTVAL (XEXP (op0
, 1)) & UINTVAL (op1
)) != 0)
2601 rtx tmp
= simplify_gen_binary (AND
, mode
, XEXP (op0
, 0),
2602 gen_int_mode (UINTVAL (XEXP (op0
, 1))
2605 return simplify_gen_binary (IOR
, mode
, tmp
, op1
);
2608 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2609 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2610 the PLUS does not affect any of the bits in OP1: then we can do
2611 the IOR as a PLUS and we can associate. This is valid if OP1
2612 can be safely shifted left C bits. */
2613 if (CONST_INT_P (trueop1
) && GET_CODE (op0
) == ASHIFTRT
2614 && GET_CODE (XEXP (op0
, 0)) == PLUS
2615 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
2616 && CONST_INT_P (XEXP (op0
, 1))
2617 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
2619 int count
= INTVAL (XEXP (op0
, 1));
2620 HOST_WIDE_INT mask
= INTVAL (trueop1
) << count
;
2622 if (mask
>> count
== INTVAL (trueop1
)
2623 && trunc_int_for_mode (mask
, mode
) == mask
2624 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
2625 return simplify_gen_binary (ASHIFTRT
, mode
,
2626 plus_constant (mode
, XEXP (op0
, 0),
2631 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
2635 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2641 if (trueop1
== CONST0_RTX (mode
))
2643 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2644 return simplify_gen_unary (NOT
, mode
, op0
, mode
);
2645 if (rtx_equal_p (trueop0
, trueop1
)
2646 && ! side_effects_p (op0
)
2647 && GET_MODE_CLASS (mode
) != MODE_CC
)
2648 return CONST0_RTX (mode
);
2650 /* Canonicalize XOR of the most significant bit to PLUS. */
2651 if (CONST_SCALAR_INT_P (op1
)
2652 && mode_signbit_p (mode
, op1
))
2653 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
2654 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2655 if (CONST_SCALAR_INT_P (op1
)
2656 && GET_CODE (op0
) == PLUS
2657 && CONST_SCALAR_INT_P (XEXP (op0
, 1))
2658 && mode_signbit_p (mode
, XEXP (op0
, 1)))
2659 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2660 simplify_gen_binary (XOR
, mode
, op1
,
2663 /* If we are XORing two things that have no bits in common,
2664 convert them into an IOR. This helps to detect rotation encoded
2665 using those methods and possibly other simplifications. */
2667 if (HWI_COMPUTABLE_MODE_P (mode
)
2668 && (nonzero_bits (op0
, mode
)
2669 & nonzero_bits (op1
, mode
)) == 0)
2670 return (simplify_gen_binary (IOR
, mode
, op0
, op1
));
2672 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2673 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2676 int num_negated
= 0;
2678 if (GET_CODE (op0
) == NOT
)
2679 num_negated
++, op0
= XEXP (op0
, 0);
2680 if (GET_CODE (op1
) == NOT
)
2681 num_negated
++, op1
= XEXP (op1
, 0);
2683 if (num_negated
== 2)
2684 return simplify_gen_binary (XOR
, mode
, op0
, op1
);
2685 else if (num_negated
== 1)
2686 return simplify_gen_unary (NOT
, mode
,
2687 simplify_gen_binary (XOR
, mode
, op0
, op1
),
2691 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2692 correspond to a machine insn or result in further simplifications
2693 if B is a constant. */
2695 if (GET_CODE (op0
) == AND
2696 && rtx_equal_p (XEXP (op0
, 1), op1
)
2697 && ! side_effects_p (op1
))
2698 return simplify_gen_binary (AND
, mode
,
2699 simplify_gen_unary (NOT
, mode
,
2700 XEXP (op0
, 0), mode
),
2703 else if (GET_CODE (op0
) == AND
2704 && rtx_equal_p (XEXP (op0
, 0), op1
)
2705 && ! side_effects_p (op1
))
2706 return simplify_gen_binary (AND
, mode
,
2707 simplify_gen_unary (NOT
, mode
,
2708 XEXP (op0
, 1), mode
),
2711 /* Given (xor (ior (xor A B) C) D), where B, C and D are
2712 constants, simplify to (xor (ior A C) (B&~C)^D), canceling
2713 out bits inverted twice and not set by C. Similarly, given
2714 (xor (and (xor A B) C) D), simplify without inverting C in
2715 the xor operand: (xor (and A C) (B&C)^D).
2717 else if ((GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == AND
)
2718 && GET_CODE (XEXP (op0
, 0)) == XOR
2719 && CONST_INT_P (op1
)
2720 && CONST_INT_P (XEXP (op0
, 1))
2721 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1)))
2723 enum rtx_code op
= GET_CODE (op0
);
2724 rtx a
= XEXP (XEXP (op0
, 0), 0);
2725 rtx b
= XEXP (XEXP (op0
, 0), 1);
2726 rtx c
= XEXP (op0
, 1);
2728 HOST_WIDE_INT bval
= INTVAL (b
);
2729 HOST_WIDE_INT cval
= INTVAL (c
);
2730 HOST_WIDE_INT dval
= INTVAL (d
);
2731 HOST_WIDE_INT xcval
;
2738 return simplify_gen_binary (XOR
, mode
,
2739 simplify_gen_binary (op
, mode
, a
, c
),
2740 gen_int_mode ((bval
& xcval
) ^ dval
,
2744 /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
2745 we can transform like this:
2746 (A&B)^C == ~(A&B)&C | ~C&(A&B)
2747 == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
2748 == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
2749 Attempt a few simplifications when B and C are both constants. */
2750 if (GET_CODE (op0
) == AND
2751 && CONST_INT_P (op1
)
2752 && CONST_INT_P (XEXP (op0
, 1)))
2754 rtx a
= XEXP (op0
, 0);
2755 rtx b
= XEXP (op0
, 1);
2757 HOST_WIDE_INT bval
= INTVAL (b
);
2758 HOST_WIDE_INT cval
= INTVAL (c
);
2760 /* Instead of computing ~A&C, we compute its negated value,
2761 ~(A|~C). If it yields -1, ~A&C is zero, so we can
2762 optimize for sure. If it does not simplify, we still try
2763 to compute ~A&C below, but since that always allocates
2764 RTL, we don't try that before committing to returning a
2765 simplified expression. */
2766 rtx n_na_c
= simplify_binary_operation (IOR
, mode
, a
,
2769 if ((~cval
& bval
) == 0)
2771 rtx na_c
= NULL_RTX
;
2773 na_c
= simplify_gen_unary (NOT
, mode
, n_na_c
, mode
);
2776 /* If ~A does not simplify, don't bother: we don't
2777 want to simplify 2 operations into 3, and if na_c
2778 were to simplify with na, n_na_c would have
2779 simplified as well. */
2780 rtx na
= simplify_unary_operation (NOT
, mode
, a
, mode
);
2782 na_c
= simplify_gen_binary (AND
, mode
, na
, c
);
2785 /* Try to simplify ~A&C | ~B&C. */
2786 if (na_c
!= NULL_RTX
)
2787 return simplify_gen_binary (IOR
, mode
, na_c
,
2788 gen_int_mode (~bval
& cval
, mode
));
2792 /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
2793 if (n_na_c
== CONSTM1_RTX (mode
))
2795 rtx a_nc_b
= simplify_gen_binary (AND
, mode
, a
,
2796 gen_int_mode (~cval
& bval
,
2798 return simplify_gen_binary (IOR
, mode
, a_nc_b
,
2799 gen_int_mode (~bval
& cval
,
2805 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2806 comparison if STORE_FLAG_VALUE is 1. */
2807 if (STORE_FLAG_VALUE
== 1
2808 && trueop1
== const1_rtx
2809 && COMPARISON_P (op0
)
2810 && (reversed
= reversed_comparison (op0
, mode
)))
2813 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2814 is (lt foo (const_int 0)), so we can perform the above
2815 simplification if STORE_FLAG_VALUE is 1. */
2817 if (STORE_FLAG_VALUE
== 1
2818 && trueop1
== const1_rtx
2819 && GET_CODE (op0
) == LSHIFTRT
2820 && CONST_INT_P (XEXP (op0
, 1))
2821 && INTVAL (XEXP (op0
, 1)) == GET_MODE_PRECISION (mode
) - 1)
2822 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
2824 /* (xor (comparison foo bar) (const_int sign-bit))
2825 when STORE_FLAG_VALUE is the sign bit. */
2826 if (val_signbit_p (mode
, STORE_FLAG_VALUE
)
2827 && trueop1
== const_true_rtx
2828 && COMPARISON_P (op0
)
2829 && (reversed
= reversed_comparison (op0
, mode
)))
2832 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
2836 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2842 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
2844 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2846 if (HWI_COMPUTABLE_MODE_P (mode
))
2848 HOST_WIDE_INT nzop0
= nonzero_bits (trueop0
, mode
);
2849 HOST_WIDE_INT nzop1
;
2850 if (CONST_INT_P (trueop1
))
2852 HOST_WIDE_INT val1
= INTVAL (trueop1
);
2853 /* If we are turning off bits already known off in OP0, we need
2855 if ((nzop0
& ~val1
) == 0)
2858 nzop1
= nonzero_bits (trueop1
, mode
);
2859 /* If we are clearing all the nonzero bits, the result is zero. */
2860 if ((nzop1
& nzop0
) == 0
2861 && !side_effects_p (op0
) && !side_effects_p (op1
))
2862 return CONST0_RTX (mode
);
2864 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
)
2865 && GET_MODE_CLASS (mode
) != MODE_CC
)
2868 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2869 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2870 && ! side_effects_p (op0
)
2871 && GET_MODE_CLASS (mode
) != MODE_CC
)
2872 return CONST0_RTX (mode
);
2874 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2875 there are no nonzero bits of C outside of X's mode. */
2876 if ((GET_CODE (op0
) == SIGN_EXTEND
2877 || GET_CODE (op0
) == ZERO_EXTEND
)
2878 && CONST_INT_P (trueop1
)
2879 && HWI_COMPUTABLE_MODE_P (mode
)
2880 && (~GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))
2881 & UINTVAL (trueop1
)) == 0)
2883 machine_mode imode
= GET_MODE (XEXP (op0
, 0));
2884 tem
= simplify_gen_binary (AND
, imode
, XEXP (op0
, 0),
2885 gen_int_mode (INTVAL (trueop1
),
2887 return simplify_gen_unary (ZERO_EXTEND
, mode
, tem
, imode
);
2890 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2891 we might be able to further simplify the AND with X and potentially
2892 remove the truncation altogether. */
2893 if (GET_CODE (op0
) == TRUNCATE
&& CONST_INT_P (trueop1
))
2895 rtx x
= XEXP (op0
, 0);
2896 machine_mode xmode
= GET_MODE (x
);
2897 tem
= simplify_gen_binary (AND
, xmode
, x
,
2898 gen_int_mode (INTVAL (trueop1
), xmode
));
2899 return simplify_gen_unary (TRUNCATE
, mode
, tem
, xmode
);
2902 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2903 if (GET_CODE (op0
) == IOR
2904 && CONST_INT_P (trueop1
)
2905 && CONST_INT_P (XEXP (op0
, 1)))
2907 HOST_WIDE_INT tmp
= INTVAL (trueop1
) & INTVAL (XEXP (op0
, 1));
2908 return simplify_gen_binary (IOR
, mode
,
2909 simplify_gen_binary (AND
, mode
,
2910 XEXP (op0
, 0), op1
),
2911 gen_int_mode (tmp
, mode
));
2914 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2915 insn (and may simplify more). */
2916 if (GET_CODE (op0
) == XOR
2917 && rtx_equal_p (XEXP (op0
, 0), op1
)
2918 && ! side_effects_p (op1
))
2919 return simplify_gen_binary (AND
, mode
,
2920 simplify_gen_unary (NOT
, mode
,
2921 XEXP (op0
, 1), mode
),
2924 if (GET_CODE (op0
) == XOR
2925 && rtx_equal_p (XEXP (op0
, 1), op1
)
2926 && ! side_effects_p (op1
))
2927 return simplify_gen_binary (AND
, mode
,
2928 simplify_gen_unary (NOT
, mode
,
2929 XEXP (op0
, 0), mode
),
2932 /* Similarly for (~(A ^ B)) & A. */
2933 if (GET_CODE (op0
) == NOT
2934 && GET_CODE (XEXP (op0
, 0)) == XOR
2935 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
2936 && ! side_effects_p (op1
))
2937 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
2939 if (GET_CODE (op0
) == NOT
2940 && GET_CODE (XEXP (op0
, 0)) == XOR
2941 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
2942 && ! side_effects_p (op1
))
2943 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
2945 /* Convert (A | B) & A to A. */
2946 if (GET_CODE (op0
) == IOR
2947 && (rtx_equal_p (XEXP (op0
, 0), op1
)
2948 || rtx_equal_p (XEXP (op0
, 1), op1
))
2949 && ! side_effects_p (XEXP (op0
, 0))
2950 && ! side_effects_p (XEXP (op0
, 1)))
2953 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2954 ((A & N) + B) & M -> (A + B) & M
2955 Similarly if (N & M) == 0,
2956 ((A | N) + B) & M -> (A + B) & M
2957 and for - instead of + and/or ^ instead of |.
