1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
40 #include "cfgcleanup.h"
42 #include "tree-pass.h"
43 #include "function-abi.h"
45 #ifndef STACK_POP_CODE
46 #if STACK_GROWS_DOWNWARD
47 #define STACK_POP_CODE POST_INC
49 #define STACK_POP_CODE POST_DEC
53 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx_insn
*, bool);
54 static void validate_replace_src_1 (rtx
*, void *);
55 static rtx_insn
*split_insn (rtx_insn
*);
57 struct target_recog default_target_recog
;
59 struct target_recog
*this_target_recog
= &default_target_recog
;
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.cc and expmed.cc (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in reginfo.cc and final.cc and reload.cc.
68 init_recog and init_recog_no_volatile are responsible for setting this. */
72 struct recog_data_d recog_data
;
74 /* Contains a vector of operand_alternative structures, such that
75 operand OP of alternative A is at index A * n_operands + OP.
76 Set up by preprocess_constraints. */
77 const operand_alternative
*recog_op_alt
;
79 /* Used to provide recog_op_alt for asms. */
80 static operand_alternative asm_op_alt
[MAX_RECOG_OPERANDS
81 * MAX_RECOG_ALTERNATIVES
];
83 /* On return from `constrain_operands', indicate which alternative
86 int which_alternative
;
88 /* Nonzero after end of reload pass.
89 Set to 1 or 0 by toplev.cc.
90 Controls the significance of (SUBREG (MEM)). */
94 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
95 int epilogue_completed
;
97 /* Initialize data used by the function `recog'.
98 This must be called once in the compilation of a function
99 before any insn recognition may be done in the function. */
102 init_recog_no_volatile (void)
114 /* Return true if labels in asm operands BODY are LABEL_REFs. */
117 asm_labels_ok (rtx body
)
122 asmop
= extract_asm_operands (body
);
123 if (asmop
== NULL_RTX
)
126 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
127 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
133 /* Check that X is an insn-body for an `asm' with operands
134 and that the operands mentioned in it are legitimate. */
137 check_asm_operands (rtx x
)
141 const char **constraints
;
144 if (!asm_labels_ok (x
))
147 /* Post-reload, be more strict with things. */
148 if (reload_completed
)
150 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
151 rtx_insn
*insn
= make_insn_raw (x
);
153 constrain_operands (1, get_enabled_alternatives (insn
));
154 return which_alternative
>= 0;
157 noperands
= asm_noperands (x
);
163 operands
= XALLOCAVEC (rtx
, noperands
);
164 constraints
= XALLOCAVEC (const char *, noperands
);
166 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
168 for (i
= 0; i
< noperands
; i
++)
170 const char *c
= constraints
[i
];
173 if (! asm_operand_ok (operands
[i
], c
, constraints
))
180 /* Static data for the next two routines. */
192 static change_t
*changes
;
193 static int changes_allocated
;
195 static int num_changes
= 0;
196 static int temporarily_undone_changes
= 0;
198 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
199 at which NEW_RTX will be placed. If NEW_LEN is >= 0, XVECLEN (NEW_RTX, 0)
200 will also be changed to NEW_LEN, which is no greater than the current
201 XVECLEN. If OBJECT is zero, no validation is done, the change is
204 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
205 will be called with the address and mode as parameters. If OBJECT is
206 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 IN_GROUP is nonzero if this is part of a group of changes that must be
210 performed as a group. In that case, the changes will be stored. The
211 function `apply_change_group' will validate and apply the changes.
213 If IN_GROUP is zero, this is a single change. Try to recognize the insn
214 or validate the memory reference with the change applied. If the result
215 is not valid for the machine, suppress the change and return false.
216 Otherwise, perform the change and return true. */
219 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
,
220 bool unshare
, int new_len
= -1)
222 gcc_assert (temporarily_undone_changes
== 0);
225 /* Single-element parallels aren't valid and won't match anything.
226 Replace them with the single element. */
227 if (new_len
== 1 && GET_CODE (new_rtx
) == PARALLEL
)
229 new_rtx
= XVECEXP (new_rtx
, 0, 0);
233 if ((old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
234 && (new_len
< 0 || XVECLEN (new_rtx
, 0) == new_len
))
237 gcc_assert ((in_group
!= 0 || num_changes
== 0)
238 && (new_len
< 0 || new_rtx
== *loc
));
242 /* Save the information describing this change. */
243 if (num_changes
>= changes_allocated
)
245 if (changes_allocated
== 0)
246 /* This value allows for repeated substitutions inside complex
247 indexed addresses, or changes in up to 5 insns. */
248 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
250 changes_allocated
*= 2;
252 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
255 changes
[num_changes
].object
= object
;
256 changes
[num_changes
].loc
= loc
;
257 changes
[num_changes
].old
= old
;
258 changes
[num_changes
].old_len
= (new_len
>= 0 ? XVECLEN (new_rtx
, 0) : -1);
259 changes
[num_changes
].unshare
= unshare
;
262 XVECLEN (new_rtx
, 0) = new_len
;
264 if (object
&& !MEM_P (object
))
266 /* Set INSN_CODE to force rerecognition of insn. Save old code in
268 changes
[num_changes
].old_code
= INSN_CODE (object
);
269 INSN_CODE (object
) = -1;
274 /* If we are making a group of changes, return 1. Otherwise, validate the
275 change group we made. */
280 return apply_change_group ();
283 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
287 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
289 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
292 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
296 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
298 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
301 /* Change XVECLEN (*LOC, 0) to NEW_LEN. OBJECT, IN_GROUP and the return
302 value are as for validate_change_1. */
305 validate_change_xveclen (rtx object
, rtx
*loc
, int new_len
, bool in_group
)
307 return validate_change_1 (object
, loc
, *loc
, in_group
, false, new_len
);
310 /* Keep X canonicalized if some changes have made it non-canonical; only
311 modifies the operands of X, not (for example) its code. Simplifications
312 are not the job of this routine.
314 Return true if anything was changed. */
316 canonicalize_change_group (rtx_insn
*insn
, rtx x
)
318 if (COMMUTATIVE_P (x
)
319 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
321 /* Oops, the caller has made X no longer canonical.
322 Let's redo the changes in the correct order. */
323 rtx tem
= XEXP (x
, 0);
324 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
325 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
332 /* Check if REG_INC argument in *data overlaps a stored REG. */
335 check_invalid_inc_dec (rtx reg
, const_rtx
, void *data
)
337 rtx
*pinc
= (rtx
*) data
;
338 if (*pinc
== NULL_RTX
|| MEM_P (reg
))
340 if (reg_overlap_mentioned_p (reg
, *pinc
))
344 /* This subroutine of apply_change_group verifies whether the changes to INSN
345 were valid; i.e. whether INSN can still be recognized.
347 If IN_GROUP is true clobbers which have to be added in order to
348 match the instructions will be added to the current change group.
349 Otherwise the changes will take effect immediately. */
352 insn_invalid_p (rtx_insn
*insn
, bool in_group
)
354 rtx pat
= PATTERN (insn
);
355 int num_clobbers
= 0;
356 /* If we are before reload and the pattern is a SET, see if we can add
358 int icode
= recog (pat
, insn
,
359 (GET_CODE (pat
) == SET
360 && ! reload_completed
361 && ! reload_in_progress
)
362 ? &num_clobbers
: 0);
363 bool is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
366 /* If this is an asm and the operand aren't legal, then fail. Likewise if
367 this is not an asm and the insn wasn't recognized. */
368 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
369 || (!is_asm
&& icode
< 0))
372 /* If we have to add CLOBBERs, fail if we have to add ones that reference
373 hard registers since our callers can't know if they are live or not.
374 Otherwise, add them. */
375 if (num_clobbers
> 0)
379 if (added_clobbers_hard_reg_p (icode
))
382 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
383 XVECEXP (newpat
, 0, 0) = pat
;
384 add_clobbers (newpat
, icode
);
386 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
388 PATTERN (insn
) = pat
= newpat
;
391 /* After reload, verify that all constraints are satisfied. */
392 if (reload_completed
)
396 if (! constrain_operands (1, get_preferred_alternatives (insn
)))
400 /* Punt if REG_INC argument overlaps some stored REG. */
401 for (rtx link
= FIND_REG_INC_NOTE (insn
, NULL_RTX
);
402 link
; link
= XEXP (link
, 1))
403 if (REG_NOTE_KIND (link
) == REG_INC
)
405 rtx reg
= XEXP (link
, 0);
406 note_stores (insn
, check_invalid_inc_dec
, ®
);
411 INSN_CODE (insn
) = icode
;
415 /* Return number of changes made and not validated yet. */
417 num_changes_pending (void)
422 /* Tentatively apply the changes numbered NUM and up.
423 Return true if all changes are valid, false otherwise. */
426 verify_changes (int num
)
429 rtx last_validated
= NULL_RTX
;
431 /* The changes have been applied and all INSN_CODEs have been reset to force
434 The changes are valid if we aren't given an object, or if we are
435 given a MEM and it still is a valid address, or if this is in insn
436 and it is recognized. In the latter case, if reload has completed,
437 we also require that the operands meet the constraints for
440 for (i
= num
; i
< num_changes
; i
++)
442 rtx object
= changes
[i
].object
;
444 /* If there is no object to test or if it is the same as the one we
445 already tested, ignore it. */
446 if (object
== 0 || object
== last_validated
)
451 if (! memory_address_addr_space_p (GET_MODE (object
),
453 MEM_ADDR_SPACE (object
)))
456 else if (/* changes[i].old might be zero, e.g. when putting a
457 REG_FRAME_RELATED_EXPR into a previously empty list. */
459 && REG_P (changes
[i
].old
)
460 && asm_noperands (PATTERN (object
)) > 0
461 && register_asm_p (changes
[i
].old
))
463 /* Don't allow changes of hard register operands to inline
464 assemblies if they have been defined as register asm ("x"). */
467 else if (DEBUG_INSN_P (object
))
469 else if (insn_invalid_p (as_a
<rtx_insn
*> (object
), true))
471 rtx pat
= PATTERN (object
);
473 /* Perhaps we couldn't recognize the insn because there were
474 extra CLOBBERs at the end. If so, try to re-recognize
475 without the last CLOBBER (later iterations will cause each of
476 them to be eliminated, in turn). But don't do this if we
477 have an ASM_OPERAND. */
478 if (GET_CODE (pat
) == PARALLEL
479 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
480 && asm_noperands (PATTERN (object
)) < 0)
484 if (XVECLEN (pat
, 0) == 2)
485 newpat
= XVECEXP (pat
, 0, 0);
491 = gen_rtx_PARALLEL (VOIDmode
,
492 rtvec_alloc (XVECLEN (pat
, 0) - 1));
493 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
494 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
497 /* Add a new change to this group to replace the pattern
498 with this new pattern. Then consider this change
499 as having succeeded. The change we added will
500 cause the entire call to fail if things remain invalid.
502 Note that this can lose if a later change than the one
503 we are processing specified &XVECEXP (PATTERN (object), 0, X)
504 but this shouldn't occur. */
506 validate_change (object
, &PATTERN (object
), newpat
, 1);
509 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
510 || GET_CODE (pat
) == VAR_LOCATION
)
511 /* If this insn is a CLOBBER or USE, it is always valid, but is
517 last_validated
= object
;
520 return (i
== num_changes
);
523 /* A group of changes has previously been issued with validate_change
524 and verified with verify_changes. Call df_insn_rescan for each of
525 the insn changed and clear num_changes. */
528 confirm_change_group (void)
531 rtx last_object
= NULL
;
533 gcc_assert (temporarily_undone_changes
== 0);
534 for (i
= 0; i
< num_changes
; i
++)
536 rtx object
= changes
[i
].object
;
538 if (changes
[i
].unshare
)
539 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
541 /* Avoid unnecessary rescanning when multiple changes to same instruction
545 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
546 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
547 last_object
= object
;
551 if (last_object
&& INSN_P (last_object
))
552 df_insn_rescan (as_a
<rtx_insn
*> (last_object
));
556 /* Apply a group of changes previously issued with `validate_change'.
