import of gcc-2.8
[official-gcc.git] / gcc / unroll.c
blob120e2741f3c68582e3f43a55ba6647dd2cd9fbcc
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Try to unroll a loop, and split induction variables.
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
55 /* Possible improvements follow: */
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
140 #define NUM_FACTORS 4
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145 /* Describes the different types of loop unrolling performed. */
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149 #include "config.h"
150 #include <stdio.h>
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
173 static struct induction **addr_combined_regs;
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
179 static rtx *splittable_regs;
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
186 static int *splittable_regs_updates;
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
197 /* Forward declarations. */
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PROTO((rtx));
215 /* Try to unroll one loop and split induction variables in the loop.
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
226 void
227 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
243 char *local_regno;
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
277 if (1 /* write_symbols != NO_DEBUG */)
279 int block_begins = 0;
280 int block_ends = 0;
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
284 if (GET_CODE (insn) == NOTE)
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
293 if (block_begins != block_ends)
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
317 /* Find and save a pointer to the last nonnote insn in the loop. */
319 last_loop_insn = prev_nonnote_insn (loop_end);
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
324 if (loop_n_iterations == 1)
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
333 if (GET_CODE (last_loop_insn) == BARRIER)
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
340 #ifdef HAVE_cc0
341 /* The immediately preceding insn is a compare which must be
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345 #else
346 /* The immediately preceding insn may not be the compare, so don't
347 delete it. */
348 delete_insn (last_loop_insn);
349 #endif
351 return;
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
359 else if (loop_n_iterations > 0)
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
372 factors[i].count++;
373 temp = temp / factors[i].factor;
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
389 else
390 break;
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
401 else
402 unroll_type = UNROLL_MODULO;
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
417 unroll_type = UNROLL_NAIVE;
420 /* Now we know how many times to unroll the loop. */
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
440 if (unroll_type == UNROLL_COMPLETELY)
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
449 copy_start = loop_start;
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
461 #ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 #else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469 #endif
471 else
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
483 else if (unroll_type == UNROLL_MODULO)
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
491 copy_start = loop_start;
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
502 #ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 #else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512 #endif
514 else
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
526 else
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
531 if (GET_CODE (last_loop_insn) == BARRIER)
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
538 This will be corrected below if the target of this jump is
539 not the start_label. */
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
552 else
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
577 if (GET_CODE (insn) == JUMP_INSN)
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
594 else
595 copy_start = loop_start;
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
610 This case currently can not be handled by the loop unrolling code. */
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
617 if (LABEL_NAME (start_label))
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
666 map->integrating = 0;
668 /* Allocate the label map. */
670 if (max_labelno > 0)
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
677 else
678 map->label_map = 0;
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
693 if (JUMP_LABEL (insn))
694 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
695 = JUMP_LABEL (insn);
696 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
697 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
699 rtx pat = PATTERN (insn);
700 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
701 int len = XVECLEN (pat, diff_vec_p);
702 rtx label;
704 for (i = 0; i < len; i++)
706 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
707 map->label_map[CODE_LABEL_NUMBER (label)] = label;
713 /* Allocate space for the insn map. */
715 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
717 /* Set this to zero, to indicate that we are doing loop unrolling,
718 not function inlining. */
719 map->inline_target = 0;
721 /* The register and constant maps depend on the number of registers
722 present, so the final maps can't be created until after
723 find_splittable_regs is called. However, they are needed for
724 preconditioning, so we create temporary maps when preconditioning
725 is performed. */
727 /* The preconditioning code may allocate two new pseudo registers. */
728 maxregnum = max_reg_num ();
730 /* Allocate and zero out the splittable_regs and addr_combined_regs
731 arrays. These must be zeroed here because they will be used if
732 loop preconditioning is performed, and must be zero for that case.
734 It is safe to do this here, since the extra registers created by the
735 preconditioning code and find_splittable_regs will never be used
736 to access the splittable_regs[] and addr_combined_regs[] arrays. */
738 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
739 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
740 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
741 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
742 addr_combined_regs
743 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
744 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
745 /* We must limit it to max_reg_before_loop, because only these pseudo
746 registers have valid regno_first_uid info. Any register created after
747 that is unlikely to be local to the loop anyways. */
748 local_regno = (char *) alloca (max_reg_before_loop);
749 bzero (local_regno, max_reg_before_loop);
751 /* Mark all local registers, i.e. the ones which are referenced only
752 inside the loop. */
753 if (INSN_UID (copy_end) < max_uid_for_loop)
755 int copy_start_luid = INSN_LUID (copy_start);
756 int copy_end_luid = INSN_LUID (copy_end);
758 /* If a register is used in the jump insn, we must not duplicate it
759 since it will also be used outside the loop. */
760 if (GET_CODE (copy_end) == JUMP_INSN)
761 copy_end_luid--;
762 /* If copy_start points to the NOTE that starts the loop, then we must
763 use the next luid, because invariant pseudo-regs moved out of the loop
764 have their lifetimes modified to start here, but they are not safe
765 to duplicate. */
766 if (copy_start == loop_start)
767 copy_start_luid++;
769 /* If a pseudo's lifetime is entirely contained within this loop, then we
770 can use a different pseudo in each unrolled copy of the loop. This
771 results in better code. */
772 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
773 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
774 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
775 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
776 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
778 /* However, we must also check for loop-carried dependencies.
779 If the value the pseudo has at the end of iteration X is
780 used by iteration X+1, then we can not use a different pseudo
781 for each unrolled copy of the loop. */
782 /* A pseudo is safe if regno_first_uid is a set, and this
783 set dominates all instructions from regno_first_uid to
784 regno_last_uid. */
785 /* ??? This check is simplistic. We would get better code if
786 this check was more sophisticated. */
787 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
788 copy_start, copy_end))
789 local_regno[j] = 1;
791 if (loop_dump_stream)
793 if (local_regno[j])
794 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
795 else
796 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
802 /* If this loop requires exit tests when unrolled, check to see if we
803 can precondition the loop so as to make the exit tests unnecessary.
804 Just like variable splitting, this is not safe if the loop is entered
805 via a jump to the bottom. Also, can not do this if no strength
806 reduce info, because precondition_loop_p uses this info. */
808 /* Must copy the loop body for preconditioning before the following
809 find_splittable_regs call since that will emit insns which need to
810 be after the preconditioned loop copies, but immediately before the
811 unrolled loop copies. */
813 /* Also, it is not safe to split induction variables for the preconditioned
814 copies of the loop body. If we split induction variables, then the code
815 assumes that each induction variable can be represented as a function
816 of its initial value and the loop iteration number. This is not true
817 in this case, because the last preconditioned copy of the loop body
818 could be any iteration from the first up to the `unroll_number-1'th,
819 depending on the initial value of the iteration variable. Therefore
820 we can not split induction variables here, because we can not calculate
821 their value. Hence, this code must occur before find_splittable_regs
822 is called. */
824 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
826 rtx initial_value, final_value, increment;
828 if (precondition_loop_p (&initial_value, &final_value, &increment,
829 loop_start, loop_end))
831 register rtx diff, temp;
832 enum machine_mode mode;
833 rtx *labels;
834 int abs_inc, neg_inc;
836 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
838 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
839 map->const_age_map = (unsigned *) alloca (maxregnum
840 * sizeof (unsigned));
841 map->const_equiv_map_size = maxregnum;
842 global_const_equiv_map = map->const_equiv_map;
843 global_const_equiv_map_size = maxregnum;
845 init_reg_map (map, maxregnum);
847 /* Limit loop unrolling to 4, since this will make 7 copies of
848 the loop body. */
849 if (unroll_number > 4)
850 unroll_number = 4;
852 /* Save the absolute value of the increment, and also whether or
853 not it is negative. */
854 neg_inc = 0;
855 abs_inc = INTVAL (increment);
856 if (abs_inc < 0)
858 abs_inc = - abs_inc;
859 neg_inc = 1;
862 start_sequence ();
864 /* Decide what mode to do these calculations in. Choose the larger
865 of final_value's mode and initial_value's mode, or a full-word if
866 both are constants. */
867 mode = GET_MODE (final_value);
868 if (mode == VOIDmode)
870 mode = GET_MODE (initial_value);
871 if (mode == VOIDmode)
872 mode = word_mode;
874 else if (mode != GET_MODE (initial_value)
875 && (GET_MODE_SIZE (mode)
876 < GET_MODE_SIZE (GET_MODE (initial_value))))
877 mode = GET_MODE (initial_value);
879 /* Calculate the difference between the final and initial values.
880 Final value may be a (plus (reg x) (const_int 1)) rtx.
881 Let the following cse pass simplify this if initial value is
882 a constant.
884 We must copy the final and initial values here to avoid
885 improperly shared rtl. */
887 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
888 copy_rtx (initial_value), NULL_RTX, 0,
889 OPTAB_LIB_WIDEN);
891 /* Now calculate (diff % (unroll * abs (increment))) by using an
892 and instruction. */
893 diff = expand_binop (GET_MODE (diff), and_optab, diff,
894 GEN_INT (unroll_number * abs_inc - 1),
895 NULL_RTX, 0, OPTAB_LIB_WIDEN);
897 /* Now emit a sequence of branches to jump to the proper precond
898 loop entry point. */
900 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
901 for (i = 0; i < unroll_number; i++)
902 labels[i] = gen_label_rtx ();
904 /* Check for the case where the initial value is greater than or
905 equal to the final value. In that case, we want to execute
906 exactly one loop iteration. The code below will fail for this
907 case. This check does not apply if the loop has a NE
908 comparison at the end. */
910 if (loop_comparison_code != NE)
912 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
913 NULL_RTX, mode, 0, 0);
914 if (neg_inc)
915 emit_jump_insn (gen_ble (labels[1]));
916 else
917 emit_jump_insn (gen_bge (labels[1]));
918 JUMP_LABEL (get_last_insn ()) = labels[1];
919 LABEL_NUSES (labels[1])++;
922 /* Assuming the unroll_number is 4, and the increment is 2, then
923 for a negative increment: for a positive increment:
924 diff = 0,1 precond 0 diff = 0,7 precond 0
925 diff = 2,3 precond 3 diff = 1,2 precond 1
926 diff = 4,5 precond 2 diff = 3,4 precond 2
927 diff = 6,7 precond 1 diff = 5,6 precond 3 */
929 /* We only need to emit (unroll_number - 1) branches here, the
930 last case just falls through to the following code. */
932 /* ??? This would give better code if we emitted a tree of branches
933 instead of the current linear list of branches. */
935 for (i = 0; i < unroll_number - 1; i++)
937 int cmp_const;
938 enum rtx_code cmp_code;
940 /* For negative increments, must invert the constant compared
941 against, except when comparing against zero. */
942 if (i == 0)
944 cmp_const = 0;
945 cmp_code = EQ;
947 else if (neg_inc)
949 cmp_const = unroll_number - i;
950 cmp_code = GE;
952 else
954 cmp_const = i;
955 cmp_code = LE;
958 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
959 cmp_code, NULL_RTX, mode, 0, 0);
961 if (i == 0)
962 emit_jump_insn (gen_beq (labels[i]));
963 else if (neg_inc)
964 emit_jump_insn (gen_bge (labels[i]));
965 else
966 emit_jump_insn (gen_ble (labels[i]));
967 JUMP_LABEL (get_last_insn ()) = labels[i];
968 LABEL_NUSES (labels[i])++;
971 /* If the increment is greater than one, then we need another branch,
972 to handle other cases equivalent to 0. */
974 /* ??? This should be merged into the code above somehow to help
975 simplify the code here, and reduce the number of branches emitted.