2958 Also, if (N & M) == 0, then
2959 (A +- N) & M -> A & M. */
2960 if (CONST_INT_P (trueop1
)
2961 && HWI_COMPUTABLE_MODE_P (mode
)
2962 && ~UINTVAL (trueop1
)
2963 && (UINTVAL (trueop1
) & (UINTVAL (trueop1
) + 1)) == 0
2964 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
))
2969 pmop
[0] = XEXP (op0
, 0);
2970 pmop
[1] = XEXP (op0
, 1);
2972 if (CONST_INT_P (pmop
[1])
2973 && (UINTVAL (pmop
[1]) & UINTVAL (trueop1
)) == 0)
2974 return simplify_gen_binary (AND
, mode
, pmop
[0], op1
);
2976 for (which
= 0; which
< 2; which
++)
2979 switch (GET_CODE (tem
))
2982 if (CONST_INT_P (XEXP (tem
, 1))
2983 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
))
2984 == UINTVAL (trueop1
))
2985 pmop
[which
] = XEXP (tem
, 0);
2989 if (CONST_INT_P (XEXP (tem
, 1))
2990 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
)) == 0)
2991 pmop
[which
] = XEXP (tem
, 0);
2998 if (pmop
[0] != XEXP (op0
, 0) || pmop
[1] != XEXP (op0
, 1))
3000 tem
= simplify_gen_binary (GET_CODE (op0
), mode
,
3002 return simplify_gen_binary (code
, mode
, tem
, op1
);
3006 /* (and X (ior (not X) Y) -> (and X Y) */
3007 if (GET_CODE (op1
) == IOR
3008 && GET_CODE (XEXP (op1
, 0)) == NOT
3009 && rtx_equal_p (op0
, XEXP (XEXP (op1
, 0), 0)))
3010 return simplify_gen_binary (AND
, mode
, op0
, XEXP (op1
, 1));
3012 /* (and (ior (not X) Y) X) -> (and X Y) */
3013 if (GET_CODE (op0
) == IOR
3014 && GET_CODE (XEXP (op0
, 0)) == NOT
3015 && rtx_equal_p (op1
, XEXP (XEXP (op0
, 0), 0)))
3016 return simplify_gen_binary (AND
, mode
, op1
, XEXP (op0
, 1));
3018 /* (and X (ior Y (not X)) -> (and X Y) */
3019 if (GET_CODE (op1
) == IOR
3020 && GET_CODE (XEXP (op1
, 1)) == NOT
3021 && rtx_equal_p (op0
, XEXP (XEXP (op1
, 1), 0)))
3022 return simplify_gen_binary (AND
, mode
, op0
, XEXP (op1
, 0));
3024 /* (and (ior Y (not X)) X) -> (and X Y) */
3025 if (GET_CODE (op0
) == IOR
3026 && GET_CODE (XEXP (op0
, 1)) == NOT
3027 && rtx_equal_p (op1
, XEXP (XEXP (op0
, 1), 0)))
3028 return simplify_gen_binary (AND
, mode
, op1
, XEXP (op0
, 0));
3030 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
3034 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3040 /* 0/x is 0 (or x&0 if x has side-effects). */
3041 if (trueop0
== CONST0_RTX (mode
))
3043 if (side_effects_p (op1
))
3044 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3048 if (trueop1
== CONST1_RTX (mode
))
3050 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3054 /* Convert divide by power of two into shift. */
3055 if (CONST_INT_P (trueop1
)
3056 && (val
= exact_log2 (UINTVAL (trueop1
))) > 0)
3057 return simplify_gen_binary (LSHIFTRT
, mode
, op0
, GEN_INT (val
));
3061 /* Handle floating point and integers separately. */
3062 if (SCALAR_FLOAT_MODE_P (mode
))
3064 /* Maybe change 0.0 / x to 0.0. This transformation isn't
3065 safe for modes with NaNs, since 0.0 / 0.0 will then be
3066 NaN rather than 0.0. Nor is it safe for modes with signed
3067 zeros, since dividing 0 by a negative number gives -0.0 */
3068 if (trueop0
== CONST0_RTX (mode
)
3069 && !HONOR_NANS (mode
)
3070 && !HONOR_SIGNED_ZEROS (mode
)
3071 && ! side_effects_p (op1
))
3074 if (trueop1
== CONST1_RTX (mode
)
3075 && !HONOR_SNANS (mode
))
3078 if (CONST_DOUBLE_AS_FLOAT_P (trueop1
)
3079 && trueop1
!= CONST0_RTX (mode
))
3082 REAL_VALUE_FROM_CONST_DOUBLE (d
, trueop1
);
3085 if (REAL_VALUES_EQUAL (d
, dconstm1
)
3086 && !HONOR_SNANS (mode
))
3087 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
3089 /* Change FP division by a constant into multiplication.
3090 Only do this with -freciprocal-math. */
3091 if (flag_reciprocal_math
3092 && !REAL_VALUES_EQUAL (d
, dconst0
))
3094 REAL_ARITHMETIC (d
, RDIV_EXPR
, dconst1
, d
);
3095 tem
= CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3096 return simplify_gen_binary (MULT
, mode
, op0
, tem
);
3100 else if (SCALAR_INT_MODE_P (mode
))
3102 /* 0/x is 0 (or x&0 if x has side-effects). */
3103 if (trueop0
== CONST0_RTX (mode
)
3104 && !cfun
->can_throw_non_call_exceptions
)
3106 if (side_effects_p (op1
))
3107 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3111 if (trueop1
== CONST1_RTX (mode
))
3113 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3118 if (trueop1
== constm1_rtx
)
3120 rtx x
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3122 return simplify_gen_unary (NEG
, mode
, x
, mode
);
3128 /* 0%x is 0 (or x&0 if x has side-effects). */
3129 if (trueop0
== CONST0_RTX (mode
))
3131 if (side_effects_p (op1
))
3132 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3135 /* x%1 is 0 (of x&0 if x has side-effects). */
3136 if (trueop1
== CONST1_RTX (mode
))
3138 if (side_effects_p (op0
))
3139 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
3140 return CONST0_RTX (mode
);
3142 /* Implement modulus by power of two as AND. */
3143 if (CONST_INT_P (trueop1
)
3144 && exact_log2 (UINTVAL (trueop1
)) > 0)
3145 return simplify_gen_binary (AND
, mode
, op0
,
3146 gen_int_mode (INTVAL (op1
) - 1, mode
));
3150 /* 0%x is 0 (or x&0 if x has side-effects). */
3151 if (trueop0
== CONST0_RTX (mode
))
3153 if (side_effects_p (op1
))
3154 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3157 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
3158 if (trueop1
== CONST1_RTX (mode
) || trueop1
== constm1_rtx
)
3160 if (side_effects_p (op0
))
3161 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
3162 return CONST0_RTX (mode
);
3168 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
3169 prefer left rotation, if op1 is from bitsize / 2 + 1 to
3170 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
3172 #if defined(HAVE_rotate) && defined(HAVE_rotatert)
3173 if (CONST_INT_P (trueop1
)
3174 && IN_RANGE (INTVAL (trueop1
),
3175 GET_MODE_PRECISION (mode
) / 2 + (code
== ROTATE
),
3176 GET_MODE_PRECISION (mode
) - 1))
3177 return simplify_gen_binary (code
== ROTATE
? ROTATERT
: ROTATE
,
3178 mode
, op0
, GEN_INT (GET_MODE_PRECISION (mode
)
3179 - INTVAL (trueop1
)));
3183 if (trueop1
== CONST0_RTX (mode
))
3185 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3187 /* Rotating ~0 always results in ~0. */
3188 if (CONST_INT_P (trueop0
) && width
<= HOST_BITS_PER_WIDE_INT
3189 && UINTVAL (trueop0
) == GET_MODE_MASK (mode
)
3190 && ! side_effects_p (op1
))
3194 scalar constants c1, c2
3195 size (M2) > size (M1)
3196 c1 == size (M2) - size (M1)
3198 (ashiftrt:M1 (subreg:M1 (lshiftrt:M2 (reg:M2) (const_int <c1>))
3202 (subreg:M1 (ashiftrt:M2 (reg:M2) (const_int <c1 + c2>))
3204 if (code
== ASHIFTRT
3205 && !VECTOR_MODE_P (mode
)
3207 && CONST_INT_P (op1
)
3208 && GET_CODE (SUBREG_REG (op0
)) == LSHIFTRT
3209 && !VECTOR_MODE_P (GET_MODE (SUBREG_REG (op0
)))
3210 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1))
3211 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
3212 > GET_MODE_BITSIZE (mode
))
3213 && (INTVAL (XEXP (SUBREG_REG (op0
), 1))
3214 == (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
3215 - GET_MODE_BITSIZE (mode
)))
3216 && subreg_lowpart_p (op0
))
3218 rtx tmp
= GEN_INT (INTVAL (XEXP (SUBREG_REG (op0
), 1))
3220 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
3221 tmp
= simplify_gen_binary (ASHIFTRT
,
3222 GET_MODE (SUBREG_REG (op0
)),
3223 XEXP (SUBREG_REG (op0
), 0),
3225 return simplify_gen_subreg (mode
, tmp
, inner_mode
,
3226 subreg_lowpart_offset (mode
,
3230 if (SHIFT_COUNT_TRUNCATED
&& CONST_INT_P (op1
))
3232 val
= INTVAL (op1
) & (GET_MODE_PRECISION (mode
) - 1);
3233 if (val
!= INTVAL (op1
))
3234 return simplify_gen_binary (code
, mode
, op0
, GEN_INT (val
));
3241 if (trueop1
== CONST0_RTX (mode
))
3243 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3245 goto canonicalize_shift
;
3248 if (trueop1
== CONST0_RTX (mode
))
3250 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3252 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
3253 if (GET_CODE (op0
) == CLZ
3254 && CONST_INT_P (trueop1
)
3255 && STORE_FLAG_VALUE
== 1
3256 && INTVAL (trueop1
) < (HOST_WIDE_INT
)width
)
3258 machine_mode imode
= GET_MODE (XEXP (op0
, 0));
3259 unsigned HOST_WIDE_INT zero_val
= 0;
3261 if (CLZ_DEFINED_VALUE_AT_ZERO (imode
, zero_val
)
3262 && zero_val
== GET_MODE_PRECISION (imode
)
3263 && INTVAL (trueop1
) == exact_log2 (zero_val
))
3264 return simplify_gen_relational (EQ
, mode
, imode
,
3265 XEXP (op0
, 0), const0_rtx
);
3267 goto canonicalize_shift
;
3270 if (width
<= HOST_BITS_PER_WIDE_INT
3271 && mode_signbit_p (mode
, trueop1
)
3272 && ! side_effects_p (op0
))
3274 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3276 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3282 if (width
<= HOST_BITS_PER_WIDE_INT
3283 && CONST_INT_P (trueop1
)
3284 && (UINTVAL (trueop1
) == GET_MODE_MASK (mode
) >> 1)
3285 && ! side_effects_p (op0
))
3287 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3289 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3295 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
3297 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3299 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3305 if (trueop1
== constm1_rtx
&& ! side_effects_p (op0
))
3307 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3309 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3322 /* ??? There are simplifications that can be done. */
3326 if (!VECTOR_MODE_P (mode
))
3328 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3329 gcc_assert (mode
== GET_MODE_INNER (GET_MODE (trueop0
)));
3330 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3331 gcc_assert (XVECLEN (trueop1
, 0) == 1);
3332 gcc_assert (CONST_INT_P (XVECEXP (trueop1
, 0, 0)));
