1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Elists
; use Elists
;
29 with Einfo
; use Einfo
;
30 with Exp_Disp
; use Exp_Disp
;
31 with Exp_Util
; use Exp_Util
;
32 with Exp_Ch7
; use Exp_Ch7
;
33 with Exp_Tss
; use Exp_Tss
;
34 with Errout
; use Errout
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nlists
; use Nlists
;
38 with Nmake
; use Nmake
;
40 with Output
; use Output
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch3
; use Sem_Ch3
;
46 with Sem_Ch6
; use Sem_Ch6
;
47 with Sem_Ch8
; use Sem_Ch8
;
48 with Sem_Eval
; use Sem_Eval
;
49 with Sem_Type
; use Sem_Type
;
50 with Sem_Util
; use Sem_Util
;
51 with Snames
; use Snames
;
52 with Sinfo
; use Sinfo
;
53 with Targparm
; use Targparm
;
54 with Tbuild
; use Tbuild
;
55 with Uintp
; use Uintp
;
57 package body Sem_Disp
is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type
: Entity_Id
;
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
70 Subp
: Entity_Id
) return Entity_Id
;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
97 procedure Add_Dispatching_Operation
98 (Tagged_Type
: Entity_Id
;
101 List
: constant Elist_Id
:= Primitive_Operations
(Tagged_Type
);
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
109 Append_Unique_Elmt
(New_Op
, List
);
110 end Add_Dispatching_Operation
;
112 ---------------------------
113 -- Covers_Some_Interface --
114 ---------------------------
116 function Covers_Some_Interface
(Prim
: Entity_Id
) return Boolean is
117 Tagged_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
122 pragma Assert
(Is_Dispatching_Operation
(Prim
));
124 -- Although this is a dispatching primitive we must check if its
125 -- dispatching type is available because it may be the primitive
126 -- of a private type not defined as tagged in its partial view.
128 if Present
(Tagged_Type
) and then Has_Interfaces
(Tagged_Type
) then
130 -- If the tagged type is frozen then the internal entities associated
131 -- with interfaces are available in the list of primitives of the
132 -- tagged type and can be used to speed up this search.
134 if Is_Frozen
(Tagged_Type
) then
135 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
136 while Present
(Elmt
) loop
139 if Present
(Interface_Alias
(E
))
140 and then Alias
(E
) = Prim
148 -- Otherwise we must collect all the interface primitives and check
149 -- if the Prim will override some interface primitive.
153 Ifaces_List
: Elist_Id
;
154 Iface_Elmt
: Elmt_Id
;
156 Iface_Prim
: Entity_Id
;
159 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
160 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
161 while Present
(Iface_Elmt
) loop
162 Iface
:= Node
(Iface_Elmt
);
164 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
165 while Present
(Elmt
) loop
166 Iface_Prim
:= Node
(Elmt
);
168 if Chars
(Iface
) = Chars
(Prim
)
169 and then Is_Interface_Conformant
170 (Tagged_Type
, Iface_Prim
, Prim
)
178 Next_Elmt
(Iface_Elmt
);
185 end Covers_Some_Interface
;
187 -------------------------------
188 -- Check_Controlling_Formals --
189 -------------------------------
191 procedure Check_Controlling_Formals
196 Ctrl_Type
: Entity_Id
;
199 Formal
:= First_Formal
(Subp
);
200 while Present
(Formal
) loop
201 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
203 if Present
(Ctrl_Type
) then
205 -- When controlling type is concurrent and declared within a
206 -- generic or inside an instance use corresponding record type.
208 if Is_Concurrent_Type
(Ctrl_Type
)
209 and then Present
(Corresponding_Record_Type
(Ctrl_Type
))
211 Ctrl_Type
:= Corresponding_Record_Type
(Ctrl_Type
);
214 if Ctrl_Type
= Typ
then
215 Set_Is_Controlling_Formal
(Formal
);
217 -- Ada 2005 (AI-231): Anonymous access types that are used in
218 -- controlling parameters exclude null because it is necessary
219 -- to read the tag to dispatch, and null has no tag.
221 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
222 Set_Can_Never_Be_Null
(Etype
(Formal
));
223 Set_Is_Known_Non_Null
(Etype
(Formal
));
226 -- Check that the parameter's nominal subtype statically
227 -- matches the first subtype.
229 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
230 if not Subtypes_Statically_Match
231 (Typ
, Designated_Type
(Etype
(Formal
)))
234 ("parameter subtype does not match controlling type",
238 elsif not Subtypes_Statically_Match
(Typ
, Etype
(Formal
)) then
240 ("parameter subtype does not match controlling type",
244 if Present
(Default_Value
(Formal
)) then
246 -- In Ada 2005, access parameters can have defaults
248 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
249 and then Ada_Version
< Ada_2005
252 ("default not allowed for controlling access parameter",
253 Default_Value
(Formal
));
255 elsif not Is_Tag_Indeterminate
(Default_Value
(Formal
)) then
257 ("default expression must be a tag indeterminate" &
258 " function call", Default_Value
(Formal
));
262 elsif Comes_From_Source
(Subp
) then
264 ("operation can be dispatching in only one type", Subp
);
268 Next_Formal
(Formal
);
271 if Ekind_In
(Subp
, E_Function
, E_Generic_Function
) then
272 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Subp
), Subp
);
274 if Present
(Ctrl_Type
) then
275 if Ctrl_Type
= Typ
then
276 Set_Has_Controlling_Result
(Subp
);
278 -- Check that result subtype statically matches first subtype
279 -- (Ada 2005): Subp may have a controlling access result.
281 if Subtypes_Statically_Match
(Typ
, Etype
(Subp
))
282 or else (Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
284 Subtypes_Statically_Match
285 (Typ
, Designated_Type
(Etype
(Subp
))))
291 ("result subtype does not match controlling type", Subp
);
294 elsif Comes_From_Source
(Subp
) then
296 ("operation can be dispatching in only one type", Subp
);
300 end Check_Controlling_Formals
;
302 ----------------------------
303 -- Check_Controlling_Type --
304 ----------------------------
306 function Check_Controlling_Type
308 Subp
: Entity_Id
) return Entity_Id
310 Tagged_Type
: Entity_Id
:= Empty
;
313 if Is_Tagged_Type
(T
) then
314 if Is_First_Subtype
(T
) then
317 Tagged_Type
:= Base_Type
(T
);
320 elsif Ekind
(T
) = E_Anonymous_Access_Type
321 and then Is_Tagged_Type
(Designated_Type
(T
))
323 if Ekind
(Designated_Type
(T
)) /= E_Incomplete_Type
then
324 if Is_First_Subtype
(Designated_Type
(T
)) then
325 Tagged_Type
:= Designated_Type
(T
);
327 Tagged_Type
:= Base_Type
(Designated_Type
(T
));
330 -- Ada 2005: an incomplete type can be tagged. An operation with an
331 -- access parameter of the type is dispatching.
333 elsif Scope
(Designated_Type
(T
)) = Current_Scope
then
334 Tagged_Type
:= Designated_Type
(T
);
336 -- Ada 2005 (AI-50217)
338 elsif From_Limited_With
(Designated_Type
(T
))
339 and then Present
(Non_Limited_View
(Designated_Type
(T
)))
340 and then Scope
(Designated_Type
(T
)) = Scope
(Subp
)
342 if Is_First_Subtype
(Non_Limited_View
(Designated_Type
(T
))) then
343 Tagged_Type
:= Non_Limited_View
(Designated_Type
(T
));
345 Tagged_Type
:= Base_Type
(Non_Limited_View
346 (Designated_Type
(T
)));
351 if No
(Tagged_Type
) or else Is_Class_Wide_Type
(Tagged_Type
) then
354 -- The dispatching type and the primitive operation must be defined in
355 -- the same scope, except in the case of internal operations and formal
356 -- abstract subprograms.
358 elsif ((Scope
(Subp
) = Scope
(Tagged_Type
) or else Is_Internal
(Subp
))
359 and then (not Is_Generic_Type
(Tagged_Type
)
360 or else not Comes_From_Source
(Subp
)))
362 (Is_Formal_Subprogram
(Subp
) and then Is_Abstract_Subprogram
(Subp
))
364 (Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Renaming_Declaration
366 Present
(Corresponding_Formal_Spec
(Parent
(Parent
(Subp
))))
368 Is_Abstract_Subprogram
(Subp
))
375 end Check_Controlling_Type
;
377 ----------------------------
378 -- Check_Dispatching_Call --
379 ----------------------------
381 procedure Check_Dispatching_Call
(N
: Node_Id
) is
382 Loc
: constant Source_Ptr
:= Sloc
(N
);
385 Control
: Node_Id
:= Empty
;
387 Subp_Entity
: Entity_Id
;
388 Indeterm_Ancestor_Call
: Boolean := False;
389 Indeterm_Ctrl_Type
: Entity_Id
;
391 Static_Tag
: Node_Id
:= Empty
;
392 -- If a controlling formal has a statically tagged actual, the tag of
393 -- this actual is to be used for any tag-indeterminate actual.