557 If all changes are valid, call confirm_change_group and return true,
558 otherwise, call cancel_changes and return false. */
561 apply_change_group (void)
563 if (verify_changes (0))
565 confirm_change_group ();
576 /* Return the number of changes so far in the current group. */
579 num_validated_changes (void)
584 /* Retract the changes numbered NUM and up. */
587 cancel_changes (int num
)
589 gcc_assert (temporarily_undone_changes
== 0);
592 /* Back out all the changes. Do this in the opposite order in which
594 for (i
= num_changes
- 1; i
>= num
; i
--)
596 if (changes
[i
].old_len
>= 0)
597 XVECLEN (*changes
[i
].loc
, 0) = changes
[i
].old_len
;
599 *changes
[i
].loc
= changes
[i
].old
;
600 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
601 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
606 /* Swap the status of change NUM from being applied to not being applied,
610 swap_change (int num
)
612 if (changes
[num
].old_len
>= 0)
613 std::swap (XVECLEN (*changes
[num
].loc
, 0), changes
[num
].old_len
);
615 std::swap (*changes
[num
].loc
, changes
[num
].old
);
616 if (changes
[num
].object
&& !MEM_P (changes
[num
].object
))
617 std::swap (INSN_CODE (changes
[num
].object
), changes
[num
].old_code
);
620 /* Temporarily undo all the changes numbered NUM and up, with a view
621 to reapplying them later. The next call to the changes machinery
626 otherwise things will end up in an invalid state. */
629 temporarily_undo_changes (int num
)
631 gcc_assert (temporarily_undone_changes
== 0 && num
<= num_changes
);
632 for (int i
= num_changes
- 1; i
>= num
; i
--)
634 temporarily_undone_changes
= num_changes
- num
;
637 /* Redo the changes that were temporarily undone by:
639 temporarily_undo_changes (NUM). */
642 redo_changes (int num
)
644 gcc_assert (temporarily_undone_changes
== num_changes
- num
);
645 for (int i
= num
; i
< num_changes
; ++i
)
647 temporarily_undone_changes
= 0;
650 /* Reduce conditional compilation elsewhere. */
651 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
655 simplify_while_replacing (rtx
*loc
, rtx to
, rtx_insn
*object
,
656 machine_mode op0_mode
)
659 enum rtx_code code
= GET_CODE (x
);
660 rtx new_rtx
= NULL_RTX
;
661 scalar_int_mode is_mode
;
663 if (SWAPPABLE_OPERANDS_P (x
)
664 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
666 validate_unshare_change (object
, loc
,
667 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
668 : swap_condition (code
),
669 GET_MODE (x
), XEXP (x
, 1),
675 /* Canonicalize arithmetics with all constant operands. */
676 switch (GET_RTX_CLASS (code
))
679 if (CONSTANT_P (XEXP (x
, 0)))
680 new_rtx
= simplify_unary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
685 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
686 new_rtx
= simplify_binary_operation (code
, GET_MODE (x
), XEXP (x
, 0),
690 case RTX_COMM_COMPARE
:
691 if (CONSTANT_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
692 new_rtx
= simplify_relational_operation (code
, GET_MODE (x
), op0_mode
,
693 XEXP (x
, 0), XEXP (x
, 1));
700 validate_change (object
, loc
, new_rtx
, 1);
707 /* If we have a PLUS whose second operand is now a CONST_INT, use
708 simplify_gen_binary to try to simplify it.
709 ??? We may want later to remove this, once simplification is
710 separated from this function. */
711 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
712 validate_change (object
, loc
,
714 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
717 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
718 validate_change (object
, loc
,
720 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
721 simplify_gen_unary (NEG
,
722 GET_MODE (x
), XEXP (x
, 1),
727 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
729 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
731 /* If any of the above failed, substitute in something that
732 we know won't be recognized. */
734 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
735 validate_change (object
, loc
, new_rtx
, 1);
739 /* All subregs possible to simplify should be simplified. */
740 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
743 /* Subregs of VOIDmode operands are incorrect. */
744 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
745 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
747 validate_change (object
, loc
, new_rtx
, 1);
751 /* If we are replacing a register with memory, try to change the memory
752 to be the mode required for memory in extract operations (this isn't
753 likely to be an insertion operation; if it was, nothing bad will
754 happen, we might just fail in some cases). */
756 if (MEM_P (XEXP (x
, 0))
757 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &is_mode
)
758 && CONST_INT_P (XEXP (x
, 1))
759 && CONST_INT_P (XEXP (x
, 2))
760 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
761 MEM_ADDR_SPACE (XEXP (x
, 0)))
762 && !MEM_VOLATILE_P (XEXP (x
, 0)))
764 int pos
= INTVAL (XEXP (x
, 2));
765 machine_mode new_mode
= is_mode
;
766 if (GET_CODE (x
) == ZERO_EXTRACT
&& targetm
.have_extzv ())
767 new_mode
= insn_data
[targetm
.code_for_extzv
].operand
[1].mode
;
768 else if (GET_CODE (x
) == SIGN_EXTRACT
&& targetm
.have_extv ())
769 new_mode
= insn_data
[targetm
.code_for_extv
].operand
[1].mode
;
770 scalar_int_mode wanted_mode
= (new_mode
== VOIDmode
772 : as_a
<scalar_int_mode
> (new_mode
));
774 /* If we have a narrower mode, we can do something. */
775 if (GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
777 int offset
= pos
/ BITS_PER_UNIT
;
780 /* If the bytes and bits are counted differently, we
781 must adjust the offset. */
782 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
784 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
787 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
788 == GET_MODE_BITSIZE (wanted_mode
));
789 pos
%= GET_MODE_BITSIZE (wanted_mode
);
791 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
793 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
794 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
805 /* Replace every occurrence of FROM in X with TO. Mark each change with
806 validate_change passing OBJECT. */
809 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx_insn
*object
,
816 machine_mode op0_mode
= VOIDmode
;
817 int prev_changes
= num_changes
;
823 fmt
= GET_RTX_FORMAT (code
);
825 op0_mode
= GET_MODE (XEXP (x
, 0));
827 /* X matches FROM if it is the same rtx or they are both referring to the
828 same register in the same mode. Avoid calling rtx_equal_p unless the
829 operands look similar. */
832 || (REG_P (x
) && REG_P (from
)
833 && GET_MODE (x
) == GET_MODE (from
)
834 && REGNO (x
) == REGNO (from
))
835 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
836 && rtx_equal_p (x
, from
)))
838 validate_unshare_change (object
, loc
, to
, 1);
842 /* Call ourself recursively to perform the replacements.
843 We must not replace inside already replaced expression, otherwise we
844 get infinite recursion for replacements like (reg X)->(subreg (reg X))
845 so we must special case shared ASM_OPERANDS. */
847 if (GET_CODE (x
) == PARALLEL
)
849 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
851 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
852 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
854 /* Verify that operands are really shared. */
855 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
856 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
858 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
859 from
, to
, object
, simplify
);
862 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
867 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
870 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
871 else if (fmt
[i
] == 'E')
872 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
873 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
877 /* If we didn't substitute, there is nothing more to do. */
878 if (num_changes
== prev_changes
)
881 /* ??? The regmove is no more, so is this aberration still necessary? */
882 /* Allow substituted expression to have different mode. This is used by
883 regmove to change mode of pseudo register. */
884 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
885 op0_mode
= GET_MODE (XEXP (x
, 0));
887 /* Do changes needed to keep rtx consistent. Don't do any other
888 simplifications, as it is not our job. */
890 simplify_while_replacing (loc
, to
, object
, op0_mode
);
893 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
894 with TO. After all changes have been made, validate by seeing
895 if INSN is still valid. */
898 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx_insn
*insn
, rtx
*loc
)
900 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
901 return apply_change_group ();
904 /* Try replacing every occurrence of FROM in INSN with TO. After all
905 changes have been made, validate by seeing if INSN is still valid. */
908 validate_replace_rtx (rtx from
, rtx to
, rtx_insn
*insn
)
910 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
911 return apply_change_group ();
914 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
915 is a part of INSN. After all changes have been made, validate by seeing if
917 validate_replace_rtx (from, to, insn) is equivalent to
918 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
921 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx_insn
*insn
)
923 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
924 return apply_change_group ();
927 /* Same as above, but do not simplify rtx afterwards. */
929 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
932 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
933 return apply_change_group ();
937 /* Try replacing every occurrence of FROM in INSN with TO. This also
938 will replace in REG_EQUAL and REG_EQUIV notes. */
941 validate_replace_rtx_group (rtx from
, rtx to
, rtx_insn
*insn
)
944 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
945 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
946 if (REG_NOTE_KIND (note
) == REG_EQUAL
947 || REG_NOTE_KIND (note
) == REG_EQUIV
)
948 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
951 /* Function called by note_uses to replace used subexpressions. */
952 struct validate_replace_src_data
954 rtx from
; /* Old RTX */
955 rtx to
; /* New RTX */
956 rtx_insn
*insn
; /* Insn in which substitution is occurring. */
960 validate_replace_src_1 (rtx
*x
, void *data
)
962 struct validate_replace_src_data
*d
963 = (struct validate_replace_src_data
*) data
;
965 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
968 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
972 validate_replace_src_group (rtx from
, rtx to
, rtx_insn
*insn
)
974 struct validate_replace_src_data d
;
979 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
982 /* Try simplify INSN.
983 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
984 pattern and return true if something was simplified. */
987 validate_simplify_insn (rtx_insn
*insn
)
993 pat
= PATTERN (insn
);
995 if (GET_CODE (pat
) == SET
)
997 newpat
= simplify_rtx (SET_SRC (pat
));
998 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
999 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
1000 newpat
= simplify_rtx (SET_DEST (pat
));
1001 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
1002 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
1004 else if (GET_CODE (pat
) == PARALLEL
)
1005 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1007 rtx s
= XVECEXP (pat
, 0, i
);
1009 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
1011 newpat
= simplify_rtx (SET_SRC (s
));
1012 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
1013 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
1014 newpat
= simplify_rtx (SET_DEST (s
));
1015 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
1016 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
1019 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
1022 /* Try to process the address of memory expression MEM. Return true on
1023 success; leave the caller to clean up on failure. */
1026 insn_propagation::apply_to_mem_1 (rtx mem
)
1028 auto old_num_changes
= num_validated_changes ();
1030 bool res
= apply_to_rvalue_1 (&XEXP (mem
, 0));
1035 if (old_num_changes
!= num_validated_changes ()
1036 && should_check_mems
1037 && !check_mem (old_num_changes
, mem
))
1043 /* Try to process the rvalue expression at *LOC. Return true on success;
1044 leave the caller to clean up on failure. */
1047 insn_propagation::apply_to_rvalue_1 (rtx
*loc
)
1050 enum rtx_code code
= GET_CODE (x
);
1051 machine_mode mode
= GET_MODE (x
);
1053 auto old_num_changes
= num_validated_changes ();
1054 if (from
&& GET_CODE (x
) == GET_CODE (from
) && rtx_equal_p (x
, from
))
1056 /* Don't replace register asms in asm statements; we mustn't
1057 change the user's register allocation. */
1059 && HARD_REGISTER_P (x
)
1060 && register_asm_p (x
)
1061 && asm_noperands (PATTERN (insn
)) > 0)
1065 validate_unshare_change (insn
, loc
, to
, 1);
1067 validate_change (insn
, loc
, to
, 1);
1068 if (mem_depth
&& !REG_P (to
) && !CONSTANT_P (to
))
1070 /* We're substituting into an address, but TO will have the
1071 form expected outside an address. Canonicalize it if
1073 insn_propagation
subprop (insn
);
1074 subprop
.mem_depth
+= 1;
1075 if (!subprop
.apply_to_rvalue (loc
))
1078 && num_validated_changes () != old_num_changes
+ 1)
1080 /* TO is owned by someone else, so create a copy and
1081 return TO to its original form. */
1082 rtx to
= copy_rtx (*loc
);
1083 cancel_changes (old_num_changes
);
1084 validate_change (insn
, loc
, to
, 1);
1087 num_replacements
+= 1;
1088 should_unshare
= true;
1089 result_flags
|= UNSIMPLIFIED
;
1093 /* Recursively apply the substitution and see if we can simplify
1094 the result. This specifically shouldn't use simplify_gen_* for
1095 speculative simplifications, since we want to avoid generating new
1096 expressions where possible. */
1097 auto old_result_flags
= result_flags
;
1098 rtx newx
= NULL_RTX
;
1099 bool recurse_p
= false;
1100 switch (GET_RTX_CLASS (code
))
1104 machine_mode op0_mode
= GET_MODE (XEXP (x
, 0));
1105 if (!apply_to_rvalue_1 (&XEXP (x
, 0)))
1107 if (from
&& old_num_changes
== num_validated_changes ())
1110 newx
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
1115 case RTX_COMM_ARITH
:
1117 if (!apply_to_rvalue_1 (&XEXP (x
, 0))
1118 || !apply_to_rvalue_1 (&XEXP (x
, 1)))
1120 if (from
&& old_num_changes
== num_validated_changes ())
1123 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
1124 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
1125 newx
= simplify_gen_binary (code
, mode
, XEXP (x
, 1), XEXP (x
, 0));
1127 newx
= simplify_binary_operation (code
, mode
,
1128 XEXP (x
, 0), XEXP (x
, 1));
1133 case RTX_COMM_COMPARE