3334 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3335 return CONST_VECTOR_ELT (trueop0
, INTVAL (XVECEXP
3338 /* Extract a scalar element from a nested VEC_SELECT expression
3339 (with optional nested VEC_CONCAT expression). Some targets
3340 (i386) extract scalar element from a vector using chain of
3341 nested VEC_SELECT expressions. When input operand is a memory
3342 operand, this operation can be simplified to a simple scalar
3343 load from an offseted memory address. */
3344 if (GET_CODE (trueop0
) == VEC_SELECT
)
3346 rtx op0
= XEXP (trueop0
, 0);
3347 rtx op1
= XEXP (trueop0
, 1);
3349 machine_mode opmode
= GET_MODE (op0
);
3350 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (opmode
));
3351 int n_elts
= GET_MODE_SIZE (opmode
) / elt_size
;
3353 int i
= INTVAL (XVECEXP (trueop1
, 0, 0));
3359 gcc_assert (GET_CODE (op1
) == PARALLEL
);
3360 gcc_assert (i
< n_elts
);
3362 /* Select element, pointed by nested selector. */
3363 elem
= INTVAL (XVECEXP (op1
, 0, i
));
3365 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
3366 if (GET_CODE (op0
) == VEC_CONCAT
)
3368 rtx op00
= XEXP (op0
, 0);
3369 rtx op01
= XEXP (op0
, 1);
3371 machine_mode mode00
, mode01
;
3372 int n_elts00
, n_elts01
;
3374 mode00
= GET_MODE (op00
);
3375 mode01
= GET_MODE (op01
);
3377 /* Find out number of elements of each operand. */
3378 if (VECTOR_MODE_P (mode00
))
3380 elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode00
));
3381 n_elts00
= GET_MODE_SIZE (mode00
) / elt_size
;
3386 if (VECTOR_MODE_P (mode01
))
3388 elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode01
));
3389 n_elts01
= GET_MODE_SIZE (mode01
) / elt_size
;
3394 gcc_assert (n_elts
== n_elts00
+ n_elts01
);
3396 /* Select correct operand of VEC_CONCAT
3397 and adjust selector. */
3398 if (elem
< n_elts01
)
3409 vec
= rtvec_alloc (1);
3410 RTVEC_ELT (vec
, 0) = GEN_INT (elem
);
3412 tmp
= gen_rtx_fmt_ee (code
, mode
,
3413 tmp_op
, gen_rtx_PARALLEL (VOIDmode
, vec
));
3416 if (GET_CODE (trueop0
) == VEC_DUPLICATE
3417 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3418 return XEXP (trueop0
, 0);
3422 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3423 gcc_assert (GET_MODE_INNER (mode
)
3424 == GET_MODE_INNER (GET_MODE (trueop0
)));
3425 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3427 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3429 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
3430 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3431 rtvec v
= rtvec_alloc (n_elts
);
3434 gcc_assert (XVECLEN (trueop1
, 0) == (int) n_elts
);
3435 for (i
= 0; i
< n_elts
; i
++)
3437 rtx x
= XVECEXP (trueop1
, 0, i
);
3439 gcc_assert (CONST_INT_P (x
));
3440 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
,
3444 return gen_rtx_CONST_VECTOR (mode
, v
);
3447 /* Recognize the identity. */
3448 if (GET_MODE (trueop0
) == mode
)
3450 bool maybe_ident
= true;
3451 for (int i
= 0; i
< XVECLEN (trueop1
, 0); i
++)
3453 rtx j
= XVECEXP (trueop1
, 0, i
);
3454 if (!CONST_INT_P (j
) || INTVAL (j
) != i
)
3456 maybe_ident
= false;
3464 /* If we build {a,b} then permute it, build the result directly. */
3465 if (XVECLEN (trueop1
, 0) == 2
3466 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3467 && CONST_INT_P (XVECEXP (trueop1
, 0, 1))
3468 && GET_CODE (trueop0
) == VEC_CONCAT
3469 && GET_CODE (XEXP (trueop0
, 0)) == VEC_CONCAT
3470 && GET_MODE (XEXP (trueop0
, 0)) == mode
3471 && GET_CODE (XEXP (trueop0
, 1)) == VEC_CONCAT
3472 && GET_MODE (XEXP (trueop0
, 1)) == mode
)
3474 unsigned int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3475 unsigned int i1
= INTVAL (XVECEXP (trueop1
, 0, 1));
3478 gcc_assert (i0
< 4 && i1
< 4);
3479 subop0
= XEXP (XEXP (trueop0
, i0
/ 2), i0
% 2);
3480 subop1
= XEXP (XEXP (trueop0
, i1
/ 2), i1
% 2);
3482 return simplify_gen_binary (VEC_CONCAT
, mode
, subop0
, subop1
);
3485 if (XVECLEN (trueop1
, 0) == 2
3486 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3487 && CONST_INT_P (XVECEXP (trueop1
, 0, 1))
3488 && GET_CODE (trueop0
) == VEC_CONCAT
3489 && GET_MODE (trueop0
) == mode
)
3491 unsigned int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3492 unsigned int i1
= INTVAL (XVECEXP (trueop1
, 0, 1));
3495 gcc_assert (i0
< 2 && i1
< 2);
3496 subop0
= XEXP (trueop0
, i0
);
3497 subop1
= XEXP (trueop0
, i1
);
3499 return simplify_gen_binary (VEC_CONCAT
, mode
, subop0
, subop1
);
3502 /* If we select one half of a vec_concat, return that. */
3503 if (GET_CODE (trueop0
) == VEC_CONCAT
3504 && CONST_INT_P (XVECEXP (trueop1
, 0, 0)))
3506 rtx subop0
= XEXP (trueop0
, 0);
3507 rtx subop1
= XEXP (trueop0
, 1);
3508 machine_mode mode0
= GET_MODE (subop0
);
3509 machine_mode mode1
= GET_MODE (subop1
);
3510 int li
= GET_MODE_SIZE (GET_MODE_INNER (mode0
));
3511 int l0
= GET_MODE_SIZE (mode0
) / li
;
3512 int l1
= GET_MODE_SIZE (mode1
) / li
;
3513 int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3514 if (i0
== 0 && !side_effects_p (op1
) && mode
== mode0
)
3516 bool success
= true;
3517 for (int i
= 1; i
< l0
; ++i
)
3519 rtx j
= XVECEXP (trueop1
, 0, i
);
3520 if (!CONST_INT_P (j
) || INTVAL (j
) != i
)
3529 if (i0
== l0
&& !side_effects_p (op0
) && mode
== mode1
)
3531 bool success
= true;
3532 for (int i
= 1; i
< l1
; ++i
)
3534 rtx j
= XVECEXP (trueop1
, 0, i
);
3535 if (!CONST_INT_P (j
) || INTVAL (j
) != i0
+ i
)
3547 if (XVECLEN (trueop1
, 0) == 1
3548 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3549 && GET_CODE (trueop0
) == VEC_CONCAT
)
3552 int offset
= INTVAL (XVECEXP (trueop1
, 0, 0)) * GET_MODE_SIZE (mode
);
3554 /* Try to find the element in the VEC_CONCAT. */
3555 while (GET_MODE (vec
) != mode
3556 && GET_CODE (vec
) == VEC_CONCAT
)
3558 HOST_WIDE_INT vec_size
;
3560 if (CONST_INT_P (XEXP (vec
, 0)))
3562 /* vec_concat of two const_ints doesn't make sense with
3563 respect to modes. */
3564 if (CONST_INT_P (XEXP (vec
, 1)))
3567 vec_size
= GET_MODE_SIZE (GET_MODE (trueop0
))
3568 - GET_MODE_SIZE (GET_MODE (XEXP (vec
, 1)));
3571 vec_size
= GET_MODE_SIZE (GET_MODE (XEXP (vec
, 0)));
3573 if (offset
< vec_size
)
3574 vec
= XEXP (vec
, 0);
3578 vec
= XEXP (vec
, 1);
3580 vec
= avoid_constant_pool_reference (vec
);
3583 if (GET_MODE (vec
) == mode
)
3587 /* If we select elements in a vec_merge that all come from the same
3588 operand, select from that operand directly. */
3589 if (GET_CODE (op0
) == VEC_MERGE
)
3591 rtx trueop02
= avoid_constant_pool_reference (XEXP (op0
, 2));
3592 if (CONST_INT_P (trueop02
))
3594 unsigned HOST_WIDE_INT sel
= UINTVAL (trueop02
);
3595 bool all_operand0
= true;
3596 bool all_operand1
= true;
3597 for (int i
= 0; i
< XVECLEN (trueop1
, 0); i
++)
3599 rtx j
= XVECEXP (trueop1
, 0, i
);
3600 if (sel
& (1 << UINTVAL (j
)))
3601 all_operand1
= false;
3603 all_operand0
= false;
3605 if (all_operand0
&& !side_effects_p (XEXP (op0
, 1)))
3606 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (op0
, 0), op1
);
3607 if (all_operand1
&& !side_effects_p (XEXP (op0
, 0)))
3608 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (op0
, 1), op1
);
3612 /* If we have two nested selects that are inverses of each
3613 other, replace them with the source operand. */
3614 if (GET_CODE (trueop0
) == VEC_SELECT
3615 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3617 rtx op0_subop1
= XEXP (trueop0
, 1);
3618 gcc_assert (GET_CODE (op0_subop1
) == PARALLEL
);
3619 gcc_assert (XVECLEN (trueop1
, 0) == GET_MODE_NUNITS (mode
));
3621 /* Apply the outer ordering vector to the inner one. (The inner
3622 ordering vector is expressly permitted to be of a different
3623 length than the outer one.) If the result is { 0, 1, ..., n-1 }
3624 then the two VEC_SELECTs cancel. */
3625 for (int i
= 0; i
< XVECLEN (trueop1
, 0); ++i
)
3627 rtx x
= XVECEXP (trueop1
, 0, i
);
3628 if (!CONST_INT_P (x
))
3630 rtx y
= XVECEXP (op0_subop1
, 0, INTVAL (x
));
3631 if (!CONST_INT_P (y
) || i
!= INTVAL (y
))
3634 return XEXP (trueop0
, 0);
3640 machine_mode op0_mode
= (GET_MODE (trueop0
) != VOIDmode
3641 ? GET_MODE (trueop0
)
3642 : GET_MODE_INNER (mode
));
3643 machine_mode op1_mode
= (GET_MODE (trueop1
) != VOIDmode
3644 ? GET_MODE (trueop1
)
3645 : GET_MODE_INNER (mode
));
3647 gcc_assert (VECTOR_MODE_P (mode
));
3648 gcc_assert (GET_MODE_SIZE (op0_mode
) + GET_MODE_SIZE (op1_mode
)
3649 == GET_MODE_SIZE (mode
));
3651 if (VECTOR_MODE_P (op0_mode
))
3652 gcc_assert (GET_MODE_INNER (mode
)
3653 == GET_MODE_INNER (op0_mode
));
3655 gcc_assert (GET_MODE_INNER (mode
) == op0_mode
);
3657 if (VECTOR_MODE_P (op1_mode
))
3658 gcc_assert (GET_MODE_INNER (mode
)
3659 == GET_MODE_INNER (op1_mode
));
3661 gcc_assert (GET_MODE_INNER (mode
) == op1_mode
);
3663 if ((GET_CODE (trueop0
) == CONST_VECTOR
3664 || CONST_SCALAR_INT_P (trueop0
)
3665 || CONST_DOUBLE_AS_FLOAT_P (trueop0
))
3666 && (GET_CODE (trueop1
) == CONST_VECTOR
3667 || CONST_SCALAR_INT_P (trueop1
)
3668 || CONST_DOUBLE_AS_FLOAT_P (trueop1
)))
3670 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
3671 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3672 rtvec v
= rtvec_alloc (n_elts
);
3674 unsigned in_n_elts
= 1;
3676 if (VECTOR_MODE_P (op0_mode
))
3677 in_n_elts
= (GET_MODE_SIZE (op0_mode
) / elt_size
);
3678 for (i
= 0; i
< n_elts
; i
++)
3682 if (!VECTOR_MODE_P (op0_mode
))
3683 RTVEC_ELT (v
, i
) = trueop0
;
3685 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
, i
);
3689 if (!VECTOR_MODE_P (op1_mode
))
3690 RTVEC_ELT (v
, i
) = trueop1
;
3692 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop1
,
3697 return gen_rtx_CONST_VECTOR (mode
, v
);
3700 /* Try to merge two VEC_SELECTs from the same vector into a single one.
