* gcc.dg/vmx/unpack.c: Use dg-additional-options rather than
[official-gcc.git] / gcc / explow.c
blobbd342c106f17ef81e7192528311c63f0a30470bb
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "alias.h"
28 #include "tree.h"
29 #include "stor-layout.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "expmed.h"
36 #include "dojump.h"
37 #include "explow.h"
38 #include "calls.h"
39 #include "emit-rtl.h"
40 #include "varasm.h"
41 #include "stmt.h"
42 #include "expr.h"
43 #include "insn-codes.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "recog.h"
47 #include "langhooks.h"
48 #include "target.h"
49 #include "common/common-target.h"
50 #include "output.h"
52 static rtx break_out_memory_refs (rtx);
55 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
57 HOST_WIDE_INT
58 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
60 int width = GET_MODE_PRECISION (mode);
62 /* You want to truncate to a _what_? */
63 gcc_assert (SCALAR_INT_MODE_P (mode)
64 || POINTER_BOUNDS_MODE_P (mode));
66 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
67 if (mode == BImode)
68 return c & 1 ? STORE_FLAG_VALUE : 0;
70 /* Sign-extend for the requested mode. */
72 if (width < HOST_BITS_PER_WIDE_INT)
74 HOST_WIDE_INT sign = 1;
75 sign <<= width - 1;
76 c &= (sign << 1) - 1;
77 c ^= sign;
78 c -= sign;
81 return c;
84 /* Return an rtx for the sum of X and the integer C, given that X has
85 mode MODE. INPLACE is true if X can be modified inplace or false
86 if it must be treated as immutable. */
88 rtx
89 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
90 bool inplace)
92 RTX_CODE code;
93 rtx y;
94 rtx tem;
95 int all_constant = 0;
97 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
99 if (c == 0)
100 return x;
102 restart:
104 code = GET_CODE (x);
105 y = x;
107 switch (code)
109 CASE_CONST_SCALAR_INT:
110 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
111 mode);
112 case MEM:
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
119 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
120 tem = force_const_mem (GET_MODE (x), tem);
121 /* Targets may disallow some constants in the constant pool, thus
122 force_const_mem may return NULL_RTX. */
123 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 return tem;
126 break;
128 case CONST:
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
131 if (inplace && shared_const_p (x))
132 inplace = false;
133 x = XEXP (x, 0);
134 all_constant = 1;
135 goto restart;
137 case SYMBOL_REF:
138 case LABEL_REF:
139 all_constant = 1;
140 break;
142 case PLUS:
143 /* The interesting case is adding the integer to a sum. Look
144 for constant term in the sum and combine with C. For an
145 integer constant term or a constant term that is not an
146 explicit integer, we combine or group them together anyway.
148 We may not immediately return from the recursive call here, lest
149 all_constant gets lost. */
151 if (CONSTANT_P (XEXP (x, 1)))
153 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
154 if (term == const0_rtx)
155 x = XEXP (x, 0);
156 else if (inplace)
157 XEXP (x, 1) = term;
158 else
159 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
160 c = 0;
162 else if (rtx *const_loc = find_constant_term_loc (&y))
164 if (!inplace)
166 /* We need to be careful since X may be shared and we can't
167 modify it in place. */
168 x = copy_rtx (x);
169 const_loc = find_constant_term_loc (&x);
171 *const_loc = plus_constant (mode, *const_loc, c, true);
172 c = 0;
174 break;
176 default:
177 break;
180 if (c != 0)
181 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
183 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
184 return x;
185 else if (all_constant)
186 return gen_rtx_CONST (mode, x);
187 else
188 return x;
191 /* If X is a sum, return a new sum like X but lacking any constant terms.
192 Add all the removed constant terms into *CONSTPTR.
193 X itself is not altered. The result != X if and only if
194 it is not isomorphic to X. */
197 eliminate_constant_term (rtx x, rtx *constptr)
199 rtx x0, x1;
200 rtx tem;
202 if (GET_CODE (x) != PLUS)
203 return x;
205 /* First handle constants appearing at this level explicitly. */
206 if (CONST_INT_P (XEXP (x, 1))
207 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
208 XEXP (x, 1)))
209 && CONST_INT_P (tem))
211 *constptr = tem;
212 return eliminate_constant_term (XEXP (x, 0), constptr);
215 tem = const0_rtx;
216 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
217 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
218 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
220 *constptr, tem))
221 && CONST_INT_P (tem))
223 *constptr = tem;
224 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
227 return x;
231 /* Return a copy of X in which all memory references
232 and all constants that involve symbol refs
233 have been replaced with new temporary registers.
234 Also emit code to load the memory locations and constants
235 into those registers.
237 If X contains no such constants or memory references,
238 X itself (not a copy) is returned.
240 If a constant is found in the address that is not a legitimate constant
241 in an insn, it is left alone in the hope that it might be valid in the
242 address.
