1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 -- This package contains various utility procedures to assist in building
27 -- specific types of tree nodes.
29 with Namet
; use Namet
;
30 with Sinfo
; use Sinfo
;
31 with Types
; use Types
;
32 with Uintp
; use Uintp
;
36 function Checks_Off
(N
: Node_Id
) return Node_Id
;
37 pragma Inline
(Checks_Off
);
38 -- Returns an N_Unchecked_Expression node whose expression is the given
39 -- argument. The results is a subexpression identical to the argument,
40 -- except that it will be analyzed and resolved with checks off.
42 function Convert_To
(Typ
: Entity_Id
; Expr
: Node_Id
) return Node_Id
;
43 -- Returns an expression that represents the result of a checked convert
44 -- of expression Exp to type T. If the base type of Exp is T, then no
45 -- conversion is required, and Exp is returned unchanged. Otherwise an
46 -- N_Type_Conversion node is constructed to convert the expression.
47 -- If an N_Type_Conversion node is required, Relocate_Node is used on
48 -- Exp. This means that it is safe to replace a node by a Convert_To
49 -- of itself to some other type.
51 procedure Convert_To_And_Rewrite
(Typ
: Entity_Id
; Expr
: Node_Id
);
52 pragma Inline
(Convert_To_And_Rewrite
);
53 -- Like the function, except that there is an extra step of calling
54 -- Rewrite on the Expr node and replacing it with the converted result.
55 -- As noted above, this is safe, because Relocate_Node is called.
57 procedure Discard_Node
(N
: Node_Or_Entity_Id
);
58 pragma Inline
(Discard_Node
);
59 -- This is a dummy procedure that simply returns and does nothing. It is
60 -- used when a function returning a Node_Id value is called for its side
61 -- effect (e.g. a call to Make to construct a node) but the Node_Id value
64 procedure Discard_List
(L
: List_Id
);
65 pragma Inline
(Discard_List
);
66 -- This is a dummy procedure that simply returns and does nothing. It is
67 -- used when a function returning a Node_Id value is called for its side
68 -- effect (e.g. a call to the parser to parse a list of compilation
69 -- units), but the List_Id value is not required.
71 function Make_Byte_Aligned_Attribute_Reference
74 Attribute_Name
: Name_Id
) return Node_Id
;
75 pragma Inline
(Make_Byte_Aligned_Attribute_Reference
);
76 -- Like the standard Make_Attribute_Reference but the special flag
77 -- Must_Be_Byte_Aligned is set in the attribute reference node. The
78 -- Attribute_Name must be Name_Address or Name_Unrestricted_Access.
80 function Make_DT_Access
81 (Loc
: Source_Ptr
; Rec
: Node_Id
; Typ
: Entity_Id
) return Node_Id
;
82 -- Create an access to the Dispatch Table by using the Tag field of a
83 -- tagged record : Acc_Dt (Rec.tag).all
85 function Make_Float_Literal
89 Exponent
: Uint
) return Node_Id
;
90 -- Create a real literal for the floating point expression value
91 -- Significand * Radix ** Exponent. Radix must be greater than 1.
93 function Make_Implicit_Exception_Handler
95 Choice_Parameter
: Node_Id
:= Empty
;
96 Exception_Choices
: List_Id
;
97 Statements
: List_Id
) return Node_Id
;
98 pragma Inline
(Make_Implicit_Exception_Handler
);
99 -- This is just like Make_Exception_Handler, except that it also sets the
100 -- Local_Raise_Statements field to No_Elist, ensuring that it is properly
101 -- initialized. This should always be used when creating implicit exception
102 -- handlers during expansion (i.e. handlers that do not correspond to user
103 -- source program exception handlers).
105 function Make_Implicit_If_Statement
108 Then_Statements
: List_Id
;
109 Elsif_Parts
: List_Id
:= No_List
;
110 Else_Statements
: List_Id
:= No_List
) return Node_Id
;
111 pragma Inline
(Make_Implicit_If_Statement
);
112 -- This function makes an N_If_Statement node whose fields are filled
113 -- in with the indicated values (see Sinfo), and whose Sloc field is
114 -- is set to Sloc (Node). The effect is identical to calling function
115 -- Nmake.Make_If_Statement except that there is a check for restriction
116 -- No_Implicit_Conditionals, and if this restriction is being violated,
117 -- an error message is posted on Node.
