* df-scan.c (df_collection_rec): Adjust.
[official-gcc.git] / gcc / tree-predcom.c
blob4eead11ae7359325f41e17fdea11b38e07a2accf
1 /* Predictive commoning.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
162 a[i] = 1;
163 a[i+2] = 2;
166 can be replaced with
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
177 a[n] = t0;
178 a[n+1] = t1;
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "tree.h"
192 #include "tm_p.h"
193 #include "cfgloop.h"
194 #include "gimple.h"
195 #include "gimple-ssa.h"
196 #include "tree-phinodes.h"
197 #include "ssa-iterators.h"
198 #include "tree-ssanames.h"
199 #include "tree-ssa-loop-ivopts.h"
200 #include "tree-ssa-loop-manip.h"
201 #include "tree-ssa-loop-niter.h"
202 #include "tree-ssa-loop.h"
203 #include "tree-into-ssa.h"
204 #include "tree-dfa.h"
205 #include "tree-ssa.h"
206 #include "ggc.h"
207 #include "tree-data-ref.h"
208 #include "tree-scalar-evolution.h"
209 #include "tree-chrec.h"
210 #include "params.h"
211 #include "gimple-pretty-print.h"
212 #include "tree-pass.h"
213 #include "tree-affine.h"
214 #include "tree-inline.h"
216 /* The maximum number of iterations between the considered memory
217 references. */
219 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
221 /* Data references (or phi nodes that carry data reference values across
222 loop iterations). */
224 typedef struct dref_d
226 /* The reference itself. */
227 struct data_reference *ref;
229 /* The statement in that the reference appears. */
230 gimple stmt;
232 /* In case that STMT is a phi node, this field is set to the SSA name
233 defined by it in replace_phis_by_defined_names (in order to avoid
234 pointing to phi node that got reallocated in the meantime). */
235 tree name_defined_by_phi;
237 /* Distance of the reference from the root of the chain (in number of
238 iterations of the loop). */
239 unsigned distance;
241 /* Number of iterations offset from the first reference in the component. */
242 double_int offset;
244 /* Number of the reference in a component, in dominance ordering. */
245 unsigned pos;
247 /* True if the memory reference is always accessed when the loop is
248 entered. */
249 unsigned always_accessed : 1;
250 } *dref;
253 /* Type of the chain of the references. */
255 enum chain_type
257 /* The addresses of the references in the chain are constant. */
258 CT_INVARIANT,
260 /* There are only loads in the chain. */
261 CT_LOAD,
263 /* Root of the chain is store, the rest are loads. */
264 CT_STORE_LOAD,
266 /* A combination of two chains. */
267 CT_COMBINATION
270 /* Chains of data references. */
272 typedef struct chain
274 /* Type of the chain. */
275 enum chain_type type;
277 /* For combination chains, the operator and the two chains that are
278 combined, and the type of the result. */
279 enum tree_code op;
280 tree rslt_type;
281 struct chain *ch1, *ch2;
283 /* The references in the chain. */
284 vec<dref> refs;
286 /* The maximum distance of the reference in the chain from the root. */
287 unsigned length;
289 /* The variables used to copy the value throughout iterations. */
290 vec<tree> vars;
292 /* Initializers for the variables. */
293 vec<tree> inits;
295 /* True if there is a use of a variable with the maximal distance
296 that comes after the root in the loop. */
297 unsigned has_max_use_after : 1;
299 /* True if all the memory references in the chain are always accessed. */
300 unsigned all_always_accessed : 1;
302 /* True if this chain was combined together with some other chain. */
303 unsigned combined : 1;
304 } *chain_p;
307 /* Describes the knowledge about the step of the memory references in
308 the component. */
310 enum ref_step_type
312 /* The step is zero. */
313 RS_INVARIANT,
315 /* The step is nonzero. */
316 RS_NONZERO,
318 /* The step may or may not be nonzero. */
319 RS_ANY
322 /* Components of the data dependence graph. */
324 struct component
326 /* The references in the component. */
327 vec<dref> refs;
329 /* What we know about the step of the references in the component. */
330 enum ref_step_type comp_step;
332 /* Next component in the list. */
333 struct component *next;
336 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
338 static bitmap looparound_phis;
340 /* Cache used by tree_to_aff_combination_expand. */
342 static struct pointer_map_t *name_expansions;
344 /* Dumps data reference REF to FILE. */
346 extern void dump_dref (FILE *, dref);
347 void
348 dump_dref (FILE *file, dref ref)
350 if (ref->ref)
352 fprintf (file, " ");
353 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
354 fprintf (file, " (id %u%s)\n", ref->pos,
355 DR_IS_READ (ref->ref) ? "" : ", write");
357 fprintf (file, " offset ");
358 dump_double_int (file, ref->offset, false);
359 fprintf (file, "\n");
361 fprintf (file, " distance %u\n", ref->distance);
363 else
365 if (gimple_code (ref->stmt) == GIMPLE_PHI)
366 fprintf (file, " looparound ref\n");
367 else
368 fprintf (file, " combination ref\n");
369 fprintf (file, " in statement ");
370 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
371 fprintf (file, "\n");
372 fprintf (file, " distance %u\n", ref->distance);
377 /* Dumps CHAIN to FILE. */
379 extern void dump_chain (FILE *, chain_p);
380 void
381 dump_chain (FILE *file, chain_p chain)
383 dref a;
384 const char *chain_type;
385 unsigned i;
386 tree var;
388 switch (chain->type)
390 case CT_INVARIANT:
391 chain_type = "Load motion";
392 break;
394 case CT_LOAD:
395 chain_type = "Loads-only";
396 break;
398 case CT_STORE_LOAD:
399 chain_type = "Store-loads";
400 break;
402 case CT_COMBINATION:
403 chain_type = "Combination";
404 break;
406 default:
407 gcc_unreachable ();
410 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
411 chain->combined ? " (combined)" : "");
412 if (chain->type != CT_INVARIANT)
413 fprintf (file, " max distance %u%s\n", chain->length,
414 chain->has_max_use_after ? "" : ", may reuse first");
416 if (chain->type == CT_COMBINATION)
418 fprintf (file, " equal to %p %s %p in type ",
419 (void *) chain->ch1, op_symbol_code (chain->op),
420 (void *) chain->ch2);
421 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
422 fprintf (file, "\n");
425 if (chain->vars.exists ())
427 fprintf (file, " vars");
428 FOR_EACH_VEC_ELT (chain->vars, i, var)
430 fprintf (file, " ");
431 print_generic_expr (file, var, TDF_SLIM);
433 fprintf (file, "\n");
436 if (chain->inits.exists ())
438 fprintf (file, " inits");
439 FOR_EACH_VEC_ELT (chain->inits, i, var)
441 fprintf (file, " ");
442 print_generic_expr (file, var, TDF_SLIM);
444 fprintf (file, "\n");
447 fprintf (file, " references:\n");
448 FOR_EACH_VEC_ELT (chain->refs, i, a)
449 dump_dref (file, a);
451 fprintf (file, "\n");
454 /* Dumps CHAINS to FILE. */
456 extern void dump_chains (FILE *, vec<chain_p> );
457 void
458 dump_chains (FILE *file, vec<chain_p> chains)
460 chain_p chain;
461 unsigned i;
463 FOR_EACH_VEC_ELT (chains, i, chain)
464 dump_chain (file, chain);
467 /* Dumps COMP to FILE. */
469 extern void dump_component (FILE *, struct component *);
470 void
471 dump_component (FILE *file, struct component *comp)
473 dref a;
474 unsigned i;
476 fprintf (file, "Component%s:\n",
477 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
478 FOR_EACH_VEC_ELT (comp->refs, i, a)
479 dump_dref (file, a);
480 fprintf (file, "\n");
483 /* Dumps COMPS to FILE. */
485 extern void dump_components (FILE *, struct component *);
486 void
487 dump_components (FILE *file, struct component *comps)
489 struct component *comp;
491 for (comp = comps; comp; comp = comp->next)
492 dump_component (file, comp);
495 /* Frees a chain CHAIN. */
497 static void
498 release_chain (chain_p chain)
500 dref ref;
501 unsigned i;
503 if (chain == NULL)
504 return;
506 FOR_EACH_VEC_ELT (chain->refs, i, ref)
507 free (ref);
509 chain->refs.release ();
510 chain->vars.release ();
511 chain->inits.release ();
513 free (chain);
516 /* Frees CHAINS. */
518 static void
519 release_chains (vec<chain_p> chains)
521 unsigned i;
522 chain_p chain;
524 FOR_EACH_VEC_ELT (chains, i, chain)
525 release_chain (chain);
526 chains.release ();