976 For the negative increment case, the branch here could easily
977 be merged with the `0' case branch above. For the positive
978 increment case, it is not clear how this can be simplified. */
980 if (abs_inc != 1)
982 int cmp_const;
983 enum rtx_code cmp_code;
985 if (neg_inc)
987 cmp_const = abs_inc - 1;
988 cmp_code = LE;
990 else
992 cmp_const = abs_inc * (unroll_number - 1) + 1;
993 cmp_code = GE;
996 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
997 mode, 0, 0);
999 if (neg_inc)
1000 emit_jump_insn (gen_ble (labels[0]));
1001 else
1002 emit_jump_insn (gen_bge (labels[0]));
1003 JUMP_LABEL (get_last_insn ()) = labels[0];
1004 LABEL_NUSES (labels[0])++;
1007 sequence = gen_sequence ();
1008 end_sequence ();
1009 emit_insn_before (sequence, loop_start);
1011 /* Only the last copy of the loop body here needs the exit
1012 test, so set copy_end to exclude the compare/branch here,
1013 and then reset it inside the loop when get to the last
1014 copy. */
1016 if (GET_CODE (last_loop_insn) == BARRIER)
1017 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1018 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1020 #ifdef HAVE_cc0
1021 /* The immediately preceding insn is a compare which we do not
1022 want to copy. */
1023 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1024 #else
1025 /* The immediately preceding insn may not be a compare, so we
1026 must copy it. */
1027 copy_end = PREV_INSN (last_loop_insn);
1028 #endif
1030 else
1031 abort ();
1033 for (i = 1; i < unroll_number; i++)
1035 emit_label_after (labels[unroll_number - i],
1036 PREV_INSN (loop_start));
1038 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1039 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1040 bzero ((char *) map->const_age_map,
1041 maxregnum * sizeof (unsigned));
1042 map->const_age = 0;
1044 for (j = 0; j < max_labelno; j++)
1045 if (local_label[j])
1046 map->label_map[j] = gen_label_rtx ();
1048 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1049 if (local_regno[j])
1050 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1052 /* The last copy needs the compare/branch insns at the end,
1053 so reset copy_end here if the loop ends with a conditional
1054 branch. */
1056 if (i == unroll_number - 1)
1058 if (GET_CODE (last_loop_insn) == BARRIER)
1059 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1060 else
1061 copy_end = last_loop_insn;
1064 /* None of the copies are the `last_iteration', so just
1065 pass zero for that parameter. */
1066 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1067 unroll_type, start_label, loop_end,
1068 loop_start, copy_end);
1070 emit_label_after (labels[0], PREV_INSN (loop_start));
1072 if (GET_CODE (last_loop_insn) == BARRIER)
1074 insert_before = PREV_INSN (last_loop_insn);
1075 copy_end = PREV_INSN (insert_before);
1077 else
1079 #ifdef HAVE_cc0
1080 /* The immediately preceding insn is a compare which we do not
1081 want to copy. */
1082 insert_before = PREV_INSN (last_loop_insn);
1083 copy_end = PREV_INSN (insert_before);
1084 #else
1085 /* The immediately preceding insn may not be a compare, so we
1086 must copy it. */
1087 insert_before = last_loop_insn;
1088 copy_end = PREV_INSN (last_loop_insn);
1089 #endif
1092 /* Set unroll type to MODULO now. */
1093 unroll_type = UNROLL_MODULO;
1094 loop_preconditioned = 1;
1098 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1099 the loop unless all loops are being unrolled. */
1100 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1102 if (loop_dump_stream)
1103 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1104 return;
1107 /* At this point, we are guaranteed to unroll the loop. */
1109 /* For each biv and giv, determine whether it can be safely split into
1110 a different variable for each unrolled copy of the loop body.
1111 We precalculate and save this info here, since computing it is
1112 expensive.
1114 Do this before deleting any instructions from the loop, so that
1115 back_branch_in_range_p will work correctly. */
1117 if (splitting_not_safe)
1118 temp = 0;
1119 else
1120 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1121 end_insert_before, unroll_number);
1123 /* find_splittable_regs may have created some new registers, so must
1124 reallocate the reg_map with the new larger size, and must realloc
1125 the constant maps also. */
1127 maxregnum = max_reg_num ();
1128 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1130 init_reg_map (map, maxregnum);
1132 /* Space is needed in some of the map for new registers, so new_maxregnum
1133 is an (over)estimate of how many registers will exist at the end. */
1134 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1136 /* Must realloc space for the constant maps, because the number of registers
1137 may have changed. */
1139 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1140 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1142 map->const_equiv_map_size = new_maxregnum;
1143 global_const_equiv_map = map->const_equiv_map;
1144 global_const_equiv_map_size = new_maxregnum;
1146 /* Search the list of bivs and givs to find ones which need to be remapped
1147 when split, and set their reg_map entry appropriately. */
1149 for (bl = loop_iv_list; bl; bl = bl->next)
1151 if (REGNO (bl->biv->src_reg) != bl->regno)
1152 map->reg_map[bl->regno] = bl->biv->src_reg;
1153 #if 0
1154 /* Currently, non-reduced/final-value givs are never split. */
1155 for (v = bl->giv; v; v = v->next_iv)
1156 if (REGNO (v->src_reg) != bl->regno)
1157 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1158 #endif
1161 /* Use our current register alignment and pointer flags. */
1162 map->regno_pointer_flag = regno_pointer_flag;
1163 map->regno_pointer_align = regno_pointer_align;
1165 /* If the loop is being partially unrolled, and the iteration variables
1166 are being split, and are being renamed for the split, then must fix up
1167 the compare/jump instruction at the end of the loop to refer to the new
1168 registers. This compare isn't copied, so the registers used in it
1169 will never be replaced if it isn't done here. */
1171 if (unroll_type == UNROLL_MODULO)
1173 insn = NEXT_INSN (copy_end);
1174 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1175 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1178 /* For unroll_number - 1 times, make a copy of each instruction
1179 between copy_start and copy_end, and insert these new instructions
1180 before the end of the loop. */
1182 for (i = 0; i < unroll_number; i++)
1184 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1185 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1186 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1187 map->const_age = 0;
1189 for (j = 0; j < max_labelno; j++)
1190 if (local_label[j])
1191 map->label_map[j] = gen_label_rtx ();
1193 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1194 if (local_regno[j])
1195 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1197 /* If loop starts with a branch to the test, then fix it so that
1198 it points to the test of the first unrolled copy of the loop. */
1199 if (i == 0 && loop_start != copy_start)
1201 insn = PREV_INSN (copy_start);
1202 pattern = PATTERN (insn);
1204 tem = map->label_map[CODE_LABEL_NUMBER
1205 (XEXP (SET_SRC (pattern), 0))];
1206 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1208 /* Set the jump label so that it can be used by later loop unrolling
1209 passes. */
1210 JUMP_LABEL (insn) = tem;
1211 LABEL_NUSES (tem)++;
1214 copy_loop_body (copy_start, copy_end, map, exit_label,
1215 i == unroll_number - 1, unroll_type, start_label,
1216 loop_end, insert_before, insert_before);
1219 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1220 insn to be deleted. This prevents any runaway delete_insn call from
1221 more insns that it should, as it always stops at a CODE_LABEL. */
1223 /* Delete the compare and branch at the end of the loop if completely
1224 unrolling the loop. Deleting the backward branch at the end also
1225 deletes the code label at the start of the loop. This is done at
1226 the very end to avoid problems with back_branch_in_range_p. */
1228 if (unroll_type == UNROLL_COMPLETELY)
1229 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1230 else
1231 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1233 /* Delete all of the original loop instructions. Don't delete the
1234 LOOP_BEG note, or the first code label in the loop. */
1236 insn = NEXT_INSN (copy_start);
1237 while (insn != safety_label)
1239 if (insn != start_label)
1240 insn = delete_insn (insn);
1241 else
1242 insn = NEXT_INSN (insn);
1245 /* Can now delete the 'safety' label emitted to protect us from runaway
1246 delete_insn calls. */
1247 if (INSN_DELETED_P (safety_label))
1248 abort ();
1249 delete_insn (safety_label);
1251 /* If exit_label exists, emit it after the loop. Doing the emit here
1252 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1253 This is needed so that mostly_true_jump in reorg.c will treat jumps
1254 to this loop end label correctly, i.e. predict that they are usually
1255 not taken. */
1256 if (exit_label)
1257 emit_label_after (exit_label, loop_end);
1260 /* Return true if the loop can be safely, and profitably, preconditioned
1261 so that the unrolled copies of the loop body don't need exit tests.
1263 This only works if final_value, initial_value and increment can be
1264 determined, and if increment is a constant power of 2.
1265 If increment is not a power of 2, then the preconditioning modulo
1266 operation would require a real modulo instead of a boolean AND, and this
1267 is not considered `profitable'. */
1269 /* ??? If the loop is known to be executed very many times, or the machine
1270 has a very cheap divide instruction, then preconditioning is a win even
1271 when the increment is not a power of 2. Use RTX_COST to compute
1272 whether divide is cheap. */
1274 static int
1275 precondition_loop_p (initial_value, final_value, increment, loop_start,
1276 loop_end)
1277 rtx *initial_value, *final_value, *increment;
1278 rtx loop_start, loop_end;
1281 if (loop_n_iterations > 0)
1283 *initial_value = const0_rtx;
1284 *increment = const1_rtx;
1285 *final_value = GEN_INT (loop_n_iterations);
1287 if (loop_dump_stream)
1288 fprintf (loop_dump_stream,
1289 "Preconditioning: Success, number of iterations known, %d.\n",
1290 loop_n_iterations);
1291 return 1;
1294 if (loop_initial_value == 0)
1296 if (loop_dump_stream)
1297 fprintf (loop_dump_stream,
1298 "Preconditioning: Could not find initial value.\n");
1299 return 0;
1301 else if (loop_increment == 0)
1303 if (loop_dump_stream)
1304 fprintf (loop_dump_stream,
1305 "Preconditioning: Could not find increment value.\n");
1306 return 0;
1308 else if (GET_CODE (loop_increment) != CONST_INT)
1310 if (loop_dump_stream)
1311 fprintf (loop_dump_stream,
1312 "Preconditioning: Increment not a constant.\n");
1313 return 0;
1315 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1316 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1318 if (loop_dump_stream)
1319 fprintf (loop_dump_stream,
1320 "Preconditioning: Increment not a constant power of 2.\n");
1321 return 0;
1324 /* Unsigned_compare and compare_dir can be ignored here, since they do
1325 not matter for preconditioning. */
1327 if (loop_final_value == 0)
1329 if (loop_dump_stream)
1330 fprintf (loop_dump_stream,
1331 "Preconditioning: EQ comparison loop.\n");
1332 return 0;
1335 /* Must ensure that final_value is invariant, so call invariant_p to
1336 check. Before doing so, must check regno against max_reg_before_loop
1337 to make sure that the register is in the range covered by invariant_p.
