1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
39 #include "basic-block.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1
PARAMS ((rtx
*, rtx
, rtx
, rtx
));
60 static rtx
*find_single_use_1
PARAMS ((rtx
, rtx
*));
61 static void validate_replace_src_1
PARAMS ((rtx
*, void *));
62 static rtx split_insn
PARAMS ((rtx
));
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
74 struct recog_data recog_data
;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
80 /* On return from `constrain_operands', indicate which alternative
83 int which_alternative
;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
91 /* Initialize data used by the function `recog'.
92 This must be called once in the compilation of a function
93 before any insn recognition may be done in the function. */
96 init_recog_no_volatile ()
107 /* Try recognizing the instruction INSN,
108 and return the code number that results.
109 Remember the code so that repeated calls do not
110 need to spend the time for actual rerecognition.
112 This function is the normal interface to instruction recognition.
113 The automatically-generated function `recog' is normally called
114 through this one. (The only exception is in combine.c.) */
117 recog_memoized_1 (insn
)
120 if (INSN_CODE (insn
) < 0)
121 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
122 return INSN_CODE (insn
);
125 /* Check that X is an insn-body for an `asm' with operands
126 and that the operands mentioned in it are legitimate. */
129 check_asm_operands (x
)
134 const char **constraints
;
137 /* Post-reload, be more strict with things. */
138 if (reload_completed
)
140 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
141 extract_insn (make_insn_raw (x
));
142 constrain_operands (1);
143 return which_alternative
>= 0;
146 noperands
= asm_noperands (x
);
152 operands
= (rtx
*) alloca (noperands
* sizeof (rtx
));
153 constraints
= (const char **) alloca (noperands
* sizeof (char *));
155 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
157 for (i
= 0; i
< noperands
; i
++)
159 const char *c
= constraints
[i
];
162 if (ISDIGIT ((unsigned char) c
[0]) && c
[1] == '\0')
163 c
= constraints
[c
[0] - '0'];
165 if (! asm_operand_ok (operands
[i
], c
))
172 /* Static data for the next two routines. */
174 typedef struct change_t
182 static change_t
*changes
;
183 static int changes_allocated
;
185 static int num_changes
= 0;
187 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
188 at which NEW will be placed. If OBJECT is zero, no validation is done,
189 the change is simply made.
191 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
192 will be called with the address and mode as parameters. If OBJECT is
193 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
196 IN_GROUP is nonzero if this is part of a group of changes that must be
197 performed as a group. In that case, the changes will be stored. The
198 function `apply_change_group' will validate and apply the changes.
200 If IN_GROUP is zero, this is a single change. Try to recognize the insn
201 or validate the memory reference with the change applied. If the result
202 is not valid for the machine, suppress the change and return zero.
203 Otherwise, perform the change and return 1. */
206 validate_change (object
, loc
, new, in_group
)
214 if (old
== new || rtx_equal_p (old
, new))
217 if (in_group
== 0 && num_changes
!= 0)
222 /* Save the information describing this change. */
223 if (num_changes
>= changes_allocated
)
225 if (changes_allocated
== 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
230 changes_allocated
*= 2;
233 (change_t
*) xrealloc (changes
,
234 sizeof (change_t
) * changes_allocated
);
237 changes
[num_changes
].object
= object
;
238 changes
[num_changes
].loc
= loc
;
239 changes
[num_changes
].old
= old
;
241 if (object
&& GET_CODE (object
) != MEM
)
243 /* Set INSN_CODE to force rerecognition of insn. Save old code in
245 changes
[num_changes
].old_code
= INSN_CODE (object
);
246 INSN_CODE (object
) = -1;
251 /* If we are making a group of changes, return 1. Otherwise, validate the
252 change group we made. */
257 return apply_change_group ();
260 /* This subroutine of apply_change_group verifies whether the changes to INSN
261 were valid; i.e. whether INSN can still be recognized. */
264 insn_invalid_p (insn
)
267 rtx pat
= PATTERN (insn
);
268 int num_clobbers
= 0;
269 /* If we are before reload and the pattern is a SET, see if we can add
271 int icode
= recog (pat
, insn
,
272 (GET_CODE (pat
) == SET
273 && ! reload_completed
&& ! reload_in_progress
)
274 ? &num_clobbers
: 0);
275 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
278 /* If this is an asm and the operand aren't legal, then fail. Likewise if
279 this is not an asm and the insn wasn't recognized. */
280 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
281 || (!is_asm
&& icode
< 0))
284 /* If we have to add CLOBBERs, fail if we have to add ones that reference
285 hard registers since our callers can't know if they are live or not.
286 Otherwise, add them. */
287 if (num_clobbers
> 0)
291 if (added_clobbers_hard_reg_p (icode
))
294 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
295 XVECEXP (newpat
, 0, 0) = pat
;
296 add_clobbers (newpat
, icode
);
297 PATTERN (insn
) = pat
= newpat
;
300 /* After reload, verify that all constraints are satisfied. */
301 if (reload_completed
)
305 if (! constrain_operands (1))
309 INSN_CODE (insn
) = icode
;
313 /* Return number of changes made and not validated yet. */
315 num_changes_pending ()
320 /* Apply a group of changes previously issued with `validate_change'.
321 Return 1 if all changes are valid, zero otherwise. */
324 apply_change_group ()
327 rtx last_validated
= NULL_RTX
;
329 /* The changes have been applied and all INSN_CODEs have been reset to force
332 The changes are valid if we aren't given an object, or if we are
333 given a MEM and it still is a valid address, or if this is in insn
334 and it is recognized. In the latter case, if reload has completed,
335 we also require that the operands meet the constraints for
338 for (i
= 0; i
< num_changes
; i
++)
340 rtx object
= changes
[i
].object
;
342 /* if there is no object to test or if it is the same as the one we
343 already tested, ignore it. */
344 if (object
== 0 || object
== last_validated
)
347 if (GET_CODE (object
) == MEM
)
349 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
352 else if (insn_invalid_p (object
))
354 rtx pat
= PATTERN (object
);
356 /* Perhaps we couldn't recognize the insn because there were
357 extra CLOBBERs at the end. If so, try to re-recognize
358 without the last CLOBBER (later iterations will cause each of
359 them to be eliminated, in turn). But don't do this if we
360 have an ASM_OPERAND. */
361 if (GET_CODE (pat
) == PARALLEL
362 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
363 && asm_noperands (PATTERN (object
)) < 0)
367 if (XVECLEN (pat
, 0) == 2)
368 newpat
= XVECEXP (pat
, 0, 0);
374 = gen_rtx_PARALLEL (VOIDmode
,
375 rtvec_alloc (XVECLEN (pat
, 0) - 1));
376 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
377 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
380 /* Add a new change to this group to replace the pattern
381 with this new pattern. Then consider this change
382 as having succeeded. The change we added will
383 cause the entire call to fail if things remain invalid.
385 Note that this can lose if a later change than the one
386 we are processing specified &XVECEXP (PATTERN (object), 0, X)
387 but this shouldn't occur. */
389 validate_change (object
, &PATTERN (object
), newpat
, 1);
392 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
393 /* If this insn is a CLOBBER or USE, it is always valid, but is
399 last_validated
= object
;
402 if (i
== num_changes
)
406 for (i
= 0; i
< num_changes
; i
++)
407 if (changes
[i
].object
408 && INSN_P (changes
[i
].object
)
409 && (bb
= BLOCK_FOR_INSN (changes
[i
].object
)))
410 bb
->flags
|= BB_DIRTY
;
422 /* Return the number of changes so far in the current group. */
425 num_validated_changes ()
430 /* Retract the changes numbered NUM and up. */
438 /* Back out all the changes. Do this in the opposite order in which
440 for (i
= num_changes
- 1; i
>= num
; i
--)
442 *changes
[i
].loc
= changes
[i
].old
;
443 if (changes
[i
].object
&& GET_CODE (changes
[i
].object
) != MEM
)
444 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
449 /* Replace every occurrence of FROM in X with TO. Mark each change with
450 validate_change passing OBJECT. */
453 validate_replace_rtx_1 (loc
, from
, to
, object
)
455 rtx from
, to
, object
;
461 enum machine_mode op0_mode
= VOIDmode
;
462 int prev_changes
= num_changes
;
469 fmt
= GET_RTX_FORMAT (code
);
471 op0_mode
= GET_MODE (XEXP (x
, 0));
473 /* X matches FROM if it is the same rtx or they are both referring to the
474 same register in the same mode. Avoid calling rtx_equal_p unless the
475 operands look similar. */
478 || (GET_CODE (x
) == REG
&& GET_CODE (from
) == REG
479 && GET_MODE (x
) == GET_MODE (from
)
480 && REGNO (x
) == REGNO (from
))
481 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
482 && rtx_equal_p (x
, from
)))
484 validate_change (object
, loc
, to
, 1);
488 /* Call ourself recursively to perform the replacements. */
490 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
493 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
494 else if (fmt
[i
] == 'E')
495 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
496 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
499 /* If we didn't substitute, there is nothing more to do. */
500 if (num_changes
== prev_changes
)
503 /* Allow substituted expression to have different mode. This is used by
504 regmove to change mode of pseudo register. */
505 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
506 op0_mode
= GET_MODE (XEXP (x
, 0));
508 /* Do changes needed to keep rtx consistent. Don't do any other
509 simplifications, as it is not our job. */
511 if ((GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
512 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
514 validate_change (object
, loc
,
515 gen_rtx_fmt_ee (GET_RTX_CLASS (code
) == 'c' ? code
516 : swap_condition (code
),
517 GET_MODE (x
), XEXP (x
, 1),
526 /* If we have a PLUS whose second operand is now a CONST_INT, use
527 simplify_gen_binary to try to simplify it.
