1 /* Induction variable optimizations.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 2) Candidates for the induction variables are found. This includes
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
56 4) The trees are transformed to use the new variables, the dead code is
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
66 #include "coretypes.h"
70 #include "basic-block.h"
71 #include "gimple-pretty-print.h"
73 #include "gimple-ssa.h"
76 #include "tree-phinodes.h"
77 #include "ssa-iterators.h"
78 #include "tree-ssanames.h"
79 #include "tree-ssa-loop-ivopts.h"
80 #include "tree-ssa-loop-manip.h"
81 #include "tree-ssa-loop-niter.h"
82 #include "tree-ssa-loop.h"
86 #include "tree-pass.h"
88 #include "insn-config.h"
89 #include "pointer-set.h"
90 #include "hash-table.h"
91 #include "tree-chrec.h"
92 #include "tree-scalar-evolution.h"
95 #include "langhooks.h"
96 #include "tree-affine.h"
98 #include "tree-inline.h"
99 #include "tree-ssa-propagate.h"
101 #include "tree-ssa-address.h"
103 /* FIXME: Expressions are expanded to RTL in this pass to determine the
104 cost of different addressing modes. This should be moved to a TBD
105 interface between the GIMPLE and RTL worlds. */
109 /* The infinite cost. */
110 #define INFTY 10000000
112 #define AVG_LOOP_NITER(LOOP) 5
114 /* Returns the expected number of loop iterations for LOOP.
115 The average trip count is computed from profile data if it
118 static inline HOST_WIDE_INT
119 avg_loop_niter (struct loop
*loop
)
121 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
123 return AVG_LOOP_NITER (loop
);
128 /* Representation of the induction variable. */
131 tree base
; /* Initial value of the iv. */
132 tree base_object
; /* A memory object to that the induction variable points. */
133 tree step
; /* Step of the iv (constant only). */
134 tree ssa_name
; /* The ssa name with the value. */
135 bool biv_p
; /* Is it a biv? */
136 bool have_use_for
; /* Do we already have a use for it? */
137 unsigned use_id
; /* The identifier in the use if it is the case. */
140 /* Per-ssa version information (induction variable descriptions, etc.). */
143 tree name
; /* The ssa name. */
144 struct iv
*iv
; /* Induction variable description. */
145 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
146 an expression that is not an induction variable. */
147 bool preserve_biv
; /* For the original biv, whether to preserve it. */
148 unsigned inv_id
; /* Id of an invariant. */
154 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
155 USE_ADDRESS
, /* Use in an address. */
156 USE_COMPARE
/* Use is a compare. */
159 /* Cost of a computation. */
162 int cost
; /* The runtime cost. */
163 unsigned complexity
; /* The estimate of the complexity of the code for
164 the computation (in no concrete units --
165 complexity field should be larger for more
166 complex expressions and addressing modes). */
169 static const comp_cost no_cost
= {0, 0};
170 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
172 /* The candidate - cost pair. */
175 struct iv_cand
*cand
; /* The candidate. */
176 comp_cost cost
; /* The cost. */
177 bitmap depends_on
; /* The list of invariants that have to be
179 tree value
; /* For final value elimination, the expression for
180 the final value of the iv. For iv elimination,
181 the new bound to compare with. */
182 enum tree_code comp
; /* For iv elimination, the comparison. */
183 int inv_expr_id
; /* Loop invariant expression id. */
189 unsigned id
; /* The id of the use. */
190 enum use_type type
; /* Type of the use. */
191 struct iv
*iv
; /* The induction variable it is based on. */
192 gimple stmt
; /* Statement in that it occurs. */
193 tree
*op_p
; /* The place where it occurs. */
194 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
197 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
198 struct cost_pair
*cost_map
;
199 /* The costs wrto the iv candidates. */
201 struct iv_cand
*selected
;
202 /* The selected candidate. */
205 /* The position where the iv is computed. */
208 IP_NORMAL
, /* At the end, just before the exit condition. */
209 IP_END
, /* At the end of the latch block. */
210 IP_BEFORE_USE
, /* Immediately before a specific use. */
211 IP_AFTER_USE
, /* Immediately after a specific use. */
212 IP_ORIGINAL
/* The original biv. */
215 /* The induction variable candidate. */
218 unsigned id
; /* The number of the candidate. */
219 bool important
; /* Whether this is an "important" candidate, i.e. such
220 that it should be considered by all uses. */
221 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
222 gimple incremented_at
;/* For original biv, the statement where it is
224 tree var_before
; /* The variable used for it before increment. */
225 tree var_after
; /* The variable used for it after increment. */
226 struct iv
*iv
; /* The value of the candidate. NULL for
227 "pseudocandidate" used to indicate the possibility
228 to replace the final value of an iv by direct
229 computation of the value. */
230 unsigned cost
; /* Cost of the candidate. */
231 unsigned cost_step
; /* Cost of the candidate's increment operation. */
232 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
233 where it is incremented. */
234 bitmap depends_on
; /* The list of invariants that are used in step of the
238 /* Loop invariant expression hashtable entry. */
239 struct iv_inv_expr_ent
246 /* The data used by the induction variable optimizations. */
248 typedef struct iv_use
*iv_use_p
;
250 typedef struct iv_cand
*iv_cand_p
;
252 /* Hashtable helpers. */
254 struct iv_inv_expr_hasher
: typed_free_remove
<iv_inv_expr_ent
>
256 typedef iv_inv_expr_ent value_type
;
257 typedef iv_inv_expr_ent compare_type
;
258 static inline hashval_t
hash (const value_type
*);
259 static inline bool equal (const value_type
*, const compare_type
*);
262 /* Hash function for loop invariant expressions. */
265 iv_inv_expr_hasher::hash (const value_type
*expr
)
270 /* Hash table equality function for expressions. */
273 iv_inv_expr_hasher::equal (const value_type
*expr1
, const compare_type
*expr2
)
275 return expr1
->hash
== expr2
->hash
276 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
281 /* The currently optimized loop. */
282 struct loop
*current_loop
;
284 /* Numbers of iterations for all exits of the current loop. */
285 struct pointer_map_t
*niters
;
287 /* Number of registers used in it. */
290 /* The size of version_info array allocated. */
291 unsigned version_info_size
;
293 /* The array of information for the ssa names. */
294 struct version_info
*version_info
;
296 /* The hashtable of loop invariant expressions created
298 hash_table
<iv_inv_expr_hasher
> inv_expr_tab
;
300 /* Loop invariant expression id. */
303 /* The bitmap of indices in version_info whose value was changed. */
306 /* The uses of induction variables. */
307 vec
<iv_use_p
> iv_uses
;
309 /* The candidates. */
310 vec
<iv_cand_p
> iv_candidates
;
312 /* A bitmap of important candidates. */
313 bitmap important_candidates
;
315 /* The maximum invariant id. */
318 /* Whether to consider just related and important candidates when replacing a
320 bool consider_all_candidates
;
322 /* Are we optimizing for speed? */
325 /* Whether the loop body includes any function calls. */
326 bool body_includes_call
;
328 /* Whether the loop body can only be exited via single exit. */
329 bool loop_single_exit_p
;
332 /* An assignment of iv candidates to uses. */
336 /* The number of uses covered by the assignment. */
339 /* Number of uses that cannot be expressed by the candidates in the set. */
342 /* Candidate assigned to a use, together with the related costs. */
343 struct cost_pair
**cand_for_use
;
345 /* Number of times each candidate is used. */
346 unsigned *n_cand_uses
;
348 /* The candidates used. */
351 /* The number of candidates in the set. */
354 /* Total number of registers needed. */
357 /* Total cost of expressing uses. */
358 comp_cost cand_use_cost
;
360 /* Total cost of candidates. */
363 /* Number of times each invariant is used. */
364 unsigned *n_invariant_uses
;
366 /* The array holding the number of uses of each loop
367 invariant expressions created by ivopt. */
368 unsigned *used_inv_expr
;
370 /* The number of created loop invariants. */
371 unsigned num_used_inv_expr
;
373 /* Total cost of the assignment. */
377 /* Difference of two iv candidate assignments. */
384 /* An old assignment (for rollback purposes). */
385 struct cost_pair
*old_cp
;
387 /* A new assignment. */
388 struct cost_pair
*new_cp
;
390 /* Next change in the list. */
391 struct iv_ca_delta
*next_change
;
394 /* Bound on number of candidates below that all candidates are considered. */
396 #define CONSIDER_ALL_CANDIDATES_BOUND \
397 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
399 /* If there are more iv occurrences, we just give up (it is quite unlikely that
400 optimizing such a loop would help, and it would take ages). */
402 #define MAX_CONSIDERED_USES \
403 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
405 /* If there are at most this number of ivs in the set, try removing unnecessary
406 ivs from the set always. */
408 #define ALWAYS_PRUNE_CAND_SET_BOUND \
409 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
411 /* The list of trees for that the decl_rtl field must be reset is stored
414 static vec
<tree
> decl_rtl_to_reset
;
416 static comp_cost
force_expr_to_var_cost (tree
, bool);
418 /* Number of uses recorded in DATA. */
420 static inline unsigned
421 n_iv_uses (struct ivopts_data
*data
)
423 return data
->iv_uses
.length ();
426 /* Ith use recorded in DATA. */
428 static inline struct iv_use
*
429 iv_use (struct ivopts_data
*data
, unsigned i
)
431 return data
->iv_uses
[i
];
434 /* Number of candidates recorded in DATA. */
436 static inline unsigned
437 n_iv_cands (struct ivopts_data
*data
)
439 return data
->iv_candidates
.length ();
442 /* Ith candidate recorded in DATA. */
444 static inline struct iv_cand
*
445 iv_cand (struct ivopts_data
*data
, unsigned i
)
447 return data
->iv_candidates
[i
];
450 /* The single loop exit if it dominates the latch, NULL otherwise. */
453 single_dom_exit (struct loop
*loop
)
455 edge exit
= single_exit (loop
);
460 if (!just_once_each_iteration_p (loop
, exit
->src
))
466 /* Dumps information about the induction variable IV to FILE. */
469 dump_iv (FILE *file
, struct iv
*iv
)
473 fprintf (file
, "ssa name ");
474 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
475 fprintf (file
, "\n");
478 fprintf (file
, " type ");
479 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
480 fprintf (file
, "\n");
484 fprintf (file
, " base ");
485 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
486 fprintf (file
, "\n");
488 fprintf (file
, " step ");
489 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
490 fprintf (file
, "\n");
494 fprintf (file
, " invariant ");
495 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
496 fprintf (file
, "\n");
501 fprintf (file
, " base object ");
502 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
503 fprintf (file
, "\n");
507 fprintf (file
, " is a biv\n");
510 /* Dumps information about the USE to FILE. */
513 dump_use (FILE *file
, struct iv_use
*use
)
515 fprintf (file
, "use %d\n", use
->id
);
519 case USE_NONLINEAR_EXPR
:
520 fprintf (file
, " generic\n");
524 fprintf (file
, " address\n");
528 fprintf (file
, " compare\n");
535 fprintf (file
, " in statement ");
536 print_gimple_stmt (file
, use
->stmt
, 0, 0);
537 fprintf (file
, "\n");
539 fprintf (file
, " at position ");
541 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
542 fprintf (file
, "\n");
544 dump_iv (file
, use
->iv
);
546 if (use
->related_cands
)
548 fprintf (file
, " related candidates ");
549 dump_bitmap (file
, use
->related_cands
);
553 /* Dumps information about the uses to FILE. */
556 dump_uses (FILE *file
, struct ivopts_data
*data
)
561 for (i
= 0; i
< n_iv_uses (data
); i
++)
563 use
= iv_use (data
, i
);
565 dump_use (file
, use
);
566 fprintf (file
, "\n");
570 /* Dumps information about induction variable candidate CAND to FILE. */
573 dump_cand (FILE *file
, struct iv_cand
*cand
)
575 struct iv
*iv
= cand
->iv
;
577 fprintf (file
, "candidate %d%s\n",
578 cand
->id
, cand
->important
? " (important)" : "");
580 if (cand
->depends_on
)
582 fprintf (file
, " depends on ");
583 dump_bitmap (file
, cand
->depends_on
);
588 fprintf (file
, " final value replacement\n");
592 if (cand
->var_before
)
594 fprintf (file
, " var_before ");
595 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
596 fprintf (file
, "\n");
600 fprintf (file
, " var_after ");
601 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
602 fprintf (file
, "\n");
608 fprintf (file
, " incremented before exit test\n");
612 fprintf (file
, " incremented before use %d\n", cand
->ainc_use
->id
);
616 fprintf (file
, " incremented after use %d\n", cand
->ainc_use
->id
);
620 fprintf (file
, " incremented at end\n");
624 fprintf (file
, " original biv\n");
631 /* Returns the info for ssa version VER. */
633 static inline struct version_info
*
634 ver_info (struct ivopts_data
*data
, unsigned ver
)
636 return data
->version_info
+ ver
;
639 /* Returns the info for ssa name NAME. */
641 static inline struct version_info
*
642 name_info (struct ivopts_data
*data
, tree name
)
644 return ver_info (data
, SSA_NAME_VERSION (name
));
647 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
651 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
653 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
657 if (sbb
== loop
->latch
)
663 return stmt
== last_stmt (bb
);
666 /* Returns true if STMT if after the place where the original induction
667 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
668 if the positions are identical. */
671 stmt_after_inc_pos (struct iv_cand
*cand
, gimple stmt
, bool true_if_equal
)
673 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
674 basic_block stmt_bb
= gimple_bb (stmt
);
676 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
679 if (stmt_bb
!= cand_bb
)
683 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
685 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
688 /* Returns true if STMT if after the place where the induction variable
689 CAND is incremented in LOOP. */
692 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
700 return stmt_after_ip_normal_pos (loop
, stmt
);
704 return stmt_after_inc_pos (cand
, stmt
, false);
707 return stmt_after_inc_pos (cand
, stmt
, true);
714 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
717 abnormal_ssa_name_p (tree exp
)
722 if (TREE_CODE (exp
) != SSA_NAME
)
725 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
728 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
729 abnormal phi node. Callback for for_each_index. */
732 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
733 void *data ATTRIBUTE_UNUSED
)
735 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
737 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
739 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
743 return !abnormal_ssa_name_p (*index
);
746 /* Returns true if EXPR contains a ssa name that occurs in an
747 abnormal phi node. */
750 contains_abnormal_ssa_name_p (tree expr
)
753 enum tree_code_class codeclass
;
758 code
= TREE_CODE (expr
);
759 codeclass
= TREE_CODE_CLASS (code
);
761 if (code
== SSA_NAME
)
762 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
764 if (code
== INTEGER_CST
765 || is_gimple_min_invariant (expr
))
768 if (code
== ADDR_EXPR
)
769 return !for_each_index (&TREE_OPERAND (expr
, 0),
770 idx_contains_abnormal_ssa_name_p
,
773 if (code
== COND_EXPR
)
774 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
775 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
776 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
782 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
787 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
799 /* Returns the structure describing number of iterations determined from
800 EXIT of DATA->current_loop, or NULL if something goes wrong. */
802 static struct tree_niter_desc
*
803 niter_for_exit (struct ivopts_data
*data
, edge exit
)
805 struct tree_niter_desc
*desc
;
810 data
->niters
= pointer_map_create ();
814 slot
= pointer_map_contains (data
->niters
, exit
);
818 /* Try to determine number of iterations. We cannot safely work with ssa
819 names that appear in phi nodes on abnormal edges, so that we do not
820 create overlapping life ranges for them (PR 27283). */
821 desc
= XNEW (struct tree_niter_desc
);
822 if (!number_of_iterations_exit (data
->current_loop
,
824 || contains_abnormal_ssa_name_p (desc
->niter
))
829 slot
= pointer_map_insert (data
->niters
, exit
);
833 desc
= (struct tree_niter_desc
*) *slot
;
838 /* Returns the structure describing number of iterations determined from
839 single dominating exit of DATA->current_loop, or NULL if something
842 static struct tree_niter_desc
*
843 niter_for_single_dom_exit (struct ivopts_data
*data
)
845 edge exit
= single_dom_exit (data
->current_loop
);
850 return niter_for_exit (data
, exit
);
853 /* Initializes data structures used by the iv optimization pass, stored
857 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
859 data
->version_info_size
= 2 * num_ssa_names
;
860 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
861 data
->relevant
= BITMAP_ALLOC (NULL
);
862 data
->important_candidates
= BITMAP_ALLOC (NULL
);
863 data
->max_inv_id
= 0;
865 data
->iv_uses
.create (20);
866 data
->iv_candidates
.create (20);
867 data
->inv_expr_tab
.create (10);
868 data
->inv_expr_id
= 0;
869 decl_rtl_to_reset
.create (20);
872 /* Returns a memory object to that EXPR points. In case we are able to
873 determine that it does not point to any such object, NULL is returned. */
876 determine_base_object (tree expr
)
878 enum tree_code code
= TREE_CODE (expr
);
881 /* If this is a pointer casted to any type, we need to determine
882 the base object for the pointer; so handle conversions before
883 throwing away non-pointer expressions. */
884 if (CONVERT_EXPR_P (expr
))
885 return determine_base_object (TREE_OPERAND (expr
, 0));
887 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
896 obj
= TREE_OPERAND (expr
, 0);
897 base
= get_base_address (obj
);
902 if (TREE_CODE (base
) == MEM_REF
)
903 return determine_base_object (TREE_OPERAND (base
, 0));
905 return fold_convert (ptr_type_node
,
906 build_fold_addr_expr (base
));
908 case POINTER_PLUS_EXPR
:
909 return determine_base_object (TREE_OPERAND (expr
, 0));
913 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
917 return fold_convert (ptr_type_node
, expr
);
921 /* Allocates an induction variable with given initial value BASE and step STEP
925 alloc_iv (tree base
, tree step
)
927 struct iv
*iv
= XCNEW (struct iv
);
928 gcc_assert (step
!= NULL_TREE
);
931 iv
->base_object
= determine_base_object (base
);
934 iv
->have_use_for
= false;
936 iv
->ssa_name
= NULL_TREE
;
941 /* Sets STEP and BASE for induction variable IV. */
944 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
)
946 struct version_info
*info
= name_info (data
, iv
);
948 gcc_assert (!info
->iv
);
950 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
951 info
->iv
= alloc_iv (base
, step
);
952 info
->iv
->ssa_name
= iv
;
955 /* Finds induction variable declaration for VAR. */
958 get_iv (struct ivopts_data
*data
, tree var
)
961 tree type
= TREE_TYPE (var
);
963 if (!POINTER_TYPE_P (type
)
964 && !INTEGRAL_TYPE_P (type
))
967 if (!name_info (data
, var
)->iv
)
969 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
972 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
973 set_iv (data
, var
, var
, build_int_cst (type
, 0));
976 return name_info (data
, var
)->iv
;
979 /* Determines the step of a biv defined in PHI. Returns NULL if PHI does
980 not define a simple affine biv with nonzero step. */
983 determine_biv_step (gimple phi
)
985 struct loop
*loop
= gimple_bb (phi
)->loop_father
;
986 tree name
= PHI_RESULT (phi
);
989 if (virtual_operand_p (name
))
992 if (!simple_iv (loop
, loop
, name
, &iv
, true))
995 return integer_zerop (iv
.step
) ? NULL_TREE
: iv
.step
;
998 /* Finds basic ivs. */
1001 find_bivs (struct ivopts_data
*data
)
1004 tree step
, type
, base
;
1006 struct loop
*loop
= data
->current_loop
;
1007 gimple_stmt_iterator psi
;
1009 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1011 phi
= gsi_stmt (psi
);
1013 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1016 step
= determine_biv_step (phi
);
1020 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1021 base
= expand_simple_operations (base
);
1022 if (contains_abnormal_ssa_name_p (base
)
1023 || contains_abnormal_ssa_name_p (step
))
1026 type
= TREE_TYPE (PHI_RESULT (phi
));
1027 base
= fold_convert (type
, base
);
1030 if (POINTER_TYPE_P (type
))
1031 step
= convert_to_ptrofftype (step
);
1033 step
= fold_convert (type
, step
);
1036 set_iv (data
, PHI_RESULT (phi
), base
, step
);
1043 /* Marks basic ivs. */
1046 mark_bivs (struct ivopts_data
*data
)
1050 struct iv
*iv
, *incr_iv
;
1051 struct loop
*loop
= data
->current_loop
;
1052 basic_block incr_bb
;
1053 gimple_stmt_iterator psi
;
1055 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1057 phi
= gsi_stmt (psi
);
1059 iv
= get_iv (data
, PHI_RESULT (phi
));
1063 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1064 incr_iv
= get_iv (data
, var
);
1068 /* If the increment is in the subloop, ignore it. */
1069 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1070 if (incr_bb
->loop_father
!= data
->current_loop
1071 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1075 incr_iv
->biv_p
= true;
1079 /* Checks whether STMT defines a linear induction variable and stores its
1080 parameters to IV. */
1083 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
1086 struct loop
*loop
= data
->current_loop
;
1088 iv
->base
= NULL_TREE
;
1089 iv
->step
= NULL_TREE
;
1091 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1094 lhs
= gimple_assign_lhs (stmt
);
1095 if (TREE_CODE (lhs
) != SSA_NAME
)
1098 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1100 iv
->base
= expand_simple_operations (iv
->base
);
1102 if (contains_abnormal_ssa_name_p (iv
->base
)
1103 || contains_abnormal_ssa_name_p (iv
->step
))
1106 /* If STMT could throw, then do not consider STMT as defining a GIV.