:
1135 machine_mode op_mode
= (GET_MODE (XEXP (x
, 0)) != VOIDmode
1136 ? GET_MODE (XEXP (x
, 0))
1137 : GET_MODE (XEXP (x
, 1)));
1138 if (!apply_to_rvalue_1 (&XEXP (x
, 0))
1139 || !apply_to_rvalue_1 (&XEXP (x
, 1)))
1141 if (from
&& old_num_changes
== num_validated_changes ())
1144 newx
= simplify_relational_operation (code
, mode
, op_mode
,
1145 XEXP (x
, 0), XEXP (x
, 1));
1150 case RTX_BITFIELD_OPS
:
1152 machine_mode op0_mode
= GET_MODE (XEXP (x
, 0));
1153 if (!apply_to_rvalue_1 (&XEXP (x
, 0))
1154 || !apply_to_rvalue_1 (&XEXP (x
, 1))
1155 || !apply_to_rvalue_1 (&XEXP (x
, 2)))
1157 if (from
&& old_num_changes
== num_validated_changes ())
1160 newx
= simplify_ternary_operation (code
, mode
, op0_mode
,
1161 XEXP (x
, 0), XEXP (x
, 1),
1169 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
1170 if (!apply_to_rvalue_1 (&SUBREG_REG (x
)))
1172 if (from
&& old_num_changes
== num_validated_changes ())
1175 rtx inner
= SUBREG_REG (x
);
1176 newx
= simplify_subreg (mode
, inner
, inner_mode
, SUBREG_BYTE (x
));
1177 /* Reject the same cases that simplify_gen_subreg would. */
1179 && (GET_CODE (inner
) == SUBREG
1180 || GET_CODE (inner
) == CONCAT
1181 || GET_MODE (inner
) == VOIDmode
1182 || !validate_subreg (mode
, inner_mode
,
1183 inner
, SUBREG_BYTE (x
))))
1185 failure_reason
= "would create an invalid subreg";
1197 if (!apply_to_rvalue_1 (&XEXP (x
, 0))
1198 || !apply_to_rvalue_1 (&XEXP (x
, 1)))
1200 if (from
&& old_num_changes
== num_validated_changes ())
1203 /* (lo_sum (high x) y) -> y where x and y have the same base. */
1204 rtx op0
= XEXP (x
, 0);
1205 rtx op1
= XEXP (x
, 1);
1206 if (GET_CODE (op0
) == HIGH
)
1208 rtx base0
, base1
, offset0
, offset1
;
1209 split_const (XEXP (op0
, 0), &base0
, &offset0
);
1210 split_const (op1
, &base1
, &offset1
);
1211 if (rtx_equal_p (base0
, base1
))
1215 else if (code
== REG
)
1217 if (from
&& REG_P (from
) && reg_overlap_mentioned_p (x
, from
))
1219 failure_reason
= "inexact register overlap";
1223 else if (code
== MEM
)
1224 return apply_to_mem_1 (x
);
1233 if (from
&& reg_overlap_mentioned_p (XEXP (x
, 0), from
))
1235 failure_reason
= "is subject to autoinc";
1248 const char *fmt
= GET_RTX_FORMAT (code
);
1249 for (int i
= 0; fmt
[i
]; i
++)
1253 for (int j
= 0; j
< XVECLEN (x
, i
); j
++)
1254 if (!apply_to_rvalue_1 (&XVECEXP (x
, i
, j
)))
1259 if (XEXP (x
, i
) && !apply_to_rvalue_1 (&XEXP (x
, i
)))
1264 else if (newx
&& !rtx_equal_p (x
, newx
))
1266 /* All substitutions made by OLD_NUM_CHANGES onwards have been
1268 result_flags
= ((result_flags
& ~UNSIMPLIFIED
)
1269 | (old_result_flags
& UNSIMPLIFIED
));
1271 if (should_note_simplifications
)
1272 note_simplification (old_num_changes
, old_result_flags
, x
, newx
);
1274 /* There's no longer any point unsharing the substitutions made
1275 for subexpressions, since we'll just copy this one instead. */
1276 bool unshare
= false;
1277 for (int i
= old_num_changes
; i
< num_changes
; ++i
)
1279 unshare
|= changes
[i
].unshare
;
1280 changes
[i
].unshare
= false;
1283 validate_unshare_change (insn
, loc
, newx
, 1);
1285 validate_change (insn
, loc
, newx
, 1);
1291 /* Try to process the lvalue expression at *LOC. Return true on success;
1292 leave the caller to clean up on failure. */
1295 insn_propagation::apply_to_lvalue_1 (rtx dest
)
1297 rtx old_dest
= dest
;
1298 while (GET_CODE (dest
) == SUBREG
1299 || GET_CODE (dest
) == ZERO_EXTRACT
1300 || GET_CODE (dest
) == STRICT_LOW_PART
)
1302 if (GET_CODE (dest
) == ZERO_EXTRACT
1303 && (!apply_to_rvalue_1 (&XEXP (dest
, 1))
1304 || !apply_to_rvalue_1 (&XEXP (dest
, 2))))
1306 dest
= XEXP (dest
, 0);
1310 return apply_to_mem_1 (dest
);
1312 /* Check whether the substitution is safe in the presence of this lvalue. */
1316 || !reg_overlap_mentioned_p (dest
, from
))
1319 if (SUBREG_P (old_dest
)
1320 && SUBREG_REG (old_dest
) == dest
1321 && !read_modify_subreg_p (old_dest
))
1324 failure_reason
= "is part of a read-write destination";
1328 /* Try to process the instruction pattern at *LOC. Return true on success;
1329 leave the caller to clean up on failure. */
1332 insn_propagation::apply_to_pattern_1 (rtx
*loc
)
1335 switch (GET_CODE (body
))
1338 return (apply_to_rvalue_1 (&COND_EXEC_TEST (body
))
1339 && apply_to_pattern_1 (&COND_EXEC_CODE (body
)));
1342 for (int i
= 0; i
< XVECLEN (body
, 0); ++i
)
1344 rtx
*subloc
= &XVECEXP (body
, 0, i
);
1345 if (GET_CODE (*subloc
) == SET
)
1347 if (!apply_to_lvalue_1 (SET_DEST (*subloc
)))
1349 /* ASM_OPERANDS are shared between SETs in the same PARALLEL.
1350 Only process them on the first iteration. */
1351 if ((i
== 0 || GET_CODE (SET_SRC (*subloc
)) != ASM_OPERANDS
)
1352 && !apply_to_rvalue_1 (&SET_SRC (*subloc
)))
1357 if (!apply_to_pattern_1 (subloc
))
1364 for (int i
= 0, len
= ASM_OPERANDS_INPUT_LENGTH (body
); i
< len
; ++i
)
1365 if (!apply_to_rvalue_1 (&ASM_OPERANDS_INPUT (body
, i
)))
1370 return apply_to_lvalue_1 (XEXP (body
, 0));
1373 return (apply_to_lvalue_1 (SET_DEST (body
))
1374 && apply_to_rvalue_1 (&SET_SRC (body
)));
1377 /* All the other possibilities never store and can use a normal
1378 rtx walk. This includes:
1384 - UNSPEC_VOLATILE. */
1385 return apply_to_rvalue_1 (loc
);
1389 /* Apply this insn_propagation object's simplification or substitution
1390 to the instruction pattern at LOC. */
1393 insn_propagation::apply_to_pattern (rtx
*loc
)
1395 unsigned int num_changes
= num_validated_changes ();
1396 bool res
= apply_to_pattern_1 (loc
);
1398 cancel_changes (num_changes
);
1402 /* Apply this insn_propagation object's simplification or substitution
1403 to the rvalue expression at LOC. */
1406 insn_propagation::apply_to_rvalue (rtx
*loc
)
1408 unsigned int num_changes
= num_validated_changes ();
1409 bool res
= apply_to_rvalue_1 (loc
);
1411 cancel_changes (num_changes
);
1415 /* Check whether INSN matches a specific alternative of an .md pattern. */
1418 valid_insn_p (rtx_insn
*insn
)
1420 recog_memoized (insn
);
1421 if (INSN_CODE (insn
) < 0)
1423 extract_insn (insn
);
1424 /* We don't know whether the insn will be in code that is optimized
1425 for size or speed, so consider all enabled alternatives. */
1426 if (!constrain_operands (1, get_enabled_alternatives (insn
)))
1431 /* Return true if OP is a valid general operand for machine mode MODE.
1432 This is either a register reference, a memory reference,
1433 or a constant. In the case of a memory reference, the address
1434 is checked for general validity for the target machine.
1436 Register and memory references must have mode MODE in order to be valid,
1437 but some constants have no machine mode and are valid for any mode.
1439 If MODE is VOIDmode, OP is checked for validity for whatever mode
1442 The main use of this function is as a predicate in match_operand
1443 expressions in the machine description. */
1446 general_operand (rtx op
, machine_mode mode
)
1448 enum rtx_code code
= GET_CODE (op
);
1450 if (mode
== VOIDmode
)
1451 mode
= GET_MODE (op
);
1453 /* Don't accept CONST_INT or anything similar
1454 if the caller wants something floating. */
1455 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1456 && GET_MODE_CLASS (mode
) != MODE_INT
1457 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1460 if (CONST_INT_P (op
)
1462 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1465 if (CONSTANT_P (op
))
1466 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1467 || mode
== VOIDmode
)
1468 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1469 && targetm
.legitimate_constant_p (mode
== VOIDmode
1473 /* Except for certain constants with VOIDmode, already checked for,
1474 OP's mode must match MODE if MODE specifies a mode. */
1476 if (GET_MODE (op
) != mode
)
1481 rtx sub
= SUBREG_REG (op
);
1483 #ifdef INSN_SCHEDULING
1484 /* On machines that have insn scheduling, we want all memory
1485 reference to be explicit, so outlaw paradoxical SUBREGs.
1486 However, we must allow them after reload so that they can
1487 get cleaned up by cleanup_subreg_operands. */
1488 if (!reload_completed
&& MEM_P (sub
)
1489 && paradoxical_subreg_p (op
))
1492 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1493 may result in incorrect reference. We should simplify all valid
1494 subregs of MEM anyway. But allow this after reload because we
1495 might be called from cleanup_subreg_operands.
1497 ??? This is a kludge. */
1498 if (!reload_completed
1499 && maybe_ne (SUBREG_BYTE (op
), 0)
1504 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1505 && !REG_CAN_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1506 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1507 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1508 /* LRA can generate some invalid SUBREGS just for matched
1509 operand reload presentation. LRA needs to treat them as
1511 && ! LRA_SUBREG_P (op
))
1514 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1515 create such rtl, and we must reject it. */
1516 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1517 /* LRA can use subreg to store a floating point value in an
1518 integer mode. Although the floating point and the
1519 integer modes need the same number of hard registers, the
1520 size of floating point mode can be less than the integer
1522 && ! lra_in_progress
1523 && paradoxical_subreg_p (op
))
1527 code
= GET_CODE (op
);
1531 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1532 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1536 rtx y
= XEXP (op
, 0);
1538 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1541 /* Use the mem's mode, since it will be reloaded thus. LRA can
1542 generate move insn with invalid addresses which is made valid
1543 and efficiently calculated by LRA through further numerous
1546 || memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1553 /* Return true if OP is a valid memory address for a memory reference
1556 The main use of this function is as a predicate in match_operand
1557 expressions in the machine description. */
1560 address_operand (rtx op
, machine_mode mode
)
1562 /* Wrong mode for an address expr. */
1563 if (GET_MODE (op
) != VOIDmode
1564 && ! SCALAR_INT_MODE_P (GET_MODE (op
)))
1567 return memory_address_p (mode
, op
);
1570 /* Return true if OP is a register reference of mode MODE.
1571 If MODE is VOIDmode, accept a register in any mode.
1573 The main use of this function is as a predicate in match_operand
1574 expressions in the machine description. */
1577 register_operand (rtx op
, machine_mode mode
)
1579 if (GET_CODE (op
) == SUBREG
)
1581 rtx sub
= SUBREG_REG (op
);
1583 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1584 because it is guaranteed to be reloaded into one.
1585 Just make sure the MEM is valid in itself.
1586 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1587 but currently it does result from (SUBREG (REG)...) where the
1588 reg went on the stack.) */
1589 if (!REG_P (sub
) && (reload_completed
|| !MEM_P (sub
)))
1592 else if (!REG_P (op
))
1594 return general_operand (op
, mode
);
1597 /* Return true for a register in Pmode; ignore the tested mode. */
1600 pmode_register_operand (rtx op
, machine_mode mode ATTRIBUTE_UNUSED
)
1602 return register_operand (op
, Pmode
);
1605 /* Return true if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1606 or a hard register. */
1609 scratch_operand (rtx op
, machine_mode mode
)
1611 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1614 return (GET_CODE (op
) == SCRATCH
1617 || (REGNO (op
) < FIRST_PSEUDO_REGISTER
1618 && REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
))));
1621 /* Return true if OP is a valid immediate operand for mode MODE.
1623 The main use of this function is as a predicate in match_operand
1624 expressions in the machine description. */
1627 immediate_operand (rtx op
, machine_mode mode
)
1629 /* Don't accept CONST_INT or anything similar
1630 if the caller wants something floating. */
1631 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1632 && GET_MODE_CLASS (mode
) != MODE_INT
1633 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1636 if (CONST_INT_P (op
)
1638 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1641 return (CONSTANT_P (op
)
1642 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1643 || GET_MODE (op
) == VOIDmode
)
1644 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1645 && targetm
.legitimate_constant_p (mode
== VOIDmode
1650 /* Return true if OP is an operand that is a CONST_INT of mode MODE. */
1653 const_int_operand (rtx op
, machine_mode mode
)
1655 if (!CONST_INT_P (op
))
1658 if (mode
!= VOIDmode
1659 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1665 #if TARGET_SUPPORTS_WIDE_INT
1666 /* Return true if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1669 const_scalar_int_operand (rtx op
, machine_mode mode
)
1671 if (!CONST_SCALAR_INT_P (op
))
1674 if (CONST_INT_P (op
))
1675 return const_int_operand (op
, mode
);
1677 if (mode
!= VOIDmode
)
1679 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (mode
);
1680 int prec
= GET_MODE_PRECISION (int_mode
);
1681 int bitsize
= GET_MODE_BITSIZE (int_mode
);
1683 if (CONST_WIDE_INT_NUNITS (op
) * HOST_BITS_PER_WIDE_INT
> bitsize
)
1686 if (prec
== bitsize
)
1690 /* Multiword partial int. */
1692 = CONST_WIDE_INT_ELT (op
, CONST_WIDE_INT_NUNITS (op
) - 1);
1693 return (sext_hwi (x
, prec
& (HOST_BITS_PER_WIDE_INT
- 1)) == x
);
1699 /* Return true if OP is an operand that is a constant integer or constant
1700 floating-point number of MODE. */
1703 const_double_operand (rtx op
, machine_mode mode
)
1705 return (GET_CODE (op
) == CONST_DOUBLE
)
1706 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
);
1709 /* Return true if OP is an operand that is a constant integer or constant
1710 floating-point number of MODE. */
1713 const_double_operand (rtx op
, machine_mode mode
)
1715 /* Don't accept CONST_INT or anything similar
1716 if the caller wants something floating. */
1717 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1718 && GET_MODE_CLASS (mode
) != MODE_INT
1719 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1722 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1723 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1724 || GET_MODE (op
) == VOIDmode
));
1727 /* Return true if OP is a general operand that is not an immediate
1728 operand of mode MODE. */
1731 nonimmediate_operand (rtx op
, machine_mode mode
)
1733 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1736 /* Return true if OP is a register reference or
1737 immediate value of mode MODE. */
1740 nonmemory_operand (rtx op
, machine_mode mode
)
1742 if (CONSTANT_P (op
))
1743 return immediate_operand (op
, mode
);
1744 return register_operand (op
, mode
);
1747 /* Return true if OP is a valid operand that stands for pushing a
1748 value of mode MODE onto the stack.