528 ??? We may want later to remove this, once simplification is
529 separated from this function. */
530 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
531 validate_change (object
, loc
,
533 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
536 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
537 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
538 validate_change (object
, loc
,
540 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
541 simplify_gen_unary (NEG
,
542 GET_MODE (x
), XEXP (x
, 1),
547 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
549 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
551 /* If any of the above failed, substitute in something that
552 we know won't be recognized. */
554 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
555 validate_change (object
, loc
, new, 1);
559 /* All subregs possible to simplify should be simplified. */
560 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
563 /* Subregs of VOIDmode operands are incorrect. */
564 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
565 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
567 validate_change (object
, loc
, new, 1);
571 /* If we are replacing a register with memory, try to change the memory
572 to be the mode required for memory in extract operations (this isn't
573 likely to be an insertion operation; if it was, nothing bad will
574 happen, we might just fail in some cases). */
576 if (GET_CODE (XEXP (x
, 0)) == MEM
577 && GET_CODE (XEXP (x
, 1)) == CONST_INT
578 && GET_CODE (XEXP (x
, 2)) == CONST_INT
579 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
580 && !MEM_VOLATILE_P (XEXP (x
, 0)))
582 enum machine_mode wanted_mode
= VOIDmode
;
583 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
584 int pos
= INTVAL (XEXP (x
, 2));
586 if (GET_CODE (x
) == ZERO_EXTRACT
)
588 enum machine_mode new_mode
589 = mode_for_extraction (EP_extzv
, 1);
590 if (new_mode
!= MAX_MACHINE_MODE
)
591 wanted_mode
= new_mode
;
593 else if (GET_CODE (x
) == SIGN_EXTRACT
)
595 enum machine_mode new_mode
596 = mode_for_extraction (EP_extv
, 1);
597 if (new_mode
!= MAX_MACHINE_MODE
)
598 wanted_mode
= new_mode
;
601 /* If we have a narrower mode, we can do something. */
602 if (wanted_mode
!= VOIDmode
603 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
605 int offset
= pos
/ BITS_PER_UNIT
;
608 /* If the bytes and bits are counted differently, we
609 must adjust the offset. */
610 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
612 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
615 pos
%= GET_MODE_BITSIZE (wanted_mode
);
617 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
619 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
620 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
631 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
632 with TO. After all changes have been made, validate by seeing
633 if INSN is still valid. */
636 validate_replace_rtx_subexp (from
, to
, insn
, loc
)
637 rtx from
, to
, insn
, *loc
;
639 validate_replace_rtx_1 (loc
, from
, to
, insn
);
640 return apply_change_group ();
643 /* Try replacing every occurrence of FROM in INSN with TO. After all
644 changes have been made, validate by seeing if INSN is still valid. */
647 validate_replace_rtx (from
, to
, insn
)
650 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
651 return apply_change_group ();
654 /* Try replacing every occurrence of FROM in INSN with TO. */
657 validate_replace_rtx_group (from
, to
, insn
)
660 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
663 /* Function called by note_uses to replace used subexpressions. */
664 struct validate_replace_src_data
666 rtx from
; /* Old RTX */
667 rtx to
; /* New RTX */
668 rtx insn
; /* Insn in which substitution is occurring. */
672 validate_replace_src_1 (x
, data
)
676 struct validate_replace_src_data
*d
677 = (struct validate_replace_src_data
*) data
;
679 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
682 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
686 validate_replace_src_group (from
, to
, insn
)
689 struct validate_replace_src_data d
;
694 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
697 /* Same as validate_replace_src_group, but validate by seeing if
698 INSN is still valid. */
700 validate_replace_src (from
, to
, insn
)
703 validate_replace_src_group (from
, to
, insn
);
704 return apply_change_group ();
708 /* Return 1 if the insn using CC0 set by INSN does not contain
709 any ordered tests applied to the condition codes.
710 EQ and NE tests do not count. */
713 next_insn_tests_no_inequality (insn
)
716 rtx next
= next_cc0_user (insn
);
718 /* If there is no next insn, we have to take the conservative choice. */
722 return ((GET_CODE (next
) == JUMP_INSN
723 || GET_CODE (next
) == INSN
724 || GET_CODE (next
) == CALL_INSN
)
725 && ! inequality_comparisons_p (PATTERN (next
)));
728 #if 0 /* This is useless since the insn that sets the cc's
729 must be followed immediately by the use of them. */
730 /* Return 1 if the CC value set up by INSN is not used. */
733 next_insns_test_no_inequality (insn
)
736 rtx next
= NEXT_INSN (insn
);
738 for (; next
!= 0; next
= NEXT_INSN (next
))
740 if (GET_CODE (next
) == CODE_LABEL
741 || GET_CODE (next
) == BARRIER
)
743 if (GET_CODE (next
) == NOTE
)
745 if (inequality_comparisons_p (PATTERN (next
)))
747 if (sets_cc0_p (PATTERN (next
)) == 1)
749 if (! reg_mentioned_p (cc0_rtx
, PATTERN (next
)))
757 /* This is used by find_single_use to locate an rtx that contains exactly one
758 use of DEST, which is typically either a REG or CC0. It returns a
759 pointer to the innermost rtx expression containing DEST. Appearances of
760 DEST that are being used to totally replace it are not counted. */
763 find_single_use_1 (dest
, loc
)
768 enum rtx_code code
= GET_CODE (x
);
786 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
787 of a REG that occupies all of the REG, the insn uses DEST if
788 it is mentioned in the destination or the source. Otherwise, we
789 need just check the source. */
790 if (GET_CODE (SET_DEST (x
)) != CC0
791 && GET_CODE (SET_DEST (x
)) != PC
792 && GET_CODE (SET_DEST (x
)) != REG
793 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
794 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
795 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
796 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
797 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
798 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
801 return find_single_use_1 (dest
, &SET_SRC (x
));
805 return find_single_use_1 (dest
, &XEXP (x
, 0));
811 /* If it wasn't one of the common cases above, check each expression and
812 vector of this code. Look for a unique usage of DEST. */
814 fmt
= GET_RTX_FORMAT (code
);
815 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
819 if (dest
== XEXP (x
, i
)
820 || (GET_CODE (dest
) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
821 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
824 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
827 result
= this_result
;
828 else if (this_result
)
829 /* Duplicate usage. */
832 else if (fmt
[i
] == 'E')
836 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
838 if (XVECEXP (x
, i
, j
) == dest
839 || (GET_CODE (dest
) == REG
840 && GET_CODE (XVECEXP (x
, i
, j
)) == REG
841 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
844 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
847 result
= this_result
;
848 else if (this_result
)
857 /* See if DEST, produced in INSN, is used only a single time in the
858 sequel. If so, return a pointer to the innermost rtx expression in which
861 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
863 This routine will return usually zero either before flow is called (because
864 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
865 note can't be trusted).
867 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
868 care about REG_DEAD notes or LOG_LINKS.
870 Otherwise, we find the single use by finding an insn that has a
871 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
872 only referenced once in that insn, we know that it must be the first
873 and last insn referencing DEST. */
876 find_single_use (dest
, insn
, ploc
)
888 next
= NEXT_INSN (insn
);
890 || (GET_CODE (next
) != INSN
&& GET_CODE (next
) != JUMP_INSN
))
893 result
= find_single_use_1 (dest
, &PATTERN (next
));
900 if (reload_completed
|| reload_in_progress
|| GET_CODE (dest
) != REG
)
903 for (next
= next_nonnote_insn (insn
);
904 next
!= 0 && GET_CODE (next
) != CODE_LABEL
;
905 next
= next_nonnote_insn (next
))
906 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
908 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
909 if (XEXP (link
, 0) == insn
)
914 result
= find_single_use_1 (dest
, &PATTERN (next
));
924 /* Return 1 if OP is a valid general operand for machine mode MODE.