529 /* Frees a component COMP. */
531 static void
532 release_component (struct component *comp)
534 comp->refs.release ();
535 free (comp);
538 /* Frees list of components COMPS. */
540 static void
541 release_components (struct component *comps)
543 struct component *act, *next;
545 for (act = comps; act; act = next)
547 next = act->next;
548 release_component (act);
552 /* Finds a root of tree given by FATHERS containing A, and performs path
553 shortening. */
555 static unsigned
556 component_of (unsigned fathers[], unsigned a)
558 unsigned root, n;
560 for (root = a; root != fathers[root]; root = fathers[root])
561 continue;
563 for (; a != root; a = n)
565 n = fathers[a];
566 fathers[a] = root;
569 return root;
572 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
573 components, A and B are components to merge. */
575 static void
576 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
578 unsigned ca = component_of (fathers, a);
579 unsigned cb = component_of (fathers, b);
581 if (ca == cb)
582 return;
584 if (sizes[ca] < sizes[cb])
586 sizes[cb] += sizes[ca];
587 fathers[ca] = cb;
589 else
591 sizes[ca] += sizes[cb];
592 fathers[cb] = ca;
596 /* Returns true if A is a reference that is suitable for predictive commoning
597 in the innermost loop that contains it. REF_STEP is set according to the
598 step of the reference A. */
600 static bool
601 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
603 tree ref = DR_REF (a), step = DR_STEP (a);
605 if (!step
606 || TREE_THIS_VOLATILE (ref)
607 || !is_gimple_reg_type (TREE_TYPE (ref))
608 || tree_could_throw_p (ref))
609 return false;
611 if (integer_zerop (step))
612 *ref_step = RS_INVARIANT;
613 else if (integer_nonzerop (step))
614 *ref_step = RS_NONZERO;
615 else
616 *ref_step = RS_ANY;
618 return true;
621 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
623 static void
624 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
626 tree type = TREE_TYPE (DR_OFFSET (dr));
627 aff_tree delta;
629 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
630 &name_expansions);
631 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
632 aff_combination_add (offset, &delta);
635 /* Determines number of iterations of the innermost enclosing loop before B
636 refers to exactly the same location as A and stores it to OFF. If A and
637 B do not have the same step, they never meet, or anything else fails,
638 returns false, otherwise returns true. Both A and B are assumed to
639 satisfy suitable_reference_p. */
641 static bool
642 determine_offset (struct data_reference *a, struct data_reference *b,
643 double_int *off)
645 aff_tree diff, baseb, step;
646 tree typea, typeb;
648 /* Check that both the references access the location in the same type. */
649 typea = TREE_TYPE (DR_REF (a));
650 typeb = TREE_TYPE (DR_REF (b));
651 if (!useless_type_conversion_p (typeb, typea))
652 return false;
654 /* Check whether the base address and the step of both references is the
655 same. */
656 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
657 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
658 return false;
660 if (integer_zerop (DR_STEP (a)))
662 /* If the references have loop invariant address, check that they access
663 exactly the same location. */
664 *off = double_int_zero;
665 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
666 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
669 /* Compare the offsets of the addresses, and check whether the difference
670 is a multiple of step. */
671 aff_combination_dr_offset (a, &diff);
672 aff_combination_dr_offset (b, &baseb);
673 aff_combination_scale (&baseb, double_int_minus_one);
674 aff_combination_add (&diff, &baseb);
676 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
677 &step, &name_expansions);
678 return aff_combination_constant_multiple_p (&diff, &step, off);
681 /* Returns the last basic block in LOOP for that we are sure that
682 it is executed whenever the loop is entered. */
684 static basic_block
685 last_always_executed_block (struct loop *loop)
687 unsigned i;
688 vec<edge> exits = get_loop_exit_edges (loop);
689 edge ex;
690 basic_block last = loop->latch;
692 FOR_EACH_VEC_ELT (exits, i, ex)
693 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
694 exits.release ();
696 return last;
699 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
701 static struct component *
702 split_data_refs_to_components (struct loop *loop,
703 vec<data_reference_p> datarefs,
704 vec<ddr_p> depends)
706 unsigned i, n = datarefs.length ();
707 unsigned ca, ia, ib, bad;
708 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
709 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
710 struct component **comps;
711 struct data_reference *dr, *dra, *drb;
712 struct data_dependence_relation *ddr;
713 struct component *comp_list = NULL, *comp;
714 dref dataref;
715 basic_block last_always_executed = last_always_executed_block (loop);
717 FOR_EACH_VEC_ELT (datarefs, i, dr)
719 if (!DR_REF (dr))
721 /* A fake reference for call or asm_expr that may clobber memory;
722 just fail. */
723 goto end;
725 dr->aux = (void *) (size_t) i;
726 comp_father[i] = i;
727 comp_size[i] = 1;
730 /* A component reserved for the "bad" data references. */
731 comp_father[n] = n;
732 comp_size[n] = 1;
734 FOR_EACH_VEC_ELT (datarefs, i, dr)
736 enum ref_step_type dummy;
738 if (!suitable_reference_p (dr, &dummy))
740 ia = (unsigned) (size_t) dr->aux;
741 merge_comps (comp_father, comp_size, n, ia);
745 FOR_EACH_VEC_ELT (depends, i, ddr)
747 double_int dummy_off;
749 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
750 continue;
752 dra = DDR_A (ddr);
753 drb = DDR_B (ddr);
754 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
755 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
756 if (ia == ib)
757 continue;
759 bad = component_of (comp_father, n);
761 /* If both A and B are reads, we may ignore unsuitable dependences. */
762 if (DR_IS_READ (dra) && DR_IS_READ (drb)
763 && (ia == bad || ib == bad
764 || !determine_offset (dra, drb, &dummy_off)))
765 continue;
767 merge_comps (comp_father, comp_size, ia, ib);
770 comps = XCNEWVEC (struct component *, n);
771 bad = component_of (comp_father, n);
772 FOR_EACH_VEC_ELT (datarefs, i, dr)
774 ia = (unsigned) (size_t) dr->aux;
775 ca = component_of (comp_father, ia);
776 if (ca == bad)
777 continue;
779 comp = comps[ca];
780 if (!comp)
782 comp = XCNEW (struct component);
783 comp->refs.create (comp_size[ca]);
784 comps[ca] = comp;
787 dataref = XCNEW (struct dref_d);
788 dataref->ref = dr;
789 dataref->stmt = DR_STMT (dr);
790 dataref->offset = double_int_zero;
791 dataref->distance = 0;
793 dataref->always_accessed
794 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
795 gimple_bb (dataref->stmt));
796 dataref->pos = comp->refs.length ();
797 comp->refs.quick_push (dataref);
800 for (i = 0; i < n; i++)
802 comp = comps[i];
803 if (comp)
805 comp->next = comp_list;
806 comp_list = comp;
809 free (comps);
811 end:
812 free (comp_father);
813 free (comp_size);
814 return comp_list;
817 /* Returns true if the component COMP satisfies the conditions
818 described in 2) at the beginning of this file. LOOP is the current
819 loop. */
821 static bool
822 suitable_component_p (struct loop *loop, struct component *comp)
824 unsigned i;
825 dref a, first;
826 basic_block ba, bp = loop->header;
827 bool ok, has_write = false;
829 FOR_EACH_VEC_ELT (comp->refs, i, a)
831 ba = gimple_bb (a->stmt);
833 if (!just_once_each_iteration_p (loop, ba))
834 return false;
836 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
837 bp = ba;
839 if (DR_IS_WRITE (a->ref))
840 has_write = true;
843 first = comp->refs[0];
844 ok = suitable_reference_p (first->ref, &comp->comp_step);
845 gcc_assert (ok);
846 first->offset = double_int_zero;
848 for (i = 1; comp->refs.iterate (i, &a); i++)
850 if (!determine_offset (first->ref, a->ref, &a->offset))
851 return false;
853 #ifdef ENABLE_CHECKING
855 enum ref_step_type a_step;
856 ok = suitable_reference_p (a->ref, &a_step);