1338 If it isn't, then it is most likely a biv/giv which by definition are
1339 not invariant. */
1340 if ((GET_CODE (loop_final_value) == REG
1341 && REGNO (loop_final_value) >= max_reg_before_loop)
1342 || (GET_CODE (loop_final_value) == PLUS
1343 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1344 || ! invariant_p (loop_final_value))
1346 if (loop_dump_stream)
1347 fprintf (loop_dump_stream,
1348 "Preconditioning: Final value not invariant.\n");
1349 return 0;
1352 /* Fail for floating point values, since the caller of this function
1353 does not have code to deal with them. */
1354 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1355 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1357 if (loop_dump_stream)
1358 fprintf (loop_dump_stream,
1359 "Preconditioning: Floating point final or initial value.\n");
1360 return 0;
1363 /* Now set initial_value to be the iteration_var, since that may be a
1364 simpler expression, and is guaranteed to be correct if all of the
1365 above tests succeed.
1367 We can not use the initial_value as calculated, because it will be
1368 one too small for loops of the form "while (i-- > 0)". We can not
1369 emit code before the loop_skip_over insns to fix this problem as this
1370 will then give a number one too large for loops of the form
1371 "while (--i > 0)".
1373 Note that all loops that reach here are entered at the top, because
1374 this function is not called if the loop starts with a jump. */
1376 /* Fail if loop_iteration_var is not live before loop_start, since we need
1377 to test its value in the preconditioning code. */
1379 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1380 > INSN_LUID (loop_start))
1382 if (loop_dump_stream)
1383 fprintf (loop_dump_stream,
1384 "Preconditioning: Iteration var not live before loop start.\n");
1385 return 0;
1388 *initial_value = loop_iteration_var;
1389 *increment = loop_increment;
1390 *final_value = loop_final_value;
1392 /* Success! */
1393 if (loop_dump_stream)
1394 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1395 return 1;
1399 /* All pseudo-registers must be mapped to themselves. Two hard registers
1400 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1401 REGNUM, to avoid function-inlining specific conversions of these
1402 registers. All other hard regs can not be mapped because they may be
1403 used with different
1404 modes. */
1406 static void
1407 init_reg_map (map, maxregnum)
1408 struct inline_remap *map;
1409 int maxregnum;
1411 int i;
1413 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1414 map->reg_map[i] = regno_reg_rtx[i];
1415 /* Just clear the rest of the entries. */
1416 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1417 map->reg_map[i] = 0;
1419 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1420 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1421 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1422 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1425 /* Strength-reduction will often emit code for optimized biv/givs which
1426 calculates their value in a temporary register, and then copies the result
1427 to the iv. This procedure reconstructs the pattern computing the iv;
1428 verifying that all operands are of the proper form.
1430 The return value is the amount that the giv is incremented by. */
1432 static rtx
1433 calculate_giv_inc (pattern, src_insn, regno)
1434 rtx pattern, src_insn;
1435 int regno;
1437 rtx increment;
1438 rtx increment_total = 0;
1439 int tries = 0;
1441 retry:
1442 /* Verify that we have an increment insn here. First check for a plus
1443 as the set source. */
1444 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1446 /* SR sometimes computes the new giv value in a temp, then copies it
1447 to the new_reg. */
1448 src_insn = PREV_INSN (src_insn);
1449 pattern = PATTERN (src_insn);
1450 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1451 abort ();
1453 /* The last insn emitted is not needed, so delete it to avoid confusing
1454 the second cse pass. This insn sets the giv unnecessarily. */
1455 delete_insn (get_last_insn ());
1458 /* Verify that we have a constant as the second operand of the plus. */
1459 increment = XEXP (SET_SRC (pattern), 1);
1460 if (GET_CODE (increment) != CONST_INT)
1462 /* SR sometimes puts the constant in a register, especially if it is
1463 too big to be an add immed operand. */
1464 src_insn = PREV_INSN (src_insn);
1465 increment = SET_SRC (PATTERN (src_insn));
1467 /* SR may have used LO_SUM to compute the constant if it is too large
1468 for a load immed operand. In this case, the constant is in operand
1469 one of the LO_SUM rtx. */
1470 if (GET_CODE (increment) == LO_SUM)
1471 increment = XEXP (increment, 1);
1472 else if (GET_CODE (increment) == IOR
1473 || GET_CODE (increment) == ASHIFT
1474 || GET_CODE (increment) == PLUS)
1476 /* The rs6000 port loads some constants with IOR.
1477 The alpha port loads some constants with ASHIFT and PLUS. */
1478 rtx second_part = XEXP (increment, 1);
1479 enum rtx_code code = GET_CODE (increment);
1481 src_insn = PREV_INSN (src_insn);
1482 increment = SET_SRC (PATTERN (src_insn));
1483 /* Don't need the last insn anymore. */
1484 delete_insn (get_last_insn ());
1486 if (GET_CODE (second_part) != CONST_INT
1487 || GET_CODE (increment) != CONST_INT)
1488 abort ();
1490 if (code == IOR)
1491 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1492 else if (code == PLUS)
1493 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1494 else
1495 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1498 if (GET_CODE (increment) != CONST_INT)
1499 abort ();
1501 /* The insn loading the constant into a register is no longer needed,
1502 so delete it. */
1503 delete_insn (get_last_insn ());
1506 if (increment_total)
1507 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1508 else
1509 increment_total = increment;
1511 /* Check that the source register is the same as the register we expected
1512 to see as the source. If not, something is seriously wrong. */
1513 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1514 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1516 /* Some machines (e.g. the romp), may emit two add instructions for
1517 certain constants, so lets try looking for another add immediately
1518 before this one if we have only seen one add insn so far. */
1520 if (tries == 0)
1522 tries++;
1524 src_insn = PREV_INSN (src_insn);
1525 pattern = PATTERN (src_insn);
1527 delete_insn (get_last_insn ());
1529 goto retry;
1532 abort ();
1535 return increment_total;
1538 /* Copy REG_NOTES, except for insn references, because not all insn_map
1539 entries are valid yet. We do need to copy registers now though, because
1540 the reg_map entries can change during copying. */
1542 static rtx
1543 initial_reg_note_copy (notes, map)
1544 rtx notes;
1545 struct inline_remap *map;
1547 rtx copy;
1549 if (notes == 0)
1550 return 0;
1552 copy = rtx_alloc (GET_CODE (notes));
1553 PUT_MODE (copy, GET_MODE (notes));
1555 if (GET_CODE (notes) == EXPR_LIST)
1556 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1557 else if (GET_CODE (notes) == INSN_LIST)
1558 /* Don't substitute for these yet. */
1559 XEXP (copy, 0) = XEXP (notes, 0);
1560 else
1561 abort ();
1563 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1565 return copy;
1568 /* Fixup insn references in copied REG_NOTES. */
1570 static void
1571 final_reg_note_copy (notes, map)
1572 rtx notes;
1573 struct inline_remap *map;
1575 rtx note;
1577 for (note = notes; note; note = XEXP (note, 1))
1578 if (GET_CODE (note) == INSN_LIST)
1579 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1582 /* Copy each instruction in the loop, substituting from map as appropriate.
1583 This is very similar to a loop in expand_inline_function. */
1585 static void
1586 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1587 unroll_type, start_label, loop_end, insert_before,
1588 copy_notes_from)
1589 rtx copy_start, copy_end;
1590 struct inline_remap *map;
1591 rtx exit_label;
1592 int last_iteration;
1593 enum unroll_types unroll_type;
1594 rtx start_label, loop_end, insert_before, copy_notes_from;
1596 rtx insn, pattern;
1597 rtx tem, copy;
1598 int dest_reg_was_split, i;
1599 rtx cc0_insn = 0;
1600 rtx final_label = 0;
1601 rtx giv_inc, giv_dest_reg, giv_src_reg;
1603 /* If this isn't the last iteration, then map any references to the
1604 start_label to final_label. Final label will then be emitted immediately
1605 after the end of this loop body if it was ever used.
1607 If this is the last iteration, then map references to the start_label
1608 to itself. */
1609 if (! last_iteration)
1611 final_label = gen_label_rtx ();
1612 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1614 else
1615 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1617 start_sequence ();
1619 insn = copy_start;
1622 insn = NEXT_INSN (insn);
1624 map->orig_asm_operands_vector = 0;
1626 switch (GET_CODE (insn))
1628 case INSN:
1629 pattern = PATTERN (insn);
1630 copy = 0;
1631 giv_inc = 0;
1633 /* Check to see if this is a giv that has been combined with
1634 some split address givs. (Combined in the sense that
1635 `combine_givs' in loop.c has put two givs in the same register.)
1636 In this case, we must search all givs based on the same biv to
1637 find the address givs. Then split the address givs.
1638 Do this before splitting the giv, since that may map the
1639 SET_DEST to a new register. */
1641 if (GET_CODE (pattern) == SET
1642 && GET_CODE (SET_DEST (pattern)) == REG
1643 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1645 struct iv_class *bl;
1646 struct induction *v, *tv;
1647 int regno = REGNO (SET_DEST (pattern));
1649 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1650 bl = reg_biv_class[REGNO (v->src_reg)];
1652 /* Although the giv_inc amount is not needed here, we must call
1653 calculate_giv_inc here since it might try to delete the
1654 last insn emitted. If we wait until later to call it,
1655 we might accidentally delete insns generated immediately
1656 below by emit_unrolled_add. */
1658 giv_inc = calculate_giv_inc (pattern, insn, regno);
1660 /* Now find all address giv's that were combined with this
1661 giv 'v'. */
1662 for (tv = bl->giv; tv; tv = tv->next_iv)
1663 if (tv->giv_type == DEST_ADDR && tv->same == v)
1665 int this_giv_inc;
1667 /* If this DEST_ADDR giv was not split, then ignore it. */
1668 if (*tv->location != tv->dest_reg)
1669 continue;
1671 /* Scale this_giv_inc if the multiplicative factors of
1672 the two givs are different. */
1673 this_giv_inc = INTVAL (giv_inc);
1674 if (tv->mult_val != v->mult_val)
1675 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1676 * INTVAL (tv->mult_val));
1678 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1679 *tv->location = tv->dest_reg;
1681 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1683 /* Must emit an insn to increment the split address
1684 giv. Add in the const_adjust field in case there
1685 was a constant eliminated from the address. */
1686 rtx value, dest_reg;
1688 /* tv->dest_reg will be either a bare register,
1689 or else a register plus a constant. */
1690 if (GET_CODE (tv->dest_reg) == REG)
1691 dest_reg = tv->dest_reg;
1692 else
1693 dest_reg = XEXP (tv->dest_reg, 0);
1695 /* Check for shared address givs, and avoid
1696 incrementing the shared pseudo reg more than
1697 once. */
1698 if (! tv->same_insn)
1700 /* tv->dest_reg may actually be a (PLUS (REG)
1701 (CONST)) here, so we must call plus_constant
1702 to add the const_adjust amount before calling
1703 emit_unrolled_add below. */
1704 value = plus_constant (tv->dest_reg,
1705 tv->const_adjust);
1707 /* The constant could be too large for an add
1708 immediate, so can't directly emit an insn
1709 here. */
1710 emit_unrolled_add (dest_reg, XEXP (value, 0),
1711 XEXP (value, 1));
1714 /* Reset the giv to be just the register again, in case
1715 it is used after the set we have just emitted.
