index.html: Correct link to libg++ information.
[official-gcc.git] / gcc / gcse.c
blobf25a4cfddf42383bb05ff5fa1811e3618cb6a6a6
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "hard-reg-set.h"
156 #include "flags.h"
157 #include "real.h"
158 #include "insn-config.h"
159 #include "recog.h"
160 #include "basic-block.h"
161 #include "output.h"
162 #include "function.h"
163 #include "expr.h"
164 #include "except.h"
165 #include "ggc.h"
166 #include "params.h"
167 #include "cselib.h"
169 #include "obstack.h"
171 /* Propagate flow information through back edges and thus enable PRE's
172 moving loop invariant calculations out of loops.
174 Originally this tended to create worse overall code, but several
175 improvements during the development of PRE seem to have made following
176 back edges generally a win.
178 Note much of the loop invariant code motion done here would normally
179 be done by loop.c, which has more heuristics for when to move invariants
180 out of loops. At some point we might need to move some of those
181 heuristics into gcse.c. */
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Nonzero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Nonzero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Nonzero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Nonzero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 struct hash_table
369 /* The table itself.
370 This is an array of `expr_hash_table_size' elements. */
371 struct expr **table;
373 /* Size of the hash table, in elements. */
374 unsigned int size;
376 /* Number of hash table elements. */
377 unsigned int n_elems;
379 /* Whether the table is expression of copy propagation one. */
380 int set_p;
383 /* Expression hash table. */
384 static struct hash_table expr_hash_table;
386 /* Copy propagation hash table. */
387 static struct hash_table set_hash_table;
389 /* Mapping of uids to cuids.
390 Only real insns get cuids. */
391 static int *uid_cuid;
393 /* Highest UID in UID_CUID. */
394 static int max_uid;
396 /* Get the cuid of an insn. */
397 #ifdef ENABLE_CHECKING
398 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
399 #else
400 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
401 #endif
403 /* Number of cuids. */
404 static int max_cuid;
406 /* Mapping of cuids to insns. */
407 static rtx *cuid_insn;
409 /* Get insn from cuid. */
410 #define CUID_INSN(CUID) (cuid_insn[CUID])
412 /* Maximum register number in function prior to doing gcse + 1.
413 Registers created during this pass have regno >= max_gcse_regno.
414 This is named with "gcse" to not collide with global of same name. */
415 static unsigned int max_gcse_regno;
417 /* Table of registers that are modified.
419 For each register, each element is a list of places where the pseudo-reg
420 is set.
422 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
423 requires knowledge of which blocks kill which regs [and thus could use
424 a bitmap instead of the lists `reg_set_table' uses].
426 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
427 num-regs) [however perhaps it may be useful to keep the data as is]. One
428 advantage of recording things this way is that `reg_set_table' is fairly
429 sparse with respect to pseudo regs but for hard regs could be fairly dense
430 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
431 up functions like compute_transp since in the case of pseudo-regs we only
432 need to iterate over the number of times a pseudo-reg is set, not over the
433 number of basic blocks [clearly there is a bit of a slow down in the cases
434 where a pseudo is set more than once in a block, however it is believed
435 that the net effect is to speed things up]. This isn't done for hard-regs
436 because recording call-clobbered hard-regs in `reg_set_table' at each
437 function call can consume a fair bit of memory, and iterating over
438 hard-regs stored this way in compute_transp will be more expensive. */
440 typedef struct reg_set
442 /* The next setting of this register. */
443 struct reg_set *next;
444 /* The insn where it was set. */
445 rtx insn;
446 } reg_set;
448 static reg_set **reg_set_table;
450 /* Size of `reg_set_table'.
451 The table starts out at max_gcse_regno + slop, and is enlarged as
452 necessary. */
453 static int reg_set_table_size;
455 /* Amount to grow `reg_set_table' by when it's full. */
456 #define REG_SET_TABLE_SLOP 100
458 /* This is a list of expressions which are MEMs and will be used by load
459 or store motion.
460 Load motion tracks MEMs which aren't killed by
461 anything except itself. (ie, loads and stores to a single location).
462 We can then allow movement of these MEM refs with a little special
463 allowance. (all stores copy the same value to the reaching reg used
464 for the loads). This means all values used to store into memory must have
465 no side effects so we can re-issue the setter value.
466 Store Motion uses this structure as an expression table to track stores
467 which look interesting, and might be moveable towards the exit block. */
469 struct ls_expr
471 struct expr * expr; /* Gcse expression reference for LM. */
472 rtx pattern; /* Pattern of this mem. */
473 rtx loads; /* INSN list of loads seen. */
474 rtx stores; /* INSN list of stores seen. */
475 struct ls_expr * next; /* Next in the list. */
476 int invalid; /* Invalid for some reason. */
477 int index; /* If it maps to a bitmap index. */
478 int hash_index; /* Index when in a hash table. */
479 rtx reaching_reg; /* Register to use when re-writing. */
482 /* Head of the list of load/store memory refs. */
483 static struct ls_expr * pre_ldst_mems = NULL;
485 /* Bitmap containing one bit for each register in the program.
486 Used when performing GCSE to track which registers have been set since
487 the start of the basic block. */
488 static regset reg_set_bitmap;
490 /* For each block, a bitmap of registers set in the block.
491 This is used by expr_killed_p and compute_transp.
492 It is computed during hash table computation and not by compute_sets
493 as it includes registers added since the last pass (or between cprop and
494 gcse) and it's currently not easy to realloc sbitmap vectors. */
495 static sbitmap *reg_set_in_block;
497 /* Array, indexed by basic block number for a list of insns which modify
498 memory within that block. */
499 static rtx * modify_mem_list;
500 bitmap modify_mem_list_set;
502 /* This array parallels modify_mem_list, but is kept canonicalized. */
503 static rtx * canon_modify_mem_list;
504 bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of constants propagated. */
517 static int const_prop_count;
518 /* Number of copys propagated. */
519 static int copy_prop_count;
521 /* These variables are used by classic GCSE.
522 Normally they'd be defined a bit later, but `rd_gen' needs to
523 be declared sooner. */
525 /* Each block has a bitmap of each type.
526 The length of each blocks bitmap is:
528 max_cuid - for reaching definitions
529 n_exprs - for available expressions
531 Thus we view the bitmaps as 2 dimensional arrays. i.e.
532 rd_kill[block_num][cuid_num]
533 ae_kill[block_num][expr_num] */
535 /* For reaching defs */
536 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
538 /* for available exprs */
539 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
541 /* Objects of this type are passed around by the null-pointer check
542 removal routines. */
543 struct null_pointer_info
545 /* The basic block being processed. */
546 basic_block current_block;
547 /* The first register to be handled in this pass. */
548 unsigned int min_reg;
549 /* One greater than the last register to be handled in this pass. */
550 unsigned int max_reg;
551 sbitmap *nonnull_local;
552 sbitmap *nonnull_killed;
555 static void compute_can_copy PARAMS ((void));
556 static char *gmalloc PARAMS ((unsigned int));
557 static char *grealloc PARAMS ((char *, unsigned int));
558 static char *gcse_alloc PARAMS ((unsigned long));
559 static void alloc_gcse_mem PARAMS ((rtx));
560 static void free_gcse_mem PARAMS ((void));
561 static void alloc_reg_set_mem PARAMS ((int));
562 static void free_reg_set_mem PARAMS ((void));
563 static int get_bitmap_width PARAMS ((int, int, int));
564 static void record_one_set PARAMS ((int, rtx));
565 static void record_set_info PARAMS ((rtx, rtx, void *));
566 static void compute_sets PARAMS ((rtx));
567 static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int));
568 static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *));
569 static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *));
570 static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *));
571 static int want_to_gcse_p PARAMS ((rtx));
572 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
573 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
574 static int oprs_available_p PARAMS ((rtx, rtx));
575 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
576 int, int, struct hash_table *));
577 static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
578 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
579 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
580 static unsigned int hash_string_1 PARAMS ((const char *));
581 static unsigned int hash_set PARAMS ((int, int));
582 static int expr_equiv_p PARAMS ((rtx, rtx));
583 static void record_last_reg_set_info PARAMS ((rtx, int));
584 static void record_last_mem_set_info PARAMS ((rtx));
585 static void record_last_set_info PARAMS ((rtx, rtx, void *));
586 static void compute_hash_table PARAMS ((struct hash_table *));
587 static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
588 static void free_hash_table PARAMS ((struct hash_table *));
589 static void compute_hash_table_work PARAMS ((struct hash_table *));
590 static void dump_hash_table PARAMS ((FILE *, const char *,
591 struct hash_table *));
592 static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *));
593 static struct expr *lookup_set PARAMS ((unsigned int, rtx, struct hash_table *));
594 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
595 static void reset_opr_set_tables PARAMS ((void));
596 static int oprs_not_set_p PARAMS ((rtx, rtx));
597 static void mark_call PARAMS ((rtx));
598 static void mark_set PARAMS ((rtx, rtx));
599 static void mark_clobber PARAMS ((rtx, rtx));
600 static void mark_oprs_set PARAMS ((rtx));
601 static void alloc_cprop_mem PARAMS ((int, int));
602 static void free_cprop_mem PARAMS ((void));
603 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
604 static void compute_transpout PARAMS ((void));
605 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
606 struct hash_table *));
607 static void compute_cprop_data PARAMS ((void));
608 static void find_used_regs PARAMS ((rtx *, void *));
609 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
610 static struct expr *find_avail_set PARAMS ((int, rtx));
611 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
612 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
613 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
614 static void canon_list_insert PARAMS ((rtx, rtx, void *));
615 static int cprop_insn PARAMS ((rtx, int));
616 static int cprop PARAMS ((int));
617 static int one_cprop_pass PARAMS ((int, int, int));
618 static bool constprop_register PARAMS ((rtx, rtx, rtx, int));
619 static struct expr *find_bypass_set PARAMS ((int, int));
620 static int bypass_block PARAMS ((basic_block, rtx, rtx));
621 static int bypass_conditional_jumps PARAMS ((void));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((struct hash_table *));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
703 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
704 static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*));
705 static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*));
706 static void local_cprop_pass PARAMS ((int));
708 /* Entry point for global common subexpression elimination.