857 gcc_assert (ok && a_step == comp->comp_step);
859 #endif
862 /* If there is a write inside the component, we must know whether the
863 step is nonzero or not -- we would not otherwise be able to recognize
864 whether the value accessed by reads comes from the OFFSET-th iteration
865 or the previous one. */
866 if (has_write && comp->comp_step == RS_ANY)
867 return false;
869 return true;
872 /* Check the conditions on references inside each of components COMPS,
873 and remove the unsuitable components from the list. The new list
874 of components is returned. The conditions are described in 2) at
875 the beginning of this file. LOOP is the current loop. */
877 static struct component *
878 filter_suitable_components (struct loop *loop, struct component *comps)
880 struct component **comp, *act;
882 for (comp = &comps; *comp; )
884 act = *comp;
885 if (suitable_component_p (loop, act))
886 comp = &act->next;
887 else
889 dref ref;
890 unsigned i;
892 *comp = act->next;
893 FOR_EACH_VEC_ELT (act->refs, i, ref)
894 free (ref);
895 release_component (act);
899 return comps;
902 /* Compares two drefs A and B by their offset and position. Callback for
903 qsort. */
905 static int
906 order_drefs (const void *a, const void *b)
908 const dref *const da = (const dref *) a;
909 const dref *const db = (const dref *) b;
910 int offcmp = (*da)->offset.scmp ((*db)->offset);
912 if (offcmp != 0)
913 return offcmp;
915 return (*da)->pos - (*db)->pos;
918 /* Returns root of the CHAIN. */
920 static inline dref
921 get_chain_root (chain_p chain)
923 return chain->refs[0];
926 /* Adds REF to the chain CHAIN. */
928 static void
929 add_ref_to_chain (chain_p chain, dref ref)
931 dref root = get_chain_root (chain);
932 double_int dist;
934 gcc_assert (root->offset.sle (ref->offset));
935 dist = ref->offset - root->offset;
936 if (double_int::from_uhwi (MAX_DISTANCE).ule (dist))
938 free (ref);
939 return;
941 gcc_assert (dist.fits_uhwi ());
943 chain->refs.safe_push (ref);
945 ref->distance = dist.to_uhwi ();
947 if (ref->distance >= chain->length)
949 chain->length = ref->distance;
950 chain->has_max_use_after = false;
953 if (ref->distance == chain->length
954 && ref->pos > root->pos)
955 chain->has_max_use_after = true;
957 chain->all_always_accessed &= ref->always_accessed;
960 /* Returns the chain for invariant component COMP. */
962 static chain_p
963 make_invariant_chain (struct component *comp)
965 chain_p chain = XCNEW (struct chain);
966 unsigned i;
967 dref ref;
969 chain->type = CT_INVARIANT;
971 chain->all_always_accessed = true;
973 FOR_EACH_VEC_ELT (comp->refs, i, ref)
975 chain->refs.safe_push (ref);
976 chain->all_always_accessed &= ref->always_accessed;
979 return chain;
982 /* Make a new chain rooted at REF. */
984 static chain_p
985 make_rooted_chain (dref ref)
987 chain_p chain = XCNEW (struct chain);
989 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
991 chain->refs.safe_push (ref);
992 chain->all_always_accessed = ref->always_accessed;
994 ref->distance = 0;
996 return chain;
999 /* Returns true if CHAIN is not trivial. */
1001 static bool
1002 nontrivial_chain_p (chain_p chain)
1004 return chain != NULL && chain->refs.length () > 1;
1007 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1008 is no such name. */
1010 static tree
1011 name_for_ref (dref ref)
1013 tree name;
1015 if (is_gimple_assign (ref->stmt))
1017 if (!ref->ref || DR_IS_READ (ref->ref))
1018 name = gimple_assign_lhs (ref->stmt);
1019 else
1020 name = gimple_assign_rhs1 (ref->stmt);
1022 else
1023 name = PHI_RESULT (ref->stmt);
1025 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1028 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1029 iterations of the innermost enclosing loop). */
1031 static bool
1032 valid_initializer_p (struct data_reference *ref,
1033 unsigned distance, struct data_reference *root)
1035 aff_tree diff, base, step;
1036 double_int off;
1038 /* Both REF and ROOT must be accessing the same object. */
1039 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1040 return false;
1042 /* The initializer is defined outside of loop, hence its address must be
1043 invariant inside the loop. */
1044 gcc_assert (integer_zerop (DR_STEP (ref)));
1046 /* If the address of the reference is invariant, initializer must access
1047 exactly the same location. */
1048 if (integer_zerop (DR_STEP (root)))
1049 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1050 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1052 /* Verify that this index of REF is equal to the root's index at
1053 -DISTANCE-th iteration. */
1054 aff_combination_dr_offset (root, &diff);
1055 aff_combination_dr_offset (ref, &base);
1056 aff_combination_scale (&base, double_int_minus_one);
1057 aff_combination_add (&diff, &base);
1059 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1060 &step, &name_expansions);
1061 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1062 return false;
1064 if (off != double_int::from_uhwi (distance))
1065 return false;
1067 return true;
1070 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1071 initial value is correct (equal to initial value of REF shifted by one
1072 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1073 is the root of the current chain. */
1075 static gimple
1076 find_looparound_phi (struct loop *loop, dref ref, dref root)
1078 tree name, init, init_ref;
1079 gimple phi = NULL, init_stmt;
1080 edge latch = loop_latch_edge (loop);
1081 struct data_reference init_dr;
1082 gimple_stmt_iterator psi;
1084 if (is_gimple_assign (ref->stmt))
1086 if (DR_IS_READ (ref->ref))
1087 name = gimple_assign_lhs (ref->stmt);
1088 else
1089 name = gimple_assign_rhs1 (ref->stmt);
1091 else
1092 name = PHI_RESULT (ref->stmt);
1093 if (!name)
1094 return NULL;
1096 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1098 phi = gsi_stmt (psi);
1099 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1100 break;
1103 if (gsi_end_p (psi))
1104 return NULL;
1106 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1107 if (TREE_CODE (init) != SSA_NAME)
1108 return NULL;
1109 init_stmt = SSA_NAME_DEF_STMT (init);
1110 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1111 return NULL;
1112 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1114 init_ref = gimple_assign_rhs1 (init_stmt);
1115 if (!REFERENCE_CLASS_P (init_ref)
1116 && !DECL_P (init_ref))
1117 return NULL;
1119 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1120 loop enclosing PHI). */
1121 memset (&init_dr, 0, sizeof (struct data_reference));
1122 DR_REF (&init_dr) = init_ref;
1123 DR_STMT (&init_dr) = phi;
1124 if (!dr_analyze_innermost (&init_dr, loop))
1125 return NULL;
1127 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1128 return NULL;
1130 return phi;
1133 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1135 static void
1136 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1138 dref nw = XCNEW (struct dref_d), aref;
1139 unsigned i;
1141 nw->stmt = phi;
1142 nw->distance = ref->distance + 1;
1143 nw->always_accessed = 1;
1145 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1146 if (aref->distance >= nw->distance)
1147 break;
1148 chain->refs.safe_insert (i, nw);
1150 if (nw->distance > chain->length)
1152 chain->length = nw->distance;
1153 chain->has_max_use_after = false;
1157 /* For references in CHAIN that are copied around the LOOP (created previously
1158 by PRE, or by user), add the results of such copies to the chain. This
1159 enables us to remove the copies by unrolling, and may need less registers
1160 (also, it may allow us to combine chains together). */
1162 static void
1163 add_looparound_copies (struct loop *loop, chain_p chain)
1165 unsigned i;
1166 dref ref, root = get_chain_root (chain);
1167 gimple phi;
1169 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1171 phi = find_looparound_phi (loop, ref, root);
1172 if (!phi)
1173 continue;
1175 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1176 insert_looparound_copy (chain, ref, phi);
1180 /* Find roots of the values and determine distances in the component COMP.