1750 The main use of this function is as a predicate in match_operand
1751 expressions in the machine description. */
1754 push_operand (rtx op
, machine_mode mode
)
1759 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1762 poly_int64 rounded_size
= GET_MODE_SIZE (mode
);
1764 #ifdef PUSH_ROUNDING
1765 rounded_size
= PUSH_ROUNDING (MACRO_INT (rounded_size
));
1770 if (known_eq (rounded_size
, GET_MODE_SIZE (mode
)))
1772 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1778 if (GET_CODE (op
) != PRE_MODIFY
1779 || GET_CODE (XEXP (op
, 1)) != PLUS
1780 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1781 || !poly_int_rtx_p (XEXP (XEXP (op
, 1), 1), &offset
)
1782 || (STACK_GROWS_DOWNWARD
1783 ? maybe_ne (offset
, -rounded_size
)
1784 : maybe_ne (offset
, rounded_size
)))
1788 return XEXP (op
, 0) == stack_pointer_rtx
;
1791 /* Return true if OP is a valid operand that stands for popping a
1792 value of mode MODE off the stack.
1794 The main use of this function is as a predicate in match_operand
1795 expressions in the machine description. */
1798 pop_operand (rtx op
, machine_mode mode
)
1803 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1808 if (GET_CODE (op
) != STACK_POP_CODE
)
1811 return XEXP (op
, 0) == stack_pointer_rtx
;
1814 /* Return true if ADDR is a valid memory address
1815 for mode MODE in address space AS. */
1818 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
,
1819 addr_space_t as
, code_helper ch ATTRIBUTE_UNUSED
)
1821 #ifdef GO_IF_LEGITIMATE_ADDRESS
1822 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1823 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1829 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
, ch
);
1833 /* Return true if OP is a valid memory reference with mode MODE,
1834 including a valid address.
1836 The main use of this function is as a predicate in match_operand
1837 expressions in the machine description. */
1840 memory_operand (rtx op
, machine_mode mode
)
1844 if (! reload_completed
)
1845 /* Note that no SUBREG is a memory operand before end of reload pass,
1846 because (SUBREG (MEM...)) forces reloading into a register. */
1847 return MEM_P (op
) && general_operand (op
, mode
);
1849 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1853 if (GET_CODE (inner
) == SUBREG
)
1854 inner
= SUBREG_REG (inner
);
1856 return (MEM_P (inner
) && general_operand (op
, mode
));
1859 /* Return true if OP is a valid indirect memory reference with mode MODE;
1860 that is, a memory reference whose address is a general_operand. */
1863 indirect_operand (rtx op
, machine_mode mode
)
1865 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1866 if (! reload_completed
1867 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1869 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1872 /* The only way that we can have a general_operand as the resulting
1873 address is if OFFSET is zero and the address already is an operand
1874 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1877 rtx addr
= strip_offset (XEXP (SUBREG_REG (op
), 0), &offset
);
1878 return (known_eq (offset
+ SUBREG_BYTE (op
), 0)
1879 && general_operand (addr
, Pmode
));
1883 && memory_operand (op
, mode
)
1884 && general_operand (XEXP (op
, 0), Pmode
));
1887 /* Return true if this is an ordered comparison operator (not including
1888 ORDERED and UNORDERED). */
1891 ordered_comparison_operator (rtx op
, machine_mode mode
)
1893 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1895 switch (GET_CODE (op
))
1913 /* Return true if this is a comparison operator. This allows the use of
1914 MATCH_OPERATOR to recognize all the branch insns. */
1917 comparison_operator (rtx op
, machine_mode mode
)
1919 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1920 && COMPARISON_P (op
));
1923 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1926 extract_asm_operands (rtx body
)
1929 switch (GET_CODE (body
))
1935 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1936 tmp
= SET_SRC (body
);
1937 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1942 tmp
= XVECEXP (body
, 0, 0);
1943 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1945 if (GET_CODE (tmp
) == SET
)
1947 tmp
= SET_SRC (tmp
);
1948 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1959 /* If BODY is an insn body that uses ASM_OPERANDS,
1960 return the number of operands (both input and output) in the insn.
1961 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1963 Otherwise return -1. */
1966 asm_noperands (const_rtx body
)
1968 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1973 if (GET_CODE (body
) == PARALLEL
&& XVECLEN (body
, 0) >= 2
1974 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
1976 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1977 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1978 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1985 if (GET_CODE (body
) == SET
)
1987 else if (GET_CODE (body
) == PARALLEL
)
1989 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1991 /* Multiple output operands, or 1 output plus some clobbers:
1993 [(set OUTPUT (asm_operands ...))...
1995 (clobber (reg ...))...]. */
1996 /* Count backwards through USEs and CLOBBERs to determine
1998 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
2000 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
2002 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != USE
2003 && GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
2007 /* N_SETS is now number of output operands. */
2010 /* Verify that all the SETs we have
2011 came from a single original asm_operands insn
2012 (so that invalid combinations are blocked). */
2013 for (i
= 0; i
< n_sets
; i
++)
2015 rtx elt
= XVECEXP (body
, 0, i
);
2016 if (GET_CODE (elt
) != SET
)
2018 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
2020 /* If these ASM_OPERANDS rtx's came from different original insns
2021 then they aren't allowed together. */
2022 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
2023 != ASM_OPERANDS_INPUT_VEC (asm_op
))
2029 /* 0 outputs, but some clobbers:
2030 body is [(asm_operands ...)
2032 (clobber (reg ...))...]. */
2033 /* Make sure all the other parallel things really are clobbers. */
2034 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
2035 if (GET_CODE (XVECEXP (body
, 0, i
)) != USE
2036 && GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
2041 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
2042 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
2045 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
2046 copy its operands (both input and output) into the vector OPERANDS,
2047 the locations of the operands within the insn into the vector OPERAND_LOCS,
2048 and the constraints for the operands into CONSTRAINTS.
2049 Write the modes of the operands into MODES.
2050 Write the location info into LOC.
2051 Return the assembler-template.
2052 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
2053 return the basic assembly string.
2055 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
2056 we don't store that info. */
2059 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
2060 const char **constraints
, machine_mode
*modes
,
2063 int nbase
= 0, n
, i
;
2066 switch (GET_CODE (body
))
2069 /* Zero output asm: BODY is (asm_operands ...). */
2074 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
2075 asmop
= SET_SRC (body
);
2077 /* The output is in the SET.
2078 Its constraint is in the ASM_OPERANDS itself. */
2080 operands
[0] = SET_DEST (body
);
2082 operand_locs
[0] = &SET_DEST (body
);
2084 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
2086 modes
[0] = GET_MODE (SET_DEST (body
));
2092 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
2094 asmop
= XVECEXP (body
, 0, 0);
2095 if (GET_CODE (asmop
) == SET
)
2097 asmop
= SET_SRC (asmop
);
2099 /* At least one output, plus some CLOBBERs. The outputs are in
2100 the SETs. Their constraints are in the ASM_OPERANDS itself. */
2101 for (i
= 0; i
< nparallel
; i
++)
2103 if (GET_CODE (XVECEXP (body
, 0, i
)) == USE
2104 || GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2105 break; /* Past last SET */
2106 gcc_assert (GET_CODE (XVECEXP (body
, 0, i
)) == SET
);
2108 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
2110 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
2112 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
2114 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
2118 else if (GET_CODE (asmop
) == ASM_INPUT
)
2121 *loc
= ASM_INPUT_SOURCE_LOCATION (asmop
);
2122 return XSTR (asmop
, 0);
2131 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
2132 for (i
= 0; i
< n
; i
++)
2135 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
2137 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
2139 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
2141 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
2145 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
2146 for (i
= 0; i
< n
; i
++)
2149 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
2151 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
2153 constraints
[nbase
+ i
] = "";
2155 modes
[nbase
+ i
] = Pmode
;
2159 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
2161 return ASM_OPERANDS_TEMPLATE (asmop
);
2164 /* Parse inline assembly string STRING and determine which operands are
2165 referenced by % markers. For the first NOPERANDS operands, set USED[I]
2166 to true if operand I is referenced.
2168 This is intended to distinguish barrier-like asms such as:
2170 asm ("" : "=m" (...));
2172 from real references such as:
2174 asm ("sw\t$0, %0" : "=m" (...)); */
2177 get_referenced_operands (const char *string
, bool *used
,
2178 unsigned int noperands
)
2180 memset (used
, 0, sizeof (bool) * noperands
);
2181 const char *p
= string
;
2187 /* A letter followed by a digit indicates an operand number. */
2188 if (ISALPHA (p
[0]) && ISDIGIT (p
[1]))
2193 unsigned long opnum
= strtoul (p
, &endptr
, 10);
2194 if (endptr
!= p
&& opnum
< noperands
)
2208 /* Check if an asm_operand matches its constraints.
2209 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
2212 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
2215 bool incdec_ok
= false;
2217 /* Use constrain_operands after reload. */
2218 gcc_assert (!reload_completed
);
2220 /* Empty constraint string is the same as "X,...,X", i.e. X for as
2221 many alternatives as required to match the other operands. */
2222 if (*constraint
== '\0')
2227 enum constraint_num cn
;
2228 char c
= *constraint
;
2236 case '0': case '1': case '2': case '3': case '4':
2237 case '5': case '6': case '7': case '8': case '9':
2238 /* If caller provided constraints pointer, look up
2239 the matching constraint. Otherwise, our caller should have
2240 given us the proper matching constraint, but we can't
2241 actually fail the check if they didn't. Indicate that
2242 results are inconclusive. */
2246 unsigned long match
;
2248 match
= strtoul (constraint
, &end
, 10);
2250 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
2251 constraint
= (const char *) end
;
2257 while (ISDIGIT (*constraint
));
2263 /* The rest of the compiler assumes that reloading the address
2264 of a MEM into a register will make it fit an 'o' constraint.
2265 That is, if it sees a MEM operand for an 'o' constraint,
2266 it assumes that (mem (base-reg)) will fit.
2268 That assumption fails on targets that don't have offsettable
2269 addresses at all. We therefore need to treat 'o' asm
2270 constraints as a special case and only accept operands that
2271 are already offsettable, thus proving that at least one
2272 offsettable address exists. */
2273 case 'o': /* offsettable */
2274 if (offsettable_nonstrict_memref_p (op
))
2279 if (general_operand (op
, VOIDmode
))
2285 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
2286 to exist, excepting those that expand_call created. Further,
2287 on some machines which do not have generalized auto inc/dec,
2288 an inc/dec is not a memory_operand.
2290 Match any memory and hope things are resolved after reload. */
2294 cn
= lookup_constraint (constraint
);
2296 switch (get_constraint_type (cn
))
2300 && reg_class_for_constraint (cn
) != NO_REGS
2301 && GET_MODE (op
) != BLKmode
2302 && register_operand (op
, VOIDmode
))
2309 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
2314 case CT_RELAXED_MEMORY
:
2317 case CT_SPECIAL_MEMORY
:
2318 /* Every memory operand can be reloaded to fit. */
2320 mem
= extract_mem_from_operand (op
);
2321 result
= result
|| memory_operand (mem
, VOIDmode
);
2325 /* Every address operand can be reloaded to fit. */
2326 result
= result
|| address_operand (op
, VOIDmode
);
2330 result
= result
|| constraint_satisfied_p (op
, cn
);
2335 len
= CONSTRAINT_LEN (c
, constraint
);
2338 while (--len
&& *constraint
&& *constraint
!= ',');
2343 /* For operands without < or > constraints reject side-effects. */
2344 if (AUTO_INC_DEC
&& !incdec_ok
&& result
&& MEM_P (op
))
2345 switch (GET_CODE (XEXP (op
, 0)))
2361 /* Given an rtx *P, if it is a sum containing an integer constant term,
2362 return the location (type rtx *) of the pointer to that constant term.
2363 Otherwise, return a null pointer. */
2366 find_constant_term_loc (rtx
*p
)
2369 enum rtx_code code
= GET_CODE (*p
);
2371 /* If *P IS such a constant term, P is its location. */
2373 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
2377 /* Otherwise, if not a sum, it has no constant term. */
2379 if (GET_CODE (*p
) != PLUS
)
2382 /* If one of the summands is constant, return its location. */
2384 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
2385 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
2388 /* Otherwise, check each summand for containing a constant term. */
2390 if (XEXP (*p
, 0) != 0)
2392 tem
= find_constant_term_loc (&XEXP (*p
, 0));
2397 if (XEXP (*p
, 1) != 0)
2399 tem
= find_constant_term_loc (&XEXP (*p
, 1));
2407 /* Return true if OP is a memory reference whose address contains
2408 no side effects and remains valid after the addition of a positive
2409 integer less than the size of the object being referenced.
2411 We assume that the original address is valid and do not check it.
2413 This uses strict_memory_address_p as a subroutine, so
2414 don't use it before reload. */
2417 offsettable_memref_p (rtx op
)
2419 return ((MEM_P (op
))
2420 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
2421 MEM_ADDR_SPACE (op
)));
2424 /* Similar, but don't require a strictly valid mem ref:
2425 consider pseudo-regs valid as index or base regs. */
2428 offsettable_nonstrict_memref_p (rtx op
)
2430 return ((MEM_P (op
))
2431 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
2432 MEM_ADDR_SPACE (op
)));
2435 /* Return true if Y is a memory address which contains no side effects
2436 and would remain valid for address space AS after the addition of
2437 a positive integer less than the size of that mode.