244 X may contain no arithmetic except addition, subtraction and multiplication.
245 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
247 static rtx
248 break_out_memory_refs (rtx x)
250 if (MEM_P (x)
251 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
252 && GET_MODE (x) != VOIDmode))
253 x = force_reg (GET_MODE (x), x);
254 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
255 || GET_CODE (x) == MULT)
257 rtx op0 = break_out_memory_refs (XEXP (x, 0));
258 rtx op1 = break_out_memory_refs (XEXP (x, 1));
260 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
261 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
264 return x;
267 /* Given X, a memory address in address space AS' pointer mode, convert it to
268 an address in the address space's address mode, or vice versa (TO_MODE says
269 which way). We take advantage of the fact that pointers are not allowed to
270 overflow by commuting arithmetic operations over conversions so that address
271 arithmetic insns can be used. IN_CONST is true if this conversion is inside
272 a CONST. */
274 static rtx
275 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
276 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
277 bool in_const ATTRIBUTE_UNUSED)
279 #ifndef POINTERS_EXTEND_UNSIGNED
280 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
281 return x;
282 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
283 machine_mode pointer_mode, address_mode, from_mode;
284 rtx temp;
285 enum rtx_code code;
287 /* If X already has the right mode, just return it. */
288 if (GET_MODE (x) == to_mode)
289 return x;
291 pointer_mode = targetm.addr_space.pointer_mode (as);
292 address_mode = targetm.addr_space.address_mode (as);
293 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
295 /* Here we handle some special cases. If none of them apply, fall through
296 to the default case. */
297 switch (GET_CODE (x))
299 CASE_CONST_SCALAR_INT:
300 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
301 code = TRUNCATE;
302 else if (POINTERS_EXTEND_UNSIGNED < 0)
303 break;
304 else if (POINTERS_EXTEND_UNSIGNED > 0)
305 code = ZERO_EXTEND;
306 else
307 code = SIGN_EXTEND;
308 temp = simplify_unary_operation (code, to_mode, x, from_mode);
309 if (temp)
310 return temp;
311 break;
313 case SUBREG:
314 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
315 && GET_MODE (SUBREG_REG (x)) == to_mode)
316 return SUBREG_REG (x);
317 break;
319 case LABEL_REF:
320 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
321 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
322 return temp;
323 break;
325 case SYMBOL_REF:
326 temp = shallow_copy_rtx (x);
327 PUT_MODE (temp, to_mode);
328 return temp;
329 break;
331 case CONST:
332 return gen_rtx_CONST (to_mode,
333 convert_memory_address_addr_space_1
334 (to_mode, XEXP (x, 0), as, true));
335 break;
337 case PLUS:
338 case MULT:
339 /* For addition we can safely permute the conversion and addition
340 operation if one operand is a constant and converting the constant
341 does not change it or if one operand is a constant and we are
342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
343 We can always safely permute them if we are making the address
344 narrower. Inside a CONST RTL, this is safe for both pointers
345 zero or sign extended as pointers cannot wrap. */
346 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
347 || (GET_CODE (x) == PLUS
348 && CONST_INT_P (XEXP (x, 1))
349 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
350 || XEXP (x, 1) == convert_memory_address_addr_space_1
351 (to_mode, XEXP (x, 1), as, in_const)
352 || POINTERS_EXTEND_UNSIGNED < 0)))
353 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
354 convert_memory_address_addr_space_1
355 (to_mode, XEXP (x, 0), as, in_const),
356 XEXP (x, 1));
357 break;
359 default:
360 break;
363 return convert_modes (to_mode, from_mode,
364 x, POINTERS_EXTEND_UNSIGNED);
365 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
368 /* Given X, a memory address in address space AS' pointer mode, convert it to
369 an address in the address space's address mode, or vice versa (TO_MODE says
370 which way). We take advantage of the fact that pointers are not allowed to
371 overflow by commuting arithmetic operations over conversions so that address
372 arithmetic insns can be used. */
375 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
377 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
381 /* Return something equivalent to X but valid as a memory address for something
382 of mode MODE in the named address space AS. When X is not itself valid,
383 this works by copying X or subexpressions of it into registers. */
386 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
388 rtx oldx = x;
389 machine_mode address_mode = targetm.addr_space.address_mode (as);
391 x = convert_memory_address_addr_space (address_mode, x, as);
393 /* By passing constant addresses through registers
394 we get a chance to cse them. */
395 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
396 x = force_reg (address_mode, x);
398 /* We get better cse by rejecting indirect addressing at this stage.
399 Let the combiner create indirect addresses where appropriate.
400 For now, generate the code so that the subexpressions useful to share
401 are visible. But not if cse won't be done! */
402 else
404 if (! cse_not_expected && !REG_P (x))
405 x = break_out_memory_refs (x);
407 /* At this point, any valid address is accepted. */
408 if (memory_address_addr_space_p (mode, x, as))
409 goto done;
411 /* If it was valid before but breaking out memory refs invalidated it,
412 use it the old way. */
413 if (memory_address_addr_space_p (mode, oldx, as))
415 x = oldx;
416 goto done;
419 /* Perform machine-dependent transformations on X
420 in certain cases. This is not necessary since the code
421 below can handle all possible cases, but machine-dependent
422 transformations can make better code. */
424 rtx orig_x = x;
425 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
426 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
427 goto done;
430 /* PLUS and MULT can appear in special ways
431 as the result of attempts to make an address usable for indexing.
432 Usually they are dealt with by calling force_operand, below.
433 But a sum containing constant terms is special
434 if removing them makes the sum a valid address:
435 then we generate that address in a register
436 and index off of it. We do this because it often makes
437 shorter code, and because the addresses thus generated
438 in registers often become common subexpressions. */
439 if (GET_CODE (x) == PLUS)
441 rtx constant_term = const0_rtx;
442 rtx y = eliminate_constant_term (x, &constant_term);
443 if (constant_term == const0_rtx
444 || ! memory_address_addr_space_p (mode, y, as))
445 x = force_operand (x, NULL_RTX);
446 else
448 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
449 if (! memory_address_addr_space_p (mode, y, as))
450 x = force_operand (x, NULL_RTX);
451 else
452 x = y;
456 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
457 x = force_operand (x, NULL_RTX);
459 /* If we have a register that's an invalid address,
460 it must be a hard reg of the wrong class. Copy it to a pseudo. */
461 else if (REG_P (x))
462 x = copy_to_reg (x);
464 /* Last resort: copy the value to a register, since
465 the register is a valid address. */
466 else
467 x = force_reg (address_mode, x);
470 done:
472 gcc_assert (memory_address_addr_space_p (mode, x, as));
473 /* If we didn't change the address, we are done. Otherwise, mark
474 a reg as a pointer if we have REG or REG + CONST_INT. */
475 if (oldx == x)
476 return x;
477 else if (REG_P (x))
478 mark_reg_pointer (x, BITS_PER_UNIT);
479 else if (GET_CODE (x) == PLUS
480 && REG_P (XEXP (x, 0))
481 && CONST_INT_P (XEXP (x, 1)))
482 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
484 /* OLDX may have been the address on a temporary. Update the address
485 to indicate that X is now used. */
486 update_temp_slot_address (oldx, x);
488 return x;
491 /* If REF is a MEM with an invalid address, change it into a valid address.