1181 The references are redistributed into CHAINS. LOOP is the current
1182 loop. */
1184 static void
1185 determine_roots_comp (struct loop *loop,
1186 struct component *comp,
1187 vec<chain_p> *chains)
1189 unsigned i;
1190 dref a;
1191 chain_p chain = NULL;
1192 double_int last_ofs = double_int_zero;
1194 /* Invariants are handled specially. */
1195 if (comp->comp_step == RS_INVARIANT)
1197 chain = make_invariant_chain (comp);
1198 chains->safe_push (chain);
1199 return;
1202 comp->refs.qsort (order_drefs);
1204 FOR_EACH_VEC_ELT (comp->refs, i, a)
1206 if (!chain || DR_IS_WRITE (a->ref)
1207 || double_int::from_uhwi (MAX_DISTANCE).ule (a->offset - last_ofs))
1209 if (nontrivial_chain_p (chain))
1211 add_looparound_copies (loop, chain);
1212 chains->safe_push (chain);
1214 else
1215 release_chain (chain);
1216 chain = make_rooted_chain (a);
1217 last_ofs = a->offset;
1218 continue;
1221 add_ref_to_chain (chain, a);
1224 if (nontrivial_chain_p (chain))
1226 add_looparound_copies (loop, chain);
1227 chains->safe_push (chain);
1229 else
1230 release_chain (chain);
1233 /* Find roots of the values and determine distances in components COMPS, and
1234 separates the references to CHAINS. LOOP is the current loop. */
1236 static void
1237 determine_roots (struct loop *loop,
1238 struct component *comps, vec<chain_p> *chains)
1240 struct component *comp;
1242 for (comp = comps; comp; comp = comp->next)
1243 determine_roots_comp (loop, comp, chains);
1246 /* Replace the reference in statement STMT with temporary variable
1247 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1248 the reference in the statement. IN_LHS is true if the reference
1249 is in the lhs of STMT, false if it is in rhs. */
1251 static void
1252 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1254 tree val;
1255 gimple new_stmt;
1256 gimple_stmt_iterator bsi, psi;
1258 if (gimple_code (stmt) == GIMPLE_PHI)
1260 gcc_assert (!in_lhs && !set);
1262 val = PHI_RESULT (stmt);
1263 bsi = gsi_after_labels (gimple_bb (stmt));
1264 psi = gsi_for_stmt (stmt);
1265 remove_phi_node (&psi, false);
1267 /* Turn the phi node into GIMPLE_ASSIGN. */
1268 new_stmt = gimple_build_assign (val, new_tree);
1269 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1270 return;
1273 /* Since the reference is of gimple_reg type, it should only
1274 appear as lhs or rhs of modify statement. */
1275 gcc_assert (is_gimple_assign (stmt));
1277 bsi = gsi_for_stmt (stmt);
1279 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1280 if (!set)
1282 gcc_assert (!in_lhs);
1283 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1284 stmt = gsi_stmt (bsi);
1285 update_stmt (stmt);
1286 return;
1289 if (in_lhs)
1291 /* We have statement
1293 OLD = VAL
1295 If OLD is a memory reference, then VAL is gimple_val, and we transform
1296 this to
1298 OLD = VAL
1299 NEW = VAL
1301 Otherwise, we are replacing a combination chain,
1302 VAL is the expression that performs the combination, and OLD is an
1303 SSA name. In this case, we transform the assignment to
1305 OLD = VAL
1306 NEW = OLD
1310 val = gimple_assign_lhs (stmt);
1311 if (TREE_CODE (val) != SSA_NAME)
1313 val = gimple_assign_rhs1 (stmt);
1314 gcc_assert (gimple_assign_single_p (stmt));
1315 if (TREE_CLOBBER_P (val))
1316 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1317 else
1318 gcc_assert (gimple_assign_copy_p (stmt));
1321 else
1323 /* VAL = OLD
1325 is transformed to
1327 VAL = OLD
1328 NEW = VAL */
1330 val = gimple_assign_lhs (stmt);
1333 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1334 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1337 /* Returns the reference to the address of REF in the ITER-th iteration of
1338 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1339 try to preserve the original shape of the reference (not rewrite it
1340 as an indirect ref to the address), to make tree_could_trap_p in
1341 prepare_initializers_chain return false more often. */
1343 static tree
1344 ref_at_iteration (struct loop *loop, tree ref, int iter)
1346 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1347 affine_iv iv;
1348 bool ok;
1350 if (handled_component_p (ref))
1352 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1353 if (!op0)
1354 return NULL_TREE;
1356 else if (!INDIRECT_REF_P (ref)
1357 && TREE_CODE (ref) != MEM_REF)
1358 return unshare_expr (ref);
1360 if (TREE_CODE (ref) == MEM_REF)
1362 ret = unshare_expr (ref);
1363 idx = TREE_OPERAND (ref, 0);
1364 idx_p = &TREE_OPERAND (ret, 0);
1366 else if (TREE_CODE (ref) == COMPONENT_REF)
1368 /* Check that the offset is loop invariant. */
1369 if (TREE_OPERAND (ref, 2)
1370 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1371 return NULL_TREE;
1373 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1374 unshare_expr (TREE_OPERAND (ref, 1)),
1375 unshare_expr (TREE_OPERAND (ref, 2)));
1377 else if (TREE_CODE (ref) == ARRAY_REF)
1379 /* Check that the lower bound and the step are loop invariant. */
1380 if (TREE_OPERAND (ref, 2)
1381 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1382 return NULL_TREE;
1383 if (TREE_OPERAND (ref, 3)
1384 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1385 return NULL_TREE;
1387 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1388 unshare_expr (TREE_OPERAND (ref, 2)),
1389 unshare_expr (TREE_OPERAND (ref, 3)));
1390 idx = TREE_OPERAND (ref, 1);
1391 idx_p = &TREE_OPERAND (ret, 1);
1393 else
1394 return NULL_TREE;
1396 ok = simple_iv (loop, loop, idx, &iv, true);
1397 if (!ok)
1398 return NULL_TREE;
1399 iv.base = expand_simple_operations (iv.base);
1400 if (integer_zerop (iv.step))
1401 *idx_p = unshare_expr (iv.base);
1402 else
1404 type = TREE_TYPE (iv.base);
1405 if (POINTER_TYPE_P (type))
1407 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1408 size_int (iter));
1409 val = fold_build_pointer_plus (iv.base, val);
1411 else
1413 val = fold_build2 (MULT_EXPR, type, iv.step,
1414 build_int_cst_type (type, iter));
1415 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1417 *idx_p = unshare_expr (val);
1420 return ret;
1423 /* Get the initialization expression for the INDEX-th temporary variable
1424 of CHAIN. */
1426 static tree
1427 get_init_expr (chain_p chain, unsigned index)
1429 if (chain->type == CT_COMBINATION)
1431 tree e1 = get_init_expr (chain->ch1, index);
1432 tree e2 = get_init_expr (chain->ch2, index);
1434 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1436 else
1437 return chain->inits[index];
1440 /* Returns a new temporary variable used for the I-th variable carrying
1441 value of REF. The variable's uid is marked in TMP_VARS. */
1443 static tree
1444 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1446 tree type = TREE_TYPE (ref);
1447 /* We never access the components of the temporary variable in predictive