925 This is either a register reference, a memory reference,
926 or a constant. In the case of a memory reference, the address
927 is checked for general validity for the target machine.
929 Register and memory references must have mode MODE in order to be valid,
930 but some constants have no machine mode and are valid for any mode.
932 If MODE is VOIDmode, OP is checked for validity for whatever mode
935 The main use of this function is as a predicate in match_operand
936 expressions in the machine description.
938 For an explanation of this function's behavior for registers of
939 class NO_REGS, see the comment for `register_operand'. */
942 general_operand (op
, mode
)
944 enum machine_mode mode
;
946 enum rtx_code code
= GET_CODE (op
);
948 if (mode
== VOIDmode
)
949 mode
= GET_MODE (op
);
951 /* Don't accept CONST_INT or anything similar
952 if the caller wants something floating. */
953 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
954 && GET_MODE_CLASS (mode
) != MODE_INT
955 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
958 if (GET_CODE (op
) == CONST_INT
960 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
964 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
966 #ifdef LEGITIMATE_PIC_OPERAND_P
967 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
969 && LEGITIMATE_CONSTANT_P (op
));
971 /* Except for certain constants with VOIDmode, already checked for,
972 OP's mode must match MODE if MODE specifies a mode. */
974 if (GET_MODE (op
) != mode
)
979 rtx sub
= SUBREG_REG (op
);
981 #ifdef INSN_SCHEDULING
982 /* On machines that have insn scheduling, we want all memory
983 reference to be explicit, so outlaw paradoxical SUBREGs. */
984 if (GET_CODE (sub
) == MEM
985 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
988 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
989 may result in incorrect reference. We should simplify all valid
990 subregs of MEM anyway. But allow this after reload because we
991 might be called from cleanup_subreg_operands.
993 ??? This is a kludge. */
994 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
995 && GET_CODE (sub
) == MEM
)
998 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
999 create such rtl, and we must reject it. */
1000 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1001 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1005 code
= GET_CODE (op
);
1009 /* A register whose class is NO_REGS is not a general operand. */
1010 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1011 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
1015 rtx y
= XEXP (op
, 0);
1017 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1020 if (GET_CODE (y
) == ADDRESSOF
)
1023 /* Use the mem's mode, since it will be reloaded thus. */
1024 mode
= GET_MODE (op
);
1025 GO_IF_LEGITIMATE_ADDRESS (mode
, y
, win
);
1028 /* Pretend this is an operand for now; we'll run force_operand
1029 on its replacement in fixup_var_refs_1. */
1030 if (code
== ADDRESSOF
)
1039 /* Return 1 if OP is a valid memory address for a memory reference
1042 The main use of this function is as a predicate in match_operand
1043 expressions in the machine description. */
1046 address_operand (op
, mode
)
1048 enum machine_mode mode
;
1050 return memory_address_p (mode
, op
);
1053 /* Return 1 if OP is a register reference of mode MODE.
1054 If MODE is VOIDmode, accept a register in any mode.
1056 The main use of this function is as a predicate in match_operand
1057 expressions in the machine description.
1059 As a special exception, registers whose class is NO_REGS are
1060 not accepted by `register_operand'. The reason for this change
1061 is to allow the representation of special architecture artifacts
1062 (such as a condition code register) without extending the rtl
1063 definitions. Since registers of class NO_REGS cannot be used
1064 as registers in any case where register classes are examined,
1065 it is most consistent to keep this function from accepting them. */
1068 register_operand (op
, mode
)
1070 enum machine_mode mode
;
1072 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1075 if (GET_CODE (op
) == SUBREG
)
1077 rtx sub
= SUBREG_REG (op
);
1079 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1080 because it is guaranteed to be reloaded into one.
1081 Just make sure the MEM is valid in itself.
1082 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1083 but currently it does result from (SUBREG (REG)...) where the
1084 reg went on the stack.) */
1085 if (! reload_completed
&& GET_CODE (sub
) == MEM
)
1086 return general_operand (op
, mode
);
1088 #ifdef CANNOT_CHANGE_MODE_CLASS
1089 if (GET_CODE (sub
) == REG
1090 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1091 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1092 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1093 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1097 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1098 create such rtl, and we must reject it. */
1099 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1100 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1106 /* If we have an ADDRESSOF, consider it valid since it will be
1107 converted into something that will not be a MEM. */
1108 if (GET_CODE (op
) == ADDRESSOF
)
1111 /* We don't consider registers whose class is NO_REGS
1112 to be a register operand. */
1113 return (GET_CODE (op
) == REG
1114 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1115 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1118 /* Return 1 for a register in Pmode; ignore the tested mode. */
1121 pmode_register_operand (op
, mode
)
1123 enum machine_mode mode ATTRIBUTE_UNUSED
;
1125 return register_operand (op
, Pmode
);
1128 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1129 or a hard register. */
1132 scratch_operand (op
, mode
)
1134 enum machine_mode mode
;
1136 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1139 return (GET_CODE (op
) == SCRATCH
1140 || (GET_CODE (op
) == REG
1141 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1144 /* Return 1 if OP is a valid immediate operand for mode MODE.
1146 The main use of this function is as a predicate in match_operand
1147 expressions in the machine description. */
1150 immediate_operand (op
, mode
)
1152 enum machine_mode mode
;
1154 /* Don't accept CONST_INT or anything similar
1155 if the caller wants something floating. */
1156 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1157 && GET_MODE_CLASS (mode
) != MODE_INT
1158 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1161 if (GET_CODE (op
) == CONST_INT
1163 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1166 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1167 result in 0/1. It seems a safe assumption that this is
1168 in range for everyone. */
1169 if (GET_CODE (op
) == CONSTANT_P_RTX
)
1172 return (CONSTANT_P (op
)
1173 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1174 || GET_MODE (op
) == VOIDmode
)
1175 #ifdef LEGITIMATE_PIC_OPERAND_P
1176 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1178 && LEGITIMATE_CONSTANT_P (op
));
1181 /* Returns 1 if OP is an operand that is a CONST_INT. */
1184 const_int_operand (op
, mode
)
1186 enum machine_mode mode
;
1188 if (GET_CODE (op
) != CONST_INT
)
1191 if (mode
!= VOIDmode
1192 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1198 /* Returns 1 if OP is an operand that is a constant integer or constant
1199 floating-point number. */
1202 const_double_operand (op
, mode
)
1204 enum machine_mode mode
;
1206 /* Don't accept CONST_INT or anything similar
1207 if the caller wants something floating. */
1208 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1209 && GET_MODE_CLASS (mode
) != MODE_INT
1210 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1213 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1214 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1215 || GET_MODE (op
) == VOIDmode
));
1218 /* Return 1 if OP is a general operand that is not an immediate operand. */
1221 nonimmediate_operand (op
, mode
)
1223 enum machine_mode mode
;
1225 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1228 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1231 nonmemory_operand (op
, mode
)
1233 enum machine_mode mode
;
1235 if (CONSTANT_P (op
))
1237 /* Don't accept CONST_INT or anything similar
1238 if the caller wants something floating. */
1239 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1240 && GET_MODE_CLASS (mode
) != MODE_INT
1241 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1244 if (GET_CODE (op
) == CONST_INT
1246 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1249 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1250 || mode
== VOIDmode
)
1251 #ifdef LEGITIMATE_PIC_OPERAND_P
1252 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1254 && LEGITIMATE_CONSTANT_P (op
));
1257 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1260 if (GET_CODE (op
) == SUBREG
)
1262 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1263 because it is guaranteed to be reloaded into one.
1264 Just make sure the MEM is valid in itself.
1265 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1266 but currently it does result from (SUBREG (REG)...) where the
1267 reg went on the stack.) */
1268 if (! reload_completed
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1269 return general_operand (op
, mode
);
1270 op
= SUBREG_REG (op
);
1273 /* We don't consider registers whose class is NO_REGS
1274 to be a register operand. */
1275 return (GET_CODE (op
) == REG
1276 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1277 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1280 /* Return 1 if OP is a valid operand that stands for pushing a
1281 value of mode MODE onto the stack.