1107 While this will suppress optimizations, we can not safely delete this
1108 GIV and associated statements, even if it appears it is not used. */
1109 if (stmt_could_throw_p (stmt
))
1115 /* Finds general ivs in statement STMT. */
1118 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1122 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1125 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
);
1128 /* Finds general ivs in basic block BB. */
1131 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1133 gimple_stmt_iterator bsi
;
1135 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1136 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1139 /* Finds general ivs. */
1142 find_givs (struct ivopts_data
*data
)
1144 struct loop
*loop
= data
->current_loop
;
1145 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1148 for (i
= 0; i
< loop
->num_nodes
; i
++)
1149 find_givs_in_bb (data
, body
[i
]);
1153 /* For each ssa name defined in LOOP determines whether it is an induction
1154 variable and if so, its initial value and step. */
1157 find_induction_variables (struct ivopts_data
*data
)
1162 if (!find_bivs (data
))
1168 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1170 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1174 fprintf (dump_file
, " number of iterations ");
1175 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1176 if (!integer_zerop (niter
->may_be_zero
))
1178 fprintf (dump_file
, "; zero if ");
1179 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1181 fprintf (dump_file
, "\n\n");
1184 fprintf (dump_file
, "Induction variables:\n\n");
1186 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1188 if (ver_info (data
, i
)->iv
)
1189 dump_iv (dump_file
, ver_info (data
, i
)->iv
);
1196 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
1198 static struct iv_use
*
1199 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1200 gimple stmt
, enum use_type use_type
)
1202 struct iv_use
*use
= XCNEW (struct iv_use
);
1204 use
->id
= n_iv_uses (data
);
1205 use
->type
= use_type
;
1209 use
->related_cands
= BITMAP_ALLOC (NULL
);
1211 /* To avoid showing ssa name in the dumps, if it was not reset by the
1213 iv
->ssa_name
= NULL_TREE
;
1215 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1216 dump_use (dump_file
, use
);
1218 data
->iv_uses
.safe_push (use
);
1223 /* Checks whether OP is a loop-level invariant and if so, records it.
1224 NONLINEAR_USE is true if the invariant is used in a way we do not
1225 handle specially. */
1228 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1231 struct version_info
*info
;
1233 if (TREE_CODE (op
) != SSA_NAME
1234 || virtual_operand_p (op
))
1237 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1239 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1242 info
= name_info (data
, op
);
1244 info
->has_nonlin_use
|= nonlinear_use
;
1246 info
->inv_id
= ++data
->max_inv_id
;
1247 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1250 /* Checks whether the use OP is interesting and if so, records it. */
1252 static struct iv_use
*
1253 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1260 if (TREE_CODE (op
) != SSA_NAME
)
1263 iv
= get_iv (data
, op
);
1267 if (iv
->have_use_for
)
1269 use
= iv_use (data
, iv
->use_id
);
1271 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1275 if (integer_zerop (iv
->step
))
1277 record_invariant (data
, op
, true);
1280 iv
->have_use_for
= true;
1282 civ
= XNEW (struct iv
);
1285 stmt
= SSA_NAME_DEF_STMT (op
);
1286 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1287 || is_gimple_assign (stmt
));
1289 use
= record_use (data
, NULL
, civ
, stmt
, USE_NONLINEAR_EXPR
);
1290 iv
->use_id
= use
->id
;
1295 /* Given a condition in statement STMT, checks whether it is a compare
1296 of an induction variable and an invariant. If this is the case,
1297 CONTROL_VAR is set to location of the iv, BOUND to the location of
1298 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1299 induction variable descriptions, and true is returned. If this is not
1300 the case, CONTROL_VAR and BOUND are set to the arguments of the
1301 condition and false is returned. */
1304 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1305 tree
**control_var
, tree
**bound
,
1306 struct iv
**iv_var
, struct iv
**iv_bound
)
1308 /* The objects returned when COND has constant operands. */
1309 static struct iv const_iv
;
1311 tree
*op0
= &zero
, *op1
= &zero
, *tmp_op
;
1312 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
, *tmp_iv
;
1315 if (gimple_code (stmt
) == GIMPLE_COND
)
1317 op0
= gimple_cond_lhs_ptr (stmt
);
1318 op1
= gimple_cond_rhs_ptr (stmt
);
1322 op0
= gimple_assign_rhs1_ptr (stmt
);
1323 op1
= gimple_assign_rhs2_ptr (stmt
);
1326 zero
= integer_zero_node
;
1327 const_iv
.step
= integer_zero_node
;
1329 if (TREE_CODE (*op0
) == SSA_NAME
)
1330 iv0
= get_iv (data
, *op0
);
1331 if (TREE_CODE (*op1
) == SSA_NAME
)
1332 iv1
= get_iv (data
, *op1
);
1334 /* Exactly one of the compared values must be an iv, and the other one must
1339 if (integer_zerop (iv0
->step
))
1341 /* Control variable may be on the other side. */
1342 tmp_op
= op0
; op0
= op1
; op1
= tmp_op
;
1343 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
1345 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1349 *control_var
= op0
;;
1360 /* Checks whether the condition in STMT is interesting and if so,
1364 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1366 tree
*var_p
, *bound_p
;
1367 struct iv
*var_iv
, *civ
;
1369 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1371 find_interesting_uses_op (data
, *var_p
);
1372 find_interesting_uses_op (data
, *bound_p
);
1376 civ
= XNEW (struct iv
);
1378 record_use (data
, NULL
, civ
, stmt
, USE_COMPARE
);
1381 /* Returns the outermost loop EXPR is obviously invariant in
1382 relative to the loop LOOP, i.e. if all its operands are defined
1383 outside of the returned loop. Returns NULL if EXPR is not
1384 even obviously invariant in LOOP. */
1387 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1392 if (is_gimple_min_invariant (expr
))
1393 return current_loops
->tree_root
;
1395 if (TREE_CODE (expr
) == SSA_NAME
)
1397 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1400 if (flow_bb_inside_loop_p (loop
, def_bb
))
1402 return superloop_at_depth (loop
,
1403 loop_depth (def_bb
->loop_father
) + 1);
1406 return current_loops
->tree_root
;
1412 unsigned maxdepth
= 0;
1413 len
= TREE_OPERAND_LENGTH (expr
);
1414 for (i
= 0; i
< len
; i
++)
1416 struct loop
*ivloop
;
1417 if (!TREE_OPERAND (expr
, i
))
1420 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1423 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1426 return superloop_at_depth (loop
, maxdepth
);
1429 /* Returns true if expression EXPR is obviously invariant in LOOP,
1430 i.e. if all its operands are defined outside of the LOOP. LOOP
1431 should not be the function body. */
1434 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1439 gcc_assert (loop_depth (loop
) > 0);
1441 if (is_gimple_min_invariant (expr
))
1444 if (TREE_CODE (expr
) == SSA_NAME
)
1446 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1448 && flow_bb_inside_loop_p (loop
, def_bb
))
1457 len
= TREE_OPERAND_LENGTH (expr
);
1458 for (i
= 0; i
< len
; i
++)
1459 if (TREE_OPERAND (expr
, i
)
1460 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1466 /* Cumulates the steps of indices into DATA and replaces their values with the
1467 initial ones. Returns false when the value of the index cannot be determined.
1468 Callback for for_each_index. */
1470 struct ifs_ivopts_data
1472 struct ivopts_data
*ivopts_data
;
1478 idx_find_step (tree base
, tree
*idx
, void *data
)
1480 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1482 tree step
, iv_base
, iv_step
, lbound
, off
;
1483 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1485 /* If base is a component ref, require that the offset of the reference
1487 if (TREE_CODE (base
) == COMPONENT_REF
)
1489 off
= component_ref_field_offset (base
);
1490 return expr_invariant_in_loop_p (loop
, off
);
1493 /* If base is array, first check whether we will be able to move the
1494 reference out of the loop (in order to take its address in strength
1495 reduction). In order for this to work we need both lower bound
1496 and step to be loop invariants. */
1497 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1499 /* Moreover, for a range, the size needs to be invariant as well. */
1500 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1501 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1504 step
= array_ref_element_size (base
);
1505 lbound
= array_ref_low_bound (base
);
1507 if (!expr_invariant_in_loop_p (loop
, step
)
1508 || !expr_invariant_in_loop_p (loop
, lbound
))
1512 if (TREE_CODE (*idx
) != SSA_NAME
)
1515 iv
= get_iv (dta
->ivopts_data
, *idx
);
1519 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1520 *&x[0], which is not folded and does not trigger the
1521 ARRAY_REF path below. */
1524 if (integer_zerop (iv
->step
))
1527 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1529 step
= array_ref_element_size (base
);
1531 /* We only handle addresses whose step is an integer constant. */
1532 if (TREE_CODE (step
) != INTEGER_CST
)
1536 /* The step for pointer arithmetics already is 1 byte. */
1537 step
= size_one_node
;
1541 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1542 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1545 /* The index might wrap. */
1549 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1550 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1555 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1556 object is passed to it in DATA. */
1559 idx_record_use (tree base
, tree
*idx
,
1562 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1563 find_interesting_uses_op (data
, *idx
);
1564 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1566 find_interesting_uses_op (data
, array_ref_element_size (base
));
1567 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1572 /* If we can prove that TOP = cst * BOT for some constant cst,
1573 store cst to MUL and return true. Otherwise return false.
1574 The returned value is always sign-extended, regardless of the
1575 signedness of TOP and BOT. */
1578 constant_multiple_of (tree top
, tree bot
, double_int
*mul
)
1581 enum tree_code code
;
1582 double_int res
, p0
, p1
;
1583 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1588 if (operand_equal_p (top
, bot
, 0))
1590 *mul
= double_int_one
;
1594 code
= TREE_CODE (top
);
1598 mby
= TREE_OPERAND (top
, 1);
1599 if (TREE_CODE (mby
) != INTEGER_CST
)
1602 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1605 *mul
= (res
* tree_to_double_int (mby
)).sext (precision
);
1610 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1611 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1614 if (code
== MINUS_EXPR
)
1616 *mul
= (p0
+ p1
).sext (precision
);
1620 if (TREE_CODE (bot
) != INTEGER_CST
)
1623 p0
= tree_to_double_int (top
).sext (precision
);
1624 p1
= tree_to_double_int (bot
).sext (precision
);
1627 *mul
= p0
.sdivmod (p1
, FLOOR_DIV_EXPR
, &res
).sext (precision
);
1628 return res
.is_zero ();
1635 /* Returns true if memory reference REF with step STEP may be unaligned. */
1638 may_be_unaligned_p (tree ref
, tree step
)
1642 HOST_WIDE_INT bitsize
;
1643 HOST_WIDE_INT bitpos
;
1645 enum machine_mode mode
;
1646 int unsignedp
, volatilep
;
1647 unsigned base_align
;
1649 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1650 thus they are not misaligned. */
1651 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1654 /* The test below is basically copy of what expr.c:normal_inner_ref
1655 does to check whether the object must be loaded by parts when
1656 STRICT_ALIGNMENT is true. */
1657 base
= get_inner_reference (ref
, &bitsize
, &bitpos
, &toffset
, &mode
,
1658 &unsignedp
, &volatilep
, true);
1659 base_type
= TREE_TYPE (base
);
1660 base_align
= get_object_alignment (base
);
1661 base_align
= MAX (base_align
, TYPE_ALIGN (base_type
));
1663 if (mode
!= BLKmode
)
1665 unsigned mode_align
= GET_MODE_ALIGNMENT (mode
);
1667 if (base_align
< mode_align
1668 || (bitpos
% mode_align
) != 0
1669 || (bitpos
% BITS_PER_UNIT
) != 0)
1673 && (highest_pow2_factor (toffset
) * BITS_PER_UNIT
) < mode_align
)
1676 if ((highest_pow2_factor (step
) * BITS_PER_UNIT
) < mode_align
)
1683 /* Return true if EXPR may be non-addressable. */
1686 may_be_nonaddressable_p (tree expr
)
1688 switch (TREE_CODE (expr
))
1690 case TARGET_MEM_REF
:
1691 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1692 target, thus they are always addressable. */
1696 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1697 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1699 case VIEW_CONVERT_EXPR
:
1700 /* This kind of view-conversions may wrap non-addressable objects
1701 and make them look addressable. After some processing the
1702 non-addressability may be uncovered again, causing ADDR_EXPRs
1703 of inappropriate objects to be built. */
1704 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1705 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1708 /* ... fall through ... */
1711 case ARRAY_RANGE_REF
:
1712 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1724 /* Finds addresses in *OP_P inside STMT. */
1727 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1729 tree base
= *op_p
, step
= size_zero_node
;
1731 struct ifs_ivopts_data ifs_ivopts_data
;
1733 /* Do not play with volatile memory references. A bit too conservative,
1734 perhaps, but safe. */
1735 if (gimple_has_volatile_ops (stmt
))
1738 /* Ignore bitfields for now. Not really something terribly complicated
1740 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1743 base
= unshare_expr (base
);
1745 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1747 tree type
= build_pointer_type (TREE_TYPE (base
));
1751 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1753 civ
= get_iv (data
, TMR_BASE (base
));
1757 TMR_BASE (base
) = civ
->base
;
1760 if (TMR_INDEX2 (base
)
1761 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
1763 civ
= get_iv (data
, TMR_INDEX2 (base
));
1767 TMR_INDEX2 (base
) = civ
->base
;
1770 if (TMR_INDEX (base
)
1771 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1773 civ
= get_iv (data
, TMR_INDEX (base
));
1777 TMR_INDEX (base
) = civ
->base
;
1782 if (TMR_STEP (base
))
1783 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1785 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1789 if (integer_zerop (step
))
1791 base
= tree_mem_ref_addr (type
, base
);
1795 ifs_ivopts_data
.ivopts_data
= data
;
1796 ifs_ivopts_data
.stmt
= stmt
;
1797 ifs_ivopts_data
.step
= size_zero_node
;
1798 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1799 || integer_zerop (ifs_ivopts_data
.step
))
1801 step
= ifs_ivopts_data
.step
;
1803 /* Check that the base expression is addressable. This needs
1804 to be done after substituting bases of IVs into it. */
1805 if (may_be_nonaddressable_p (base
))
1808 /* Moreover, on strict alignment platforms, check that it is
1809 sufficiently aligned. */
1810 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
1813 base
= build_fold_addr_expr (base
);
1815 /* Substituting bases of IVs into the base expression might
1816 have caused folding opportunities. */
1817 if (TREE_CODE (base
) == ADDR_EXPR
)
1819 tree
*ref
= &TREE_OPERAND (base
, 0);
1820 while (handled_component_p (*ref
))
1821 ref
= &TREE_OPERAND (*ref
, 0);
1822 if (TREE_CODE (*ref
) == MEM_REF
)
1824 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
1825 TREE_OPERAND (*ref
, 0),
1826 TREE_OPERAND (*ref
, 1));
1833 civ
= alloc_iv (base
, step
);
1834 record_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
1838 for_each_index (op_p
, idx_record_use
, data
);
1841 /* Finds and records invariants used in STMT. */
1844 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
1847 use_operand_p use_p
;
1850 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1852 op
= USE_FROM_PTR (use_p
);
1853 record_invariant (data
, op
, false);
1857 /* Finds interesting uses of induction variables in the statement STMT. */
1860 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
1863 tree op
, *lhs
, *rhs
;
1865 use_operand_p use_p
;
1866 enum tree_code code
;
1868 find_invariants_stmt (data
, stmt
);
1870 if (gimple_code (stmt
) == GIMPLE_COND
)
1872 find_interesting_uses_cond (data
, stmt
);
1876 if (is_gimple_assign (stmt
))
1878 lhs
= gimple_assign_lhs_ptr (stmt
);
1879 rhs
= gimple_assign_rhs1_ptr (stmt
);
1881 if (TREE_CODE (*lhs
) == SSA_NAME
)
1883 /* If the statement defines an induction variable, the uses are not
1884 interesting by themselves. */
1886 iv
= get_iv (data
, *lhs
);
1888 if (iv
&& !integer_zerop (iv
->step
))
1892 code
= gimple_assign_rhs_code (stmt
);
1893 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
1894 && (REFERENCE_CLASS_P (*rhs
)
1895 || is_gimple_val (*rhs
)))
1897 if (REFERENCE_CLASS_P (*rhs
))
1898 find_interesting_uses_address (data
, stmt
, rhs
);
1900 find_interesting_uses_op (data
, *rhs
);
1902 if (REFERENCE_CLASS_P (*lhs
))
1903 find_interesting_uses_address (data
, stmt
, lhs
);
1906 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1908 find_interesting_uses_cond (data
, stmt
);
1912 /* TODO -- we should also handle address uses of type
1914 memory = call (whatever);
1921 if (gimple_code (stmt
) == GIMPLE_PHI
1922 && gimple_bb (stmt
) == data
->current_loop
->header
)
1924 iv
= get_iv (data
, PHI_RESULT (stmt
));
1926 if (iv
&& !integer_zerop (iv
->step
))
1930 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
1932 op