119 function Make_Implicit_Label_Declaration
121 Defining_Identifier
: Node_Id
;
122 Label_Construct
: Node_Id
) return Node_Id
;
123 -- Used to construct an implicit label declaration node, including setting
124 -- the proper Label_Construct field (since Label_Construct is a semantic
125 -- field, the normal call to Make_Implicit_Label_Declaration does not
128 function Make_Implicit_Loop_Statement
130 Statements
: List_Id
;
131 Identifier
: Node_Id
:= Empty
;
132 Iteration_Scheme
: Node_Id
:= Empty
;
133 Has_Created_Identifier
: Boolean := False;
134 End_Label
: Node_Id
:= Empty
) return Node_Id
;
135 -- This function makes an N_Loop_Statement node whose fields are filled
136 -- in with the indicated values (see Sinfo), and whose Sloc field is
137 -- is set to Sloc (Node). The effect is identical to calling function
138 -- Nmake.Make_Loop_Statement except that there is a check for restrictions
139 -- No_Implicit_Loops and No_Implicit_Conditionals (the first applying in
140 -- all cases, and the second only for while loops), and if one of these
141 -- restrictions is being violated, an error message is posted on Node.
143 function Make_Increment
144 (Loc
: Source_Ptr
; Index
: Entity_Id
; Typ
: Entity_Id
) return Node_Id
;
145 -- Return an assignment statement of the form "Index := Typ'Succ (Index);"
147 function Make_Integer_Literal
149 Intval
: Int
) return Node_Id
;
150 pragma Inline
(Make_Integer_Literal
);
151 -- A convenient form of Make_Integer_Literal taking Int instead of Uint
153 function Make_Linker_Section_Pragma
156 Sec
: String) return Node_Id
;
157 -- Construct a Linker_Section pragma for entity Ent, using string Sec as
158 -- the section name. Loc is the Sloc value to use in building the pragma.
163 Pragma_Argument_Associations
: List_Id
:= No_List
) return Node_Id
;
164 -- A convenient form of Make_Pragma not requiring a Pragma_Identifier
165 -- argument (this argument is built from the value given for Chars).
167 function Make_Raise_Constraint_Error
169 Condition
: Node_Id
:= Empty
;
170 Reason
: RT_Exception_Code
) return Node_Id
;
171 pragma Inline
(Make_Raise_Constraint_Error
);
172 -- A convenient form of Make_Raise_Constraint_Error where the Reason
173 -- is given simply as an enumeration value, rather than a Uint code.
175 function Make_Raise_Program_Error
177 Condition
: Node_Id
:= Empty
;
178 Reason
: RT_Exception_Code
) return Node_Id
;
179 pragma Inline
(Make_Raise_Program_Error
);
180 -- A convenient form of Make_Raise_Program_Error where the Reason
181 -- is given simply as an enumeration value, rather than a Uint code.
183 function Make_Raise_Storage_Error
185 Condition
: Node_Id
:= Empty
;
186 Reason
: RT_Exception_Code
) return Node_Id
;
187 pragma Inline
(Make_Raise_Storage_Error
);
188 -- A convenient form of Make_Raise_Storage_Error where the Reason is given
189 -- simply as an enumeration value, rather than a Uint code.
191 function Make_String_Literal
193 Strval
: String) return Node_Id
;
194 -- A convenient form of Make_String_Literal, where the string value is
195 -- given as a normal string instead of a String_Id value.
197 function Make_Temporary
200 Related_Node
: Node_Id
:= Empty
) return Entity_Id
;
201 -- This function should be used for all cases where a defining identifier
202 -- is to be built with a name to be obtained by New_Internal_Name (here Id
203 -- is the character passed as the argument to New_Internal_Name). Loc is
204 -- the location for the Sloc value of the resulting Entity. Note that this
205 -- can be used for all kinds of temporary defining identifiers used in
206 -- expansion (objects, subtypes, functions etc).