2439 We assume that the original address is valid and do not check it.
2440 We do check that it is valid for narrower modes.
2442 If STRICTP is nonzero, we require a strictly valid address,
2443 for the sake of use in reload.cc. */
2446 offsettable_address_addr_space_p (int strictp
, machine_mode mode
, rtx y
,
2449 enum rtx_code ycode
= GET_CODE (y
);
2453 bool (*addressp
) (machine_mode
, rtx
, addr_space_t
, code_helper
) =
2454 (strictp
? strict_memory_address_addr_space_p
2455 : memory_address_addr_space_p
);
2456 poly_int64 mode_sz
= GET_MODE_SIZE (mode
);
2458 if (CONSTANT_ADDRESS_P (y
))
2461 /* Adjusting an offsettable address involves changing to a narrower mode.
2462 Make sure that's OK. */
2464 if (mode_dependent_address_p (y
, as
))
2467 machine_mode address_mode
= GET_MODE (y
);
2468 if (address_mode
== VOIDmode
)
2469 address_mode
= targetm
.addr_space
.address_mode (as
);
2470 #ifdef POINTERS_EXTEND_UNSIGNED
2471 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
2474 /* ??? How much offset does an offsettable BLKmode reference need?
2475 Clearly that depends on the situation in which it's being used.
2476 However, the current situation in which we test 0xffffffff is
2477 less than ideal. Caveat user. */
2478 if (known_eq (mode_sz
, 0))
2479 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
2481 /* If the expression contains a constant term,
2482 see if it remains valid when max possible offset is added. */
2484 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
2489 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
2490 /* Use QImode because an odd displacement may be automatically invalid
2491 for any wider mode. But it should be valid for a single byte. */
2492 good
= (*addressp
) (QImode
, y
, as
, ERROR_MARK
);
2494 /* In any case, restore old contents of memory. */
2499 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
2502 /* The offset added here is chosen as the maximum offset that
2503 any instruction could need to add when operating on something
2504 of the specified mode. We assume that if Y and Y+c are
2505 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2506 go inside a LO_SUM here, so we do so as well. */
2507 if (GET_CODE (y
) == LO_SUM
2509 && known_le (mode_sz
, GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
))
2510 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2511 plus_constant (address_mode
, XEXP (y
, 1),
2513 #ifdef POINTERS_EXTEND_UNSIGNED
2514 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2515 else if (POINTERS_EXTEND_UNSIGNED
> 0
2516 && GET_CODE (y
) == ZERO_EXTEND
2517 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2518 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2519 plus_constant (pointer_mode
, XEXP (y
, 0),
2523 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2525 /* Use QImode because an odd displacement may be automatically invalid
2526 for any wider mode. But it should be valid for a single byte. */
2527 return (*addressp
) (QImode
, z
, as
, ERROR_MARK
);
2530 /* Return true if ADDR is an address-expression whose effect depends
2531 on the mode of the memory reference it is used in.
2533 ADDRSPACE is the address space associated with the address.
2535 Autoincrement addressing is a typical example of mode-dependence
2536 because the amount of the increment depends on the mode. */
2539 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2541 /* Auto-increment addressing with anything other than post_modify
2542 or pre_modify always introduces a mode dependency. Catch such
2543 cases now instead of deferring to the target. */
2544 if (GET_CODE (addr
) == PRE_INC
2545 || GET_CODE (addr
) == POST_INC
2546 || GET_CODE (addr
) == PRE_DEC
2547 || GET_CODE (addr
) == POST_DEC
)
2550 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2553 /* Return true if boolean attribute ATTR is supported. */
2556 have_bool_attr (bool_attr attr
)
2561 return HAVE_ATTR_enabled
;
2562 case BA_PREFERRED_FOR_SIZE
:
2563 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_size
;
2564 case BA_PREFERRED_FOR_SPEED
:
2565 return HAVE_ATTR_enabled
|| HAVE_ATTR_preferred_for_speed
;
2570 /* Return the value of ATTR for instruction INSN. */
2573 get_bool_attr (rtx_insn
*insn
, bool_attr attr
)
2578 return get_attr_enabled (insn
);
2579 case BA_PREFERRED_FOR_SIZE
:
2580 return get_attr_enabled (insn
) && get_attr_preferred_for_size (insn
);
2581 case BA_PREFERRED_FOR_SPEED
:
2582 return get_attr_enabled (insn
) && get_attr_preferred_for_speed (insn
);
2587 /* Like get_bool_attr_mask, but don't use the cache. */
2589 static alternative_mask
2590 get_bool_attr_mask_uncached (rtx_insn
*insn
, bool_attr attr
)
2592 /* Temporarily install enough information for get_attr_<foo> to assume
2593 that the insn operands are already cached. As above, the attribute
2594 mustn't depend on the values of operands, so we don't provide their
2595 real values here. */
2596 rtx_insn
*old_insn
= recog_data
.insn
;
2597 int old_alternative
= which_alternative
;
2599 recog_data
.insn
= insn
;
2600 alternative_mask mask
= ALL_ALTERNATIVES
;
2601 int n_alternatives
= insn_data
[INSN_CODE (insn
)].n_alternatives
;
2602 for (int i
= 0; i
< n_alternatives
; i
++)
2604 which_alternative
= i
;
2605 if (!get_bool_attr (insn
, attr
))
2606 mask
&= ~ALTERNATIVE_BIT (i
);
2609 recog_data
.insn
= old_insn
;
2610 which_alternative
= old_alternative
;
2614 /* Return the mask of operand alternatives that are allowed for INSN
2615 by boolean attribute ATTR. This mask depends only on INSN and on
2616 the current target; it does not depend on things like the values of
2619 static alternative_mask
2620 get_bool_attr_mask (rtx_insn
*insn
, bool_attr attr
)
2622 /* Quick exit for asms and for targets that don't use these attributes. */
2623 int code
= INSN_CODE (insn
);
2624 if (code
< 0 || !have_bool_attr (attr
))
2625 return ALL_ALTERNATIVES
;
2627 /* Calling get_attr_<foo> can be expensive, so cache the mask
2629 if (!this_target_recog
->x_bool_attr_masks
[code
][attr
])
2630 this_target_recog
->x_bool_attr_masks
[code
][attr
]
2631 = get_bool_attr_mask_uncached (insn
, attr
);
2632 return this_target_recog
->x_bool_attr_masks
[code
][attr
];
2635 /* Return the set of alternatives of INSN that are allowed by the current
2639 get_enabled_alternatives (rtx_insn
*insn
)
2641 return get_bool_attr_mask (insn
, BA_ENABLED
);
2644 /* Return the set of alternatives of INSN that are allowed by the current
2645 target and are preferred for the current size/speed optimization
2649 get_preferred_alternatives (rtx_insn
*insn
)
2651 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
)))
2652 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2654 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2657 /* Return the set of alternatives of INSN that are allowed by the current
2658 target and are preferred for the size/speed optimization choice
2659 associated with BB. Passing a separate BB is useful if INSN has not
2660 been emitted yet or if we are considering moving it to a different
2664 get_preferred_alternatives (rtx_insn
*insn
, basic_block bb
)
2666 if (optimize_bb_for_speed_p (bb
))
2667 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SPEED
);
2669 return get_bool_attr_mask (insn
, BA_PREFERRED_FOR_SIZE
);
2672 /* Assert that the cached boolean attributes for INSN are still accurate.
2673 The backend is required to define these attributes in a way that only
2674 depends on the current target (rather than operands, compiler phase,
2678 check_bool_attrs (rtx_insn
*insn
)
2680 int code
= INSN_CODE (insn
);
2682 for (int i
= 0; i
<= BA_LAST
; ++i
)
2684 enum bool_attr attr
= (enum bool_attr
) i
;
2685 if (this_target_recog
->x_bool_attr_masks
[code
][attr
])
2686 gcc_assert (this_target_recog
->x_bool_attr_masks
[code
][attr
]
2687 == get_bool_attr_mask_uncached (insn
, attr
));
2692 /* Like extract_insn, but save insn extracted and don't extract again, when
2693 called again for the same insn expecting that recog_data still contain the
2694 valid information. This is used primary by gen_attr infrastructure that
2695 often does extract insn again and again. */
2697 extract_insn_cached (rtx_insn
*insn
)
2699 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2701 extract_insn (insn
);
2702 recog_data
.insn
= insn
;
2705 /* Do uncached extract_insn, constrain_operands and complain about failures.
2706 This should be used when extracting a pre-existing constrained instruction
2707 if the caller wants to know which alternative was chosen. */
2709 extract_constrain_insn (rtx_insn
*insn
)
2711 extract_insn (insn
);
2712 if (!constrain_operands (reload_completed
, get_enabled_alternatives (insn
)))
2713 fatal_insn_not_found (insn
);
2716 /* Do cached extract_insn, constrain_operands and complain about failures.
2717 Used by insn_attrtab. */
2719 extract_constrain_insn_cached (rtx_insn
*insn
)
2721 extract_insn_cached (insn
);
2722 if (which_alternative
== -1
2723 && !constrain_operands (reload_completed
,
2724 get_enabled_alternatives (insn
)))
2725 fatal_insn_not_found (insn
);
2728 /* Do cached constrain_operands on INSN and complain about failures. */
2730 constrain_operands_cached (rtx_insn
*insn
, int strict
)
2732 if (which_alternative
== -1)
2733 return constrain_operands (strict
, get_enabled_alternatives (insn
));
2738 /* Analyze INSN and fill in recog_data. */
2741 extract_insn (rtx_insn
*insn
)
2746 rtx body
= PATTERN (insn
);
2748 recog_data
.n_operands
= 0;
2749 recog_data
.n_alternatives
= 0;
2750 recog_data
.n_dups
= 0;
2751 recog_data
.is_asm
= false;
2753 switch (GET_CODE (body
))
2765 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2770 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2771 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2772 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
2773 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_INPUT
)
2779 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2782 /* This insn is an `asm' with operands. */
2784 /* expand_asm_operands makes sure there aren't too many operands. */
2785 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2787 /* Now get the operand values and constraints out of the insn. */
2788 decode_asm_operands (body
, recog_data
.operand
,
2789 recog_data
.operand_loc
,
2790 recog_data
.constraints
,
2791 recog_data
.operand_mode
, NULL
);
2792 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2795 const char *p
= recog_data
.constraints
[0];
2796 recog_data
.n_alternatives
= 1;
2798 recog_data
.n_alternatives
+= (*p
++ == ',');
2800 recog_data
.is_asm
= true;
2803 fatal_insn_not_found (insn
);
2807 /* Ordinary insn: recognize it, get the operands via insn_extract
2808 and get the constraints. */
2810 icode
= recog_memoized (insn
);
2812 fatal_insn_not_found (insn
);
2814 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2815 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2816 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2818 insn_extract (insn
);
2820 for (i
= 0; i
< noperands
; i
++)
2822 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2823 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2824 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2825 /* VOIDmode match_operands gets mode from their real operand. */
2826 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2827 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2830 for (i
= 0; i
< noperands
; i
++)
2831 recog_data
.operand_type
[i
]
2832 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2833 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2836 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2838 recog_data
.insn
= NULL
;
2839 which_alternative
= -1;
2842 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2843 operands, N_ALTERNATIVES alternatives and constraint strings
2844 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2845 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2846 if the insn is an asm statement and preprocessing should take the
2847 asm operands into account, e.g. to determine whether they could be
2848 addresses in constraints that require addresses; it should then
2849 point to an array of pointers to each operand. */
2852 preprocess_constraints (int n_operands
, int n_alternatives
,
2853 const char **constraints
,
2854 operand_alternative
*op_alt_base
,
2857 for (int i
= 0; i
< n_operands
; i
++)
2860 struct operand_alternative
*op_alt
;
2861 const char *p
= constraints
[i
];
2863 op_alt
= op_alt_base
;
2865 for (j
= 0; j
< n_alternatives
; j
++, op_alt
+= n_operands
)
2867 op_alt
[i
].cl
= NO_REGS
;
2868 op_alt
[i
].register_filters
= 0;
2869 op_alt
[i
].constraint
= p
;
2870 op_alt
[i
].matches
= -1;
2871 op_alt
[i
].matched
= -1;
2873 if (*p
== '\0' || *p
== ',')
2875 op_alt
[i
].anything_ok
= 1;
2885 while (c
!= ',' && c
!= '\0');
2886 if (c
== ',' || c
== '\0')
2895 op_alt
[i
].reject
+= 6;
2898 op_alt
[i
].reject
+= 600;
2901 op_alt
[i
].earlyclobber
= 1;
2904 case '0': case '1': case '2': case '3': case '4':
2905 case '5': case '6': case '7': case '8': case '9':
2908 op_alt
[i
].matches
= strtoul (p
, &end
, 10);
2909 op_alt
[op_alt
[i
].matches
].matched
= i
;
2915 op_alt
[i
].anything_ok
= 1;
2920 reg_class_subunion
[(int) op_alt
[i
].cl
][(int) GENERAL_REGS
];
2924 enum constraint_num cn
= lookup_constraint (p
);
2926 switch (get_constraint_type (cn
))
2929 cl
= reg_class_for_constraint (cn
);
2932 op_alt
[i
].cl
= reg_class_subunion
[op_alt
[i
].cl
][cl
];
2933 auto filter_id
= get_register_filter_id (cn
);
2935 op_alt
[i
].register_filters
|= 1U << filter_id
;
2943 case CT_SPECIAL_MEMORY
:
2944 case CT_RELAXED_MEMORY
:
2945 op_alt
[i
].memory_ok
= 1;
2949 if (oploc
&& !address_operand (*oploc
[i
], VOIDmode
))
2952 op_alt
[i
].is_address
= 1;
2954 = (reg_class_subunion
2955 [(int) op_alt
[i
].cl
]
2956 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2957 ADDRESS
, SCRATCH
)]);
2965 p
+= CONSTRAINT_LEN (c
, p
);
2971 /* Return an array of operand_alternative instructions for
2972 instruction ICODE. */
2974 const operand_alternative
*
2975 preprocess_insn_constraints (unsigned int icode
)
2977 gcc_checking_assert (IN_RANGE (icode
, 0, NUM_INSN_CODES
- 1));
2978 if (this_target_recog
->x_op_alt
[icode
])
2979 return this_target_recog
->x_op_alt
[icode
];
2981 int n_operands
= insn_data
[icode
].n_operands
;
2982 if (n_operands
== 0)
2984 /* Always provide at least one alternative so that which_op_alt ()
2985 works correctly. If the instruction has 0 alternatives (i.e. all
2986 constraint strings are empty) then each operand in this alternative
2987 will have anything_ok set. */
2988 int n_alternatives
= MAX (insn_data
[icode
].n_alternatives
, 1);
2989 int n_entries
= n_operands
* n_alternatives
;
2991 operand_alternative
*op_alt
= XCNEWVEC (operand_alternative
, n_entries
);
2992 const char **constraints
= XALLOCAVEC (const char *, n_operands
);
2994 for (int i
= 0; i
< n_operands
; ++i
)
2995 constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2996 preprocess_constraints (n_operands
, n_alternatives
, constraints
, op_alt
,
2999 this_target_recog
->x_op_alt
[icode
] = op_alt
;
3003 /* After calling extract_insn, you can use this function to extract some
3004 information from the constraint strings into a more usable form.