1448 commoning. */
1449 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1450 bitmap_set_bit (tmp_vars, DECL_UID (var));
1451 return var;
1454 /* Creates the variables for CHAIN, as well as phi nodes for them and
1455 initialization on entry to LOOP. Uids of the newly created
1456 temporary variables are marked in TMP_VARS. */
1458 static void
1459 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1461 unsigned i;
1462 unsigned n = chain->length;
1463 dref root = get_chain_root (chain);
1464 bool reuse_first = !chain->has_max_use_after;
1465 tree ref, init, var, next;
1466 gimple phi;
1467 gimple_seq stmts;
1468 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1470 /* If N == 0, then all the references are within the single iteration. And
1471 since this is an nonempty chain, reuse_first cannot be true. */
1472 gcc_assert (n > 0 || !reuse_first);
1474 chain->vars.create (n + 1);
1476 if (chain->type == CT_COMBINATION)
1477 ref = gimple_assign_lhs (root->stmt);
1478 else
1479 ref = DR_REF (root->ref);
1481 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1483 var = predcom_tmp_var (ref, i, tmp_vars);
1484 chain->vars.quick_push (var);
1486 if (reuse_first)
1487 chain->vars.quick_push (chain->vars[0]);
1489 FOR_EACH_VEC_ELT (chain->vars, i, var)
1490 chain->vars[i] = make_ssa_name (var, NULL);
1492 for (i = 0; i < n; i++)
1494 var = chain->vars[i];
1495 next = chain->vars[i + 1];
1496 init = get_init_expr (chain, i);
1498 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1499 if (stmts)
1500 gsi_insert_seq_on_edge_immediate (entry, stmts);
1502 phi = create_phi_node (var, loop->header);
1503 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1504 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1508 /* Create the variables and initialization statement for root of chain
1509 CHAIN. Uids of the newly created temporary variables are marked
1510 in TMP_VARS. */
1512 static void
1513 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1515 dref root = get_chain_root (chain);
1516 bool in_lhs = (chain->type == CT_STORE_LOAD
1517 || chain->type == CT_COMBINATION);
1519 initialize_root_vars (loop, chain, tmp_vars);
1520 replace_ref_with (root->stmt,
1521 chain->vars[chain->length],
1522 true, in_lhs);
1525 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1526 initialization on entry to LOOP if necessary. The ssa name for the variable
1527 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1528 around the loop is created. Uid of the newly created temporary variable
1529 is marked in TMP_VARS. INITS is the list containing the (single)
1530 initializer. */
1532 static void
1533 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1534 vec<tree> *vars, vec<tree> inits,
1535 bitmap tmp_vars)
1537 unsigned i;
1538 tree ref = DR_REF (root->ref), init, var, next;
1539 gimple_seq stmts;
1540 gimple phi;
1541 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1543 /* Find the initializer for the variable, and check that it cannot
1544 trap. */
1545 init = inits[0];
1547 vars->create (written ? 2 : 1);
1548 var = predcom_tmp_var (ref, 0, tmp_vars);
1549 vars->quick_push (var);
1550 if (written)
1551 vars->quick_push ((*vars)[0]);
1553 FOR_EACH_VEC_ELT (*vars, i, var)
1554 (*vars)[i] = make_ssa_name (var, NULL);
1556 var = (*vars)[0];
1558 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1559 if (stmts)
1560 gsi_insert_seq_on_edge_immediate (entry, stmts);
1562 if (written)
1564 next = (*vars)[1];
1565 phi = create_phi_node (var, loop->header);
1566 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1567 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1569 else
1571 gimple init_stmt = gimple_build_assign (var, init);
1572 gsi_insert_on_edge_immediate (entry, init_stmt);
1577 /* Execute load motion for references in chain CHAIN. Uids of the newly
1578 created temporary variables are marked in TMP_VARS. */
1580 static void
1581 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1583 vec<tree> vars;
1584 dref a;
1585 unsigned n_writes = 0, ridx, i;
1586 tree var;
1588 gcc_assert (chain->type == CT_INVARIANT);
1589 gcc_assert (!chain->combined);
1590 FOR_EACH_VEC_ELT (chain->refs, i, a)
1591 if (DR_IS_WRITE (a->ref))
1592 n_writes++;
1594 /* If there are no reads in the loop, there is nothing to do. */
1595 if (n_writes == chain->refs.length ())
1596 return;
1598 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1599 &vars, chain->inits, tmp_vars);
1601 ridx = 0;
1602 FOR_EACH_VEC_ELT (chain->refs, i, a)
1604 bool is_read = DR_IS_READ (a->ref);
1606 if (DR_IS_WRITE (a->ref))
1608 n_writes--;
1609 if (n_writes)
1611 var = vars[0];
1612 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1613 vars[0] = var;
1615 else
1616 ridx = 1;
1619 replace_ref_with (a->stmt, vars[ridx],
1620 !is_read, !is_read);
1623 vars.release ();
1626 /* Returns the single statement in that NAME is used, excepting
1627 the looparound phi nodes contained in one of the chains. If there is no
1628 such statement, or more statements, NULL is returned. */
1630 static gimple
1631 single_nonlooparound_use (tree name)
1633 use_operand_p use;
1634 imm_use_iterator it;
1635 gimple stmt, ret = NULL;
1637 FOR_EACH_IMM_USE_FAST (use, it, name)
1639 stmt = USE_STMT (use);
1641 if (gimple_code (stmt) == GIMPLE_PHI)
1643 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1644 could not be processed anyway, so just fail for them. */
1645 if (bitmap_bit_p (looparound_phis,
1646 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1647 continue;
1649 return NULL;
1651 else if (is_gimple_debug (stmt))
1652 continue;
1653 else if (ret != NULL)
1654 return NULL;
1655 else
1656 ret = stmt;
1659 return ret;
1662 /* Remove statement STMT, as well as the chain of assignments in that it is
1663 used. */
1665 static void
1666 remove_stmt (gimple stmt)
1668 tree name;
1669 gimple next;
1670 gimple_stmt_iterator psi;
1672 if (gimple_code (stmt) == GIMPLE_PHI)
1674 name = PHI_RESULT (stmt);
1675 next = single_nonlooparound_use (name);
1676 reset_debug_uses (stmt);
1677 psi = gsi_for_stmt (stmt);
1678 remove_phi_node (&psi, true);
1680 if (!next
1681 || !gimple_assign_ssa_name_copy_p (next)
1682 || gimple_assign_rhs1 (next) != name)
1683 return;
1685 stmt = next;
1688 while (1)
1690 gimple_stmt_iterator bsi;
1692 bsi = gsi_for_stmt (stmt);
1694 name = gimple_assign_lhs (stmt);
1695 gcc_assert (TREE_CODE (name) == SSA_NAME);
1697 next = single_nonlooparound_use (name);
1698 reset_debug_uses (stmt);
1700 unlink_stmt_vdef (stmt);
1701 gsi_remove (&bsi, true);
1702 release_defs (stmt);
1704 if (!next
1705 || !gimple_assign_ssa_name_copy_p (next)
1706 || gimple_assign_rhs1 (next) != name)
1707 return;
1709 stmt = next;
1713 /* Perform the predictive commoning optimization for a chain CHAIN.