1283 The main use of this function is as a predicate in match_operand
1284 expressions in the machine description. */
1287 push_operand (op
, mode
)
1289 enum machine_mode mode
;
1291 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1293 #ifdef PUSH_ROUNDING
1294 rounded_size
= PUSH_ROUNDING (rounded_size
);
1297 if (GET_CODE (op
) != MEM
)
1300 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1305 if (rounded_size
== GET_MODE_SIZE (mode
))
1307 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1312 if (GET_CODE (op
) != PRE_MODIFY
1313 || GET_CODE (XEXP (op
, 1)) != PLUS
1314 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1315 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1316 #ifdef STACK_GROWS_DOWNWARD
1317 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1319 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1325 return XEXP (op
, 0) == stack_pointer_rtx
;
1328 /* Return 1 if OP is a valid operand that stands for popping a
1329 value of mode MODE off the stack.
1331 The main use of this function is as a predicate in match_operand
1332 expressions in the machine description. */
1335 pop_operand (op
, mode
)
1337 enum machine_mode mode
;
1339 if (GET_CODE (op
) != MEM
)
1342 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1347 if (GET_CODE (op
) != STACK_POP_CODE
)
1350 return XEXP (op
, 0) == stack_pointer_rtx
;
1353 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1356 memory_address_p (mode
, addr
)
1357 enum machine_mode mode ATTRIBUTE_UNUSED
;
1360 if (GET_CODE (addr
) == ADDRESSOF
)
1363 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1370 /* Return 1 if OP is a valid memory reference with mode MODE,
1371 including a valid address.
1373 The main use of this function is as a predicate in match_operand
1374 expressions in the machine description. */
1377 memory_operand (op
, mode
)
1379 enum machine_mode mode
;
1383 if (! reload_completed
)
1384 /* Note that no SUBREG is a memory operand before end of reload pass,
1385 because (SUBREG (MEM...)) forces reloading into a register. */
1386 return GET_CODE (op
) == MEM
&& general_operand (op
, mode
);
1388 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1392 if (GET_CODE (inner
) == SUBREG
)
1393 inner
= SUBREG_REG (inner
);
1395 return (GET_CODE (inner
) == MEM
&& general_operand (op
, mode
));
1398 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1399 that is, a memory reference whose address is a general_operand. */
1402 indirect_operand (op
, mode
)
1404 enum machine_mode mode
;
1406 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1407 if (! reload_completed
1408 && GET_CODE (op
) == SUBREG
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1410 int offset
= SUBREG_BYTE (op
);
1411 rtx inner
= SUBREG_REG (op
);
1413 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1416 /* The only way that we can have a general_operand as the resulting
1417 address is if OFFSET is zero and the address already is an operand
1418 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1421 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1422 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1423 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1424 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1425 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1428 return (GET_CODE (op
) == MEM
1429 && memory_operand (op
, mode
)
1430 && general_operand (XEXP (op
, 0), Pmode
));
1433 /* Return 1 if this is a comparison operator. This allows the use of
1434 MATCH_OPERATOR to recognize all the branch insns. */
1437 comparison_operator (op
, mode
)
1439 enum machine_mode mode
;
1441 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1442 && GET_RTX_CLASS (GET_CODE (op
)) == '<');
1445 /* If BODY is an insn body that uses ASM_OPERANDS,
1446 return the number of operands (both input and output) in the insn.
1447 Otherwise return -1. */
1450 asm_noperands (body
)
1453 switch (GET_CODE (body
))
1456 /* No output operands: return number of input operands. */
1457 return ASM_OPERANDS_INPUT_LENGTH (body
);
1459 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1460 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1461 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1465 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1466 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1468 /* Multiple output operands, or 1 output plus some clobbers:
1469 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1473 /* Count backwards through CLOBBERs to determine number of SETs. */
1474 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1476 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1478 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1482 /* N_SETS is now number of output operands. */
1485 /* Verify that all the SETs we have
1486 came from a single original asm_operands insn
1487 (so that invalid combinations are blocked). */
1488 for (i
= 0; i
< n_sets
; i
++)
1490 rtx elt
= XVECEXP (body
, 0, i
);
1491 if (GET_CODE (elt
) != SET
)
1493 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1495 /* If these ASM_OPERANDS rtx's came from different original insns
1496 then they aren't allowed together. */
1497 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1498 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1501 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1504 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1506 /* 0 outputs, but some clobbers:
1507 body is [(asm_operands ...) (clobber (reg ...))...]. */
1510 /* Make sure all the other parallel things really are clobbers. */
1511 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1512 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1515 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1524 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1525 copy its operands (both input and output) into the vector OPERANDS,
1526 the locations of the operands within the insn into the vector OPERAND_LOCS,
1527 and the constraints for the operands into CONSTRAINTS.
1528 Write the modes of the operands into MODES.
1529 Return the assembler-template.
1531 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1532 we don't store that info. */
1535 decode_asm_operands (body
, operands
, operand_locs
, constraints
, modes
)
1539 const char **constraints
;
1540 enum machine_mode
*modes
;
1544 const char *template = 0;
1546 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1548 rtx asmop
= SET_SRC (body
);
1549 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1551 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1553 for (i
= 1; i
< noperands
; i
++)
1556 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1558 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1560 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1562 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1565 /* The output is in the SET.
1566 Its constraint is in the ASM_OPERANDS itself. */
1568 operands
[0] = SET_DEST (body
);
1570 operand_locs
[0] = &SET_DEST (body
);
1572 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1574 modes
[0] = GET_MODE (SET_DEST (body
));
1575 template = ASM_OPERANDS_TEMPLATE (asmop
);
1577 else if (GET_CODE (body
) == ASM_OPERANDS
)
1580 /* No output operands: BODY is (asm_operands ....). */
1582 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1584 /* The input operands are found in the 1st element vector. */
1585 /* Constraints for inputs are in the 2nd element vector. */
1586 for (i
= 0; i
< noperands
; i
++)
1589 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1591 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1593 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1595 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1597 template = ASM_OPERANDS_TEMPLATE (asmop
);
1599 else if (GET_CODE (body
) == PARALLEL
1600 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1601 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1603 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1604 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1605 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1606 int nout
= 0; /* Does not include CLOBBERs. */
1608 /* At least one output, plus some CLOBBERs. */
1610 /* The outputs are in the SETs.
1611 Their constraints are in the ASM_OPERANDS itself. */
1612 for (i
= 0; i
< nparallel
; i
++)
1614 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1615 break; /* Past last SET */
1618 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1620 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1622 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1624 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1628 for (i
= 0; i
< nin
; i
++)
1631 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1633 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1635 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1637 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1640 template = ASM_OPERANDS_TEMPLATE (asmop
);
1642 else if (GET_CODE (body
) == PARALLEL
1643 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1645 /* No outputs, but some CLOBBERs. */
1647 rtx asmop
= XVECEXP (body
, 0, 0);
1648 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1650 for (i
= 0; i
< nin
; i
++)
1653 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1655 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1657 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1659 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1662 template = ASM_OPERANDS_TEMPLATE (asmop
);
1668 /* Check if an asm_operand matches it's constraints.
1669 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1672 asm_operand_ok (op
, constraint
)
1674 const char *constraint
;
1678 /* Use constrain_operands after reload. */
1679 if (reload_completed
)
1684 char c
= *constraint
;
1701 case '0': case '1': case '2': case '3': case '4':
1702 case '5': case '6': case '7': case '8': case '9':
1703 /* For best results, our caller should have given us the
1704 proper matching constraint, but we can't actually fail
1705 the check if they didn't. Indicate that results are
1709 while (ISDIGIT (*constraint
));
1715 if (address_operand (op
, VOIDmode
))
1720 case 'V': /* non-offsettable */
1721 if (memory_operand (op
, VOIDmode
))
1725 case 'o': /* offsettable */
1726 if (offsettable_nonstrict_memref_p (op
))
1731 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1732 excepting those that expand_call created. Further, on some
1733 machines which do not have generalized auto inc/dec, an inc/dec
1734 is not a memory_operand.