395 procedure Check_Direct_Call
;
396 -- In the case when the controlling actual is a class-wide type whose
397 -- root type's completion is a task or protected type, the call is in
398 -- fact direct. This routine detects the above case and modifies the
401 procedure Check_Dispatching_Context
;
402 -- If the call is tag-indeterminate and the entity being called is
403 -- abstract, verify that the context is a call that will eventually
404 -- provide a tag for dispatching, or has provided one already.
406 -----------------------
407 -- Check_Direct_Call --
408 -----------------------
410 procedure Check_Direct_Call
is
411 Typ
: Entity_Id
:= Etype
(Control
);
413 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean;
414 -- Determine whether an entity denotes a user-defined equality
416 ------------------------------
417 -- Is_User_Defined_Equality --
418 ------------------------------
420 function Is_User_Defined_Equality
(Id
: Entity_Id
) return Boolean is
423 Ekind
(Id
) = E_Function
424 and then Chars
(Id
) = Name_Op_Eq
425 and then Comes_From_Source
(Id
)
427 -- Internally generated equalities have a full type declaration
430 and then Nkind
(Parent
(Id
)) = N_Function_Specification
;
431 end Is_User_Defined_Equality
;
433 -- Start of processing for Check_Direct_Call
436 -- Predefined primitives do not receive wrappers since they are built
437 -- from scratch for the corresponding record of synchronized types.
438 -- Equality is in general predefined, but is excluded from the check
439 -- when it is user-defined.
441 if Is_Predefined_Dispatching_Operation
(Subp_Entity
)
442 and then not Is_User_Defined_Equality
(Subp_Entity
)
447 if Is_Class_Wide_Type
(Typ
) then
448 Typ
:= Root_Type
(Typ
);
451 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
452 Typ
:= Full_View
(Typ
);
455 if Is_Concurrent_Type
(Typ
)
457 Present
(Corresponding_Record_Type
(Typ
))
459 Typ
:= Corresponding_Record_Type
(Typ
);
461 -- The concurrent record's list of primitives should contain a
462 -- wrapper for the entity of the call, retrieve it.
467 Wrapper_Found
: Boolean := False;
470 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
471 while Present
(Prim_Elmt
) loop
472 Prim
:= Node
(Prim_Elmt
);
474 if Is_Primitive_Wrapper
(Prim
)
475 and then Wrapped_Entity
(Prim
) = Subp_Entity
477 Wrapper_Found
:= True;
481 Next_Elmt
(Prim_Elmt
);
484 -- A primitive declared between two views should have a
485 -- corresponding wrapper.
487 pragma Assert
(Wrapper_Found
);
489 -- Modify the call by setting the proper entity
491 Set_Entity
(Name
(N
), Prim
);
494 end Check_Direct_Call
;
496 -------------------------------
497 -- Check_Dispatching_Context --
498 -------------------------------
500 procedure Check_Dispatching_Context
is
501 Subp
: constant Entity_Id
:= Entity
(Name
(N
));
502 Typ
: constant Entity_Id
:= Etype
(Subp
);
505 procedure Abstract_Context_Error
;
506 -- Error for abstract call dispatching on result is not dispatching
508 ----------------------------
509 -- Abstract_Context_Error --
510 ----------------------------
512 procedure Abstract_Context_Error
is
514 if Ekind
(Subp
) = E_Function
then
516 ("call to abstract function must be dispatching", N
);
518 -- This error can occur for a procedure in the case of a call to
519 -- an abstract formal procedure with a statically tagged operand.
523 ("call to abstract procedure must be dispatching",
526 end Abstract_Context_Error
;
528 -- Start of processing for Check_Dispatching_Context
531 if Is_Abstract_Subprogram
(Subp
)
532 and then No
(Controlling_Argument
(N
))
534 if Present
(Alias
(Subp
))
535 and then not Is_Abstract_Subprogram
(Alias
(Subp
))
536 and then No
(DTC_Entity
(Subp
))
538 -- Private overriding of inherited abstract operation, call is
541 Set_Entity
(Name
(N
), Alias
(Subp
));
544 -- An obscure special case: a null procedure may have a class-
545 -- wide pre/postcondition that includes a call to an abstract
546 -- subp. Calls within the expression may not have been rewritten
547 -- as dispatching calls yet, because the null body appears in
548 -- the current declarative part. The expression will be properly
549 -- rewritten/reanalyzed when the postcondition procedure is built.
551 -- Similarly, if this is a pre/postcondition for an abstract
552 -- subprogram, it may call another abstract function which is
553 -- a primitive of an abstract type. The call is non-dispatching
554 -- but will be legal in overridings of the operation.
556 elsif In_Spec_Expression
557 and then Is_Subprogram
(Current_Scope
)
559 ((Nkind
(Parent
(Current_Scope
)) = N_Procedure_Specification
560 and then Null_Present
(Parent
(Current_Scope
)))
561 or else Is_Abstract_Subprogram
(Current_Scope
))
566 -- We need to determine whether the context of the call
567 -- provides a tag to make the call dispatching. This requires
568 -- the call to be the actual in an enclosing call, and that
569 -- actual must be controlling. If the call is an operand of
570 -- equality, the other operand must not ve abstract.
572 if not Is_Tagged_Type
(Typ
)
574 (Ekind
(Typ
) = E_Anonymous_Access_Type
575 and then Is_Tagged_Type
(Designated_Type
(Typ
)))
577 Abstract_Context_Error
;
583 if Nkind
(Par
) = N_Parameter_Association
then
587 while Present
(Par
) loop
588 if Nkind_In
(Par
, N_Function_Call
,
589 N_Procedure_Call_Statement
)
590 and then Is_Entity_Name
(Name
(Par
))
597 -- Find formal for which call is the actual.
599 F
:= First_Formal
(Entity
(Name
(Par
)));
600 A
:= First_Actual
(Par
);
601 while Present
(F
) loop
602 if Is_Controlling_Formal
(F
)
603 and then (N
= A
or else Parent
(N
) = A
)
613 ("call to abstract function must be dispatching", N
);
617 -- For equalitiy operators, one of the operands must be
618 -- statically or dynamically tagged.
620 elsif Nkind_In
(Par
, N_Op_Eq
, N_Op_Ne
) then
621 if N
= Right_Opnd
(Par
)
622 and then Is_Tag_Indeterminate
(Left_Opnd
(Par
))
624 Abstract_Context_Error
;
626 elsif N
= Left_Opnd
(Par
)
627 and then Is_Tag_Indeterminate
(Right_Opnd
(Par
))
629 Abstract_Context_Error
;
634 elsif Nkind
(Par
) = N_Assignment_Statement
then
637 elsif Nkind
(Par
) = N_Qualified_Expression
638 or else Nkind
(Par
) = N_Unchecked_Type_Conversion
643 Abstract_Context_Error
;
649 end Check_Dispatching_Context
;
651 -- Start of processing for Check_Dispatching_Call
654 -- Find a controlling argument, if any
656 if Present
(Parameter_Associations
(N
)) then
657 Subp_Entity
:= Entity
(Name
(N
));
659 Actual
:= First_Actual
(N
);
660 Formal
:= First_Formal
(Subp_Entity
);
661 while Present
(Actual
) loop
662 Control
:= Find_Controlling_Arg
(Actual
);
663 exit when Present
(Control
);
665 -- Check for the case where the actual is a tag-indeterminate call
666 -- whose result type is different than the tagged type associated
667 -- with the containing call, but is an ancestor of the type.
669 if Is_Controlling_Formal
(Formal
)
670 and then Is_Tag_Indeterminate
(Actual
)
671 and then Base_Type
(Etype
(Actual
)) /= Base_Type
(Etype
(Formal
))
672 and then Is_Ancestor
(Etype
(Actual
), Etype
(Formal
))
674 Indeterm_Ancestor_Call
:= True;
675 Indeterm_Ctrl_Type
:= Etype
(Formal
);
677 -- If the formal is controlling but the actual is not, the type
678 -- of the actual is statically known, and may be used as the
679 -- controlling tag for some other tag-indeterminate actual.
681 elsif Is_Controlling_Formal
(Formal
)
682 and then Is_Entity_Name
(Actual
)
683 and then Is_Tagged_Type
(Etype
(Actual
))
685 Static_Tag
:= Actual
;
688 Next_Actual
(Actual
);
689 Next_Formal
(Formal
);
692 -- If the call doesn't have a controlling actual but does have an
693 -- indeterminate actual that requires dispatching treatment, then an
694 -- object is needed that will serve as the controlling argument for
695 -- a dispatching call on the indeterminate actual. This can only
696 -- occur in the unusual situation of a default actual given by
697 -- a tag-indeterminate call and where the type of the call is an
698 -- ancestor of the type associated with a containing call to an
699 -- inherited operation (see AI-239).
701 -- Rather than create an object of the tagged type, which would
702 -- be problematic for various reasons (default initialization,
703 -- discriminants), the tag of the containing call's associated
704 -- tagged type is directly used to control the dispatching.