3701 Restrict the transformation to avoid generating a VEC_SELECT with a
3702 mode unrelated to its operand. */
3703 if (GET_CODE (trueop0
) == VEC_SELECT
3704 && GET_CODE (trueop1
) == VEC_SELECT
3705 && rtx_equal_p (XEXP (trueop0
, 0), XEXP (trueop1
, 0))
3706 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3708 rtx par0
= XEXP (trueop0
, 1);
3709 rtx par1
= XEXP (trueop1
, 1);
3710 int len0
= XVECLEN (par0
, 0);
3711 int len1
= XVECLEN (par1
, 0);
3712 rtvec vec
= rtvec_alloc (len0
+ len1
);
3713 for (int i
= 0; i
< len0
; i
++)
3714 RTVEC_ELT (vec
, i
) = XVECEXP (par0
, 0, i
);
3715 for (int i
= 0; i
< len1
; i
++)
3716 RTVEC_ELT (vec
, len0
+ i
) = XVECEXP (par1
, 0, i
);
3717 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (trueop0
, 0),
3718 gen_rtx_PARALLEL (VOIDmode
, vec
));
3731 simplify_const_binary_operation (enum rtx_code code
, machine_mode mode
,
3734 unsigned int width
= GET_MODE_PRECISION (mode
);
3736 if (VECTOR_MODE_P (mode
)
3737 && code
!= VEC_CONCAT
3738 && GET_CODE (op0
) == CONST_VECTOR
3739 && GET_CODE (op1
) == CONST_VECTOR
)
3741 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3742 machine_mode op0mode
= GET_MODE (op0
);
3743 unsigned op0_n_elts
= GET_MODE_NUNITS (op0mode
);
3744 machine_mode op1mode
= GET_MODE (op1
);
3745 unsigned op1_n_elts
= GET_MODE_NUNITS (op1mode
);
3746 rtvec v
= rtvec_alloc (n_elts
);
3749 gcc_assert (op0_n_elts
== n_elts
);
3750 gcc_assert (op1_n_elts
== n_elts
);
3751 for (i
= 0; i
< n_elts
; i
++)
3753 rtx x
= simplify_binary_operation (code
, GET_MODE_INNER (mode
),
3754 CONST_VECTOR_ELT (op0
, i
),
3755 CONST_VECTOR_ELT (op1
, i
));
3758 RTVEC_ELT (v
, i
) = x
;
3761 return gen_rtx_CONST_VECTOR (mode
, v
);
3764 if (VECTOR_MODE_P (mode
)
3765 && code
== VEC_CONCAT
3766 && (CONST_SCALAR_INT_P (op0
)
3767 || GET_CODE (op0
) == CONST_FIXED
3768 || CONST_DOUBLE_AS_FLOAT_P (op0
))
3769 && (CONST_SCALAR_INT_P (op1
)
3770 || CONST_DOUBLE_AS_FLOAT_P (op1
)
3771 || GET_CODE (op1
) == CONST_FIXED
))
3773 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3774 rtvec v
= rtvec_alloc (n_elts
);
3776 gcc_assert (n_elts
>= 2);
3779 gcc_assert (GET_CODE (op0
) != CONST_VECTOR
);
3780 gcc_assert (GET_CODE (op1
) != CONST_VECTOR
);
3782 RTVEC_ELT (v
, 0) = op0
;
3783 RTVEC_ELT (v
, 1) = op1
;
3787 unsigned op0_n_elts
= GET_MODE_NUNITS (GET_MODE (op0
));
3788 unsigned op1_n_elts
= GET_MODE_NUNITS (GET_MODE (op1
));
3791 gcc_assert (GET_CODE (op0
) == CONST_VECTOR
);
3792 gcc_assert (GET_CODE (op1
) == CONST_VECTOR
);
3793 gcc_assert (op0_n_elts
+ op1_n_elts
== n_elts
);
3795 for (i
= 0; i
< op0_n_elts
; ++i
)
3796 RTVEC_ELT (v
, i
) = XVECEXP (op0
, 0, i
);
3797 for (i
= 0; i
< op1_n_elts
; ++i
)
3798 RTVEC_ELT (v
, op0_n_elts
+i
) = XVECEXP (op1
, 0, i
);
3801 return gen_rtx_CONST_VECTOR (mode
, v
);
3804 if (SCALAR_FLOAT_MODE_P (mode
)
3805 && CONST_DOUBLE_AS_FLOAT_P (op0
)
3806 && CONST_DOUBLE_AS_FLOAT_P (op1
)
3807 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3818 real_to_target (tmp0
, CONST_DOUBLE_REAL_VALUE (op0
),
3820 real_to_target (tmp1
, CONST_DOUBLE_REAL_VALUE (op1
),
3822 for (i
= 0; i
< 4; i
++)
3839 real_from_target (&r
, tmp0
, mode
);
3840 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
3844 REAL_VALUE_TYPE f0
, f1
, value
, result
;
3847 REAL_VALUE_FROM_CONST_DOUBLE (f0
, op0
);
3848 REAL_VALUE_FROM_CONST_DOUBLE (f1
, op1
);
3849 real_convert (&f0
, mode
, &f0
);
3850 real_convert (&f1
, mode
, &f1
);
3852 if (HONOR_SNANS (mode
)
3853 && (REAL_VALUE_ISNAN (f0
) || REAL_VALUE_ISNAN (f1
)))
3857 && REAL_VALUES_EQUAL (f1
, dconst0
)
3858 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
3861 if (MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3862 && flag_trapping_math
3863 && REAL_VALUE_ISINF (f0
) && REAL_VALUE_ISINF (f1
))
3865 int s0
= REAL_VALUE_NEGATIVE (f0
);
3866 int s1
= REAL_VALUE_NEGATIVE (f1
);
3871 /* Inf + -Inf = NaN plus exception. */
3876 /* Inf - Inf = NaN plus exception. */
3881 /* Inf / Inf = NaN plus exception. */
3888 if (code
== MULT
&& MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3889 && flag_trapping_math
3890 && ((REAL_VALUE_ISINF (f0
) && REAL_VALUES_EQUAL (f1
, dconst0
))
3891 || (REAL_VALUE_ISINF (f1
)
3892 && REAL_VALUES_EQUAL (f0
, dconst0
))))
3893 /* Inf * 0 = NaN plus exception. */
3896 inexact
= real_arithmetic (&value
, rtx_to_tree_code (code
),
3898 real_convert (&result
, mode
, &value
);
3900 /* Don't constant fold this floating point operation if
3901 the result has overflowed and flag_trapping_math. */
3903 if (flag_trapping_math
3904 && MODE_HAS_INFINITIES (mode
)
3905 && REAL_VALUE_ISINF (result
)
3906 && !REAL_VALUE_ISINF (f0
)
3907 && !REAL_VALUE_ISINF (f1
))
3908 /* Overflow plus exception. */
3911 /* Don't constant fold this floating point operation if the
3912 result may dependent upon the run-time rounding mode and
3913 flag_rounding_math is set, or if GCC's software emulation
3914 is unable to accurately represent the result. */
3916 if ((flag_rounding_math
3917 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
3918 && (inexact
|| !real_identical (&result
, &value
)))
3921 return CONST_DOUBLE_FROM_REAL_VALUE (result
, mode
);
3925 /* We can fold some multi-word operations. */
3926 if ((GET_MODE_CLASS (mode
) == MODE_INT
3927 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
3928 && CONST_SCALAR_INT_P (op0
)
3929 && CONST_SCALAR_INT_P (op1
))
3933 rtx_mode_t pop0
= std::make_pair (op0
, mode
);
3934 rtx_mode_t pop1
= std::make_pair (op1
, mode
);
3936 #if TARGET_SUPPORTS_WIDE_INT == 0
3937 /* This assert keeps the simplification from producing a result
3938 that cannot be represented in a CONST_DOUBLE but a lot of
3939 upstream callers expect that this function never fails to
3940 simplify something and so you if you added this to the test
3941 above the code would die later anyway. If this assert
3942 happens, you just need to make the port support wide int. */
3943 gcc_assert (width
<= HOST_BITS_PER_DOUBLE_INT
);
3948 result
= wi::sub (pop0
, pop1
);
3952 result
= wi::add (pop0
, pop1
);
3956 result
= wi::mul (pop0
, pop1
);
3960 result
= wi::div_trunc (pop0
, pop1
, SIGNED
, &overflow
);
3966 result
= wi::mod_trunc (pop0
, pop1
, SIGNED
, &overflow
);
3972 result
= wi::div_trunc (pop0
, pop1
, UNSIGNED
, &overflow
);
3978 result
= wi::mod_trunc (pop0
, pop1
, UNSIGNED
, &overflow
);
3984 result
= wi::bit_and (pop0
, pop1
);
3988 result
= wi::bit_or (pop0
, pop1
);
3992 result
= wi::bit_xor (pop0
, pop1
);
3996 result
= wi::smin (pop0
, pop1
);
4000 result
= wi::smax (pop0
, pop1
);
4004 result
= wi::umin (pop0
, pop1
);
4008 result
= wi::umax (pop0
, pop1
);
4015 wide_int wop1
= pop1
;
4016 if (SHIFT_COUNT_TRUNCATED
)
4017 wop1
= wi::umod_trunc (wop1
, width
);
4018 else if (wi::geu_p (wop1
, width
))
4024 result
= wi::lrshift (pop0
, wop1
);
4028 result
= wi::arshift (pop0
, wop1
);
4032 result
= wi::lshift (pop0
, wop1
);
4043 if (wi::neg_p (pop1
))
4049 result
= wi::lrotate (pop0
, pop1
);
4053 result
= wi::rrotate (pop0
, pop1
);
4064 return immed_wide_int_const (result
, mode
);
4072 /* Return a positive integer if X should sort after Y. The value
4073 returned is 1 if and only if X and Y are both regs. */
4076 simplify_plus_minus_op_data_cmp (rtx x
, rtx y
)
4080 result
= (commutative_operand_precedence (y
)
4081 - commutative_operand_precedence (x
));
4083 return result
+ result
;
4085 /* Group together equal REGs to do more simplification. */
4086 if (REG_P (x
) && REG_P (y
))
4087 return REGNO (x
) > REGNO (y
);
4092 /* Simplify and canonicalize a PLUS or MINUS, at least one of whose
4093 operands may be another PLUS or MINUS.
4095 Rather than test for specific case, we do this by a brute-force method
4096 and do all possible simplifications until no more changes occur. Then
4097 we rebuild the operation.
4099 May return NULL_RTX when no changes were made. */
4102 simplify_plus_minus (enum rtx_code code
, machine_mode mode
, rtx op0
,
4105 struct simplify_plus_minus_op_data
4112 int changed
, n_constants
, canonicalized
= 0;
4115 memset (ops
, 0, sizeof ops
);
4117 /* Set up the two operands and then expand them until nothing has been
4118 changed. If we run out of room in our array, give up; this should
4119 almost never happen. */
4124 ops
[1].neg
= (code
== MINUS
);
4131 for (i
= 0; i
< n_ops
; i
++)
4133 rtx this_op
= ops
[i
].op
;
4134 int this_neg
= ops
[i
].neg
;
4135 enum rtx_code this_code
= GET_CODE (this_op
);
4141 if (n_ops
== ARRAY_SIZE (ops
))
4144 ops
[n_ops
].op
= XEXP (this_op
, 1);
4145 ops
[n_ops
].neg
= (this_code
== MINUS
) ^ this_neg
;
4148 ops
[i
].op
= XEXP (this_op
, 0);
4150 /* If this operand was negated then we will potentially
4151 canonicalize the expression. Similarly if we don't
4152 place the operands adjacent we're re-ordering the
4153 expression and thus might be performing a
4154 canonicalization. Ignore register re-ordering.
4155 ??? It might be better to shuffle the ops array here,
4156 but then (plus (plus (A, B), plus (C, D))) wouldn't
4157 be seen as non-canonical. */
4160 && !(REG_P (ops
[i
].op
) && REG_P (ops
[n_ops
- 1].op
))))
4165 ops
[i
].op
= XEXP (this_op
, 0);
4166 ops
[i
].neg
= ! this_neg
;
4172 if (n_ops
!= ARRAY_SIZE (ops
)
4173 && GET_CODE (XEXP (this_op
, 0)) == PLUS
4174 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 0))
4175 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 1)))
4177 ops
[i
].op
= XEXP (XEXP (this_op
, 0), 0);
4178 ops
[n_ops
].op
= XEXP (XEXP (this_op
, 0), 1);
4179 ops
[n_ops
].neg
= this_neg
;
4187 /* ~a -> (-a - 1) */
4188 if (n_ops
!= ARRAY_SIZE (ops
))
4190 ops
[n_ops
].op
= CONSTM1_RTX (mode
);
4191 ops
[n_ops
++].neg
= this_neg
;
4192 ops
[i
].op
= XEXP (this_op
, 0);
4193 ops
[i
].neg
= !this_neg
;
4203 ops
[i
].op
= neg_const_int (mode
, this_op
);
4217 if (n_constants
> 1)
4220 gcc_assert (n_ops
>= 2);
4222 /* If we only have two operands, we can avoid the loops. */
4225 enum rtx_code code
= ops
[0].neg
|| ops
[1].neg
? MINUS
: PLUS
;
4228 /* Get the two operands. Be careful with the order, especially for
4229 the cases where code == MINUS. */
4230 if (ops
[0].neg
&& ops
[1].neg
)
4232 lhs
= gen_rtx_NEG (mode
, ops
[0].op
);
4235 else if (ops
[0].neg
)
4246 return simplify_const_binary_operation (code
, mode
, lhs
, rhs
);
4249 /* Now simplify each pair of operands until nothing changes. */
4252 /* Insertion sort is good enough for a small array. */
4253 for (i
= 1; i
< n_ops
; i
++)
4255 struct simplify_plus_minus_op_data save
;
4259 cmp
= simplify_plus_minus_op_data_cmp (ops
[j
].op
, ops
[i
].op
);
4262 /* Just swapping registers doesn't count as canonicalization. */
4268 ops
[j
+ 1] = ops
[j
];
4270 && simplify_plus_minus_op_data_cmp (ops
[j
].op
, save
.op
) > 0);
4275 for (i
= n_ops
- 1; i
> 0; i
--)
4276 for (j
= i
- 1; j
>= 0; j
--)
4278 rtx lhs
= ops
[j
].op
, rhs
= ops
[i
].op
;
4279 int lneg
= ops
[j
].neg
, rneg
= ops
[i
].neg
;
4281 if (lhs
!= 0 && rhs
!= 0)
4283 enum rtx_code ncode
= PLUS
;
4289 std::swap (lhs
, rhs
);
4291 else if (swap_commutative_operands_p (lhs
, rhs
))
4292 std::swap (lhs
, rhs
);
4294 if ((GET_CODE (lhs
) == CONST
|| CONST_INT_P (lhs
))
4295 && (GET_CODE (rhs
) == CONST
|| CONST_INT_P (rhs
)))
4297 rtx tem_lhs
, tem_rhs
;
4299 tem_lhs
= GET_CODE (lhs
) == CONST
? XEXP (lhs
, 0) : lhs
;
4300 tem_rhs
= GET_CODE (rhs
) == CONST
? XEXP (rhs
, 0) : rhs
;
4301 tem
= simplify_binary_operation (ncode
, mode
, tem_lhs
,
4304 if (tem
&& !CONSTANT_P (tem
))
4305 tem
= gen_rtx_CONST (GET_MODE (tem
), tem
);
4308 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
4312 /* Reject "simplifications" that just wrap the two
4313 arguments in a CONST. Failure to do so can result
4314 in infinite recursion with simplify_binary_operation
4315 when it calls us to simplify CONST operations.
4316 Also, if we find such a simplification, don't try
4317 any more combinations with this rhs: We must have
4318 something like symbol+offset, ie. one of the
4319 trivial CONST expressions we handle later. */
4320 if (GET_CODE (tem
) == CONST
4321 && GET_CODE (XEXP (tem
, 0)) == ncode
4322 && XEXP (XEXP (tem
, 0), 0) == lhs
4323 && XEXP (XEXP (tem
, 0), 1) == rhs
)
4326 if (GET_CODE (tem
) == NEG
)
4327 tem
= XEXP (tem
, 0), lneg
= !lneg
;
4328 if (CONST_INT_P (tem
) && lneg
)
4329 tem
= neg_const_int (mode
, tem
), lneg
= 0;
4333 ops
[j
].op
= NULL_RTX
;
4343 /* Pack all the operands to the lower-numbered entries. */
4344 for (i
= 0, j
= 0; j
< n_ops
; j
++)
4353 /* If nothing changed, fail. */
4357 /* Create (minus -C X) instead of (neg (const (plus X C))). */
4359 && CONST_INT_P (ops
[1].op
)
4360 && CONSTANT_P (ops
[0].op
)
4362 return gen_rtx_fmt_ee (MINUS
, mode
, ops
[1].op
, ops
[0].op
);
4364 /* We suppressed creation of trivial CONST expressions in the
4365 combination loop to avoid recursion. Create one manually now.