709 F is the first instruction in the function. */
712 gcse_main (f, file)
713 rtx f;
714 FILE *file;
716 int changed, pass;
717 /* Bytes used at start of pass. */
718 int initial_bytes_used;
719 /* Maximum number of bytes used by a pass. */
720 int max_pass_bytes;
721 /* Point to release obstack data from for each pass. */
722 char *gcse_obstack_bottom;
724 /* We do not construct an accurate cfg in functions which call
725 setjmp, so just punt to be safe. */
726 if (current_function_calls_setjmp)
727 return 0;
729 /* Assume that we do not need to run jump optimizations after gcse. */
730 run_jump_opt_after_gcse = 0;
732 /* For calling dump_foo fns from gdb. */
733 debug_stderr = stderr;
734 gcse_file = file;
736 /* Identify the basic block information for this function, including
737 successors and predecessors. */
738 max_gcse_regno = max_reg_num ();
740 if (file)
741 dump_flow_info (file);
743 /* Return if there's nothing to do. */
744 if (n_basic_blocks <= 1)
745 return 0;
747 /* Trying to perform global optimizations on flow graphs which have
748 a high connectivity will take a long time and is unlikely to be
749 particularly useful.
751 In normal circumstances a cfg should have about twice as many edges
752 as blocks. But we do not want to punish small functions which have
753 a couple switch statements. So we require a relatively large number
754 of basic blocks and the ratio of edges to blocks to be high. */
755 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
757 if (warn_disabled_optimization)
758 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
759 n_basic_blocks, n_edges / n_basic_blocks);
760 return 0;
763 /* If allocating memory for the cprop bitmap would take up too much
764 storage it's better just to disable the optimization. */
765 if ((n_basic_blocks
766 * SBITMAP_SET_SIZE (max_gcse_regno)
767 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
769 if (warn_disabled_optimization)
770 warning ("GCSE disabled: %d basic blocks and %d registers",
771 n_basic_blocks, max_gcse_regno);
773 return 0;
776 /* See what modes support reg/reg copy operations. */
777 if (! can_copy_init_p)
779 compute_can_copy ();
780 can_copy_init_p = 1;
783 gcc_obstack_init (&gcse_obstack);
784 bytes_used = 0;
786 /* We need alias. */
787 init_alias_analysis ();
788 /* Record where pseudo-registers are set. This data is kept accurate
789 during each pass. ??? We could also record hard-reg information here
790 [since it's unchanging], however it is currently done during hash table
791 computation.
793 It may be tempting to compute MEM set information here too, but MEM sets
794 will be subject to code motion one day and thus we need to compute
795 information about memory sets when we build the hash tables. */
797 alloc_reg_set_mem (max_gcse_regno);
798 compute_sets (f);
800 pass = 0;
801 initial_bytes_used = bytes_used;
802 max_pass_bytes = 0;
803 gcse_obstack_bottom = gcse_alloc (1);
804 changed = 1;
805 while (changed && pass < MAX_GCSE_PASSES)
807 changed = 0;
808 if (file)
809 fprintf (file, "GCSE pass %d\n\n", pass + 1);
811 /* Initialize bytes_used to the space for the pred/succ lists,
812 and the reg_set_table data. */
813 bytes_used = initial_bytes_used;
815 /* Each pass may create new registers, so recalculate each time. */
816 max_gcse_regno = max_reg_num ();
818 alloc_gcse_mem (f);
820 /* Don't allow constant propagation to modify jumps
821 during this pass. */
822 changed = one_cprop_pass (pass + 1, 0, 0);
824 if (optimize_size)
825 changed |= one_classic_gcse_pass (pass + 1);
826 else
828 changed |= one_pre_gcse_pass (pass + 1);
829 /* We may have just created new basic blocks. Release and
830 recompute various things which are sized on the number of
831 basic blocks. */
832 if (changed)
834 free_modify_mem_tables ();
835 modify_mem_list
836 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
837 canon_modify_mem_list
838 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
839 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
840 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
842 free_reg_set_mem ();
843 alloc_reg_set_mem (max_reg_num ());
844 compute_sets (f);
845 run_jump_opt_after_gcse = 1;
848 if (max_pass_bytes < bytes_used)
849 max_pass_bytes = bytes_used;
851 /* Free up memory, then reallocate for code hoisting. We can
852 not re-use the existing allocated memory because the tables
853 will not have info for the insns or registers created by
854 partial redundancy elimination. */
855 free_gcse_mem ();
857 /* It does not make sense to run code hoisting unless we optimizing
858 for code size -- it rarely makes programs faster, and can make
859 them bigger if we did partial redundancy elimination (when optimizing
860 for space, we use a classic gcse algorithm instead of partial
861 redundancy algorithms). */
862 if (optimize_size)
864 max_gcse_regno = max_reg_num ();
865 alloc_gcse_mem (f);
866 changed |= one_code_hoisting_pass ();
867 free_gcse_mem ();
869 if (max_pass_bytes < bytes_used)
870 max_pass_bytes = bytes_used;
873 if (file)
875 fprintf (file, "\n");
876 fflush (file);
879 obstack_free (&gcse_obstack, gcse_obstack_bottom);
880 pass++;
883 /* Do one last pass of copy propagation, including cprop into
884 conditional jumps. */
886 max_gcse_regno = max_reg_num ();
887 alloc_gcse_mem (f);
888 /* This time, go ahead and allow cprop to alter jumps. */
889 one_cprop_pass (pass + 1, 1, 0);
890 free_gcse_mem ();
892 if (file)
894 fprintf (file, "GCSE of %s: %d basic blocks, ",
895 current_function_name, n_basic_blocks);
896 fprintf (file, "%d pass%s, %d bytes\n\n",
897 pass, pass > 1 ? "es" : "", max_pass_bytes);
900 obstack_free (&gcse_obstack, NULL);
901 free_reg_set_mem ();
902 /* We are finished with alias. */
903 end_alias_analysis ();
904 allocate_reg_info (max_reg_num (), FALSE, FALSE);
906 /* Store motion disabled until it is fixed. */
907 if (0 && !optimize_size && flag_gcse_sm)
908 store_motion ();
909 /* Record where pseudo-registers are set. */
910 return run_jump_opt_after_gcse;
913 /* Misc. utilities. */
915 /* Compute which modes support reg/reg copy operations. */
917 static void
918 compute_can_copy ()
920 int i;
921 #ifndef AVOID_CCMODE_COPIES
922 rtx reg, insn;
923 #endif
924 memset (can_copy_p, 0, NUM_MACHINE_MODES);
926 start_sequence ();
927 for (i = 0; i < NUM_MACHINE_MODES; i++)
928 if (GET_MODE_CLASS (i) == MODE_CC)
930 #ifdef AVOID_CCMODE_COPIES
931 can_copy_p[i] = 0;
932 #else
933 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
934 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
935 if (recog (PATTERN (insn), insn, NULL) >= 0)
936 can_copy_p[i] = 1;
937 #endif
939 else
940 can_copy_p[i] = 1;
942 end_sequence ();
945 /* Cover function to xmalloc to record bytes allocated. */
947 static char *
948 gmalloc (size)
949 unsigned int size;
951 bytes_used += size;
952 return xmalloc (size);
955 /* Cover function to xrealloc.
956 We don't record the additional size since we don't know it.
957 It won't affect memory usage stats much anyway. */
959 static char *
960 grealloc (ptr, size)
961 char *ptr;
962 unsigned int size;
964 return xrealloc (ptr, size);
967 /* Cover function to obstack_alloc. */
969 static char *
970 gcse_alloc (size)
971 unsigned long size;
973 bytes_used += size;
974 return (char *) obstack_alloc (&gcse_obstack, size);
977 /* Allocate memory for the cuid mapping array,
978 and reg/memory set tracking tables.
980 This is called at the start of each pass. */
982 static void
983 alloc_gcse_mem (f)
984 rtx f;
986 int i, n;
987 rtx insn;
989 /* Find the largest UID and create a mapping from UIDs to CUIDs.