707 and then Indeterm_Ancestor_Call
708 and then No
(Static_Tag
)
711 Make_Attribute_Reference
(Loc
,
712 Prefix
=> New_Occurrence_Of
(Indeterm_Ctrl_Type
, Loc
),
713 Attribute_Name
=> Name_Tag
);
718 if Present
(Control
) then
720 -- Verify that no controlling arguments are statically tagged
723 Write_Str
("Found Dispatching call");
728 Actual
:= First_Actual
(N
);
729 while Present
(Actual
) loop
730 if Actual
/= Control
then
732 if not Is_Controlling_Actual
(Actual
) then
733 null; -- Can be anything
735 elsif Is_Dynamically_Tagged
(Actual
) then
736 null; -- Valid parameter
738 elsif Is_Tag_Indeterminate
(Actual
) then
740 -- The tag is inherited from the enclosing call (the node
741 -- we are currently analyzing). Explicitly expand the
742 -- actual, since the previous call to Expand (from
743 -- Resolve_Call) had no way of knowing about the
744 -- required dispatching.
746 Propagate_Tag
(Control
, Actual
);
750 ("controlling argument is not dynamically tagged",
756 Next_Actual
(Actual
);
759 -- Mark call as a dispatching call
761 Set_Controlling_Argument
(N
, Control
);
762 Check_Restriction
(No_Dispatching_Calls
, N
);
764 -- The dispatching call may need to be converted into a direct
765 -- call in certain cases.
769 -- If there is a statically tagged actual and a tag-indeterminate
770 -- call to a function of the ancestor (such as that provided by a
771 -- default), then treat this as a dispatching call and propagate
772 -- the tag to the tag-indeterminate call(s).
774 elsif Present
(Static_Tag
) and then Indeterm_Ancestor_Call
then
776 Make_Attribute_Reference
(Loc
,
778 New_Occurrence_Of
(Etype
(Static_Tag
), Loc
),
779 Attribute_Name
=> Name_Tag
);
783 Actual
:= First_Actual
(N
);
784 Formal
:= First_Formal
(Subp_Entity
);
785 while Present
(Actual
) loop
786 if Is_Tag_Indeterminate
(Actual
)
787 and then Is_Controlling_Formal
(Formal
)
789 Propagate_Tag
(Control
, Actual
);
792 Next_Actual
(Actual
);
793 Next_Formal
(Formal
);
796 Check_Dispatching_Context
;
799 -- The call is not dispatching, so check that there aren't any
800 -- tag-indeterminate abstract calls left.
802 Actual
:= First_Actual
(N
);
803 while Present
(Actual
) loop
804 if Is_Tag_Indeterminate
(Actual
) then
806 -- Function call case
808 if Nkind
(Original_Node
(Actual
)) = N_Function_Call
then
809 Func
:= Entity
(Name
(Original_Node
(Actual
)));
811 -- If the actual is an attribute then it can't be abstract
812 -- (the only current case of a tag-indeterminate attribute
813 -- is the stream Input attribute).
816 Nkind
(Original_Node
(Actual
)) = N_Attribute_Reference
820 -- Only other possibility is a qualified expression whose
821 -- constituent expression is itself a call.
827 (Expression
(Original_Node
(Actual
)))));
830 if Present
(Func
) and then Is_Abstract_Subprogram
(Func
) then
832 ("call to abstract function must be dispatching", N
);
836 Next_Actual
(Actual
);
839 Check_Dispatching_Context
;
843 -- If dispatching on result, the enclosing call, if any, will
844 -- determine the controlling argument. Otherwise this is the
845 -- primitive operation of the root type.
847 Check_Dispatching_Context
;
849 end Check_Dispatching_Call
;
851 ---------------------------------
852 -- Check_Dispatching_Operation --
853 ---------------------------------
855 procedure Check_Dispatching_Operation
(Subp
, Old_Subp
: Entity_Id
) is
856 Tagged_Type
: Entity_Id
;
857 Has_Dispatching_Parent
: Boolean := False;
858 Body_Is_Last_Primitive
: Boolean := False;
859 Ovr_Subp
: Entity_Id
:= Empty
;
862 if not Ekind_In
(Subp
, E_Procedure
, E_Function
) then
866 Set_Is_Dispatching_Operation
(Subp
, False);
867 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
869 -- Ada 2005 (AI-345): Use the corresponding record (if available).
870 -- Required because primitives of concurrent types are attached
871 -- to the corresponding record (not to the concurrent type).
873 if Ada_Version
>= Ada_2005
874 and then Present
(Tagged_Type
)
875 and then Is_Concurrent_Type
(Tagged_Type
)
876 and then Present
(Corresponding_Record_Type
(Tagged_Type
))
878 Tagged_Type
:= Corresponding_Record_Type
(Tagged_Type
);
881 -- (AI-345): The task body procedure is not a primitive of the tagged
884 if Present
(Tagged_Type
)
885 and then Is_Concurrent_Record_Type
(Tagged_Type
)
886 and then Present
(Corresponding_Concurrent_Type
(Tagged_Type
))
887 and then Is_Task_Type
(Corresponding_Concurrent_Type
(Tagged_Type
))
888 and then Subp
= Get_Task_Body_Procedure
889 (Corresponding_Concurrent_Type
(Tagged_Type
))
894 -- If Subp is derived from a dispatching operation then it should
895 -- always be treated as dispatching. In this case various checks
896 -- below will be bypassed. Makes sure that late declarations for
897 -- inherited private subprograms are treated as dispatching, even
898 -- if the associated tagged type is already frozen.
900 Has_Dispatching_Parent
:=
901 Present
(Alias
(Subp
))
902 and then Is_Dispatching_Operation
(Alias
(Subp
));
904 if No
(Tagged_Type
) then
906 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
907 -- with an abstract interface type unless the interface acts as a
908 -- parent type in a derivation. If the interface type is a formal
909 -- type then the operation is not primitive and therefore legal.
916 E
:= First_Entity
(Subp
);
917 while Present
(E
) loop
919 -- For an access parameter, check designated type
921 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
then
922 Typ
:= Designated_Type
(Etype
(E
));
927 if Comes_From_Source
(Subp
)
928 and then Is_Interface
(Typ
)
929 and then not Is_Class_Wide_Type
(Typ
)
930 and then not Is_Derived_Type
(Typ
)
931 and then not Is_Generic_Type
(Typ
)
932 and then not In_Instance
934 Error_Msg_N
("??declaration of& is too late!", Subp
);
935 Error_Msg_NE
-- CODEFIX??
936 ("\??spec should appear immediately after declaration "
937 & "of & !", Subp
, Typ
);
944 -- In case of functions check also the result type
946 if Ekind
(Subp
) = E_Function
then
947 if Is_Access_Type
(Etype
(Subp
)) then
948 Typ
:= Designated_Type
(Etype
(Subp
));
953 -- The following should be better commented, especially since
954 -- we just added several new conditions here ???
956 if Comes_From_Source
(Subp
)
957 and then Is_Interface
(Typ
)
958 and then not Is_Class_Wide_Type
(Typ
)
959 and then not Is_Derived_Type
(Typ
)
960 and then not Is_Generic_Type
(Typ
)
961 and then not In_Instance
963 Error_Msg_N
("??declaration of& is too late!", Subp
);
965 ("\??spec should appear immediately after declaration "
966 & "of & !", Subp
, Typ
);
973 -- The subprograms build internally after the freezing point (such as
974 -- init procs, interface thunks, type support subprograms, and Offset
975 -- to top functions for accessing interface components in variable
976 -- size tagged types) are not primitives.
978 elsif Is_Frozen
(Tagged_Type
)
979 and then not Comes_From_Source
(Subp
)
980 and then not Has_Dispatching_Parent
982 -- Complete decoration of internally built subprograms that override
983 -- a dispatching primitive. These entities correspond with the
986 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
987 -- to override functions of nonabstract null extensions. These
988 -- primitives were added to the list of primitives of the tagged
989 -- type by Make_Controlling_Function_Wrappers. However, attribute
990 -- Is_Dispatching_Operation must be set to true.
992 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
995 -- 3. Subprograms associated with stream attributes (built by
996 -- New_Stream_Subprogram)
998 if Present
(Old_Subp
)
999 and then Present
(Overridden_Operation
(Subp
))
1000 and then Is_Dispatching_Operation
(Old_Subp
)
1003 ((Ekind
(Subp
) = E_Function
1004 and then Is_Dispatching_Operation
(Old_Subp
)
1005 and then Is_Null_Extension
(Base_Type
(Etype
(Subp
))))
1007 (Ekind
(Subp
) = E_Procedure
1008 and then Is_Dispatching_Operation
(Old_Subp
)
1009 and then Present
(Alias
(Old_Subp
))
1010 and then Is_Null_Interface_Primitive
1011 (Ultimate_Alias
(Old_Subp
)))
1012 or else Get_TSS_Name
(Subp
) = TSS_Stream_Read
1013 or else Get_TSS_Name
(Subp
) = TSS_Stream_Write
);
1015 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1016 Override_Dispatching_Operation
(Tagged_Type
, Old_Subp
, Subp
);
1017 Set_Is_Dispatching_Operation
(Subp
);
1022 -- The operation may be a child unit, whose scope is the defining
1023 -- package, but which is not a primitive operation of the type.
1025 elsif Is_Child_Unit
(Subp
) then
1028 -- If the subprogram is not defined in a package spec, the only case
1029 -- where it can be a dispatching op is when it overrides an operation
1030 -- before the freezing point of the type.