3005 The collected data is stored in recog_op_alt. */
3008 preprocess_constraints (rtx_insn
*insn
)
3010 int icode
= INSN_CODE (insn
);
3012 recog_op_alt
= preprocess_insn_constraints (icode
);
3015 int n_operands
= recog_data
.n_operands
;
3016 int n_alternatives
= recog_data
.n_alternatives
;
3017 int n_entries
= n_operands
* n_alternatives
;
3018 memset (asm_op_alt
, 0, n_entries
* sizeof (operand_alternative
));
3019 preprocess_constraints (n_operands
, n_alternatives
,
3020 recog_data
.constraints
, asm_op_alt
,
3022 recog_op_alt
= asm_op_alt
;
3026 /* Check the operands of an insn against the insn's operand constraints
3027 and return 1 if they match any of the alternatives in ALTERNATIVES.
3029 The information about the insn's operands, constraints, operand modes
3030 etc. is obtained from the global variables set up by extract_insn.
3032 WHICH_ALTERNATIVE is set to a number which indicates which
3033 alternative of constraints was matched: 0 for the first alternative,
3034 1 for the next, etc.
3036 In addition, when two operands are required to match
3037 and it happens that the output operand is (reg) while the
3038 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
3039 make the output operand look like the input.
3040 This is because the output operand is the one the template will print.
3042 This is used in final, just before printing the assembler code and by
3043 the routines that determine an insn's attribute.
3045 If STRICT is a positive nonzero value, it means that we have been
3046 called after reload has been completed. In that case, we must
3047 do all checks strictly. If it is zero, it means that we have been called
3048 before reload has completed. In that case, we first try to see if we can
3049 find an alternative that matches strictly. If not, we try again, this
3050 time assuming that reload will fix up the insn. This provides a "best
3051 guess" for the alternative and is used to compute attributes of insns prior
3052 to reload. A negative value of STRICT is used for this internal call. */
3060 constrain_operands (int strict
, alternative_mask alternatives
)
3062 const char *constraints
[MAX_RECOG_OPERANDS
];
3063 int matching_operands
[MAX_RECOG_OPERANDS
];
3064 int earlyclobber
[MAX_RECOG_OPERANDS
];
3067 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
3068 int funny_match_index
;
3070 which_alternative
= 0;
3071 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
3074 for (c
= 0; c
< recog_data
.n_operands
; c
++)
3075 constraints
[c
] = recog_data
.constraints
[c
];
3079 int seen_earlyclobber_at
= -1;
3082 funny_match_index
= 0;
3084 if (!TEST_BIT (alternatives
, which_alternative
))
3088 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3089 constraints
[i
] = skip_alternative (constraints
[i
]);
3091 which_alternative
++;
3095 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
3096 matching_operands
[opno
] = -1;
3098 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
3100 rtx op
= recog_data
.operand
[opno
];
3101 machine_mode mode
= GET_MODE (op
);
3102 const char *p
= constraints
[opno
];
3108 earlyclobber
[opno
] = 0;
3110 if (GET_CODE (op
) == SUBREG
)
3112 if (REG_P (SUBREG_REG (op
))
3113 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
3114 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
3115 GET_MODE (SUBREG_REG (op
)),
3118 op
= SUBREG_REG (op
);
3121 /* An empty constraint or empty alternative
3122 allows anything which matched the pattern. */
3123 if (*p
== 0 || *p
== ',')
3127 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
3137 /* Ignore rest of this alternative as far as
3138 constraint checking is concerned. */
3141 while (*p
&& *p
!= ',');
3146 earlyclobber
[opno
] = 1;
3147 if (seen_earlyclobber_at
< 0)
3148 seen_earlyclobber_at
= opno
;
3151 case '0': case '1': case '2': case '3': case '4':
3152 case '5': case '6': case '7': case '8': case '9':
3154 /* This operand must be the same as a previous one.
3155 This kind of constraint is used for instructions such
3156 as add when they take only two operands.
3158 Note that the lower-numbered operand is passed first.
3160 If we are not testing strictly, assume that this
3161 constraint will be satisfied. */
3166 match
= strtoul (p
, &end
, 10);
3173 rtx op1
= recog_data
.operand
[match
];
3174 rtx op2
= recog_data
.operand
[opno
];
3175 val
= operands_match_p (op1
, op2
);
3178 matching_operands
[opno
] = match
;
3179 matching_operands
[match
] = opno
;
3184 /* If output is *x and input is *--x, arrange later
3185 to change the output to *--x as well, since the
3186 output op is the one that will be printed. */
3187 if (val
== 2 && strict
> 0)
3189 funny_match
[funny_match_index
].this_op
= opno
;
3190 funny_match
[funny_match_index
++].other
= match
;
3197 /* p is used for address_operands. When we are called by
3198 gen_reload, no one will have checked that the address is
3199 strictly valid, i.e., that all pseudos requiring hard regs
3200 have gotten them. We also want to make sure we have a
3203 auto mem_mode
= (recog_data
.is_asm
3205 : recog_data
.operand_mode
[opno
]);
3206 if ((GET_MODE (op
) == VOIDmode
3207 || SCALAR_INT_MODE_P (GET_MODE (op
)))
3209 || strict_memory_address_p (mem_mode
, op
)))
3214 /* No need to check general_operand again;
3215 it was done in insn-recog.cc. Well, except that reload
3216 doesn't check the validity of its replacements, but
3217 that should only matter when there's a bug. */
3219 /* Anything goes unless it is a REG and really has a hard reg
3220 but the hard reg is not in the class GENERAL_REGS. */
3224 || GENERAL_REGS
== ALL_REGS
3225 || (reload_in_progress
3226 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
3227 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
3230 else if (strict
< 0 || general_operand (op
, mode
))
3236 enum constraint_num cn
= lookup_constraint (p
);
3237 enum reg_class cl
= reg_class_for_constraint (cn
);
3240 auto *filter
= get_register_filter (cn
);
3244 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
3245 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
3247 && reg_fits_class_p (op
, cl
, offset
, mode
)
3249 || TEST_HARD_REG_BIT (*filter
,
3250 REGNO (op
) + offset
))))
3254 else if (constraint_satisfied_p (op
, cn
))
3257 else if ((insn_extra_memory_constraint (cn
)
3258 || insn_extra_relaxed_memory_constraint (cn
))
3259 /* Every memory operand can be reloaded to fit. */
3260 && ((strict
< 0 && MEM_P (op
))
3261 /* Before reload, accept what reload can turn
3263 || (strict
< 0 && CONSTANT_P (op
))
3264 /* Before reload, accept a pseudo or hard register,
3265 since LRA can turn it into a mem. */
3266 || (strict
< 0 && targetm
.lra_p () && REG_P (op
))
3267 /* During reload, accept a pseudo */
3268 || (reload_in_progress
&& REG_P (op
)
3269 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
3271 else if (insn_extra_address_constraint (cn
)
3272 /* Every address operand can be reloaded to fit. */
3275 /* Cater to architectures like IA-64 that define extra memory
3276 constraints without using define_memory_constraint. */
3277 else if (reload_in_progress
3279 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
3280 && reg_renumber
[REGNO (op
)] < 0
3281 && reg_equiv_mem (REGNO (op
)) != 0
3282 && constraint_satisfied_p
3283 (reg_equiv_mem (REGNO (op
)), cn
))
3288 while (p
+= len
, c
);
3290 constraints
[opno
] = p
;
3291 /* If this operand did not win somehow,
3292 this alternative loses. */
3296 /* This alternative won; the operands are ok.
3297 Change whichever operands this alternative says to change. */
3302 /* See if any earlyclobber operand conflicts with some other
3305 if (strict
> 0 && seen_earlyclobber_at
>= 0)
3306 for (eopno
= seen_earlyclobber_at
;
3307 eopno
< recog_data
.n_operands
;
3309 /* Ignore earlyclobber operands now in memory,
3310 because we would often report failure when we have
3311 two memory operands, one of which was formerly a REG. */
3312 if (earlyclobber
[eopno
]
3313 && REG_P (recog_data
.operand
[eopno
]))
3314 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
3315 if ((MEM_P (recog_data
.operand
[opno
])
3316 || recog_data
.operand_type
[opno
] != OP_OUT
)
3318 /* Ignore things like match_operator operands. */
3319 && *recog_data
.constraints
[opno
] != 0
3320 && ! (matching_operands
[opno
] == eopno
3321 && operands_match_p (recog_data
.operand
[opno
],
3322 recog_data
.operand
[eopno
]))
3323 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
3324 recog_data
.operand
[eopno
]))
3329 while (--funny_match_index
>= 0)
3331 recog_data
.operand
[funny_match
[funny_match_index
].other
]
3332 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
3335 /* For operands without < or > constraints reject side-effects. */
3336 if (AUTO_INC_DEC
&& recog_data
.is_asm
)
3338 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
3339 if (MEM_P (recog_data
.operand
[opno
]))
3340 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
3348 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
3349 && strchr (recog_data
.constraints
[opno
], '>')
3362 which_alternative
++;
3364 while (which_alternative
< recog_data
.n_alternatives
);
3366 which_alternative
= -1;
3367 /* If we are about to reject this, but we are not to test strictly,
3368 try a very loose test. Only return failure if it fails also. */
3370 return constrain_operands (-1, alternatives
);
3375 /* Return true iff OPERAND (assumed to be a REG rtx)
3376 is a hard reg in class CLASS when its regno is offset by OFFSET
3377 and changed to mode MODE.
3378 If REG occupies multiple hard regs, all of them must be in CLASS. */
3381 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
3384 unsigned int regno
= REGNO (operand
);
3389 /* Regno must not be a pseudo register. Offset may be negative. */
3390 return (HARD_REGISTER_NUM_P (regno
)
3391 && HARD_REGISTER_NUM_P (regno
+ offset
)
3392 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
3396 /* Split single instruction. Helper function for split_all_insns and
3397 split_all_insns_noflow. Return last insn in the sequence if successful,
3398 or NULL if unsuccessful. */
3401 split_insn (rtx_insn
*insn
)
3403 /* Split insns here to get max fine-grain parallelism. */
3404 rtx_insn
*first
= PREV_INSN (insn
);
3405 rtx_insn
*last
= try_split (PATTERN (insn
), insn
, 1);
3406 rtx insn_set
, last_set
, note
;
3411 /* If the original instruction was a single set that was known to be
3412 equivalent to a constant, see if we can say the same about the last
3413 instruction in the split sequence. The two instructions must set
3414 the same destination. */
3415 insn_set
= single_set (insn
);
3418 last_set
= single_set (last
);
3419 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
3421 note
= find_reg_equal_equiv_note (insn
);
3422 if (note
&& CONSTANT_P (XEXP (note
, 0)))
3423 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
3424 else if (CONSTANT_P (SET_SRC (insn_set
)))
3425 set_unique_reg_note (last
, REG_EQUAL
,
3426 copy_rtx (SET_SRC (insn_set
)));
3430 /* try_split returns the NOTE that INSN became. */
3431 SET_INSN_DELETED (insn
);
3433 /* ??? Coddle to md files that generate subregs in post-reload
3434 splitters instead of computing the proper hard register. */
3435 if (reload_completed
&& first
!= last
)
3437 first
= NEXT_INSN (first
);
3441 cleanup_subreg_operands (first
);
3444 first
= NEXT_INSN (first
);
3451 /* Split all insns in the function. If UPD_LIFE, update life info after. */
3454 split_all_insns (void)
3457 bool need_cfg_cleanup
= false;
3460 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
3461 bitmap_clear (blocks
);
3464 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
3466 rtx_insn
*insn
, *next
;
3467 bool finish
= false;
3469 rtl_profile_for_bb (bb
);
3470 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
3472 /* Can't use `next_real_insn' because that might go across
3473 CODE_LABELS and short-out basic blocks. */
3474 next
= NEXT_INSN (insn
);
3475 finish
= (insn
== BB_END (bb
));
3477 /* If INSN has a REG_EH_REGION note and we split INSN, the
3478 resulting split may not have/need REG_EH_REGION notes.