1716 We must subtract the const_adjust factor added in
1717 above. */
1718 tv->dest_reg = plus_constant (dest_reg,
1719 - tv->const_adjust);
1720 *tv->location = tv->dest_reg;
1725 /* If this is a setting of a splittable variable, then determine
1726 how to split the variable, create a new set based on this split,
1727 and set up the reg_map so that later uses of the variable will
1728 use the new split variable. */
1730 dest_reg_was_split = 0;
1732 if (GET_CODE (pattern) == SET
1733 && GET_CODE (SET_DEST (pattern)) == REG
1734 && splittable_regs[REGNO (SET_DEST (pattern))])
1736 int regno = REGNO (SET_DEST (pattern));
1738 dest_reg_was_split = 1;
1740 /* Compute the increment value for the giv, if it wasn't
1741 already computed above. */
1743 if (giv_inc == 0)
1744 giv_inc = calculate_giv_inc (pattern, insn, regno);
1745 giv_dest_reg = SET_DEST (pattern);
1746 giv_src_reg = SET_DEST (pattern);
1748 if (unroll_type == UNROLL_COMPLETELY)
1750 /* Completely unrolling the loop. Set the induction
1751 variable to a known constant value. */
1753 /* The value in splittable_regs may be an invariant
1754 value, so we must use plus_constant here. */
1755 splittable_regs[regno]
1756 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1758 if (GET_CODE (splittable_regs[regno]) == PLUS)
1760 giv_src_reg = XEXP (splittable_regs[regno], 0);
1761 giv_inc = XEXP (splittable_regs[regno], 1);
1763 else
1765 /* The splittable_regs value must be a REG or a
1766 CONST_INT, so put the entire value in the giv_src_reg
1767 variable. */
1768 giv_src_reg = splittable_regs[regno];
1769 giv_inc = const0_rtx;
1772 else
1774 /* Partially unrolling loop. Create a new pseudo
1775 register for the iteration variable, and set it to
1776 be a constant plus the original register. Except
1777 on the last iteration, when the result has to
1778 go back into the original iteration var register. */
1780 /* Handle bivs which must be mapped to a new register
1781 when split. This happens for bivs which need their
1782 final value set before loop entry. The new register
1783 for the biv was stored in the biv's first struct
1784 induction entry by find_splittable_regs. */
1786 if (regno < max_reg_before_loop
1787 && reg_iv_type[regno] == BASIC_INDUCT)
1789 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1790 giv_dest_reg = giv_src_reg;
1793 #if 0
1794 /* If non-reduced/final-value givs were split, then
1795 this would have to remap those givs also. See
1796 find_splittable_regs. */
1797 #endif
1799 splittable_regs[regno]
1800 = GEN_INT (INTVAL (giv_inc)
1801 + INTVAL (splittable_regs[regno]));
1802 giv_inc = splittable_regs[regno];
1804 /* Now split the induction variable by changing the dest
1805 of this insn to a new register, and setting its
1806 reg_map entry to point to this new register.
1808 If this is the last iteration, and this is the last insn
1809 that will update the iv, then reuse the original dest,
1810 to ensure that the iv will have the proper value when
1811 the loop exits or repeats.
1813 Using splittable_regs_updates here like this is safe,
1814 because it can only be greater than one if all
1815 instructions modifying the iv are always executed in
1816 order. */
1818 if (! last_iteration
1819 || (splittable_regs_updates[regno]-- != 1))
1821 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1822 giv_dest_reg = tem;
1823 map->reg_map[regno] = tem;
1825 else
1826 map->reg_map[regno] = giv_src_reg;
1829 /* The constant being added could be too large for an add
1830 immediate, so can't directly emit an insn here. */
1831 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1832 copy = get_last_insn ();
1833 pattern = PATTERN (copy);
1835 else
1837 pattern = copy_rtx_and_substitute (pattern, map);
1838 copy = emit_insn (pattern);
1840 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1842 #ifdef HAVE_cc0
1843 /* If this insn is setting CC0, it may need to look at
1844 the insn that uses CC0 to see what type of insn it is.
1845 In that case, the call to recog via validate_change will
1846 fail. So don't substitute constants here. Instead,
1847 do it when we emit the following insn.
1849 For example, see the pyr.md file. That machine has signed and
1850 unsigned compares. The compare patterns must check the
1851 following branch insn to see which what kind of compare to
1852 emit.
1854 If the previous insn set CC0, substitute constants on it as
1855 well. */
1856 if (sets_cc0_p (PATTERN (copy)) != 0)
1857 cc0_insn = copy;
1858 else
1860 if (cc0_insn)
1861 try_constants (cc0_insn, map);
1862 cc0_insn = 0;
1863 try_constants (copy, map);
1865 #else
1866 try_constants (copy, map);
1867 #endif
1869 /* Make split induction variable constants `permanent' since we
1870 know there are no backward branches across iteration variable
1871 settings which would invalidate this. */
1872 if (dest_reg_was_split)
1874 int regno = REGNO (SET_DEST (pattern));
1876 if (regno < map->const_equiv_map_size
1877 && map->const_age_map[regno] == map->const_age)
1878 map->const_age_map[regno] = -1;
1880 break;
1882 case JUMP_INSN:
1883 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1884 copy = emit_jump_insn (pattern);
1885 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1887 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1888 && ! last_iteration)
1890 /* This is a branch to the beginning of the loop; this is the
1891 last insn being copied; and this is not the last iteration.
1892 In this case, we want to change the original fall through
1893 case to be a branch past the end of the loop, and the
1894 original jump label case to fall_through. */
1896 if (invert_exp (pattern, copy))
1898 if (! redirect_exp (&pattern,
1899 map->label_map[CODE_LABEL_NUMBER
1900 (JUMP_LABEL (insn))],
1901 exit_label, copy))
1902 abort ();
1904 else
1906 rtx jmp;
1907 rtx lab = gen_label_rtx ();
1908 /* Can't do it by reversing the jump (probably because we
1909 couldn't reverse the conditions), so emit a new
1910 jump_insn after COPY, and redirect the jump around
1911 that. */
1912 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1913 jmp = emit_barrier_after (jmp);
1914 emit_label_after (lab, jmp);
1915 LABEL_NUSES (lab) = 0;
1916 if (! redirect_exp (&pattern,
1917 map->label_map[CODE_LABEL_NUMBER
1918 (JUMP_LABEL (insn))],
1919 lab, copy))
1920 abort ();
1924 #ifdef HAVE_cc0
1925 if (cc0_insn)
1926 try_constants (cc0_insn, map);
1927 cc0_insn = 0;
1928 #endif
1929 try_constants (copy, map);
1931 /* Set the jump label of COPY correctly to avoid problems with
1932 later passes of unroll_loop, if INSN had jump label set. */
1933 if (JUMP_LABEL (insn))
1935 rtx label = 0;
1937 /* Can't use the label_map for every insn, since this may be
1938 the backward branch, and hence the label was not mapped. */
1939 if (GET_CODE (pattern) == SET)
1941 tem = SET_SRC (pattern);
1942 if (GET_CODE (tem) == LABEL_REF)
1943 label = XEXP (tem, 0);
1944 else if (GET_CODE (tem) == IF_THEN_ELSE)
1946 if (XEXP (tem, 1) != pc_rtx)
1947 label = XEXP (XEXP (tem, 1), 0);
1948 else
1949 label = XEXP (XEXP (tem, 2), 0);
1953 if (label && GET_CODE (label) == CODE_LABEL)
1954 JUMP_LABEL (copy) = label;
1955 else
1957 /* An unrecognizable jump insn, probably the entry jump
1958 for a switch statement. This label must have been mapped,
1959 so just use the label_map to get the new jump label. */
1960 JUMP_LABEL (copy)
1961 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1964 /* If this is a non-local jump, then must increase the label
1965 use count so that the label will not be deleted when the
1966 original jump is deleted. */
1967 LABEL_NUSES (JUMP_LABEL (copy))++;
1969 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1970 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1972 rtx pat = PATTERN (copy);
1973 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1974 int len = XVECLEN (pat, diff_vec_p);
1975 int i;
1977 for (i = 0; i < len; i++)
1978 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1981 /* If this used to be a conditional jump insn but whose branch
1982 direction is now known, we must do something special. */
1983 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1985 #ifdef HAVE_cc0
1986 /* The previous insn set cc0 for us. So delete it. */
1987 delete_insn (PREV_INSN (copy));
1988 #endif
1990 /* If this is now a no-op, delete it. */
1991 if (map->last_pc_value == pc_rtx)
1993 /* Don't let delete_insn delete the label referenced here,
1994 because we might possibly need it later for some other
1995 instruction in the loop. */
1996 if (JUMP_LABEL (copy))
1997 LABEL_NUSES (JUMP_LABEL (copy))++;
1998 delete_insn (copy);
1999 if (JUMP_LABEL (copy))
2000 LABEL_NUSES (JUMP_LABEL (copy))--;
2001 copy = 0;
2003 else
2004 /* Otherwise, this is unconditional jump so we must put a
2005 BARRIER after it. We could do some dead code elimination
2006 here, but jump.c will do it just as well. */
2007 emit_barrier ();
2009 break;
2011 case CALL_INSN:
2012 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2013 copy = emit_call_insn (pattern);
2014 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2016 /* Because the USAGE information potentially contains objects other
2017 than hard registers, we need to copy it. */
2018 CALL_INSN_FUNCTION_USAGE (copy)
2019 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2021 #ifdef HAVE_cc0
2022 if (cc0_insn)
2023 try_constants (cc0_insn, map);
2024 cc0_insn = 0;
2025 #endif
2026 try_constants (copy, map);
2028 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2030 map->const_equiv_map[i] = 0;
2031 break;
2033 case CODE_LABEL:
2034 /* If this is the loop start label, then we don't need to emit a
2035 copy of this label since no one will use it. */
2037 if (insn != start_label)
2039 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2040 map->const_age++;
2042 break;
2044 case BARRIER:
2045 copy = emit_barrier ();
2046 break;
2048 case NOTE:
2049 /* VTOP notes are valid only before the loop exit test. If placed
2050 anywhere else, loop may generate bad code. */
2052 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2053 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2054 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2055 copy = emit_note (NOTE_SOURCE_FILE (insn),
2056 NOTE_LINE_NUMBER (insn));
2057 else
2058 copy = 0;
2059 break;
2061 default:
2062 abort ();
2063 break;
2066 map->insn_map[INSN_UID (insn)] = copy;
2068 while (insn != copy_end);
2070 /* Now finish coping the REG_NOTES. */
2071 insn = copy_start;
2074 insn = NEXT_INSN (insn);
2075 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2076 || GET_CODE (insn) == CALL_INSN)
2077 && map->insn_map[INSN_UID (insn)])
2078 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2080 while (insn != copy_end);
2082 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2083 each of these notes here, since there may be some important ones, such as
2084 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2085 iteration, because the original notes won't be deleted.