1736 Match any memory and hope things are resolved after reload. */
1738 if (GET_CODE (op
) == MEM
1740 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1741 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1746 if (GET_CODE (op
) == MEM
1748 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1749 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1755 if (GET_CODE (op
) == CONST_DOUBLE
1756 || (GET_CODE (op
) == CONST_VECTOR
1757 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1762 if (GET_CODE (op
) == CONST_DOUBLE
1763 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1767 if (GET_CODE (op
) == CONST_DOUBLE
1768 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1773 if (GET_CODE (op
) == CONST_INT
1774 || (GET_CODE (op
) == CONST_DOUBLE
1775 && GET_MODE (op
) == VOIDmode
))
1781 #ifdef LEGITIMATE_PIC_OPERAND_P
1782 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1789 if (GET_CODE (op
) == CONST_INT
1790 || (GET_CODE (op
) == CONST_DOUBLE
1791 && GET_MODE (op
) == VOIDmode
))
1796 if (GET_CODE (op
) == CONST_INT
1797 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1801 if (GET_CODE (op
) == CONST_INT
1802 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1806 if (GET_CODE (op
) == CONST_INT
1807 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1811 if (GET_CODE (op
) == CONST_INT
1812 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1816 if (GET_CODE (op
) == CONST_INT
1817 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1821 if (GET_CODE (op
) == CONST_INT
1822 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1826 if (GET_CODE (op
) == CONST_INT
1827 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1831 if (GET_CODE (op
) == CONST_INT
1832 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1840 if (general_operand (op
, VOIDmode
))
1845 /* For all other letters, we first check for a register class,
1846 otherwise it is an EXTRA_CONSTRAINT. */
1847 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1850 if (GET_MODE (op
) == BLKmode
)
1852 if (register_operand (op
, VOIDmode
))
1855 #ifdef EXTRA_CONSTRAINT_STR
1856 if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1858 if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1860 /* Every memory operand can be reloaded to fit. */
1861 if (memory_operand (op
, VOIDmode
))
1864 if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1866 /* Every address operand can be reloaded to fit. */
1867 if (address_operand (op
, VOIDmode
))
1873 len
= CONSTRAINT_LEN (c
, constraint
);
1876 while (--len
&& *constraint
);
1884 /* Given an rtx *P, if it is a sum containing an integer constant term,
1885 return the location (type rtx *) of the pointer to that constant term.
1886 Otherwise, return a null pointer. */
1889 find_constant_term_loc (p
)
1893 enum rtx_code code
= GET_CODE (*p
);
1895 /* If *P IS such a constant term, P is its location. */
1897 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1901 /* Otherwise, if not a sum, it has no constant term. */
1903 if (GET_CODE (*p
) != PLUS
)
1906 /* If one of the summands is constant, return its location. */
1908 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1909 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1912 /* Otherwise, check each summand for containing a constant term. */
1914 if (XEXP (*p
, 0) != 0)
1916 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1921 if (XEXP (*p
, 1) != 0)
1923 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1931 /* Return 1 if OP is a memory reference
1932 whose address contains no side effects
1933 and remains valid after the addition
1934 of a positive integer less than the
1935 size of the object being referenced.
1937 We assume that the original address is valid and do not check it.
1939 This uses strict_memory_address_p as a subroutine, so
1940 don't use it before reload. */
1943 offsettable_memref_p (op
)
1946 return ((GET_CODE (op
) == MEM
)
1947 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1950 /* Similar, but don't require a strictly valid mem ref:
1951 consider pseudo-regs valid as index or base regs. */
1954 offsettable_nonstrict_memref_p (op
)
1957 return ((GET_CODE (op
) == MEM
)
1958 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1961 /* Return 1 if Y is a memory address which contains no side effects
1962 and would remain valid after the addition of a positive integer
1963 less than the size of that mode.
1965 We assume that the original address is valid and do not check it.
1966 We do check that it is valid for narrower modes.
1968 If STRICTP is nonzero, we require a strictly valid address,
1969 for the sake of use in reload.c. */
1972 offsettable_address_p (strictp
, mode
, y
)
1974 enum machine_mode mode
;
1977 enum rtx_code ycode
= GET_CODE (y
);
1981 int (*addressp
) PARAMS ((enum machine_mode
, rtx
)) =
1982 (strictp
? strict_memory_address_p
: memory_address_p
);
1983 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1985 if (CONSTANT_ADDRESS_P (y
))
1988 /* Adjusting an offsettable address involves changing to a narrower mode.
1989 Make sure that's OK. */
1991 if (mode_dependent_address_p (y
))
1994 /* ??? How much offset does an offsettable BLKmode reference need?
1995 Clearly that depends on the situation in which it's being used.
1996 However, the current situation in which we test 0xffffffff is
1997 less than ideal. Caveat user. */
1999 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
2001 /* If the expression contains a constant term,
2002 see if it remains valid when max possible offset is added. */
2004 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
2009 *y2
= plus_constant (*y2
, mode_sz
- 1);
2010 /* Use QImode because an odd displacement may be automatically invalid
2011 for any wider mode. But it should be valid for a single byte. */
2012 good
= (*addressp
) (QImode
, y
);
2014 /* In any case, restore old contents of memory. */
2019 if (GET_RTX_CLASS (ycode
) == 'a')
2022 /* The offset added here is chosen as the maximum offset that
2023 any instruction could need to add when operating on something
2024 of the specified mode. We assume that if Y and Y+c are
2025 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2026 go inside a LO_SUM here, so we do so as well. */
2027 if (GET_CODE (y
) == LO_SUM
2029 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
2030 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
2031 plus_constant (XEXP (y
, 1), mode_sz
- 1));
2033 z
= plus_constant (y
, mode_sz
- 1);
2035 /* Use QImode because an odd displacement may be automatically invalid
2036 for any wider mode. But it should be valid for a single byte. */
2037 return (*addressp
) (QImode
, z
);
2040 /* Return 1 if ADDR is an address-expression whose effect depends
2041 on the mode of the memory reference it is used in.
2043 Autoincrement addressing is a typical example of mode-dependence
2044 because the amount of the increment depends on the mode. */
2047 mode_dependent_address_p (addr
)
2048 rtx addr ATTRIBUTE_UNUSED
; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
2050 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
2052 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2053 win
: ATTRIBUTE_UNUSED_LABEL
2057 /* Return 1 if OP is a general operand
2058 other than a memory ref with a mode dependent address. */
2061 mode_independent_operand (op
, mode
)
2062 enum machine_mode mode
;
2067 if (! general_operand (op
, mode
))
2070 if (GET_CODE (op
) != MEM
)
2073 addr
= XEXP (op
, 0);
2074 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, lose
);
2076 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2077 lose
: ATTRIBUTE_UNUSED_LABEL
2081 /* Like extract_insn, but save insn extracted and don't extract again, when
2082 called again for the same insn expecting that recog_data still contain the
2083 valid information. This is used primary by gen_attr infrastructure that
2084 often does extract insn again and again. */
2086 extract_insn_cached (insn
)
2089 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2091 extract_insn (insn
);
2092 recog_data
.insn
= insn
;
2094 /* Do cached extract_insn, constrain_operand and complain about failures.
2095 Used by insn_attrtab. */
2097 extract_constrain_insn_cached (insn
)
2100 extract_insn_cached (insn
);
2101 if (which_alternative
== -1
2102 && !constrain_operands (reload_completed
))
2103 fatal_insn_not_found (insn
);
2105 /* Do cached constrain_operand and complain about failures. */
2107 constrain_operands_cached (strict
)
2110 if (which_alternative
== -1)
2111 return constrain_operands (strict
);
2116 /* Analyze INSN and fill in recog_data. */
2125 rtx body
= PATTERN (insn
);
2127 recog_data
.insn
= NULL
;
2128 recog_data
.n_operands
= 0;
2129 recog_data
.n_alternatives
= 0;
2130 recog_data
.n_dups
= 0;
2131 which_alternative
= -1;
2133 switch (GET_CODE (body
))
2143 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2148 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2149 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2150 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2156 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2159 /* This insn is an `asm' with operands. */
2161 /* expand_asm_operands makes sure there aren't too many operands. */
2162 if (noperands
> MAX_RECOG_OPERANDS
)
2165 /* Now get the operand values and constraints out of the insn. */
2166 decode_asm_operands (body
, recog_data
.operand
,
2167 recog_data
.operand_loc
,
2168 recog_data
.constraints
,
2169 recog_data
.operand_mode
);
2172 const char *p
= recog_data
.constraints
[0];
2173 recog_data
.n_alternatives
= 1;
2175 recog_data
.n_alternatives
+= (*p
++ == ',');
2179 fatal_insn_not_found (insn
);
2183 /* Ordinary insn: recognize it, get the operands via insn_extract
2184 and get the constraints. */
2186 icode
= recog_memoized (insn
);
2188 fatal_insn_not_found (insn
);
2190 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2191 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2192 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2194 insn_extract (insn
);
2196 for (i
= 0; i
< noperands
; i
++)
2198 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2199 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2200 /* VOIDmode match_operands gets mode from their real operand. */
2201 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2202 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2205 for (i
= 0; i
< noperands
; i
++)
2206 recog_data
.operand_type
[i
]
2207 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2208 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2211 if (recog_data
.n_alternatives
> MAX_RECOG_ALTERNATIVES
)
2215 /* After calling extract_insn, you can use this function to extract some
2216 information from the constraint strings into a more usable form.