= USE_FROM_PTR (use_p
);
1934 if (TREE_CODE (op
) != SSA_NAME
)
1937 iv
= get_iv (data
, op
);
1941 find_interesting_uses_op (data
, op
);
1945 /* Finds interesting uses of induction variables outside of loops
1946 on loop exit edge EXIT. */
1949 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
1952 gimple_stmt_iterator psi
;
1955 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
1957 phi
= gsi_stmt (psi
);
1958 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
1959 if (!virtual_operand_p (def
))
1960 find_interesting_uses_op (data
, def
);
1964 /* Finds uses of the induction variables that are interesting. */
1967 find_interesting_uses (struct ivopts_data
*data
)
1970 gimple_stmt_iterator bsi
;
1971 basic_block
*body
= get_loop_body (data
->current_loop
);
1973 struct version_info
*info
;
1976 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1977 fprintf (dump_file
, "Uses:\n\n");
1979 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
1984 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1985 if (e
->dest
!= EXIT_BLOCK_PTR
1986 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
1987 find_interesting_uses_outside (data
, e
);
1989 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1990 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
1991 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1992 if (!is_gimple_debug (gsi_stmt (bsi
)))
1993 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
1996 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2000 fprintf (dump_file
, "\n");
2002 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2004 info
= ver_info (data
, i
);
2007 fprintf (dump_file
, " ");
2008 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2009 fprintf (dump_file
, " is invariant (%d)%s\n",
2010 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
2014 fprintf (dump_file
, "\n");
2020 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2021 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2022 we are at the top-level of the processed address. */
2025 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2026 HOST_WIDE_INT
*offset
)
2028 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2029 enum tree_code code
;
2030 tree type
, orig_type
= TREE_TYPE (expr
);
2031 HOST_WIDE_INT off0
, off1
, st
;
2032 tree orig_expr
= expr
;
2036 type
= TREE_TYPE (expr
);
2037 code
= TREE_CODE (expr
);
2043 if (!cst_and_fits_in_hwi (expr
)
2044 || integer_zerop (expr
))
2047 *offset
= int_cst_value (expr
);
2048 return build_int_cst (orig_type
, 0);
2050 case POINTER_PLUS_EXPR
:
2053 op0
= TREE_OPERAND (expr
, 0);
2054 op1
= TREE_OPERAND (expr
, 1);
2056 op0
= strip_offset_1 (op0
, false, false, &off0
);
2057 op1
= strip_offset_1 (op1
, false, false, &off1
);
2059 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2060 if (op0
== TREE_OPERAND (expr
, 0)
2061 && op1
== TREE_OPERAND (expr
, 1))
2064 if (integer_zerop (op1
))
2066 else if (integer_zerop (op0
))
2068 if (code
== MINUS_EXPR
)
2069 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2074 expr
= fold_build2 (code
, type
, op0
, op1
);
2076 return fold_convert (orig_type
, expr
);
2079 op1
= TREE_OPERAND (expr
, 1);
2080 if (!cst_and_fits_in_hwi (op1
))
2083 op0
= TREE_OPERAND (expr
, 0);
2084 op0
= strip_offset_1 (op0
, false, false, &off0
);
2085 if (op0
== TREE_OPERAND (expr
, 0))
2088 *offset
= off0
* int_cst_value (op1
);
2089 if (integer_zerop (op0
))
2092 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2094 return fold_convert (orig_type
, expr
);
2097 case ARRAY_RANGE_REF
:
2101 step
= array_ref_element_size (expr
);
2102 if (!cst_and_fits_in_hwi (step
))
2105 st
= int_cst_value (step
);
2106 op1
= TREE_OPERAND (expr
, 1);
2107 op1
= strip_offset_1 (op1
, false, false, &off1
);
2108 *offset
= off1
* st
;
2111 && integer_zerop (op1
))
2113 /* Strip the component reference completely. */
2114 op0
= TREE_OPERAND (expr
, 0);
2115 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2128 tmp
= component_ref_field_offset (expr
);
2129 field
= TREE_OPERAND (expr
, 1);
2131 && cst_and_fits_in_hwi (tmp
)
2132 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2134 HOST_WIDE_INT boffset
, abs_off
;
2136 /* Strip the component reference completely. */
2137 op0
= TREE_OPERAND (expr
, 0);
2138 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2139 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2140 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2144 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2151 op0
= TREE_OPERAND (expr
, 0);
2152 op0
= strip_offset_1 (op0
, true, true, &off0
);
2155 if (op0
== TREE_OPERAND (expr
, 0))
2158 expr
= build_fold_addr_expr (op0
);
2159 return fold_convert (orig_type
, expr
);
2162 /* ??? Offset operand? */
2163 inside_addr
= false;
2170 /* Default handling of expressions for that we want to recurse into
2171 the first operand. */
2172 op0
= TREE_OPERAND (expr
, 0);
2173 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2176 if (op0
== TREE_OPERAND (expr
, 0)
2177 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2180 expr
= copy_node (expr
);
2181 TREE_OPERAND (expr
, 0) = op0
;
2183 TREE_OPERAND (expr
, 1) = op1
;
2185 /* Inside address, we might strip the top level component references,
2186 thus changing type of the expression. Handling of ADDR_EXPR
2188 expr
= fold_convert (orig_type
, expr
);
2193 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2196 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2199 tree core
= strip_offset_1 (expr
, false, false, &off
);
2204 /* Returns variant of TYPE that can be used as base for different uses.
2205 We return unsigned type with the same precision, which avoids problems
2209 generic_type_for (tree type
)
2211 if (POINTER_TYPE_P (type
))
2212 return unsigned_type_for (type
);
2214 if (TYPE_UNSIGNED (type
))
2217 return unsigned_type_for (type
);
2220 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2221 the bitmap to that we should store it. */
2223 static struct ivopts_data
*fd_ivopts_data
;
2225 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2227 bitmap
*depends_on
= (bitmap
*) data
;
2228 struct version_info
*info
;
2230 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2232 info
= name_info (fd_ivopts_data
, *expr_p
);
2234 if (!info
->inv_id
|| info
->has_nonlin_use
)
2238 *depends_on
= BITMAP_ALLOC (NULL
);
2239 bitmap_set_bit (*depends_on
, info
->inv_id
);
2244 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2245 position to POS. If USE is not NULL, the candidate is set as related to
2246 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2247 replacement of the final value of the iv by a direct computation. */
2249 static struct iv_cand
*
2250 add_candidate_1 (struct ivopts_data
*data
,
2251 tree base
, tree step
, bool important
, enum iv_position pos
,
2252 struct iv_use
*use
, gimple incremented_at
)
2255 struct iv_cand
*cand
= NULL
;
2256 tree type
, orig_type
;
2258 /* For non-original variables, make sure their values are computed in a type
2259 that does not invoke undefined behavior on overflows (since in general,
2260 we cannot prove that these induction variables are non-wrapping). */
2261 if (pos
!= IP_ORIGINAL
)
2263 orig_type
= TREE_TYPE (base
);
2264 type
= generic_type_for (orig_type
);
2265 if (type
!= orig_type
)
2267 base
= fold_convert (type
, base
);
2268 step
= fold_convert (type
, step
);
2272 for (i
= 0; i
< n_iv_cands (data
); i
++)
2274 cand
= iv_cand (data
, i
);
2276 if (cand
->pos
!= pos
)
2279 if (cand
->incremented_at
!= incremented_at
2280 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2281 && cand
->ainc_use
!= use
))
2295 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2296 && operand_equal_p (step
, cand
->iv
->step
, 0)
2297 && (TYPE_PRECISION (TREE_TYPE (base
))
2298 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2302 if (i
== n_iv_cands (data
))
2304 cand
= XCNEW (struct iv_cand
);
2310 cand
->iv
= alloc_iv (base
, step
);
2313 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2315 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2316 cand
->var_after
= cand
->var_before
;
2318 cand
->important
= important
;
2319 cand
->incremented_at
= incremented_at
;
2320 data
->iv_candidates
.safe_push (cand
);
2323 && TREE_CODE (step
) != INTEGER_CST
)
2325 fd_ivopts_data
= data
;
2326 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2329 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2330 cand
->ainc_use
= use
;
2332 cand
->ainc_use
= NULL
;
2334 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2335 dump_cand (dump_file
, cand
);
2338 if (important
&& !cand
->important
)
2340 cand
->important
= true;
2341 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2342 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2347 bitmap_set_bit (use
->related_cands
, i
);
2348 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2349 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2356 /* Returns true if incrementing the induction variable at the end of the LOOP
2359 The purpose is to avoid splitting latch edge with a biv increment, thus
2360 creating a jump, possibly confusing other optimization passes and leaving
2361 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2362 is not available (so we do not have a better alternative), or if the latch
2363 edge is already nonempty. */
2366 allow_ip_end_pos_p (struct loop
*loop
)
2368 if (!ip_normal_pos (loop
))
2371 if (!empty_block_p (ip_end_pos (loop
)))
2377 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2378 Important field is set to IMPORTANT. */
2381 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
2382 bool important
, struct iv_use
*use
)
2384 basic_block use_bb
= gimple_bb (use
->stmt
);
2385 enum machine_mode mem_mode
;
2386 unsigned HOST_WIDE_INT cstepi
;
2388 /* If we insert the increment in any position other than the standard
2389 ones, we must ensure that it is incremented once per iteration.
2390 It must not be in an inner nested loop, or one side of an if
2392 if (use_bb
->loop_father
!= data
->current_loop
2393 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
2394 || stmt_could_throw_p (use
->stmt
)
2395 || !cst_and_fits_in_hwi (step
))
2398 cstepi
= int_cst_value (step
);
2400 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2401 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
2402 || USE_STORE_PRE_INCREMENT (mem_mode
))
2403 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2404 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
2405 || USE_STORE_PRE_DECREMENT (mem_mode
))
2406 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2408 enum tree_code code
= MINUS_EXPR
;
2410 tree new_step
= step
;
2412 if (POINTER_TYPE_P (TREE_TYPE (base
)))
2414 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
2415 code
= POINTER_PLUS_EXPR
;
2418 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
2419 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
2420 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
2423 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
2424 || USE_STORE_POST_INCREMENT (mem_mode
))
2425 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2426 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
2427 || USE_STORE_POST_DECREMENT (mem_mode
))
2428 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2430 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
2435 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2436 position to POS. If USE is not NULL, the candidate is set as related to
2437 it. The candidate computation is scheduled on all available positions. */
2440 add_candidate (struct ivopts_data
*data
,
2441 tree base
, tree step
, bool important
, struct iv_use
*use
)
2443 if (ip_normal_pos (data
->current_loop
))
2444 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2445 if (ip_end_pos (data
->current_loop
)
2446 && allow_ip_end_pos_p (data
->current_loop
))
2447 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2449 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
2450 add_autoinc_candidates (data
, base
, step
, important
, use
);
2453 /* Adds standard iv candidates. */
2456 add_standard_iv_candidates (struct ivopts_data
*data
)
2458 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
2460 /* The same for a double-integer type if it is still fast enough. */
2462 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
2463 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
2464 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
2465 build_int_cst (long_integer_type_node
, 1), true, NULL
);
2467 /* The same for a double-integer type if it is still fast enough. */
2469 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
2470 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
2471 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
2472 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
2476 /* Adds candidates bases on the old induction variable IV. */
2479 add_old_iv_candidates (struct ivopts_data
*data
, struct iv
*iv
)
2483 struct iv_cand
*cand
;
2485 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2487 /* The same, but with initial value zero. */
2488 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2489 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2491 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2492 iv
->step
, true, NULL
);
2494 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2495 if (gimple_code (phi
) == GIMPLE_PHI
)
2497 /* Additionally record the possibility of leaving the original iv
2499 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2500 cand
= add_candidate_1 (data
,
2501 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2502 SSA_NAME_DEF_STMT (def
));
2503 cand
->var_before
= iv
->ssa_name
;
2504 cand
->var_after
= def
;
2508 /* Adds candidates based on the old induction variables. */
2511 add_old_ivs_candidates (struct ivopts_data
*data
)
2517 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2519 iv
= ver_info (data
, i
)->iv
;
2520 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2521 add_old_iv_candidates (data
, iv
);
2525 /* Adds candidates based on the value of the induction variable IV and USE. */
2528 add_iv_value_candidates (struct ivopts_data
*data
,
2529 struct iv
*iv
, struct iv_use
*use
)
2531 unsigned HOST_WIDE_INT offset
;
2535 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2537 /* The same, but with initial value zero. Make such variable important,
2538 since it is generic enough so that possibly many uses may be based
2540 basetype
= TREE_TYPE (iv
->base
);
2541 if (POINTER_TYPE_P (basetype
))
2542 basetype
= sizetype
;
2543 add_candidate (data
, build_int_cst (basetype
, 0),
2544 iv
->step
, true, use
);
2546 /* Third, try removing the constant offset. Make sure to even
2547 add a candidate for &a[0] vs. (T *)&a. */
2548 base
= strip_offset (iv
->base
, &offset
);
2550 || base
!= iv
->base
)
2551 add_candidate (data
, base
, iv
->step
, false, use
);
2554 /* Adds candidates based on the uses. */
2557 add_derived_ivs_candidates (struct ivopts_data
*data
)
2561 for (i
= 0; i
< n_iv_uses (data
); i
++)
2563 struct iv_use
*use
= iv_use (data
, i
);
2570 case USE_NONLINEAR_EXPR
:
2573 /* Just add the ivs based on the value of the iv used here. */
2574 add_iv_value_candidates (data
, use
->iv
, use
);
2583 /* Record important candidates and add them to related_cands bitmaps
2587 record_important_candidates (struct ivopts_data
*data
)
2592 for (i
= 0; i
< n_iv_cands (data
); i
++)
2594 struct iv_cand
*cand
= iv_cand (data
, i
);
2596 if (cand
->important
)
2597 bitmap_set_bit (data
->important_candidates
, i
);
2600 data
->consider_all_candidates
= (n_iv_cands (data
)
2601 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2603 if (data
->consider_all_candidates
)
2605 /* We will not need "related_cands" bitmaps in this case,
2606 so release them to decrease peak memory consumption. */
2607 for (i
= 0; i
< n_iv_uses (data
); i
++)
2609 use
= iv_use (data
, i
);
2610 BITMAP_FREE (use
->related_cands
);
2615 /* Add important candidates to the related_cands bitmaps. */
2616 for (i
= 0; i
< n_iv_uses (data
); i
++)
2617 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2618 data
->important_candidates
);
2622 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2623 If consider_all_candidates is true, we use a two-dimensional array, otherwise
2624 we allocate a simple list to every use. */
2627 alloc_use_cost_map (struct ivopts_data
*data
)
2629 unsigned i
, size
, s
;
2631 for (i
= 0; i
< n_iv_uses (data
); i
++)
2633 struct iv_use
*use
= iv_use (data
, i
);
2635 if (data
->consider_all_candidates
)
2636 size
= n_iv_cands (data
);
2639 s
= bitmap_count_bits (use
->related_cands
);
2641 /* Round up to the power of two, so that moduling by it is fast. */
2642 size
= s
? (1 << ceil_log2 (s
)) : 1;
2645 use
->n_map_members
= size
;
2646 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
2650 /* Returns description of computation cost of expression whose runtime
2651 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
2654 new_cost (unsigned runtime
, unsigned complexity
)
2658 cost
.cost
= runtime
;
2659 cost
.complexity
= complexity
;
2664 /* Adds costs COST1 and COST2. */
2667 add_costs (comp_cost cost1
, comp_cost cost2
)
2669 cost1
.cost
+= cost2
.cost
;
2670 cost1
.complexity
+= cost2
.complexity
;
2674 /* Subtracts costs COST1 and COST2. */
2677 sub_costs (comp_cost cost1
, comp_cost cost2
)
2679 cost1
.cost
-= cost2
.cost
;
2680 cost1
.complexity
-= cost2
.complexity
;
2685 /* Returns a negative number if COST1 < COST2, a positive number if
2686 COST1 > COST2, and 0 if COST1 = COST2. */
2689 compare_costs (comp_cost cost1