2087 We can't use insert_before here, because when from preconditioning,
2088 insert_before points before the loop. We can't use copy_end, because
2089 there may be insns already inserted after it (which we don't want to
2090 copy) when not from preconditioning code. */
2092 if (! last_iteration)
2094 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2096 if (GET_CODE (insn) == NOTE
2097 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2098 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2102 if (final_label && LABEL_NUSES (final_label) > 0)
2103 emit_label (final_label);
2105 tem = gen_sequence ();
2106 end_sequence ();
2107 emit_insn_before (tem, insert_before);
2110 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2111 emitted. This will correctly handle the case where the increment value
2112 won't fit in the immediate field of a PLUS insns. */
2114 void
2115 emit_unrolled_add (dest_reg, src_reg, increment)
2116 rtx dest_reg, src_reg, increment;
2118 rtx result;
2120 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2121 dest_reg, 0, OPTAB_LIB_WIDEN);
2123 if (dest_reg != result)
2124 emit_move_insn (dest_reg, result);
2127 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2128 is a backward branch in that range that branches to somewhere between
2129 LOOP_START and INSN. Returns 0 otherwise. */
2131 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2132 In practice, this is not a problem, because this function is seldom called,
2133 and uses a negligible amount of CPU time on average. */
2136 back_branch_in_range_p (insn, loop_start, loop_end)
2137 rtx insn;
2138 rtx loop_start, loop_end;
2140 rtx p, q, target_insn;
2141 rtx orig_loop_end = loop_end;
2143 /* Stop before we get to the backward branch at the end of the loop. */
2144 loop_end = prev_nonnote_insn (loop_end);
2145 if (GET_CODE (loop_end) == BARRIER)
2146 loop_end = PREV_INSN (loop_end);
2148 /* Check in case insn has been deleted, search forward for first non
2149 deleted insn following it. */
2150 while (INSN_DELETED_P (insn))
2151 insn = NEXT_INSN (insn);
2153 /* Check for the case where insn is the last insn in the loop. Deal
2154 with the case where INSN was a deleted loop test insn, in which case
2155 it will now be the NOTE_LOOP_END. */
2156 if (insn == loop_end || insn == orig_loop_end)
2157 return 0;
2159 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2161 if (GET_CODE (p) == JUMP_INSN)
2163 target_insn = JUMP_LABEL (p);
2165 /* Search from loop_start to insn, to see if one of them is
2166 the target_insn. We can't use INSN_LUID comparisons here,
2167 since insn may not have an LUID entry. */
2168 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2169 if (q == target_insn)
2170 return 1;
2174 return 0;
2177 /* Try to generate the simplest rtx for the expression
2178 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2179 value of giv's. */
2181 static rtx
2182 fold_rtx_mult_add (mult1, mult2, add1, mode)
2183 rtx mult1, mult2, add1;
2184 enum machine_mode mode;
2186 rtx temp, mult_res;
2187 rtx result;
2189 /* The modes must all be the same. This should always be true. For now,
2190 check to make sure. */
2191 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2192 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2193 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2194 abort ();
2196 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2197 will be a constant. */
2198 if (GET_CODE (mult1) == CONST_INT)
2200 temp = mult2;
2201 mult2 = mult1;
2202 mult1 = temp;
2205 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2206 if (! mult_res)
2207 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2209 /* Again, put the constant second. */
2210 if (GET_CODE (add1) == CONST_INT)
2212 temp = add1;
2213 add1 = mult_res;
2214 mult_res = temp;
2217 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2218 if (! result)
2219 result = gen_rtx (PLUS, mode, add1, mult_res);
2221 return result;
2224 /* Searches the list of induction struct's for the biv BL, to try to calculate
2225 the total increment value for one iteration of the loop as a constant.
2227 Returns the increment value as an rtx, simplified as much as possible,
2228 if it can be calculated. Otherwise, returns 0. */
2230 rtx
2231 biv_total_increment (bl, loop_start, loop_end)
2232 struct iv_class *bl;
2233 rtx loop_start, loop_end;
2235 struct induction *v;
2236 rtx result;
2238 /* For increment, must check every instruction that sets it. Each
2239 instruction must be executed only once each time through the loop.
2240 To verify this, we check that the the insn is always executed, and that
2241 there are no backward branches after the insn that branch to before it.
2242 Also, the insn must have a mult_val of one (to make sure it really is
2243 an increment). */
2245 result = const0_rtx;
2246 for (v = bl->biv; v; v = v->next_iv)
2248 if (v->always_computable && v->mult_val == const1_rtx
2249 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2250 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2251 else
2252 return 0;
2255 return result;
2258 /* Determine the initial value of the iteration variable, and the amount
2259 that it is incremented each loop. Use the tables constructed by
2260 the strength reduction pass to calculate these values.
2262 Initial_value and/or increment are set to zero if their values could not
2263 be calculated. */
2265 static void
2266 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2267 rtx iteration_var, *initial_value, *increment;
2268 rtx loop_start, loop_end;
2270 struct iv_class *bl;
2271 struct induction *v, *b;
2273 /* Clear the result values, in case no answer can be found. */
2274 *initial_value = 0;
2275 *increment = 0;
2277 /* The iteration variable can be either a giv or a biv. Check to see
2278 which it is, and compute the variable's initial value, and increment
2279 value if possible. */
2281 /* If this is a new register, can't handle it since we don't have any
2282 reg_iv_type entry for it. */
2283 if (REGNO (iteration_var) >= max_reg_before_loop)
2285 if (loop_dump_stream)
2286 fprintf (loop_dump_stream,
2287 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2288 return;
2291 /* Reject iteration variables larger than the host wide int size, since they
2292 could result in a number of iterations greater than the range of our
2293 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2294 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2295 > HOST_BITS_PER_WIDE_INT))
2297 if (loop_dump_stream)
2298 fprintf (loop_dump_stream,
2299 "Loop unrolling: Iteration var rejected because mode too large.\n");
2300 return;
2302 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2304 if (loop_dump_stream)
2305 fprintf (loop_dump_stream,
2306 "Loop unrolling: Iteration var not an integer.\n");
2307 return;
2309 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2311 /* Grab initial value, only useful if it is a constant. */
2312 bl = reg_biv_class[REGNO (iteration_var)];
2313 *initial_value = bl->initial_value;
2315 *increment = biv_total_increment (bl, loop_start, loop_end);
2317 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2319 #if 1
2320 /* ??? The code below does not work because the incorrect number of
2321 iterations is calculated when the biv is incremented after the giv
2322 is set (which is the usual case). This can probably be accounted
2323 for by biasing the initial_value by subtracting the amount of the
2324 increment that occurs between the giv set and the giv test. However,
2325 a giv as an iterator is very rare, so it does not seem worthwhile
2326 to handle this. */
2327 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2328 if (loop_dump_stream)
2329 fprintf (loop_dump_stream,
2330 "Loop unrolling: Giv iterators are not handled.\n");
2331 return;
2332 #else
2333 /* Initial value is mult_val times the biv's initial value plus
2334 add_val. Only useful if it is a constant. */
2335 v = reg_iv_info[REGNO (iteration_var)];
2336 bl = reg_biv_class[REGNO (v->src_reg)];
2337 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2338 v->add_val, v->mode);
2340 /* Increment value is mult_val times the increment value of the biv. */
2342 *increment = biv_total_increment (bl, loop_start, loop_end);
2343 if (*increment)
2344 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2345 v->mode);
2346 #endif
2348 else
2350 if (loop_dump_stream)
2351 fprintf (loop_dump_stream,
2352 "Loop unrolling: Not basic or general induction var.\n");
2353 return;
2357 /* Calculate the approximate final value of the iteration variable
2358 which has an loop exit test with code COMPARISON_CODE and comparison value
2359 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2360 was signed or unsigned, and the direction of the comparison. This info is
2361 needed to calculate the number of loop iterations. */
2363 static rtx
2364 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2365 enum rtx_code comparison_code;
2366 rtx comparison_value;
2367 int *unsigned_p;
2368 int *compare_dir;
2370 /* Calculate the final value of the induction variable.
2371 The exact final value depends on the branch operator, and increment sign.
2372 This is only an approximate value. It will be wrong if the iteration
2373 variable is not incremented by one each time through the loop, and
2374 approx final value - start value % increment != 0. */
2376 *unsigned_p = 0;
2377 switch (comparison_code)
2379 case LEU:
2380 *unsigned_p = 1;
2381 case LE:
2382 *compare_dir = 1;
2383 return plus_constant (comparison_value, 1);
2384 case GEU:
2385 *unsigned_p = 1;
2386 case GE:
2387 *compare_dir = -1;
2388 return plus_constant (comparison_value, -1);
2389 case EQ:
2390 /* Can not calculate a final value for this case. */
2391 *compare_dir = 0;
2392 return 0;
2393 case LTU:
2394 *unsigned_p = 1;
2395 case LT:
2396 *compare_dir = 1;
2397 return comparison_value;
2398 break;
2399 case GTU:
2400 *unsigned_p = 1;
2401 case GT:
2402 *compare_dir = -1;
2403 return comparison_value;
2404 case NE:
2405 *compare_dir = 0;
2406 return comparison_value;
2407 default:
2408 abort ();
2412 /* For each biv and giv, determine whether it can be safely split into
2413 a different variable for each unrolled copy of the loop body. If it
2414 is safe to split, then indicate that by saving some useful info
2415 in the splittable_regs array.
2417 If the loop is being completely unrolled, then splittable_regs will hold
2418 the current value of the induction variable while the loop is unrolled.
2419 It must be set to the initial value of the induction variable here.
2420 Otherwise, splittable_regs will hold the difference between the current
2421 value of the induction variable and the value the induction variable had
2422 at the top of the loop. It must be set to the value 0 here.
