1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
27 #include "tree-chrec.h"
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
43 innermost_loop_behavior
46 init 3 * D_j + offsetof (b) 28
50 struct innermost_loop_behavior
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
64 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
65 (note that this reference does not have to be valid, if zero does not
66 belong to the range of the array; hence it is not recommended to use
67 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
68 set to the loop-invariant part of the address of the object, except for
69 the constant offset. For the examples above,
71 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
82 /* A list of chrecs. Access functions of the indices. */
83 VEC(tree
,heap
) *access_fns
;
88 /* The alias information that should be used for new pointers to this
89 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
91 struct ptr_info_def
*ptr_info
;
93 /* The set of virtual operands corresponding to this memory reference,
94 serving as a description of the alias information for the memory
95 reference. This could be eliminated if we had alias oracle. */
101 /* A pointer to the statement that contains this DR. */
104 /* A pointer to the memory reference. */
107 /* Auxiliary info specific to a pass. */
110 /* True when the data reference is in RHS of a stmt. */
113 /* Behavior of the memory reference in the innermost loop. */
114 struct innermost_loop_behavior innermost
;
116 /* Decomposition to indices for alias analysis. */
117 struct indices indices
;
119 /* Alias information for the data reference. */
120 struct dr_alias alias
;
123 typedef struct data_reference
*data_reference_p
;
124 DEF_VEC_P(data_reference_p
);
125 DEF_VEC_ALLOC_P (data_reference_p
, heap
);
127 #define DR_STMT(DR) (DR)->stmt
128 #define DR_REF(DR) (DR)->ref
129 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
130 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
131 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
132 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
133 #define DR_IS_READ(DR) (DR)->is_read
134 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
135 #define DR_OFFSET(DR) (DR)->innermost.offset
136 #define DR_INIT(DR) (DR)->innermost.init
137 #define DR_STEP(DR) (DR)->innermost.step
138 #define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag
139 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
140 #define DR_VOPS(DR) (DR)->alias.vops
141 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
143 enum data_dependence_direction
{
147 dir_positive_or_negative
,
148 dir_positive_or_equal
,
149 dir_negative_or_equal
,
154 /* The description of the grid of iterations that overlap. At most
155 two loops are considered at the same time just now, hence at most
156 two functions are needed. For each of the functions, we store
157 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
158 where x, y, ... are variables. */
162 /* Special values of N. */
163 #define NO_DEPENDENCE 0
164 #define NOT_KNOWN (MAX_DIM + 1)
165 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
166 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
167 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
169 typedef VEC (tree
, heap
) *affine_fn
;
174 affine_fn fns
[MAX_DIM
];
177 /* What is a subscript? Given two array accesses a subscript is the
178 tuple composed of the access functions for a given dimension.
179 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
180 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
181 are stored in the data_dependence_relation structure under the form
182 of an array of subscripts. */
186 /* A description of the iterations for which the elements are
188 conflict_function
*conflicting_iterations_in_a
;
189 conflict_function
*conflicting_iterations_in_b
;
191 /* This field stores the information about the iteration domain
192 validity of the dependence relation. */
195 /* Distance from the iteration that access a conflicting element in
196 A to the iteration that access this same conflicting element in
197 B. The distance is a tree scalar expression, i.e. a constant or a
198 symbolic expression, but certainly not a chrec function. */
202 typedef struct subscript
*subscript_p
;
203 DEF_VEC_P(subscript_p
);
204 DEF_VEC_ALLOC_P (subscript_p
, heap
);
