* gcc.dg/vmx/unpack.c: Use dg-additional-options rather than
[official-gcc.git] / gcc / graphite-interchange.c
blob6b14955ced75325693191bc62a4c624ee10e069e
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009-2015 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
26 #ifdef HAVE_isl
27 /* Workaround for GMP 5.1.3 bug, see PR56019. */
28 #include <stddef.h>
30 #include <isl/constraint.h>
31 #include <isl/aff.h>
32 #include <isl/set.h>
33 #include <isl/map.h>
34 #include <isl/union_map.h>
35 #include <isl/ilp.h>
36 #include <isl/val.h>
38 /* Since ISL-0.13, the extern is in val_gmp.h. */
39 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
40 extern "C" {
41 #endif
42 #include <isl/val_gmp.h>
43 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
45 #endif
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "cfghooks.h"
51 #include "tree.h"
52 #include "gimple.h"
53 #include "fold-const.h"
54 #include "gimple-iterator.h"
55 #include "tree-ssa-loop.h"
56 #include "dumpfile.h"
57 #include "cfgloop.h"
58 #include "tree-data-ref.h"
59 #include "graphite-poly.h"
62 /* XXX isl rewrite following comment */
63 /* Builds a linear expression, of dimension DIM, representing PDR's
64 memory access:
66 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
68 For an array A[10][20] with two subscript locations s0 and s1, the
69 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
70 corresponds to a memory stride of 20.
72 OFFSET is a number of dimensions to prepend before the
73 subscript dimensions: s_0, s_1, ..., s_n.
75 Thus, the final linear expression has the following format:
76 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
77 where the expression itself is:
78 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
80 static isl_constraint *
81 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
83 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
84 isl_constraint *res = isl_equality_alloc (ls);
85 isl_val *size = isl_val_int_from_ui (isl_map_get_ctx (map), 1);
87 unsigned nsubs = isl_set_dim (pdr->subscript_sizes, isl_dim_set);
88 /* -1 for the already included L dimension. */
89 unsigned offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
90 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
91 /* Go through all subscripts from last to first. The dimension "i=0"
92 is the alias set, ignore it. */
93 for (int i = nsubs - 1; i >= 1; i--)
95 isl_aff *extract_dim;
96 res = isl_constraint_set_coefficient_val (res, isl_dim_out, offset + i,
97 isl_val_copy (size));
98 isl_space *dc = isl_set_get_space (pdr->subscript_sizes);
99 extract_dim = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
100 extract_dim = isl_aff_set_coefficient_si (extract_dim, isl_dim_in, i, 1);
101 isl_val *max = isl_set_max_val (pdr->subscript_sizes, extract_dim);
102 isl_aff_free (extract_dim);
104 /* The result is NULL in case of an error, the optimal value in case there
105 is one, negative infinity or infinity if the problem is unbounded and
106 NaN if the problem is empty. */
107 gcc_assert (max);
109 /* When one of the dimensions cannot be computed, we cannot build the size
110 of the array for any outer dimensions. */
111 if (!isl_val_is_int (max))
113 isl_val_free (max);
114 break;
116 size = isl_val_mul (size, max);
119 isl_val_free (size);
121 return res;
124 /* Set STRIDE to the stride of PDR in memory by advancing by one in
125 the loop at DEPTH. */
127 static void
128 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
130 poly_bb_p pbb = PDR_PBB (pdr);
131 isl_map *map;
132 isl_set *set;
133 isl_aff *aff;
134 isl_space *dc;
135 isl_constraint *lma, *c;
136 isl_val *islstride;
137 graphite_dim_t time_depth;
138 unsigned offset, nt;
139 unsigned i;
140 /* XXX isl rewrite following comments. */
141 /* Builds a partial difference equations and inserts them
142 into pointset powerset polyhedron P. Polyhedron is assumed
143 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
145 TIME_DEPTH is the time dimension w.r.t. which we are
146 differentiating.
147 OFFSET represents the number of dimensions between
148 columns t_{time_depth} and t'_{time_depth}.
149 DIM_SCTR is the number of scattering dimensions. It is
150 essentially the dimensionality of the T vector.