990 CUIDs are like UIDs except they increase monotonically, have no gaps,
991 and only apply to real insns. */
993 max_uid = get_max_uid ();
994 n = (max_uid + 1) * sizeof (int);
995 uid_cuid = (int *) gmalloc (n);
996 memset ((char *) uid_cuid, 0, n);
997 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
999 if (INSN_P (insn))
1000 uid_cuid[INSN_UID (insn)] = i++;
1001 else
1002 uid_cuid[INSN_UID (insn)] = i;
1005 /* Create a table mapping cuids to insns. */
1007 max_cuid = i;
1008 n = (max_cuid + 1) * sizeof (rtx);
1009 cuid_insn = (rtx *) gmalloc (n);
1010 memset ((char *) cuid_insn, 0, n);
1011 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1012 if (INSN_P (insn))
1013 CUID_INSN (i++) = insn;
1015 /* Allocate vars to track sets of regs. */
1016 reg_set_bitmap = BITMAP_XMALLOC ();
1018 /* Allocate vars to track sets of regs, memory per block. */
1019 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1020 max_gcse_regno);
1021 /* Allocate array to keep a list of insns which modify memory in each
1022 basic block. */
1023 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1024 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1025 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1026 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1027 modify_mem_list_set = BITMAP_XMALLOC ();
1028 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1031 /* Free memory allocated by alloc_gcse_mem. */
1033 static void
1034 free_gcse_mem ()
1036 free (uid_cuid);
1037 free (cuid_insn);
1039 BITMAP_XFREE (reg_set_bitmap);
1041 sbitmap_vector_free (reg_set_in_block);
1042 free_modify_mem_tables ();
1043 BITMAP_XFREE (modify_mem_list_set);
1044 BITMAP_XFREE (canon_modify_mem_list_set);
1047 /* Many of the global optimization algorithms work by solving dataflow
1048 equations for various expressions. Initially, some local value is
1049 computed for each expression in each block. Then, the values across the
1050 various blocks are combined (by following flow graph edges) to arrive at
1051 global values. Conceptually, each set of equations is independent. We
1052 may therefore solve all the equations in parallel, solve them one at a
1053 time, or pick any intermediate approach.
1055 When you're going to need N two-dimensional bitmaps, each X (say, the
1056 number of blocks) by Y (say, the number of expressions), call this
1057 function. It's not important what X and Y represent; only that Y
1058 correspond to the things that can be done in parallel. This function will
1059 return an appropriate chunking factor C; you should solve C sets of
1060 equations in parallel. By going through this function, we can easily
1061 trade space against time; by solving fewer equations in parallel we use
1062 less space. */
1064 static int
1065 get_bitmap_width (n, x, y)
1066 int n;
1067 int x;
1068 int y;
1070 /* It's not really worth figuring out *exactly* how much memory will
1071 be used by a particular choice. The important thing is to get
1072 something approximately right. */
1073 size_t max_bitmap_memory = 10 * 1024 * 1024;
1075 /* The number of bytes we'd use for a single column of minimum
1076 width. */
1077 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1079 /* Often, it's reasonable just to solve all the equations in
1080 parallel. */
1081 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1082 return y;
1084 /* Otherwise, pick the largest width we can, without going over the
1085 limit. */
1086 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1087 / column_size);
1090 /* Compute the local properties of each recorded expression.
1092 Local properties are those that are defined by the block, irrespective of
1093 other blocks.
1095 An expression is transparent in a block if its operands are not modified
1096 in the block.
1098 An expression is computed (locally available) in a block if it is computed
1099 at least once and expression would contain the same value if the
1100 computation was moved to the end of the block.
1102 An expression is locally anticipatable in a block if it is computed at
1103 least once and expression would contain the same value if the computation
1104 was moved to the beginning of the block.
1106 We call this routine for cprop, pre and code hoisting. They all compute
1107 basically the same information and thus can easily share this code.
1109 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1110 properties. If NULL, then it is not necessary to compute or record that
1111 particular property.
1113 TABLE controls which hash table to look at. If it is set hash table,
1114 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1115 ABSALTERED. */
1117 static void
1118 compute_local_properties (transp, comp, antloc, table)
1119 sbitmap *transp;
1120 sbitmap *comp;
1121 sbitmap *antloc;
1122 struct hash_table *table;
1124 unsigned int i;
1126 /* Initialize any bitmaps that were passed in. */
1127 if (transp)
1129 if (table->set_p)
1130 sbitmap_vector_zero (transp, last_basic_block);
1131 else
1132 sbitmap_vector_ones (transp, last_basic_block);
1135 if (comp)
1136 sbitmap_vector_zero (comp, last_basic_block);
1137 if (antloc)
1138 sbitmap_vector_zero (antloc, last_basic_block);
1140 for (i = 0; i < table->size; i++)
1142 struct expr *expr;
1144 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1146 int indx = expr->bitmap_index;
1147 struct occr *occr;
1149 /* The expression is transparent in this block if it is not killed.
1150 We start by assuming all are transparent [none are killed], and
1151 then reset the bits for those that are. */
1152 if (transp)
1153 compute_transp (expr->expr, indx, transp, table->set_p);
1155 /* The occurrences recorded in antic_occr are exactly those that
1156 we want to set to nonzero in ANTLOC. */
1157 if (antloc)
1158 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1160 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1162 /* While we're scanning the table, this is a good place to
1163 initialize this. */
1164 occr->deleted_p = 0;
1167 /* The occurrences recorded in avail_occr are exactly those that
1168 we want to set to nonzero in COMP. */
1169 if (comp)
1170 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1172 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1174 /* While we're scanning the table, this is a good place to
1175 initialize this. */
1176 occr->copied_p = 0;
1179 /* While we're scanning the table, this is a good place to
1180 initialize this. */
1181 expr->reaching_reg = 0;
1186 /* Register set information.
1188 `reg_set_table' records where each register is set or otherwise
1189 modified. */
1191 static struct obstack reg_set_obstack;
1193 static void
1194 alloc_reg_set_mem (n_regs)
1195 int n_regs;
1197 unsigned int n;
1199 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1200 n = reg_set_table_size * sizeof (struct reg_set *);
1201 reg_set_table = (struct reg_set **) gmalloc (n);
1202 memset ((char *) reg_set_table, 0, n);
1204 gcc_obstack_init (&reg_set_obstack);
1207 static void
1208 free_reg_set_mem ()
1210 free (reg_set_table);
1211 obstack_free (&reg_set_obstack, NULL);
1214 /* Record REGNO in the reg_set table. */
1216 static void
1217 record_one_set (regno, insn)
1218 int regno;
1219 rtx insn;
1221 /* Allocate a new reg_set element and link it onto the list. */
1222 struct reg_set *new_reg_info;
1224 /* If the table isn't big enough, enlarge it. */
1225 if (regno >= reg_set_table_size)
1227 int new_size = regno + REG_SET_TABLE_SLOP;
1229 reg_set_table
1230 = (struct reg_set **) grealloc ((char *) reg_set_table,
1231 new_size * sizeof (struct reg_set *));
1232 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1233 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1234 reg_set_table_size = new_size;
1237 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1238 sizeof (struct reg_set));
1239 bytes_used += sizeof (struct reg_set);
1240 new_reg_info->insn = insn;
1241 new_reg_info->next = reg_set_table[regno];
1242 reg_set_table[regno] = new_reg_info;
1245 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1246 an insn. The DATA is really the instruction in which the SET is
1247 occurring. */
1249 static void
1250 record_set_info (dest, setter, data)
1251 rtx dest, setter ATTRIBUTE_UNUSED;
1252 void *data;
1254 rtx record_set_insn = (rtx) data;
1256 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1257 record_one_set (REGNO (dest), record_set_insn);
1260 /* Scan the function and record each set of each pseudo-register.
1262 This is called once, at the start of the gcse pass. See the comments for
1263 `reg_set_table' for further documentation. */
1265 static void
1266 compute_sets (f)
1267 rtx f;
1269 rtx insn;
1271 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1272 if (INSN_P (insn))
1273 note_stores (PATTERN (insn), record_set_info, insn);
1276 /* Hash table support. */
1278 struct reg_avail_info
1280 basic_block last_bb;
1281 int first_set;
1282 int last_set;
1285 static struct reg_avail_info *reg_avail_info;
1286 static basic_block current_bb;
1289 /* See whether X, the source of a set, is something we want to consider for
1290 GCSE. */
1292 static GTY(()) rtx test_insn;
1293 static int
1294 want_to_gcse_p (x)
1295 rtx x;
1297 int num_clobbers = 0;
1298 int icode;
1300 switch (GET_CODE (x))
1302 case REG:
1303 case SUBREG:
1304 case CONST_INT:
1305 case CONST_DOUBLE:
1306 case CONST_VECTOR:
1307 case CALL:
1308 case CONSTANT_P_RTX:
1309 return 0;
1311 default:
1312 break;
1315 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1316 if (general_operand (x, GET_MODE (x)))
1317 return 1;
1318 else if (GET_MODE (x) == VOIDmode)
1319 return 0;
1321 /* Otherwise, check if we can make a valid insn from it. First initialize
1322 our test insn if we haven't already. */
1323 if (test_insn == 0)
1325 test_insn
1326 = make_insn_raw (gen_rtx_SET (VOIDmode,
1327 gen_rtx_REG (word_mode,
1328 FIRST_PSEUDO_REGISTER * 2),
1329 const0_rtx));
1330 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1333 /* Now make an insn like the one we would make when GCSE'ing and see if
1334 valid. */
1335 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1336 SET_SRC (PATTERN (test_insn)) = x;
1337 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1338 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1341 /* Return nonzero if the operands of expression X are unchanged from the
1342 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1343 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1345 static int
1346 oprs_unchanged_p (x, insn, avail_p)
1347 rtx x, insn;
1348 int avail_p;
1350 int i, j;
1351 enum rtx_code code;
1352 const char *fmt;
1354 if (x == 0)
1355 return 1;
1357 code = GET_CODE (x);
1358 switch (code)
1360 case REG:
1362 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1364 if (info->last_bb != current_bb)
1365 return 1;
1366 if (avail_p)
1367 return info->last_set < INSN_CUID (insn);
1368 else
1369 return info->first_set >= INSN_CUID (insn);
1372 case MEM:
1373 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1374 x, avail_p))
1375 return 0;
1376 else
1377 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1379 case PRE_DEC:
1380 case PRE_INC:
1381 case POST_DEC:
1382 case POST_INC:
1383 case PRE_MODIFY:
1384 case POST_MODIFY:
1385 return 0;
1387 case PC:
1388 case CC0: /*FIXME*/
1389 case CONST:
1390 case CONST_INT:
1391 case CONST_DOUBLE:
1392 case CONST_VECTOR:
1393 case SYMBOL_REF:
1394 case LABEL_REF:
1395 case ADDR_VEC:
1396 case ADDR_DIFF_VEC:
1397 return 1;
1399 default:
1400 break;
1403 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1405 if (fmt[i] == 'e')
1407 /* If we are about to do the last recursive call needed at this
1408 level, change it into iteration. This function is called enough
1409 to be worth it. */
1410 if (i == 0)
1411 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1413 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1414 return 0;
1416 else if (fmt[i] == 'E')
1417 for (j = 0; j < XVECLEN (x, i); j++)
1418 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1419 return 0;
1422 return 1;
1425 /* Used for communication between mems_conflict_for_gcse_p and
1426 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1427 conflict between two memory references. */
1428 static int gcse_mems_conflict_p;
1430 /* Used for communication between mems_conflict_for_gcse_p and
1431 load_killed_in_block_p. A memory reference for a load instruction,
1432 mems_conflict_for_gcse_p will see if a memory store conflicts with
1433 this memory load. */
1434 static rtx gcse_mem_operand;
1436 /* DEST is the output of an instruction. If it is a memory reference, and
1437 possibly conflicts with the load found in gcse_mem_operand, then set
1438 gcse_mems_conflict_p to a nonzero value. */
1440 static void
1441 mems_conflict_for_gcse_p (dest, setter, data)
1442 rtx dest, setter ATTRIBUTE_UNUSED;
1443 void *data ATTRIBUTE_UNUSED;
1445 while (GET_CODE (dest) == SUBREG
1446 || GET_CODE (dest) == ZERO_EXTRACT
1447 || GET_CODE (dest) == SIGN_EXTRACT
1448 || GET_CODE (dest) == STRICT_LOW_PART)
1449 dest = XEXP (dest, 0);
1451 /* If DEST is not a MEM, then it will not conflict with the load. Note
1452 that function calls are assumed to clobber memory, but are handled
1453 elsewhere. */
1454 if (GET_CODE (dest) != MEM)
1455 return;
1457 /* If we are setting a MEM in our list of specially recognized MEMs,
1458 don't mark as killed this time. */
1460 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1462 if (!find_rtx_in_ldst (dest))
1463 gcse_mems_conflict_p = 1;
1464 return;
1467 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1468 rtx_addr_varies_p))
1469 gcse_mems_conflict_p = 1;
1472 /* Return nonzero if the expression in X (a memory reference) is killed
1473 in block BB before or after the insn with the CUID in UID_LIMIT.