4366 The combination loop should have ensured that there is exactly
4367 one CONST_INT, and the sort will have ensured that it is last
4368 in the array and that any other constant will be next-to-last. */
4371 && CONST_INT_P (ops
[n_ops
- 1].op
)
4372 && CONSTANT_P (ops
[n_ops
- 2].op
))
4374 rtx value
= ops
[n_ops
- 1].op
;
4375 if (ops
[n_ops
- 1].neg
^ ops
[n_ops
- 2].neg
)
4376 value
= neg_const_int (mode
, value
);
4377 ops
[n_ops
- 2].op
= plus_constant (mode
, ops
[n_ops
- 2].op
,
4382 /* Put a non-negated operand first, if possible. */
4384 for (i
= 0; i
< n_ops
&& ops
[i
].neg
; i
++)
4387 ops
[0].op
= gen_rtx_NEG (mode
, ops
[0].op
);
4396 /* Now make the result by performing the requested operations. */
4398 for (i
= 1; i
< n_ops
; i
++)
4399 result
= gen_rtx_fmt_ee (ops
[i
].neg
? MINUS
: PLUS
,
4400 mode
, result
, ops
[i
].op
);
4405 /* Check whether an operand is suitable for calling simplify_plus_minus. */
4407 plus_minus_operand_p (const_rtx x
)
4409 return GET_CODE (x
) == PLUS
4410 || GET_CODE (x
) == MINUS
4411 || (GET_CODE (x
) == CONST
4412 && GET_CODE (XEXP (x
, 0)) == PLUS
4413 && CONSTANT_P (XEXP (XEXP (x
, 0), 0))
4414 && CONSTANT_P (XEXP (XEXP (x
, 0), 1)));
4417 /* Like simplify_binary_operation except used for relational operators.
4418 MODE is the mode of the result. If MODE is VOIDmode, both operands must
4419 not also be VOIDmode.
4421 CMP_MODE specifies in which mode the comparison is done in, so it is
4422 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
4423 the operands or, if both are VOIDmode, the operands are compared in
4424 "infinite precision". */
4426 simplify_relational_operation (enum rtx_code code
, machine_mode mode
,
4427 machine_mode cmp_mode
, rtx op0
, rtx op1
)
4429 rtx tem
, trueop0
, trueop1
;
4431 if (cmp_mode
== VOIDmode
)
4432 cmp_mode
= GET_MODE (op0
);
4433 if (cmp_mode
== VOIDmode
)
4434 cmp_mode
= GET_MODE (op1
);
4436 tem
= simplify_const_relational_operation (code
, cmp_mode
, op0
, op1
);
4439 if (SCALAR_FLOAT_MODE_P (mode
))
4441 if (tem
== const0_rtx
)
4442 return CONST0_RTX (mode
);
4443 #ifdef FLOAT_STORE_FLAG_VALUE
4445 REAL_VALUE_TYPE val
;
4446 val
= FLOAT_STORE_FLAG_VALUE (mode
);
4447 return CONST_DOUBLE_FROM_REAL_VALUE (val
, mode
);
4453 if (VECTOR_MODE_P (mode
))
4455 if (tem
== const0_rtx
)
4456 return CONST0_RTX (mode
);
4457 #ifdef VECTOR_STORE_FLAG_VALUE
4462 rtx val
= VECTOR_STORE_FLAG_VALUE (mode
);
4463 if (val
== NULL_RTX
)
4465 if (val
== const1_rtx
)
4466 return CONST1_RTX (mode
);
4468 units
= GET_MODE_NUNITS (mode
);
4469 v
= rtvec_alloc (units
);
4470 for (i
= 0; i
< units
; i
++)
4471 RTVEC_ELT (v
, i
) = val
;
4472 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
4482 /* For the following tests, ensure const0_rtx is op1. */
4483 if (swap_commutative_operands_p (op0
, op1
)
4484 || (op0
== const0_rtx
&& op1
!= const0_rtx
))
4485 std::swap (op0
, op1
), code
= swap_condition (code
);
4487 /* If op0 is a compare, extract the comparison arguments from it. */
4488 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4489 return simplify_gen_relational (code
, mode
, VOIDmode
,
4490 XEXP (op0
, 0), XEXP (op0
, 1));
4492 if (GET_MODE_CLASS (cmp_mode
) == MODE_CC
4496 trueop0
= avoid_constant_pool_reference (op0
);
4497 trueop1
= avoid_constant_pool_reference (op1
);
4498 return simplify_relational_operation_1 (code
, mode
, cmp_mode
,
4502 /* This part of simplify_relational_operation is only used when CMP_MODE
4503 is not in class MODE_CC (i.e. it is a real comparison).
4505 MODE is the mode of the result, while CMP_MODE specifies in which
4506 mode the comparison is done in, so it is the mode of the operands. */
4509 simplify_relational_operation_1 (enum rtx_code code
, machine_mode mode
,
4510 machine_mode cmp_mode
, rtx op0
, rtx op1
)
4512 enum rtx_code op0code
= GET_CODE (op0
);
4514 if (op1
== const0_rtx
&& COMPARISON_P (op0
))
4516 /* If op0 is a comparison, extract the comparison arguments
4520 if (GET_MODE (op0
) == mode
)
4521 return simplify_rtx (op0
);
4523 return simplify_gen_relational (GET_CODE (op0
), mode
, VOIDmode
,
4524 XEXP (op0
, 0), XEXP (op0
, 1));
4526 else if (code
== EQ
)
4528 enum rtx_code new_code
= reversed_comparison_code (op0
, NULL_RTX
);
4529 if (new_code
!= UNKNOWN
)
4530 return simplify_gen_relational (new_code
, mode
, VOIDmode
,
4531 XEXP (op0
, 0), XEXP (op0
, 1));
4535 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4536 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4537 if ((code
== LTU
|| code
== GEU
)
4538 && GET_CODE (op0
) == PLUS
4539 && CONST_INT_P (XEXP (op0
, 1))
4540 && (rtx_equal_p (op1
, XEXP (op0
, 0))
4541 || rtx_equal_p (op1
, XEXP (op0
, 1)))
4542 /* (LTU/GEU (PLUS a 0) 0) is not the same as (GEU/LTU a 0). */
4543 && XEXP (op0
, 1) != const0_rtx
)
4546 = simplify_gen_unary (NEG
, cmp_mode
, XEXP (op0
, 1), cmp_mode
);
4547 return simplify_gen_relational ((code
== LTU
? GEU
: LTU
), mode
,
4548 cmp_mode
, XEXP (op0
, 0), new_cmp
);
4551 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4552 if ((code
== LTU
|| code
== GEU
)
4553 && GET_CODE (op0
) == PLUS
4554 && rtx_equal_p (op1
, XEXP (op0
, 1))
4555 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4556 && !rtx_equal_p (op1
, XEXP (op0
, 0)))
4557 return simplify_gen_relational (code
, mode
, cmp_mode
, op0
,
4558 copy_rtx (XEXP (op0
, 0)));
4560 if (op1
== const0_rtx
)
4562 /* Canonicalize (GTU x 0) as (NE x 0). */
4564 return simplify_gen_relational (NE
, mode
, cmp_mode
, op0
, op1
);
4565 /* Canonicalize (LEU x 0) as (EQ x 0). */
4567 return simplify_gen_relational (EQ
, mode
, cmp_mode
, op0
, op1
);
4569 else if (op1
== const1_rtx
)
4574 /* Canonicalize (GE x 1) as (GT x 0). */
4575 return simplify_gen_relational (GT
, mode
, cmp_mode
,
4578 /* Canonicalize (GEU x 1) as (NE x 0). */
4579 return simplify_gen_relational (NE
, mode
, cmp_mode
,
4582 /* Canonicalize (LT x 1) as (LE x 0). */
4583 return simplify_gen_relational (LE
, mode
, cmp_mode
,
4586 /* Canonicalize (LTU x 1) as (EQ x 0). */
4587 return simplify_gen_relational (EQ
, mode
, cmp_mode
,
4593 else if (op1
== constm1_rtx
)
4595 /* Canonicalize (LE x -1) as (LT x 0). */
4597 return simplify_gen_relational (LT
, mode
, cmp_mode
, op0
, const0_rtx
);
4598 /* Canonicalize (GT x -1) as (GE x 0). */
4600 return simplify_gen_relational (GE
, mode
, cmp_mode
, op0
, const0_rtx
);
4603 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4604 if ((code
== EQ
|| code
== NE
)
4605 && (op0code
== PLUS
|| op0code
== MINUS
)
4607 && CONSTANT_P (XEXP (op0
, 1))
4608 && (INTEGRAL_MODE_P (cmp_mode
) || flag_unsafe_math_optimizations
))
4610 rtx x
= XEXP (op0
, 0);
4611 rtx c
= XEXP (op0
, 1);
4612 enum rtx_code invcode
= op0code
== PLUS
? MINUS
: PLUS
;
4613 rtx tem
= simplify_gen_binary (invcode
, cmp_mode
, op1
, c
);
4615 /* Detect an infinite recursive condition, where we oscillate at this
4616 simplification case between:
4617 A + B == C <---> C - B == A,
4618 where A, B, and C are all constants with non-simplifiable expressions,
4619 usually SYMBOL_REFs. */
4620 if (GET_CODE (tem
) == invcode
4622 && rtx_equal_p (c
, XEXP (tem
, 1)))
4625 return simplify_gen_relational (code
, mode
, cmp_mode
, x
, tem
);
4628 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4629 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4631 && op1
== const0_rtx
4632 && GET_MODE_CLASS (mode
) == MODE_INT
4633 && cmp_mode
!= VOIDmode
4634 /* ??? Work-around BImode bugs in the ia64 backend. */
4636 && cmp_mode
!= BImode
4637 && nonzero_bits (op0
, cmp_mode
) == 1
4638 && STORE_FLAG_VALUE
== 1)
4639 return GET_MODE_SIZE (mode
) > GET_MODE_SIZE (cmp_mode
)
4640 ? simplify_gen_unary (ZERO_EXTEND
, mode
, op0
, cmp_mode
)
4641 : lowpart_subreg (mode
, op0
, cmp_mode
);
4643 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4644 if ((code
== EQ
|| code
== NE
)
4645 && op1
== const0_rtx
4647 return simplify_gen_relational (code
, mode
, cmp_mode
,
4648 XEXP (op0
, 0), XEXP (op0
, 1));
4650 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4651 if ((code
== EQ
|| code
== NE
)
4653 && rtx_equal_p (XEXP (op0
, 0), op1
)
4654 && !side_effects_p (XEXP (op0
, 0)))
4655 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 1),
4658 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4659 if ((code
== EQ
|| code
== NE
)
4661 && rtx_equal_p (XEXP (op0
, 1), op1
)
4662 && !side_effects_p (XEXP (op0
, 1)))
4663 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4666 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4667 if ((code
== EQ
|| code
== NE
)
4669 && CONST_SCALAR_INT_P (op1
)
4670 && CONST_SCALAR_INT_P (XEXP (op0
, 1)))
4671 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4672 simplify_gen_binary (XOR
, cmp_mode
,
4673 XEXP (op0
, 1), op1
));
4675 /* (eq/ne (and x y) x) simplifies to (eq/ne (and (not y) x) 0), which
4676 can be implemented with a BICS instruction on some targets, or
4677 constant-folded if y is a constant. */
4678 if ((code
== EQ
|| code
== NE
)
4680 && rtx_equal_p (XEXP (op0
, 0), op1
)
4681 && !side_effects_p (op1
)
4682 && op1
!= CONST0_RTX (cmp_mode
))
4684 rtx not_y
= simplify_gen_unary (NOT
, cmp_mode
, XEXP (op0
, 1), cmp_mode
);
4685 rtx lhs
= simplify_gen_binary (AND
, cmp_mode
, not_y
, XEXP (op0
, 0));
4687 return simplify_gen_relational (code
, mode
, cmp_mode
, lhs
,
4688 CONST0_RTX (cmp_mode
));
4691 /* Likewise for (eq/ne (and x y) y). */
4692 if ((code
== EQ
|| code
== NE
)
4694 && rtx_equal_p (XEXP (op0
, 1), op1
)
4695 && !side_effects_p (op1
)
4696 && op1
!= CONST0_RTX (cmp_mode
))
4698 rtx not_x
= simplify_gen_unary (NOT
, cmp_mode
, XEXP (op0
, 0), cmp_mode
);
4699 rtx lhs
= simplify_gen_binary (AND
, cmp_mode
, not_x
, XEXP (op0
, 1));
4701 return simplify_gen_relational (code
, mode
, cmp_mode
, lhs
,
4702 CONST0_RTX (cmp_mode
));
4705 /* (eq/ne (bswap x) C1) simplifies to (eq/ne x C2) with C2 swapped. */
4706 if ((code
== EQ
|| code
== NE
)
4707 && GET_CODE (op0
) == BSWAP
4708 && CONST_SCALAR_INT_P (op1
))
4709 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4710 simplify_gen_unary (BSWAP
, cmp_mode
,
4713 /* (eq/ne (bswap x) (bswap y)) simplifies to (eq/ne x y). */
4714 if ((code
== EQ
|| code
== NE
)
4715 && GET_CODE (op0
) == BSWAP
4716 && GET_CODE (op1
) == BSWAP
)
4717 return simplify_gen_relational (code
, mode
, cmp_mode
,
4718 XEXP (op0
, 0), XEXP (op1
, 0));
4720 if (op0code
== POPCOUNT
&& op1
== const0_rtx
)
4726 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4727 return simplify_gen_relational (EQ
, mode
, GET_MODE (XEXP (op0
, 0)),
4728 XEXP (op0
, 0), const0_rtx
);
4733 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4734 return simplify_gen_relational (NE
, mode
, GET_MODE (XEXP (op0
, 0)),
4735 XEXP (op0
, 0), const0_rtx
);
4754 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4755 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4756 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4757 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4758 For floating-point comparisons, assume that the operands were ordered. */
4761 comparison_result (enum rtx_code code
, int known_results
)
4767 return (known_results
& CMP_EQ
) ? const_true_rtx
: const0_rtx
;
4770 return (known_results
& CMP_EQ
) ? const0_rtx
: const_true_rtx
;
4774 return (known_results
& CMP_LT
) ? const_true_rtx
: const0_rtx
;
4777 return (known_results
& CMP_LT
) ? const0_rtx
: const_true_rtx
;
4781 return (known_results
& CMP_GT
) ? const_true_rtx
: const0_rtx
;
4784 return (known_results
& CMP_GT
) ? const0_rtx
: const_true_rtx
;
4787 return (known_results
& CMP_LTU
) ? const_true_rtx
: const0_rtx
;
4789 return (known_results
& CMP_LTU
) ? const0_rtx
: const_true_rtx
;
4792 return (known_results
& CMP_GTU
) ? const_true_rtx
: const0_rtx
;
4794 return (known_results
& CMP_GTU
) ? const0_rtx
: const_true_rtx
;
4797 return const_true_rtx
;
4805 /* Check if the given comparison (done in the given MODE) is actually
4806 a tautology or a contradiction. If the mode is VOID_mode, the
4807 comparison is done in "infinite precision". If no simplification
4808 is possible, this function returns zero. Otherwise, it returns
4809 either const_true_rtx or const0_rtx. */
4812 simplify_const_relational_operation (enum rtx_code code
,
4820 gcc_assert (mode
!= VOIDmode
4821 || (GET_MODE (op0
) == VOIDmode
4822 && GET_MODE (op1
) == VOIDmode
));
4824 /* If op0 is a compare, extract the comparison arguments from it. */
4825 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4827 op1
= XEXP (op0
, 1);
4828 op0
= XEXP (op0
, 0);
4830 if (GET_MODE (op0
) != VOIDmode
)
4831 mode
= GET_MODE (op0
);
4832 else if (GET_MODE (op1
) != VOIDmode
)
4833 mode
= GET_MODE (op1
);
4838 /* We can't simplify MODE_CC values since we don't know what the
4839 actual comparison is. */
4840 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
|| CC0_P (op0
))
4843 /* Make sure the constant is second. */
4844 if (swap_commutative_operands_p (op0
, op1
))
4846 std::swap (op0
, op1
);
4847 code
= swap_condition (code
);
4850 trueop0
= avoid_constant_pool_reference (op0
);
4851 trueop1
= avoid_constant_pool_reference (op1
);
4853 /* For integer comparisons of A and B maybe we can simplify A - B and can
4854 then simplify a comparison of that with zero. If A and B are both either
4855 a register or a CONST_INT, this can't help; testing for these cases will
4856 prevent infinite recursion here and speed things up.