208 -- Related_Node is used when the defining identifier is for an object that
209 -- captures the value of an expression (e.g. an aggregate). It should be
210 -- set whenever possible to point to the expression that is being captured.
211 -- This is provided to get better error messages, e.g. from CodePeer.
213 function Make_Unsuppress_Block
216 Stmts
: List_Id
) return Node_Id
;
217 -- Build a block with a pragma Suppress on 'Check'. Stmts is the statements
218 -- list that needs protection against the check
220 function New_Constraint_Error
(Loc
: Source_Ptr
) return Node_Id
;
221 -- This function builds a tree corresponding to the Ada statement
222 -- "raise Constraint_Error" and returns the root of this tree,
223 -- the N_Raise_Statement node.
226 (New_Node_Kind
: Node_Kind
;
227 New_Sloc
: Source_Ptr
) return Node_Id
;
228 -- Create node using New_Node and, if its kind is in N_Op, set its Chars
229 -- field accordingly.
231 function New_External_Name
232 (Related_Id
: Name_Id
;
233 Suffix
: Character := ' ';
234 Suffix_Index
: Int
:= 0;
235 Prefix
: Character := ' ') return Name_Id
;
236 function New_External_Name
237 (Related_Id
: Name_Id
;
239 Suffix_Index
: Int
:= 0;
240 Prefix
: Character := ' ') return Name_Id
;
241 -- Builds a new entry in the names table of the form:
243 -- [Prefix &] Related_Id [& Suffix] [& Suffix_Index]
245 -- Prefix is prepended only if Prefix is non-blank (in which case it
246 -- must be an upper case letter other than O,Q,U,W (which are used for
247 -- identifier encoding, see Namet), or an underscore, and T is reserved for
248 -- use by implicit types, and X is reserved for use by debug type encoding
249 -- (see package Exp_Dbug). Note: the reason that Prefix is last is that it
250 -- is almost always omitted. The notable case of Prefix being non-null is
251 -- when it is 'T' for an implicit type.
253 -- Suffix_Index'Image is appended only if the value of Suffix_Index is
254 -- positive, or if Suffix_Index is negative 1, then a unique serialized
255 -- suffix is added. If Suffix_Index is zero, then no index is appended.
257 -- Suffix is also a single upper case letter other than O,Q,U,W,X (T is
258 -- allowed in this context), or a string of such upper case letters. In
259 -- the case of a string, an initial underscore may be given.
261 -- The constructed name is stored using Name_Find so that it can be located
262 -- using a subsequent Name_Find operation (i.e. it is properly hashed into
263 -- the names table). The upper case letter given as the Suffix argument
264 -- ensures that the name does not clash with any Ada identifier name. These
265 -- generated names are permitted, but not required, to be made public by
266 -- setting the flag Is_Public in the associated entity.
268 -- Note: it is dubious to make them public if they have serial numbers,
269 -- since we are counting on the serial numbers being the same for the
270 -- clients with'ing a package and the actual compilation of the package
271 -- with full expansion. This is a dubious assumption ???
273 function New_External_Name
275 Suffix_Index
: Nat
) return Name_Id
;
276 -- Builds a new entry in the names table of the form
277 -- Suffix & Suffix_Index'Image
278 -- where Suffix is a single upper case letter other than O,Q,U,W,X and is
279 -- a required parameter (T is permitted). The constructed name is stored
280 -- using Name_Find so that it can be located using a subsequent Name_Find
281 -- operation (i.e. it is properly hashed into the names table). The upper
282 -- case letter given as the Suffix argument ensures that the name does
283 -- not clash with any Ada identifier name. These generated names are
284 -- permitted, but not required, to be made public by setting the flag
285 -- Is_Public in the associated entity.
287 -- Note: it is dubious to make these public since they have serial numbers,
288 -- which means we are counting on the serial numbers being the same for the
289 -- clients with'ing a package and the actual compilation of the package
290 -- with full expansion. This is a dubious assumption ???