1714 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1716 static void
1717 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1718 bitmap tmp_vars)
1720 unsigned i;
1721 dref a;
1722 tree var;
1724 if (chain->combined)
1726 /* For combined chains, just remove the statements that are used to
1727 compute the values of the expression (except for the root one). */
1728 for (i = 1; chain->refs.iterate (i, &a); i++)
1729 remove_stmt (a->stmt);
1731 else
1733 /* For non-combined chains, set up the variables that hold its value,
1734 and replace the uses of the original references by these
1735 variables. */
1736 initialize_root (loop, chain, tmp_vars);
1737 for (i = 1; chain->refs.iterate (i, &a); i++)
1739 var = chain->vars[chain->length - a->distance];
1740 replace_ref_with (a->stmt, var, false, false);
1745 /* Determines the unroll factor necessary to remove as many temporary variable
1746 copies as possible. CHAINS is the list of chains that will be
1747 optimized. */
1749 static unsigned
1750 determine_unroll_factor (vec<chain_p> chains)
1752 chain_p chain;
1753 unsigned factor = 1, af, nfactor, i;
1754 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1756 FOR_EACH_VEC_ELT (chains, i, chain)
1758 if (chain->type == CT_INVARIANT || chain->combined)
1759 continue;
1761 /* The best unroll factor for this chain is equal to the number of
1762 temporary variables that we create for it. */
1763 af = chain->length;
1764 if (chain->has_max_use_after)
1765 af++;
1767 nfactor = factor * af / gcd (factor, af);
1768 if (nfactor <= max)
1769 factor = nfactor;
1772 return factor;
1775 /* Perform the predictive commoning optimization for CHAINS.
1776 Uids of the newly created temporary variables are marked in TMP_VARS. */
1778 static void
1779 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
1780 bitmap tmp_vars)
1782 chain_p chain;
1783 unsigned i;
1785 FOR_EACH_VEC_ELT (chains, i, chain)
1787 if (chain->type == CT_INVARIANT)
1788 execute_load_motion (loop, chain, tmp_vars);
1789 else
1790 execute_pred_commoning_chain (loop, chain, tmp_vars);
1793 update_ssa (TODO_update_ssa_only_virtuals);
1796 /* For each reference in CHAINS, if its defining statement is
1797 phi node, record the ssa name that is defined by it. */
1799 static void
1800 replace_phis_by_defined_names (vec<chain_p> chains)
1802 chain_p chain;
1803 dref a;
1804 unsigned i, j;
1806 FOR_EACH_VEC_ELT (chains, i, chain)
1807 FOR_EACH_VEC_ELT (chain->refs, j, a)
1809 if (gimple_code (a->stmt) == GIMPLE_PHI)
1811 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1812 a->stmt = NULL;
1817 /* For each reference in CHAINS, if name_defined_by_phi is not
1818 NULL, use it to set the stmt field. */
1820 static void
1821 replace_names_by_phis (vec<chain_p> chains)
1823 chain_p chain;
1824 dref a;
1825 unsigned i, j;
1827 FOR_EACH_VEC_ELT (chains, i, chain)
1828 FOR_EACH_VEC_ELT (chain->refs, j, a)
1829 if (a->stmt == NULL)
1831 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1832 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1833 a->name_defined_by_phi = NULL_TREE;
1837 /* Wrapper over execute_pred_commoning, to pass it as a callback
1838 to tree_transform_and_unroll_loop. */
1840 struct epcc_data
1842 vec<chain_p> chains;
1843 bitmap tmp_vars;
1846 static void
1847 execute_pred_commoning_cbck (struct loop *loop, void *data)
1849 struct epcc_data *const dta = (struct epcc_data *) data;
1851 /* Restore phi nodes that were replaced by ssa names before
1852 tree_transform_and_unroll_loop (see detailed description in
1853 tree_predictive_commoning_loop). */
1854 replace_names_by_phis (dta->chains);
1855 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1858 /* Base NAME and all the names in the chain of phi nodes that use it
1859 on variable VAR. The phi nodes are recognized by being in the copies of
1860 the header of the LOOP. */
1862 static void
1863 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1865 gimple stmt, phi;
1866 imm_use_iterator iter;
1868 replace_ssa_name_symbol (name, var);
1870 while (1)
1872 phi = NULL;
1873 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1875 if (gimple_code (stmt) == GIMPLE_PHI
1876 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1878 phi = stmt;
1879 BREAK_FROM_IMM_USE_STMT (iter);
1882 if (!phi)
1883 return;
1885 name = PHI_RESULT (phi);
1886 replace_ssa_name_symbol (name, var);
1890 /* Given an unrolled LOOP after predictive commoning, remove the
1891 register copies arising from phi nodes by changing the base
1892 variables of SSA names. TMP_VARS is the set of the temporary variables
1893 for those we want to perform this. */
1895 static void
1896 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1898 edge e;
1899 gimple phi, stmt;
1900 tree name, use, var;
1901 gimple_stmt_iterator psi;
1903 e = loop_latch_edge (loop);
1904 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1906 phi = gsi_stmt (psi);
1907 name = PHI_RESULT (phi);
1908 var = SSA_NAME_VAR (name);
1909 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1910 continue;
1911 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1912 gcc_assert (TREE_CODE (use) == SSA_NAME);
1914 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1915 stmt = SSA_NAME_DEF_STMT (use);
1916 while (gimple_code (stmt) == GIMPLE_PHI
1917 /* In case we could not unroll the loop enough to eliminate
1918 all copies, we may reach the loop header before the defining
1919 statement (in that case, some register copies will be present
1920 in loop latch in the final code, corresponding to the newly
1921 created looparound phi nodes). */
1922 && gimple_bb (stmt) != loop->header)
1924 gcc_assert (single_pred_p (gimple_bb (stmt)));
1925 use = PHI_ARG_DEF (stmt, 0);
1926 stmt = SSA_NAME_DEF_STMT (use);
1929 base_names_in_chain_on (loop, use, var);
1933 /* Returns true if CHAIN is suitable to be combined. */
1935 static bool
1936 chain_can_be_combined_p (chain_p chain)
1938 return (!chain->combined
1939 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1942 /* Returns the modify statement that uses NAME. Skips over assignment
1943 statements, NAME is replaced with the actual name used in the returned
1944 statement. */
1946 static gimple
1947 find_use_stmt (tree *name)
1949 gimple stmt;
1950 tree rhs, lhs;
1952 /* Skip over assignments. */
1953 while (1)
1955 stmt = single_nonlooparound_use (*name);
1956 if (!stmt)
1957 return NULL;
1959 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1960 return NULL;
1962 lhs = gimple_assign_lhs (stmt);
1963 if (TREE_CODE (lhs) != SSA_NAME)
1964 return NULL;
1966 if (gimple_assign_copy_p (stmt))
1968 rhs = gimple_assign_rhs1 (stmt);
1969 if (rhs != *name)
1970 return NULL;
1972 *name = lhs;
1974 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1975 == GIMPLE_BINARY_RHS)
1976 return stmt;
1977 else
1978 return NULL;
1982 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1984 static bool
1985 may_reassociate_p (tree type, enum tree_code code)
1987 if (FLOAT_TYPE_P (type)
1988 && !flag_unsafe_math_optimizations)
1989 return false;
1991 return (commutative_tree_code (code)
1992 && associative_tree_code (code));
1995 /* If the operation used in STMT is associative and commutative, go through the
1996 tree of the same operations and returns its root. Distance to the root
1997 is stored in DISTANCE. */
1999 static gimple
2000 find_associative_operation_root (gimple stmt, unsigned *distance)
2002 tree lhs;
2003 gimple next;
2004 enum tree_code code = gimple_assign_rhs_code (stmt);
2005 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2006 unsigned dist = 0;
2008 if (!may_reassociate_p (type, code))
2009 return NULL;
2011 while (1)
2013 lhs = gimple_assign_lhs (stmt);
2014 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2016 next = find_use_stmt (&lhs);