2217 The collected data is stored in recog_op_alt. */
2219 preprocess_constraints ()
2223 memset (recog_op_alt
, 0, sizeof recog_op_alt
);
2224 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2227 struct operand_alternative
*op_alt
;
2228 const char *p
= recog_data
.constraints
[i
];
2230 op_alt
= recog_op_alt
[i
];
2232 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2234 op_alt
[j
].class = NO_REGS
;
2235 op_alt
[j
].constraint
= p
;
2236 op_alt
[j
].matches
= -1;
2237 op_alt
[j
].matched
= -1;
2239 if (*p
== '\0' || *p
== ',')
2241 op_alt
[j
].anything_ok
= 1;
2251 while (c
!= ',' && c
!= '\0');
2252 if (c
== ',' || c
== '\0')
2260 case '=': case '+': case '*': case '%':
2261 case 'E': case 'F': case 'G': case 'H':
2262 case 's': case 'i': case 'n':
2263 case 'I': case 'J': case 'K': case 'L':
2264 case 'M': case 'N': case 'O': case 'P':
2265 /* These don't say anything we care about. */
2269 op_alt
[j
].reject
+= 6;
2272 op_alt
[j
].reject
+= 600;
2275 op_alt
[j
].earlyclobber
= 1;
2278 case '0': case '1': case '2': case '3': case '4':
2279 case '5': case '6': case '7': case '8': case '9':
2282 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2283 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2289 op_alt
[j
].memory_ok
= 1;
2292 op_alt
[j
].decmem_ok
= 1;
2295 op_alt
[j
].incmem_ok
= 1;
2298 op_alt
[j
].nonoffmem_ok
= 1;
2301 op_alt
[j
].offmem_ok
= 1;
2304 op_alt
[j
].anything_ok
= 1;
2308 op_alt
[j
].is_address
= 1;
2309 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class]
2310 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
2314 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) GENERAL_REGS
];
2318 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2320 op_alt
[j
].memory_ok
= 1;
2323 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2325 op_alt
[j
].is_address
= 1;
2327 = (reg_class_subunion
2328 [(int) op_alt
[j
].class]
2329 [(int) MODE_BASE_REG_CLASS (VOIDmode
)]);
2334 = (reg_class_subunion
2335 [(int) op_alt
[j
].class]
2336 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2339 p
+= CONSTRAINT_LEN (c
, p
);
2345 /* Check the operands of an insn against the insn's operand constraints
2346 and return 1 if they are valid.
2347 The information about the insn's operands, constraints, operand modes
2348 etc. is obtained from the global variables set up by extract_insn.
2350 WHICH_ALTERNATIVE is set to a number which indicates which
2351 alternative of constraints was matched: 0 for the first alternative,
2352 1 for the next, etc.
2354 In addition, when two operands are required to match
2355 and it happens that the output operand is (reg) while the
2356 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2357 make the output operand look like the input.
2358 This is because the output operand is the one the template will print.
2360 This is used in final, just before printing the assembler code and by
2361 the routines that determine an insn's attribute.
2363 If STRICT is a positive nonzero value, it means that we have been
2364 called after reload has been completed. In that case, we must
2365 do all checks strictly. If it is zero, it means that we have been called
2366 before reload has completed. In that case, we first try to see if we can
2367 find an alternative that matches strictly. If not, we try again, this
2368 time assuming that reload will fix up the insn. This provides a "best
2369 guess" for the alternative and is used to compute attributes of insns prior
2370 to reload. A negative value of STRICT is used for this internal call. */
2378 constrain_operands (strict
)
2381 const char *constraints
[MAX_RECOG_OPERANDS
];
2382 int matching_operands
[MAX_RECOG_OPERANDS
];
2383 int earlyclobber
[MAX_RECOG_OPERANDS
];
2386 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2387 int funny_match_index
;
2389 which_alternative
= 0;
2390 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2393 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2395 constraints
[c
] = recog_data
.constraints
[c
];
2396 matching_operands
[c
] = -1;
2403 funny_match_index
= 0;
2405 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2407 rtx op
= recog_data
.operand
[opno
];
2408 enum machine_mode mode
= GET_MODE (op
);
2409 const char *p
= constraints
[opno
];
2415 earlyclobber
[opno
] = 0;
2417 /* A unary operator may be accepted by the predicate, but it
2418 is irrelevant for matching constraints. */
2419 if (GET_RTX_CLASS (GET_CODE (op
)) == '1')
2422 if (GET_CODE (op
) == SUBREG
)
2424 if (GET_CODE (SUBREG_REG (op
)) == REG
2425 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2426 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2427 GET_MODE (SUBREG_REG (op
)),
2430 op
= SUBREG_REG (op
);
2433 /* An empty constraint or empty alternative
2434 allows anything which matched the pattern. */
2435 if (*p
== 0 || *p
== ',')
2439 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2448 case '?': case '!': case '*': case '%':
2453 /* Ignore rest of this alternative as far as
2454 constraint checking is concerned. */
2457 while (*p
&& *p
!= ',');
2462 earlyclobber
[opno
] = 1;
2465 case '0': case '1': case '2': case '3': case '4':
2466 case '5': case '6': case '7': case '8': case '9':
2468 /* This operand must be the same as a previous one.
2469 This kind of constraint is used for instructions such
2470 as add when they take only two operands.
2472 Note that the lower-numbered operand is passed first.
2474 If we are not testing strictly, assume that this
2475 constraint will be satisfied. */
2480 match
= strtoul (p
, &end
, 10);
2487 rtx op1
= recog_data
.operand
[match
];
2488 rtx op2
= recog_data
.operand
[opno
];
2490 /* A unary operator may be accepted by the predicate,
2491 but it is irrelevant for matching constraints. */
2492 if (GET_RTX_CLASS (GET_CODE (op1
)) == '1')
2493 op1
= XEXP (op1
, 0);
2494 if (GET_RTX_CLASS (GET_CODE (op2
)) == '1')
2495 op2
= XEXP (op2
, 0);
2497 val
= operands_match_p (op1
, op2
);
2500 matching_operands
[opno
] = match
;
2501 matching_operands
[match
] = opno
;
2506 /* If output is *x and input is *--x, arrange later
2507 to change the output to *--x as well, since the
2508 output op is the one that will be printed. */
2509 if (val
== 2 && strict
> 0)
2511 funny_match
[funny_match_index
].this = opno
;
2512 funny_match
[funny_match_index
++].other
= match
;
2519 /* p is used for address_operands. When we are called by
2520 gen_reload, no one will have checked that the address is
2521 strictly valid, i.e., that all pseudos requiring hard regs
2522 have gotten them. */
2524 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2529 /* No need to check general_operand again;
2530 it was done in insn-recog.c. */
2532 /* Anything goes unless it is a REG and really has a hard reg
2533 but the hard reg is not in the class GENERAL_REGS. */
2535 || GENERAL_REGS
== ALL_REGS
2536 || GET_CODE (op
) != REG
2537 || (reload_in_progress
2538 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2539 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2544 /* This is used for a MATCH_SCRATCH in the cases when
2545 we don't actually need anything. So anything goes
2551 if (GET_CODE (op
) == MEM
2552 /* Before reload, accept what reload can turn into mem. */
2553 || (strict
< 0 && CONSTANT_P (op
))
2554 /* During reload, accept a pseudo */
2555 || (reload_in_progress
&& GET_CODE (op
) == REG
2556 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2561 if (GET_CODE (op
) == MEM
2562 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2563 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2568 if (GET_CODE (op
) == MEM
2569 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2570 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2576 if (GET_CODE (op
) == CONST_DOUBLE
2577 || (GET_CODE (op
) == CONST_VECTOR
2578 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2584 if (GET_CODE (op
) == CONST_DOUBLE
2585 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2590 if (GET_CODE (op
) == CONST_INT
2591 || (GET_CODE (op
) == CONST_DOUBLE
2592 && GET_MODE (op
) == VOIDmode
))
2595 if (CONSTANT_P (op
))
2600 if (GET_CODE (op
) == CONST_INT
2601 || (GET_CODE (op
) == CONST_DOUBLE
2602 && GET_MODE (op
) == VOIDmode
))
2614 if (GET_CODE (op
) == CONST_INT
2615 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2620 if (GET_CODE (op
) == MEM
2621 && ((strict
> 0 && ! offsettable_memref_p (op
))
2623 && !(CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2624 || (reload_in_progress
2625 && !(GET_CODE (op
) == REG
2626 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2631 if ((strict
> 0 && offsettable_memref_p (op
))
2632 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2633 /* Before reload, accept what reload can handle. */
2635 && (CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2636 /* During reload, accept a pseudo */
2637 || (reload_in_progress
&& GET_CODE (op
) == REG
2638 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2644 enum reg_class
class;
2647 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2648 if (class != NO_REGS
)
2652 && GET_CODE (op
) == REG
2653 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2654 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2655 || (GET_CODE (op
) == REG
2656 && reg_fits_class_p (op
, class, offset
, mode
)))
2659 #ifdef EXTRA_CONSTRAINT_STR
2660 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2663 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2665 /* Every memory operand can be reloaded to fit. */
2666 if (strict
< 0 && GET_CODE (op
) == MEM
)
2669 /* Before reload, accept what reload can turn into mem. */
2670 if (strict
< 0 && CONSTANT_P (op
))
2673 /* During reload, accept a pseudo */
2674 if (reload_in_progress
&& GET_CODE (op
) == REG
2675 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2678 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2680 /* Every address operand can be reloaded to fit. */
2688 while (p
+= len
, c
);
2690 constraints
[opno
] = p
;
2691 /* If this operand did not win somehow,
2692 this alternative loses. */
2696 /* This alternative won; the operands are ok.