1474 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1475 before UID_LIMIT.
1477 To check the entire block, set UID_LIMIT to max_uid + 1 and
1478 AVAIL_P to 0. */
1480 static int
1481 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1482 basic_block bb;
1483 int uid_limit;
1484 rtx x;
1485 int avail_p;
1487 rtx list_entry = modify_mem_list[bb->index];
1488 while (list_entry)
1490 rtx setter;
1491 /* Ignore entries in the list that do not apply. */
1492 if ((avail_p
1493 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1494 || (! avail_p
1495 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1497 list_entry = XEXP (list_entry, 1);
1498 continue;
1501 setter = XEXP (list_entry, 0);
1503 /* If SETTER is a call everything is clobbered. Note that calls
1504 to pure functions are never put on the list, so we need not
1505 worry about them. */
1506 if (GET_CODE (setter) == CALL_INSN)
1507 return 1;
1509 /* SETTER must be an INSN of some kind that sets memory. Call
1510 note_stores to examine each hunk of memory that is modified.
1512 The note_stores interface is pretty limited, so we have to
1513 communicate via global variables. Yuk. */
1514 gcse_mem_operand = x;
1515 gcse_mems_conflict_p = 0;
1516 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1517 if (gcse_mems_conflict_p)
1518 return 1;
1519 list_entry = XEXP (list_entry, 1);
1521 return 0;
1524 /* Return nonzero if the operands of expression X are unchanged from
1525 the start of INSN's basic block up to but not including INSN. */
1527 static int
1528 oprs_anticipatable_p (x, insn)
1529 rtx x, insn;
1531 return oprs_unchanged_p (x, insn, 0);
1534 /* Return nonzero if the operands of expression X are unchanged from
1535 INSN to the end of INSN's basic block. */
1537 static int
1538 oprs_available_p (x, insn)
1539 rtx x, insn;
1541 return oprs_unchanged_p (x, insn, 1);
1544 /* Hash expression X.
1546 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1547 indicating if a volatile operand is found or if the expression contains
1548 something we don't want to insert in the table.
1550 ??? One might want to merge this with canon_hash. Later. */
1552 static unsigned int
1553 hash_expr (x, mode, do_not_record_p, hash_table_size)
1554 rtx x;
1555 enum machine_mode mode;
1556 int *do_not_record_p;
1557 int hash_table_size;
1559 unsigned int hash;
1561 *do_not_record_p = 0;
1563 hash = hash_expr_1 (x, mode, do_not_record_p);
1564 return hash % hash_table_size;
1567 /* Hash a string. Just add its bytes up. */
1569 static inline unsigned
1570 hash_string_1 (ps)
1571 const char *ps;
1573 unsigned hash = 0;
1574 const unsigned char *p = (const unsigned char *) ps;
1576 if (p)
1577 while (*p)
1578 hash += *p++;
1580 return hash;
1583 /* Subroutine of hash_expr to do the actual work. */
1585 static unsigned int
1586 hash_expr_1 (x, mode, do_not_record_p)
1587 rtx x;
1588 enum machine_mode mode;
1589 int *do_not_record_p;
1591 int i, j;
1592 unsigned hash = 0;
1593 enum rtx_code code;
1594 const char *fmt;
1596 /* Used to turn recursion into iteration. We can't rely on GCC's
1597 tail-recursion elimination since we need to keep accumulating values
1598 in HASH. */
1600 if (x == 0)
1601 return hash;
1603 repeat:
1604 code = GET_CODE (x);
1605 switch (code)
1607 case REG:
1608 hash += ((unsigned int) REG << 7) + REGNO (x);
1609 return hash;
1611 case CONST_INT:
1612 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1613 + (unsigned int) INTVAL (x));
1614 return hash;
1616 case CONST_DOUBLE:
1617 /* This is like the general case, except that it only counts
1618 the integers representing the constant. */
1619 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1620 if (GET_MODE (x) != VOIDmode)
1621 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1622 hash += (unsigned int) XWINT (x, i);
1623 else
1624 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1625 + (unsigned int) CONST_DOUBLE_HIGH (x));
1626 return hash;
1628 case CONST_VECTOR:
1630 int units;
1631 rtx elt;
1633 units = CONST_VECTOR_NUNITS (x);
1635 for (i = 0; i < units; ++i)
1637 elt = CONST_VECTOR_ELT (x, i);
1638 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1641 return hash;
1644 /* Assume there is only one rtx object for any given label. */
1645 case LABEL_REF:
1646 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1647 differences and differences between each stage's debugging dumps. */
1648 hash += (((unsigned int) LABEL_REF << 7)
1649 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1650 return hash;
1652 case SYMBOL_REF:
1654 /* Don't hash on the symbol's address to avoid bootstrap differences.
1655 Different hash values may cause expressions to be recorded in
1656 different orders and thus different registers to be used in the
1657 final assembler. This also avoids differences in the dump files
1658 between various stages. */
1659 unsigned int h = 0;
1660 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1662 while (*p)
1663 h += (h << 7) + *p++; /* ??? revisit */
1665 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1666 return hash;
1669 case MEM:
1670 if (MEM_VOLATILE_P (x))
1672 *do_not_record_p = 1;
1673 return 0;
1676 hash += (unsigned int) MEM;
1677 /* We used alias set for hashing, but this is not good, since the alias
1678 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1679 causing the profiles to fail to match. */
1680 x = XEXP (x, 0);
1681 goto repeat;
1683 case PRE_DEC:
1684 case PRE_INC:
1685 case POST_DEC:
1686 case POST_INC:
1687 case PC:
1688 case CC0:
1689 case CALL:
1690 case UNSPEC_VOLATILE:
1691 *do_not_record_p = 1;
1692 return 0;
1694 case ASM_OPERANDS:
1695 if (MEM_VOLATILE_P (x))
1697 *do_not_record_p = 1;
1698 return 0;
1700 else
1702 /* We don't want to take the filename and line into account. */
1703 hash += (unsigned) code + (unsigned) GET_MODE (x)
1704 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1705 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1706 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1708 if (ASM_OPERANDS_INPUT_LENGTH (x))
1710 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1712 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1713 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1714 do_not_record_p)
1715 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1716 (x, i)));
1719 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1720 x = ASM_OPERANDS_INPUT (x, 0);
1721 mode = GET_MODE (x);
1722 goto repeat;
1724 return hash;
1727 default:
1728 break;
1731 hash += (unsigned) code + (unsigned) GET_MODE (x);
1732 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1734 if (fmt[i] == 'e')
1736 /* If we are about to do the last recursive call
1737 needed at this level, change it into iteration.
1738 This function is called enough to be worth it. */
1739 if (i == 0)
1741 x = XEXP (x, i);
1742 goto repeat;
1745 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1746 if (*do_not_record_p)
1747 return 0;
1750 else if (fmt[i] == 'E')
1751 for (j = 0; j < XVECLEN (x, i); j++)
1753 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1754 if (*do_not_record_p)
1755 return 0;
1758 else if (fmt[i] == 's')
1759 hash += hash_string_1 (XSTR (x, i));
1760 else if (fmt[i] == 'i')
1761 hash += (unsigned int) XINT (x, i);
1762 else
1763 abort ();
1766 return hash;
1769 /* Hash a set of register REGNO.