1032 elsif ((not Is_Package_Or_Generic_Package
(Scope
(Subp
)))
1033 or else In_Package_Body
(Scope
(Subp
)))
1034 and then not Has_Dispatching_Parent
1036 if not Comes_From_Source
(Subp
)
1037 or else (Present
(Old_Subp
) and then not Is_Frozen
(Tagged_Type
))
1041 -- If the type is already frozen, the overriding is not allowed
1042 -- except when Old_Subp is not a dispatching operation (which can
1043 -- occur when Old_Subp was inherited by an untagged type). However,
1044 -- a body with no previous spec freezes the type *after* its
1045 -- declaration, and therefore is a legal overriding (unless the type
1046 -- has already been frozen). Only the first such body is legal.
1048 elsif Present
(Old_Subp
)
1049 and then Is_Dispatching_Operation
(Old_Subp
)
1051 if Comes_From_Source
(Subp
)
1053 (Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Body
1054 or else Nkind
(Unit_Declaration_Node
(Subp
)) in N_Body_Stub
)
1057 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1058 Decl_Item
: Node_Id
;
1061 -- ??? The checks here for whether the type has been frozen
1062 -- prior to the new body are not complete. It's not simple
1063 -- to check frozenness at this point since the body has
1064 -- already caused the type to be prematurely frozen in
1065 -- Analyze_Declarations, but we're forced to recheck this
1066 -- here because of the odd rule interpretation that allows
1067 -- the overriding if the type wasn't frozen prior to the
1068 -- body. The freezing action should probably be delayed
1069 -- until after the spec is seen, but that's a tricky
1070 -- change to the delicate freezing code.
1072 -- Look at each declaration following the type up until the
1073 -- new subprogram body. If any of the declarations is a body
1074 -- then the type has been frozen already so the overriding
1075 -- primitive is illegal.
1077 Decl_Item
:= Next
(Parent
(Tagged_Type
));
1078 while Present
(Decl_Item
)
1079 and then (Decl_Item
/= Subp_Body
)
1081 if Comes_From_Source
(Decl_Item
)
1082 and then (Nkind
(Decl_Item
) in N_Proper_Body
1083 or else Nkind
(Decl_Item
) in N_Body_Stub
)
1085 Error_Msg_N
("overriding of& is too late!", Subp
);
1087 ("\spec should appear immediately after the type!",
1095 -- If the subprogram doesn't follow in the list of
1096 -- declarations including the type then the type has
1097 -- definitely been frozen already and the body is illegal.
1099 if No
(Decl_Item
) then
1100 Error_Msg_N
("overriding of& is too late!", Subp
);
1102 ("\spec should appear immediately after the type!",
1105 elsif Is_Frozen
(Subp
) then
1107 -- The subprogram body declares a primitive operation.
1108 -- If the subprogram is already frozen, we must update
1109 -- its dispatching information explicitly here. The
1110 -- information is taken from the overridden subprogram.
1111 -- We must also generate a cross-reference entry because
1112 -- references to other primitives were already created
1113 -- when type was frozen.
1115 Body_Is_Last_Primitive
:= True;
1117 if Present
(DTC_Entity
(Old_Subp
)) then
1118 Set_DTC_Entity
(Subp
, DTC_Entity
(Old_Subp
));
1119 Set_DT_Position
(Subp
, DT_Position
(Old_Subp
));
1121 if not Restriction_Active
(No_Dispatching_Calls
) then
1122 if Building_Static_DT
(Tagged_Type
) then
1124 -- If the static dispatch table has not been
1125 -- built then there is nothing else to do now;
1126 -- otherwise we notify that we cannot build the
1127 -- static dispatch table.
1129 if Has_Dispatch_Table
(Tagged_Type
) then
1131 ("overriding of& is too late for building "
1132 & " static dispatch tables!", Subp
);
1134 ("\spec should appear immediately after "
1135 & "the type!", Subp
);
1138 -- No code required to register primitives in VM
1141 elsif VM_Target
/= No_VM
then
1145 Insert_Actions_After
(Subp_Body
,
1146 Register_Primitive
(Sloc
(Subp_Body
),
1150 -- Indicate that this is an overriding operation,
1151 -- and replace the overridden entry in the list of
1152 -- primitive operations, which is used for xref
1153 -- generation subsequently.
1155 Generate_Reference
(Tagged_Type
, Subp
, 'P', False);
1156 Override_Dispatching_Operation
1157 (Tagged_Type
, Old_Subp
, Subp
);
1164 Error_Msg_N
("overriding of& is too late!", Subp
);
1166 ("\subprogram spec should appear immediately after the type!",
1170 -- If the type is not frozen yet and we are not in the overriding
1171 -- case it looks suspiciously like an attempt to define a primitive
1172 -- operation, which requires the declaration to be in a package spec
1173 -- (3.2.3(6)). Only report cases where the type and subprogram are
1174 -- in the same declaration list (by checking the enclosing parent
1175 -- declarations), to avoid spurious warnings on subprograms in
1176 -- instance bodies when the type is declared in the instance spec
1177 -- but hasn't been frozen by the instance body.
1179 elsif not Is_Frozen
(Tagged_Type
)
1180 and then In_Same_List
(Parent
(Tagged_Type
), Parent
(Parent
(Subp
)))
1183 ("??not dispatching (must be defined in a package spec)", Subp
);
1186 -- When the type is frozen, it is legitimate to define a new
1187 -- non-primitive operation.
1193 -- Now, we are sure that the scope is a package spec. If the subprogram
1194 -- is declared after the freezing point of the type that's an error
1196 elsif Is_Frozen
(Tagged_Type
) and then not Has_Dispatching_Parent
then
1197 Error_Msg_N
("this primitive operation is declared too late", Subp
);
1199 ("??no primitive operations for& after this line",
1200 Freeze_Node
(Tagged_Type
),
1205 Check_Controlling_Formals
(Tagged_Type
, Subp
);
1207 Ovr_Subp
:= Old_Subp
;
1209 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1210 -- overridden by Subp. This only applies to source subprograms, and
1211 -- their declaration must carry an explicit overriding indicator.
1214 and then Ada_Version
>= Ada_2012
1215 and then Comes_From_Source
(Subp
)
1217 Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
1219 Ovr_Subp
:= Find_Hidden_Overridden_Primitive
(Subp
);
1221 -- Verify that the proper overriding indicator has been supplied.
1223 if Present
(Ovr_Subp
)
1225 not Must_Override
(Specification
(Unit_Declaration_Node
(Subp
)))
1227 Error_Msg_NE
("missing overriding indicator for&", Subp
, Subp
);
1231 -- Now it should be a correct primitive operation, put it in the list
1233 if Present
(Ovr_Subp
) then
1235 -- If the type has interfaces we complete this check after we set
1236 -- attribute Is_Dispatching_Operation.
1238 Check_Subtype_Conformant
(Subp
, Ovr_Subp
);
1240 -- A primitive operation with the name of a primitive controlled
1241 -- operation does not override a non-visible overriding controlled
1242 -- operation, i.e. one declared in a private part when the full
1243 -- view of a type is controlled. Conversely, it will override a
1244 -- visible operation that may be declared in a partial view when
1245 -- the full view is controlled.
1247 if Nam_In
(Chars
(Subp
), Name_Initialize
, Name_Adjust
, Name_Finalize
)
1248 and then Is_Controlled
(Tagged_Type
)
1249 and then not Is_Visibly_Controlled
(Tagged_Type
)
1250 and then not Is_Inherited_Public_Operation
(Ovr_Subp
)
1252 Set_Overridden_Operation
(Subp
, Empty
);
1254 -- If the subprogram specification carries an overriding
1255 -- indicator, no need for the warning: it is either redundant,
1256 -- or else an error will be reported.
1258 if Nkind
(Parent
(Subp
)) = N_Procedure_Specification
1260 (Must_Override
(Parent
(Subp
))
1261 or else Must_Not_Override
(Parent
(Subp
)))
1265 -- Here we need the warning
1269 ("operation does not override inherited&??", Subp
, Subp
);
1273 Override_Dispatching_Operation
(Tagged_Type
, Ovr_Subp
, Subp
);
1275 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1276 -- that covers abstract interface subprograms we must register it
1277 -- in all the secondary dispatch tables associated with abstract
1278 -- interfaces. We do this now only if not building static tables,
1279 -- nor when the expander is inactive (we avoid trying to register
1280 -- primitives in semantics-only mode, since the type may not have
1281 -- an associated dispatch table). Otherwise the patch code is
1282 -- emitted after those tables are built, to prevent access before
1283 -- elaboration in gigi.
1285 if Body_Is_Last_Primitive
and then Expander_Active
then
1287 Subp_Body
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
1292 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1293 while Present
(Elmt
) loop
1294 Prim
:= Node
(Elmt
);
1296 -- No code required to register primitives in VM targets
1298 if Present
(Alias
(Prim
))
1299 and then Present
(Interface_Alias
(Prim
))
1300 and then Alias
(Prim
) = Subp
1301 and then not Building_Static_DT
(Tagged_Type
)
1302 and then VM_Target
= No_VM
1304 Insert_Actions_After
(Subp_Body
,
1305 Register_Primitive
(Sloc
(Subp_Body
), Prim
=> Prim
));
1311 -- Redisplay the contents of the updated dispatch table
1313 if Debug_Flag_ZZ
then
1314 Write_Str
("Late overriding: ");
1315 Write_DT
(Tagged_Type
);
1321 -- If the tagged type is a concurrent type then we must be compiling
1322 -- with no code generation (we are either compiling a generic unit or
1323 -- compiling under -gnatc mode) because we have previously tested that
1324 -- no serious errors has been reported. In this case we do not add the
1325 -- primitive to the list of primitives of Tagged_Type but we leave the
1326 -- primitive decorated as a dispatching operation to be able to analyze
1327 -- and report errors associated with the Object.Operation notation.