4858 We can only do this for EQ and NE comparisons as otherwise we may
4859 lose or introduce overflow which we cannot disregard as undefined as
4860 we do not know the signedness of the operation on either the left or
4861 the right hand side of the comparison. */
4863 if (INTEGRAL_MODE_P (mode
) && trueop1
!= const0_rtx
4864 && (code
== EQ
|| code
== NE
)
4865 && ! ((REG_P (op0
) || CONST_INT_P (trueop0
))
4866 && (REG_P (op1
) || CONST_INT_P (trueop1
)))
4867 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
4868 /* We cannot do this if tem is a nonzero address. */
4869 && ! nonzero_address_p (tem
))
4870 return simplify_const_relational_operation (signed_condition (code
),
4871 mode
, tem
, const0_rtx
);
4873 if (! HONOR_NANS (mode
) && code
== ORDERED
)
4874 return const_true_rtx
;
4876 if (! HONOR_NANS (mode
) && code
== UNORDERED
)
4879 /* For modes without NaNs, if the two operands are equal, we know the
4880 result except if they have side-effects. Even with NaNs we know
4881 the result of unordered comparisons and, if signaling NaNs are
4882 irrelevant, also the result of LT/GT/LTGT. */
4883 if ((! HONOR_NANS (trueop0
)
4884 || code
== UNEQ
|| code
== UNLE
|| code
== UNGE
4885 || ((code
== LT
|| code
== GT
|| code
== LTGT
)
4886 && ! HONOR_SNANS (trueop0
)))
4887 && rtx_equal_p (trueop0
, trueop1
)
4888 && ! side_effects_p (trueop0
))
4889 return comparison_result (code
, CMP_EQ
);
4891 /* If the operands are floating-point constants, see if we can fold
4893 if (CONST_DOUBLE_AS_FLOAT_P (trueop0
)
4894 && CONST_DOUBLE_AS_FLOAT_P (trueop1
)
4895 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0
)))
4897 REAL_VALUE_TYPE d0
, d1
;
4899 REAL_VALUE_FROM_CONST_DOUBLE (d0
, trueop0
);
4900 REAL_VALUE_FROM_CONST_DOUBLE (d1
, trueop1
);
4902 /* Comparisons are unordered iff at least one of the values is NaN. */
4903 if (REAL_VALUE_ISNAN (d0
) || REAL_VALUE_ISNAN (d1
))
4913 return const_true_rtx
;
4926 return comparison_result (code
,
4927 (REAL_VALUES_EQUAL (d0
, d1
) ? CMP_EQ
:
4928 REAL_VALUES_LESS (d0
, d1
) ? CMP_LT
: CMP_GT
));
4931 /* Otherwise, see if the operands are both integers. */
4932 if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
4933 && CONST_SCALAR_INT_P (trueop0
) && CONST_SCALAR_INT_P (trueop1
))
4935 /* It would be nice if we really had a mode here. However, the
4936 largest int representable on the target is as good as
4938 machine_mode cmode
= (mode
== VOIDmode
) ? MAX_MODE_INT
: mode
;
4939 rtx_mode_t ptrueop0
= std::make_pair (trueop0
, cmode
);
4940 rtx_mode_t ptrueop1
= std::make_pair (trueop1
, cmode
);
4942 if (wi::eq_p (ptrueop0
, ptrueop1
))
4943 return comparison_result (code
, CMP_EQ
);
4946 int cr
= wi::lts_p (ptrueop0
, ptrueop1
) ? CMP_LT
: CMP_GT
;
4947 cr
|= wi::ltu_p (ptrueop0
, ptrueop1
) ? CMP_LTU
: CMP_GTU
;
4948 return comparison_result (code
, cr
);
4952 /* Optimize comparisons with upper and lower bounds. */
4953 if (HWI_COMPUTABLE_MODE_P (mode
)
4954 && CONST_INT_P (trueop1
)
4955 && !side_effects_p (trueop0
))
4958 unsigned HOST_WIDE_INT nonzero
= nonzero_bits (trueop0
, mode
);
4959 HOST_WIDE_INT val
= INTVAL (trueop1
);
4960 HOST_WIDE_INT mmin
, mmax
;
4970 /* Get a reduced range if the sign bit is zero. */
4971 if (nonzero
<= (GET_MODE_MASK (mode
) >> 1))
4978 rtx mmin_rtx
, mmax_rtx
;
4979 get_mode_bounds (mode
, sign
, mode
, &mmin_rtx
, &mmax_rtx
);
4981 mmin
= INTVAL (mmin_rtx
);
4982 mmax
= INTVAL (mmax_rtx
);
4985 unsigned int sign_copies
= num_sign_bit_copies (trueop0
, mode
);
4987 mmin
>>= (sign_copies
- 1);
4988 mmax
>>= (sign_copies
- 1);
4994 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4996 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
4997 return const_true_rtx
;
4998 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
5003 return const_true_rtx
;
5008 /* x <= y is always true for y >= mmax, always false for y < mmin. */
5010 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
5011 return const_true_rtx
;
5012 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
5017 return const_true_rtx
;
5023 /* x == y is always false for y out of range. */
5024 if (val
< mmin
|| val
> mmax
)
5028 /* x > y is always false for y >= mmax, always true for y < mmin. */
5030 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
5032 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
5033 return const_true_rtx
;
5039 return const_true_rtx
;
5042 /* x < y is always false for y <= mmin, always true for y > mmax. */
5044 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
5046 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
5047 return const_true_rtx
;
5053 return const_true_rtx
;
5057 /* x != y is always true for y out of range. */
5058 if (val
< mmin
|| val
> mmax
)
5059 return const_true_rtx
;
5067 /* Optimize integer comparisons with zero. */
5068 if (trueop1
== const0_rtx
&& !side_effects_p (trueop0
))
5070 /* Some addresses are known to be nonzero. We don't know
5071 their sign, but equality comparisons are known. */
5072 if (nonzero_address_p (trueop0
))
5074 if (code
== EQ
|| code
== LEU
)
5076 if (code
== NE
|| code
== GTU
)
5077 return const_true_rtx
;
5080 /* See if the first operand is an IOR with a constant. If so, we
5081 may be able to determine the result of this comparison. */
5082 if (GET_CODE (op0
) == IOR
)
5084 rtx inner_const
= avoid_constant_pool_reference (XEXP (op0
, 1));
5085 if (CONST_INT_P (inner_const
) && inner_const
!= const0_rtx
)
5087 int sign_bitnum
= GET_MODE_PRECISION (mode
) - 1;
5088 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
5089 && (UINTVAL (inner_const
)
5090 & ((unsigned HOST_WIDE_INT
) 1
5100 return const_true_rtx
;
5104 return const_true_rtx
;
5118 /* Optimize comparison of ABS with zero. */
5119 if (trueop1
== CONST0_RTX (mode
) && !side_effects_p (trueop0
)
5120 && (GET_CODE (trueop0
) == ABS
5121 || (GET_CODE (trueop0
) == FLOAT_EXTEND
5122 && GET_CODE (XEXP (trueop0
, 0)) == ABS
)))
5127 /* Optimize abs(x) < 0.0. */
5128 if (!HONOR_SNANS (mode
)
5129 && (!INTEGRAL_MODE_P (mode
)
5130 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
5132 if (INTEGRAL_MODE_P (mode
)
5133 && (issue_strict_overflow_warning
5134 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
5135 warning (OPT_Wstrict_overflow
,
5136 ("assuming signed overflow does not occur when "
5137 "assuming abs (x) < 0 is false"));
5143 /* Optimize abs(x) >= 0.0. */
5144 if (!HONOR_NANS (mode
)
5145 && (!INTEGRAL_MODE_P (mode
)
5146 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
5148 if (INTEGRAL_MODE_P (mode
)
5149 && (issue_strict_overflow_warning
5150 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
5151 warning (OPT_Wstrict_overflow
,
5152 ("assuming signed overflow does not occur when "
5153 "assuming abs (x) >= 0 is true"));
5154 return const_true_rtx
;
5159 /* Optimize ! (abs(x) < 0.0). */
5160 return const_true_rtx
;
5170 /* Simplify CODE, an operation with result mode MODE and three operands,
5171 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
5172 a constant. Return 0 if no simplifications is possible. */
5175 simplify_ternary_operation (enum rtx_code code
, machine_mode mode
,
5176 machine_mode op0_mode
, rtx op0
, rtx op1
,
5179 unsigned int width
= GET_MODE_PRECISION (mode
);
5180 bool any_change
= false;
5183 /* VOIDmode means "infinite" precision. */
5185 width
= HOST_BITS_PER_WIDE_INT
;
5190 /* Simplify negations around the multiplication. */
5191 /* -a * -b + c => a * b + c. */
5192 if (GET_CODE (op0
) == NEG
)
5194 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
5196 op1
= tem
, op0
= XEXP (op0
, 0), any_change
= true;
5198 else if (GET_CODE (op1
) == NEG
)
5200 tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
5202 op0
= tem
, op1
= XEXP (op1
, 0), any_change
= true;
5205 /* Canonicalize the two multiplication operands. */
5206 /* a * -b + c => -b * a + c. */
5207 if (swap_commutative_operands_p (op0
, op1
))
5208 std::swap (op0
, op1
), any_change
= true;
5211 return gen_rtx_FMA (mode
, op0
, op1
, op2
);
5216 if (CONST_INT_P (op0
)
5217 && CONST_INT_P (op1
)
5218 && CONST_INT_P (op2
)
5219 && ((unsigned) INTVAL (op1
) + (unsigned) INTVAL (op2
) <= width
)
5220 && width
<= (unsigned) HOST_BITS_PER_WIDE_INT
)
5222 /* Extracting a bit-field from a constant */
5223 unsigned HOST_WIDE_INT val
= UINTVAL (op0
);
5224 HOST_WIDE_INT op1val
= INTVAL (op1
);
5225 HOST_WIDE_INT op2val
= INTVAL (op2
);
5226 if (BITS_BIG_ENDIAN
)
5227 val
>>= GET_MODE_PRECISION (op0_mode
) - op2val
- op1val
;
5231 if (HOST_BITS_PER_WIDE_INT
!= op1val
)
5233 /* First zero-extend. */
5234 val
&= ((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1;
5235 /* If desired, propagate sign bit. */
5236 if (code
== SIGN_EXTRACT
5237 && (val
& ((unsigned HOST_WIDE_INT
) 1 << (op1val
- 1)))
5239 val
|= ~ (((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1);
5242 return gen_int_mode (val
, mode
);
5247 if (CONST_INT_P (op0
))
5248 return op0
!= const0_rtx
? op1
: op2
;
5250 /* Convert c ? a : a into "a". */
5251 if (rtx_equal_p (op1
, op2
) && ! side_effects_p (op0
))
5254 /* Convert a != b ? a : b into "a". */
5255 if (GET_CODE (op0
) == NE
5256 && ! side_effects_p (op0
)
5257 && ! HONOR_NANS (mode
)
5258 && ! HONOR_SIGNED_ZEROS (mode
)
5259 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
5260 && rtx_equal_p (XEXP (op0
, 1), op2
))
5261 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5262 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5265 /* Convert a == b ? a : b into "b". */
5266 if (GET_CODE (op0
) == EQ
5267 && ! side_effects_p (op0
)
5268 && ! HONOR_NANS (mode
)
5269 && ! HONOR_SIGNED_ZEROS (mode
)
5270 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
5271 && rtx_equal_p (XEXP (op0
, 1), op2
))
5272 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5273 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5276 /* Convert (!c) != {0,...,0} ? a : b into
5277 c != {0,...,0} ? b : a for vector modes. */
5278 if (VECTOR_MODE_P (GET_MODE (op1
))
5279 && GET_CODE (op0
) == NE
5280 && GET_CODE (XEXP (op0
, 0)) == NOT
5281 && GET_CODE (XEXP (op0
, 1)) == CONST_VECTOR
)
5283 rtx cv
= XEXP (op0
, 1);
5284 int nunits
= CONST_VECTOR_NUNITS (cv
);
5286 for (int i
= 0; i
< nunits
; ++i
)
5287 if (CONST_VECTOR_ELT (cv
, i
) != const0_rtx
)
5294 rtx new_op0
= gen_rtx_NE (GET_MODE (op0
),
5295 XEXP (XEXP (op0
, 0), 0),
5297 rtx retval
= gen_rtx_IF_THEN_ELSE (mode
, new_op0
, op2
, op1
);
5302 if (COMPARISON_P (op0
) && ! side_effects_p (op0
))
5304 machine_mode cmp_mode
= (GET_MODE (XEXP (op0
, 0)) == VOIDmode
5305 ? GET_MODE (XEXP (op0
, 1))
5306 : GET_MODE (XEXP (op0
, 0)));
5309 /* Look for happy constants in op1 and op2. */
5310 if (CONST_INT_P (op1
) && CONST_INT_P (op2
))
5312 HOST_WIDE_INT t
= INTVAL (op1
);
5313 HOST_WIDE_INT f
= INTVAL (op2
);
5315 if (t
== STORE_FLAG_VALUE
&& f
== 0)
5316 code
= GET_CODE (op0
);
5317 else if (t
== 0 && f