1771 Sets are hashed on the register that is set. This simplifies the PRE copy
1772 propagation code.
1774 ??? May need to make things more elaborate. Later, as necessary. */
1776 static unsigned int
1777 hash_set (regno, hash_table_size)
1778 int regno;
1779 int hash_table_size;
1781 unsigned int hash;
1783 hash = regno;
1784 return hash % hash_table_size;
1787 /* Return nonzero if exp1 is equivalent to exp2.
1788 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1790 static int
1791 expr_equiv_p (x, y)
1792 rtx x, y;
1794 int i, j;
1795 enum rtx_code code;
1796 const char *fmt;
1798 if (x == y)
1799 return 1;
1801 if (x == 0 || y == 0)
1802 return x == y;
1804 code = GET_CODE (x);
1805 if (code != GET_CODE (y))
1806 return 0;
1808 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1809 if (GET_MODE (x) != GET_MODE (y))
1810 return 0;
1812 switch (code)
1814 case PC:
1815 case CC0:
1816 return x == y;
1818 case CONST_INT:
1819 return INTVAL (x) == INTVAL (y);
1821 case LABEL_REF:
1822 return XEXP (x, 0) == XEXP (y, 0);
1824 case SYMBOL_REF:
1825 return XSTR (x, 0) == XSTR (y, 0);
1827 case REG:
1828 return REGNO (x) == REGNO (y);
1830 case MEM:
1831 /* Can't merge two expressions in different alias sets, since we can
1832 decide that the expression is transparent in a block when it isn't,
1833 due to it being set with the different alias set. */
1834 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1835 return 0;
1836 break;
1838 /* For commutative operations, check both orders. */
1839 case PLUS:
1840 case MULT:
1841 case AND:
1842 case IOR:
1843 case XOR:
1844 case NE:
1845 case EQ:
1846 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1847 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1848 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1849 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1851 case ASM_OPERANDS:
1852 /* We don't use the generic code below because we want to
1853 disregard filename and line numbers. */
1855 /* A volatile asm isn't equivalent to any other. */
1856 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1857 return 0;
1859 if (GET_MODE (x) != GET_MODE (y)
1860 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1861 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1862 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1863 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1864 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1865 return 0;
1867 if (ASM_OPERANDS_INPUT_LENGTH (x))
1869 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1870 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1871 ASM_OPERANDS_INPUT (y, i))
1872 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1873 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1874 return 0;
1877 return 1;
1879 default:
1880 break;
1883 /* Compare the elements. If any pair of corresponding elements
1884 fail to match, return 0 for the whole thing. */
1886 fmt = GET_RTX_FORMAT (code);
1887 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1889 switch (fmt[i])
1891 case 'e':
1892 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1893 return 0;
1894 break;
1896 case 'E':
1897 if (XVECLEN (x, i) != XVECLEN (y, i))
1898 return 0;
1899 for (j = 0; j < XVECLEN (x, i); j++)
1900 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1901 return 0;
1902 break;
1904 case 's':
1905 if (strcmp (XSTR (x, i), XSTR (y, i)))
1906 return 0;
1907 break;
1909 case 'i':
1910 if (XINT (x, i) != XINT (y, i))
1911 return 0;
1912 break;
1914 case 'w':
1915 if (XWINT (x, i) != XWINT (y, i))
1916 return 0;
1917 break;
1919 case '0':
1920 break;
1922 default:
1923 abort ();
1927 return 1;
1930 /* Insert expression X in INSN in the hash TABLE.
1931 If it is already present, record it as the last occurrence in INSN's
1932 basic block.
1934 MODE is the mode of the value X is being stored into.
1935 It is only used if X is a CONST_INT.
1937 ANTIC_P is nonzero if X is an anticipatable expression.
1938 AVAIL_P is nonzero if X is an available expression. */
1940 static void
1941 insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
1942 rtx x;
1943 enum machine_mode mode;
1944 rtx insn;
1945 int antic_p, avail_p;
1946 struct hash_table *table;
1948 int found, do_not_record_p;
1949 unsigned int hash;
1950 struct expr *cur_expr, *last_expr = NULL;
1951 struct occr *antic_occr, *avail_occr;
1952 struct occr *last_occr = NULL;
1954 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1956 /* Do not insert expression in table if it contains volatile operands,
1957 or if hash_expr determines the expression is something we don't want
1958 to or can't handle. */
1959 if (do_not_record_p)
1960 return;
1962 cur_expr = table->table[hash];
1963 found = 0;
1965 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1967 /* If the expression isn't found, save a pointer to the end of
1968 the list. */
1969 last_expr = cur_expr;
1970 cur_expr = cur_expr->next_same_hash;
1973 if (! found)
1975 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1976 bytes_used += sizeof (struct expr);
1977 if (table->table[hash] == NULL)
1978 /* This is the first pattern that hashed to this index. */
1979 table->table[hash] = cur_expr;
1980 else
1981 /* Add EXPR to end of this hash chain. */
1982 last_expr->next_same_hash = cur_expr;
1984 /* Set the fields of the expr element. */
1985 cur_expr->expr = x;
1986 cur_expr->bitmap_index = table->n_elems++;
1987 cur_expr->next_same_hash = NULL;
1988 cur_expr->antic_occr = NULL;
1989 cur_expr->avail_occr = NULL;
1992 /* Now record the occurrence(s). */
1993 if (antic_p)
1995 antic_occr = cur_expr->antic_occr;
1997 /* Search for another occurrence in the same basic block. */
1998 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2000 /* If an occurrence isn't found, save a pointer to the end of
2001 the list. */
2002 last_occr = antic_occr;
2003 antic_occr = antic_occr->next;
2006 if (antic_occr)
2007 /* Found another instance of the expression in the same basic block.
2008 Prefer the currently recorded one. We want the first one in the
2009 block and the block is scanned from start to end. */
2010 ; /* nothing to do */
2011 else
2013 /* First occurrence of this expression in this basic block. */
2014 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2015 bytes_used += sizeof (struct occr);
2016 /* First occurrence of this expression in any block? */
2017 if (cur_expr->antic_occr == NULL)
2018 cur_expr->antic_occr = antic_occr;
2019 else
2020 last_occr->next = antic_occr;
2022 antic_occr->insn = insn;
2023 antic_occr->next = NULL;
2027 if (avail_p)
2029 avail_occr = cur_expr->avail_occr;
2031 /* Search for another occurrence in the same basic block. */
2032 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2034 /* If an occurrence isn't found, save a pointer to the end of
2035 the list. */
2036 last_occr = avail_occr;
2037 avail_occr = avail_occr->next;
2040 if (avail_occr)
2041 /* Found another instance of the expression in the same basic block.
2042 Prefer this occurrence to the currently recorded one. We want
2043 the last one in the block and the block is scanned from start
2044 to end. */
2045 avail_occr->insn = insn;
2046 else
2048 /* First occurrence of this expression in this basic block. */
2049 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2050 bytes_used += sizeof (struct occr);
2052 /* First occurrence of this expression in any block? */
2053 if (cur_expr->avail_occr == NULL)
2054 cur_expr->avail_occr = avail_occr;
2055 else
2056 last_occr->next = avail_occr;
2058 avail_occr->insn = insn;
2059 avail_occr->next = NULL;
2064 /* Insert pattern X in INSN in the hash table.
2065 X is a SET of a reg to either another reg or a constant.
2066 If it is already present, record it as the last occurrence in INSN's
2067 basic block. */
2069 static void
2070 insert_set_in_table (x, insn, table)
2071 rtx x;
2072 rtx insn;
2073 struct hash_table *table;
2075 int found;
2076 unsigned int hash;
2077 struct expr *cur_expr, *last_expr = NULL;
2078 struct occr *cur_occr, *last_occr = NULL;
2080 if (GET_CODE (x) != SET
2081 || GET_CODE (SET_DEST (x)) != REG)
2082 abort ();
2084 hash = hash_set (REGNO (SET_DEST (x)), table->size);
2086 cur_expr = table->table[hash];
2087 found = 0;
2089 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2091 /* If the expression isn't found, save a pointer to the end of
2092 the list. */
2093 last_expr = cur_expr;
2094 cur_expr = cur_expr->next_same_hash;
2097 if (! found)
2099 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2100 bytes_used += sizeof (struct expr);
2101 if (table->table[hash] == NULL)
2102 /* This is the first pattern that hashed to this index. */
2103 table->table[hash] = cur_expr;
2104 else
2105 /* Add EXPR to end of this hash chain. */
2106 last_expr->next_same_hash = cur_expr;
2108 /* Set the fields of the expr element.
2109 We must copy X because it can be modified when copy propagation is
2110 performed on its operands. */
2111 cur_expr->expr = copy_rtx (x);
2112 cur_expr->bitmap_index = table->n_elems++;
2113 cur_expr->next_same_hash = NULL;
2114 cur_expr->antic_occr = NULL;
2115 cur_expr->avail_occr = NULL;
2118 /* Now record the occurrence. */
2119 cur_occr = cur_expr->avail_occr;
2121 /* Search for another occurrence in the same basic block. */
2122 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2124 /* If an occurrence isn't found, save a pointer to the end of
2125 the list. */
2126 last_occr = cur_occr;
2127 cur_occr = cur_occr->next;
2130 if (cur_occr)
2131 /* Found another instance of the expression in the same basic block.