152 The following equations are inserted into the polyhedron P:
153 | t_1 = t_1'
154 | ...
155 | t_{time_depth-1} = t'_{time_depth-1}
156 | t_{time_depth} = t'_{time_depth} + 1
157 | t_{time_depth+1} = t'_{time_depth + 1}
158 | ...
159 | t_{dim_sctr} = t'_{dim_sctr}. */
161 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
162 This is the core part of this alogrithm, since this
163 constraint asks for the memory access stride (difference)
164 between two consecutive points in time dimensions. */
166 /* Add equalities:
167 | t1 = t1'
168 | ...
169 | t_{time_depth-1} = t'_{time_depth-1}
170 | t_{time_depth+1} = t'_{time_depth+1}
171 | ...
172 | t_{dim_sctr} = t'_{dim_sctr}
174 This means that all the time dimensions are equal except for
175 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
176 step. More to this: we should be careful not to add equalities
177 to the 'coupled' dimensions, which happens when the one dimension
178 is stripmined dimension, and the other dimension corresponds
179 to the point loop inside stripmined dimension. */
181 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
182 ??? [P] not used for PDRs?
183 pdr->subscript_sizes: [a,S1..nb_subscript]
184 pbb->domain: [P1..nb_param,I1..nb_domain]
185 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
186 [T] includes local vars (currently unused)
188 First we create [P,I] -> [T,a,S]. */
190 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
191 isl_map_copy (pdr->accesses));
192 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
193 map = isl_map_add_dims (map, isl_dim_out, 1);
194 /* Build a constraint for "lma[S] - L == 0", effectively calculating
195 L in terms of subscripts. */
196 lma = build_linearized_memory_access (map, pdr);
197 /* And add it to the map, so we now have:
198 [P,I] -> [T,a,S,L] : lma([S]) == L. */
199 map = isl_map_add_constraint (map, lma);
201 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
202 map = isl_map_flat_product (map, isl_map_copy (map));
204 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
205 force L' to be the linear address at T[time_depth] + 1. */
206 time_depth = psct_dynamic_dim (pbb, depth);
207 /* Length of [a,S] plus [L] ... */
208 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
209 /* ... plus [T]. */
210 offset += isl_map_dim (pbb->transformed, isl_dim_out);
212 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
213 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
214 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
215 offset + time_depth, -1);
216 c = isl_constraint_set_constant_si (c, 1);
217 map = isl_map_add_constraint (map, c);
219 /* Now we equate most of the T/T' elements (making PITaSL nearly
220 the same is (PITaSL)', except for one dimension, namely for 'depth'
221 (an index into [I]), after translating to index into [T]. Take care
222 to not produce an empty map, which indicates we wanted to equate
223 two dimensions that are already coupled via the above time_depth
224 dimension. Happens with strip mining where several scatter dimension
225 are interdependend. */
226 /* Length of [T]. */
227 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
228 for (i = 0; i < nt; i++)
229 if (i != time_depth)
231 isl_map *temp = isl_map_equate (isl_map_copy (map),
232 isl_dim_out, i,
233 isl_dim_out, offset + i);
234 if (isl_map_is_empty (temp))
235 isl_map_free (temp);
236 else
238 isl_map_free (map);
239 map = temp;
243 /* Now maximize the expression L' - L. */
244 set = isl_map_range (map);
245 dc = isl_set_get_space (set);
246 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
247 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
248 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
249 islstride = isl_set_max_val (set, aff);
250 isl_val_get_num_gmp (islstride, stride);
251 isl_val_free (islstride);
252 isl_aff_free (aff);
253 isl_set_free (set);
255 if (dump_file && (dump_flags & TDF_DETAILS))
257 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
258 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
262 /* Sets STRIDES to the sum of all the strides of the data references
263 accessed in LOOP at DEPTH. */
265 static void
266 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
268 int i, j;
269 lst_p l;
270 poly_dr_p pdr;
271 mpz_t s, n;
273 mpz_init (s);
274 mpz_init (n);
276 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
277 if (LST_LOOP_P (l))
278 memory_strides_in_loop_1 (l, depth, strides);
279 else
280 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
282 pdr_stride_in_loop (s, depth, pdr);
283 mpz_set_si (n, PDR_NB_REFS (pdr));
284 mpz_mul (s, s, n);
285 mpz_add (strides, strides, s);
288 mpz_clear (s);
289 mpz_clear (n);
292 /* Sets STRIDES to the sum of all the strides of the data references
293 accessed in LOOP at DEPTH. */
295 static void
296 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
298 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
300 mpz_set_si (strides, 0);
301 memory_strides_in_loop_1 (loop, depth, strides);
303 else
304 mpz_set (strides, loop->memory_strides);
307 /* Return true when the interchange of loops LOOP1 and LOOP2 is
308 profitable.