1329 elsif Is_Concurrent_Type
(Tagged_Type
) then
1330 pragma Assert
(not Expander_Active
);
1333 -- If no old subprogram, then we add this as a dispatching operation,
1334 -- but we avoid doing this if an error was posted, to prevent annoying
1337 elsif not Error_Posted
(Subp
) then
1338 Add_Dispatching_Operation
(Tagged_Type
, Subp
);
1341 Set_Is_Dispatching_Operation
(Subp
, True);
1343 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1344 -- subtype conformance against all the interfaces covered by this
1347 if Present
(Ovr_Subp
)
1348 and then Has_Interfaces
(Tagged_Type
)
1351 Ifaces_List
: Elist_Id
;
1352 Iface_Elmt
: Elmt_Id
;
1353 Iface_Prim_Elmt
: Elmt_Id
;
1354 Iface_Prim
: Entity_Id
;
1355 Ret_Typ
: Entity_Id
;
1358 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1360 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1361 while Present
(Iface_Elmt
) loop
1362 if not Is_Ancestor
(Node
(Iface_Elmt
), Tagged_Type
) then
1364 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
1365 while Present
(Iface_Prim_Elmt
) loop
1366 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
1368 if Is_Interface_Conformant
1369 (Tagged_Type
, Iface_Prim
, Subp
)
1371 -- Handle procedures, functions whose return type
1372 -- matches, or functions not returning interfaces
1374 if Ekind
(Subp
) = E_Procedure
1375 or else Etype
(Iface_Prim
) = Etype
(Subp
)
1376 or else not Is_Interface
(Etype
(Iface_Prim
))
1378 Check_Subtype_Conformant
1380 Old_Id
=> Iface_Prim
,
1382 Skip_Controlling_Formals
=> True);
1384 -- Handle functions returning interfaces
1386 elsif Implements_Interface
1387 (Etype
(Subp
), Etype
(Iface_Prim
))
1389 -- Temporarily force both entities to return the
1390 -- same type. Required because Subtype_Conformant
1391 -- does not handle this case.
1393 Ret_Typ
:= Etype
(Iface_Prim
);
1394 Set_Etype
(Iface_Prim
, Etype
(Subp
));
1396 Check_Subtype_Conformant
1398 Old_Id
=> Iface_Prim
,
1400 Skip_Controlling_Formals
=> True);
1402 Set_Etype
(Iface_Prim
, Ret_Typ
);
1406 Next_Elmt
(Iface_Prim_Elmt
);
1410 Next_Elmt
(Iface_Elmt
);
1415 if not Body_Is_Last_Primitive
then
1416 Set_DT_Position
(Subp
, No_Uint
);
1418 elsif Has_Controlled_Component
(Tagged_Type
)
1419 and then Nam_In
(Chars
(Subp
), Name_Initialize
,
1422 Name_Finalize_Address
)
1425 F_Node
: constant Node_Id
:= Freeze_Node
(Tagged_Type
);
1429 Old_Spec
: Entity_Id
;
1431 C_Names
: constant array (1 .. 4) of Name_Id
:=
1435 Name_Finalize_Address
);
1437 D_Names
: constant array (1 .. 4) of TSS_Name_Type
:=
1438 (TSS_Deep_Initialize
,
1441 TSS_Finalize_Address
);
1444 -- Remove previous controlled function which was constructed and
1445 -- analyzed when the type was frozen. This requires removing the
1446 -- body of the redefined primitive, as well as its specification
1447 -- if needed (there is no spec created for Deep_Initialize, see
1448 -- exp_ch3.adb). We must also dismantle the exception information
1449 -- that may have been generated for it when front end zero-cost
1450 -- tables are enabled.
1452 for J
in D_Names
'Range loop
1453 Old_P
:= TSS
(Tagged_Type
, D_Names
(J
));
1456 and then Chars
(Subp
) = C_Names
(J
)
1458 Old_Bod
:= Unit_Declaration_Node
(Old_P
);
1460 Set_Is_Eliminated
(Old_P
);
1461 Set_Scope
(Old_P
, Scope
(Current_Scope
));
1463 if Nkind
(Old_Bod
) = N_Subprogram_Body
1464 and then Present
(Corresponding_Spec
(Old_Bod
))
1466 Old_Spec
:= Corresponding_Spec
(Old_Bod
);
1467 Set_Has_Completion
(Old_Spec
, False);
1472 Build_Late_Proc
(Tagged_Type
, Chars
(Subp
));
1474 -- The new operation is added to the actions of the freeze node
1475 -- for the type, but this node has already been analyzed, so we
1476 -- must retrieve and analyze explicitly the new body.
1479 and then Present
(Actions
(F_Node
))
1481 Decl
:= Last
(Actions
(F_Node
));
1486 end Check_Dispatching_Operation
;
1488 ------------------------------------------
1489 -- Check_Operation_From_Incomplete_Type --
1490 ------------------------------------------
1492 procedure Check_Operation_From_Incomplete_Type
1496 Full
: constant Entity_Id
:= Full_View
(Typ
);
1497 Parent_Typ
: constant Entity_Id
:= Etype
(Full
);
1498 Old_Prim
: constant Elist_Id
:= Primitive_Operations
(Parent_Typ
);
1499 New_Prim
: constant Elist_Id
:= Primitive_Operations
(Full
);
1501 Prev
: Elmt_Id
:= No_Elmt
;
1503 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean;
1504 -- Check that Subp has profile of an operation derived from Parent_Subp.
1505 -- Subp must have a parameter or result type that is Typ or an access
1506 -- parameter or access result type that designates Typ.
1512 function Derives_From
(Parent_Subp
: Entity_Id
) return Boolean is
1516 if Chars
(Parent_Subp
) /= Chars
(Subp
) then
1520 -- Check that the type of controlling formals is derived from the
1521 -- parent subprogram's controlling formal type (or designated type
1522 -- if the formal type is an anonymous access type).
1524 F1
:= First_Formal
(Parent_Subp
);
1525 F2
:= First_Formal
(Subp
);
1526 while Present
(F1
) and then Present
(F2
) loop
1527 if Ekind
(Etype
(F1
)) = E_Anonymous_Access_Type
then
1528 if Ekind
(Etype
(F2
)) /= E_Anonymous_Access_Type
then
1530 elsif Designated_Type
(Etype
(F1
)) = Parent_Typ
1531 and then Designated_Type
(Etype
(F2
)) /= Full
1536 elsif Ekind
(Etype
(F2
)) = E_Anonymous_Access_Type
then
1539 elsif Etype
(F1
) = Parent_Typ
and then Etype
(F2
) /= Full
then
1547 -- Check that a controlling result type is derived from the parent
1548 -- subprogram's result type (or designated type if the result type
1549 -- is an anonymous access type).
1551 if Ekind
(Parent_Subp
) = E_Function
then
1552 if Ekind
(Subp
) /= E_Function
then
1555 elsif Ekind
(Etype
(Parent_Subp
)) = E_Anonymous_Access_Type
then
1556 if Ekind
(Etype
(Subp
)) /= E_Anonymous_Access_Type
then
1559 elsif Designated_Type
(Etype
(Parent_Subp
)) = Parent_Typ
1560 and then Designated_Type
(Etype
(Subp
)) /= Full
1565 elsif Ekind
(Etype
(Subp
)) = E_Anonymous_Access_Type
then
1568 elsif Etype
(Parent_Subp
) = Parent_Typ
1569 and then Etype
(Subp
) /= Full
1574 elsif Ekind
(Subp
) = E_Function
then
1578 return No
(F1
) and then No
(F2
);
1581 -- Start of processing for Check_Operation_From_Incomplete_Type
1584 -- The operation may override an inherited one, or may be a new one
1585 -- altogether. The inherited operation will have been hidden by the
1586 -- current one at the point of the type derivation, so it does not
1587 -- appear in the list of primitive operations of the type. We have to
1588 -- find the proper place of insertion in the list of primitive opera-
1589 -- tions by iterating over the list for the parent type.