2132 Prefer this occurrence to the currently recorded one. We want the
2133 last one in the block and the block is scanned from start to end. */
2134 cur_occr->insn = insn;
2135 else
2137 /* First occurrence of this expression in this basic block. */
2138 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2139 bytes_used += sizeof (struct occr);
2141 /* First occurrence of this expression in any block? */
2142 if (cur_expr->avail_occr == NULL)
2143 cur_expr->avail_occr = cur_occr;
2144 else
2145 last_occr->next = cur_occr;
2147 cur_occr->insn = insn;
2148 cur_occr->next = NULL;
2152 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2153 expression one). */
2155 static void
2156 hash_scan_set (pat, insn, table)
2157 rtx pat, insn;
2158 struct hash_table *table;
2160 rtx src = SET_SRC (pat);
2161 rtx dest = SET_DEST (pat);
2162 rtx note;
2164 if (GET_CODE (src) == CALL)
2165 hash_scan_call (src, insn, table);
2167 else if (GET_CODE (dest) == REG)
2169 unsigned int regno = REGNO (dest);
2170 rtx tmp;
2172 /* If this is a single set and we are doing constant propagation,
2173 see if a REG_NOTE shows this equivalent to a constant. */
2174 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2175 && CONSTANT_P (XEXP (note, 0)))
2176 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2178 /* Only record sets of pseudo-regs in the hash table. */
2179 if (! table->set_p
2180 && regno >= FIRST_PSEUDO_REGISTER
2181 /* Don't GCSE something if we can't do a reg/reg copy. */
2182 && can_copy_p [GET_MODE (dest)]
2183 /* GCSE commonly inserts instruction after the insn. We can't
2184 do that easily for EH_REGION notes so disable GCSE on these
2185 for now. */
2186 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2187 /* Is SET_SRC something we want to gcse? */
2188 && want_to_gcse_p (src)
2189 /* Don't CSE a nop. */
2190 && ! set_noop_p (pat)
2191 /* Don't GCSE if it has attached REG_EQUIV note.
2192 At this point this only function parameters should have
2193 REG_EQUIV notes and if the argument slot is used somewhere
2194 explicitly, it means address of parameter has been taken,
2195 so we should not extend the lifetime of the pseudo. */
2196 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2197 || GET_CODE (XEXP (note, 0)) != MEM))
2199 /* An expression is not anticipatable if its operands are
2200 modified before this insn or if this is not the only SET in
2201 this insn. */
2202 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2203 /* An expression is not available if its operands are
2204 subsequently modified, including this insn. It's also not
2205 available if this is a branch, because we can't insert
2206 a set after the branch. */
2207 int avail_p = (oprs_available_p (src, insn)
2208 && ! JUMP_P (insn));
2210 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2213 /* Record sets for constant/copy propagation. */
2214 else if (table->set_p
2215 && regno >= FIRST_PSEUDO_REGISTER
2216 && ((GET_CODE (src) == REG
2217 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2218 && can_copy_p [GET_MODE (dest)]
2219 && REGNO (src) != regno)
2220 || (CONSTANT_P (src)
2221 && GET_CODE (src) != CONSTANT_P_RTX))
2222 /* A copy is not available if its src or dest is subsequently
2223 modified. Here we want to search from INSN+1 on, but
2224 oprs_available_p searches from INSN on. */
2225 && (insn == BLOCK_END (BLOCK_NUM (insn))
2226 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2227 && oprs_available_p (pat, tmp))))
2228 insert_set_in_table (pat, insn, table);
2232 static void
2233 hash_scan_clobber (x, insn, table)
2234 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2235 struct hash_table *table ATTRIBUTE_UNUSED;
2237 /* Currently nothing to do. */
2240 static void
2241 hash_scan_call (x, insn, table)
2242 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2243 struct hash_table *table ATTRIBUTE_UNUSED;
2245 /* Currently nothing to do. */
2248 /* Process INSN and add hash table entries as appropriate.
2250 Only available expressions that set a single pseudo-reg are recorded.
2252 Single sets in a PARALLEL could be handled, but it's an extra complication
2253 that isn't dealt with right now. The trick is handling the CLOBBERs that
2254 are also in the PARALLEL. Later.
2256 If SET_P is nonzero, this is for the assignment hash table,
2257 otherwise it is for the expression hash table.
2258 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2259 not record any expressions. */
2261 static void
2262 hash_scan_insn (insn, table, in_libcall_block)
2263 rtx insn;
2264 struct hash_table *table;
2265 int in_libcall_block;
2267 rtx pat = PATTERN (insn);
2268 int i;
2270 if (in_libcall_block)
2271 return;
2273 /* Pick out the sets of INSN and for other forms of instructions record
2274 what's been modified. */
2276 if (GET_CODE (pat) == SET)
2277 hash_scan_set (pat, insn, table);
2278 else if (GET_CODE (pat) == PARALLEL)
2279 for (i = 0; i < XVECLEN (pat, 0); i++)
2281 rtx x = XVECEXP (pat, 0, i);
2283 if (GET_CODE (x) == SET)
2284 hash_scan_set (x, insn, table);
2285 else if (GET_CODE (x) == CLOBBER)
2286 hash_scan_clobber (x, insn, table);
2287 else if (GET_CODE (x) == CALL)
2288 hash_scan_call (x, insn, table);
2291 else if (GET_CODE (pat) == CLOBBER)
2292 hash_scan_clobber (pat, insn, table);
2293 else if (GET_CODE (pat) == CALL)
2294 hash_scan_call (pat, insn, table);
2297 static void
2298 dump_hash_table (file, name, table)
2299 FILE *file;
2300 const char *name;
2301 struct hash_table *table;
2303 int i;
2304 /* Flattened out table, so it's printed in proper order. */
2305 struct expr **flat_table;
2306 unsigned int *hash_val;
2307 struct expr *expr;
2309 flat_table
2310 = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
2311 hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));
2313 for (i = 0; i < (int) table->size; i++)
2314 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2316 flat_table[expr->bitmap_index] = expr;
2317 hash_val[expr->bitmap_index] = i;
2320 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2321 name, table->size, table->n_elems);
2323 for (i = 0; i < (int) table->n_elems; i++)
2324 if (flat_table[i] != 0)
2326 expr = flat_table[i];
2327 fprintf (file, "Index %d (hash value %d)\n ",
2328 expr->bitmap_index, hash_val[i]);
2329 print_rtl (file, expr->expr);
2330 fprintf (file, "\n");
2333 fprintf (file, "\n");
2335 free (flat_table);
2336 free (hash_val);
2339 /* Record register first/last/block set information for REGNO in INSN.
2341 first_set records the first place in the block where the register
2342 is set and is used to compute "anticipatability".
2344 last_set records the last place in the block where the register
2345 is set and is used to compute "availability".
2347 last_bb records the block for which first_set and last_set are
2348 valid, as a quick test to invalidate them.
2350 reg_set_in_block records whether the register is set in the block
2351 and is used to compute "transparency". */
2353 static void
2354 record_last_reg_set_info (insn, regno)
2355 rtx insn;
2356 int regno;
2358 struct reg_avail_info *info = &reg_avail_info[regno];
2359 int cuid = INSN_CUID (insn);
2361 info->last_set = cuid;
2362 if (info->last_bb != current_bb)
2364 info->last_bb = current_bb;
2365 info->first_set = cuid;
2366 SET_BIT (reg_set_in_block[current_bb->index], regno);
2371 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2372 Note we store a pair of elements in the list, so they have to be
2373 taken off pairwise. */
2375 static void
2376 canon_list_insert (dest, unused1, v_insn)
2377 rtx dest ATTRIBUTE_UNUSED;
2378 rtx unused1 ATTRIBUTE_UNUSED;
2379 void * v_insn;
2381 rtx dest_addr, insn;
2382 int bb;
2384 while (GET_CODE (dest) == SUBREG
2385 || GET_CODE (dest) == ZERO_EXTRACT
2386 || GET_CODE (dest) == SIGN_EXTRACT
2387 || GET_CODE (dest) == STRICT_LOW_PART)
2388 dest = XEXP (dest, 0);
2390 /* If DEST is not a MEM, then it will not conflict with a load. Note
2391 that function calls are assumed to clobber memory, but are handled
2392 elsewhere. */
2394 if (GET_CODE (dest) != MEM)
2395 return;
2397 dest_addr = get_addr (XEXP (dest, 0));
2398 dest_addr = canon_rtx (dest_addr);
2399 insn = (rtx) v_insn;
2400 bb = BLOCK_NUM (insn);
2402 canon_modify_mem_list[bb] =
2403 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2404 canon_modify_mem_list[bb] =
2405 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2406 bitmap_set_bit (canon_modify_mem_list_set, bb);
2409 /* Record memory modification information for INSN. We do not actually care
2410 about the memory location(s) that are set, or even how they are set (consider
2411 a CALL_INSN). We merely need to record which insns modify memory. */
2413 static void
2414 record_last_mem_set_info (insn)
2415 rtx insn;
2417 int bb = BLOCK_NUM (insn);
2419 /* load_killed_in_block_p will handle the case of calls clobbering
2420 everything. */
2421 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2422 bitmap_set_bit (modify_mem_list_set, bb);
2424 if (GET_CODE (insn) == CALL_INSN)
2426 /* Note that traversals of this loop (other than for free-ing)
2427 will break after encountering a CALL_INSN. So, there's no
2428 need to insert a pair of items, as canon_list_insert does. */
2429 canon_modify_mem_list[bb] =
2430 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2431 bitmap_set_bit (canon_modify_mem_list_set, bb);
2433 else
2434 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2437 /* Called from compute_hash_table via note_stores to handle one
2438 SET or CLOBBER in an insn. DATA is really the instruction in which
2439 the SET is taking place. */
2441 static void
2442 record_last_set_info (dest, setter, data)
2443 rtx dest, setter ATTRIBUTE_UNUSED;
2444 void *data;
2446 rtx last_set_insn = (rtx) data;
2448 if (GET_CODE (dest) == SUBREG)
2449 dest = SUBREG_REG (dest);
2451 if (GET_CODE (dest) == REG)
2452 record_last_reg_set_info (last_set_insn, REGNO (dest));
2453 else if (GET_CODE (dest) == MEM
2454 /* Ignore pushes, they clobber nothing. */
2455 && ! push_operand (dest, GET_MODE (dest)))
2456 record_last_mem_set_info (last_set_insn);
2459 /* Top level function to create an expression or assignment hash table.