2697 Change whichever operands this alternative says to change. */
2702 /* See if any earlyclobber operand conflicts with some other
2706 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2707 /* Ignore earlyclobber operands now in memory,
2708 because we would often report failure when we have
2709 two memory operands, one of which was formerly a REG. */
2710 if (earlyclobber
[eopno
]
2711 && GET_CODE (recog_data
.operand
[eopno
]) == REG
)
2712 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2713 if ((GET_CODE (recog_data
.operand
[opno
]) == MEM
2714 || recog_data
.operand_type
[opno
] != OP_OUT
)
2716 /* Ignore things like match_operator operands. */
2717 && *recog_data
.constraints
[opno
] != 0
2718 && ! (matching_operands
[opno
] == eopno
2719 && operands_match_p (recog_data
.operand
[opno
],
2720 recog_data
.operand
[eopno
]))
2721 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2722 recog_data
.operand
[eopno
]))
2727 while (--funny_match_index
>= 0)
2729 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2730 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2737 which_alternative
++;
2739 while (which_alternative
< recog_data
.n_alternatives
);
2741 which_alternative
= -1;
2742 /* If we are about to reject this, but we are not to test strictly,
2743 try a very loose test. Only return failure if it fails also. */
2745 return constrain_operands (-1);
2750 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2751 is a hard reg in class CLASS when its regno is offset by OFFSET
2752 and changed to mode MODE.
2753 If REG occupies multiple hard regs, all of them must be in CLASS. */
2756 reg_fits_class_p (operand
, class, offset
, mode
)
2758 enum reg_class
class;
2760 enum machine_mode mode
;
2762 int regno
= REGNO (operand
);
2763 if (regno
< FIRST_PSEUDO_REGISTER
2764 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2769 for (sr
= HARD_REGNO_NREGS (regno
, mode
) - 1;
2771 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2780 /* Split single instruction. Helper function for split_all_insns.
2781 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2789 /* Don't split no-op move insns. These should silently
2790 disappear later in final. Splitting such insns would
2791 break the code that handles REG_NO_CONFLICT blocks. */
2793 else if ((set
= single_set (insn
)) != NULL
&& set_noop_p (set
))
2795 /* Nops get in the way while scheduling, so delete them
2796 now if register allocation has already been done. It
2797 is too risky to try to do this before register
2798 allocation, and there are unlikely to be very many
2799 nops then anyways. */
2800 if (reload_completed
)
2801 delete_insn_and_edges (insn
);
2805 /* Split insns here to get max fine-grain parallelism. */
2806 rtx first
= PREV_INSN (insn
);
2807 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2811 /* try_split returns the NOTE that INSN became. */
2812 PUT_CODE (insn
, NOTE
);
2813 NOTE_SOURCE_FILE (insn
) = 0;
2814 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2816 /* ??? Coddle to md files that generate subregs in post-
2817 reload splitters instead of computing the proper
2819 if (reload_completed
&& first
!= last
)
2821 first
= NEXT_INSN (first
);
2825 cleanup_subreg_operands (first
);
2828 first
= NEXT_INSN (first
);
2836 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2839 split_all_insns (upd_life
)
2846 blocks
= sbitmap_alloc (last_basic_block
);
2847 sbitmap_zero (blocks
);
2850 FOR_EACH_BB_REVERSE (bb
)
2853 bool finish
= false;
2855 for (insn
= bb
->head
; !finish
; insn
= next
)
2859 /* Can't use `next_real_insn' because that might go across
2860 CODE_LABELS and short-out basic blocks. */
2861 next
= NEXT_INSN (insn
);
2862 finish
= (insn
== bb
->end
);
2863 last
= split_insn (insn
);
2866 /* The split sequence may include barrier, but the
2867 BB boundary we are interested in will be set to previous
2870 while (GET_CODE (last
) == BARRIER
)
2871 last
= PREV_INSN (last
);
2872 SET_BIT (blocks
, bb
->index
);
2881 find_many_sub_basic_blocks (blocks
);
2884 if (changed
&& upd_life
)
2886 count_or_remove_death_notes (blocks
, 1);
2887 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
2889 #ifdef ENABLE_CHECKING
2890 verify_flow_info ();
2893 sbitmap_free (blocks
);
2896 /* Same as split_all_insns, but do not expect CFG to be available.
2897 Used by machine dependent reorg passes. */
2900 split_all_insns_noflow ()
2904 for (insn
= get_insns (); insn
; insn
= next
)
2906 next
= NEXT_INSN (insn
);
2912 #ifdef HAVE_peephole2
2913 struct peep2_insn_data
2919 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2920 static int peep2_current
;
2922 /* A non-insn marker indicating the last insn of the block.
2923 The live_before regset for this element is correct, indicating
2924 global_live_at_end for the block. */
2925 #define PEEP2_EOB pc_rtx
2927 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2928 does not exist. Used by the recognizer to find the next insn to match
2929 in a multi-insn pattern. */
2935 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2939 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2940 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2942 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2944 return peep2_insn_data
[n
].insn
;
2947 /* Return true if REGNO is dead before the Nth non-note insn
2951 peep2_regno_dead_p (ofs
, regno
)
2955 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2958 ofs
+= peep2_current
;
2959 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2960 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2962 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2965 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2968 /* Similarly for a REG. */
2971 peep2_reg_dead_p (ofs
, reg
)
2977 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2980 ofs
+= peep2_current
;
2981 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2982 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2984 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2987 regno
= REGNO (reg
);
2988 n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
2990 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2995 /* Try to find a hard register of mode MODE, matching the register class in
2996 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2997 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2998 in which case the only condition is that the register must be available
2999 before CURRENT_INSN.