2424 Returns the total number of instructions that set registers that are
2425 splittable. */
2427 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2428 constant values are unnecessary, since we can easily calculate increment
2429 values in this case even if nothing is constant. The increment value
2430 should not involve a multiply however. */
2432 /* ?? Even if the biv/giv increment values aren't constant, it may still
2433 be beneficial to split the variable if the loop is only unrolled a few
2434 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2436 static int
2437 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2438 unroll_number)
2439 enum unroll_types unroll_type;
2440 rtx loop_start, loop_end;
2441 rtx end_insert_before;
2442 int unroll_number;
2444 struct iv_class *bl;
2445 struct induction *v;
2446 rtx increment, tem;
2447 rtx biv_final_value;
2448 int biv_splittable;
2449 int result = 0;
2451 for (bl = loop_iv_list; bl; bl = bl->next)
2453 /* Biv_total_increment must return a constant value,
2454 otherwise we can not calculate the split values. */
2456 increment = biv_total_increment (bl, loop_start, loop_end);
2457 if (! increment || GET_CODE (increment) != CONST_INT)
2458 continue;
2460 /* The loop must be unrolled completely, or else have a known number
2461 of iterations and only one exit, or else the biv must be dead
2462 outside the loop, or else the final value must be known. Otherwise,
2463 it is unsafe to split the biv since it may not have the proper
2464 value on loop exit. */
2466 /* loop_number_exit_count is non-zero if the loop has an exit other than
2467 a fall through at the end. */
2469 biv_splittable = 1;
2470 biv_final_value = 0;
2471 if (unroll_type != UNROLL_COMPLETELY
2472 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2473 || unroll_type == UNROLL_NAIVE)
2474 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2475 || ! bl->init_insn
2476 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2477 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2478 < INSN_LUID (bl->init_insn))
2479 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2480 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2481 biv_splittable = 0;
2483 /* If any of the insns setting the BIV don't do so with a simple
2484 PLUS, we don't know how to split it. */
2485 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2486 if ((tem = single_set (v->insn)) == 0
2487 || GET_CODE (SET_DEST (tem)) != REG
2488 || REGNO (SET_DEST (tem)) != bl->regno
2489 || GET_CODE (SET_SRC (tem)) != PLUS)
2490 biv_splittable = 0;
2492 /* If final value is non-zero, then must emit an instruction which sets
2493 the value of the biv to the proper value. This is done after
2494 handling all of the givs, since some of them may need to use the
2495 biv's value in their initialization code. */
2497 /* This biv is splittable. If completely unrolling the loop, save
2498 the biv's initial value. Otherwise, save the constant zero. */
2500 if (biv_splittable == 1)
2502 if (unroll_type == UNROLL_COMPLETELY)
2504 /* If the initial value of the biv is itself (i.e. it is too
2505 complicated for strength_reduce to compute), or is a hard
2506 register, or it isn't invariant, then we must create a new
2507 pseudo reg to hold the initial value of the biv. */
2509 if (GET_CODE (bl->initial_value) == REG
2510 && (REGNO (bl->initial_value) == bl->regno
2511 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2512 || ! invariant_p (bl->initial_value)))
2514 rtx tem = gen_reg_rtx (bl->biv->mode);
2516 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2517 loop_start);
2519 if (loop_dump_stream)
2520 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2521 bl->regno, REGNO (tem));
2523 splittable_regs[bl->regno] = tem;
2525 else
2526 splittable_regs[bl->regno] = bl->initial_value;
2528 else
2529 splittable_regs[bl->regno] = const0_rtx;
2531 /* Save the number of instructions that modify the biv, so that
2532 we can treat the last one specially. */
2534 splittable_regs_updates[bl->regno] = bl->biv_count;
2535 result += bl->biv_count;
2537 if (loop_dump_stream)
2538 fprintf (loop_dump_stream,
2539 "Biv %d safe to split.\n", bl->regno);
2542 /* Check every giv that depends on this biv to see whether it is
2543 splittable also. Even if the biv isn't splittable, givs which
2544 depend on it may be splittable if the biv is live outside the
2545 loop, and the givs aren't. */
2547 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2548 increment, unroll_number);
2550 /* If final value is non-zero, then must emit an instruction which sets
2551 the value of the biv to the proper value. This is done after
2552 handling all of the givs, since some of them may need to use the
2553 biv's value in their initialization code. */
2554 if (biv_final_value)
2556 /* If the loop has multiple exits, emit the insns before the
2557 loop to ensure that it will always be executed no matter
2558 how the loop exits. Otherwise emit the insn after the loop,
2559 since this is slightly more efficient. */
2560 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2561 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2562 biv_final_value),
2563 end_insert_before);
2564 else
2566 /* Create a new register to hold the value of the biv, and then
2567 set the biv to its final value before the loop start. The biv
2568 is set to its final value before loop start to ensure that
2569 this insn will always be executed, no matter how the loop
2570 exits. */
2571 rtx tem = gen_reg_rtx (bl->biv->mode);
2572 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2573 loop_start);
2574 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2575 biv_final_value),
2576 loop_start);
2578 if (loop_dump_stream)
2579 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2580 REGNO (bl->biv->src_reg), REGNO (tem));
2582 /* Set up the mapping from the original biv register to the new
2583 register. */
2584 bl->biv->src_reg = tem;
2588 return result;
2591 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2592 for the instruction that is using it. Do not make any changes to that
2593 instruction. */
2595 static int
2596 verify_addresses (v, giv_inc, unroll_number)
2597 struct induction *v;
2598 rtx giv_inc;
2599 int unroll_number;
2601 int ret = 1;
2602 rtx orig_addr = *v->location;
2603 rtx last_addr = plus_constant (v->dest_reg,
2604 INTVAL (giv_inc) * (unroll_number - 1));
2606 /* First check to see if either address would fail. */
2607 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2608 || ! validate_change (v->insn, v->location, last_addr, 0))
2609 ret = 0;
2611 /* Now put things back the way they were before. This will always
2612 succeed. */
2613 validate_change (v->insn, v->location, orig_addr, 0);
2615 return ret;
2618 /* For every giv based on the biv BL, check to determine whether it is
2619 splittable. This is a subroutine to find_splittable_regs ().
2621 Return the number of instructions that set splittable registers. */
2623 static int
2624 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2625 unroll_number)
2626 struct iv_class *bl;
2627 enum unroll_types unroll_type;
2628 rtx loop_start, loop_end;
2629 rtx increment;
2630 int unroll_number;
2632 struct induction *v, *v2;
2633 rtx final_value;
2634 rtx tem;
2635 int result = 0;
2637 /* Scan the list of givs, and set the same_insn field when there are
2638 multiple identical givs in the same insn. */
2639 for (v = bl->giv; v; v = v->next_iv)
2640 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2641 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2642 && ! v2->same_insn)
2643 v2->same_insn = v;
2645 for (v = bl->giv; v; v = v->next_iv)
2647 rtx giv_inc, value;
2649 /* Only split the giv if it has already been reduced, or if the loop is
2650 being completely unrolled. */
2651 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2652 continue;
2654 /* The giv can be split if the insn that sets the giv is executed once
2655 and only once on every iteration of the loop. */
2656 /* An address giv can always be split. v->insn is just a use not a set,
2657 and hence it does not matter whether it is always executed. All that
2658 matters is that all the biv increments are always executed, and we
2659 won't reach here if they aren't. */
2660 if (v->giv_type != DEST_ADDR
2661 && (! v->always_computable
2662 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2663 continue;
2665 /* The giv increment value must be a constant. */
2666 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2667 v->mode);
2668 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2669 continue;
2671 /* The loop must be unrolled completely, or else have a known number of
2672 iterations and only one exit, or else the giv must be dead outside
2673 the loop, or else the final value of the giv must be known.
2674 Otherwise, it is not safe to split the giv since it may not have the
2675 proper value on loop exit. */
2677 /* The used outside loop test will fail for DEST_ADDR givs. They are
2678 never used outside the loop anyways, so it is always safe to split a
2679 DEST_ADDR giv. */
2681 final_value = 0;
2682 if (unroll_type != UNROLL_COMPLETELY
2683 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2684 || unroll_type == UNROLL_NAIVE)
2685 && v->giv_type != DEST_ADDR
2686 && ((REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2687 /* Check for the case where the pseudo is set by a shift/add
2688 sequence, in which case the first insn setting the pseudo
2689 is the first insn of the shift/add sequence. */
2690 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2691 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2692 != INSN_UID (XEXP (tem, 0)))))
2693 /* Line above always fails if INSN was moved by loop opt. */
2694 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2695 >= INSN_LUID (loop_end)))
2696 && ! (final_value = v->final_value))
2697 continue;
2699 #if 0
2700 /* Currently, non-reduced/final-value givs are never split. */
2701 /* Should emit insns after the loop if possible, as the biv final value
2702 code below does. */
2704 /* If the final value is non-zero, and the giv has not been reduced,
2705 then must emit an instruction to set the final value. */
2706 if (final_value && !v->new_reg)
2708 /* Create a new register to hold the value of the giv, and then set
2709 the giv to its final value before the loop start. The giv is set
2710 to its final value before loop start to ensure that this insn
2711 will always be executed, no matter how we exit. */
2712 tem = gen_reg_rtx (v->mode);
2713 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2714 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2715 loop_start);
2717 if (loop_dump_stream)
2718 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2719 REGNO (v->dest_reg), REGNO (tem));
2721 v->src_reg = tem;
2723 #endif
2725 /* This giv is splittable. If completely unrolling the loop, save the
2726 giv's initial value. Otherwise, save the constant zero for it. */
2728 if (unroll_type == UNROLL_COMPLETELY)
2730 /* It is not safe to use bl->initial_value here, because it may not
2731 be invariant. It is safe to use the initial value stored in
2732 the splittable_regs array if it is set. In rare cases, it won't
2733 be set, so then we do exactly the same thing as
2734 find_splittable_regs does to get a safe value. */
2735 rtx biv_initial_value;
2737 if (splittable_regs[bl->regno])
2738 biv_initial_value = splittable_regs[bl->regno];
2739 else if (GET_CODE (bl->initial_value) != REG
2740 || (REGNO (bl->initial_value) != bl->regno
2741 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2742 biv_initial_value = bl->initial_value;
2743 else
2745 rtx tem = gen_reg_rtx (bl->biv->mode);
2747 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2748 loop_start);
2749 biv_initial_value = tem;
2751 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2752 v->add_val, v->mode);
2754 else
2755 value = const0_rtx;
2757 if (v->new_reg)
2759 /* If a giv was combined with another giv, then we can only split
2760 this giv if the giv it was combined with was reduced. This
2761 is because the value of v->new_reg is meaningless in this
2762 case. */
2763 if (v->same && ! v->same->new_reg)
2765 if (loop_dump_stream)
2766 fprintf (loop_dump_stream,
2767 "giv combined with unreduced giv not split.\n");
2768 continue;
2770 /* If the giv is an address destination, it could be something other
2771 than a simple register, these have to be treated differently. */
2772 else if (v->giv_type == DEST_REG)
2774 /* If value is not a constant, register, or register plus
2775 constant, then compute its value into a register before
2776 loop start. This prevents invalid rtx sharing, and should
2777 generate better code. We can use bl->initial_value here
2778 instead of splittable_regs[bl->regno] because this code
2779 is going before the loop start. */
2780 if (unroll_type == UNROLL_COMPLETELY
2781 && GET_CODE (value) != CONST_INT
2782 && GET_CODE (value) != REG
2783 && (GET_CODE (value) != PLUS
2784 || GET_CODE (XEXP (value, 0)) != REG
2785 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2787 rtx tem = gen_reg_rtx (v->mode);
2788 emit_iv_add_mult (bl->initial_value, v->mult_val,
2789 v->add_val, tem, loop_start);
2790 value = tem;
2793 splittable_regs[REGNO (v->new_reg)] = value;
2795 else
2797 /* Splitting address givs is useful since it will often allow us
2798 to eliminate some increment insns for the base giv as
2799 unnecessary. */
2801 /* If the addr giv is combined with a dest_reg giv, then all
2802 references to that dest reg will be remapped, which is NOT
2803 what we want for split addr regs. We always create a new
2804 register for the split addr giv, just to be safe. */
2806 /* ??? If there are multiple address givs which have been
2807 combined with the same dest_reg giv, then we may only need
2808 one new register for them. Pulling out constants below will
2809 catch some of the common cases of this. Currently, I leave
2810 the work of simplifying multiple address givs to the
2811 following cse pass. */
2813 /* As a special case, if we have multiple identical address givs
2814 within a single instruction, then we do use a single pseudo
2815 reg for both. This is necessary in case one is a match_dup
2816 of the other. */
2818 v->const_adjust = 0;
2820 if (v->same_insn)
2822 v->dest_reg = v->same_insn->dest_reg;
2823 if (loop_dump_stream)
2824 fprintf (loop_dump_stream,
2825 "Sharing address givs in insn %d\n",
2826 INSN_UID (v->insn));
2828 else if (unroll_type != UNROLL_COMPLETELY)
2830 /* If not completely unrolling the loop, then create a new
2831 register to hold the split value of the DEST_ADDR giv.
2832 Emit insn to initialize its value before loop start. */
2833 tem = gen_reg_rtx (v->mode);
2835 /* If the address giv has a constant in its new_reg value,
2836 then this constant can be pulled out and put in value,
2837 instead of being part of the initialization code. */
2839 if (GET_CODE (v->new_reg) == PLUS
2840 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2842 v->dest_reg
2843 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2845 /* Only succeed if this will give valid addresses.
2846 Try to validate both the first and the last
2847 address resulting from loop unrolling, if
2848 one fails, then can't do const elim here. */
2849 if (verify_addresses (v, giv_inc, unroll_number))
2851 /* Save the negative of the eliminated const, so
2852 that we can calculate the dest_reg's increment
2853 value later. */
2854 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2856 v->new_reg = XEXP (v->new_reg, 0);
2857 if (loop_dump_stream)
2858 fprintf (loop_dump_stream,
2859 "Eliminating constant from giv %d\n",
2860 REGNO (tem));
2862 else
2863 v->dest_reg = tem;
2865 else
2866 v->dest_reg = tem;
2868 /* If the address hasn't been checked for validity yet, do so
2869 now, and fail completely if either the first or the last
2870 unrolled copy of the address is not a valid address
2871 for the instruction that uses it. */
2872 if (v->dest_reg == tem
2873 && ! verify_addresses (v, giv_inc, unroll_number))
2875 if (loop_dump_stream)
2876 fprintf (loop_dump_stream,
2877 "Invalid address for giv at insn %d\n",
2878 INSN_UID (v->insn));
2879 continue;
2882 /* To initialize the new register, just move the value of
2883 new_reg into it. This is not guaranteed to give a valid
2884 instruction on machines with complex addressing modes.