492 Pass through anything else unchanged. REF must be an unshared rtx and
493 the function may modify it in-place. */
496 validize_mem (rtx ref)
498 if (!MEM_P (ref))
499 return ref;
500 ref = use_anchored_address (ref);
501 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
502 MEM_ADDR_SPACE (ref)))
503 return ref;
505 return replace_equiv_address (ref, XEXP (ref, 0), true);
508 /* If X is a memory reference to a member of an object block, try rewriting
509 it to use an anchor instead. Return the new memory reference on success
510 and the old one on failure. */
513 use_anchored_address (rtx x)
515 rtx base;
516 HOST_WIDE_INT offset;
517 machine_mode mode;
519 if (!flag_section_anchors)
520 return x;
522 if (!MEM_P (x))
523 return x;
525 /* Split the address into a base and offset. */
526 base = XEXP (x, 0);
527 offset = 0;
528 if (GET_CODE (base) == CONST
529 && GET_CODE (XEXP (base, 0)) == PLUS
530 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
532 offset += INTVAL (XEXP (XEXP (base, 0), 1));
533 base = XEXP (XEXP (base, 0), 0);
536 /* Check whether BASE is suitable for anchors. */
537 if (GET_CODE (base) != SYMBOL_REF
538 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
539 || SYMBOL_REF_ANCHOR_P (base)
540 || SYMBOL_REF_BLOCK (base) == NULL
541 || !targetm.use_anchors_for_symbol_p (base))
542 return x;
544 /* Decide where BASE is going to be. */
545 place_block_symbol (base);
547 /* Get the anchor we need to use. */
548 offset += SYMBOL_REF_BLOCK_OFFSET (base);
549 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
550 SYMBOL_REF_TLS_MODEL (base));
552 /* Work out the offset from the anchor. */
553 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
555 /* If we're going to run a CSE pass, force the anchor into a register.
556 We will then be able to reuse registers for several accesses, if the
557 target costs say that that's worthwhile. */
558 mode = GET_MODE (base);
559 if (!cse_not_expected)
560 base = force_reg (mode, base);
562 return replace_equiv_address (x, plus_constant (mode, base, offset));
565 /* Copy the value or contents of X to a new temp reg and return that reg. */
568 copy_to_reg (rtx x)
570 rtx temp = gen_reg_rtx (GET_MODE (x));
572 /* If not an operand, must be an address with PLUS and MULT so
573 do the computation. */
574 if (! general_operand (x, VOIDmode))
575 x = force_operand (x, temp);
577 if (x != temp)
578 emit_move_insn (temp, x);
580 return temp;
583 /* Like copy_to_reg but always give the new register mode Pmode
584 in case X is a constant. */
587 copy_addr_to_reg (rtx x)
589 return copy_to_mode_reg (Pmode, x);
592 /* Like copy_to_reg but always give the new register mode MODE
593 in case X is a constant. */
596 copy_to_mode_reg (machine_mode mode, rtx x)
598 rtx temp = gen_reg_rtx (mode);
600 /* If not an operand, must be an address with PLUS and MULT so
601 do the computation. */
602 if (! general_operand (x, VOIDmode))
603 x = force_operand (x, temp);
605 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
606 if (x != temp)
607 emit_move_insn (temp, x);
608 return temp;
611 /* Load X into a register if it is not already one.
612 Use mode MODE for the register.
613 X should be valid for mode MODE, but it may be a constant which
614 is valid for all integer modes; that's why caller must specify MODE.
616 The caller must not alter the value in the register we return,
617 since we mark it as a "constant" register. */
620 force_reg (machine_mode mode, rtx x)
622 rtx temp, set;
623 rtx_insn *insn;
625 if (REG_P (x))
626 return x;
628 if (general_operand (x, mode))
630 temp = gen_reg_rtx (mode);
631 insn = emit_move_insn (temp, x);
633 else
635 temp = force_operand (x, NULL_RTX);
636 if (REG_P (temp))
637 insn = get_last_insn ();
638 else
640 rtx temp2 = gen_reg_rtx (mode);
641 insn = emit_move_insn (temp2, temp);
642 temp = temp2;
646 /* Let optimizers know that TEMP's value never changes
647 and that X can be substituted for it. Don't get confused
648 if INSN set something else (such as a SUBREG of TEMP). */
649 if (CONSTANT_P (x)
650 && (set = single_set (insn)) != 0
651 && SET_DEST (set) == temp
652 && ! rtx_equal_p (x, SET_SRC (set)))
653 set_unique_reg_note (insn, REG_EQUAL, x);
655 /* Let optimizers know that TEMP is a pointer, and if so, the
656 known alignment of that pointer. */
658 unsigned align = 0;
659 if (GET_CODE (x) == SYMBOL_REF)
661 align = BITS_PER_UNIT;
662 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
663 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
665 else if (GET_CODE (x) == LABEL_REF)
666 align = BITS_PER_UNIT;
667 else if (GET_CODE (x) == CONST
668 && GET_CODE (XEXP (x, 0)) == PLUS
669 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
670 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
672 rtx s = XEXP (XEXP (x, 0), 0);
673 rtx c = XEXP (XEXP (x, 0), 1);
674 unsigned sa, ca;
676 sa = BITS_PER_UNIT;
677 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
678 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
680 if (INTVAL (c) == 0)
681 align = sa;
682 else
684 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
685 align = MIN (sa, ca);
689 if (align || (MEM_P (x) && MEM_POINTER (x)))
690 mark_reg_pointer (temp, align);
693 return temp;
696 /* If X is a memory ref, copy its contents to a new temp reg and return
697 that reg. Otherwise, return X. */
700 force_not_mem (rtx x)
702 rtx temp;
704 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
705 return x;
707 temp = gen_reg_rtx (GET_MODE (x));
709 if (MEM_POINTER (x))
710 REG_POINTER (temp) = 1;
712 emit_move_insn (temp, x);
713 return temp;
716 /* Copy X to TARGET (if it's nonzero and a reg)
717 or to a new temp reg and return that reg.
718 MODE is the mode to use for X in case it is a constant. */
721 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
723 rtx temp;
725 if (target && REG_P (target))
726 temp = target;
727 else
728 temp = gen_reg_rtx (mode);
730 emit_move_insn (temp, x);
731 return temp;
734 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
735 PUNSIGNEDP points to the signedness of the type and may be adjusted
736 to show what signedness to use on extension operations.
738 FOR_RETURN is nonzero if the caller is promoting the return value
739 of FNDECL, else it is for promoting args. */
741 machine_mode
742 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
743 const_tree funtype, int for_return)
745 /* Called without a type node for a libcall. */
746 if (type == NULL_TREE)
748 if (INTEGRAL_MODE_P (mode))
749 return targetm.calls.promote_function_mode (NULL_TREE, mode,
750 punsignedp, funtype,
751 for_return);
752 else
753 return mode;
756 switch (TREE_CODE (type))
758 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
759 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
760 case POINTER_TYPE: case REFERENCE_TYPE:
761 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
762 for_return);
764 default:
765 return mode;
768 /* Return the mode to use to store a scalar of TYPE and MODE.