310 Example:
312 | int a[100][100];
314 | int
315 | foo (int N)
317 | int j;
318 | int i;
320 | for (i = 0; i < N; i++)
321 | for (j = 0; j < N; j++)
322 | a[j][2 * i] += 1;
324 | return a[N][12];
327 The data access A[j][i] is described like this:
329 | i j N a s0 s1 1
330 | 0 0 0 1 0 0 -5 = 0
331 | 0 -1 0 0 1 0 0 = 0
332 |-2 0 0 0 0 1 0 = 0
333 | 0 0 0 0 1 0 0 >= 0
334 | 0 0 0 0 0 1 0 >= 0
335 | 0 0 0 0 -1 0 100 >= 0
336 | 0 0 0 0 0 -1 100 >= 0
338 The linearized memory access L to A[100][100] is:
340 | i j N a s0 s1 1
341 | 0 0 0 0 100 1 0
343 TODO: the shown format is not valid as it does not show the fact
344 that the iteration domain "i j" is transformed using the scattering.
346 Next, to measure the impact of iterating once in loop "i", we build
347 a maximization problem: first, we add to DR accesses the dimensions
348 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
349 L1 and L2 are the linearized memory access functions.
351 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
352 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
353 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
354 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
355 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
356 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
357 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
358 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
359 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
361 Then, we generate the polyhedron P2 by interchanging the dimensions
362 (s0, s2), (s1, s3), (L1, L2), (k, i)
364 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
365 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
366 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
367 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
368 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
369 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
370 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
371 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
372 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
374 then we add to P2 the equality k = i + 1:
376 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
378 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
380 Similarly, to determine the impact of one iteration on loop "j", we
381 interchange (k, j), we add "k = j + 1", and we compute D2 the
382 maximal value of the difference.
384 Finally, the profitability test is D1 < D2: if in the outer loop
385 the strides are smaller than in the inner loop, then it is
386 profitable to interchange the loops at DEPTH1 and DEPTH2. */
388 static bool
389 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
391 mpz_t d1, d2;
392 bool res;
394 gcc_assert (depth1 < depth2);
396 mpz_init (d1);
397 mpz_init (d2);
399 memory_strides_in_loop (nest, depth1, d1);
400 memory_strides_in_loop (nest, depth2, d2);
402 res = mpz_cmp (d1, d2) < 0;
404 mpz_clear (d1);
405 mpz_clear (d2);
407 return res;
410 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
411 scattering and assigns the resulting polyhedron to the transformed
412 scattering. */
414 static void
415 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
416 poly_bb_p pbb)
418 unsigned i;
419 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
420 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
421 isl_space *d = isl_map_get_space (pbb->transformed);
422 isl_space *d1 = isl_space_range (d);
423 unsigned n = isl_space_dim (d1, isl_dim_out);
424 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
425 isl_map *x = isl_map_universe (d2);
427 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
428 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
430 for (i = 0; i < n; i++)
431 if (i != dim1 && i != dim2)
432 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
434 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
437 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
438 the statements below LST. */
440 static void
441 lst_apply_interchange (lst_p lst, int depth1, int depth2)
443 if (!lst)
444 return;
446 if (LST_LOOP_P (lst))
448 int i;
449 lst_p l;
451 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
452 lst_apply_interchange (l, depth1, depth2);
454 else
455 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
458 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
459 perfect: i.e. there are no sequence of statements. */
461 static bool
462 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
464 if (loop1 == loop2)
465 return true;
467 if (!LST_LOOP_P (loop1))
468 return false;
470 return LST_SEQ (loop1).length () == 1