292 function New_Internal_Name
(Id_Char
: Character) return Name_Id
;
293 -- Id_Char is an upper case letter other than O,Q,U,W (which are reserved
294 -- for identifier encoding (see Namet package for details) and X which is
295 -- used for debug encoding (see Exp_Dbug). The letter T is permitted, but
296 -- is reserved by convention for the case of internally generated types.
297 -- The result of the call is a new generated unique name of the form XyyyU
298 -- where X is Id_Char, yyy is a unique serial number, and U is either a
299 -- lower case s or b indicating if the current unit is a spec or a body.
301 -- The name is entered into the names table using Name_Enter rather than
302 -- Name_Find, because there can never be a need to locate the entry using
303 -- the Name_Find procedure later on. Names created by New_Internal_Name
304 -- are guaranteed to be consistent from one compilation to another (i.e.
305 -- if the identical unit is compiled with a semantically consistent set
306 -- of sources, the numbers will be consistent). This means that it is fine
307 -- to use these as public symbols.
309 -- Note: Nearly all uses of this function are via calls to Make_Temporary,
310 -- but there are just a few cases where it is called directly.
312 -- Note: despite the guarantee of consistency stated above, it is dubious
313 -- to make these public since they have serial numbers, which means we are
314 -- counting on the serial numbers being the same for the clients with'ing
315 -- a package and the actual compilation of the package with full expansion.
316 -- This is a dubious assumption ???
318 function New_Occurrence_Of
320 Loc
: Source_Ptr
) return Node_Id
;
321 -- New_Occurrence_Of creates an N_Identifier node which is an occurrence
322 -- of the defining identifier which is passed as its argument. The Entity
323 -- and Etype of the result are set from the given defining identifier as
324 -- follows: Entity is simply a copy of Def_Id. Etype is a copy of Def_Id
325 -- for types, and a copy of the Etype of Def_Id for other entities. Note
326 -- that Is_Static_Expression is set if this call creates an occurrence of
327 -- an enumeration literal.
329 function New_Suffixed_Name
330 (Related_Id
: Name_Id
;
331 Suffix
: String) return Name_Id
;
332 -- This function is used to create special suffixed names used by the
333 -- debugger. Suffix is a string of upper case letters, used to construct
334 -- the required name. For instance, the special type used to record the
335 -- fixed-point small is called typ_SMALL where typ is the name of the
336 -- fixed-point type (as passed in Related_Id), and Suffix is "SMALL".
338 function Sel_Comp
(Pre
, Sel
: String; Loc
: Source_Ptr
) return Node_Id
;
339 function Sel_Comp
(Pre
: Node_Id
; Sel
: String) return Node_Id
;
340 -- Create a selected component of the form Pre.Sel; that is, Pre is the
341 -- prefix, and Sel is the selector name.
343 function OK_Convert_To
(Typ
: Entity_Id
; Expr
: Node_Id
) return Node_Id
;
344 -- Like Convert_To, except that a conversion node is always generated, and
345 -- the Conversion_OK flag is set on this conversion node.
347 function Unchecked_Convert_To
349 Expr
: Node_Id
) return Node_Id
;
350 -- Like Convert_To, but if a conversion is actually needed, constructs an
351 -- N_Unchecked_Type_Conversion node to do the required conversion.
353 -------------------------------------
354 -- Subprograms for Use by Gnat1drv --
355 -------------------------------------
357 function Make_Id
(Str
: Text_Buffer
) return Node_Id
;
358 function Make_SC
(Pre
, Sel
: Node_Id
) return Node_Id
;
359 procedure Set_NOD
(Unit
: Node_Id
);
360 procedure Set_NSA
(Asp
: Name_Id
; OK
: out Boolean);
361 procedure Set_NUA
(Attr
: Name_Id
; OK
: out Boolean);
362 procedure Set_NUP
(Prag
: Name_Id
; OK
: out Boolean);
363 -- Subprograms for call to Get_Target_Parameters in Gnat1drv, see spec
364 -- of package Targparm for full description of these four subprograms.
365 -- These have to be declared at the top level of a package (accessibility
366 -- issues), and Gnat1drv is a procedure, so they can't go there.