769 PUNSIGNEDP points to the signedness of the type and may be adjusted
770 to show what signedness to use on extension operations. */
772 machine_mode
773 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
774 int *punsignedp ATTRIBUTE_UNUSED)
776 #ifdef PROMOTE_MODE
777 enum tree_code code;
778 int unsignedp;
779 #endif
781 /* For libcalls this is invoked without TYPE from the backends
782 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
783 case. */
784 if (type == NULL_TREE)
785 return mode;
787 /* FIXME: this is the same logic that was there until GCC 4.4, but we
788 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
789 is not defined. The affected targets are M32C, S390, SPARC. */
790 #ifdef PROMOTE_MODE
791 code = TREE_CODE (type);
792 unsignedp = *punsignedp;
794 switch (code)
796 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
797 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
798 PROMOTE_MODE (mode, unsignedp, type);
799 *punsignedp = unsignedp;
800 return mode;
801 break;
803 #ifdef POINTERS_EXTEND_UNSIGNED
804 case REFERENCE_TYPE:
805 case POINTER_TYPE:
806 *punsignedp = POINTERS_EXTEND_UNSIGNED;
807 return targetm.addr_space.address_mode
808 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
809 break;
810 #endif
812 default:
813 return mode;
815 #else
816 return mode;
817 #endif
821 /* Use one of promote_mode or promote_function_mode to find the promoted
822 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
823 of DECL after promotion. */
825 machine_mode
826 promote_decl_mode (const_tree decl, int *punsignedp)
828 tree type = TREE_TYPE (decl);
829 int unsignedp = TYPE_UNSIGNED (type);
830 machine_mode mode = DECL_MODE (decl);
831 machine_mode pmode;
833 if (TREE_CODE (decl) == RESULT_DECL
834 || TREE_CODE (decl) == PARM_DECL)
835 pmode = promote_function_mode (type, mode, &unsignedp,
836 TREE_TYPE (current_function_decl), 2);
837 else
838 pmode = promote_mode (type, mode, &unsignedp);
840 if (punsignedp)
841 *punsignedp = unsignedp;
842 return pmode;
846 /* Controls the behaviour of {anti_,}adjust_stack. */
847 static bool suppress_reg_args_size;
849 /* A helper for adjust_stack and anti_adjust_stack. */
851 static void
852 adjust_stack_1 (rtx adjust, bool anti_p)
854 rtx temp;
855 rtx_insn *insn;
857 /* Hereafter anti_p means subtract_p. */
858 if (!STACK_GROWS_DOWNWARD)
859 anti_p = !anti_p;
861 temp = expand_binop (Pmode,
862 anti_p ? sub_optab : add_optab,
863 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
864 OPTAB_LIB_WIDEN);
866 if (temp != stack_pointer_rtx)
867 insn = emit_move_insn (stack_pointer_rtx, temp);
868 else
870 insn = get_last_insn ();
871 temp = single_set (insn);
872 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
875 if (!suppress_reg_args_size)
876 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
879 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
880 This pops when ADJUST is positive. ADJUST need not be constant. */
882 void
883 adjust_stack (rtx adjust)
885 if (adjust == const0_rtx)
886 return;
888 /* We expect all variable sized adjustments to be multiple of
889 PREFERRED_STACK_BOUNDARY. */
890 if (CONST_INT_P (adjust))
891 stack_pointer_delta -= INTVAL (adjust);
893 adjust_stack_1 (adjust, false);
896 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
897 This pushes when ADJUST is positive. ADJUST need not be constant. */
899 void
900 anti_adjust_stack (rtx adjust)
902 if (adjust == const0_rtx)
903 return;
905 /* We expect all variable sized adjustments to be multiple of
906 PREFERRED_STACK_BOUNDARY. */
907 if (CONST_INT_P (adjust))
908 stack_pointer_delta += INTVAL (adjust);
910 adjust_stack_1 (adjust, true);
913 /* Round the size of a block to be pushed up to the boundary required
914 by this machine. SIZE is the desired size, which need not be constant. */
916 static rtx
917 round_push (rtx size)
919 rtx align_rtx, alignm1_rtx;
921 if (!SUPPORTS_STACK_ALIGNMENT
922 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
924 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
926 if (align == 1)
927 return size;
929 if (CONST_INT_P (size))
931 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
933 if (INTVAL (size) != new_size)
934 size = GEN_INT (new_size);
935 return size;
938 align_rtx = GEN_INT (align);
939 alignm1_rtx = GEN_INT (align - 1);
941 else
943 /* If crtl->preferred_stack_boundary might still grow, use
944 virtual_preferred_stack_boundary_rtx instead. This will be
945 substituted by the right value in vregs pass and optimized
946 during combine. */
947 align_rtx = virtual_preferred_stack_boundary_rtx;
948 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
949 NULL_RTX);
952 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
953 but we know it can't. So add ourselves and then do
954 TRUNC_DIV_EXPR. */
955 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
956 NULL_RTX, 1, OPTAB_LIB_WIDEN);
957 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
958 NULL_RTX, 1);
959 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
961 return size;
964 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
965 to a previously-created save area. If no save area has been allocated,
966 this function will allocate one. If a save area is specified, it
967 must be of the proper mode. */
969 void
970 emit_stack_save (enum save_level save_level, rtx *psave)
972 rtx sa = *psave;
973 /* The default is that we use a move insn and save in a Pmode object. */
974 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
975 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
977 /* See if this machine has anything special to do for this kind of save. */
978 switch (save_level)
980 case SAVE_BLOCK:
981 if (targetm.have_save_stack_block ())
982 fcn = targetm.gen_save_stack_block;
983 break;
984 case SAVE_FUNCTION:
985 if (targetm.have_save_stack_function ())
986 fcn = targetm.gen_save_stack_function;
987 break;
988 case SAVE_NONLOCAL:
989 if (targetm.have_save_stack_nonlocal ())
990 fcn = targetm.gen_save_stack_nonlocal;
991 break;
992 default:
993 break;
996 /* If there is no save area and we have to allocate one, do so. Otherwise
997 verify the save area is the proper mode. */
999 if (sa == 0)
1001 if (mode != VOIDmode)
1003 if (save_level == SAVE_NONLOCAL)
1004 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1005 else
1006 *psave = sa = gen_reg_rtx (mode);
1010 do_pending_stack_adjust ();
1011 if (sa != 0)
1012 sa = validize_mem (sa);
1013 emit_insn (fcn (sa, stack_pointer_rtx));
1016 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1017 area made by emit_stack_save. If it is zero, we have nothing to do. */
1019 void
1020 emit_stack_restore (enum save_level save_level, rtx sa)
1022 /* The default is that we use a move insn. */
1023 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1025 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1026 STACK_POINTER and HARD_FRAME_POINTER.