, comp_cost cost2
)
2691 if (cost1
.cost
== cost2
.cost
)
2692 return cost1
.complexity
- cost2
.complexity
;
2694 return cost1
.cost
- cost2
.cost
;
2697 /* Returns true if COST is infinite. */
2700 infinite_cost_p (comp_cost cost
)
2702 return cost
.cost
== INFTY
;
2705 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
2706 on invariants DEPENDS_ON and that the value used in expressing it
2707 is VALUE, and in case of iv elimination the comparison operator is COMP. */
2710 set_use_iv_cost (struct ivopts_data
*data
,
2711 struct iv_use
*use
, struct iv_cand
*cand
,
2712 comp_cost cost
, bitmap depends_on
, tree value
,
2713 enum tree_code comp
, int inv_expr_id
)
2717 if (infinite_cost_p (cost
))
2719 BITMAP_FREE (depends_on
);
2723 if (data
->consider_all_candidates
)
2725 use
->cost_map
[cand
->id
].cand
= cand
;
2726 use
->cost_map
[cand
->id
].cost
= cost
;
2727 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
2728 use
->cost_map
[cand
->id
].value
= value
;
2729 use
->cost_map
[cand
->id
].comp
= comp
;
2730 use
->cost_map
[cand
->id
].inv_expr_id
= inv_expr_id
;
2734 /* n_map_members is a power of two, so this computes modulo. */
2735 s
= cand
->id
& (use
->n_map_members
- 1);
2736 for (i
= s
; i
< use
->n_map_members
; i
++)
2737 if (!use
->cost_map
[i
].cand
)
2739 for (i
= 0; i
< s
; i
++)
2740 if (!use
->cost_map
[i
].cand
)
2746 use
->cost_map
[i
].cand
= cand
;
2747 use
->cost_map
[i
].cost
= cost
;
2748 use
->cost_map
[i
].depends_on
= depends_on
;
2749 use
->cost_map
[i
].value
= value
;
2750 use
->cost_map
[i
].comp
= comp
;
2751 use
->cost_map
[i
].inv_expr_id
= inv_expr_id
;
2754 /* Gets cost of (USE, CANDIDATE) pair. */
2756 static struct cost_pair
*
2757 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
2758 struct iv_cand
*cand
)
2761 struct cost_pair
*ret
;
2766 if (data
->consider_all_candidates
)
2768 ret
= use
->cost_map
+ cand
->id
;
2775 /* n_map_members is a power of two, so this computes modulo. */
2776 s
= cand
->id
& (use
->n_map_members
- 1);
2777 for (i
= s
; i
< use
->n_map_members
; i
++)
2778 if (use
->cost_map
[i
].cand
== cand
)
2779 return use
->cost_map
+ i
;
2780 else if (use
->cost_map
[i
].cand
== NULL
)
2782 for (i
= 0; i
< s
; i
++)
2783 if (use
->cost_map
[i
].cand
== cand
)
2784 return use
->cost_map
+ i
;
2785 else if (use
->cost_map
[i
].cand
== NULL
)
2791 /* Returns estimate on cost of computing SEQ. */
2794 seq_cost (rtx seq
, bool speed
)
2799 for (; seq
; seq
= NEXT_INSN (seq
))
2801 set
= single_set (seq
);
2803 cost
+= set_src_cost (SET_SRC (set
), speed
);
2811 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
2813 produce_memory_decl_rtl (tree obj
, int *regno
)
2815 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
2816 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2820 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
2822 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
2823 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
2824 SET_SYMBOL_REF_DECL (x
, obj
);
2825 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2826 set_mem_addr_space (x
, as
);
2827 targetm
.encode_section_info (obj
, x
, true);
2831 x
= gen_raw_REG (address_mode
, (*regno
)++);
2832 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
2833 set_mem_addr_space (x
, as
);
2839 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
2840 walk_tree. DATA contains the actual fake register number. */
2843 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
2845 tree obj
= NULL_TREE
;
2847 int *regno
= (int *) data
;
2849 switch (TREE_CODE (*expr_p
))
2852 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
2853 handled_component_p (*expr_p
);
2854 expr_p
= &TREE_OPERAND (*expr_p
, 0))
2857 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
2858 x
= produce_memory_decl_rtl (obj
, regno
);
2863 obj
= SSA_NAME_VAR (*expr_p
);
2864 /* Defer handling of anonymous SSA_NAMEs to the expander. */
2867 if (!DECL_RTL_SET_P (obj
))
2868 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2877 if (DECL_RTL_SET_P (obj
))
2880 if (DECL_MODE (obj
) == BLKmode
)
2881 x
= produce_memory_decl_rtl (obj
, regno
);
2883 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
2893 decl_rtl_to_reset
.safe_push (obj
);
2894 SET_DECL_RTL (obj
, x
);
2900 /* Determines cost of the computation of EXPR. */
2903 computation_cost (tree expr
, bool speed
)
2906 tree type
= TREE_TYPE (expr
);
2908 /* Avoid using hard regs in ways which may be unsupported. */
2909 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
2910 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
2911 enum node_frequency real_frequency
= node
->frequency
;
2913 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2914 crtl
->maybe_hot_insn_p
= speed
;
2915 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
2917 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
2920 default_rtl_profile ();
2921 node
->frequency
= real_frequency
;
2923 cost
= seq_cost (seq
, speed
);
2925 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
2926 TYPE_ADDR_SPACE (type
), speed
);
2927 else if (!REG_P (rslt
))
2928 cost
+= set_src_cost (rslt
, speed
);
2933 /* Returns variable containing the value of candidate CAND at statement AT. */
2936 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
2938 if (stmt_after_increment (loop
, cand
, stmt
))
2939 return cand
->var_after
;
2941 return cand
->var_before
;
2944 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
2945 same precision that is at least as wide as the precision of TYPE, stores
2946 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
2950 determine_common_wider_type (tree
*a
, tree
*b
)
2952 tree wider_type
= NULL
;
2954 tree atype
= TREE_TYPE (*a
);
2956 if (CONVERT_EXPR_P (*a
))
2958 suba
= TREE_OPERAND (*a
, 0);
2959 wider_type
= TREE_TYPE (suba
);
2960 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
2966 if (CONVERT_EXPR_P (*b
))
2968 subb
= TREE_OPERAND (*b
, 0);
2969 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
2980 /* Determines the expression by that USE is expressed from induction variable
2981 CAND at statement AT in LOOP. The expression is stored in a decomposed
2982 form into AFF. Returns false if USE cannot be expressed using CAND. */
2985 get_computation_aff (struct loop
*loop
,
2986 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
2987 struct affine_tree_combination
*aff
)
2989 tree ubase
= use
->iv
->base
;
2990 tree ustep
= use
->iv
->step
;
2991 tree cbase
= cand
->iv
->base
;
2992 tree cstep
= cand
->iv
->step
, cstep_common
;
2993 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
2994 tree common_type
, var
;
2996 aff_tree cbase_aff
, var_aff
;
2999 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3001 /* We do not have a precision to express the values of use. */
3005 var
= var_at_stmt (loop
, cand
, at
);
3006 uutype
= unsigned_type_for (utype
);
3008 /* If the conversion is not noop, perform it. */
3009 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3011 cstep
= fold_convert (uutype
, cstep
);
3012 cbase
= fold_convert (uutype
, cbase
);
3013 var
= fold_convert (uutype
, var
);
3016 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3019 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3020 type, we achieve better folding by computing their difference in this
3021 wider type, and cast the result to UUTYPE. We do not need to worry about
3022 overflows, as all the arithmetics will in the end be performed in UUTYPE
3024 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3026 /* use = ubase - ratio * cbase + ratio * var. */
3027 tree_to_aff_combination (ubase
, common_type
, aff
);
3028 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3029 tree_to_aff_combination (var
, uutype
, &var_aff
);
3031 /* We need to shift the value if we are after the increment. */
3032 if (stmt_after_increment (loop
, cand
, at
))
3036 if (common_type
!= uutype
)
3037 cstep_common
= fold_convert (common_type
, cstep
);
3039 cstep_common
= cstep
;
3041 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3042 aff_combination_add (&cbase_aff
, &cstep_aff
);
3045 aff_combination_scale (&cbase_aff
, -rat
);
3046 aff_combination_add (aff
, &cbase_aff
);
3047 if (common_type
!= uutype
)
3048 aff_combination_convert (aff
, uutype
);
3050 aff_combination_scale (&var_aff
, rat
);
3051 aff_combination_add (aff
, &var_aff
);
3056 /* Return the type of USE. */
3059 get_use_type (struct iv_use
*use
)
3061 tree base_type
= TREE_TYPE (use
->iv
->base
);
3064 if (use
->type
== USE_ADDRESS
)
3066 /* The base_type may be a void pointer. Create a pointer type based on
3067 the mem_ref instead. */
3068 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3069 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3070 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3078 /* Determines the expression by that USE is expressed from induction variable
3079 CAND at statement AT in LOOP. The computation is unshared. */
3082 get_computation_at (struct loop
*loop
,
3083 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
3086 tree type
= get_use_type (use
);
3088 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3090 unshare_aff_combination (&aff
);
3091 return fold_convert (type
, aff_combination_to_tree (&aff
));
3094 /* Determines the expression by that USE is expressed from induction variable
3095 CAND in LOOP. The computation is unshared. */
3098 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3100 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3103 /* Adjust the cost COST for being in loop setup rather than loop body.
3104 If we're optimizing for space, the loop setup overhead is constant;
3105 if we're optimizing for speed, amortize it over the per-iteration cost. */
3107 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3111 else if (optimize_loop_for_speed_p (data
->current_loop
))
3112 return cost
/ avg_loop_niter (data
->current_loop
);
3117 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3118 validity for a memory reference accessing memory of mode MODE in
3119 address space AS. */
3123 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, enum machine_mode mode
,
3126 #define MAX_RATIO 128
3127 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3128 static vec
<sbitmap
> valid_mult_list
;
3131 if (data_index
>= valid_mult_list
.length ())
3132 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3134 valid_mult
= valid_mult_list
[data_index
];
3137 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3138 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3139 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3143 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3144 bitmap_clear (valid_mult
);
3145 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3146 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3147 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3149 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3150 if (memory_address_addr_space_p (mode
, addr
, as
)
3151 || memory_address_addr_space_p (mode
, scaled
, as
))
3152 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3155 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3157 fprintf (dump_file
, " allowed multipliers:");
3158 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3159 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3160 fprintf (dump_file
, " %d", (int) i
);
3161 fprintf (dump_file
, "\n");
3162 fprintf (dump_file
, "\n");
3165 valid_mult_list
[data_index
] = valid_mult
;
3168 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3171 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3174 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3175 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3176 variable is omitted. Compute the cost for a memory reference that accesses
3177 a memory location of mode MEM_MODE in address space AS.
3179 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3180 size of MEM_MODE / RATIO) is available. To make this determination, we
3181 look at the size of the increment to be made, which is given in CSTEP.
3182 CSTEP may be zero if the step is unknown.
3183 STMT_AFTER_INC is true iff the statement we're looking at is after the
3184 increment of the original biv.
3186 TODO -- there must be some better way. This all is quite crude. */
3188 typedef struct address_cost_data_s
3190 HOST_WIDE_INT min_offset
, max_offset
;
3191 unsigned costs
[2][2][2][2];
3192 } *address_cost_data
;
3196 get_address_cost (bool symbol_present
, bool var_present
,
3197 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3198 HOST_WIDE_INT cstep
, enum machine_mode mem_mode
,
3199 addr_space_t as
, bool speed
,
3200 bool stmt_after_inc
, bool *may_autoinc
)
3202 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3203 static vec
<address_cost_data
> address_cost_data_list
;
3204 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3205 address_cost_data data
;
3206 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3207 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3208 unsigned cost
, acost
, complexity
;
3209 bool offset_p
, ratio_p
, autoinc
;
3210 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3211 unsigned HOST_WIDE_INT mask
;
3214 if (data_index
>= address_cost_data_list
.length ())
3215 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3217 data
= address_cost_data_list
[data_index
];
3221 HOST_WIDE_INT rat
, off
= 0;
3222 int old_cse_not_expected
, width
;
3223 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3224 rtx seq
, addr
, base
;
3227 data
= (address_cost_data
) xcalloc (1, sizeof (*data
));
3229 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3231 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3232 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3233 width
= HOST_BITS_PER_WIDE_INT
- 1;
3234 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3236 for (i
= width
; i
>= 0; i
--)
3238 off
= -((unsigned HOST_WIDE_INT
) 1 << i
);
3239 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3240 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3243 data
->min_offset
= (i
== -1? 0 : off
);
3245 for (i
= width
; i
>= 0; i
--)
3247 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
3248 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3249 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3254 data
->max_offset
= off
;
3256 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3258 fprintf (dump_file
, "get_address_cost:\n");
3259 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3260 GET_MODE_NAME (mem_mode
),
3262 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3263 GET_MODE_NAME (mem_mode
),
3268 for (i
= 2; i
<= MAX_RATIO
; i
++)
3269 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
3275 /* Compute the cost of various addressing modes. */
3277 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3278 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3280 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
3281 || USE_STORE_PRE_DECREMENT (mem_mode
))
3283 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
3284 has_predec
[mem_mode
]
3285 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3287 if (USE_LOAD_POST_DECREMENT (mem_mode
)
3288 || USE_STORE_POST_DECREMENT (mem_mode
))
3290 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
3291 has_postdec
[mem_mode
]
3292 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3294 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
3295 || USE_STORE_PRE_DECREMENT (mem_mode
))
3297 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
3298 has_preinc
[mem_mode
]
3299 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3301 if (USE_LOAD_POST_INCREMENT (mem_mode
)
3302 || USE_STORE_POST_INCREMENT (mem_mode
))
3304 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
3305 has_postinc
[mem_mode
]
3306 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3308 for (i
= 0; i
< 16; i
++)
3311 var_p
= (i
>> 1) & 1;
3312 off_p
= (i
>> 2) & 1;
3313 rat_p
= (i
>> 3) & 1;
3317 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
3318 gen_int_mode (rat
, address_mode
));
3321 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
3325 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
3326 /* ??? We can run into trouble with some backends by presenting
3327 it with symbols which haven't been properly passed through
3328 targetm.encode_section_info. By setting the local bit, we
3329 enhance the probability of things working. */
3330 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3333 base
= gen_rtx_fmt_e (CONST
, address_mode
,
3335 (PLUS
, address_mode
, base
,
3336 gen_int_mode (off
, address_mode
)));
3339 base
= gen_int_mode (off
, address_mode
);
3344 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
3347 /* To avoid splitting addressing modes, pretend that no cse will
3349 old_cse_not_expected
= cse_not_expected
;
3350 cse_not_expected
= true;
3351 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
3352 cse_not_expected
= old_cse_not_expected
;
3356 acost
= seq_cost (seq
, speed
);
3357 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
3361 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
3364 /* On some targets, it is quite expensive to load symbol to a register,
3365 which makes addresses that contain symbols look much more expensive.
3366 However, the symbol will have to be loaded in any case before the
3367 loop (and quite likely we have it in register already), so it does not
3368 make much sense to penalize them too heavily. So make some final
3369 tweaks for the SYMBOL_PRESENT modes:
3371 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3372 var is cheaper, use this mode with small penalty.