1591 Op1
:= First_Elmt
(Old_Prim
);
1592 Op2
:= First_Elmt
(New_Prim
);
1593 while Present
(Op1
) and then Present
(Op2
) loop
1594 if Derives_From
(Node
(Op1
)) then
1597 -- Avoid adding it to the list of primitives if already there
1599 if Node
(Op2
) /= Subp
then
1600 Prepend_Elmt
(Subp
, New_Prim
);
1604 Insert_Elmt_After
(Subp
, Prev
);
1615 -- Operation is a new primitive
1617 Append_Elmt
(Subp
, New_Prim
);
1618 end Check_Operation_From_Incomplete_Type
;
1620 ---------------------------------------
1621 -- Check_Operation_From_Private_View --
1622 ---------------------------------------
1624 procedure Check_Operation_From_Private_View
(Subp
, Old_Subp
: Entity_Id
) is
1625 Tagged_Type
: Entity_Id
;
1628 if Is_Dispatching_Operation
(Alias
(Subp
)) then
1629 Set_Scope
(Subp
, Current_Scope
);
1630 Tagged_Type
:= Find_Dispatching_Type
(Subp
);
1632 -- Add Old_Subp to primitive operations if not already present
1634 if Present
(Tagged_Type
) and then Is_Tagged_Type
(Tagged_Type
) then
1635 Append_Unique_Elmt
(Old_Subp
, Primitive_Operations
(Tagged_Type
));
1637 -- If Old_Subp isn't already marked as dispatching then this is
1638 -- the case of an operation of an untagged private type fulfilled
1639 -- by a tagged type that overrides an inherited dispatching
1640 -- operation, so we set the necessary dispatching attributes here.
1642 if not Is_Dispatching_Operation
(Old_Subp
) then
1644 -- If the untagged type has no discriminants, and the full
1645 -- view is constrained, there will be a spurious mismatch of
1646 -- subtypes on the controlling arguments, because the tagged
1647 -- type is the internal base type introduced in the derivation.
1648 -- Use the original type to verify conformance, rather than the
1651 if not Comes_From_Source
(Tagged_Type
)
1652 and then Has_Discriminants
(Tagged_Type
)
1658 Formal
:= First_Formal
(Old_Subp
);
1659 while Present
(Formal
) loop
1660 if Tagged_Type
= Base_Type
(Etype
(Formal
)) then
1661 Tagged_Type
:= Etype
(Formal
);
1664 Next_Formal
(Formal
);
1668 if Tagged_Type
= Base_Type
(Etype
(Old_Subp
)) then
1669 Tagged_Type
:= Etype
(Old_Subp
);
1673 Check_Controlling_Formals
(Tagged_Type
, Old_Subp
);
1674 Set_Is_Dispatching_Operation
(Old_Subp
, True);
1675 Set_DT_Position
(Old_Subp
, No_Uint
);
1678 -- If the old subprogram is an explicit renaming of some other
1679 -- entity, it is not overridden by the inherited subprogram.
1680 -- Otherwise, update its alias and other attributes.
1682 if Present
(Alias
(Old_Subp
))
1683 and then Nkind
(Unit_Declaration_Node
(Old_Subp
)) /=
1684 N_Subprogram_Renaming_Declaration
1686 Set_Alias
(Old_Subp
, Alias
(Subp
));
1688 -- The derived subprogram should inherit the abstractness of
1689 -- the parent subprogram (except in the case of a function
1690 -- returning the type). This sets the abstractness properly
1691 -- for cases where a private extension may have inherited an
1692 -- abstract operation, but the full type is derived from a
1693 -- descendant type and inherits a nonabstract version.
1695 if Etype
(Subp
) /= Tagged_Type
then
1696 Set_Is_Abstract_Subprogram
1697 (Old_Subp
, Is_Abstract_Subprogram
(Alias
(Subp
)));
1702 end Check_Operation_From_Private_View
;
1704 --------------------------
1705 -- Find_Controlling_Arg --
1706 --------------------------
1708 function Find_Controlling_Arg
(N
: Node_Id
) return Node_Id
is
1709 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
1713 if Nkind
(Orig_Node
) = N_Qualified_Expression
then
1714 return Find_Controlling_Arg
(Expression
(Orig_Node
));
1717 -- Dispatching on result case. If expansion is disabled, the node still
1718 -- has the structure of a function call. However, if the function name
1719 -- is an operator and the call was given in infix form, the original
1720 -- node has no controlling result and we must examine the current node.
1722 if Nkind
(N
) = N_Function_Call
1723 and then Present
(Controlling_Argument
(N
))
1724 and then Has_Controlling_Result
(Entity
(Name
(N
)))
1726 return Controlling_Argument
(N
);
1728 -- If expansion is enabled, the call may have been transformed into
1729 -- an indirect call, and we need to recover the original node.
1731 elsif Nkind
(Orig_Node
) = N_Function_Call
1732 and then Present
(Controlling_Argument
(Orig_Node
))
1733 and then Has_Controlling_Result
(Entity
(Name
(Orig_Node
)))
1735 return Controlling_Argument
(Orig_Node
);
1737 -- Type conversions are dynamically tagged if the target type, or its
1738 -- designated type, are classwide. An interface conversion expands into
1739 -- a dereference, so test must be performed on the original node.
1741 elsif Nkind
(Orig_Node
) = N_Type_Conversion
1742 and then Nkind
(N
) = N_Explicit_Dereference
1743 and then Is_Controlling_Actual
(N
)
1746 Target_Type
: constant Entity_Id
:=
1747 Entity
(Subtype_Mark
(Orig_Node
));
1750 if Is_Class_Wide_Type
(Target_Type
) then
1753 elsif Is_Access_Type
(Target_Type
)
1754 and then Is_Class_Wide_Type
(Designated_Type
(Target_Type
))
1765 elsif Is_Controlling_Actual
(N
)
1767 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1768 and then Is_Controlling_Actual
(Parent
(N
)))
1772 if Is_Access_Type
(Typ
) then
1774 -- In the case of an Access attribute, use the type of the prefix,
1775 -- since in the case of an actual for an access parameter, the
1776 -- attribute's type may be of a specific designated type, even
1777 -- though the prefix type is class-wide.
1779 if Nkind
(N
) = N_Attribute_Reference
then
1780 Typ
:= Etype
(Prefix
(N
));
1782 -- An allocator is dispatching if the type of qualified expression
1783 -- is class_wide, in which case this is the controlling type.
1785 elsif Nkind
(Orig_Node
) = N_Allocator
1786 and then Nkind
(Expression
(Orig_Node
)) = N_Qualified_Expression
1788 Typ
:= Etype
(Expression
(Orig_Node
));
1790 Typ
:= Designated_Type
(Typ
);
1794 if Is_Class_Wide_Type
(Typ
)
1796 (Nkind
(Parent
(N
)) = N_Qualified_Expression
1797 and then Is_Access_Type
(Etype
(N
))
1798 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(N
))))
1805 end Find_Controlling_Arg
;
1807 ---------------------------
1808 -- Find_Dispatching_Type --
1809 ---------------------------
1811 function Find_Dispatching_Type
(Subp
: Entity_Id
) return Entity_Id
is
1812 A_Formal
: Entity_Id
;
1814 Ctrl_Type
: Entity_Id
;
1817 if Ekind_In
(Subp
, E_Function
, E_Procedure
)
1818 and then Present
(DTC_Entity
(Subp
))
1820 return Scope
(DTC_Entity
(Subp
));
1822 -- For subprograms internally generated by derivations of tagged types
1823 -- use the alias subprogram as a reference to locate the dispatching
1826 elsif not Comes_From_Source
(Subp
)
1827 and then Present
(Alias
(Subp
))
1828 and then Is_Dispatching_Operation
(Alias
(Subp
))
1830 if Ekind
(Alias
(Subp
)) = E_Function
1831 and then Has_Controlling_Result
(Alias
(Subp
))
1833 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1836 Formal
:= First_Formal
(Subp
);
1837 A_Formal
:= First_Formal
(Alias
(Subp
));
1838 while Present
(A_Formal
) loop
1839 if Is_Controlling_Formal
(A_Formal
) then
1840 return Check_Controlling_Type
(Etype
(Formal
), Subp
);
1843 Next_Formal
(Formal
);
1844 Next_Formal
(A_Formal
);
1847 pragma Assert
(False);
1854 Formal
:= First_Formal
(Subp
);
1855 while Present
(Formal
) loop
1856 Ctrl_Type
:= Check_Controlling_Type
(Etype
(Formal
), Subp
);
1858 if Present
(Ctrl_Type
) then
1862 Next_Formal
(Formal
);
1865 -- The subprogram may also be dispatching on result
1867 if Present
(Etype
(Subp
)) then
1868 return Check_Controlling_Type
(Etype
(Subp
), Subp
);
1872 pragma Assert
(not Is_Dispatching_Operation
(Subp
));
1874 end Find_Dispatching_Type
;
1876 --------------------------------------
1877 -- Find_Hidden_Overridden_Primitive --
1878 --------------------------------------
1880 function Find_Hidden_Overridden_Primitive
(S
: Entity_Id
) return Entity_Id
1882 Tag_Typ
: constant Entity_Id
:= Find_Dispatching_Type
(S
);
1884 Orig_Prim
: Entity_Id
;
1886 Vis_List
: Elist_Id
;
1889 -- This Ada 2012 rule applies only for type extensions or private
1890 -- extensions, where the parent type is not in a parent unit, and
1891 -- where an operation is never declared but still inherited.
1894 or else not Is_Record_Type
(Tag_Typ
)
1895 or else Etype
(Tag_Typ
) = Tag_Typ
1896 or else In_Open_Scopes
(Scope
(Etype
(Tag_Typ
)))
1901 -- Collect the list of visible ancestor of the tagged type
1903 Vis_List
:= Visible_Ancestors
(Tag_Typ
);
1905 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
1906 while Present
(Elmt
) loop
1907 Prim
:= Node
(Elmt
);
1909 -- Find an inherited hidden dispatching primitive with the name of S
1910 -- and a type-conformant profile.