2885 If we can't recognize it, then delete it and emit insns
2886 to calculate the value from scratch. */
2887 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2888 copy_rtx (v->new_reg)),
2889 loop_start);
2890 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2892 rtx sequence, ret;
2894 /* We can't use bl->initial_value to compute the initial
2895 value, because the loop may have been preconditioned.
2896 We must calculate it from NEW_REG. Try using
2897 force_operand instead of emit_iv_add_mult. */
2898 delete_insn (PREV_INSN (loop_start));
2900 start_sequence ();
2901 ret = force_operand (v->new_reg, tem);
2902 if (ret != tem)
2903 emit_move_insn (tem, ret);
2904 sequence = gen_sequence ();
2905 end_sequence ();
2906 emit_insn_before (sequence, loop_start);
2908 if (loop_dump_stream)
2909 fprintf (loop_dump_stream,
2910 "Invalid init insn, rewritten.\n");
2913 else
2915 v->dest_reg = value;
2917 /* Check the resulting address for validity, and fail
2918 if the resulting address would be invalid. */
2919 if (! verify_addresses (v, giv_inc, unroll_number))
2921 if (loop_dump_stream)
2922 fprintf (loop_dump_stream,
2923 "Invalid address for giv at insn %d\n",
2924 INSN_UID (v->insn));
2925 continue;
2929 /* Store the value of dest_reg into the insn. This sharing
2930 will not be a problem as this insn will always be copied
2931 later. */
2933 *v->location = v->dest_reg;
2935 /* If this address giv is combined with a dest reg giv, then
2936 save the base giv's induction pointer so that we will be
2937 able to handle this address giv properly. The base giv
2938 itself does not have to be splittable. */
2940 if (v->same && v->same->giv_type == DEST_REG)
2941 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2943 if (GET_CODE (v->new_reg) == REG)
2945 /* This giv maybe hasn't been combined with any others.
2946 Make sure that it's giv is marked as splittable here. */
2948 splittable_regs[REGNO (v->new_reg)] = value;
2950 /* Make it appear to depend upon itself, so that the
2951 giv will be properly split in the main loop above. */
2952 if (! v->same)
2954 v->same = v;
2955 addr_combined_regs[REGNO (v->new_reg)] = v;
2959 if (loop_dump_stream)
2960 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2963 else
2965 #if 0
2966 /* Currently, unreduced giv's can't be split. This is not too much
2967 of a problem since unreduced giv's are not live across loop
2968 iterations anyways. When unrolling a loop completely though,
2969 it makes sense to reduce&split givs when possible, as this will
2970 result in simpler instructions, and will not require that a reg
2971 be live across loop iterations. */
2973 splittable_regs[REGNO (v->dest_reg)] = value;
2974 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2975 REGNO (v->dest_reg), INSN_UID (v->insn));
2976 #else
2977 continue;
2978 #endif
2981 /* Unreduced givs are only updated once by definition. Reduced givs
2982 are updated as many times as their biv is. Mark it so if this is
2983 a splittable register. Don't need to do anything for address givs
2984 where this may not be a register. */
2986 if (GET_CODE (v->new_reg) == REG)
2988 int count = 1;
2989 if (! v->ignore)
2990 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
2992 splittable_regs_updates[REGNO (v->new_reg)] = count;
2995 result++;
2997 if (loop_dump_stream)
2999 int regnum;
3001 if (GET_CODE (v->dest_reg) == CONST_INT)
3002 regnum = -1;
3003 else if (GET_CODE (v->dest_reg) != REG)
3004 regnum = REGNO (XEXP (v->dest_reg, 0));
3005 else
3006 regnum = REGNO (v->dest_reg);
3007 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3008 regnum, INSN_UID (v->insn));
3012 return result;
3015 /* Try to prove that the register is dead after the loop exits. Trace every
3016 loop exit looking for an insn that will always be executed, which sets
3017 the register to some value, and appears before the first use of the register
3018 is found. If successful, then return 1, otherwise return 0. */
3020 /* ?? Could be made more intelligent in the handling of jumps, so that
3021 it can search past if statements and other similar structures. */
3023 static int
3024 reg_dead_after_loop (reg, loop_start, loop_end)
3025 rtx reg, loop_start, loop_end;
3027 rtx insn, label;
3028 enum rtx_code code;
3029 int jump_count = 0;
3030 int label_count = 0;
3031 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3033 /* In addition to checking all exits of this loop, we must also check
3034 all exits of inner nested loops that would exit this loop. We don't
3035 have any way to identify those, so we just give up if there are any
3036 such inner loop exits. */
3038 for (label = loop_number_exit_labels[this_loop_num]; label;
3039 label = LABEL_NEXTREF (label))
3040 label_count++;
3042 if (label_count != loop_number_exit_count[this_loop_num])
3043 return 0;
3045 /* HACK: Must also search the loop fall through exit, create a label_ref
3046 here which points to the loop_end, and append the loop_number_exit_labels
3047 list to it. */
3048 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3049 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3051 for ( ; label; label = LABEL_NEXTREF (label))
3053 /* Succeed if find an insn which sets the biv or if reach end of
3054 function. Fail if find an insn that uses the biv, or if come to
3055 a conditional jump. */
3057 insn = NEXT_INSN (XEXP (label, 0));
3058 while (insn)
3060 code = GET_CODE (insn);
3061 if (GET_RTX_CLASS (code) == 'i')
3063 rtx set;
3065 if (reg_referenced_p (reg, PATTERN (insn)))
3066 return 0;
3068 set = single_set (insn);
3069 if (set && rtx_equal_p (SET_DEST (set), reg))
3070 break;
3073 if (code == JUMP_INSN)
3075 if (GET_CODE (PATTERN (insn)) == RETURN)
3076 break;
3077 else if (! simplejump_p (insn)
3078 /* Prevent infinite loop following infinite loops. */
3079 || jump_count++ > 20)
3080 return 0;
3081 else
3082 insn = JUMP_LABEL (insn);
3085 insn = NEXT_INSN (insn);
3089 /* Success, the register is dead on all loop exits. */
3090 return 1;
3093 /* Try to calculate the final value of the biv, the value it will have at
3094 the end of the loop. If we can do it, return that value. */
3097 final_biv_value (bl, loop_start, loop_end)
3098 struct iv_class *bl;
3099 rtx loop_start, loop_end;
3101 rtx increment, tem;
3103 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3105 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3106 return 0;
3108 /* The final value for reversed bivs must be calculated differently than
3109 for ordinary bivs. In this case, there is already an insn after the
3110 loop which sets this biv's final value (if necessary), and there are
3111 no other loop exits, so we can return any value. */
3112 if (bl->reversed)
3114 if (loop_dump_stream)
3115 fprintf (loop_dump_stream,
3116 "Final biv value for %d, reversed biv.\n", bl->regno);
3118 return const0_rtx;
3121 /* Try to calculate the final value as initial value + (number of iterations
3122 * increment). For this to work, increment must be invariant, the only
3123 exit from the loop must be the fall through at the bottom (otherwise
3124 it may not have its final value when the loop exits), and the initial
3125 value of the biv must be invariant. */
3127 if (loop_n_iterations != 0
3128 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3129 && invariant_p (bl->initial_value))
3131 increment = biv_total_increment (bl, loop_start, loop_end);
3133 if (increment && invariant_p (increment))
3135 /* Can calculate the loop exit value, emit insns after loop
3136 end to calculate this value into a temporary register in
3137 case it is needed later. */
3139 tem = gen_reg_rtx (bl->biv->mode);
3140 /* Make sure loop_end is not the last insn. */
3141 if (NEXT_INSN (loop_end) == 0)
3142 emit_note_after (NOTE_INSN_DELETED, loop_end);
3143 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3144 bl->initial_value, tem, NEXT_INSN (loop_end));
3146 if (loop_dump_stream)
3147 fprintf (loop_dump_stream,
3148 "Final biv value for %d, calculated.\n", bl->regno);
3150 return tem;
3154 /* Check to see if the biv is dead at all loop exits. */
3155 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3157 if (loop_dump_stream)
3158 fprintf (loop_dump_stream,
3159 "Final biv value for %d, biv dead after loop exit.\n",
3160 bl->regno);
3162 return const0_rtx;
3165 return 0;
3168 /* Try to calculate the final value of the giv, the value it will have at
3169 the end of the loop. If we can do it, return that value. */
3172 final_giv_value (v, loop_start, loop_end)
3173 struct induction *v;
3174 rtx loop_start, loop_end;
3176 struct iv_class *bl;
3177 rtx insn;
3178 rtx increment, tem;
3179 rtx insert_before, seq;
3181 bl = reg_biv_class[REGNO (v->src_reg)];
3183 /* The final value for givs which depend on reversed bivs must be calculated
3184 differently than for ordinary givs. In this case, there is already an
3185 insn after the loop which sets this giv's final value (if necessary),
3186 and there are no other loop exits, so we can return any value. */
3187 if (bl->reversed)
3189 if (loop_dump_stream)
3190 fprintf (loop_dump_stream,
3191 "Final giv value for %d, depends on reversed biv\n",
3192 REGNO (v->dest_reg));
3193 return const0_rtx;
3196 /* Try to calculate the final value as a function of the biv it depends
3197 upon. The only exit from the loop must be the fall through at the bottom
3198 (otherwise it may not have its final value when the loop exits). */
3200 /* ??? Can calculate the final giv value by subtracting off the
3201 extra biv increments times the giv's mult_val. The loop must have
3202 only one exit for this to work, but the loop iterations does not need
3203 to be known. */
3205 if (loop_n_iterations != 0
3206 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3208 /* ?? It is tempting to use the biv's value here since these insns will
3209 be put after the loop, and hence the biv will have its final value
3210 then. However, this fails if the biv is subsequently eliminated.
3211 Perhaps determine whether biv's are eliminable before trying to
3212 determine whether giv's are replaceable so that we can use the
3213 biv value here if it is not eliminable. */
3215 /* We are emitting code after the end of the loop, so we must make
3216 sure that bl->initial_value is still valid then. It will still
3217 be valid if it is invariant. */
3219 increment = biv_total_increment (bl, loop_start, loop_end);
3221 if (increment && invariant_p (increment)
3222 && invariant_p (bl->initial_value))
3224 /* Can calculate the loop exit value of its biv as
3225 (loop_n_iterations * increment) + initial_value */
3227 /* The loop exit value of the giv is then
3228 (final_biv_value - extra increments) * mult_val + add_val.
3229 The extra increments are any increments to the biv which
3230 occur in the loop after the giv's value is calculated.