471 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
474 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
475 nest. To continue the naming tradition, this function is called
476 after perfect_nestify. NEST is set to the perfectly nested loop
477 that is created. BEFORE/AFTER are set to the loops distributed
478 before/after the loop NEST. */
480 static void
481 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
482 lst_p *nest, lst_p *after)
484 poly_bb_p first, last;
486 gcc_assert (loop1 && loop2
487 && loop1 != loop2
488 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
490 first = LST_PBB (lst_find_first_pbb (loop2));
491 last = LST_PBB (lst_find_last_pbb (loop2));
493 *before = copy_lst (loop1);
494 *nest = copy_lst (loop1);
495 *after = copy_lst (loop1);
497 lst_remove_all_before_including_pbb (*before, first, false);
498 lst_remove_all_before_including_pbb (*after, last, true);
500 lst_remove_all_before_excluding_pbb (*nest, first, true);
501 lst_remove_all_before_excluding_pbb (*nest, last, false);
503 if (lst_empty_p (*before))
505 free_lst (*before);
506 *before = NULL;
508 if (lst_empty_p (*after))
510 free_lst (*after);
511 *after = NULL;
513 if (lst_empty_p (*nest))
515 free_lst (*nest);
516 *nest = NULL;
520 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
521 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
522 interchange. */
524 static bool
525 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
527 int depth1 = lst_depth (loop1);
528 int depth2 = lst_depth (loop2);
529 lst_p transformed;
531 lst_p before = NULL, nest = NULL, after = NULL;
533 if (!lst_perfectly_nested_p (loop1, loop2))
534 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
536 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
537 return false;
539 lst_apply_interchange (loop2, depth1, depth2);
541 /* Sync the transformed LST information and the PBB scatterings
542 before using the scatterings in the data dependence analysis. */
543 if (before || nest || after)
545 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
546 before, nest, after);
547 lst_update_scattering (transformed);
548 free_lst (transformed);
551 if (graphite_legal_transform (scop))
553 if (dump_file && (dump_flags & TDF_DETAILS))
554 fprintf (dump_file,
555 "Loops at depths %d and %d will be interchanged.\n",
556 depth1, depth2);
558 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
559 lst_insert_in_sequence (before, loop1, true);
560 lst_insert_in_sequence (after, loop1, false);
562 if (nest)
564 lst_replace (loop1, nest);
565 free_lst (loop1);
568 return true;
571 /* Undo the transform. */
572 free_lst (before);
573 free_lst (nest);
574 free_lst (after);
575 lst_apply_interchange (loop2, depth2, depth1);
576 return false;
579 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
580 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
582 static bool
583 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
584 lst_p inner_father)
586 int inner;
587 lst_p loop1, loop2;
589 gcc_assert (outer_father
590 && LST_LOOP_P (outer_father)
591 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
592 && inner_father
593 && LST_LOOP_P (inner_father));
595 loop1 = LST_SEQ (outer_father)[outer];
597 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
598 if (LST_LOOP_P (loop2)
599 && (lst_try_interchange_loops (scop, loop1, loop2)
600 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
601 return true;
603 return false;
606 /* Interchanges all the loops of LOOP and the loops of its body that
607 are considered profitable to interchange. Return the number of
608 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
609 points to the next outer loop to be considered for interchange. */
611 static int
612 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
614 lst_p l;
615 int res = 0;
616 int i = 0;
617 lst_p father;
619 if (!loop || !LST_LOOP_P (loop))
620 return 0;
622 father = LST_LOOP_FATHER (loop);
623 if (father)
625 while (lst_interchange_select_inner (scop, father, outer, loop))
627 res++;
628 loop = LST_SEQ (father)[outer];
632 if (LST_LOOP_P (loop))
633 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
634 if (LST_LOOP_P (l))
635 res += lst_interchange_select_outer (scop, l, i);
637 return res;
640 /* Interchanges all the loop depths that are considered profitable for
641 SCOP. Return the number of interchanged loops. */
644 scop_do_interchange (scop_p scop)
646 int res = lst_interchange_select_outer
647 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
649 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
651 return res;
655 #endif /* HAVE_isl */