1912 if Present
(Alias
(Prim
))
1913 and then Is_Hidden
(Alias
(Prim
))
1914 and then Find_Dispatching_Type
(Alias
(Prim
)) /= Tag_Typ
1915 and then Primitive_Names_Match
(S
, Prim
)
1916 and then Type_Conformant
(S
, Prim
)
1919 Vis_Ancestor
: Elmt_Id
;
1923 -- The original corresponding operation of Prim must be an
1924 -- operation of a visible ancestor of the dispatching type S,
1925 -- and the original corresponding operation of S2 must be
1928 Orig_Prim
:= Original_Corresponding_Operation
(Prim
);
1930 if Orig_Prim
/= Prim
1931 and then Is_Immediately_Visible
(Orig_Prim
)
1933 Vis_Ancestor
:= First_Elmt
(Vis_List
);
1934 while Present
(Vis_Ancestor
) loop
1936 First_Elmt
(Primitive_Operations
(Node
(Vis_Ancestor
)));
1937 while Present
(Elmt
) loop
1938 if Node
(Elmt
) = Orig_Prim
then
1939 Set_Overridden_Operation
(S
, Prim
);
1940 Set_Alias
(Prim
, Orig_Prim
);
1947 Next_Elmt
(Vis_Ancestor
);
1957 end Find_Hidden_Overridden_Primitive
;
1959 ---------------------------------------
1960 -- Find_Primitive_Covering_Interface --
1961 ---------------------------------------
1963 function Find_Primitive_Covering_Interface
1964 (Tagged_Type
: Entity_Id
;
1965 Iface_Prim
: Entity_Id
) return Entity_Id
1971 pragma Assert
(Is_Interface
(Find_Dispatching_Type
(Iface_Prim
))
1972 or else (Present
(Alias
(Iface_Prim
))
1975 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
1977 -- Search in the homonym chain. Done to speed up locating visible
1978 -- entities and required to catch primitives associated with the partial
1979 -- view of private types when processing the corresponding full view.
1981 E
:= Current_Entity
(Iface_Prim
);
1982 while Present
(E
) loop
1983 if Is_Subprogram
(E
)
1984 and then Is_Dispatching_Operation
(E
)
1985 and then Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
)
1993 -- Search in the list of primitives of the type. Required to locate
1994 -- the covering primitive if the covering primitive is not visible
1995 -- (for example, non-visible inherited primitive of private type).
1997 El
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
1998 while Present
(El
) loop
2001 -- Keep separate the management of internal entities that link
2002 -- primitives with interface primitives from tagged type primitives.
2004 if No
(Interface_Alias
(E
)) then
2005 if Present
(Alias
(E
)) then
2007 -- This interface primitive has not been covered yet
2009 if Alias
(E
) = Iface_Prim
then
2012 -- The covering primitive was inherited
2014 elsif Overridden_Operation
(Ultimate_Alias
(E
))
2021 -- Check if E covers the interface primitive (includes case in
2022 -- which E is an inherited private primitive).
2024 if Is_Interface_Conformant
(Tagged_Type
, Iface_Prim
, E
) then
2028 -- Use the internal entity that links the interface primitive with
2029 -- the covering primitive to locate the entity.
2031 elsif Interface_Alias
(E
) = Iface_Prim
then
2041 end Find_Primitive_Covering_Interface
;
2043 ---------------------------
2044 -- Inherited_Subprograms --
2045 ---------------------------
2047 function Inherited_Subprograms
2049 No_Interfaces
: Boolean := False;
2050 Interfaces_Only
: Boolean := False) return Subprogram_List
2052 Result
: Subprogram_List
(1 .. 6000);
2053 -- 6000 here is intended to be infinity. We could use an expandable
2054 -- table, but it would be awfully heavy, and there is no way that we
2055 -- could reasonably exceed this value.
2058 -- Number of entries in Result
2060 Parent_Op
: Entity_Id
;
2061 -- Traverses the Overridden_Operation chain
2063 procedure Store_IS
(E
: Entity_Id
);
2064 -- Stores E in Result if not already stored
2070 procedure Store_IS
(E
: Entity_Id
) is
2072 for J
in 1 .. N
loop
2073 if E
= Result
(J
) then
2082 -- Start of processing for Inherited_Subprograms
2085 pragma Assert
(not (No_Interfaces
and Interfaces_Only
));
2087 if Present
(S
) and then Is_Dispatching_Operation
(S
) then
2089 -- Deal with direct inheritance
2091 if not Interfaces_Only
then
2094 Parent_Op
:= Overridden_Operation
(Parent_Op
);
2095 exit when No
(Parent_Op
)
2099 Is_Interface
(Find_Dispatching_Type
(Parent_Op
)));
2101 if Is_Subprogram_Or_Generic_Subprogram
(Parent_Op
) then
2102 Store_IS
(Parent_Op
);
2107 -- Now deal with interfaces
2109 if not No_Interfaces
then
2111 Tag_Typ
: Entity_Id
;
2116 Tag_Typ
:= Find_Dispatching_Type
(S
);
2118 if Is_Concurrent_Type
(Tag_Typ
) then
2119 Tag_Typ
:= Corresponding_Record_Type
(Tag_Typ
);
2122 -- Search primitive operations of dispatching type
2124 if Present
(Tag_Typ
)
2125 and then Present
(Primitive_Operations
(Tag_Typ
))
2127 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
2128 while Present
(Elmt
) loop
2129 Prim
:= Node
(Elmt
);
2131 -- The following test eliminates some odd cases in which
2132 -- Ekind (Prim) is Void, to be investigated further ???
2134 if not Is_Subprogram_Or_Generic_Subprogram
(Prim
) then
2137 -- For [generic] subprogram, look at interface alias
2139 elsif Present
(Interface_Alias
(Prim
))
2140 and then Alias
(Prim
) = S
2142 -- We have found a primitive covered by S
2144 Store_IS
(Interface_Alias
(Prim
));
2154 return Result
(1 .. N
);
2155 end Inherited_Subprograms
;
2157 ---------------------------
2158 -- Is_Dynamically_Tagged --
2159 ---------------------------
2161 function Is_Dynamically_Tagged
(N
: Node_Id
) return Boolean is
2163 if Nkind
(N
) = N_Error
then
2166 return Find_Controlling_Arg
(N
) /= Empty
;
2168 end Is_Dynamically_Tagged
;
2170 ---------------------------------
2171 -- Is_Null_Interface_Primitive --
2172 ---------------------------------
2174 function Is_Null_Interface_Primitive
(E
: Entity_Id
) return Boolean is
2176 return Comes_From_Source
(E
)
2177 and then Is_Dispatching_Operation
(E
)
2178 and then Ekind
(E
) = E_Procedure
2179 and then Null_Present
(Parent
(E
))
2180 and then Is_Interface
(Find_Dispatching_Type
(E
));
2181 end Is_Null_Interface_Primitive
;
2183 -----------------------------------
2184 -- Is_Inherited_Public_Operation --
2185 -----------------------------------
2187 function Is_Inherited_Public_Operation
(Op
: Entity_Id
) return Boolean is
2188 Prim
: constant Entity_Id
:= Alias
(Op
);
2189 Scop
: constant Entity_Id
:= Scope
(Prim
);
2190 Pack_Decl
: Node_Id
;
2193 if Comes_From_Source
(Prim
) and then Ekind
(Scop
) = E_Package
then
2194 Pack_Decl
:= Unit_Declaration_Node
(Scop
);
2195 return Nkind
(Pack_Decl
) = N_Package_Declaration
2196 and then List_Containing
(Unit_Declaration_Node
(Prim
)) =
2197 Visible_Declarations
(Specification
(Pack_Decl
));
2202 end Is_Inherited_Public_Operation
;
2204 --------------------------
2205 -- Is_Tag_Indeterminate --
2206 --------------------------
2208 function Is_Tag_Indeterminate
(N
: Node_Id
) return Boolean is
2211 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
2214 if Nkind
(Orig_Node
) = N_Function_Call
2215 and then Is_Entity_Name
(Name
(Orig_Node
))
2217 Nam
:= Entity
(Name
(Orig_Node
));
2219 if not Has_Controlling_Result
(Nam
) then
2222 -- The function may have a controlling result, but if the return type
2223 -- is not visibly tagged, then this is not tag-indeterminate.
2225 elsif Is_Access_Type
(Etype
(Nam
))
2226 and then not Is_Tagged_Type
(Designated_Type
(Etype
(Nam
)))
2230 -- An explicit dereference means that the call has already been
2231 -- expanded and there is no tag to propagate.
2233 elsif Nkind
(N
) = N_Explicit_Dereference
then
2236 -- If there are no actuals, the call is tag-indeterminate
2238 elsif No
(Parameter_Associations
(Orig_Node
)) then
2242 Actual
:= First_Actual
(Orig_Node
);
2243 while Present
(Actual
) loop
2244 if Is_Controlling_Actual
(Actual
)
2245 and then not Is_Tag_Indeterminate
(Actual
)
2247 -- One operand is dispatching
2252 Next_Actual
(Actual
);
2258 elsif Nkind
(Orig_Node
) = N_Qualified_Expression
then
2259 return Is_Tag_Indeterminate
(Expression
(Orig_Node
));
2261 -- Case of a call to the Input attribute (possibly rewritten), which is
2262 -- always tag-indeterminate except when its prefix is a Class attribute.