2017 if (!next
2018 || gimple_assign_rhs_code (next) != code)
2019 break;
2021 stmt = next;
2022 dist++;
2025 if (distance)
2026 *distance = dist;
2027 return stmt;
2030 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2031 is no such statement, returns NULL_TREE. In case the operation used on
2032 NAME1 and NAME2 is associative and commutative, returns the root of the
2033 tree formed by this operation instead of the statement that uses NAME1 or
2034 NAME2. */
2036 static gimple
2037 find_common_use_stmt (tree *name1, tree *name2)
2039 gimple stmt1, stmt2;
2041 stmt1 = find_use_stmt (name1);
2042 if (!stmt1)
2043 return NULL;
2045 stmt2 = find_use_stmt (name2);
2046 if (!stmt2)
2047 return NULL;
2049 if (stmt1 == stmt2)
2050 return stmt1;
2052 stmt1 = find_associative_operation_root (stmt1, NULL);
2053 if (!stmt1)
2054 return NULL;
2055 stmt2 = find_associative_operation_root (stmt2, NULL);
2056 if (!stmt2)
2057 return NULL;
2059 return (stmt1 == stmt2 ? stmt1 : NULL);
2062 /* Checks whether R1 and R2 are combined together using CODE, with the result
2063 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2064 if it is true. If CODE is ERROR_MARK, set these values instead. */
2066 static bool
2067 combinable_refs_p (dref r1, dref r2,
2068 enum tree_code *code, bool *swap, tree *rslt_type)
2070 enum tree_code acode;
2071 bool aswap;
2072 tree atype;
2073 tree name1, name2;
2074 gimple stmt;
2076 name1 = name_for_ref (r1);
2077 name2 = name_for_ref (r2);
2078 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2080 stmt = find_common_use_stmt (&name1, &name2);
2082 if (!stmt)
2083 return false;
2085 acode = gimple_assign_rhs_code (stmt);
2086 aswap = (!commutative_tree_code (acode)
2087 && gimple_assign_rhs1 (stmt) != name1);
2088 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2090 if (*code == ERROR_MARK)
2092 *code = acode;
2093 *swap = aswap;
2094 *rslt_type = atype;
2095 return true;
2098 return (*code == acode
2099 && *swap == aswap
2100 && *rslt_type == atype);
2103 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2104 an assignment of the remaining operand. */
2106 static void
2107 remove_name_from_operation (gimple stmt, tree op)
2109 tree other_op;
2110 gimple_stmt_iterator si;
2112 gcc_assert (is_gimple_assign (stmt));
2114 if (gimple_assign_rhs1 (stmt) == op)
2115 other_op = gimple_assign_rhs2 (stmt);
2116 else
2117 other_op = gimple_assign_rhs1 (stmt);
2119 si = gsi_for_stmt (stmt);
2120 gimple_assign_set_rhs_from_tree (&si, other_op);
2122 /* We should not have reallocated STMT. */
2123 gcc_assert (gsi_stmt (si) == stmt);
2125 update_stmt (stmt);
2128 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2129 are combined in a single statement, and returns this statement. */
2131 static gimple
2132 reassociate_to_the_same_stmt (tree name1, tree name2)
2134 gimple stmt1, stmt2, root1, root2, s1, s2;
2135 gimple new_stmt, tmp_stmt;
2136 tree new_name, tmp_name, var, r1, r2;
2137 unsigned dist1, dist2;
2138 enum tree_code code;
2139 tree type = TREE_TYPE (name1);
2140 gimple_stmt_iterator bsi;
2142 stmt1 = find_use_stmt (&name1);
2143 stmt2 = find_use_stmt (&name2);
2144 root1 = find_associative_operation_root (stmt1, &dist1);
2145 root2 = find_associative_operation_root (stmt2, &dist2);
2146 code = gimple_assign_rhs_code (stmt1);
2148 gcc_assert (root1 && root2 && root1 == root2
2149 && code == gimple_assign_rhs_code (stmt2));
2151 /* Find the root of the nearest expression in that both NAME1 and NAME2
2152 are used. */
2153 r1 = name1;
2154 s1 = stmt1;
2155 r2 = name2;
2156 s2 = stmt2;
2158 while (dist1 > dist2)
2160 s1 = find_use_stmt (&r1);
2161 r1 = gimple_assign_lhs (s1);
2162 dist1--;
2164 while (dist2 > dist1)
2166 s2 = find_use_stmt (&r2);
2167 r2 = gimple_assign_lhs (s2);
2168 dist2--;
2171 while (s1 != s2)
2173 s1 = find_use_stmt (&r1);
2174 r1 = gimple_assign_lhs (s1);
2175 s2 = find_use_stmt (&r2);
2176 r2 = gimple_assign_lhs (s2);
2179 /* Remove NAME1 and NAME2 from the statements in that they are used
2180 currently. */
2181 remove_name_from_operation (stmt1, name1);
2182 remove_name_from_operation (stmt2, name2);
2184 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2185 combine it with the rhs of S1. */
2186 var = create_tmp_reg (type, "predreastmp");
2187 new_name = make_ssa_name (var, NULL);
2188 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2190 var = create_tmp_reg (type, "predreastmp");
2191 tmp_name = make_ssa_name (var, NULL);
2193 /* Rhs of S1 may now be either a binary expression with operation
2194 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2195 so that name1 or name2 was removed from it). */
2196 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2197 tmp_name,
2198 gimple_assign_rhs1 (s1),
2199 gimple_assign_rhs2 (s1));
2201 bsi = gsi_for_stmt (s1);
2202 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2203 s1 = gsi_stmt (bsi);
2204 update_stmt (s1);
2206 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2207 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2209 return new_stmt;
2212 /* Returns the statement that combines references R1 and R2. In case R1
2213 and R2 are not used in the same statement, but they are used with an
2214 associative and commutative operation in the same expression, reassociate
2215 the expression so that they are used in the same statement. */
2217 static gimple
2218 stmt_combining_refs (dref r1, dref r2)
2220 gimple stmt1, stmt2;
2221 tree name1 = name_for_ref (r1);
2222 tree name2 = name_for_ref (r2);
2224 stmt1 = find_use_stmt (&name1);
2225 stmt2 = find_use_stmt (&name2);
2226 if (stmt1 == stmt2)
2227 return stmt1;
2229 return reassociate_to_the_same_stmt (name1, name2);
2232 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2233 description of the new chain is returned, otherwise we return NULL. */
2235 static chain_p
2236 combine_chains (chain_p ch1, chain_p ch2)
2238 dref r1, r2, nw;
2239 enum tree_code op = ERROR_MARK;
2240 bool swap = false;
2241 chain_p new_chain;
2242 unsigned i;
2243 gimple root_stmt;
2244 tree rslt_type = NULL_TREE;
2246 if (ch1 == ch2)
2247 return NULL;
2248 if (ch1->length != ch2->length)
2249 return NULL;
2251 if (ch1->refs.length () != ch2->refs.length ())
2252 return NULL;
2254 for (i = 0; (ch1->refs.iterate (i, &r1)
2255 && ch2->refs.iterate (i, &r2)); i++)
2257 if (r1->distance != r2->distance)
2258 return NULL;
2260 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2261 return NULL;
2264 if (swap)
2266 chain_p tmp = ch1;
2267 ch1 = ch2;
2268 ch2 = tmp;
2271 new_chain = XCNEW (struct chain);
2272 new_chain->type = CT_COMBINATION;
2273 new_chain->op = op;
2274 new_chain->ch1 = ch1;
2275 new_chain->ch2 = ch2;
2276 new_chain->rslt_type = rslt_type;
2277 new_chain->length = ch1->length;
2279 for (i = 0; (ch1->refs.iterate (i, &r1)
2280 && ch2->refs.iterate (i, &r2)); i++)
2282 nw = XCNEW (struct dref_d);
2283 nw->stmt = stmt_combining_refs (r1, r2);
2284 nw->distance = r1->distance;
2286 new_chain->refs.safe_push (nw);
2289 new_chain->has_max_use_after = false;
2290 root_stmt = get_chain_root (new_chain)->stmt;
2291 for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2293 if (nw->distance == new_chain->length
2294 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2296 new_chain->has_max_use_after = true;
2297 break;
2301 ch1->combined = true;
2302 ch2->combined = true;
2303 return new_chain;
2306 /* Try to combine the CHAINS. */
2308 static void
2309 try_combine_chains (vec<chain_p> *chains)
2311 unsigned i, j;
2312 chain_p ch1, ch2, cch;
2313 vec<chain_p> worklist = vNULL;
2315 FOR_EACH_VEC_ELT (*chains, i, ch1)
2316 if (chain_can_be_combined_p (ch1))
2317 worklist.safe_push (ch1);
2319 while (!worklist.is_empty ())
2321 ch1 = worklist.pop ();