== STORE_FLAG_VALUE
)
5320 tmp
= reversed_comparison_code (op0
, NULL_RTX
);
5328 return simplify_gen_relational (code
, mode
, cmp_mode
,
5329 XEXP (op0
, 0), XEXP (op0
, 1));
5332 if (cmp_mode
== VOIDmode
)
5333 cmp_mode
= op0_mode
;
5334 temp
= simplify_relational_operation (GET_CODE (op0
), op0_mode
,
5335 cmp_mode
, XEXP (op0
, 0),
5338 /* See if any simplifications were possible. */
5341 if (CONST_INT_P (temp
))
5342 return temp
== const0_rtx
? op2
: op1
;
5344 return gen_rtx_IF_THEN_ELSE (mode
, temp
, op1
, op2
);
5350 gcc_assert (GET_MODE (op0
) == mode
);
5351 gcc_assert (GET_MODE (op1
) == mode
);
5352 gcc_assert (VECTOR_MODE_P (mode
));
5353 trueop2
= avoid_constant_pool_reference (op2
);
5354 if (CONST_INT_P (trueop2
))
5356 int elt_size
= GET_MODE_SIZE (GET_MODE_INNER (mode
));
5357 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
5358 unsigned HOST_WIDE_INT sel
= UINTVAL (trueop2
);
5359 unsigned HOST_WIDE_INT mask
;
5360 if (n_elts
== HOST_BITS_PER_WIDE_INT
)
5363 mask
= ((unsigned HOST_WIDE_INT
) 1 << n_elts
) - 1;
5365 if (!(sel
& mask
) && !side_effects_p (op0
))
5367 if ((sel
& mask
) == mask
&& !side_effects_p (op1
))
5370 rtx trueop0
= avoid_constant_pool_reference (op0
);
5371 rtx trueop1
= avoid_constant_pool_reference (op1
);
5372 if (GET_CODE (trueop0
) == CONST_VECTOR
5373 && GET_CODE (trueop1
) == CONST_VECTOR
)
5375 rtvec v
= rtvec_alloc (n_elts
);
5378 for (i
= 0; i
< n_elts
; i
++)
5379 RTVEC_ELT (v
, i
) = ((sel
& ((unsigned HOST_WIDE_INT
) 1 << i
))
5380 ? CONST_VECTOR_ELT (trueop0
, i
)
5381 : CONST_VECTOR_ELT (trueop1
, i
));
5382 return gen_rtx_CONST_VECTOR (mode
, v
);
5385 /* Replace (vec_merge (vec_merge a b m) c n) with (vec_merge b c n)
5386 if no element from a appears in the result. */
5387 if (GET_CODE (op0
) == VEC_MERGE
)
5389 tem
= avoid_constant_pool_reference (XEXP (op0
, 2));
5390 if (CONST_INT_P (tem
))
5392 unsigned HOST_WIDE_INT sel0
= UINTVAL (tem
);
5393 if (!(sel
& sel0
& mask
) && !side_effects_p (XEXP (op0
, 0)))
5394 return simplify_gen_ternary (code
, mode
, mode
,
5395 XEXP (op0
, 1), op1
, op2
);
5396 if (!(sel
& ~sel0
& mask
) && !side_effects_p (XEXP (op0
, 1)))
5397 return simplify_gen_ternary (code
, mode
, mode
,
5398 XEXP (op0
, 0), op1
, op2
);
5401 if (GET_CODE (op1
) == VEC_MERGE
)
5403 tem
= avoid_constant_pool_reference (XEXP (op1
, 2));
5404 if (CONST_INT_P (tem
))
5406 unsigned HOST_WIDE_INT sel1
= UINTVAL (tem
);
5407 if (!(~sel
& sel1
& mask
) && !side_effects_p (XEXP (op1
, 0)))
5408 return simplify_gen_ternary (code
, mode
, mode
,
5409 op0
, XEXP (op1
, 1), op2
);
5410 if (!(~sel
& ~sel1
& mask
) && !side_effects_p (XEXP (op1
, 1)))
5411 return simplify_gen_ternary (code
, mode
, mode
,
5412 op0
, XEXP (op1
, 0), op2
);
5416 /* Replace (vec_merge (vec_duplicate (vec_select a parallel (i))) a 1 << i)
5418 if (GET_CODE (op0
) == VEC_DUPLICATE
5419 && GET_CODE (XEXP (op0
, 0)) == VEC_SELECT
5420 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == PARALLEL
5421 && mode_nunits
[GET_MODE (XEXP (op0
, 0))] == 1)
5423 tem
= XVECEXP ((XEXP (XEXP (op0
, 0), 1)), 0, 0);
5424 if (CONST_INT_P (tem
) && CONST_INT_P (op2
))
5426 if (XEXP (XEXP (op0
, 0), 0) == op1
5427 && UINTVAL (op2
) == HOST_WIDE_INT_1U
<< UINTVAL (tem
))
5433 if (rtx_equal_p (op0
, op1
)
5434 && !side_effects_p (op2
) && !side_effects_p (op1
))
5446 /* Evaluate a SUBREG of a CONST_INT or CONST_WIDE_INT or CONST_DOUBLE
5447 or CONST_FIXED or CONST_VECTOR, returning another CONST_INT or
5448 CONST_WIDE_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
5450 Works by unpacking OP into a collection of 8-bit values
5451 represented as a little-endian array of 'unsigned char', selecting by BYTE,
5452 and then repacking them again for OUTERMODE. */
5455 simplify_immed_subreg (machine_mode outermode
, rtx op
,
5456 machine_mode innermode
, unsigned int byte
)
5460 value_mask
= (1 << value_bit
) - 1
5462 unsigned char value
[MAX_BITSIZE_MODE_ANY_MODE
/ value_bit
];
5471 rtvec result_v
= NULL
;
5472 enum mode_class outer_class
;
5473 machine_mode outer_submode
;
5476 /* Some ports misuse CCmode. */
5477 if (GET_MODE_CLASS (outermode
) == MODE_CC
&& CONST_INT_P (op
))
5480 /* We have no way to represent a complex constant at the rtl level. */
5481 if (COMPLEX_MODE_P (outermode
))
5484 /* We support any size mode. */
5485 max_bitsize
= MAX (GET_MODE_BITSIZE (outermode
),
5486 GET_MODE_BITSIZE (innermode
));
5488 /* Unpack the value. */
5490 if (GET_CODE (op
) == CONST_VECTOR
)
5492 num_elem
= CONST_VECTOR_NUNITS (op
);
5493 elems
= &CONST_VECTOR_ELT (op
, 0);
5494 elem_bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (innermode
));
5500 elem_bitsize
= max_bitsize
;
5502 /* If this asserts, it is too complicated; reducing value_bit may help. */
5503 gcc_assert (BITS_PER_UNIT
% value_bit
== 0);
5504 /* I don't know how to handle endianness of sub-units. */
5505 gcc_assert (elem_bitsize
% BITS_PER_UNIT
== 0);
5507 for (elem
= 0; elem
< num_elem
; elem
++)
5510 rtx el
= elems
[elem
];
5512 /* Vectors are kept in target memory order. (This is probably
5515 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5516 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5518 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5519 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5520 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5521 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5522 vp
= value
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5525 switch (GET_CODE (el
))
5529 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5531 *vp
++ = INTVAL (el
) >> i
;
5532 /* CONST_INTs are always logically sign-extended. */
5533 for (; i
< elem_bitsize
; i
+= value_bit
)
5534 *vp
++ = INTVAL (el
) < 0 ? -1 : 0;
5537 case CONST_WIDE_INT
:
5539 rtx_mode_t val
= std::make_pair (el
, innermode
);
5540 unsigned char extend
= wi::sign_mask (val
);
5542 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5543 *vp
++ = wi::extract_uhwi (val
, i
, value_bit
);
5544 for (; i
< elem_bitsize
; i
+= value_bit
)
5550 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (el
) == VOIDmode
)
5552 unsigned char extend
= 0;
5553 /* If this triggers, someone should have generated a
5554 CONST_INT instead. */
5555 gcc_assert (elem_bitsize
> HOST_BITS_PER_WIDE_INT
);
5557 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5558 *vp
++ = CONST_DOUBLE_LOW (el
) >> i
;
5559 while (i
< HOST_BITS_PER_DOUBLE_INT
&& i
< elem_bitsize
)
5562 = CONST_DOUBLE_HIGH (el
) >> (i
- HOST_BITS_PER_WIDE_INT
);
5566 if (CONST_DOUBLE_HIGH (el
) >> (HOST_BITS_PER_WIDE_INT
- 1))
5568 for (; i
< elem_bitsize
; i
+= value_bit
)
5573 /* This is big enough for anything on the platform. */
5574 long tmp
[MAX_BITSIZE_MODE_ANY_MODE
/ 32];
5575 int bitsize
= GET_MODE_BITSIZE (GET_MODE (el
));
5577 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el
)));
5578 gcc_assert (bitsize
<= elem_bitsize
);
5579 gcc_assert (bitsize
% value_bit
== 0);
5581 real_to_target (tmp
, CONST_DOUBLE_REAL_VALUE (el
),
5584 /* real_to_target produces its result in words affected by
5585 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5586 and use WORDS_BIG_ENDIAN instead; see the documentation
5587 of SUBREG in rtl.texi. */
5588 for (i
= 0; i
< bitsize
; i
+= value_bit
)
5591 if (WORDS_BIG_ENDIAN
)
5592 ibase
= bitsize
- 1 - i
;
5595 *vp
++ = tmp
[ibase
/ 32] >> i
% 32;
5598 /* It shouldn't matter what's done here, so fill it with
5600 for (; i
< elem_bitsize
; i
+= value_bit
)
5606 if (elem_bitsize
<= HOST_BITS_PER_WIDE_INT
)
5608 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5609 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5613 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5614 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5615 for (; i
< HOST_BITS_PER_DOUBLE_INT
&& i
< elem_bitsize
;
5617 *vp
++ = CONST_FIXED_VALUE_HIGH (el
)
5618 >> (i
- HOST_BITS_PER_WIDE_INT
);
5619 for (; i
< elem_bitsize
; i
+= value_bit
)
5629 /* Now, pick the right byte to start with. */
5630 /* Renumber BYTE so that the least-significant byte is byte 0. A special
5631 case is paradoxical SUBREGs, which shouldn't be adjusted since they
5632 will already have offset 0. */
5633 if (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
))
5635 unsigned ibyte
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
)
5637 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5638 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5639 byte
= (subword_byte
% UNITS_PER_WORD
5640 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5643 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
5644 so if it's become negative it will instead be very large.) */
5645 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
5647 /* Convert from bytes to chunks of size value_bit. */
5648 value_start
= byte
* (BITS_PER_UNIT
/ value_bit
);
5650 /* Re-pack the value. */
5652 if (VECTOR_MODE_P (outermode
))
5654 num_elem
= GET_MODE_NUNITS (outermode
);
5655 result_v
= rtvec_alloc (num_elem
);
5656 elems
= &RTVEC_ELT (result_v
, 0);
5657 outer_submode
= GET_MODE_INNER (outermode
);
5663 outer_submode
= outermode
;
5666 outer_class
= GET_MODE_CLASS (outer_submode
);
5667 elem_bitsize
= GET_MODE_BITSIZE (outer_submode
);
5669 gcc_assert (elem_bitsize
% value_bit
== 0);
5670 gcc_assert (elem_bitsize
+ value_start
* value_bit
<= max_bitsize
);
5672 for (elem
= 0; elem
< num_elem
; elem
++)
5676 /* Vectors are stored in target memory order. (This is probably
5679 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5680 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5682 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5683 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5684 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5685 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5686 vp
= value
+ value_start
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5689 switch (outer_class
)
5692 case MODE_PARTIAL_INT
:
5697 = (GET_MODE_BITSIZE (outer_submode
) + HOST_BITS_PER_WIDE_INT
- 1)
5698 / HOST_BITS_PER_WIDE_INT
;
5699 HOST_WIDE_INT tmp
[MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_WIDE_INT
];
5702 if (GET_MODE_PRECISION (outer_submode
) > MAX_BITSIZE_MODE_ANY_INT
)
5704 for (u
= 0; u
< units
; u
++)
5706 unsigned HOST_WIDE_INT buf
= 0;
5708 i
< HOST_BITS_PER_WIDE_INT
&& base
+ i
< elem_bitsize
;
5710 buf
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5713 base
+= HOST_BITS_PER_WIDE_INT
;
5715 r
= wide_int::from_array (tmp
, units
,
5716 GET_MODE_PRECISION (outer_submode
));
5717 #if TARGET_SUPPORTS_WIDE_INT == 0
5718 /* Make sure r will fit into CONST_INT or CONST_DOUBLE. */
5719 if (wi::min_precision (r
, SIGNED
) > HOST_BITS_PER_DOUBLE_INT
)
5722 elems
[elem
] = immed_wide_int_const (r
, outer_submode
);
5727 case MODE_DECIMAL_FLOAT
:
5730 long tmp
[MAX_BITSIZE_MODE_ANY_MODE
/ 32];