3373 If VAR_PRESENT is true, try whether the mode with
3374 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3375 if this is the case, use it. */
3376 add_c
= add_cost (speed
, address_mode
);
3377 for (i
= 0; i
< 8; i
++)
3380 off_p
= (i
>> 1) & 1;
3381 rat_p
= (i
>> 2) & 1;
3383 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
3387 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
3388 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
3391 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3393 fprintf (dump_file
, "Address costs:\n");
3395 for (i
= 0; i
< 16; i
++)
3398 var_p
= (i
>> 1) & 1;
3399 off_p
= (i
>> 2) & 1;
3400 rat_p
= (i
>> 3) & 1;
3402 fprintf (dump_file
, " ");
3404 fprintf (dump_file
, "sym + ");
3406 fprintf (dump_file
, "var + ");
3408 fprintf (dump_file
, "cst + ");
3410 fprintf (dump_file
, "rat * ");
3412 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
3413 fprintf (dump_file
, "index costs %d\n", acost
);
3415 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
3416 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
3417 fprintf (dump_file
, " May include autoinc/dec\n");
3418 fprintf (dump_file
, "\n");
3421 address_cost_data_list
[data_index
] = data
;
3424 bits
= GET_MODE_BITSIZE (address_mode
);
3425 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3427 if ((offset
>> (bits
- 1) & 1))
3432 msize
= GET_MODE_SIZE (mem_mode
);
3433 autoinc_offset
= offset
;
3435 autoinc_offset
+= ratio
* cstep
;
3436 if (symbol_present
|| var_present
|| ratio
!= 1)
3438 else if ((has_postinc
[mem_mode
] && autoinc_offset
== 0
3440 || (has_postdec
[mem_mode
] && autoinc_offset
== 0
3442 || (has_preinc
[mem_mode
] && autoinc_offset
== msize
3444 || (has_predec
[mem_mode
] && autoinc_offset
== -msize
3445 && msize
== -cstep
))
3449 offset_p
= (s_offset
!= 0
3450 && data
->min_offset
<= s_offset
3451 && s_offset
<= data
->max_offset
);
3452 ratio_p
= (ratio
!= 1
3453 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
3455 if (ratio
!= 1 && !ratio_p
)
3456 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
3458 if (s_offset
&& !offset_p
&& !symbol_present
)
3459 cost
+= add_cost (speed
, address_mode
);
3462 *may_autoinc
= autoinc
;
3463 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
3464 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3465 return new_cost (cost
+ acost
, complexity
);
3468 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3469 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3470 calculating the operands of EXPR. Returns true if successful, and returns
3471 the cost in COST. */
3474 get_shiftadd_cost (tree expr
, enum machine_mode mode
, comp_cost cost0
,
3475 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
3478 tree op1
= TREE_OPERAND (expr
, 1);
3479 tree cst
= TREE_OPERAND (mult
, 1);
3480 tree multop
= TREE_OPERAND (mult
, 0);
3481 int m
= exact_log2 (int_cst_value (cst
));
3482 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
3485 if (!(m
>= 0 && m
< maxm
))
3488 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
3489 ? shiftadd_cost (speed
, mode
, m
)
3491 ? shiftsub1_cost (speed
, mode
, m
)
3492 : shiftsub0_cost (speed
, mode
, m
)));
3493 res
= new_cost (sa_cost
, 0);
3494 res
= add_costs (res
, mult
== op1
? cost0
: cost1
);
3496 STRIP_NOPS (multop
);
3497 if (!is_gimple_val (multop
))
3498 res
= add_costs (res
, force_expr_to_var_cost (multop
, speed
));
3504 /* Estimates cost of forcing expression EXPR into a variable. */
3507 force_expr_to_var_cost (tree expr
, bool speed
)
3509 static bool costs_initialized
= false;
3510 static unsigned integer_cost
[2];
3511 static unsigned symbol_cost
[2];
3512 static unsigned address_cost
[2];
3514 comp_cost cost0
, cost1
, cost
;
3515 enum machine_mode mode
;
3517 if (!costs_initialized
)
3519 tree type
= build_pointer_type (integer_type_node
);
3524 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3525 TREE_STATIC (var
) = 1;
3526 x
= produce_memory_decl_rtl (var
, NULL
);
3527 SET_DECL_RTL (var
, x
);
3529 addr
= build1 (ADDR_EXPR
, type
, var
);
3532 for (i
= 0; i
< 2; i
++)
3534 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3537 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3540 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
3541 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3543 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3544 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3545 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3546 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3547 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3548 fprintf (dump_file
, "\n");
3552 costs_initialized
= true;
3557 if (SSA_VAR_P (expr
))
3560 if (is_gimple_min_invariant (expr
))
3562 if (TREE_CODE (expr
) == INTEGER_CST
)
3563 return new_cost (integer_cost
[speed
], 0);
3565 if (TREE_CODE (expr
) == ADDR_EXPR
)
3567 tree obj
= TREE_OPERAND (expr
, 0);
3569 if (TREE_CODE (obj
) == VAR_DECL
3570 || TREE_CODE (obj
) == PARM_DECL
3571 || TREE_CODE (obj
) == RESULT_DECL
)
3572 return new_cost (symbol_cost
[speed
], 0);
3575 return new_cost (address_cost
[speed
], 0);
3578 switch (TREE_CODE (expr
))
3580 case POINTER_PLUS_EXPR
:
3584 op0
= TREE_OPERAND (expr
, 0);
3585 op1
= TREE_OPERAND (expr
, 1);
3589 if (is_gimple_val (op0
))
3592 cost0
= force_expr_to_var_cost (op0
, speed
);
3594 if (is_gimple_val (op1
))
3597 cost1
= force_expr_to_var_cost (op1
, speed
);
3602 op0
= TREE_OPERAND (expr
, 0);
3606 if (is_gimple_val (op0
))
3609 cost0
= force_expr_to_var_cost (op0
, speed
);
3615 /* Just an arbitrary value, FIXME. */
3616 return new_cost (target_spill_cost
[speed
], 0);
3619 mode
= TYPE_MODE (TREE_TYPE (expr
));
3620 switch (TREE_CODE (expr
))
3622 case POINTER_PLUS_EXPR
:
3626 cost
= new_cost (add_cost (speed
, mode
), 0);
3627 if (TREE_CODE (expr
) != NEGATE_EXPR
)
3629 tree mult
= NULL_TREE
;
3631 if (TREE_CODE (op1
) == MULT_EXPR
)
3633 else if (TREE_CODE (op0
) == MULT_EXPR
)
3636 if (mult
!= NULL_TREE
3637 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
3638 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
3645 if (cst_and_fits_in_hwi (op0
))
3646 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op0
),
3648 else if (cst_and_fits_in_hwi (op1
))
3649 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op1
),
3652 return new_cost (target_spill_cost
[speed
], 0);
3659 cost
= add_costs (cost
, cost0
);
3660 cost
= add_costs (cost
, cost1
);
3662 /* Bound the cost by target_spill_cost. The parts of complicated
3663 computations often are either loop invariant or at least can
3664 be shared between several iv uses, so letting this grow without
3665 limits would not give reasonable results. */
3666 if (cost
.cost
> (int) target_spill_cost
[speed
])
3667 cost
.cost
= target_spill_cost
[speed
];
3672 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
3673 invariants the computation depends on. */
3676 force_var_cost (struct ivopts_data
*data
,
3677 tree expr
, bitmap
*depends_on
)
3681 fd_ivopts_data
= data
;
3682 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
3685 return force_expr_to_var_cost (expr
, data
->speed
);
3688 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
3689 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
3690 to false if the corresponding part is missing. DEPENDS_ON is a set of the
3691 invariants the computation depends on. */
3694 split_address_cost (struct ivopts_data
*data
,
3695 tree addr
, bool *symbol_present
, bool *var_present
,
3696 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3699 HOST_WIDE_INT bitsize
;
3700 HOST_WIDE_INT bitpos
;
3702 enum machine_mode mode
;
3703 int unsignedp
, volatilep
;
3705 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
3706 &unsignedp
, &volatilep
, false);
3709 || bitpos
% BITS_PER_UNIT
!= 0
3710 || TREE_CODE (core
) != VAR_DECL
)
3712 *symbol_present
= false;
3713 *var_present
= true;
3714 fd_ivopts_data
= data
;
3715 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
3716 return new_cost (target_spill_cost
[data
->speed
], 0);
3719 *offset
+= bitpos
/ BITS_PER_UNIT
;
3720 if (TREE_STATIC (core
)
3721 || DECL_EXTERNAL (core
))
3723 *symbol_present
= true;
3724 *var_present
= false;
3728 *symbol_present
= false;
3729 *var_present
= true;
3733 /* Estimates cost of expressing difference of addresses E1 - E2 as
3734 var + symbol + offset. The value of offset is added to OFFSET,
3735 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3736 part is missing. DEPENDS_ON is a set of the invariants the computation
3740 ptr_difference_cost (struct ivopts_data
*data
,
3741 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3742 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3744 HOST_WIDE_INT diff
= 0;
3745 aff_tree aff_e1
, aff_e2
;
3748 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
3750 if (ptr_difference_const (e1
, e2
, &diff
))
3753 *symbol_present
= false;
3754 *var_present
= false;
3758 if (integer_zerop (e2
))
3759 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
3760 symbol_present
, var_present
, offset
, depends_on
);
3762 *symbol_present
= false;
3763 *var_present
= true;
3765 type
= signed_type_for (TREE_TYPE (e1
));
3766 tree_to_aff_combination (e1
, type
, &aff_e1
);
3767 tree_to_aff_combination (e2
, type
, &aff_e2
);
3768 aff_combination_scale (&aff_e2
, double_int_minus_one
);
3769 aff_combination_add (&aff_e1
, &aff_e2
);
3771 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3774 /* Estimates cost of expressing difference E1 - E2 as
3775 var + symbol + offset. The value of offset is added to OFFSET,
3776 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
3777 part is missing. DEPENDS_ON is a set of the invariants the computation
3781 difference_cost (struct ivopts_data
*data
,
3782 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
3783 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
3785 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
3786 unsigned HOST_WIDE_INT off1
, off2
;
3787 aff_tree aff_e1
, aff_e2
;
3790 e1
= strip_offset (e1
, &off1
);
3791 e2
= strip_offset (e2
, &off2
);
3792 *offset
+= off1
- off2
;
3797 if (TREE_CODE (e1
) == ADDR_EXPR
)
3798 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
3799 offset
, depends_on
);
3800 *symbol_present
= false;
3802 if (operand_equal_p (e1
, e2
, 0))
3804 *var_present
= false;
3808 *var_present
= true;
3810 if (integer_zerop (e2
))
3811 return force_var_cost (data
, e1
, depends_on
);
3813 if (integer_zerop (e1
))
3815 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
3816 cost
.cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
3820 type
= signed_type_for (TREE_TYPE (e1
));
3821 tree_to_aff_combination (e1
, type
, &aff_e1
);
3822 tree_to_aff_combination (e2
, type
, &aff_e2
);
3823 aff_combination_scale (&aff_e2
, double_int_minus_one
);
3824 aff_combination_add (&aff_e1
, &aff_e2
);
3826 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
3829 /* Returns true if AFF1 and AFF2 are identical. */
3832 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
3836 if (aff1
->n
!= aff2
->n
)
3839 for (i
= 0; i
< aff1
->n
; i
++)
3841 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
3844 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
3850 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
3853 get_expr_id (struct ivopts_data
*data
, tree expr
)
3855 struct iv_inv_expr_ent ent
;
3856 struct iv_inv_expr_ent
**slot
;
3859 ent
.hash
= iterative_hash_expr (expr
, 0);
3860 slot
= data
->inv_expr_tab
.find_slot (&ent
, INSERT
);
3864 *slot
= XNEW (struct iv_inv_expr_ent
);
3865 (*slot
)->expr
= expr
;
3866 (*slot
)->hash
= ent
.hash
;
3867 (*slot
)->id
= data
->inv_expr_id
++;
3871 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
3872 requires a new compiler generated temporary. Returns -1 otherwise.
3873 ADDRESS_P is a flag indicating if the expression is for address
3877 get_loop_invariant_expr_id (struct ivopts_data
*data
, tree ubase
,
3878 tree cbase
, HOST_WIDE_INT ratio
,
3881 aff_tree ubase_aff
, cbase_aff
;
3889 if ((TREE_CODE (ubase
) == INTEGER_CST
)
3890 && (TREE_CODE (cbase
) == INTEGER_CST
))
3893 /* Strips the constant part. */
3894 if (TREE_CODE (ubase
) == PLUS_EXPR
3895 || TREE_CODE (ubase
) == MINUS_EXPR
3896 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
3898 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
3899 ubase
= TREE_OPERAND (ubase
, 0);
3902 /* Strips the constant part. */
3903 if (TREE_CODE (cbase
) == PLUS_EXPR
3904 || TREE_CODE (cbase
) == MINUS_EXPR
3905 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
3907 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
3908 cbase
= TREE_OPERAND (cbase
, 0);
3913 if (((TREE_CODE (ubase
) == SSA_NAME
)
3914 || (TREE_CODE (ubase
) == ADDR_EXPR
3915 && is_gimple_min_invariant (ubase
)))
3916 && (TREE_CODE (cbase
) == INTEGER_CST
))
3919 if (((TREE_CODE (cbase
) == SSA_NAME
)
3920 || (TREE_CODE (cbase
) == ADDR_EXPR
3921 && is_gimple_min_invariant (cbase
)))
3922 && (TREE_CODE (ubase
) == INTEGER_CST
))
3928 if (operand_equal_p (ubase
, cbase
, 0))
3931 if (TREE_CODE (ubase
) == ADDR_EXPR
3932 && TREE_CODE (cbase
) == ADDR_EXPR
)
3936 usym
= TREE_OPERAND (ubase
, 0);
3937 csym
= TREE_OPERAND (cbase
, 0);
3938 if (TREE_CODE (usym
) == ARRAY_REF
)
3940 tree ind
= TREE_OPERAND (usym
, 1);
3941 if (TREE_CODE (ind
) == INTEGER_CST
3942 && host_integerp (ind
, 0)
3943 && TREE_INT_CST_LOW (ind
) == 0)
3944 usym
= TREE_OPERAND (usym
, 0);
3946 if (TREE_CODE (csym
) == ARRAY_REF
)
3948 tree ind
= TREE_OPERAND (csym
, 1);
3949 if (TREE_CODE (ind
) == INTEGER_CST
3950 && host_integerp (ind
, 0)
3951 && TREE_INT_CST_LOW (ind
) == 0)
3952 csym
= TREE_OPERAND (csym
, 0);
3954 if (operand_equal_p (usym
, csym
, 0))
3957 /* Now do more complex comparison */
3958 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
3959 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
3960 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
3964 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
3965 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
3967 aff_combination_scale (&cbase_aff
, double_int::from_shwi (-1 * ratio
));
3968 aff_combination_add (&ubase_aff
, &cbase_aff
);
3969 expr
= aff_combination_to_tree (&ubase_aff
);
3970 return get_expr_id (data
, expr
);
3975 /* Determines the cost of the computation by that USE is expressed
3976 from induction variable CAND. If ADDRESS_P is true, we just need
3977 to create an address from it, otherwise we want to get it into
3978 register. A set of invariants we depend on is stored in
3979 DEPENDS_ON. AT is the statement at that the value is computed.
3980 If CAN_AUTOINC is nonnull, use it to record whether autoinc
3981 addressing is likely. */
3984 get_computation_cost_at (struct ivopts_data
*data
,
3985 struct iv_use
*use
, struct iv_cand
*cand
,
3986 bool address_p
, bitmap
*depends_on
, gimple at
,
3990 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
3992 tree utype
= TREE_TYPE (ubase
), ctype
;
3993 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
3994 HOST_WIDE_INT ratio
, aratio
;
3995 bool var_present
, symbol_present
, stmt_is_after_inc
;
3998 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
3999 enum machine_mode mem_mode
= (address_p
4000 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4005 /* Only consider real candidates. */
4007 return infinite_cost
;
4009 cbase
= cand
->iv
->base
;
4010 cstep
= cand
->iv
->step
;
4011 ctype
= TREE_TYPE (cbase
);
4013 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4015 /* We do not have a precision to express the values of use. */
4016 return infinite_cost
;
4020 || (use
->iv
->base_object
4021 && cand
->iv
->base_object
4022 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4023 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4025 /* Do not try to express address of an object with computation based
4026 on address of a different object. This may cause problems in rtl
4027 level alias analysis (that does not expect this to be happening,
4028 as this is illegal in C), and would be unlikely to be useful
4030 if (use
->iv
->base_object
4031 && cand
->iv
->base_object
4032 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4033 return infinite_cost
;
4036 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4038 /* TODO -- add direct handling of this case. */
4042 /* CSTEPI is removed from the offset in case statement is after the
4043 increment. If the step is not constant, we use zero instead.
4044 This is a bit imprecise (there is the extra addition), but
4045 redundancy elimination is likely to transform the code so that
4046 it uses value of the variable before increment anyway,
4047 so it is not that much unrealistic. */
4048 if (cst_and_fits_in_hwi (cstep
))
4049 cstepi
= int_cst_value (cstep
);
4053 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4054 return infinite_cost
;
4056 if (rat
.fits_shwi ())
4057 ratio
= rat
.to_shwi ();
4059 return infinite_cost
;
4062 ctype
= TREE_TYPE (cbase
);
4064 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4066 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4067 or ratio == 1, it is better to handle this like
4069 ubase - ratio * cbase + ratio * var
4071 (also holds in the case ratio == -1, TODO. */
4073 if (cst_and_fits_in_hwi (cbase
))
4075 offset
= - ratio
* int_cst_value (cbase
);
4076 cost
= difference_cost (data
,
4077 ubase
, build_int_cst (utype
, 0),
4078 &symbol_present
, &var_present
, &offset
,
4080 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4082 else if (ratio
== 1)
4084 tree real_cbase
= cbase
;
4086 /* Check to see if any adjustment is needed. */
4087 if (cstepi
== 0 && stmt_is_after_inc
)
4089 aff_tree real_cbase_aff
;
4092 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4094 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4096 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4097 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4100 cost
= difference_cost (data
,
4102 &symbol_present
, &var_present
, &offset
,
4104 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4107 && !POINTER_TYPE_P (ctype
)
4108 && multiplier_allowed_in_address_p
4110 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4113 = fold_build2 (MULT_EXPR
, ctype
, cbase
, build_int_cst (ctype
, ratio
));
4114 cost
= difference_cost (data
,
4116 &symbol_present
, &var_present
, &offset
,
4118 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4122 cost
= force_var_cost (data
, cbase
, depends_on
);
4123 cost
= add_costs (cost
,
4124 difference_cost (data
,
4125 ubase
, build_int_cst (utype
, 0),
4126 &symbol_present
, &var_present
,
4127 &offset
, depends_on
));
4128 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4129 cost
.cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4135 get_loop_invariant_expr_id (data
, ubase
, cbase
, ratio
, address_p
);
4136 /* Clear depends on. */
4137 if (*inv_expr_id
!= -1 && depends_on
&& *depends_on
)
4138 bitmap_clear (*depends_on
);
4141 /* If we are after the increment, the value of the candidate is higher by
4143 if (stmt_is_after_inc
)
4144 offset
-= ratio
* cstepi
;
4146 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4147 (symbol/var1/const parts may be omitted). If we are looking for an
4148 address, find the cost of addressing this. */
4150 return add_costs (cost
,
4151 get_address_cost (symbol_present
, var_present
,
4152 offset
, ratio
, cstepi
,
4154 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
4155 speed
, stmt_is_after_inc
,
4158 /* Otherwise estimate the costs for computing the expression. */
4159 if (!symbol_present
&& !var_present
&& !offset
)
4162 cost
.cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
4166 /* Symbol + offset should be compile-time computable so consider that they
4167 are added once to the variable, if present. */
4168 if (var_present
&& (symbol_present
|| offset
))
4169 cost
.cost
+= adjust_setup_cost (data
,
4170 add_cost (speed
, TYPE_MODE (ctype
)));
4172 /* Having offset does not affect runtime cost in case it is added to
4173 symbol, but it increases complexity. */
4177 cost
.cost
+= add_cost (speed
, TYPE_MODE (ctype
));
4179 aratio
= ratio
> 0 ? ratio
: -ratio
;
4181 cost
.cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
4186 *can_autoinc
= false;
4189 /* Just get the expression, expand it and measure the cost. */
4190 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
4193 return infinite_cost
;
4196 comp
= build_simple_mem_ref (comp
);
4198 return new_cost (computation_cost (comp
, speed
), 0);
4202 /* Determines the cost of the computation by that USE is expressed
4203 from induction variable CAND. If ADDRESS_P is true, we just need
4204 to create an address from it, otherwise we want to get it into
4205 register. A set of invariants we depend on is stored in
4206 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4207 autoinc addressing is likely. */
4210 get_computation_cost (struct ivopts_data
*data
,
4211 struct iv_use
*use
, struct iv_cand
*cand
,
4212 bool address_p
, bitmap
*depends_on
,
4213 bool *can_autoinc
, int *inv_expr_id
)
4215 return get_computation_cost_at (data
,
4216 use
, cand
, address_p
, depends_on
, use
->stmt
,
4217 can_autoinc
, inv_expr_id
);
4220 /* Determines cost of basing replacement of USE on CAND in a generic
4224 determine_use_iv_cost_generic (struct ivopts_data
*data
,
4225 struct iv_use
*use
, struct iv_cand
*cand
)
4229 int inv_expr_id
= -1;
4231 /* The simple case first -- if we need to express value of the preserved
4232 original biv, the cost is 0. This also prevents us from counting the
4233 cost of increment twice -- once at this use and once in the cost of
4235 if (cand
->pos
== IP_ORIGINAL
4236 && cand
->incremented_at
== use
->stmt
)
4238 set_use_iv_cost (data
, use
, cand
, no_cost
, NULL
, NULL_TREE
,
4243 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
,
4244 NULL
, &inv_expr_id
);
4246 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4249 return !infinite_cost_p (cost
);
4252 /* Determines cost of basing replacement of USE on CAND in an address. */
4255 determine_use_iv_cost_address (struct ivopts_data
*data
,
4256 struct iv_use
*use
, struct iv_cand
*cand
)
4260 int inv_expr_id
= -1;
4261 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4262 &can_autoinc
, &inv_expr_id
);
4264 if (cand
->ainc_use
== use
)
4267 cost
.cost
-= cand
->cost_step
;
4268 /* If we generated the candidate solely for exploiting autoincrement
4269 opportunities, and it turns out it can't be used, set the cost to
4270 infinity to make sure we ignore it. */
4271 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4272 cost
= infinite_cost
;
4274 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4277 return !infinite_cost_p (cost
);
4280 /* Computes value of candidate CAND at position AT in iteration NITER, and
4281 stores it to VAL. */
4284 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
4287 aff_tree step
, delta
, nit
;
4288 struct iv
*iv
= cand
->iv
;
4289 tree type
= TREE_TYPE (iv
->base
);
4290 tree steptype
= type
;
4291 if (POINTER_TYPE_P (type
))
4292 steptype
= sizetype
;
4294 tree_to_aff_combination (iv
->step
, steptype
, &step
);
4295 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4296 aff_combination_convert (&nit
, steptype
);
4297 aff_combination_mult (&nit
, &step
, &delta
);
4298 if (stmt_after_increment (loop
, cand
, at
))
4299 aff_combination_add (&delta
, &step
);
4301 tree_to_aff_combination (iv
->base
, type
, val
);
4302 aff_combination_add (val
, &delta
);
4305 /* Returns period of induction variable iv. */
4308 iv_period (struct iv
*iv
)
4310 tree step
= iv
->step
, period
, type
;
4313 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4315 type
= unsigned_type_for (TREE_TYPE (step
));
4316 /* Period of the iv is lcm (step, type_range)/step -1,
4317 i.e., N*type_range/step - 1. Since type range is power
4318 of two, N == (step >> num_of_ending_zeros_binary (step),
4319 so the final result is
4321 (type_range >> num_of_ending_zeros_binary (step)) - 1
4324 pow2div
= num_ending_zeros (step
);
4326 period
= build_low_bits_mask (type
,
4327 (TYPE_PRECISION (type
)
4328 - tree_low_cst (pow2div
, 1)));
4333 /* Returns the comparison operator used when eliminating the iv USE. */
4335 static enum tree_code
4336 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4338 struct loop
*loop
= data
->current_loop
;
4342 ex_bb
= gimple_bb (use
->stmt
);
4343 exit
= EDGE_SUCC (ex_bb
, 0);
4344 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4345 exit
= EDGE_SUCC (ex_bb
, 1);
4347 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4351 strip_wrap_conserving_type_conversions (tree exp
)
4353 while (tree_ssa_useless_type_conversion (exp
)
4354 && (nowrap_type_p (TREE_TYPE (exp
))
4355 == nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
4356 exp
= TREE_OPERAND (exp
, 0);
4360 /* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
4361 check for an exact match. */
4364 expr_equal_p (tree e
, tree what
)
4367 enum tree_code code
;
4369 e
= strip_wrap_conserving_type_conversions (e
);
4370 what
= strip_wrap_conserving_type_conversions (what
);
4372 code
= TREE_CODE (what
);
4373 if (TREE_TYPE (e
) != TREE_TYPE (what
))
4376 if (operand_equal_p (e
, what
, 0))
4379 if (TREE_CODE (e
) != SSA_NAME
)
4382 stmt
= SSA_NAME_DEF_STMT (e
);
4383 if (gimple_code (stmt
) != GIMPLE_ASSIGN
4384 || gimple_assign_rhs_code (stmt
) != code
)
4387 switch (get_gimple_rhs_class (code
))
4389 case GIMPLE_BINARY_RHS
:
4390 if (!expr_equal_p (gimple_assign_rhs2 (stmt
), TREE_OPERAND (what
, 1)))
4394 case GIMPLE_UNARY_RHS
:
4395 case GIMPLE_SINGLE_RHS
:
4396 return expr_equal_p (gimple_assign_rhs1 (stmt
), TREE_OPERAND (what
, 0));
4402 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4403 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4404 calculation is performed in non-wrapping type.