2264 elsif Nkind
(Orig_Node
) = N_Attribute_Reference
2266 Get_Attribute_Id
(Attribute_Name
(Orig_Node
)) = Attribute_Input
2267 and then Nkind
(Prefix
(Orig_Node
)) /= N_Attribute_Reference
2271 -- In Ada 2005, a function that returns an anonymous access type can be
2272 -- dispatching, and the dereference of a call to such a function can
2273 -- also be tag-indeterminate if the call itself is.
2275 elsif Nkind
(Orig_Node
) = N_Explicit_Dereference
2276 and then Ada_Version
>= Ada_2005
2278 return Is_Tag_Indeterminate
(Prefix
(Orig_Node
));
2283 end Is_Tag_Indeterminate
;
2285 ------------------------------------
2286 -- Override_Dispatching_Operation --
2287 ------------------------------------
2289 procedure Override_Dispatching_Operation
2290 (Tagged_Type
: Entity_Id
;
2291 Prev_Op
: Entity_Id
;
2293 Is_Wrapper
: Boolean := False)
2299 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2300 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2302 if No_Return
(Prev_Op
) and then not No_Return
(New_Op
) then
2303 Error_Msg_N
("procedure & must have No_Return pragma", New_Op
);
2304 Error_Msg_N
("\since overridden procedure has No_Return", New_Op
);
2307 -- If there is no previous operation to override, the type declaration
2308 -- was malformed, and an error must have been emitted already.
2310 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2311 while Present
(Elmt
) and then Node
(Elmt
) /= Prev_Op
loop
2319 -- The location of entities that come from source in the list of
2320 -- primitives of the tagged type must follow their order of occurrence
2321 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2322 -- primitive of an interface that is not implemented by the parents of
2323 -- this tagged type (that is, it is an alias of an interface primitive
2324 -- generated by Derive_Interface_Progenitors), then we must append the
2325 -- new entity at the end of the list of primitives.
2327 if Present
(Alias
(Prev_Op
))
2328 and then Etype
(Tagged_Type
) /= Tagged_Type
2329 and then Is_Interface
(Find_Dispatching_Type
(Alias
(Prev_Op
)))
2330 and then not Is_Ancestor
(Find_Dispatching_Type
(Alias
(Prev_Op
)),
2331 Tagged_Type
, Use_Full_View
=> True)
2332 and then not Implements_Interface
2333 (Etype
(Tagged_Type
),
2334 Find_Dispatching_Type
(Alias
(Prev_Op
)))
2336 Remove_Elmt
(Primitive_Operations
(Tagged_Type
), Elmt
);
2337 Append_Elmt
(New_Op
, Primitive_Operations
(Tagged_Type
));
2339 -- The new primitive replaces the overridden entity. Required to ensure
2340 -- that overriding primitive is assigned the same dispatch table slot.
2343 Replace_Elmt
(Elmt
, New_Op
);
2346 if Ada_Version
>= Ada_2005
and then Has_Interfaces
(Tagged_Type
) then
2348 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2349 -- entities of the overridden primitive to reference New_Op, and
2350 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2351 -- that the new operation is subtype conformant with the interface
2352 -- operations that it implements (for operations inherited from the
2353 -- parent itself, this check is made when building the derived type).
2355 -- Note: This code is executed with internally generated wrappers of
2356 -- functions with controlling result and late overridings.
2358 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
2359 while Present
(Elmt
) loop
2360 Prim
:= Node
(Elmt
);
2362 if Prim
= New_Op
then
2365 -- Note: The check on Is_Subprogram protects the frontend against
2366 -- reading attributes in entities that are not yet fully decorated
2368 elsif Is_Subprogram
(Prim
)
2369 and then Present
(Interface_Alias
(Prim
))
2370 and then Alias
(Prim
) = Prev_Op
2372 Set_Alias
(Prim
, New_Op
);
2374 -- No further decoration needed yet for internally generated
2375 -- wrappers of controlling functions since (at this stage)
2376 -- they are not yet decorated.
2378 if not Is_Wrapper
then
2379 Check_Subtype_Conformant
(New_Op
, Prim
);
2381 Set_Is_Abstract_Subprogram
(Prim
,
2382 Is_Abstract_Subprogram
(New_Op
));
2384 -- Ensure that this entity will be expanded to fill the
2385 -- corresponding entry in its dispatch table.
2387 if not Is_Abstract_Subprogram
(Prim
) then
2388 Set_Has_Delayed_Freeze
(Prim
);
2397 if (not Is_Package_Or_Generic_Package
(Current_Scope
))
2398 or else not In_Private_Part
(Current_Scope
)
2400 -- Not a private primitive
2404 else pragma Assert
(Is_Inherited_Operation
(Prev_Op
));
2406 -- Make the overriding operation into an alias of the implicit one.
2407 -- In this fashion a call from outside ends up calling the new body
2408 -- even if non-dispatching, and a call from inside calls the over-
2409 -- riding operation because it hides the implicit one. To indicate
2410 -- that the body of Prev_Op is never called, set its dispatch table
2411 -- entity to Empty. If the overridden operation has a dispatching
2412 -- result, so does the overriding one.
2414 Set_Alias
(Prev_Op
, New_Op
);
2415 Set_DTC_Entity
(Prev_Op
, Empty
);
2416 Set_Has_Controlling_Result
(New_Op
, Has_Controlling_Result
(Prev_Op
));
2419 end Override_Dispatching_Operation
;
2425 procedure Propagate_Tag
(Control
: Node_Id
; Actual
: Node_Id
) is
2426 Call_Node
: Node_Id
;
2430 if Nkind
(Actual
) = N_Function_Call
then
2431 Call_Node
:= Actual
;
2433 elsif Nkind
(Actual
) = N_Identifier
2434 and then Nkind
(Original_Node
(Actual
)) = N_Function_Call
2436 -- Call rewritten as object declaration when stack-checking is
2437 -- enabled. Propagate tag to expression in declaration, which is
2440 Call_Node
:= Expression
(Parent
(Entity
(Actual
)));
2442 -- Ada 2005: If this is a dereference of a call to a function with a
2443 -- dispatching access-result, the tag is propagated when the dereference
2444 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2446 elsif Nkind
(Actual
) = N_Explicit_Dereference
2447 and then Nkind
(Original_Node
(Prefix
(Actual
))) = N_Function_Call
2451 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2452 -- and in that case we can simply return.
2454 elsif Nkind
(Actual
) = N_Attribute_Reference
then
2455 pragma Assert
(Attribute_Name
(Actual
) = Name_Input
);
2459 -- Only other possibilities are parenthesized or qualified expression,
2460 -- or an expander-generated unchecked conversion of a function call to
2461 -- a stream Input attribute.
2464 Call_Node
:= Expression
(Actual
);
2467 -- No action needed if the call has been already expanded
2469 if Is_Expanded_Dispatching_Call
(Call_Node
) then
2473 -- Do not set the Controlling_Argument if already set. This happens in
2474 -- the special case of _Input (see Exp_Attr, case Input).
2476 if No
(Controlling_Argument
(Call_Node
)) then
2477 Set_Controlling_Argument
(Call_Node
, Control
);
2480 Arg
:= First_Actual
(Call_Node
);
2481 while Present
(Arg
) loop
2482 if Is_Tag_Indeterminate
(Arg
) then
2483 Propagate_Tag
(Control
, Arg
);
2489 -- Expansion of dispatching calls is suppressed when VM_Target, because
2490 -- the VM back-ends directly handle the generation of dispatching calls
2491 -- and would have to undo any expansion to an indirect call.
2493 if Tagged_Type_Expansion
then
2495 Call_Typ
: constant Entity_Id
:= Etype
(Call_Node
);
2498 Expand_Dispatching_Call
(Call_Node
);
2500 -- If the controlling argument is an interface type and the type
2501 -- of Call_Node differs then we must add an implicit conversion to
2502 -- force displacement of the pointer to the object to reference
2503 -- the secondary dispatch table of the interface.
2505 if Is_Interface
(Etype
(Control
))
2506 and then Etype
(Control
) /= Call_Typ
2508 -- Cannot use Convert_To because the previous call to
2509 -- Expand_Dispatching_Call leaves decorated the Call_Node
2510 -- with the type of Control.
2513 Make_Type_Conversion
(Sloc
(Call_Node
),
2515 New_Occurrence_Of
(Etype
(Control
), Sloc
(Call_Node
)),
2516 Expression
=> Relocate_Node
(Call_Node
)));
2517 Set_Etype
(Call_Node
, Etype
(Control
));
2518 Set_Analyzed
(Call_Node
);
2520 Expand_Interface_Conversion
(Call_Node
);
2524 -- Expansion of a dispatching call results in an indirect call, which in
2525 -- turn causes current values to be killed (see Resolve_Call), so on VM
2526 -- targets we do the call here to ensure consistent warnings between VM
2527 -- and non-VM targets.
2530 Kill_Current_Values
;