3480 If that happens and INSN was the last reference to the
3481 given EH region, then the EH region will become unreachable.
3482 We cannot leave the unreachable blocks in the CFG as that
3483 will trigger a checking failure.
3485 So track if INSN has a REG_EH_REGION note. If so and we
3486 split INSN, then trigger a CFG cleanup. */
3487 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3490 rtx set
= single_set (insn
);
3492 /* Don't split no-op move insns. These should silently
3493 disappear later in final. Splitting such insns would
3494 break the code that handles LIBCALL blocks. */
3495 if (set
&& set_noop_p (set
))
3497 /* Nops get in the way while scheduling, so delete them
3498 now if register allocation has already been done. It
3499 is too risky to try to do this before register
3500 allocation, and there are unlikely to be very many
3501 nops then anyways. */
3502 if (reload_completed
)
3503 delete_insn_and_edges (insn
);
3505 need_cfg_cleanup
= true;
3509 if (split_insn (insn
))
3511 bitmap_set_bit (blocks
, bb
->index
);
3514 need_cfg_cleanup
= true;
3521 default_rtl_profile ();
3524 find_many_sub_basic_blocks (blocks
);
3526 /* Splitting could drop an REG_EH_REGION if it potentially
3527 trapped in its original form, but does not in its split
3528 form. Consider a FLOAT_TRUNCATE which splits into a memory
3529 store/load pair and -fnon-call-exceptions. */
3530 if (need_cfg_cleanup
)
3534 checking_verify_flow_info ();
3537 /* Same as split_all_insns, but do not expect CFG to be available.
3538 Used by machine dependent reorg passes. */
3541 split_all_insns_noflow (void)
3543 rtx_insn
*next
, *insn
;
3545 for (insn
= get_insns (); insn
; insn
= next
)
3547 next
= NEXT_INSN (insn
);
3550 /* Don't split no-op move insns. These should silently
3551 disappear later in final. Splitting such insns would
3552 break the code that handles LIBCALL blocks. */
3553 rtx set
= single_set (insn
);
3554 if (set
&& set_noop_p (set
))
3556 /* Nops get in the way while scheduling, so delete them
3557 now if register allocation has already been done. It
3558 is too risky to try to do this before register
3559 allocation, and there are unlikely to be very many
3562 ??? Should we use delete_insn when the CFG isn't valid? */
3563 if (reload_completed
)
3564 delete_insn_and_edges (insn
);
3572 struct peep2_insn_data
3578 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
3579 static int peep2_current
;
3581 static bool peep2_do_rebuild_jump_labels
;
3582 static bool peep2_do_cleanup_cfg
;
3584 /* The number of instructions available to match a peep2. */
3585 int peep2_current_count
;
3587 /* A marker indicating the last insn of the block. The live_before regset
3588 for this element is correct, indicating DF_LIVE_OUT for the block. */
3589 #define PEEP2_EOB invalid_insn_rtx
3591 /* Wrap N to fit into the peep2_insn_data buffer. */
3594 peep2_buf_position (int n
)
3596 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3597 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3601 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3602 does not exist. Used by the recognizer to find the next insn to match
3603 in a multi-insn pattern. */
3606 peep2_next_insn (int n
)
3608 gcc_assert (n
<= peep2_current_count
);
3610 n
= peep2_buf_position (peep2_current
+ n
);
3612 return peep2_insn_data
[n
].insn
;
3615 /* Return true if REGNO is dead before the Nth non-note insn
3619 peep2_regno_dead_p (int ofs
, int regno
)
3621 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3623 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3625 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3627 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3630 /* Similarly for a REG. */
3633 peep2_reg_dead_p (int ofs
, rtx reg
)
3635 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3637 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3639 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3641 unsigned int end_regno
= END_REGNO (reg
);
3642 for (unsigned int regno
= REGNO (reg
); regno
< end_regno
; ++regno
)
3643 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
))
3648 /* Regno offset to be used in the register search. */
3649 static int search_ofs
;
3651 /* Try to find a hard register of mode MODE, matching the register class in
3652 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3653 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3654 in which case the only condition is that the register must be available
3655 before CURRENT_INSN.
3656 Registers that already have bits set in REG_SET will not be considered.
3658 If an appropriate register is available, it will be returned and the
3659 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3663 peep2_find_free_register (int from
, int to
, const char *class_str
,
3664 machine_mode mode
, HARD_REG_SET
*reg_set
)
3671 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3672 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3674 from
= peep2_buf_position (peep2_current
+ from
);
3675 to
= peep2_buf_position (peep2_current
+ to
);
3677 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3678 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3682 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3684 /* Don't use registers set or clobbered by the insn. */
3685 FOR_EACH_INSN_DEF (def
, peep2_insn_data
[from
].insn
)
3686 SET_HARD_REG_BIT (live
, DF_REF_REGNO (def
));
3688 from
= peep2_buf_position (from
+ 1);
3691 cl
= reg_class_for_constraint (lookup_constraint (class_str
));
3693 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3695 int raw_regno
, regno
, j
;
3698 /* Distribute the free registers as much as possible. */
3699 raw_regno
= search_ofs
+ i
;
3700 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3701 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3702 #ifdef REG_ALLOC_ORDER
3703 regno
= reg_alloc_order
[raw_regno
];
3708 /* Can it support the mode we need? */
3709 if (!targetm
.hard_regno_mode_ok (regno
, mode
))
3713 for (j
= 0; success
&& j
< hard_regno_nregs (regno
, mode
); j
++)
3715 /* Don't allocate fixed registers. */
3716 if (fixed_regs
[regno
+ j
])
3721 /* Don't allocate global registers. */
3722 if (global_regs
[regno
+ j
])
3727 /* Make sure the register is of the right class. */
3728 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3733 /* And that we don't create an extra save/restore. */
3734 if (! crtl
->abi
->clobbers_full_reg_p (regno
+ j
)
3735 && ! df_regs_ever_live_p (regno
+ j
))
3741 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3747 /* And we don't clobber traceback for noreturn functions. */
3748 if ((regno
+ j
== FRAME_POINTER_REGNUM
3749 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3750 && (! reload_completed
|| frame_pointer_needed
))
3756 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3757 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3766 add_to_hard_reg_set (reg_set
, mode
, regno
);
3768 /* Start the next search with the next register. */
3769 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3771 search_ofs
= raw_regno
;
3773 return gen_rtx_REG (mode
, regno
);
3781 /* Forget all currently tracked instructions, only remember current
3785 peep2_reinit_state (regset live
)
3789 /* Indicate that all slots except the last holds invalid data. */
3790 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3791 peep2_insn_data
[i
].insn
= NULL
;
3792 peep2_current_count
= 0;
3794 /* Indicate that the last slot contains live_after data. */
3795 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3796 peep2_current
= MAX_INSNS_PER_PEEP2
;
3798 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3801 /* Copies frame related info of an insn (OLD_INSN) to the single
3802 insn (NEW_INSN) that was obtained by splitting OLD_INSN. */
3805 copy_frame_info_to_split_insn (rtx_insn
*old_insn
, rtx_insn
*new_insn
)
3807 bool any_note
= false;
3810 if (!RTX_FRAME_RELATED_P (old_insn
))
3813 RTX_FRAME_RELATED_P (new_insn
) = 1;
3815 /* Allow the backend to fill in a note during the split. */
3816 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3817 switch (REG_NOTE_KIND (note
))
3819 case REG_FRAME_RELATED_EXPR
:
3820 case REG_CFA_DEF_CFA
:
3821 case REG_CFA_ADJUST_CFA
:
3822 case REG_CFA_OFFSET
:
3823 case REG_CFA_REGISTER
:
3824 case REG_CFA_EXPRESSION
:
3825 case REG_CFA_RESTORE
:
3826 case REG_CFA_SET_VDRAP
:
3833 /* If the backend didn't supply a note, copy one over. */
3835 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3836 switch (REG_NOTE_KIND (note
))
3838 case REG_FRAME_RELATED_EXPR
:
3839 case REG_CFA_DEF_CFA
:
3840 case REG_CFA_ADJUST_CFA
:
3841 case REG_CFA_OFFSET
:
3842 case REG_CFA_REGISTER
:
3843 case REG_CFA_EXPRESSION
:
3844 case REG_CFA_RESTORE
:
3845 case REG_CFA_SET_VDRAP
:
3846 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3853 /* If there still isn't a note, make sure the unwind info sees the
3854 same expression as before the split. */
3857 rtx old_set
, new_set
;
3859 /* The old insn had better have been simple, or annotated. */
3860 old_set
= single_set (old_insn
);
3861 gcc_assert (old_set
!= NULL
);
3863 new_set
= single_set (new_insn
);
3864 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3865 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3868 /* Copy prologue/epilogue status. This is required in order to keep
3869 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3870 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3873 /* While scanning basic block BB, we found a match of length MATCH_LEN + 1,
3874 starting at INSN. Perform the replacement, removing the old insns and
3875 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3876 if the replacement is rejected. */
3879 peep2_attempt (basic_block bb
, rtx_insn
*insn
, int match_len
, rtx_insn
*attempt
)
3882 rtx_insn
*last
, *before_try
, *x
;
3883 rtx eh_note
, as_note
;
3886 bool was_call
= false;
3888 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3889 match more than one insn, or to be split into more than one insn. */
3890 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3891 if (RTX_FRAME_RELATED_P (old_insn
))
3896 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3897 may be in the stream for the purpose of register allocation. */
3898 if (active_insn_p (attempt
))
3901 new_insn
= next_active_insn (attempt
);
3902 if (next_active_insn (new_insn
))
3905 /* We have a 1-1 replacement. Copy over any frame-related info. */
3906 copy_frame_info_to_split_insn (old_insn
, new_insn
);
3909 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3910 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3911 cfg-related call notes. */
3912 for (i
= 0; i
<= match_len
; ++i
)
3917 j
= peep2_buf_position (peep2_current
+ i
);
3918 old_insn
= peep2_insn_data
[j
].insn
;
3919 if (!CALL_P (old_insn
))
3924 while (new_insn
!= NULL_RTX
)
3926 if (CALL_P (new_insn
))
3928 new_insn
= NEXT_INSN (new_insn
);
3931 gcc_assert (new_insn
!= NULL_RTX
);
3933 CALL_INSN_FUNCTION_USAGE (new_insn
)
3934 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3935 SIBLING_CALL_P (new_insn
) = SIBLING_CALL_P (old_insn
);
3937 for (note
= REG_NOTES (old_insn
);
3939 note
= XEXP (note
, 1))
3940 switch (REG_NOTE_KIND (note
))
3945 case REG_CALL_NOCF_CHECK
:
3946 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3950 /* Discard all other reg notes. */
3954 /* Croak if there is another call in the sequence. */
3955 while (++i
<= match_len
)
3957 j
= peep2_buf_position (peep2_current
+ i
);
3958 old_insn
= peep2_insn_data
[j
].insn
;
3959 gcc_assert (!CALL_P (old_insn
));
3964 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3965 move those notes over to the new sequence. */
3967 for (i
= match_len
; i
>= 0; --i
)
3969 int j
= peep2_buf_position (peep2_current
+ i
);
3970 old_insn
= peep2_insn_data
[j
].insn
;
3972 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3977 i
= peep2_buf_position (peep2_current
+ match_len
);
3978 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3980 /* Replace the old sequence with the new. */
3981 rtx_insn
*peepinsn
= peep2_insn_data
[i
].insn
;
3982 last
= emit_insn_after_setloc (attempt
,
3983 peep2_insn_data
[i
].insn
,
3984 INSN_LOCATION (peepinsn
));
3985 if (JUMP_P (peepinsn
) && JUMP_P (last
))
3986 CROSSING_JUMP_P (last
) = CROSSING_JUMP_P (peepinsn
);
3987 before_try
= PREV_INSN (insn
);
3988 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3990 /* Re-insert the EH_REGION notes. */
3991 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3996 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3997 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
4001 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
4004 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
4005 if (x
!= BB_END (bb
)
4006 && (can_throw_internal (x
)
4007 || can_nonlocal_goto (x
)))
4012 nfte
= split_block (bb
, x
);
4013 flags
= (eh_edge
->flags
4014 & (EDGE_EH
| EDGE_ABNORMAL
));
4016 flags
|= EDGE_ABNORMAL_CALL
;
4017 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
4020 nehe
->probability
= eh_edge
->probability
;
4021 nfte
->probability
= nehe
->probability
.invert ();
4023 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
4028 /* Converting possibly trapping insn to non-trapping is
4029 possible. Zap dummy outgoing edges. */
4030 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
4033 /* Re-insert the ARGS_SIZE notes. */
4035 fixup_args_size_notes (before_try
, last
, get_args_size (as_note
));
4037 /* Scan the new insns for embedded side effects and add appropriate
4040 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
4041 if (NONDEBUG_INSN_P (x
))
4042 add_auto_inc_notes (x
, PATTERN (x
));
4044 /* If we generated a jump instruction, it won't have