206 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
207 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
208 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
209 #define SUB_DISTANCE(SUB) SUB->distance
211 /* A data_dependence_relation represents a relation between two
212 data_references A and B. */
214 struct data_dependence_relation
217 struct data_reference
*a
;
218 struct data_reference
*b
;
220 /* When the dependence relation is affine, it can be represented by
221 a distance vector. */
224 /* Set to true when the dependence relation is on the same data
226 bool self_reference_p
;
228 /* A "yes/no/maybe" field for the dependence relation:
230 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
231 relation between A and B, and the description of this relation
232 is given in the SUBSCRIPTS array,
234 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
237 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
238 but the analyzer cannot be more specific. */
241 /* For each subscript in the dependence test, there is an element in
242 this array. This is the attribute that labels the edge A->B of
243 the data_dependence_relation. */
244 VEC (subscript_p
, heap
) *subscripts
;
246 /* The analyzed loop nest. */
247 VEC (loop_p
, heap
) *loop_nest
;
249 /* An index in loop_nest for the innermost loop that varies for
250 this data dependence relation. */
253 /* The classic direction vector. */
254 VEC (lambda_vector
, heap
) *dir_vects
;
256 /* The classic distance vector. */
257 VEC (lambda_vector
, heap
) *dist_vects
;
259 /* Is the dependence reversed with respect to the lexicographic order? */
263 typedef struct data_dependence_relation
*ddr_p
;
265 DEF_VEC_ALLOC_P(ddr_p
,heap
);
267 #define DDR_A(DDR) DDR->a
268 #define DDR_B(DDR) DDR->b
269 #define DDR_AFFINE_P(DDR) DDR->affine_p
270 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
271 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
272 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
273 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
275 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
276 /* The size of the direction/distance vectors: the number of loops in
278 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
279 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
280 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
282 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
283 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
284 #define DDR_NUM_DIST_VECTS(DDR) \
285 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
286 #define DDR_NUM_DIR_VECTS(DDR) \
287 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
288 #define DDR_DIR_VECT(DDR, I) \
289 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
290 #define DDR_DIST_VECT(DDR, I) \
291 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
292 #define DDR_REVERSED_P(DDR) DDR->reversed_p
296 /* Describes a location of a memory reference. */
298 typedef struct data_ref_loc_d
300 /* Position of the memory reference. */
303 /* True if the memory reference is read. */
307 DEF_VEC_O (data_ref_loc
);
308 DEF_VEC_ALLOC_O (data_ref_loc
, heap
);
310 bool get_references_in_stmt (tree
, VEC (data_ref_loc
, heap
) **);
311 void dr_analyze_innermost (struct data_reference
*);
312 extern void compute_data_dependences_for_loop (struct loop
*, bool,
313 VEC (data_reference_p
, heap
) **,
314 VEC (ddr_p
, heap
) **);
315 extern void print_direction_vector (FILE *, lambda_vector
, int);
316 extern void print_dir_vectors (FILE *, VEC (lambda_vector
, heap
) *, int);
317 extern void print_dist_vectors (FILE *, VEC (lambda_vector
, heap
) *, int);
318 extern void dump_subscript (FILE *, struct subscript
*);
319 extern void dump_ddrs (FILE *, VEC (ddr_p
, heap
) *);
320 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p
, heap
) *);
321 extern void dump_data_reference (FILE *, struct data_reference
*);
322 extern void dump_data_references (FILE *, VEC (data_reference_p
, heap
) *);
323 extern void debug_data_dependence_relation (struct data_dependence_relation
*);
324 extern void dump_data_dependence_relation (FILE *,
325 struct data_dependence_relation
*);
326 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p
, heap
) *);
327 extern void debug_data_dependence_relations (VEC (ddr_p
, heap
) *);
328 extern void dump_data_dependence_direction (FILE *,
329 enum data_dependence_direction
);