2461 Expression entries are placed in the hash table if
2462 - they are of the form (set (pseudo-reg) src),
2463 - src is something we want to perform GCSE on,
2464 - none of the operands are subsequently modified in the block
2466 Assignment entries are placed in the hash table if
2467 - they are of the form (set (pseudo-reg) src),
2468 - src is something we want to perform const/copy propagation on,
2469 - none of the operands or target are subsequently modified in the block
2471 Currently src must be a pseudo-reg or a const_int.
2473 F is the first insn.
2474 TABLE is the table computed. */
2476 static void
2477 compute_hash_table_work (table)
2478 struct hash_table *table;
2480 unsigned int i;
2482 /* While we compute the hash table we also compute a bit array of which
2483 registers are set in which blocks.
2484 ??? This isn't needed during const/copy propagation, but it's cheap to
2485 compute. Later. */
2486 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2488 /* re-Cache any INSN_LIST nodes we have allocated. */
2489 clear_modify_mem_tables ();
2490 /* Some working arrays used to track first and last set in each block. */
2491 reg_avail_info = (struct reg_avail_info*)
2492 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2494 for (i = 0; i < max_gcse_regno; ++i)
2495 reg_avail_info[i].last_bb = NULL;
2497 FOR_EACH_BB (current_bb)
2499 rtx insn;
2500 unsigned int regno;
2501 int in_libcall_block;
2503 /* First pass over the instructions records information used to
2504 determine when registers and memory are first and last set.
2505 ??? hard-reg reg_set_in_block computation
2506 could be moved to compute_sets since they currently don't change. */
2508 for (insn = current_bb->head;
2509 insn && insn != NEXT_INSN (current_bb->end);
2510 insn = NEXT_INSN (insn))
2512 if (! INSN_P (insn))
2513 continue;
2515 if (GET_CODE (insn) == CALL_INSN)
2517 bool clobbers_all = false;
2518 #ifdef NON_SAVING_SETJMP
2519 if (NON_SAVING_SETJMP
2520 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2521 clobbers_all = true;
2522 #endif
2524 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2525 if (clobbers_all
2526 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2527 record_last_reg_set_info (insn, regno);
2529 mark_call (insn);
2532 note_stores (PATTERN (insn), record_last_set_info, insn);
2535 /* The next pass builds the hash table. */
2537 for (insn = current_bb->head, in_libcall_block = 0;
2538 insn && insn != NEXT_INSN (current_bb->end);
2539 insn = NEXT_INSN (insn))
2540 if (INSN_P (insn))
2542 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2543 in_libcall_block = 1;
2544 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2545 in_libcall_block = 0;
2546 hash_scan_insn (insn, table, in_libcall_block);
2547 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2548 in_libcall_block = 0;
2552 free (reg_avail_info);
2553 reg_avail_info = NULL;
2556 /* Allocate space for the set/expr hash TABLE.
2557 N_INSNS is the number of instructions in the function.
2558 It is used to determine the number of buckets to use.
2559 SET_P determines whether set or expression table will
2560 be created. */
2562 static void
2563 alloc_hash_table (n_insns, table, set_p)
2564 int n_insns;
2565 struct hash_table *table;
2566 int set_p;
2568 int n;
2570 table->size = n_insns / 4;
2571 if (table->size < 11)
2572 table->size = 11;
2574 /* Attempt to maintain efficient use of hash table.
2575 Making it an odd number is simplest for now.
2576 ??? Later take some measurements. */
2577 table->size |= 1;
2578 n = table->size * sizeof (struct expr *);
2579 table->table = (struct expr **) gmalloc (n);
2580 table->set_p = set_p;
2583 /* Free things allocated by alloc_hash_table. */
2585 static void
2586 free_hash_table (table)
2587 struct hash_table *table;
2589 free (table->table);
2592 /* Compute the hash TABLE for doing copy/const propagation or
2593 expression hash table. */
2595 static void
2596 compute_hash_table (table)
2597 struct hash_table *table;
2599 /* Initialize count of number of entries in hash table. */
2600 table->n_elems = 0;
2601 memset ((char *) table->table, 0,
2602 table->size * sizeof (struct expr *));
2604 compute_hash_table_work (table);
2607 /* Expression tracking support. */
2609 /* Lookup pattern PAT in the expression TABLE.
2610 The result is a pointer to the table entry, or NULL if not found. */
2612 static struct expr *
2613 lookup_expr (pat, table)
2614 rtx pat;
2615 struct hash_table *table;
2617 int do_not_record_p;
2618 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2619 table->size);
2620 struct expr *expr;
2622 if (do_not_record_p)
2623 return NULL;
2625 expr = table->table[hash];
2627 while (expr && ! expr_equiv_p (expr->expr, pat))
2628 expr = expr->next_same_hash;
2630 return expr;
2633 /* Lookup REGNO in the set TABLE. If PAT is non-NULL look for the entry that
2634 matches it, otherwise return the first entry for REGNO. The result is a
2635 pointer to the table entry, or NULL if not found. */
2637 static struct expr *
2638 lookup_set (regno, pat, table)
2639 unsigned int regno;
2640 rtx pat;
2641 struct hash_table *table;
2643 unsigned int hash = hash_set (regno, table->size);
2644 struct expr *expr;
2646 expr = table->table[hash];
2648 if (pat)
2650 while (expr && ! expr_equiv_p (expr->expr, pat))
2651 expr = expr->next_same_hash;
2653 else
2655 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2656 expr = expr->next_same_hash;
2659 return expr;
2662 /* Return the next entry for REGNO in list EXPR. */
2664 static struct expr *
2665 next_set (regno, expr)
2666 unsigned int regno;
2667 struct expr *expr;
2670 expr = expr->next_same_hash;
2671 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2673 return expr;
2676 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2677 types may be mixed. */
2679 static void
2680 free_insn_expr_list_list (listp)
2681 rtx *listp;
2683 rtx list, next;
2685 for (list = *listp; list ; list = next)
2687 next = XEXP (list, 1);
2688 if (GET_CODE (list) == EXPR_LIST)
2689 free_EXPR_LIST_node (list);
2690 else
2691 free_INSN_LIST_node (list);
2694 *listp = NULL;
2697 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2698 static void
2699 clear_modify_mem_tables ()
2701 int i;
2703 EXECUTE_IF_SET_IN_BITMAP
2704 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2705 bitmap_clear (modify_mem_list_set);
2707 EXECUTE_IF_SET_IN_BITMAP
2708 (canon_modify_mem_list_set, 0, i,
2709 free_insn_expr_list_list (canon_modify_mem_list + i));
2710 bitmap_clear (canon_modify_mem_list_set);
2713 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2715 static void
2716 free_modify_mem_tables ()
2718 clear_modify_mem_tables ();
2719 free (modify_mem_list);
2720 free (canon_modify_mem_list);
2721 modify_mem_list = 0;
2722 canon_modify_mem_list = 0;
2725 /* Reset tables used to keep track of what's still available [since the
2726 start of the block]. */
2728 static void
2729 reset_opr_set_tables ()
2731 /* Maintain a bitmap of which regs have been set since beginning of
2732 the block. */
2733 CLEAR_REG_SET (reg_set_bitmap);
2735 /* Also keep a record of the last instruction to modify memory.
2736 For now this is very trivial, we only record whether any memory
2737 location has been modified. */
2738 clear_modify_mem_tables ();
2741 /* Return nonzero if the operands of X are not set before INSN in
2742 INSN's basic block. */
2744 static int
2745 oprs_not_set_p (x, insn)
2746 rtx x, insn;
2748 int i, j;
2749 enum rtx_code code;
2750 const char *fmt;
2752 if (x == 0)
2753 return 1;
2755 code = GET_CODE (x);
2756 switch (code)
2758 case PC:
2759 case CC0:
2760 case CONST:
2761 case CONST_INT:
2762 case CONST_DOUBLE:
2763 case CONST_VECTOR:
2764 case SYMBOL_REF:
2765 case LABEL_REF:
2766 case ADDR_VEC:
2767 case ADDR_DIFF_VEC:
2768 return 1;
2770 case MEM:
2771 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2772 INSN_CUID (insn), x, 0))
2773 return 0;
2774 else
2775 return oprs_not_set_p (XEXP (x, 0), insn);
2777 case REG:
2778 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2780 default:
2781 break;
2784 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2786 if (fmt[i] == 'e')
2788 /* If we are about to do the last recursive call
2789 needed at this level, change it into iteration.