3231 We must search from the insn that sets the giv to the end
3232 of the loop to calculate this value. */
3234 insert_before = NEXT_INSN (loop_end);
3236 /* Put the final biv value in tem. */
3237 tem = gen_reg_rtx (bl->biv->mode);
3238 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3239 bl->initial_value, tem, insert_before);
3241 /* Subtract off extra increments as we find them. */
3242 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3243 insn = NEXT_INSN (insn))
3245 struct induction *biv;
3247 for (biv = bl->biv; biv; biv = biv->next_iv)
3248 if (biv->insn == insn)
3250 start_sequence ();
3251 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3252 biv->add_val, NULL_RTX, 0,
3253 OPTAB_LIB_WIDEN);
3254 seq = gen_sequence ();
3255 end_sequence ();
3256 emit_insn_before (seq, insert_before);
3260 /* Now calculate the giv's final value. */
3261 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3262 insert_before);
3264 if (loop_dump_stream)
3265 fprintf (loop_dump_stream,
3266 "Final giv value for %d, calc from biv's value.\n",
3267 REGNO (v->dest_reg));
3269 return tem;
3273 /* Replaceable giv's should never reach here. */
3274 if (v->replaceable)
3275 abort ();
3277 /* Check to see if the biv is dead at all loop exits. */
3278 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3280 if (loop_dump_stream)
3281 fprintf (loop_dump_stream,
3282 "Final giv value for %d, giv dead after loop exit.\n",
3283 REGNO (v->dest_reg));
3285 return const0_rtx;
3288 return 0;
3292 /* Calculate the number of loop iterations. Returns the exact number of loop
3293 iterations if it can be calculated, otherwise returns zero. */
3295 unsigned HOST_WIDE_INT
3296 loop_iterations (loop_start, loop_end)
3297 rtx loop_start, loop_end;
3299 rtx comparison, comparison_value;
3300 rtx iteration_var, initial_value, increment, final_value;
3301 enum rtx_code comparison_code;
3302 HOST_WIDE_INT i;
3303 int increment_dir;
3304 int unsigned_compare, compare_dir, final_larger;
3305 unsigned long tempu;
3306 rtx last_loop_insn;
3308 /* First find the iteration variable. If the last insn is a conditional
3309 branch, and the insn before tests a register value, make that the
3310 iteration variable. */
3312 loop_initial_value = 0;
3313 loop_increment = 0;
3314 loop_final_value = 0;
3315 loop_iteration_var = 0;
3317 /* We used to use pren_nonnote_insn here, but that fails because it might
3318 accidentally get the branch for a contained loop if the branch for this
3319 loop was deleted. We can only trust branches immediately before the
3320 loop_end. */
3321 last_loop_insn = PREV_INSN (loop_end);
3323 comparison = get_condition_for_loop (last_loop_insn);
3324 if (comparison == 0)
3326 if (loop_dump_stream)
3327 fprintf (loop_dump_stream,
3328 "Loop unrolling: No final conditional branch found.\n");
3329 return 0;
3332 /* ??? Get_condition may switch position of induction variable and
3333 invariant register when it canonicalizes the comparison. */
3335 comparison_code = GET_CODE (comparison);
3336 iteration_var = XEXP (comparison, 0);
3337 comparison_value = XEXP (comparison, 1);
3339 if (GET_CODE (iteration_var) != REG)
3341 if (loop_dump_stream)
3342 fprintf (loop_dump_stream,
3343 "Loop unrolling: Comparison not against register.\n");
3344 return 0;
3347 /* Loop iterations is always called before any new registers are created
3348 now, so this should never occur. */
3350 if (REGNO (iteration_var) >= max_reg_before_loop)
3351 abort ();
3353 iteration_info (iteration_var, &initial_value, &increment,
3354 loop_start, loop_end);
3355 if (initial_value == 0)
3356 /* iteration_info already printed a message. */
3357 return 0;
3359 /* If the comparison value is an invariant register, then try to find
3360 its value from the insns before the start of the loop. */
3362 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3364 rtx insn, set;
3366 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3368 if (GET_CODE (insn) == CODE_LABEL)
3369 break;
3371 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3372 && reg_set_p (comparison_value, insn))
3374 /* We found the last insn before the loop that sets the register.
3375 If it sets the entire register, and has a REG_EQUAL note,
3376 then use the value of the REG_EQUAL note. */
3377 if ((set = single_set (insn))
3378 && (SET_DEST (set) == comparison_value))
3380 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3382 /* Only use the REG_EQUAL note if it is a constant.
3383 Other things, divide in particular, will cause
3384 problems later if we use them. */
3385 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3386 && CONSTANT_P (XEXP (note, 0)))
3387 comparison_value = XEXP (note, 0);
3389 break;
3394 final_value = approx_final_value (comparison_code, comparison_value,
3395 &unsigned_compare, &compare_dir);
3397 /* Save the calculated values describing this loop's bounds, in case
3398 precondition_loop_p will need them later. These values can not be
3399 recalculated inside precondition_loop_p because strength reduction
3400 optimizations may obscure the loop's structure. */
3402 loop_iteration_var = iteration_var;
3403 loop_initial_value = initial_value;
3404 loop_increment = increment;
3405 loop_final_value = final_value;
3406 loop_comparison_code = comparison_code;
3408 if (increment == 0)
3410 if (loop_dump_stream)
3411 fprintf (loop_dump_stream,
3412 "Loop unrolling: Increment value can't be calculated.\n");
3413 return 0;
3415 else if (GET_CODE (increment) != CONST_INT)
3417 if (loop_dump_stream)
3418 fprintf (loop_dump_stream,
3419 "Loop unrolling: Increment value not constant.\n");
3420 return 0;
3422 else if (GET_CODE (initial_value) != CONST_INT)
3424 if (loop_dump_stream)
3425 fprintf (loop_dump_stream,
3426 "Loop unrolling: Initial value not constant.\n");
3427 return 0;
3429 else if (final_value == 0)
3431 if (loop_dump_stream)
3432 fprintf (loop_dump_stream,
3433 "Loop unrolling: EQ comparison loop.\n");
3434 return 0;
3436 else if (GET_CODE (final_value) != CONST_INT)
3438 if (loop_dump_stream)
3439 fprintf (loop_dump_stream,
3440 "Loop unrolling: Final value not constant.\n");
3441 return 0;
3444 /* ?? Final value and initial value do not have to be constants.
3445 Only their difference has to be constant. When the iteration variable
3446 is an array address, the final value and initial value might both
3447 be addresses with the same base but different constant offsets.
3448 Final value must be invariant for this to work.
3450 To do this, need some way to find the values of registers which are
3451 invariant. */
3453 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3454 if (unsigned_compare)
3455 final_larger
3456 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3457 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3458 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3459 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3460 else
3461 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3462 - (INTVAL (final_value) < INTVAL (initial_value));
3464 if (INTVAL (increment) > 0)
3465 increment_dir = 1;
3466 else if (INTVAL (increment) == 0)
3467 increment_dir = 0;
3468 else
3469 increment_dir = -1;
3471 /* There are 27 different cases: compare_dir = -1, 0, 1;
3472 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3473 There are 4 normal cases, 4 reverse cases (where the iteration variable
3474 will overflow before the loop exits), 4 infinite loop cases, and 15
3475 immediate exit (0 or 1 iteration depending on loop type) cases.
3476 Only try to optimize the normal cases. */
3478 /* (compare_dir/final_larger/increment_dir)
3479 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3480 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3481 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3482 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3484 /* ?? If the meaning of reverse loops (where the iteration variable
3485 will overflow before the loop exits) is undefined, then could
3486 eliminate all of these special checks, and just always assume
3487 the loops are normal/immediate/infinite. Note that this means
3488 the sign of increment_dir does not have to be known. Also,
3489 since it does not really hurt if immediate exit loops or infinite loops
3490 are optimized, then that case could be ignored also, and hence all
3491 loops can be optimized.
3493 According to ANSI Spec, the reverse loop case result is undefined,
3494 because the action on overflow is undefined.
3496 See also the special test for NE loops below. */
3498 if (final_larger == increment_dir && final_larger != 0
3499 && (final_larger == compare_dir || compare_dir == 0))
3500 /* Normal case. */
3502 else
3504 if (loop_dump_stream)
3505 fprintf (loop_dump_stream,
3506 "Loop unrolling: Not normal loop.\n");
3507 return 0;
3510 /* Calculate the number of iterations, final_value is only an approximation,
3511 so correct for that. Note that tempu and loop_n_iterations are
3512 unsigned, because they can be as large as 2^n - 1. */
3514 i = INTVAL (increment);
3515 if (i > 0)
3516 tempu = INTVAL (final_value) - INTVAL (initial_value);
3517 else if (i < 0)
3519 tempu = INTVAL (initial_value) - INTVAL (final_value);
3520 i = -i;
3522 else
3523 abort ();
3525 /* For NE tests, make sure that the iteration variable won't miss the
3526 final value. If tempu mod i is not zero, then the iteration variable
3527 will overflow before the loop exits, and we can not calculate the
3528 number of iterations. */
3529 if (compare_dir == 0 && (tempu % i) != 0)
3530 return 0;
3532 return tempu / i + ((tempu % i) != 0);
3535 /* Replace uses of split bivs with their split pseudo register. This is
3536 for original instructions which remain after loop unrolling without
3537 copying. */
3539 static rtx
3540 remap_split_bivs (x)
3541 rtx x;
3543 register enum rtx_code code;
3544 register int i;
3545 register char *fmt;
3547 if (x == 0)
3548 return x;
3550 code = GET_CODE (x);
3551 switch (code)
3553 case SCRATCH:
3554 case PC:
3555 case CC0:
3556 case CONST_INT:
3557 case CONST_DOUBLE:
3558 case CONST:
3559 case SYMBOL_REF:
3560 case LABEL_REF:
3561 return x;
3563 case REG:
3564 #if 0
3565 /* If non-reduced/final-value givs were split, then this would also
3566 have to remap those givs also. */
3567 #endif
3568 if (REGNO (x) < max_reg_before_loop
3569 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3570 return reg_biv_class[REGNO (x)]->biv->src_reg;
3571 break;
3573 default:
3574 break;
3577 fmt = GET_RTX_FORMAT (code);
3578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3580 if (fmt[i] == 'e')
3581 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3582 if (fmt[i] == 'E')
3584 register int j;
3585 for (j = 0; j < XVECLEN (x, i); j++)
3586 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3589 return x;
3592 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3593 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3594 return 0. COPY_START is where we can start looking for the insns
3595 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3596 insns.
3598 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3599 must dominate LAST_UID.
3601 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3602 may not dominate LAST_UID.
3604 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3605 must dominate LAST_UID. */
3608 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3609 int regno;
3610 int first_uid;
3611 int last_uid;
3612 rtx copy_start;
3613 rtx copy_end;
3615 int passed_jump = 0;
3616 rtx p = NEXT_INSN (copy_start);
3618 while (INSN_UID (p) != first_uid)
3620 if (GET_CODE (p) == JUMP_INSN)
3621 passed_jump= 1;
3622 /* Could not find FIRST_UID. */
3623 if (p == copy_end)
3624 return 0;
3625 p = NEXT_INSN (p);
3628 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3629 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3630 || ! dead_or_set_regno_p (p, regno))
3631 return 0;
3633 /* FIRST_UID is always executed. */
3634 if (passed_jump == 0)
3635 return 1;
3637 while (INSN_UID (p) != last_uid)
3639 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3640 can not be sure that FIRST_UID dominates LAST_UID. */
3641 if (GET_CODE (p) == CODE_LABEL)
3642 return 0;
3643 /* Could not find LAST_UID, but we reached the end of the loop, so
3644 it must be safe. */
3645 else if (p == copy_end)
3646 return 1;
3647 p = NEXT_INSN (p);
3650 /* FIRST_UID is always executed if LAST_UID is executed. */
3651 return 1;