1027 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1028 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1029 aligned variables, which is reflected in ix86_can_eliminate.
1030 We normally still have the realigned STACK_POINTER that we can use.
1031 But if there is a stack restore still present at reload, it can trigger
1032 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1033 FRAME_POINTER into a hard reg.
1034 To prevent this situation, we force need_drap if we emit a stack
1035 restore. */
1036 if (SUPPORTS_STACK_ALIGNMENT)
1037 crtl->need_drap = true;
1039 /* See if this machine has anything special to do for this kind of save. */
1040 switch (save_level)
1042 case SAVE_BLOCK:
1043 if (targetm.have_restore_stack_block ())
1044 fcn = targetm.gen_restore_stack_block;
1045 break;
1046 case SAVE_FUNCTION:
1047 if (targetm.have_restore_stack_function ())
1048 fcn = targetm.gen_restore_stack_function;
1049 break;
1050 case SAVE_NONLOCAL:
1051 if (targetm.have_restore_stack_nonlocal ())
1052 fcn = targetm.gen_restore_stack_nonlocal;
1053 break;
1054 default:
1055 break;
1058 if (sa != 0)
1060 sa = validize_mem (sa);
1061 /* These clobbers prevent the scheduler from moving
1062 references to variable arrays below the code
1063 that deletes (pops) the arrays. */
1064 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1065 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1068 discard_pending_stack_adjust ();
1070 emit_insn (fcn (stack_pointer_rtx, sa));
1073 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1074 function. This should be called whenever we allocate or deallocate
1075 dynamic stack space. */
1077 void
1078 update_nonlocal_goto_save_area (void)
1080 tree t_save;
1081 rtx r_save;
1083 /* The nonlocal_goto_save_area object is an array of N pointers. The
1084 first one is used for the frame pointer save; the rest are sized by
1085 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1086 of the stack save area slots. */
1087 t_save = build4 (ARRAY_REF,
1088 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1089 cfun->nonlocal_goto_save_area,
1090 integer_one_node, NULL_TREE, NULL_TREE);
1091 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1093 emit_stack_save (SAVE_NONLOCAL, &r_save);
1096 /* Record a new stack level for the current function. This should be called
1097 whenever we allocate or deallocate dynamic stack space. */
1099 void
1100 record_new_stack_level (void)
1102 /* Record the new stack level for nonlocal gotos. */
1103 if (cfun->nonlocal_goto_save_area)
1104 update_nonlocal_goto_save_area ();
1106 /* Record the new stack level for SJLJ exceptions. */
1107 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1108 update_sjlj_context ();
1111 /* Return an rtx representing the address of an area of memory dynamically
1112 pushed on the stack.
1114 Any required stack pointer alignment is preserved.
1116 SIZE is an rtx representing the size of the area.
1118 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1119 parameter may be zero. If so, a proper value will be extracted
1120 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1122 REQUIRED_ALIGN is the alignment (in bits) required for the region
1123 of memory.
1125 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1126 stack space allocated by the generated code cannot be added with itself
1127 in the course of the execution of the function. It is always safe to
1128 pass FALSE here and the following criterion is sufficient in order to
1129 pass TRUE: every path in the CFG that starts at the allocation point and
1130 loops to it executes the associated deallocation code. */
1133 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1134 unsigned required_align, bool cannot_accumulate)
1136 HOST_WIDE_INT stack_usage_size = -1;
1137 rtx_code_label *final_label;
1138 rtx final_target, target;
1139 unsigned extra_align = 0;
1140 bool must_align;
1142 /* If we're asking for zero bytes, it doesn't matter what we point
1143 to since we can't dereference it. But return a reasonable
1144 address anyway. */
1145 if (size == const0_rtx)
1146 return virtual_stack_dynamic_rtx;
1148 /* Otherwise, show we're calling alloca or equivalent. */
1149 cfun->calls_alloca = 1;
1151 /* If stack usage info is requested, look into the size we are passed.
1152 We need to do so this early to avoid the obfuscation that may be
1153 introduced later by the various alignment operations. */
1154 if (flag_stack_usage_info)
1156 if (CONST_INT_P (size))
1157 stack_usage_size = INTVAL (size);
1158 else if (REG_P (size))
1160 /* Look into the last emitted insn and see if we can deduce
1161 something for the register. */
1162 rtx_insn *insn;
1163 rtx set, note;
1164 insn = get_last_insn ();
1165 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1167 if (CONST_INT_P (SET_SRC (set)))
1168 stack_usage_size = INTVAL (SET_SRC (set));
1169 else if ((note = find_reg_equal_equiv_note (insn))
1170 && CONST_INT_P (XEXP (note, 0)))
1171 stack_usage_size = INTVAL (XEXP (note, 0));
1175 /* If the size is not constant, we can't say anything. */
1176 if (stack_usage_size == -1)
1178 current_function_has_unbounded_dynamic_stack_size = 1;
1179 stack_usage_size = 0;
1183 /* Ensure the size is in the proper mode. */
1184 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1185 size = convert_to_mode (Pmode, size, 1);
1187 /* Adjust SIZE_ALIGN, if needed. */
1188 if (CONST_INT_P (size))
1190 unsigned HOST_WIDE_INT lsb;
1192 lsb = INTVAL (size);
1193 lsb &= -lsb;
1195 /* Watch out for overflow truncating to "unsigned". */
1196 if (lsb > UINT_MAX / BITS_PER_UNIT)
1197 size_align = 1u << (HOST_BITS_PER_INT - 1);
1198 else
1199 size_align = (unsigned)lsb * BITS_PER_UNIT;
1201 else if (size_align < BITS_PER_UNIT)
1202 size_align = BITS_PER_UNIT;
1204 /* We can't attempt to minimize alignment necessary, because we don't
1205 know the final value of preferred_stack_boundary yet while executing
1206 this code. */
1207 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1208 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1210 /* We will need to ensure that the address we return is aligned to
1211 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1212 always know its final value at this point in the compilation (it
1213 might depend on the size of the outgoing parameter lists, for
1214 example), so we must align the value to be returned in that case.