4406 TODO: More generally, we could test for the situation that
4407 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4408 This would require knowing the sign of OFFSET.
4410 Also, we only look for the first addition in the computation of BASE.
4411 More complex analysis would be better, but introducing it just for
4412 this optimization seems like an overkill. */
4415 difference_cannot_overflow_p (tree base
, tree offset
)
4417 enum tree_code code
;
4420 if (!nowrap_type_p (TREE_TYPE (base
)))
4423 base
= expand_simple_operations (base
);
4425 if (TREE_CODE (base
) == SSA_NAME
)
4427 gimple stmt
= SSA_NAME_DEF_STMT (base
);
4429 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4432 code
= gimple_assign_rhs_code (stmt
);
4433 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4436 e1
= gimple_assign_rhs1 (stmt
);
4437 e2
= gimple_assign_rhs2 (stmt
);
4441 code
= TREE_CODE (base
);
4442 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4444 e1
= TREE_OPERAND (base
, 0);
4445 e2
= TREE_OPERAND (base
, 1);
4448 /* TODO: deeper inspection may be necessary to prove the equality. */
4452 return expr_equal_p (e1
, offset
) || expr_equal_p (e2
, offset
);
4453 case POINTER_PLUS_EXPR
:
4454 return expr_equal_p (e2
, offset
);
4461 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4462 comparison with CAND. NITER describes the number of iterations of
4463 the loops. If successful, the comparison in COMP_P is altered accordingly.
4465 We aim to handle the following situation:
4481 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4482 We aim to optimize this to
4490 while (p < p_0 - a + b);
4492 This preserves the correctness, since the pointer arithmetics does not
4493 overflow. More precisely:
4495 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4496 overflow in computing it or the values of p.
4497 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4498 overflow. To prove this, we use the fact that p_0 = base + a. */
4501 iv_elimination_compare_lt (struct ivopts_data
*data
,
4502 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4503 struct tree_niter_desc
*niter
)
4505 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4506 struct affine_tree_combination nit
, tmpa
, tmpb
;
4507 enum tree_code comp
;
4510 /* We need to know that the candidate induction variable does not overflow.
4511 While more complex analysis may be used to prove this, for now just
4512 check that the variable appears in the original program and that it
4513 is computed in a type that guarantees no overflows. */
4514 cand_type
= TREE_TYPE (cand
->iv
->base
);
4515 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4518 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4519 the calculation of the BOUND could overflow, making the comparison
4521 if (!data
->loop_single_exit_p
)
4524 /* We need to be able to decide whether candidate is increasing or decreasing
4525 in order to choose the right comparison operator. */
4526 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4528 step
= int_cst_value (cand
->iv
->step
);
4530 /* Check that the number of iterations matches the expected pattern:
4531 a + 1 > b ? 0 : b - a - 1. */
4532 mbz
= niter
->may_be_zero
;
4533 if (TREE_CODE (mbz
) == GT_EXPR
)
4535 /* Handle a + 1 > b. */
4536 tree op0
= TREE_OPERAND (mbz
, 0);
4537 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4539 a
= TREE_OPERAND (op0
, 0);
4540 b
= TREE_OPERAND (mbz
, 1);
4545 else if (TREE_CODE (mbz
) == LT_EXPR
)
4547 tree op1
= TREE_OPERAND (mbz
, 1);
4549 /* Handle b < a + 1. */
4550 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
4552 a
= TREE_OPERAND (op1
, 0);
4553 b
= TREE_OPERAND (mbz
, 0);
4561 /* Expected number of iterations is B - A - 1. Check that it matches
4562 the actual number, i.e., that B - A - NITER = 1. */
4563 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
4564 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
4565 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
4566 aff_combination_scale (&nit
, double_int_minus_one
);
4567 aff_combination_scale (&tmpa
, double_int_minus_one
);
4568 aff_combination_add (&tmpb
, &tmpa
);
4569 aff_combination_add (&tmpb
, &nit
);
4570 if (tmpb
.n
!= 0 || tmpb
.offset
!= double_int_one
)
4573 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4575 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
4577 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
4578 if (!difference_cannot_overflow_p (cand
->iv
->base
, offset
))
4581 /* Determine the new comparison operator. */
4582 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
4583 if (*comp_p
== NE_EXPR
)
4585 else if (*comp_p
== EQ_EXPR
)
4586 *comp_p
= invert_tree_comparison (comp
, false);
4593 /* Check whether it is possible to express the condition in USE by comparison
4594 of candidate CAND. If so, store the value compared with to BOUND, and the
4595 comparison operator to COMP. */
4598 may_eliminate_iv (struct ivopts_data
*data
,
4599 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
4600 enum tree_code
*comp
)
4605 struct loop
*loop
= data
->current_loop
;
4607 struct tree_niter_desc
*desc
= NULL
;
4609 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
4612 /* For now works only for exits that dominate the loop latch.
4613 TODO: extend to other conditions inside loop body. */
4614 ex_bb
= gimple_bb (use
->stmt
);
4615 if (use
->stmt
!= last_stmt (ex_bb
)
4616 || gimple_code (use
->stmt
) != GIMPLE_COND
4617 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
4620 exit
= EDGE_SUCC (ex_bb
, 0);
4621 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4622 exit
= EDGE_SUCC (ex_bb
, 1);
4623 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4626 desc
= niter_for_exit (data
, exit
);
4630 /* Determine whether we can use the variable to test the exit condition.
4631 This is the case iff the period of the induction variable is greater
4632 than the number of iterations for which the exit condition is true. */
4633 period
= iv_period (cand
->iv
);
4635 /* If the number of iterations is constant, compare against it directly. */
4636 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
4638 /* See cand_value_at. */
4639 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4641 if (!tree_int_cst_lt (desc
->niter
, period
))
4646 if (tree_int_cst_lt (period
, desc
->niter
))
4651 /* If not, and if this is the only possible exit of the loop, see whether
4652 we can get a conservative estimate on the number of iterations of the
4653 entire loop and compare against that instead. */
4656 double_int period_value
, max_niter
;
4658 max_niter
= desc
->max
;
4659 if (stmt_after_increment (loop
, cand
, use
->stmt
))
4660 max_niter
+= double_int_one
;
4661 period_value
= tree_to_double_int (period
);
4662 if (max_niter
.ugt (period_value
))
4664 /* See if we can take advantage of inferred loop bound information. */
4665 if (data
->loop_single_exit_p
)
4667 if (!max_loop_iterations (loop
, &max_niter
))
4669 /* The loop bound is already adjusted by adding 1. */
4670 if (max_niter
.ugt (period_value
))
4678 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
4680 *bound
= aff_combination_to_tree (&bnd
);
4681 *comp
= iv_elimination_compare (data
, use
);
4683 /* It is unlikely that computing the number of iterations using division
4684 would be more profitable than keeping the original induction variable. */
4685 if (expression_expensive_p (*bound
))
4688 /* Sometimes, it is possible to handle the situation that the number of
4689 iterations may be zero unless additional assumtions by using <
4690 instead of != in the exit condition.
4692 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
4693 base the exit condition on it. However, that is often too
4695 if (!integer_zerop (desc
->may_be_zero
))
4696 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
4701 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
4702 be copied, if is is used in the loop body and DATA->body_includes_call. */
4705 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
4707 tree sbound
= bound
;
4708 STRIP_NOPS (sbound
);
4710 if (TREE_CODE (sbound
) == SSA_NAME
4711 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
4712 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
4713 && data
->body_includes_call
)
4714 return COSTS_N_INSNS (1);
4719 /* Determines cost of basing replacement of USE on CAND in a condition. */
4722 determine_use_iv_cost_condition (struct ivopts_data
*data
,
4723 struct iv_use
*use
, struct iv_cand
*cand
)
4725 tree bound
= NULL_TREE
;
4727 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
4728 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
4730 int elim_inv_expr_id
= -1, express_inv_expr_id
= -1, inv_expr_id
;
4731 tree
*control_var
, *bound_cst
;
4732 enum tree_code comp
= ERROR_MARK
;
4734 /* Only consider real candidates. */
4737 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
,
4742 /* Try iv elimination. */
4743 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
4745 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
4746 if (elim_cost
.cost
== 0)
4747 elim_cost
.cost
= parm_decl_cost (data
, bound
);
4748 else if (TREE_CODE (bound
) == INTEGER_CST
)
4750 /* If we replace a loop condition 'i < n' with 'p < base + n',
4751 depends_on_elim will have 'base' and 'n' set, which implies
4752 that both 'base' and 'n' will be live during the loop. More likely,
4753 'base + n' will be loop invariant, resulting in only one live value
4754 during the loop. So in that case we clear depends_on_elim and set
4755 elim_inv_expr_id instead. */
4756 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
4758 elim_inv_expr_id
= get_expr_id (data
, bound
);
4759 bitmap_clear (depends_on_elim
);
4761 /* The bound is a loop invariant, so it will be only computed
4763 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
4766 elim_cost
= infinite_cost
;
4768 /* Try expressing the original giv. If it is compared with an invariant,
4769 note that we cannot get rid of it. */
4770 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
4774 /* When the condition is a comparison of the candidate IV against
4775 zero, prefer this IV.
4777 TODO: The constant that we're subtracting from the cost should
4778 be target-dependent. This information should be added to the
4779 target costs for each backend. */
4780 if (!infinite_cost_p (elim_cost
) /* Do not try to decrease infinite! */
4781 && integer_zerop (*bound_cst
)
4782 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
4783 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
4784 elim_cost
.cost
-= 1;
4786 express_cost
= get_computation_cost (data
, use
, cand
, false,
4787 &depends_on_express
, NULL
,
4788 &express_inv_expr_id
);
4789 fd_ivopts_data
= data
;
4790 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
4792 /* Count the cost of the original bound as well. */
4793 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
4794 if (bound_cost
.cost
== 0)
4795 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
4796 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
4797 bound_cost
.cost
= 0;
4798 express_cost
.cost
+= bound_cost
.cost
;
4800 /* Choose the better approach, preferring the eliminated IV. */
4801 if (compare_costs (elim_cost
, express_cost
) <= 0)
4804 depends_on
= depends_on_elim
;
4805 depends_on_elim
= NULL
;
4806 inv_expr_id
= elim_inv_expr_id
;
4810 cost
= express_cost
;
4811 depends_on
= depends_on_express
;
4812 depends_on_express
= NULL
;
4815 inv_expr_id
= express_inv_expr_id
;
4818 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
, comp
, inv_expr_id
);
4820 if (depends_on_elim
)
4821 BITMAP_FREE (depends_on_elim
);
4822 if (depends_on_express
)
4823 BITMAP_FREE (depends_on_express
);
4825 return !infinite_cost_p (cost
);
4828 /* Determines cost of basing replacement of USE on CAND. Returns false
4829 if USE cannot be based on CAND. */
4832 determine_use_iv_cost (struct ivopts_data
*data
,
4833 struct iv_use
*use
, struct iv_cand
*cand
)
4837 case USE_NONLINEAR_EXPR
:
4838 return determine_use_iv_cost_generic (data
, use
, cand
);
4841 return determine_use_iv_cost_address (data
, use
, cand
);
4844 return determine_use_iv_cost_condition (data
, use
, cand
);
4851 /* Return true if get_computation_cost indicates that autoincrement is
4852 a possibility for the pair of USE and CAND, false otherwise. */
4855 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
4856 struct iv_cand
*cand
)
4862 if (use
->type
!= USE_ADDRESS
)
4865 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4866 &can_autoinc
, NULL
);
4868 BITMAP_FREE (depends_on
);
4870 return !infinite_cost_p (cost
) && can_autoinc
;
4873 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
4874 use that allows autoincrement, and set their AINC_USE if possible. */
4877 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
4881 for (i
= 0; i
< n_iv_cands (data
); i
++)
4883 struct iv_cand
*cand
= iv_cand (data
, i
);
4884 struct iv_use
*closest_before
= NULL
;
4885 struct iv_use
*closest_after
= NULL
;
4886 if (cand
->pos
!= IP_ORIGINAL
)
4889 for (j
= 0; j
< n_iv_uses (data
); j
++)
4891 struct iv_use
*use
= iv_use (data
, j
);
4892 unsigned uid
= gimple_uid (use
->stmt
);
4894 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
4897 if (uid
< gimple_uid (cand
->incremented_at
)
4898 && (closest_before
== NULL
4899 || uid
> gimple_uid (closest_before
->stmt
)))
4900 closest_before
= use
;
4902 if (uid
> gimple_uid (cand
->incremented_at
)
4903 && (closest_after
== NULL
4904 || uid
< gimple_uid (closest_after
->stmt
)))
4905 closest_after
= use
;
4908 if (closest_before
!= NULL
4909 && autoinc_possible_for_pair (data
, closest_before
, cand
))
4910 cand
->ainc_use
= closest_before
;
4911 else if (closest_after
!= NULL
4912 && autoinc_possible_for_pair (data
, closest_after
, cand
))
4913 cand
->ainc_use
= closest_after
;
4917 /* Finds the candidates for the induction variables. */
4920 find_iv_candidates (struct ivopts_data
*data
)
4922 /* Add commonly used ivs. */
4923 add_standard_iv_candidates (data
);
4925 /* Add old induction variables. */
4926 add_old_ivs_candidates (data
);
4928 /* Add induction variables derived from uses. */
4929 add_derived_ivs_candidates (data
);
4931 set_autoinc_for_original_candidates (data
);
4933 /* Record the important candidates. */
4934 record_important_candidates (data
);
4937 /* Determines costs of basing the use of the iv on an iv candidate. */
4940 determine_use_iv_costs (struct ivopts_data
*data
)
4944 struct iv_cand
*cand
;
4945 bitmap to_clear
= BITMAP_ALLOC (NULL
);
4947 alloc_use_cost_map (data
);
4949 for (i
= 0; i
< n_iv_uses (data
); i
++)
4951 use
= iv_use (data
, i
);
4953 if (data
->consider_all_candidates
)
4955 for (j
= 0; j
< n_iv_cands (data
); j
++)
4957 cand
= iv_cand (data
, j
);
4958 determine_use_iv_cost (data
, use
, cand
);
4965 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
4967 cand
= iv_cand (data
, j
);
4968 if (!determine_use_iv_cost (data
, use
, cand
))
4969 bitmap_set_bit (to_clear
, j
);
4972 /* Remove the candidates for that the cost is infinite from
4973 the list of related candidates. */
4974 bitmap_and_compl_into (use
->related_cands
, to_clear
);
4975 bitmap_clear (to_clear
);
4979 BITMAP_FREE (to_clear
);
4981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4983 fprintf (dump_file
, "Use-candidate costs:\n");
4985 for (i
= 0; i
< n_iv_uses (data
); i
++)
4987 use
= iv_use (data
, i
);
4989 fprintf (dump_file
, "Use %d:\n", i
);
4990 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
4991 for (j
= 0; j
< use
->n_map_members
; j
++)
4993 if (!use
->cost_map
[j
].cand
4994 || infinite_cost_p (use
->cost_map
[j
].cost
))
4997 fprintf (dump_file
, " %d\t%d\t%d\t",
4998 use
->cost_map
[j
].cand
->id
,
4999 use
->cost_map
[j
].cost
.cost
,
5000 use
->cost_map
[j
].cost
.complexity
);
5001 if (use
->cost_map
[j
].depends_on
)
5002 bitmap_print (dump_file
,
5003 use
->cost_map
[j
].depends_on
, "","");
5004 if (use
->cost_map
[j
].inv_expr_id
!= -1)
5005 fprintf (dump_file
, " inv_expr:%d", use
->cost_map
[j
].inv_expr_id
);
5006 fprintf (dump_file
, "\n");
5009 fprintf (dump_file
, "\n");
5011 fprintf (dump_file
, "\n");
5015 /* Determines cost of the candidate CAND. */
5018 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5020 comp_cost cost_base
;
5021 unsigned cost
, cost_step
;
5030 /* There are two costs associated with the candidate -- its increment
5031 and its initialization. The second is almost negligible for any loop
5032 that rolls enough, so we take it just very little into account. */
5034 base
= cand
->iv
->base
;
5035 cost_base
= force_var_cost (data
, base
, NULL
);
5036 /* It will be exceptional that the iv register happens to be initialized with
5037 the proper value at no cost. In general, there will at least be a regcopy
5039 if (cost_base
.cost
== 0)
5040 cost_base
.cost
= COSTS_N_INSNS (1);
5041 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5043 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5045 /* Prefer the original ivs unless we may gain something by replacing it.