5732 /* real_from_target wants its input in words affected by
5733 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5734 and use WORDS_BIG_ENDIAN instead; see the documentation
5735 of SUBREG in rtl.texi. */
5736 for (i
= 0; i
< max_bitsize
/ 32; i
++)
5738 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5741 if (WORDS_BIG_ENDIAN
)
5742 ibase
= elem_bitsize
- 1 - i
;
5745 tmp
[ibase
/ 32] |= (*vp
++ & value_mask
) << i
% 32;
5748 real_from_target (&r
, tmp
, outer_submode
);
5749 elems
[elem
] = CONST_DOUBLE_FROM_REAL_VALUE (r
, outer_submode
);
5761 f
.mode
= outer_submode
;
5764 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5766 f
.data
.low
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5767 for (; i
< elem_bitsize
; i
+= value_bit
)
5768 f
.data
.high
|= ((unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
)
5769 << (i
- HOST_BITS_PER_WIDE_INT
));
5771 elems
[elem
] = CONST_FIXED_FROM_FIXED_VALUE (f
, outer_submode
);
5779 if (VECTOR_MODE_P (outermode
))
5780 return gen_rtx_CONST_VECTOR (outermode
, result_v
);
5785 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5786 Return 0 if no simplifications are possible. */
5788 simplify_subreg (machine_mode outermode
, rtx op
,
5789 machine_mode innermode
, unsigned int byte
)
5791 /* Little bit of sanity checking. */
5792 gcc_assert (innermode
!= VOIDmode
);
5793 gcc_assert (outermode
!= VOIDmode
);
5794 gcc_assert (innermode
!= BLKmode
);
5795 gcc_assert (outermode
!= BLKmode
);
5797 gcc_assert (GET_MODE (op
) == innermode
5798 || GET_MODE (op
) == VOIDmode
);
5800 if ((byte
% GET_MODE_SIZE (outermode
)) != 0)
5803 if (byte
>= GET_MODE_SIZE (innermode
))
5806 if (outermode
== innermode
&& !byte
)
5809 if (CONST_SCALAR_INT_P (op
)
5810 || CONST_DOUBLE_AS_FLOAT_P (op
)
5811 || GET_CODE (op
) == CONST_FIXED
5812 || GET_CODE (op
) == CONST_VECTOR
)
5813 return simplify_immed_subreg (outermode
, op
, innermode
, byte
);
5815 /* Changing mode twice with SUBREG => just change it once,
5816 or not at all if changing back op starting mode. */
5817 if (GET_CODE (op
) == SUBREG
)
5819 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
5820 int final_offset
= byte
+ SUBREG_BYTE (op
);
5823 if (outermode
== innermostmode
5824 && byte
== 0 && SUBREG_BYTE (op
) == 0)
5825 return SUBREG_REG (op
);
5827 /* The SUBREG_BYTE represents offset, as if the value were stored
5828 in memory. Irritating exception is paradoxical subreg, where
5829 we define SUBREG_BYTE to be 0. On big endian machines, this
5830 value should be negative. For a moment, undo this exception. */
5831 if (byte
== 0 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5833 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
5834 if (WORDS_BIG_ENDIAN
)
5835 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5836 if (BYTES_BIG_ENDIAN
)
5837 final_offset
+= difference
% UNITS_PER_WORD
;
5839 if (SUBREG_BYTE (op
) == 0
5840 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
5842 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
5843 if (WORDS_BIG_ENDIAN
)
5844 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5845 if (BYTES_BIG_ENDIAN
)
5846 final_offset
+= difference
% UNITS_PER_WORD
;
5849 /* See whether resulting subreg will be paradoxical. */
5850 if (GET_MODE_SIZE (innermostmode
) > GET_MODE_SIZE (outermode
))
5852 /* In nonparadoxical subregs we can't handle negative offsets. */
5853 if (final_offset
< 0)
5855 /* Bail out in case resulting subreg would be incorrect. */
5856 if (final_offset
% GET_MODE_SIZE (outermode
)
5857 || (unsigned) final_offset
>= GET_MODE_SIZE (innermostmode
))
5863 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (outermode
));
5865 /* In paradoxical subreg, see if we are still looking on lower part.
5866 If so, our SUBREG_BYTE will be 0. */
5867 if (WORDS_BIG_ENDIAN
)
5868 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5869 if (BYTES_BIG_ENDIAN
)
5870 offset
+= difference
% UNITS_PER_WORD
;
5871 if (offset
== final_offset
)
5877 /* Recurse for further possible simplifications. */
5878 newx
= simplify_subreg (outermode
, SUBREG_REG (op
), innermostmode
,
5882 if (validate_subreg (outermode
, innermostmode
,
5883 SUBREG_REG (op
), final_offset
))
5885 newx
= gen_rtx_SUBREG (outermode
, SUBREG_REG (op
), final_offset
);
5886 if (SUBREG_PROMOTED_VAR_P (op
)
5887 && SUBREG_PROMOTED_SIGN (op
) >= 0
5888 && GET_MODE_CLASS (outermode
) == MODE_INT
5889 && IN_RANGE (GET_MODE_SIZE (outermode
),
5890 GET_MODE_SIZE (innermode
),
5891 GET_MODE_SIZE (innermostmode
))
5892 && subreg_lowpart_p (newx
))
5894 SUBREG_PROMOTED_VAR_P (newx
) = 1;
5895 SUBREG_PROMOTED_SET (newx
, SUBREG_PROMOTED_GET (op
));
5902 /* SUBREG of a hard register => just change the register number
5903 and/or mode. If the hard register is not valid in that mode,
5904 suppress this simplification. If the hard register is the stack,
5905 frame, or argument pointer, leave this as a SUBREG. */
5907 if (REG_P (op
) && HARD_REGISTER_P (op
))
5909 unsigned int regno
, final_regno
;
5912 final_regno
= simplify_subreg_regno (regno
, innermode
, byte
, outermode
);
5913 if (HARD_REGISTER_NUM_P (final_regno
))
5916 int final_offset
= byte
;
5918 /* Adjust offset for paradoxical subregs. */
5920 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5922 int difference
= (GET_MODE_SIZE (innermode
)
5923 - GET_MODE_SIZE (outermode
));
5924 if (WORDS_BIG_ENDIAN
)
5925 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5926 if (BYTES_BIG_ENDIAN
)
5927 final_offset
+= difference
% UNITS_PER_WORD
;
5930 x
= gen_rtx_REG_offset (op
, outermode
, final_regno
, final_offset
);
5932 /* Propagate original regno. We don't have any way to specify
5933 the offset inside original regno, so do so only for lowpart.
5934 The information is used only by alias analysis that can not
5935 grog partial register anyway. */
5937 if (subreg_lowpart_offset (outermode
, innermode
) == byte
)
5938 ORIGINAL_REGNO (x
) = ORIGINAL_REGNO (op
);
5943 /* If we have a SUBREG of a register that we are replacing and we are
5944 replacing it with a MEM, make a new MEM and try replacing the
5945 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5946 or if we would be widening it. */
5949 && ! mode_dependent_address_p (XEXP (op
, 0), MEM_ADDR_SPACE (op
))
5950 /* Allow splitting of volatile memory references in case we don't
5951 have instruction to move the whole thing. */
5952 && (! MEM_VOLATILE_P (op
)
5953 || ! have_insn_for (SET
, innermode
))
5954 && GET_MODE_SIZE (outermode
) <= GET_MODE_SIZE (GET_MODE (op
)))
5955 return adjust_address_nv (op
, outermode
, byte
);
5957 /* Handle complex values represented as CONCAT
5958 of real and imaginary part. */
5959 if (GET_CODE (op
) == CONCAT
)
5961 unsigned int part_size
, final_offset
;
5964 part_size
= GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op
, 0)));
5965 if (byte
< part_size
)
5967 part
= XEXP (op
, 0);
5968 final_offset
= byte
;
5972 part
= XEXP (op
, 1);
5973 final_offset
= byte
- part_size
;
5976 if (final_offset
+ GET_MODE_SIZE (outermode
) > part_size
)
5979 res
= simplify_subreg (outermode
, part
, GET_MODE (part
), final_offset
);
5982 if (validate_subreg (outermode
, GET_MODE (part
), part
, final_offset
))
5983 return gen_rtx_SUBREG (outermode
, part
, final_offset
);
5987 /* A SUBREG resulting from a zero extension may fold to zero if
5988 it extracts higher bits that the ZERO_EXTEND's source bits. */
5989 if (GET_CODE (op
) == ZERO_EXTEND
&& SCALAR_INT_MODE_P (innermode
))
5991 unsigned int bitpos
= subreg_lsb_1 (outermode
, innermode
, byte
);
5992 if (bitpos
>= GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0))))
5993 return CONST0_RTX (outermode
);
5996 if (SCALAR_INT_MODE_P (outermode
)
5997 && SCALAR_INT_MODE_P (innermode
)
5998 && GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
)
5999 && byte
== subreg_lowpart_offset (outermode
, innermode
))
6001 rtx tem
= simplify_truncation (outermode
, op
, innermode
);
6009 /* Make a SUBREG operation or equivalent if it folds. */
6012 simplify_gen_subreg (machine_mode outermode
, rtx op
,
6013 machine_mode innermode
, unsigned int byte
)
6017 newx
= simplify_subreg (outermode
, op
, innermode
, byte
);
6021 if (GET_CODE (op
) == SUBREG
6022 || GET_CODE (op
) == CONCAT
6023 || GET_MODE (op
) == VOIDmode
)
6026 if (validate_subreg (outermode
, innermode
, op
, byte
))
6027 return gen_rtx_SUBREG (outermode
, op
, byte
);
6032 /* Simplify X, an rtx expression.
6034 Return the simplified expression or NULL if no simplifications
6037 This is the preferred entry point into the simplification routines;
6038 however, we still allow passes to call the more specific routines.
6040 Right now GCC has three (yes, three) major bodies of RTL simplification
6041 code that need to be unified.
6043 1. fold_rtx in cse.c. This code uses various CSE specific
6044 information to aid in RTL simplification.
6046 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
6047 it uses combine specific information to aid in RTL
6050 3. The routines in this file.
6053 Long term we want to only have one body of simplification code; to
6054 get to that state I recommend the following steps:
6056 1. Pour over fold_rtx & simplify_rtx and move any simplifications
6057 which are not pass dependent state into these routines.
6059 2. As code is moved by #1, change fold_rtx & simplify_rtx to
6060 use this routine whenever possible.
6062 3. Allow for pass dependent state to be provided to these
6063 routines and add simplifications based on the pass dependent
6064 state. Remove code from cse.c & combine.c that becomes
6067 It will take time, but ultimately the compiler will be easier to
6068 maintain and improve. It's totally silly that when we add a
6069 simplification that it needs to be added to 4 places (3 for RTL
6070 simplification and 1 for tree simplification. */
6073 simplify_rtx (const_rtx x
)
6075 const enum rtx_code code
= GET_CODE (x
);
6076 const machine_mode mode
= GET_MODE (x
);
6078 switch (GET_RTX_CLASS (code
))
6081 return simplify_unary_operation (code
, mode
,
6082 XEXP (x
, 0), GET_MODE (XEXP (x
, 0)));
6083 case RTX_COMM_ARITH
:
6084 if (swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
6085 return simplify_gen_binary (code
, mode
, XEXP (x
, 1), XEXP (x
, 0));
6087 /* Fall through.... */
6090 return simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6093 case RTX_BITFIELD_OPS
:
6094 return simplify_ternary_operation (code
, mode
, GET_MODE (XEXP (x
, 0)),
6095 XEXP (x
, 0), XEXP (x
, 1),
6099 case RTX_COMM_COMPARE
:
6100 return simplify_relational_operation (code
, mode
,
6101 ((GET_MODE (XEXP (x
, 0))
6103 ? GET_MODE (XEXP (x
, 0))
6104 : GET_MODE (XEXP (x
, 1))),
6110 return simplify_subreg (mode
, SUBREG_REG (x
),
6111 GET_MODE (SUBREG_REG (x
)),
6118 /* Convert (lo_sum (high FOO) FOO) to FOO. */
6119 if (GET_CODE (XEXP (x
, 0)) == HIGH
6120 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))