2322 if (!chain_can_be_combined_p (ch1))
2323 continue;
2325 FOR_EACH_VEC_ELT (*chains, j, ch2)
2327 if (!chain_can_be_combined_p (ch2))
2328 continue;
2330 cch = combine_chains (ch1, ch2);
2331 if (cch)
2333 worklist.safe_push (cch);
2334 chains->safe_push (cch);
2335 break;
2340 worklist.release ();
2343 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2344 impossible because one of these initializers may trap, true otherwise. */
2346 static bool
2347 prepare_initializers_chain (struct loop *loop, chain_p chain)
2349 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2350 struct data_reference *dr = get_chain_root (chain)->ref;
2351 tree init;
2352 gimple_seq stmts;
2353 dref laref;
2354 edge entry = loop_preheader_edge (loop);
2356 /* Find the initializers for the variables, and check that they cannot
2357 trap. */
2358 chain->inits.create (n);
2359 for (i = 0; i < n; i++)
2360 chain->inits.quick_push (NULL_TREE);
2362 /* If we have replaced some looparound phi nodes, use their initializers
2363 instead of creating our own. */
2364 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2366 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2367 continue;
2369 gcc_assert (laref->distance > 0);
2370 chain->inits[n - laref->distance]
2371 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2374 for (i = 0; i < n; i++)
2376 if (chain->inits[i] != NULL_TREE)
2377 continue;
2379 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2380 if (!init)
2381 return false;
2383 if (!chain->all_always_accessed && tree_could_trap_p (init))
2384 return false;
2386 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2387 if (stmts)
2388 gsi_insert_seq_on_edge_immediate (entry, stmts);
2390 chain->inits[i] = init;
2393 return true;
2396 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2397 be used because the initializers might trap. */
2399 static void
2400 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2402 chain_p chain;
2403 unsigned i;
2405 for (i = 0; i < chains.length (); )
2407 chain = chains[i];
2408 if (prepare_initializers_chain (loop, chain))
2409 i++;
2410 else
2412 release_chain (chain);
2413 chains.unordered_remove (i);
2418 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2419 unrolled. */
2421 static bool
2422 tree_predictive_commoning_loop (struct loop *loop)
2424 vec<loop_p> loop_nest;
2425 vec<data_reference_p> datarefs;
2426 vec<ddr_p> dependences;
2427 struct component *components;
2428 vec<chain_p> chains = vNULL;
2429 unsigned unroll_factor;
2430 struct tree_niter_desc desc;
2431 bool unroll = false;
2432 edge exit;
2433 bitmap tmp_vars;
2435 if (dump_file && (dump_flags & TDF_DETAILS))
2436 fprintf (dump_file, "Processing loop %d\n", loop->num);
2438 /* Find the data references and split them into components according to their
2439 dependence relations. */
2440 datarefs.create (10);
2441 dependences.create (10);
2442 loop_nest.create (3);
2443 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2444 &dependences))
2446 if (dump_file && (dump_flags & TDF_DETAILS))
2447 fprintf (dump_file, "Cannot analyze data dependencies\n");
2448 loop_nest.release ();
2449 free_data_refs (datarefs);
2450 free_dependence_relations (dependences);
2451 return false;
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 dump_data_dependence_relations (dump_file, dependences);
2457 components = split_data_refs_to_components (loop, datarefs, dependences);
2458 loop_nest.release ();
2459 free_dependence_relations (dependences);
2460 if (!components)
2462 free_data_refs (datarefs);
2463 return false;
2466 if (dump_file && (dump_flags & TDF_DETAILS))
2468 fprintf (dump_file, "Initial state:\n\n");
2469 dump_components (dump_file, components);
2472 /* Find the suitable components and split them into chains. */
2473 components = filter_suitable_components (loop, components);
2475 tmp_vars = BITMAP_ALLOC (NULL);
2476 looparound_phis = BITMAP_ALLOC (NULL);
2477 determine_roots (loop, components, &chains);
2478 release_components (components);
2480 if (!chains.exists ())
2482 if (dump_file && (dump_flags & TDF_DETAILS))
2483 fprintf (dump_file,
2484 "Predictive commoning failed: no suitable chains\n");
2485 goto end;
2487 prepare_initializers (loop, chains);
2489 /* Try to combine the chains that are always worked with together. */
2490 try_combine_chains (&chains);
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2494 fprintf (dump_file, "Before commoning:\n\n");
2495 dump_chains (dump_file, chains);
2498 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2499 that its number of iterations is divisible by the factor. */
2500 unroll_factor = determine_unroll_factor (chains);
2501 scev_reset ();
2502 unroll = (unroll_factor > 1
2503 && can_unroll_loop_p (loop, unroll_factor, &desc));
2504 exit = single_dom_exit (loop);
2506 /* Execute the predictive commoning transformations, and possibly unroll the
2507 loop. */
2508 if (unroll)
2510 struct epcc_data dta;
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2515 dta.chains = chains;
2516 dta.tmp_vars = tmp_vars;
2518 update_ssa (TODO_update_ssa_only_virtuals);
2520 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2521 execute_pred_commoning_cbck is called may cause phi nodes to be
2522 reallocated, which is a problem since CHAINS may point to these
2523 statements. To fix this, we store the ssa names defined by the
2524 phi nodes here instead of the phi nodes themselves, and restore
2525 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2526 replace_phis_by_defined_names (chains);
2528 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2529 execute_pred_commoning_cbck, &dta);
2530 eliminate_temp_copies (loop, tmp_vars);
2532 else
2534 if (dump_file && (dump_flags & TDF_DETAILS))
2535 fprintf (dump_file,
2536 "Executing predictive commoning without unrolling.\n");
2537 execute_pred_commoning (loop, chains, tmp_vars);
2540 end: ;
2541 release_chains (chains);
2542 free_data_refs (datarefs);
2543 BITMAP_FREE (tmp_vars);
2544 BITMAP_FREE (looparound_phis);
2546 free_affine_expand_cache (&name_expansions);
2548 return unroll;
2551 /* Runs predictive commoning. */
2553 unsigned
2554 tree_predictive_commoning (void)
2556 bool unrolled = false;
2557 struct loop *loop;
2558 loop_iterator li;
2559 unsigned ret = 0;
2561 initialize_original_copy_tables ();
2562 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2563 if (optimize_loop_for_speed_p (loop))
2565 unrolled |= tree_predictive_commoning_loop (loop);
2568 if (unrolled)
2570 scev_reset ();
2571 ret = TODO_cleanup_cfg;
2573 free_original_copy_tables ();
2575 return ret;
2578 /* Predictive commoning Pass. */
2580 static unsigned
2581 run_tree_predictive_commoning (void)
2583 if (!current_loops)
2584 return 0;
2586 return tree_predictive_commoning ();
2589 static bool
2590 gate_tree_predictive_commoning (void)
2592 return flag_predictive_commoning != 0;
2595 namespace {
2597 const pass_data pass_data_predcom =
2599 GIMPLE_PASS, /* type */
2600 "pcom", /* name */
2601 OPTGROUP_LOOP, /* optinfo_flags */
2602 true, /* has_gate */
2603 true, /* has_execute */
2604 TV_PREDCOM, /* tv_id */
2605 PROP_cfg, /* properties_required */
2606 0, /* properties_provided */
2607 0, /* properties_destroyed */
2608 0, /* todo_flags_start */
2609 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
2612 class pass_predcom : public gimple_opt_pass
2614 public:
2615 pass_predcom (gcc::context *ctxt)
2616 : gimple_opt_pass (pass_data_predcom, ctxt)
2619 /* opt_pass methods: */
2620 bool gate () { return gate_tree_predictive_commoning (); }
2621 unsigned int execute () { return run_tree_predictive_commoning (); }
2623 }; // class pass_predcom
2625 } // anon namespace
2627 gimple_opt_pass *
2628 make_pass_predcom (gcc::context *ctxt)
2630 return new pass_predcom (ctxt);