5046 The reason is to make debugging simpler; so this is not relevant for
5047 artificial ivs created by other optimization passes. */
5048 if (cand
->pos
!= IP_ORIGINAL
5049 || !SSA_NAME_VAR (cand
->var_before
)
5050 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5053 /* Prefer not to insert statements into latch unless there are some
5054 already (so that we do not create unnecessary jumps). */
5055 if (cand
->pos
== IP_END
5056 && empty_block_p (ip_end_pos (data
->current_loop
)))
5060 cand
->cost_step
= cost_step
;
5063 /* Determines costs of computation of the candidates. */
5066 determine_iv_costs (struct ivopts_data
*data
)
5070 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5072 fprintf (dump_file
, "Candidate costs:\n");
5073 fprintf (dump_file
, " cand\tcost\n");
5076 for (i
= 0; i
< n_iv_cands (data
); i
++)
5078 struct iv_cand
*cand
= iv_cand (data
, i
);
5080 determine_iv_cost (data
, cand
);
5082 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5083 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5086 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5087 fprintf (dump_file
, "\n");
5090 /* Calculates cost for having SIZE induction variables. */
5093 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5095 /* We add size to the cost, so that we prefer eliminating ivs
5097 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5098 data
->body_includes_call
);
5101 /* For each size of the induction variable set determine the penalty. */
5104 determine_set_costs (struct ivopts_data
*data
)
5108 gimple_stmt_iterator psi
;
5110 struct loop
*loop
= data
->current_loop
;
5113 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5115 fprintf (dump_file
, "Global costs:\n");
5116 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5117 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5118 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5119 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5123 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5125 phi
= gsi_stmt (psi
);
5126 op
= PHI_RESULT (phi
);
5128 if (virtual_operand_p (op
))
5131 if (get_iv (data
, op
))
5137 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5139 struct version_info
*info
= ver_info (data
, j
);
5141 if (info
->inv_id
&& info
->has_nonlin_use
)
5145 data
->regs_used
= n
;
5146 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5147 fprintf (dump_file
, " regs_used %d\n", n
);
5149 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5151 fprintf (dump_file
, " cost for size:\n");
5152 fprintf (dump_file
, " ivs\tcost\n");
5153 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5154 fprintf (dump_file
, " %d\t%d\n", j
,
5155 ivopts_global_cost_for_size (data
, j
));
5156 fprintf (dump_file
, "\n");
5160 /* Returns true if A is a cheaper cost pair than B. */
5163 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5173 cmp
= compare_costs (a
->cost
, b
->cost
);
5180 /* In case the costs are the same, prefer the cheaper candidate. */
5181 if (a
->cand
->cost
< b
->cand
->cost
)
5188 /* Returns candidate by that USE is expressed in IVS. */
5190 static struct cost_pair
*
5191 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
5193 return ivs
->cand_for_use
[use
->id
];
5196 /* Computes the cost field of IVS structure. */
5199 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5201 comp_cost cost
= ivs
->cand_use_cost
;
5203 cost
.cost
+= ivs
->cand_cost
;
5205 cost
.cost
+= ivopts_global_cost_for_size (data
,
5206 ivs
->n_regs
+ ivs
->num_used_inv_expr
);
5211 /* Remove invariants in set INVS to set IVS. */
5214 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
5222 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5224 ivs
->n_invariant_uses
[iid
]--;
5225 if (ivs
->n_invariant_uses
[iid
] == 0)
5230 /* Set USE not to be expressed by any candidate in IVS. */
5233 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5236 unsigned uid
= use
->id
, cid
;
5237 struct cost_pair
*cp
;
5239 cp
= ivs
->cand_for_use
[uid
];
5245 ivs
->cand_for_use
[uid
] = NULL
;
5246 ivs
->n_cand_uses
[cid
]--;
5248 if (ivs
->n_cand_uses
[cid
] == 0)
5250 bitmap_clear_bit (ivs
->cands
, cid
);
5251 /* Do not count the pseudocandidates. */
5255 ivs
->cand_cost
-= cp
->cand
->cost
;
5257 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
5260 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
5262 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
5264 if (cp
->inv_expr_id
!= -1)
5266 ivs
->used_inv_expr
[cp
->inv_expr_id
]--;
5267 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 0)
5268 ivs
->num_used_inv_expr
--;
5270 iv_ca_recount_cost (data
, ivs
);
5273 /* Add invariants in set INVS to set IVS. */
5276 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
5284 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5286 ivs
->n_invariant_uses
[iid
]++;
5287 if (ivs
->n_invariant_uses
[iid
] == 1)
5292 /* Set cost pair for USE in set IVS to CP. */
5295 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5296 struct iv_use
*use
, struct cost_pair
*cp
)
5298 unsigned uid
= use
->id
, cid
;
5300 if (ivs
->cand_for_use
[uid
] == cp
)
5303 if (ivs
->cand_for_use
[uid
])
5304 iv_ca_set_no_cp (data
, ivs
, use
);
5311 ivs
->cand_for_use
[uid
] = cp
;
5312 ivs
->n_cand_uses
[cid
]++;
5313 if (ivs
->n_cand_uses
[cid
] == 1)
5315 bitmap_set_bit (ivs
->cands
, cid
);
5316 /* Do not count the pseudocandidates. */
5320 ivs
->cand_cost
+= cp
->cand
->cost
;
5322 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
5325 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
5326 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
5328 if (cp
->inv_expr_id
!= -1)
5330 ivs
->used_inv_expr
[cp
->inv_expr_id
]++;
5331 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 1)
5332 ivs
->num_used_inv_expr
++;
5334 iv_ca_recount_cost (data
, ivs
);
5338 /* Extend set IVS by expressing USE by some of the candidates in it
5339 if possible. All important candidates will be considered
5340 if IMPORTANT_CANDIDATES is true. */
5343 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5344 struct iv_use
*use
, bool important_candidates
)
5346 struct cost_pair
*best_cp
= NULL
, *cp
;
5351 gcc_assert (ivs
->upto
>= use
->id
);
5353 if (ivs
->upto
== use
->id
)
5359 cands
= (important_candidates
? data
->important_candidates
: ivs
->cands
);
5360 EXECUTE_IF_SET_IN_BITMAP (cands
, 0, i
, bi
)
5362 struct iv_cand
*cand
= iv_cand (data
, i
);
5364 cp
= get_use_iv_cost (data
, use
, cand
);
5366 if (cheaper_cost_pair (cp
, best_cp
))
5370 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
5373 /* Get cost for assignment IVS. */
5376 iv_ca_cost (struct iv_ca
*ivs
)
5378 /* This was a conditional expression but it triggered a bug in
5381 return infinite_cost
;
5386 /* Returns true if all dependences of CP are among invariants in IVS. */
5389 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
5394 if (!cp
->depends_on
)
5397 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
5399 if (ivs
->n_invariant_uses
[i
] == 0)
5406 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5407 it before NEXT_CHANGE. */
5409 static struct iv_ca_delta
*
5410 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
5411 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
5413 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5416 change
->old_cp
= old_cp
;
5417 change
->new_cp
= new_cp
;
5418 change
->next_change
= next_change
;
5423 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5426 static struct iv_ca_delta
*
5427 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5429 struct iv_ca_delta
*last
;
5437 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
5439 last
->next_change
= l2
;
5444 /* Reverse the list of changes DELTA, forming the inverse to it. */
5446 static struct iv_ca_delta
*
5447 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
5449 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
5450 struct cost_pair
*tmp
;
5452 for (act
= delta
; act
; act
= next
)
5454 next
= act
->next_change
;
5455 act
->next_change
= prev
;
5459 act
->old_cp
= act
->new_cp
;
5466 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5467 reverted instead. */
5470 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5471 struct iv_ca_delta
*delta
, bool forward
)
5473 struct cost_pair
*from
, *to
;
5474 struct iv_ca_delta
*act
;
5477 delta
= iv_ca_delta_reverse (delta
);
5479 for (act
= delta
; act
; act
= act
->next_change
)
5483 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
5484 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
5488 iv_ca_delta_reverse (delta
);
5491 /* Returns true if CAND is used in IVS. */
5494 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
5496 return ivs
->n_cand_uses
[cand
->id
] > 0;
5499 /* Returns number of induction variable candidates in the set IVS. */
5502 iv_ca_n_cands (struct iv_ca
*ivs
)
5504 return ivs
->n_cands
;
5507 /* Free the list of changes DELTA. */
5510 iv_ca_delta_free (struct iv_ca_delta
**delta
)
5512 struct iv_ca_delta
*act
, *next
;
5514 for (act
= *delta
; act
; act
= next
)
5516 next
= act
->next_change
;
5523 /* Allocates new iv candidates assignment. */
5525 static struct iv_ca
*
5526 iv_ca_new (struct ivopts_data
*data
)
5528 struct iv_ca
*nw
= XNEW (struct iv_ca
);
5532 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
5533 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
5534 nw
->cands
= BITMAP_ALLOC (NULL
);
5537 nw
->cand_use_cost
= no_cost
;
5539 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
5541 nw
->used_inv_expr
= XCNEWVEC (unsigned, data
->inv_expr_id
+ 1);
5542 nw
->num_used_inv_expr
= 0;
5547 /* Free memory occupied by the set IVS. */
5550 iv_ca_free (struct iv_ca
**ivs
)
5552 free ((*ivs
)->cand_for_use
);
5553 free ((*ivs
)->n_cand_uses
);
5554 BITMAP_FREE ((*ivs
)->cands
);
5555 free ((*ivs
)->n_invariant_uses
);
5556 free ((*ivs
)->used_inv_expr
);
5561 /* Dumps IVS to FILE. */
5564 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
5566 const char *pref
= " invariants ";
5568 comp_cost cost
= iv_ca_cost (ivs
);
5570 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
5571 fprintf (file
, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5572 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
, ivs
->cand_use_cost
.complexity
);
5573 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
5575 for (i
= 0; i
< ivs
->upto
; i
++)
5577 struct iv_use
*use
= iv_use (data
, i
);
5578 struct cost_pair
*cp
= iv_ca_cand_for_use (ivs
, use
);
5580 fprintf (file
, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5581 use
->id
, cp
->cand
->id
, cp
->cost
.cost
, cp
->cost
.complexity
);
5583 fprintf (file
, " use:%d --> ??\n", use
->id
);
5586 for (i
= 1; i
<= data
->max_inv_id
; i
++)
5587 if (ivs
->n_invariant_uses
[i
])
5589 fprintf (file
, "%s%d", pref
, i
);
5592 fprintf (file
, "\n\n");
5595 /* Try changing candidate in IVS to CAND for each use. Return cost of the
5596 new set, and store differences in DELTA. Number of induction variables
5597 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
5598 the function will try to find a solution with mimimal iv candidates. */
5601 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5602 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
5603 unsigned *n_ivs
, bool min_ncand
)
5608 struct cost_pair
*old_cp
, *new_cp
;
5611 for (i
= 0; i
< ivs
->upto
; i
++)
5613 use
= iv_use (data
, i
);
5614 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5617 && old_cp
->cand
== cand
)
5620 new_cp
= get_use_iv_cost (data
, use
, cand
);
5624 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
5627 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
5630 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5633 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5634 cost
= iv_ca_cost (ivs
);
5636 *n_ivs
= iv_ca_n_cands (ivs
);
5637 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5642 /* Try narrowing set IVS by removing CAND. Return the cost of
5643 the new set and store the differences in DELTA. */
5646 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5647 struct iv_cand
*cand
, struct iv_ca_delta
**delta
)
5651 struct cost_pair
*old_cp
, *new_cp
, *cp
;
5653 struct iv_cand
*cnd
;
5657 for (i
= 0; i
< n_iv_uses (data
); i
++)
5659 use
= iv_use (data
, i
);
5661 old_cp
= iv_ca_cand_for_use (ivs
, use
);
5662 if (old_cp
->cand
!= cand
)
5667 if (data
->consider_all_candidates
)
5669 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
5674 cnd
= iv_cand (data
, ci
);
5676 cp
= get_use_iv_cost (data
, use
, cnd
);
5680 if (!iv_ca_has_deps (ivs
, cp
))
5683 if (!cheaper_cost_pair (cp
, new_cp
))
5691 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
5696 cnd
= iv_cand (data
, ci
);
5698 cp
= get_use_iv_cost (data
, use
, cnd
);
5701 if (!iv_ca_has_deps (ivs
, cp
))
5704 if (!cheaper_cost_pair (cp
, new_cp
))
5713 iv_ca_delta_free (delta
);
5714 return infinite_cost
;
5717 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
5720 iv_ca_delta_commit (data
, ivs
, *delta
, true);
5721 cost
= iv_ca_cost (ivs
);
5722 iv_ca_delta_commit (data
, ivs
, *delta
, false);
5727 /* Try optimizing the set of candidates IVS by removing candidates different
5728 from to EXCEPT_CAND from it. Return cost of the new set, and store
5729 differences in DELTA. */
5732 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5733 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
5736 struct iv_ca_delta
*act_delta
, *best_delta
;
5738 comp_cost best_cost
, acost
;
5739 struct iv_cand
*cand
;
5742 best_cost
= iv_ca_cost (ivs
);
5744 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5746 cand
= iv_cand (data
, i
);
5748 if (cand
== except_cand
)
5751 acost
= iv_ca_narrow (data
, ivs
, cand
, &act_delta
);
5753 if (compare_costs (acost
, best_cost
) < 0)
5756 iv_ca_delta_free (&best_delta
);
5757 best_delta
= act_delta
;
5760 iv_ca_delta_free (&act_delta
);
5769 /* Recurse to possibly remove other unnecessary ivs. */
5770 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5771 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
5772 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
5773 *delta
= iv_ca_delta_join (best_delta
, *delta
);
5777 /* Tries to extend the sets IVS in the best possible way in order
5778 to express the USE. If ORIGINALP is true, prefer candidates from
5779 the original set of IVs, otherwise favor important candidates not
5780 based on any memory object. */
5783 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5784 struct iv_use
*use
, bool originalp
)
5786 comp_cost best_cost
, act_cost
;
5789 struct iv_cand
*cand
;
5790 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
5791 struct cost_pair
*cp
;
5793 iv_ca_add_use (data
, ivs
, use
, false);
5794 best_cost
= iv_ca_cost (ivs
);
5796 cp
= iv_ca_cand_for_use (ivs
, use
);
5801 iv_ca_add_use (data
, ivs
, use
, true);
5802 best_cost
= iv_ca_cost (ivs
);
5803 cp
= iv_ca_cand_for_use (ivs
, use
);
5807 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
5808 iv_ca_set_no_cp (data
, ivs
, use
);
5811 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
5812 first try important candidates not based on any memory object. Only if
5813 this fails, try the specific ones. Rationale -- in loops with many
5814 variables the best choice often is to use just one generic biv. If we
5815 added here many ivs specific to the uses, the optimization algorithm later
5816 would be likely to get stuck in a local minimum, thus causing us to create
5817 too many ivs. The approach from few ivs to more seems more likely to be
5818 successful -- starting from few ivs, replacing an expensive use by a
5819 specific iv should always be a win. */
5820 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5822 cand
= iv_cand (data
, i
);
5824 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
5827 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
5830 if (iv_ca_cand_used_p (ivs
, cand
))
5833 cp
= get_use_iv_cost (data
, use
, cand
);
5837 iv_ca_set_cp (data
, ivs
, use
, cp
);
5838 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
5840 iv_ca_set_no_cp (data
, ivs
, use
);
5841 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
5843 if (compare_costs (act_cost
, best_cost
) < 0)
5845 best_cost
= act_cost
;
5847 iv_ca_delta_free (&best_delta
);
5848 best_delta
= act_delta
;
5851 iv_ca_delta_free (&act_delta
);
5854 if (infinite_cost_p (best_cost
))
5856 for (i
= 0; i
< use
->n_map_members
; i
++)
5858 cp
= use
->cost_map
+ i
;
5863 /* Already tried this. */
5864 if (cand
->important
)
5866 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
5868 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
5872 if (iv_ca_cand_used_p (ivs
, cand
))
5876 iv_ca_set_cp (data
, ivs
, use
, cp
);
5877 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
5878 iv_ca_set_no_cp (data
, ivs
, use
);
5879 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
5882 if (compare_costs (act_cost
, best_cost
) < 0)
5884 best_cost
= act_cost
;
5887 iv_ca_delta_free (&best_delta
);
5888 best_delta
= act_delta
;
5891 iv_ca_delta_free (&act_delta
);
5895 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5896 iv_ca_delta_free (&best_delta
);
5898 return !infinite_cost_p (best_cost
);
5901 /* Finds an initial assignment of candidates to uses. */
5903 static struct iv_ca
*
5904 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
5906 struct iv_ca
*ivs
= iv_ca_new (data
);
5909 for (i
= 0; i
< n_iv_uses (data
); i
++)
5910 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
), originalp
))
5919 /* Tries to improve set of induction variables IVS. */
5922 try_improve_iv_set (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5925 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
5926 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
5927 struct iv_cand
*cand
;
5929 /* Try extending the set of induction variables by one. */
5930 for (i
= 0; i
< n_iv_cands (data
); i
++)
5932 cand
= iv_cand (data
, i
);
5934 if (iv_ca_cand_used_p (ivs
, cand
))
5937 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
5941 /* If we successfully added the candidate and the set is small enough,
5942 try optimizing it by removing other candidates. */
5943 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
5945 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
5946 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
5947 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
5948 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
5951 if (compare_costs (acost
, best_cost
) < 0)
5954 iv_ca_delta_free (&best_delta
);
5955 best_delta
= act_delta
;
5958 iv_ca_delta_free (&act_delta
);
5963 /* Try removing the candidates from the set instead. */
5964 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
5966 /* Nothing more we can do. */
5971 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
5972 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
5973 iv_ca_delta_free (&best_delta
);
5977 /* Attempts to find the optimal set of induction variables. We do simple
5978 greedy heuristic -- we try to replace at most one candidate in the selected
5979 solution and remove the unused ivs while this improves the cost. */
5981 static struct iv_ca
*
5982 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
5986 /* Get the initial solution. */
5987 set
= get_initial_solution (data
, originalp
);
5990 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5991 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
5995 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5997 fprintf (dump_file
, "Initial set of candidates:\n");
5998 iv_ca_dump (data
, dump_file
, set
);
6001 while (try_improve_iv_set (data
, set
))
6003 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6005 fprintf (dump_file
, "Improved to:\n");
6006 iv_ca_dump (data
, dump_file
, set
);
6013 static struct iv_ca
*
6014 find_optimal_iv_set (struct ivopts_data
*data
)
6017 struct iv_ca
*set
, *origset
;
6019 comp_cost cost
, origcost
;
6021 /* Determine the cost based on a strategy that starts with original IVs,
6022 and try again using a strategy that prefers candidates not based
6024 origset
= find_optimal_iv_set_1 (data
, true);
6025 set
= find_optimal_iv_set_1 (data
, false);
6027 if (!origset
&& !set
)
6030 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6031 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6033 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6035 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6036 origcost
.cost
, origcost
.complexity
);
6037 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6038 cost
.cost
, cost
.complexity
);
6041 /* Choose the one with the best cost. */
6042 if (compare_costs (origcost
, cost
) <= 0)
6049 iv_ca_free (&origset
);
6051 for (i
= 0; i
< n_iv_uses (data
); i
++)
6053 use
= iv_use (data
, i
);
6054 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
6060 /* Creates a new induction variable corresponding to CAND. */
6063 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6065 gimple_stmt_iterator incr_pos
;
6075 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6079 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6087 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6091 /* Mark that the iv is preserved. */
6092 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6093 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6095 /* Rewrite the increment so that it uses var_before directly. */
6096 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
6100 gimple_add_tmp_var (cand
->var_before
);
6102 base
= unshare_expr (cand
->iv
->base
);
6104 create_iv (base
, unshare_expr (cand
->iv
->step
),
6105 cand
->var_before
, data
->current_loop
,
6106 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6109 /* Creates new induction variables described in SET. */
6112 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6115 struct iv_cand
*cand
;
6118 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6120 cand
= iv_cand (data
, i
);
6121 create_new_iv (data
, cand
);
6124 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6126 fprintf (dump_file
, "\nSelected IV set: \n");
6127 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6129 cand
= iv_cand (data
, i
);
6130 dump_cand (dump_file
, cand
);
6132 fprintf (dump_file
, "\n");
6136 /* Rewrites USE (definition of iv used in a nonlinear expression)
6137 using candidate CAND. */
6140 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6141 struct iv_use
*use
, struct iv_cand
*cand
)
6146 gimple_stmt_iterator bsi
;
6148 /* An important special case -- if we are asked to express value of
6149 the original iv by itself, just exit; there is no need to
6150 introduce a new computation (that might also need casting the
6151 variable to unsigned and back). */
6152 if (cand
->pos
== IP_ORIGINAL
6153 && cand
->incremented_at
== use
->stmt
)
6155 enum tree_code stmt_code
;
6157 gcc_assert (is_gimple_assign (use
->stmt
));
6158 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6160 /* Check whether we may leave the computation unchanged.