4045 JUMP_LABEL set. Recompute after we're done. */
4046 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
4049 peep2_do_rebuild_jump_labels
= true;
4056 /* After performing a replacement in basic block BB, fix up the life
4057 information in our buffer. LAST is the last of the insns that we
4058 emitted as a replacement. PREV is the insn before the start of
4059 the replacement. MATCH_LEN + 1 is the number of instructions that were
4060 matched, and which now need to be replaced in the buffer. */
4063 peep2_update_life (basic_block bb
, int match_len
, rtx_insn
*last
,
4066 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
4070 INIT_REG_SET (&live
);
4071 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
4073 gcc_assert (peep2_current_count
>= match_len
+ 1);
4074 peep2_current_count
-= match_len
+ 1;
4082 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
4084 peep2_current_count
++;
4086 i
= MAX_INSNS_PER_PEEP2
;
4087 peep2_insn_data
[i
].insn
= x
;
4088 df_simulate_one_insn_backwards (bb
, x
, &live
);
4089 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
4095 CLEAR_REG_SET (&live
);
4100 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
4101 Return true if we added it, false otherwise. The caller will try to match
4102 peepholes against the buffer if we return false; otherwise it will try to
4103 add more instructions to the buffer. */
4106 peep2_fill_buffer (basic_block bb
, rtx_insn
*insn
, regset live
)
4110 /* Once we have filled the maximum number of insns the buffer can hold,
4111 allow the caller to match the insns against peepholes. We wait until
4112 the buffer is full in case the target has similar peepholes of different
4113 length; we always want to match the longest if possible. */
4114 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
4117 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
4118 any other pattern, lest it change the semantics of the frame info. */
4119 if (RTX_FRAME_RELATED_P (insn
))
4121 /* Let the buffer drain first. */
4122 if (peep2_current_count
> 0)
4124 /* Now the insn will be the only thing in the buffer. */
4127 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
4128 peep2_insn_data
[pos
].insn
= insn
;
4129 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
4130 peep2_current_count
++;
4132 df_simulate_one_insn_forwards (bb
, insn
, live
);
4136 /* Perform the peephole2 optimization pass. */
4139 peephole2_optimize (void)
4146 peep2_do_cleanup_cfg
= false;
4147 peep2_do_rebuild_jump_labels
= false;
4149 df_set_flags (DF_LR_RUN_DCE
);
4150 df_note_add_problem ();
4153 /* Initialize the regsets we're going to use. */
4154 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
4155 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
4157 live
= BITMAP_ALLOC (®_obstack
);
4159 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
4161 bool past_end
= false;
4164 rtl_profile_for_bb (bb
);
4166 /* Start up propagation. */
4167 bitmap_copy (live
, DF_LR_IN (bb
));
4168 df_simulate_initialize_forwards (bb
, live
);
4169 peep2_reinit_state (live
);
4171 insn
= BB_HEAD (bb
);
4174 rtx_insn
*attempt
, *head
;
4177 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
4180 insn
= NEXT_INSN (insn
);
4181 if (insn
== NEXT_INSN (BB_END (bb
)))
4185 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
4188 /* If we did not fill an empty buffer, it signals the end of the
4190 if (peep2_current_count
== 0)
4193 /* The buffer filled to the current maximum, so try to match. */
4195 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
4196 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
4197 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
4199 /* Match the peephole. */
4200 head
= peep2_insn_data
[peep2_current
].insn
;
4201 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
4202 if (attempt
!= NULL
)
4204 rtx_insn
*last
= peep2_attempt (bb
, head
, match_len
, attempt
);
4207 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
4212 /* No match: advance the buffer by one insn. */
4213 peep2_current
= peep2_buf_position (peep2_current
+ 1);
4214 peep2_current_count
--;
4218 default_rtl_profile ();
4219 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
4220 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
4222 if (peep2_do_rebuild_jump_labels
)
4223 rebuild_jump_labels (get_insns ());
4224 if (peep2_do_cleanup_cfg
)
4225 cleanup_cfg (CLEANUP_CFG_CHANGED
);
4228 /* Common predicates for use with define_bypass. */
4230 /* Helper function for store_data_bypass_p, handle just a single SET
4234 store_data_bypass_p_1 (rtx_insn
*out_insn
, rtx in_set
)
4236 if (!MEM_P (SET_DEST (in_set
)))
4239 rtx out_set
= single_set (out_insn
);
4241 return !reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
));
4243 rtx out_pat
= PATTERN (out_insn
);
4244 if (GET_CODE (out_pat
) != PARALLEL
)
4247 for (int i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
4249 rtx out_exp
= XVECEXP (out_pat
, 0, i
);
4251 if (GET_CODE (out_exp
) == CLOBBER
|| GET_CODE (out_exp
) == USE
)
4254 gcc_assert (GET_CODE (out_exp
) == SET
);
4256 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
4263 /* True if the dependency between OUT_INSN and IN_INSN is on the store
4264 data not the address operand(s) of the store. IN_INSN and OUT_INSN
4265 must be either a single_set or a PARALLEL with SETs inside. */
4268 store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
4270 rtx in_set
= single_set (in_insn
);
4272 return store_data_bypass_p_1 (out_insn
, in_set
);
4274 rtx in_pat
= PATTERN (in_insn
);
4275 if (GET_CODE (in_pat
) != PARALLEL
)
4278 for (int i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
4280 rtx in_exp
= XVECEXP (in_pat
, 0, i
);
4282 if (GET_CODE (in_exp
) == CLOBBER
|| GET_CODE (in_exp
) == USE
)
4285 gcc_assert (GET_CODE (in_exp
) == SET
);
4287 if (!store_data_bypass_p_1 (out_insn
, in_exp
))
4294 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
4295 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
4296 or multiple set; IN_INSN should be single_set for truth, but for convenience
4297 of insn categorization may be any JUMP or CALL insn. */
4300 if_test_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
4302 rtx out_set
, in_set
;
4304 in_set
= single_set (in_insn
);
4307 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
4311 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
4313 in_set
= SET_SRC (in_set
);
4315 out_set
= single_set (out_insn
);
4318 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
4319 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
4327 out_pat
= PATTERN (out_insn
);
4328 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
4330 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
4332 rtx exp
= XVECEXP (out_pat
, 0, i
);
4334 if (GET_CODE (exp
) == CLOBBER
)
4337 gcc_assert (GET_CODE (exp
) == SET
);
4339 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
4340 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
4349 rest_of_handle_peephole2 (void)
4352 peephole2_optimize ();
4359 const pass_data pass_data_peephole2
=
4361 RTL_PASS
, /* type */
4362 "peephole2", /* name */
4363 OPTGROUP_NONE
, /* optinfo_flags */
4364 TV_PEEPHOLE2
, /* tv_id */
4365 0, /* properties_required */
4366 0, /* properties_provided */
4367 0, /* properties_destroyed */
4368 0, /* todo_flags_start */
4369 TODO_df_finish
, /* todo_flags_finish */
4372 class pass_peephole2
: public rtl_opt_pass
4375 pass_peephole2 (gcc::context
*ctxt
)
4376 : rtl_opt_pass (pass_data_peephole2
, ctxt
)
4379 /* opt_pass methods: */
4380 /* The epiphany backend creates a second instance of this pass, so we need
4382 opt_pass
* clone () final override
{ return new pass_peephole2 (m_ctxt
); }
4383 bool gate (function
*) final override
4385 return (optimize
> 0 && flag_peephole2
);
4387 unsigned int execute (function
*) final override
4389 return rest_of_handle_peephole2 ();
4392 }; // class pass_peephole2
4397 make_pass_peephole2 (gcc::context
*ctxt
)
4399 return new pass_peephole2 (ctxt
);
4404 const pass_data pass_data_split_all_insns
=
4406 RTL_PASS
, /* type */
4407 "split1", /* name */
4408 OPTGROUP_NONE
, /* optinfo_flags */
4409 TV_NONE
, /* tv_id */
4410 0, /* properties_required */
4411 PROP_rtl_split_insns
, /* properties_provided */
4412 0, /* properties_destroyed */
4413 0, /* todo_flags_start */
4414 0, /* todo_flags_finish */
4417 class pass_split_all_insns
: public rtl_opt_pass
4420 pass_split_all_insns (gcc::context
*ctxt
)
4421 : rtl_opt_pass (pass_data_split_all_insns
, ctxt
)
4424 /* opt_pass methods: */
4425 /* The epiphany backend creates a second instance of this pass, so
4426 we need a clone method. */
4427 opt_pass
* clone () final override
4429 return new pass_split_all_insns (m_ctxt
);
4431 unsigned int execute (function
*) final override
4437 }; // class pass_split_all_insns
4442 make_pass_split_all_insns (gcc::context
*ctxt
)
4444 return new pass_split_all_insns (ctxt
);
4449 const pass_data pass_data_split_after_reload
=
4451 RTL_PASS
, /* type */
4452 "split2", /* name */
4453 OPTGROUP_NONE
, /* optinfo_flags */
4454 TV_NONE
, /* tv_id */
4455 0, /* properties_required */
4456 0, /* properties_provided */
4457 0, /* properties_destroyed */
4458 0, /* todo_flags_start */
4459 0, /* todo_flags_finish */
4462 class pass_split_after_reload
: public rtl_opt_pass
4465 pass_split_after_reload (gcc::context
*ctxt
)
4466 : rtl_opt_pass (pass_data_split_after_reload
, ctxt
)
4469 /* opt_pass methods: */
4470 bool gate (function
*) final override
4472 /* If optimizing, then go ahead and split insns now. */
4473 return optimize
> 0;
4476 unsigned int execute (function
*) final override
4482 }; // class pass_split_after_reload
4487 make_pass_split_after_reload (gcc::context
*ctxt
)
4489 return new pass_split_after_reload (ctxt
);
4493 enable_split_before_sched2 (void)
4495 #ifdef INSN_SCHEDULING
4496 return optimize
> 0 && flag_schedule_insns_after_reload
;
4504 const pass_data pass_data_split_before_sched2
=
4506 RTL_PASS
, /* type */
4507 "split3", /* name */
4508 OPTGROUP_NONE
, /* optinfo_flags */
4509 TV_NONE
, /* tv_id */
4510 0, /* properties_required */
4511 0, /* properties_provided */
4512 0, /* properties_destroyed */
4513 0, /* todo_flags_start */
4514 0, /* todo_flags_finish */
4517 class pass_split_before_sched2
: public rtl_opt_pass
4520 pass_split_before_sched2 (gcc::context
*ctxt
)
4521 : rtl_opt_pass (pass_data_split_before_sched2
, ctxt
)
4524 /* opt_pass methods: */
4525 bool gate (function
*) final override
4527 return enable_split_before_sched2 ();
4530 unsigned int execute (function
*) final override
4536 }; // class pass_split_before_sched2
4541 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4543 return new pass_split_before_sched2 (ctxt
);
4548 const pass_data pass_data_split_before_regstack
=
4550 RTL_PASS
, /* type */
4551 "split4", /* name */
4552 OPTGROUP_NONE
, /* optinfo_flags */
4553 TV_NONE
, /* tv_id */
4554 0, /* properties_required */
4555 0, /* properties_provided */
4556 0, /* properties_destroyed */
4557 0, /* todo_flags_start */
4558 0, /* todo_flags_finish */
4561 class pass_split_before_regstack
: public rtl_opt_pass
4564 pass_split_before_regstack (gcc::context
*ctxt
)
4565 : rtl_opt_pass (pass_data_split_before_regstack
, ctxt
)
4568 /* opt_pass methods: */
4569 bool gate (function
*) final override
;
4570 unsigned int execute (function
*) final override
4576 }; // class pass_split_before_regstack
4579 pass_split_before_regstack::gate (function
*)
4581 #if HAVE_ATTR_length && defined (STACK_REGS)
4582 /* If flow2 creates new instructions which need splitting
4583 and scheduling after reload is not done, they might not be
4584 split until final which doesn't allow splitting
4585 if HAVE_ATTR_length. Selective scheduling can result in
4586 further instructions that need splitting. */
4587 #ifdef INSN_SCHEDULING
4588 return !enable_split_before_sched2 () || flag_selective_scheduling2
;
4590 return !enable_split_before_sched2 ();
4600 make_pass_split_before_regstack (gcc::context
*ctxt
)
4602 return new pass_split_before_regstack (ctxt
);
4607 const pass_data pass_data_split_for_shorten_branches
=
4609 RTL_PASS
, /* type */
4610 "split5", /* name */
4611 OPTGROUP_NONE
, /* optinfo_flags */
4612 TV_NONE
, /* tv_id */
4613 0, /* properties_required */
4614 0, /* properties_provided */
4615 0, /* properties_destroyed */
4616 0, /* todo_flags_start */
4617 0, /* todo_flags_finish */
4620 class pass_split_for_shorten_branches
: public rtl_opt_pass
4623 pass_split_for_shorten_branches (gcc::context
*ctxt
)
4624 : rtl_opt_pass (pass_data_split_for_shorten_branches
, ctxt
)
4627 /* opt_pass methods: */
4628 bool gate (function
*) final override
4630 /* The placement of the splitting that we do for shorten_branches
4631 depends on whether regstack is used by the target or not. */
4632 #if HAVE_ATTR_length && !defined (STACK_REGS)
4639 unsigned int execute (function
*) final override
4641 split_all_insns_noflow ();
4645 }; // class pass_split_for_shorten_branches
4650 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4652 return new pass_split_for_shorten_branches (ctxt
);
4655 /* (Re)initialize the target information after a change in target. */
4660 /* The information is zero-initialized, so we don't need to do anything
4661 first time round. */
4662 if (!this_target_recog
->x_initialized
)
4664 this_target_recog
->x_initialized
= true;
4667 memset (this_target_recog
->x_bool_attr_masks
, 0,
4668 sizeof (this_target_recog
->x_bool_attr_masks
));
4669 for (unsigned int i
= 0; i
< NUM_INSN_CODES
; ++i
)
4670 if (this_target_recog
->x_op_alt
[i
])
4672 free (this_target_recog
->x_op_alt
[i
]);
4673 this_target_recog
->x_op_alt
[i
] = 0;