1215 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1216 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1217 We must also do an alignment operation on the returned value if
1218 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1220 If we have to align, we must leave space in SIZE for the hole
1221 that might result from the alignment operation. */
1223 must_align = (crtl->preferred_stack_boundary < required_align);
1224 if (must_align)
1226 if (required_align > PREFERRED_STACK_BOUNDARY)
1227 extra_align = PREFERRED_STACK_BOUNDARY;
1228 else if (required_align > STACK_BOUNDARY)
1229 extra_align = STACK_BOUNDARY;
1230 else
1231 extra_align = BITS_PER_UNIT;
1234 /* ??? STACK_POINTER_OFFSET is always defined now. */
1235 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1236 must_align = true;
1237 extra_align = BITS_PER_UNIT;
1238 #endif
1240 if (must_align)
1242 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1244 size = plus_constant (Pmode, size, extra);
1245 size = force_operand (size, NULL_RTX);
1247 if (flag_stack_usage_info)
1248 stack_usage_size += extra;
1250 if (extra && size_align > extra_align)
1251 size_align = extra_align;
1254 /* Round the size to a multiple of the required stack alignment.
1255 Since the stack if presumed to be rounded before this allocation,
1256 this will maintain the required alignment.
1258 If the stack grows downward, we could save an insn by subtracting
1259 SIZE from the stack pointer and then aligning the stack pointer.
1260 The problem with this is that the stack pointer may be unaligned
1261 between the execution of the subtraction and alignment insns and
1262 some machines do not allow this. Even on those that do, some
1263 signal handlers malfunction if a signal should occur between those
1264 insns. Since this is an extremely rare event, we have no reliable
1265 way of knowing which systems have this problem. So we avoid even
1266 momentarily mis-aligning the stack. */
1267 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1269 size = round_push (size);
1271 if (flag_stack_usage_info)
1273 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1274 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1278 target = gen_reg_rtx (Pmode);
1280 /* The size is supposed to be fully adjusted at this point so record it
1281 if stack usage info is requested. */
1282 if (flag_stack_usage_info)
1284 current_function_dynamic_stack_size += stack_usage_size;
1286 /* ??? This is gross but the only safe stance in the absence
1287 of stack usage oriented flow analysis. */
1288 if (!cannot_accumulate)
1289 current_function_has_unbounded_dynamic_stack_size = 1;
1292 final_label = NULL;
1293 final_target = NULL_RTX;
1295 /* If we are splitting the stack, we need to ask the backend whether
1296 there is enough room on the current stack. If there isn't, or if
1297 the backend doesn't know how to tell is, then we need to call a
1298 function to allocate memory in some other way. This memory will
1299 be released when we release the current stack segment. The
1300 effect is that stack allocation becomes less efficient, but at
1301 least it doesn't cause a stack overflow. */
1302 if (flag_split_stack)
1304 rtx_code_label *available_label;
1305 rtx ask, space, func;
1307 available_label = NULL;
1309 if (targetm.have_split_stack_space_check ())
1311 available_label = gen_label_rtx ();
1313 /* This instruction will branch to AVAILABLE_LABEL if there
1314 are SIZE bytes available on the stack. */
1315 emit_insn (targetm.gen_split_stack_space_check
1316 (size, available_label));
1319 /* The __morestack_allocate_stack_space function will allocate
1320 memory using malloc. If the alignment of the memory returned
1321 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1322 make sure we allocate enough space. */
1323 if (MALLOC_ABI_ALIGNMENT >= required_align)
1324 ask = size;
1325 else
1327 ask = expand_binop (Pmode, add_optab, size,
1328 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1329 Pmode),
1330 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1331 must_align = true;
1334 func = init_one_libfunc ("__morestack_allocate_stack_space");
1336 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1337 1, ask, Pmode);
1339 if (available_label == NULL_RTX)
1340 return space;
1342 final_target = gen_reg_rtx (Pmode);
1344 emit_move_insn (final_target, space);
1346 final_label = gen_label_rtx ();
1347 emit_jump (final_label);
1349 emit_label (available_label);
1352 do_pending_stack_adjust ();
1354 /* We ought to be called always on the toplevel and stack ought to be aligned
1355 properly. */
1356 gcc_assert (!(stack_pointer_delta
1357 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1359 /* If needed, check that we have the required amount of stack. Take into
1360 account what has already been checked. */
1361 if (STACK_CHECK_MOVING_SP)
1363 else if (flag_stack_check == GENERIC_STACK_CHECK)
1364 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1365 size);
1366 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1367 probe_stack_range (STACK_CHECK_PROTECT, size);
1369 /* Don't let anti_adjust_stack emit notes. */
1370 suppress_reg_args_size = true;
1372 /* Perform the required allocation from the stack. Some systems do
1373 this differently than simply incrementing/decrementing from the
1374 stack pointer, such as acquiring the space by calling malloc(). */
1375 if (targetm.have_allocate_stack ())
1377 struct expand_operand ops[2];
1378 /* We don't have to check against the predicate for operand 0 since
1379 TARGET is known to be a pseudo of the proper mode, which must
1380 be valid for the operand. */
1381 create_fixed_operand (&ops[0], target);
1382 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1383 expand_insn (targetm.code_for_allocate_stack, 2, ops);
1385 else
1387 int saved_stack_pointer_delta;
1389 if (!STACK_GROWS_DOWNWARD)
1390 emit_move_insn (target, virtual_stack_dynamic_rtx);
1392 /* Check stack bounds if necessary. */
1393 if (crtl->limit_stack)
1395 rtx available;
1396 rtx_code_label *space_available = gen_label_rtx ();
1397 if (STACK_GROWS_DOWNWARD)
1398 available = expand_binop (Pmode, sub_optab,
1399 stack_pointer_rtx, stack_limit_rtx,
1400 NULL_RTX, 1, OPTAB_WIDEN);
1401 else
1402 available = expand_binop (Pmode, sub_optab,
1403 stack_limit_rtx, stack_pointer_rtx,
1404 NULL_RTX, 1, OPTAB_WIDEN);
1406 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1407 space_available);
1408 if (targetm.have_trap ())
1409 emit_insn (targetm.gen_trap ());
1410 else
1411 error ("stack limits not supported on this target");
1412 emit_barrier ();
1413 emit_label (space_available);
1416 saved_stack_pointer_delta = stack_pointer_delta;
1418 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1419 anti_adjust_stack_and_probe (size, false);
1420 else
1421 anti_adjust_stack (size);
1423 /* Even if size is constant, don't modify stack_pointer_delta.