6161 This is the case only if it does not rely on other
6162 computations in the loop -- otherwise, the computation
6163 we rely upon may be removed in remove_unused_ivs,
6164 thus leading to ICE. */
6165 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6166 if (stmt_code
== PLUS_EXPR
6167 || stmt_code
== MINUS_EXPR
6168 || stmt_code
== POINTER_PLUS_EXPR
)
6170 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6171 op
= gimple_assign_rhs2 (use
->stmt
);
6172 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6173 op
= gimple_assign_rhs1 (use
->stmt
);
6180 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
6184 comp
= get_computation (data
->current_loop
, use
, cand
);
6185 gcc_assert (comp
!= NULL_TREE
);
6187 switch (gimple_code (use
->stmt
))
6190 tgt
= PHI_RESULT (use
->stmt
);
6192 /* If we should keep the biv, do not replace it. */
6193 if (name_info (data
, tgt
)->preserve_biv
)
6196 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6200 tgt
= gimple_assign_lhs (use
->stmt
);
6201 bsi
= gsi_for_stmt (use
->stmt
);
6208 if (!valid_gimple_rhs_p (comp
)
6209 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6210 /* We can't allow re-allocating the stmt as it might be pointed
6212 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6213 >= gimple_num_ops (gsi_stmt (bsi
)))))
6215 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
6216 true, GSI_SAME_STMT
);
6217 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6219 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6220 /* As this isn't a plain copy we have to reset alignment
6222 if (SSA_NAME_PTR_INFO (comp
))
6223 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6227 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6229 ass
= gimple_build_assign (tgt
, comp
);
6230 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6232 bsi
= gsi_for_stmt (use
->stmt
);
6233 remove_phi_node (&bsi
, false);
6237 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6238 use
->stmt
= gsi_stmt (bsi
);
6242 /* Performs a peephole optimization to reorder the iv update statement with
6243 a mem ref to enable instruction combining in later phases. The mem ref uses
6244 the iv value before the update, so the reordering transformation requires
6245 adjustment of the offset. CAND is the selected IV_CAND.
6249 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6257 directly propagating t over to (1) will introduce overlapping live range
6258 thus increase register pressure. This peephole transform it into:
6262 t = MEM_REF (base, iv2, 8, 8);
6269 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
6272 gimple iv_update
, stmt
;
6274 gimple_stmt_iterator gsi
, gsi_iv
;
6276 if (cand
->pos
!= IP_NORMAL
)
6279 var_after
= cand
->var_after
;
6280 iv_update
= SSA_NAME_DEF_STMT (var_after
);
6282 bb
= gimple_bb (iv_update
);
6283 gsi
= gsi_last_nondebug_bb (bb
);
6284 stmt
= gsi_stmt (gsi
);
6286 /* Only handle conditional statement for now. */
6287 if (gimple_code (stmt
) != GIMPLE_COND
)
6290 gsi_prev_nondebug (&gsi
);
6291 stmt
= gsi_stmt (gsi
);
6292 if (stmt
!= iv_update
)
6295 gsi_prev_nondebug (&gsi
);
6296 if (gsi_end_p (gsi
))
6299 stmt
= gsi_stmt (gsi
);
6300 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
6303 if (stmt
!= use
->stmt
)
6306 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
6309 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6311 fprintf (dump_file
, "Reordering \n");
6312 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
6313 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
6314 fprintf (dump_file
, "\n");
6317 gsi
= gsi_for_stmt (use
->stmt
);
6318 gsi_iv
= gsi_for_stmt (iv_update
);
6319 gsi_move_before (&gsi_iv
, &gsi
);
6321 cand
->pos
= IP_BEFORE_USE
;
6322 cand
->incremented_at
= use
->stmt
;
6325 /* Rewrites USE (address that is an iv) using candidate CAND. */
6328 rewrite_use_address (struct ivopts_data
*data
,
6329 struct iv_use
*use
, struct iv_cand
*cand
)
6332 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6333 tree base_hint
= NULL_TREE
;
6337 adjust_iv_update_pos (cand
, use
);
6338 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
6340 unshare_aff_combination (&aff
);
6342 /* To avoid undefined overflow problems, all IV candidates use unsigned
6343 integer types. The drawback is that this makes it impossible for
6344 create_mem_ref to distinguish an IV that is based on a memory object
6345 from one that represents simply an offset.
6347 To work around this problem, we pass a hint to create_mem_ref that
6348 indicates which variable (if any) in aff is an IV based on a memory
6349 object. Note that we only consider the candidate. If this is not
6350 based on an object, the base of the reference is in some subexpression
6351 of the use -- but these will use pointer types, so they are recognized
6352 by the create_mem_ref heuristics anyway. */
6353 if (cand
->iv
->base_object
)
6354 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6356 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6357 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
6358 reference_alias_ptr_type (*use
->op_p
),
6359 iv
, base_hint
, data
->speed
);
6360 copy_ref_info (ref
, *use
->op_p
);
6364 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6368 rewrite_use_compare (struct ivopts_data
*data
,
6369 struct iv_use
*use
, struct iv_cand
*cand
)
6371 tree comp
, *var_p
, op
, bound
;
6372 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6373 enum tree_code compare
;
6374 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
6380 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6381 tree var_type
= TREE_TYPE (var
);
6384 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6386 fprintf (dump_file
, "Replacing exit test: ");
6387 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
6390 bound
= unshare_expr (fold_convert (var_type
, bound
));
6391 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
6393 gsi_insert_seq_on_edge_immediate (
6394 loop_preheader_edge (data
->current_loop
),
6397 gimple_cond_set_lhs (use
->stmt
, var
);
6398 gimple_cond_set_code (use
->stmt
, compare
);
6399 gimple_cond_set_rhs (use
->stmt
, op
);
6403 /* The induction variable elimination failed; just express the original
6405 comp
= get_computation (data
->current_loop
, use
, cand
);
6406 gcc_assert (comp
!= NULL_TREE
);
6408 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
6411 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
6412 true, GSI_SAME_STMT
);
6415 /* Rewrites USE using candidate CAND. */
6418 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
6422 case USE_NONLINEAR_EXPR
:
6423 rewrite_use_nonlinear_expr (data
, use
, cand
);
6427 rewrite_use_address (data
, use
, cand
);
6431 rewrite_use_compare (data
, use
, cand
);
6438 update_stmt (use
->stmt
);
6441 /* Rewrite the uses using the selected induction variables. */
6444 rewrite_uses (struct ivopts_data
*data
)
6447 struct iv_cand
*cand
;
6450 for (i
= 0; i
< n_iv_uses (data
); i
++)
6452 use
= iv_use (data
, i
);
6453 cand
= use
->selected
;
6456 rewrite_use (data
, use
, cand
);
6460 /* Removes the ivs that are not used after rewriting. */
6463 remove_unused_ivs (struct ivopts_data
*data
)
6467 bitmap toremove
= BITMAP_ALLOC (NULL
);
6469 /* Figure out an order in which to release SSA DEFs so that we don't
6470 release something that we'd have to propagate into a debug stmt
6472 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
6474 struct version_info
*info
;
6476 info
= ver_info (data
, j
);
6478 && !integer_zerop (info
->iv
->step
)
6480 && !info
->iv
->have_use_for
6481 && !info
->preserve_biv
)
6483 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
6485 tree def
= info
->iv
->ssa_name
;
6487 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
6489 imm_use_iterator imm_iter
;
6490 use_operand_p use_p
;
6494 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6496 if (!gimple_debug_bind_p (stmt
))
6499 /* We just want to determine whether to do nothing
6500 (count == 0), to substitute the computed
6501 expression into a single use of the SSA DEF by
6502 itself (count == 1), or to use a debug temp
6503 because the SSA DEF is used multiple times or as
6504 part of a larger expression (count > 1). */
6506 if (gimple_debug_bind_get_value (stmt
) != def
)
6510 BREAK_FROM_IMM_USE_STMT (imm_iter
);
6516 struct iv_use dummy_use
;
6517 struct iv_cand
*best_cand
= NULL
, *cand
;
6518 unsigned i
, best_pref
= 0, cand_pref
;
6520 memset (&dummy_use
, 0, sizeof (dummy_use
));
6521 dummy_use
.iv
= info
->iv
;
6522 for (i
= 0; i
< n_iv_uses (data
) && i
< 64; i
++)
6524 cand
= iv_use (data
, i
)->selected
;
6525 if (cand
== best_cand
)
6527 cand_pref
= operand_equal_p (cand
->iv
->step
,
6531 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
6532 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
6535 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
6537 if (best_cand
== NULL
|| best_pref
< cand_pref
)
6540 best_pref
= cand_pref
;
6547 tree comp
= get_computation_at (data
->current_loop
,
6548 &dummy_use
, best_cand
,
6549 SSA_NAME_DEF_STMT (def
));
6555 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
6556 DECL_ARTIFICIAL (vexpr
) = 1;
6557 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
6558 if (SSA_NAME_VAR (def
))
6559 DECL_MODE (vexpr
) = DECL_MODE (SSA_NAME_VAR (def
));
6561 DECL_MODE (vexpr
) = TYPE_MODE (TREE_TYPE (vexpr
));
6562 gimple def_temp
= gimple_build_debug_bind (vexpr
, comp
, NULL
);
6563 gimple_stmt_iterator gsi
;
6565 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
6566 gsi
= gsi_after_labels (gimple_bb
6567 (SSA_NAME_DEF_STMT (def
)));
6569 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
6571 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
6575 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
6577 if (!gimple_debug_bind_p (stmt
))
6580 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
6581 SET_USE (use_p
, comp
);
6589 release_defs_bitset (toremove
);
6591 BITMAP_FREE (toremove
);
6594 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
6595 for pointer_map_traverse. */
6598 free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED
, void **value
,
6599 void *data ATTRIBUTE_UNUSED
)
6601 struct tree_niter_desc
*const niter
= (struct tree_niter_desc
*) *value
;
6607 /* Frees data allocated by the optimization of a single loop. */
6610 free_loop_data (struct ivopts_data
*data
)
6618 pointer_map_traverse (data
->niters
, free_tree_niter_desc
, NULL
);
6619 pointer_map_destroy (data
->niters
);
6620 data
->niters
= NULL
;
6623 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
6625 struct version_info
*info
;
6627 info
= ver_info (data
, i
);
6630 info
->has_nonlin_use
= false;
6631 info
->preserve_biv
= false;
6634 bitmap_clear (data
->relevant
);
6635 bitmap_clear (data
->important_candidates
);
6637 for (i
= 0; i
< n_iv_uses (data
); i
++)
6639 struct iv_use
*use
= iv_use (data
, i
);
6642 BITMAP_FREE (use
->related_cands
);
6643 for (j
= 0; j
< use
->n_map_members
; j
++)
6644 if (use
->cost_map
[j
].depends_on
)
6645 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
6646 free (use
->cost_map
);
6649 data
->iv_uses
.truncate (0);
6651 for (i
= 0; i
< n_iv_cands (data
); i
++)
6653 struct iv_cand
*cand
= iv_cand (data
, i
);
6656 if (cand
->depends_on
)
6657 BITMAP_FREE (cand
->depends_on
);
6660 data
->iv_candidates
.truncate (0);
6662 if (data
->version_info_size
< num_ssa_names
)
6664 data
->version_info_size
= 2 * num_ssa_names
;
6665 free (data
->version_info
);
6666 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
6669 data
->max_inv_id
= 0;
6671 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
6672 SET_DECL_RTL (obj
, NULL_RTX
);
6674 decl_rtl_to_reset
.truncate (0);
6676 data
->inv_expr_tab
.empty ();
6677 data
->inv_expr_id
= 0;
6680 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
6684 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
6686 free_loop_data (data
);
6687 free (data
->version_info
);
6688 BITMAP_FREE (data
->relevant
);
6689 BITMAP_FREE (data
->important_candidates
);
6691 decl_rtl_to_reset
.release ();
6692 data
->iv_uses
.release ();
6693 data
->iv_candidates
.release ();
6694 data
->inv_expr_tab
.dispose ();
6697 /* Returns true if the loop body BODY includes any function calls. */
6700 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
6702 gimple_stmt_iterator gsi
;
6705 for (i
= 0; i
< num_nodes
; i
++)
6706 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
6708 gimple stmt
= gsi_stmt (gsi
);
6709 if (is_gimple_call (stmt
)
6710 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
6716 /* Optimizes the LOOP. Returns true if anything changed. */
6719 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
6721 bool changed
= false;
6722 struct iv_ca
*iv_ca
;
6723 edge exit
= single_dom_exit (loop
);
6726 gcc_assert (!data
->niters
);
6727 data
->current_loop
= loop
;
6728 data
->speed
= optimize_loop_for_speed_p (loop
);
6730 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6732 fprintf (dump_file
, "Processing loop %d\n", loop
->num
);
6736 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
6737 exit
->src
->index
, exit
->dest
->index
);
6738 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
6739 fprintf (dump_file
, "\n");
6742 fprintf (dump_file
, "\n");
6745 body
= get_loop_body (loop
);
6746 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
6747 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
6750 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
6752 /* For each ssa name determines whether it behaves as an induction variable
6754 if (!find_induction_variables (data
))
6757 /* Finds interesting uses (item 1). */
6758 find_interesting_uses (data
);
6759 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
6762 /* Finds candidates for the induction variables (item 2). */
6763 find_iv_candidates (data
);
6765 /* Calculates the costs (item 3, part 1). */
6766 determine_iv_costs (data
);
6767 determine_use_iv_costs (data
);
6768 determine_set_costs (data
);
6770 /* Find the optimal set of induction variables (item 3, part 2). */
6771 iv_ca
= find_optimal_iv_set (data
);
6776 /* Create the new induction variables (item 4, part 1). */
6777 create_new_ivs (data
, iv_ca
);
6778 iv_ca_free (&iv_ca
);
6780 /* Rewrite the uses (item 4, part 2). */
6781 rewrite_uses (data
);
6783 /* Remove the ivs that are unused after rewriting. */
6784 remove_unused_ivs (data
);
6786 /* We have changed the structure of induction variables; it might happen
6787 that definitions in the scev database refer to some of them that were
6792 free_loop_data (data
);
6797 /* Main entry point. Optimizes induction variables in loops. */
6800 tree_ssa_iv_optimize (void)
6803 struct ivopts_data data
;
6806 tree_ssa_iv_optimize_init (&data
);
6808 /* Optimize the loops starting with the innermost ones. */
6809 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
6811 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6812 flow_loop_dump (loop
, dump_file
, NULL
, 1);
6814 tree_ssa_iv_optimize_loop (&data
, loop
);
6817 tree_ssa_iv_optimize_finalize (&data
);