330 extern void free_dependence_relation (struct data_dependence_relation
*);
331 extern void free_dependence_relations (VEC (ddr_p
, heap
) *);
332 extern void free_data_ref (data_reference_p
);
333 extern void free_data_refs (VEC (data_reference_p
, heap
) *);
334 struct data_reference
*create_data_ref (struct loop
*, tree
, tree
, bool);
335 bool find_loop_nest (struct loop
*, VEC (loop_p
, heap
) **);
336 void compute_all_dependences (VEC (data_reference_p
, heap
) *,
337 VEC (ddr_p
, heap
) **, VEC (loop_p
, heap
) *, bool);
339 /* Return true when the DDR contains two data references that have the
340 same access functions. */
343 same_access_functions (const struct data_dependence_relation
*ddr
)
347 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
348 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr
), i
),
349 DR_ACCESS_FN (DDR_B (ddr
), i
)))
355 /* Return true when DDR is an anti-dependence relation. */
358 ddr_is_anti_dependent (ddr_p ddr
)
360 return (DDR_ARE_DEPENDENT (ddr
) == NULL_TREE
361 && DR_IS_READ (DDR_A (ddr
))
362 && !DR_IS_READ (DDR_B (ddr
))
363 && !same_access_functions (ddr
));
366 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
369 ddrs_have_anti_deps (VEC (ddr_p
, heap
) *dependence_relations
)
374 for (i
= 0; VEC_iterate (ddr_p
, dependence_relations
, i
, ddr
); i
++)
375 if (ddr_is_anti_dependent (ddr
))
381 /* Return the dependence level for the DDR relation. */
383 static inline unsigned
384 ddr_dependence_level (ddr_p ddr
)
389 if (DDR_DIST_VECTS (ddr
))
390 level
= dependence_level (DDR_DIST_VECT (ddr
, 0), DDR_NB_LOOPS (ddr
));
392 for (vector
= 1; vector
< DDR_NUM_DIST_VECTS (ddr
); vector
++)
393 level
= MIN (level
, dependence_level (DDR_DIST_VECT (ddr
, vector
),
394 DDR_NB_LOOPS (ddr
)));
400 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
401 typedef struct rdg_vertex
403 /* The statement represented by this vertex. */
406 /* True when the statement contains a write to memory. */
409 /* True when the statement contains a read from memory. */
413 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
414 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
415 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
416 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
417 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
418 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
420 void dump_rdg_vertex (FILE *, struct graph
*, int);
421 void debug_rdg_vertex (struct graph
*, int);
422 void dump_rdg_component (FILE *, struct graph
*, int, bitmap
);
423 void debug_rdg_component (struct graph
*, int);
424 void dump_rdg (FILE *, struct graph
*);
425 void debug_rdg (struct graph
*);
426 void dot_rdg (struct graph
*);
427 int rdg_vertex_for_stmt (struct graph
*, tree
);
429 /* Data dependence type. */
433 /* Read After Write (RAW). */
436 /* Write After Read (WAR). */
439 /* Write After Write (WAW). */
442 /* Read After Read (RAR). */
446 /* Dependence information attached to an edge of the RDG. */
448 typedef struct rdg_edge
450 /* Type of the dependence. */
451 enum rdg_dep_type type
;
453 /* Levels of the dependence: the depth of the loops that
454 carry the dependence. */
458 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
459 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
461 struct graph
*build_rdg (struct loop
*);
462 void free_rdg (struct graph
*);
464 /* Return the index of the variable VAR in the LOOP_NEST array. */
467 index_in_loop_nest (int var
, VEC (loop_p
, heap
) *loop_nest
)
472 for (var_index
= 0; VEC_iterate (loop_p
, loop_nest
, var_index
, loopi
);
474 if (loopi
->num
== var
)
480 void stores_from_loop (struct loop
*, VEC (tree
, heap
) **);
481 void remove_similar_memory_refs (VEC (tree
, heap
) **);
482 bool rdg_defs_used_in_other_loops_p (struct graph
*, int);
483 bool have_similar_memory_accesses (tree
, tree
);
485 /* Determines whether RDG vertices V1 and V2 access to similar memory
486 locations, in which case they have to be in the same partition. */
489 rdg_has_similar_memory_accesses (struct graph
*rdg
, int v1
, int v2
)
491 return have_similar_memory_accesses (RDG_STMT (rdg
, v1
),
495 /* In lambda-code.c */
496 bool lambda_transform_legal_p (lambda_trans_matrix
, int, VEC (ddr_p
, heap
) *);
498 /* In tree-data-refs.c */
499 void split_constant_offset (tree
, tree
*, tree
*);
501 #endif /* GCC_TREE_DATA_REF_H */