1424 The constant size alloca should preserve
1425 crtl->preferred_stack_boundary alignment. */
1426 stack_pointer_delta = saved_stack_pointer_delta;
1428 if (STACK_GROWS_DOWNWARD)
1429 emit_move_insn (target, virtual_stack_dynamic_rtx);
1432 suppress_reg_args_size = false;
1434 /* Finish up the split stack handling. */
1435 if (final_label != NULL_RTX)
1437 gcc_assert (flag_split_stack);
1438 emit_move_insn (final_target, target);
1439 emit_label (final_label);
1440 target = final_target;
1443 if (must_align)
1445 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1446 but we know it can't. So add ourselves and then do
1447 TRUNC_DIV_EXPR. */
1448 target = expand_binop (Pmode, add_optab, target,
1449 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1450 Pmode),
1451 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1452 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1453 gen_int_mode (required_align / BITS_PER_UNIT,
1454 Pmode),
1455 NULL_RTX, 1);
1456 target = expand_mult (Pmode, target,
1457 gen_int_mode (required_align / BITS_PER_UNIT,
1458 Pmode),
1459 NULL_RTX, 1);
1462 /* Now that we've committed to a return value, mark its alignment. */
1463 mark_reg_pointer (target, required_align);
1465 /* Record the new stack level. */
1466 record_new_stack_level ();
1468 return target;
1471 /* A front end may want to override GCC's stack checking by providing a
1472 run-time routine to call to check the stack, so provide a mechanism for
1473 calling that routine. */
1475 static GTY(()) rtx stack_check_libfunc;
1477 void
1478 set_stack_check_libfunc (const char *libfunc_name)
1480 gcc_assert (stack_check_libfunc == NULL_RTX);
1481 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1484 /* Emit one stack probe at ADDRESS, an address within the stack. */
1486 void
1487 emit_stack_probe (rtx address)
1489 if (targetm.have_probe_stack_address ())
1490 emit_insn (targetm.gen_probe_stack_address (address));
1491 else
1493 rtx memref = gen_rtx_MEM (word_mode, address);
1495 MEM_VOLATILE_P (memref) = 1;
1497 /* See if we have an insn to probe the stack. */
1498 if (targetm.have_probe_stack ())
1499 emit_insn (targetm.gen_probe_stack (memref));
1500 else
1501 emit_move_insn (memref, const0_rtx);
1505 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1506 FIRST is a constant and size is a Pmode RTX. These are offsets from
1507 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1508 or subtract them from the stack pointer. */
1510 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1512 #if STACK_GROWS_DOWNWARD
1513 #define STACK_GROW_OP MINUS
1514 #define STACK_GROW_OPTAB sub_optab
1515 #define STACK_GROW_OFF(off) -(off)
1516 #else
1517 #define STACK_GROW_OP PLUS
1518 #define STACK_GROW_OPTAB add_optab
1519 #define STACK_GROW_OFF(off) (off)
1520 #endif
1522 void
1523 probe_stack_range (HOST_WIDE_INT first, rtx size)
1525 /* First ensure SIZE is Pmode. */
1526 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1527 size = convert_to_mode (Pmode, size, 1);
1529 /* Next see if we have a function to check the stack. */
1530 if (stack_check_libfunc)
1532 rtx addr = memory_address (Pmode,
1533 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1534 stack_pointer_rtx,
1535 plus_constant (Pmode,
1536 size, first)));
1537 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1538 Pmode);
1541 /* Next see if we have an insn to check the stack. */
1542 else if (targetm.have_check_stack ())
1544 struct expand_operand ops[1];
1545 rtx addr = memory_address (Pmode,
1546 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1547 stack_pointer_rtx,
1548 plus_constant (Pmode,
1549 size, first)));
1550 bool success;
1551 create_input_operand (&ops[0], addr, Pmode);
1552 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1553 gcc_assert (success);
1556 /* Otherwise we have to generate explicit probes. If we have a constant
1557 small number of them to generate, that's the easy case. */
1558 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1560 HOST_WIDE_INT isize = INTVAL (size), i;
1561 rtx addr;
1563 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1564 it exceeds SIZE. If only one probe is needed, this will not
1565 generate any code. Then probe at FIRST + SIZE. */
1566 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1568 addr = memory_address (Pmode,
1569 plus_constant (Pmode, stack_pointer_rtx,
1570 STACK_GROW_OFF (first + i)));
1571 emit_stack_probe (addr);
1574 addr = memory_address (Pmode,
1575 plus_constant (Pmode, stack_pointer_rtx,
1576 STACK_GROW_OFF (first + isize)));
1577 emit_stack_probe (addr);
1580 /* In the variable case, do the same as above, but in a loop. Note that we
1581 must be extra careful with variables wrapping around because we might be
1582 at the very top (or the very bottom) of the address space and we have to
1583 be able to handle this case properly; in particular, we use an equality
1584 test for the loop condition. */
1585 else
1587 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1588 rtx_code_label *loop_lab = gen_label_rtx ();
1589 rtx_code_label *end_lab = gen_label_rtx ();
1591 /* Step 1: round SIZE to the previous multiple of the interval. */
1593 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1594 rounded_size
1595 = simplify_gen_binary (AND, Pmode, size,
1596 gen_int_mode (-PROBE_INTERVAL, Pmode));
1597 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1600 /* Step 2: compute initial and final value of the loop counter. */
1602 /* TEST_ADDR = SP + FIRST. */
1603 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1604 stack_pointer_rtx,
1605 gen_int_mode (first, Pmode)),
1606 NULL_RTX);
1608 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1609 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1610 test_addr,
1611 rounded_size_op), NULL_RTX);
1614 /* Step 3: the loop
1616 while (TEST_ADDR != LAST_ADDR)
1618 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1619 probe at TEST_ADDR
1622 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1623 until it is equal to ROUNDED_SIZE. */
1625 emit_label (loop_lab);
1627 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1628 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1629 end_lab);
1631 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1632 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1633 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1634 1, OPTAB_WIDEN);
1636 gcc_assert (temp == test_addr);
1638 /* Probe at TEST_ADDR. */
1639 emit_stack_probe (test_addr);
1641 emit_jump (loop_lab);
1643 emit_label (end_lab);
1646 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1647 that SIZE is equal to ROUNDED_SIZE. */
1649 /* TEMP = SIZE - ROUNDED_SIZE. */
1650 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1651 if (temp != const0_rtx)
1653 rtx addr;
1655 if (CONST_INT_P (temp))