3000 Registers that already have bits set in REG_SET will not be considered.
3002 If an appropriate register is available, it will be returned and the
3003 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3007 peep2_find_free_register (from
, to
, class_str
, mode
, reg_set
)
3009 const char *class_str
;
3010 enum machine_mode mode
;
3011 HARD_REG_SET
*reg_set
;
3013 static int search_ofs
;
3014 enum reg_class
class;
3018 if (from
>= MAX_INSNS_PER_PEEP2
+ 1 || to
>= MAX_INSNS_PER_PEEP2
+ 1)
3021 from
+= peep2_current
;
3022 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
3023 from
-= MAX_INSNS_PER_PEEP2
+ 1;
3024 to
+= peep2_current
;
3025 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
3026 to
-= MAX_INSNS_PER_PEEP2
+ 1;
3028 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
3030 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3034 HARD_REG_SET this_live
;
3036 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
3038 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
3040 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
3041 IOR_HARD_REG_SET (live
, this_live
);
3044 class = (class_str
[0] == 'r' ? GENERAL_REGS
3045 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3047 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3049 int raw_regno
, regno
, success
, j
;
3051 /* Distribute the free registers as much as possible. */
3052 raw_regno
= search_ofs
+ i
;
3053 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3054 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3055 #ifdef REG_ALLOC_ORDER
3056 regno
= reg_alloc_order
[raw_regno
];
3061 /* Don't allocate fixed registers. */
3062 if (fixed_regs
[regno
])
3064 /* Make sure the register is of the right class. */
3065 if (! TEST_HARD_REG_BIT (reg_class_contents
[class], regno
))
3067 /* And can support the mode we need. */
3068 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3070 /* And that we don't create an extra save/restore. */
3071 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
3073 /* And we don't clobber traceback for noreturn functions. */
3074 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
3075 && (! reload_completed
|| frame_pointer_needed
))
3079 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
3081 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3082 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3090 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
3091 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
3093 /* Start the next search with the next register. */
3094 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3096 search_ofs
= raw_regno
;
3098 return gen_rtx_REG (mode
, regno
);
3106 /* Perform the peephole2 optimization pass. */
3109 peephole2_optimize (dump_file
)
3110 FILE *dump_file ATTRIBUTE_UNUSED
;
3112 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
3117 #ifdef HAVE_conditional_execution
3121 bool do_cleanup_cfg
= false;
3122 bool do_rebuild_jump_labels
= false;
3124 /* Initialize the regsets we're going to use. */
3125 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3126 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
3127 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
3129 #ifdef HAVE_conditional_execution
3130 blocks
= sbitmap_alloc (last_basic_block
);
3131 sbitmap_zero (blocks
);
3134 count_or_remove_death_notes (NULL
, 1);
3137 FOR_EACH_BB_REVERSE (bb
)
3139 struct propagate_block_info
*pbi
;
3141 /* Indicate that all slots except the last holds invalid data. */
3142 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3143 peep2_insn_data
[i
].insn
= NULL_RTX
;
3145 /* Indicate that the last slot contains live_after data. */
3146 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3147 peep2_current
= MAX_INSNS_PER_PEEP2
;
3149 /* Start up propagation. */
3150 COPY_REG_SET (live
, bb
->global_live_at_end
);
3151 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3153 #ifdef HAVE_conditional_execution
3154 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3156 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3159 for (insn
= bb
->end
; ; insn
= prev
)
3161 prev
= PREV_INSN (insn
);
3164 rtx
try, before_try
, x
;
3167 bool was_call
= false;
3169 /* Record this insn. */
3170 if (--peep2_current
< 0)
3171 peep2_current
= MAX_INSNS_PER_PEEP2
;
3172 peep2_insn_data
[peep2_current
].insn
= insn
;
3173 propagate_one_insn (pbi
, insn
);
3174 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3176 /* Match the peephole. */
3177 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3180 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3181 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3182 cfg-related call notes. */
3183 for (i
= 0; i
<= match_len
; ++i
)
3186 rtx old_insn
, new_insn
, note
;
3188 j
= i
+ peep2_current
;
3189 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3190 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3191 old_insn
= peep2_insn_data
[j
].insn
;
3192 if (GET_CODE (old_insn
) != CALL_INSN
)
3197 while (new_insn
!= NULL_RTX
)
3199 if (GET_CODE (new_insn
) == CALL_INSN
)
3201 new_insn
= NEXT_INSN (new_insn
);
3204 if (new_insn
== NULL_RTX
)
3207 CALL_INSN_FUNCTION_USAGE (new_insn
)
3208 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3210 for (note
= REG_NOTES (old_insn
);
3212 note
= XEXP (note
, 1))
3213 switch (REG_NOTE_KIND (note
))
3217 case REG_ALWAYS_RETURN
:
3218 REG_NOTES (new_insn
)
3219 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3221 REG_NOTES (new_insn
));
3223 /* Discard all other reg notes. */
3227 /* Croak if there is another call in the sequence. */
3228 while (++i
<= match_len
)
3230 j
= i
+ peep2_current
;
3231 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3232 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3233 old_insn
= peep2_insn_data
[j
].insn
;
3234 if (GET_CODE (old_insn
) == CALL_INSN
)
3240 i
= match_len
+ peep2_current
;
3241 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3242 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3244 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3245 REG_EH_REGION
, NULL_RTX
);
3247 /* Replace the old sequence with the new. */
3248 try = emit_insn_after_scope (try, peep2_insn_data
[i
].insn
,
3249 INSN_SCOPE (peep2_insn_data
[i
].insn
));
3250 before_try
= PREV_INSN (insn
);
3251 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3253 /* Re-insert the EH_REGION notes. */
3254 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3258 for (eh_edge
= bb
->succ
; eh_edge
3259 ; eh_edge
= eh_edge
->succ_next
)
3260 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3263 for (x
= try ; x
!= before_try
; x
= PREV_INSN (x
))
3264 if (GET_CODE (x
) == CALL_INSN
3265 || (flag_non_call_exceptions
3266 && may_trap_p (PATTERN (x
))
3267 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3271 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3275 if (x
!= bb
->end
&& eh_edge
)
3280 nfte
= split_block (bb
, x
);
3281 flags
= (eh_edge
->flags
3282 & (EDGE_EH
| EDGE_ABNORMAL
));
3283 if (GET_CODE (x
) == CALL_INSN
)
3284 flags
|= EDGE_ABNORMAL_CALL
;
3285 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3288 nehe
->probability
= eh_edge
->probability
;
3290 = REG_BR_PROB_BASE
- nehe
->probability
;
3292 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3293 #ifdef HAVE_conditional_execution
3294 SET_BIT (blocks
, nfte
->dest
->index
);
3302 /* Converting possibly trapping insn to non-trapping is
3303 possible. Zap dummy outgoing edges. */
3304 do_cleanup_cfg
|= purge_dead_edges (bb
);
3307 #ifdef HAVE_conditional_execution
3308 /* With conditional execution, we cannot back up the
3309 live information so easily, since the conditional
3310 death data structures are not so self-contained.
3311 So record that we've made a modification to this
3312 block and update life information at the end. */
3313 SET_BIT (blocks
, bb
->index
);
3316 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3317 peep2_insn_data
[i
].insn
= NULL_RTX
;
3318 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3320 /* Back up lifetime information past the end of the
3321 newly created sequence. */
3322 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3324 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3326 /* Update life information for the new sequence. */
3333 i
= MAX_INSNS_PER_PEEP2
;
3334 peep2_insn_data
[i
].insn
= x
;
3335 propagate_one_insn (pbi
, x
);
3336 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3342 /* ??? Should verify that LIVE now matches what we
3343 had before the new sequence. */
3348 /* If we generated a jump instruction, it won't have
3349 JUMP_LABEL set. Recompute after we're done. */
3350 for (x
= try; x
!= before_try
; x
= PREV_INSN (x
))
3351 if (GET_CODE (x
) == JUMP_INSN
)
3353 do_rebuild_jump_labels
= true;
3359 if (insn
== bb
->head
)
3363 free_propagate_block_info (pbi
);
3366 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3367 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3368 FREE_REG_SET (live
);
3370 if (do_rebuild_jump_labels
)
3371 rebuild_jump_labels (get_insns ());
3373 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3374 we've changed global life since exception handlers are no longer
3379 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES
, PROP_DEATH_NOTES
);
3381 #ifdef HAVE_conditional_execution
3384 count_or_remove_death_notes (blocks
, 1);
3385 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3387 sbitmap_free (blocks
);
3390 #endif /* HAVE_peephole2 */
3392 /* Common predicates for use with define_bypass. */
3394 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3395 data not the address operand(s) of the store. IN_INSN must be
3396 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3400 store_data_bypass_p (out_insn
, in_insn
)
3401 rtx out_insn
, in_insn
;
3403 rtx out_set
, in_set
;
3405 in_set
= single_set (in_insn
);
3409 if (GET_CODE (SET_DEST (in_set
)) != MEM
)
3412 out_set
= single_set (out_insn
);
3415 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3423 out_pat
= PATTERN (out_insn
);
3424 if (GET_CODE (out_pat
) != PARALLEL
)
3427 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3429 rtx exp
= XVECEXP (out_pat
, 0, i
);
3431 if (GET_CODE (exp
) == CLOBBER
)
3434 if (GET_CODE (exp
) != SET
)
3437 if (reg_mentioned_p (SET_DEST (exp
), SET_DEST (in_set
)))
3445 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3446 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3447 or multiple set; IN_INSN should be single_set for truth, but for convenience
3448 of insn categorization may be any JUMP or CALL insn. */
3451 if_test_bypass_p (out_insn
, in_insn
)
3452 rtx out_insn
, in_insn
;
3454 rtx out_set
, in_set
;
3456 in_set
= single_set (in_insn
);
3459 if (GET_CODE (in_insn
) == JUMP_INSN
|| GET_CODE (in_insn
) == CALL_INSN
)
3464 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3466 in_set
= SET_SRC (in_set
);
3468 out_set
= single_set (out_insn
);
3471 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3472 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3480 out_pat
= PATTERN (out_insn
);
3481 if (GET_CODE (out_pat
) != PARALLEL
)
3484 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3486 rtx exp
= XVECEXP (out_pat
, 0, i
);
3488 if (GET_CODE (exp
) == CLOBBER
)
3491 if (GET_CODE (exp
) != SET
)
3494 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3495 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))