1657 /* Use [base + disp} addressing mode if supported. */
1658 HOST_WIDE_INT offset = INTVAL (temp);
1659 addr = memory_address (Pmode,
1660 plus_constant (Pmode, last_addr,
1661 STACK_GROW_OFF (offset)));
1663 else
1665 /* Manual CSE if the difference is not known at compile-time. */
1666 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1667 addr = memory_address (Pmode,
1668 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1669 last_addr, temp));
1672 emit_stack_probe (addr);
1676 /* Make sure nothing is scheduled before we are done. */
1677 emit_insn (gen_blockage ());
1680 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1681 while probing it. This pushes when SIZE is positive. SIZE need not
1682 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1683 by plus SIZE at the end. */
1685 void
1686 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1688 /* We skip the probe for the first interval + a small dope of 4 words and
1689 probe that many bytes past the specified size to maintain a protection
1690 area at the botton of the stack. */
1691 const int dope = 4 * UNITS_PER_WORD;
1693 /* First ensure SIZE is Pmode. */
1694 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1695 size = convert_to_mode (Pmode, size, 1);
1697 /* If we have a constant small number of probes to generate, that's the
1698 easy case. */
1699 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1701 HOST_WIDE_INT isize = INTVAL (size), i;
1702 bool first_probe = true;
1704 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1705 values of N from 1 until it exceeds SIZE. If only one probe is
1706 needed, this will not generate any code. Then adjust and probe
1707 to PROBE_INTERVAL + SIZE. */
1708 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1710 if (first_probe)
1712 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1713 first_probe = false;
1715 else
1716 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1717 emit_stack_probe (stack_pointer_rtx);
1720 if (first_probe)
1721 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1722 else
1723 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1724 emit_stack_probe (stack_pointer_rtx);
1727 /* In the variable case, do the same as above, but in a loop. Note that we
1728 must be extra careful with variables wrapping around because we might be
1729 at the very top (or the very bottom) of the address space and we have to
1730 be able to handle this case properly; in particular, we use an equality
1731 test for the loop condition. */
1732 else
1734 rtx rounded_size, rounded_size_op, last_addr, temp;
1735 rtx_code_label *loop_lab = gen_label_rtx ();
1736 rtx_code_label *end_lab = gen_label_rtx ();
1739 /* Step 1: round SIZE to the previous multiple of the interval. */
1741 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1742 rounded_size
1743 = simplify_gen_binary (AND, Pmode, size,
1744 gen_int_mode (-PROBE_INTERVAL, Pmode));
1745 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1748 /* Step 2: compute initial and final value of the loop counter. */
1750 /* SP = SP_0 + PROBE_INTERVAL. */
1751 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1753 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1754 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1755 stack_pointer_rtx,
1756 rounded_size_op), NULL_RTX);
1759 /* Step 3: the loop
1761 while (SP != LAST_ADDR)
1763 SP = SP + PROBE_INTERVAL
1764 probe at SP
1767 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1768 values of N from 1 until it is equal to ROUNDED_SIZE. */
1770 emit_label (loop_lab);
1772 /* Jump to END_LAB if SP == LAST_ADDR. */
1773 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1774 Pmode, 1, end_lab);
1776 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1777 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1778 emit_stack_probe (stack_pointer_rtx);
1780 emit_jump (loop_lab);
1782 emit_label (end_lab);
1785 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1786 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1788 /* TEMP = SIZE - ROUNDED_SIZE. */
1789 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1790 if (temp != const0_rtx)
1792 /* Manual CSE if the difference is not known at compile-time. */
1793 if (GET_CODE (temp) != CONST_INT)
1794 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1795 anti_adjust_stack (temp);
1796 emit_stack_probe (stack_pointer_rtx);
1800 /* Adjust back and account for the additional first interval. */
1801 if (adjust_back)
1802 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1803 else
1804 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1807 /* Return an rtx representing the register or memory location
1808 in which a scalar value of data type VALTYPE
1809 was returned by a function call to function FUNC.
1810 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1811 function is known, otherwise 0.
1812 OUTGOING is 1 if on a machine with register windows this function
1813 should return the register in which the function will put its result
1814 and 0 otherwise. */
1817 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1818 int outgoing ATTRIBUTE_UNUSED)
1820 rtx val;
1822 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1824 if (REG_P (val)
1825 && GET_MODE (val) == BLKmode)
1827 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1828 machine_mode tmpmode;
1830 /* int_size_in_bytes can return -1. We don't need a check here
1831 since the value of bytes will then be large enough that no
1832 mode will match anyway. */
1834 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1835 tmpmode != VOIDmode;
1836 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1838 /* Have we found a large enough mode? */
1839 if (GET_MODE_SIZE (tmpmode) >= bytes)
1840 break;
1843 /* No suitable mode found. */
1844 gcc_assert (tmpmode != VOIDmode);
1846 PUT_MODE (val, tmpmode);
1848 return val;
1851 /* Return an rtx representing the register or memory location
1852 in which a scalar value of mode MODE was returned by a library call. */
1855 hard_libcall_value (machine_mode mode, rtx fun)
1857 return targetm.calls.libcall_value (mode, fun);
1860 /* Look up the tree code for a given rtx code
1861 to provide the arithmetic operation for REAL_ARITHMETIC.
1862 The function returns an int because the caller may not know
1863 what `enum tree_code' means. */
1866 rtx_to_tree_code (enum rtx_code code)
1868 enum tree_code tcode;
1870 switch (code)
1872 case PLUS:
1873 tcode = PLUS_EXPR;
1874 break;
1875 case MINUS:
1876 tcode = MINUS_EXPR;
1877 break;
1878 case MULT:
1879 tcode = MULT_EXPR;
1880 break;
1881 case DIV:
1882 tcode = RDIV_EXPR;
1883 break;
1884 case SMIN:
1885 tcode = MIN_EXPR;
1886 break;
1887 case SMAX:
1888 tcode = MAX_EXPR;
1889 break;
1890 default:
1891 tcode = LAST_AND_UNUSED_TREE_CODE;
1892 break;
1894 return ((int) tcode);
1897 #include "gt-explow.h"