2790 This function is called enough to be worth it. */
2791 if (i == 0)
2792 return oprs_not_set_p (XEXP (x, i), insn);
2794 if (! oprs_not_set_p (XEXP (x, i), insn))
2795 return 0;
2797 else if (fmt[i] == 'E')
2798 for (j = 0; j < XVECLEN (x, i); j++)
2799 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2800 return 0;
2803 return 1;
2806 /* Mark things set by a CALL. */
2808 static void
2809 mark_call (insn)
2810 rtx insn;
2812 if (! CONST_OR_PURE_CALL_P (insn))
2813 record_last_mem_set_info (insn);
2816 /* Mark things set by a SET. */
2818 static void
2819 mark_set (pat, insn)
2820 rtx pat, insn;
2822 rtx dest = SET_DEST (pat);
2824 while (GET_CODE (dest) == SUBREG
2825 || GET_CODE (dest) == ZERO_EXTRACT
2826 || GET_CODE (dest) == SIGN_EXTRACT
2827 || GET_CODE (dest) == STRICT_LOW_PART)
2828 dest = XEXP (dest, 0);
2830 if (GET_CODE (dest) == REG)
2831 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2832 else if (GET_CODE (dest) == MEM)
2833 record_last_mem_set_info (insn);
2835 if (GET_CODE (SET_SRC (pat)) == CALL)
2836 mark_call (insn);
2839 /* Record things set by a CLOBBER. */
2841 static void
2842 mark_clobber (pat, insn)
2843 rtx pat, insn;
2845 rtx clob = XEXP (pat, 0);
2847 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2848 clob = XEXP (clob, 0);
2850 if (GET_CODE (clob) == REG)
2851 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2852 else
2853 record_last_mem_set_info (insn);
2856 /* Record things set by INSN.
2857 This data is used by oprs_not_set_p. */
2859 static void
2860 mark_oprs_set (insn)
2861 rtx insn;
2863 rtx pat = PATTERN (insn);
2864 int i;
2866 if (GET_CODE (pat) == SET)
2867 mark_set (pat, insn);
2868 else if (GET_CODE (pat) == PARALLEL)
2869 for (i = 0; i < XVECLEN (pat, 0); i++)
2871 rtx x = XVECEXP (pat, 0, i);
2873 if (GET_CODE (x) == SET)
2874 mark_set (x, insn);
2875 else if (GET_CODE (x) == CLOBBER)
2876 mark_clobber (x, insn);
2877 else if (GET_CODE (x) == CALL)
2878 mark_call (insn);
2881 else if (GET_CODE (pat) == CLOBBER)
2882 mark_clobber (pat, insn);
2883 else if (GET_CODE (pat) == CALL)
2884 mark_call (insn);
2888 /* Classic GCSE reaching definition support. */
2890 /* Allocate reaching def variables. */
2892 static void
2893 alloc_rd_mem (n_blocks, n_insns)
2894 int n_blocks, n_insns;
2896 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2897 sbitmap_vector_zero (rd_kill, n_blocks);
2899 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2900 sbitmap_vector_zero (rd_gen, n_blocks);
2902 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2903 sbitmap_vector_zero (reaching_defs, n_blocks);
2905 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2906 sbitmap_vector_zero (rd_out, n_blocks);
2909 /* Free reaching def variables. */
2911 static void
2912 free_rd_mem ()
2914 sbitmap_vector_free (rd_kill);
2915 sbitmap_vector_free (rd_gen);
2916 sbitmap_vector_free (reaching_defs);
2917 sbitmap_vector_free (rd_out);
2920 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2922 static void
2923 handle_rd_kill_set (insn, regno, bb)
2924 rtx insn;
2925 int regno;
2926 basic_block bb;
2928 struct reg_set *this_reg;
2930 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2931 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2932 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2935 /* Compute the set of kill's for reaching definitions. */
2937 static void
2938 compute_kill_rd ()
2940 int cuid;
2941 unsigned int regno;
2942 int i;
2943 basic_block bb;
2945 /* For each block
2946 For each set bit in `gen' of the block (i.e each insn which
2947 generates a definition in the block)
2948 Call the reg set by the insn corresponding to that bit regx
2949 Look at the linked list starting at reg_set_table[regx]
2950 For each setting of regx in the linked list, which is not in
2951 this block
2952 Set the bit in `kill' corresponding to that insn. */
2953 FOR_EACH_BB (bb)
2954 for (cuid = 0; cuid < max_cuid; cuid++)
2955 if (TEST_BIT (rd_gen[bb->index], cuid))
2957 rtx insn = CUID_INSN (cuid);
2958 rtx pat = PATTERN (insn);
2960 if (GET_CODE (insn) == CALL_INSN)
2962 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2963 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2964 handle_rd_kill_set (insn, regno, bb);
2967 if (GET_CODE (pat) == PARALLEL)
2969 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2971 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2973 if ((code == SET || code == CLOBBER)
2974 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2975 handle_rd_kill_set (insn,
2976 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2977 bb);
2980 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2981 /* Each setting of this register outside of this block
2982 must be marked in the set of kills in this block. */
2983 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2987 /* Compute the reaching definitions as in
2988 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2989 Chapter 10. It is the same algorithm as used for computing available
2990 expressions but applied to the gens and kills of reaching definitions. */
2992 static void
2993 compute_rd ()
2995 int changed, passes;
2996 basic_block bb;
2998 FOR_EACH_BB (bb)
2999 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3001 passes = 0;
3002 changed = 1;
3003 while (changed)
3005 changed = 0;
3006 FOR_EACH_BB (bb)
3008 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3009 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3010 reaching_defs[bb->index], rd_kill[bb->index]);
3012 passes++;
3015 if (gcse_file)
3016 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3019 /* Classic GCSE available expression support. */
3021 /* Allocate memory for available expression computation. */
3023 static void
3024 alloc_avail_expr_mem (n_blocks, n_exprs)
3025 int n_blocks, n_exprs;
3027 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3028 sbitmap_vector_zero (ae_kill, n_blocks);
3030 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3031 sbitmap_vector_zero (ae_gen, n_blocks);
3033 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3034 sbitmap_vector_zero (ae_in, n_blocks);
3036 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3037 sbitmap_vector_zero (ae_out, n_blocks);
3040 static void
3041 free_avail_expr_mem ()
3043 sbitmap_vector_free (ae_kill);
3044 sbitmap_vector_free (ae_gen);
3045 sbitmap_vector_free (ae_in);
3046 sbitmap_vector_free (ae_out);
3049 /* Compute the set of available expressions generated in each basic block. */
3051 static void
3052 compute_ae_gen (expr_hash_table)
3053 struct hash_table *expr_hash_table;
3055 unsigned int i;
3056 struct expr *expr;
3057 struct occr *occr;
3059 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3060 This is all we have to do because an expression is not recorded if it
3061 is not available, and the only expressions we want to work with are the
3062 ones that are recorded. */
3063 for (i = 0; i < expr_hash_table->size; i++)
3064 for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
3065 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3066 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3069 /* Return nonzero if expression X is killed in BB. */
3071 static int
3072 expr_killed_p (x, bb)
3073 rtx x;
3074 basic_block bb;
3076 int i, j;
3077 enum rtx_code code;
3078 const char *fmt;
3080 if (x == 0)
3081 return 1;
3083 code = GET_CODE (x);
3084 switch (code)
3086 case REG:
3087 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3089 case MEM:
3090 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3091 return 1;
3092 else
3093 return expr_killed_p (XEXP (x, 0), bb);
3095 case PC:
3096 case CC0: /*FIXME*/
3097 case CONST:
3098 case CONST_INT:
3099 case CONST_DOUBLE:
3100 case CONST_VECTOR:
3101 case SYMBOL_REF:
3102 case LABEL_REF:
3103 case ADDR_VEC:
3104 case ADDR_DIFF_VEC:
3105 return 0;
3107 default:
3108 break;
3111 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3113 if (fmt[i] == 'e')
3115 /* If we are about to do the last recursive call
3116 needed at this level, change it into iteration.
3117 This function is called enough to be worth it. */
3118 if (i == 0)
3119 return expr_killed_p (XEXP (x, i), bb);
3120 else if (expr_killed_p (XEXP (x, i), bb))
3121 return 1;
3123 else if (fmt[i] == 'E')
3124 for (j = 0; j < XVECLEN (x, i); j++)
3125 if (expr_killed_p (XVECEXP (x, i, j), bb))
3126 return 1;
3129 return 0;
3132 /* Compute the set of available expressions killed in each basic block. */
3134 static void
3135 compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
3136 sbitmap *ae_gen, *ae_kill;
3137 struct hash_table *expr_hash_table;
3139 basic_block bb;
3140 unsigned int i;
3141 struct expr *expr;
3143 FOR_EACH_BB (bb)
3144 for (i = 0; i < expr_hash_table->size; i++)
3145 for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
3147 /* Skip EXPR if generated in this block. */
3148 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3149 continue;
3151 if (expr_killed_p (expr->expr, bb))
3152 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3156 /* Actually perform the Classic GCSE optimizations. */
3158 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3160 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3161 as a positive reach. We want to do this when there are two computations
3162 of the expression in the block.
3164 VISITED is a pointer to a working buffer for tracking which BB's have
3165 been visited. It is NULL for the top-level call.
3167 We treat reaching expressions that go through blocks containing the same
3168 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3169 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3170 2 as not reaching. The intent is to improve the probability of finding
3171 only one reaching expression and to reduce register lifetimes by picking
3172 the closest such expression. */
3174 static int
3175 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3176 struct occr *occr;
3177 struct expr *expr;
3178 basic_block bb;
3179 int check_self_loop;
3180 char *visited;
3182 edge pred;
3184 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3186 basic_block pred_bb = pred->src;
3188 if (visited[pred_bb->index])
3189 /* This predecessor has already been visited. Nothing to do. */
3191 else if (pred_bb == bb)
3193 /* BB loops on itself. */
3194 if (check_self_loop
3195 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3196 && BLOCK_NUM (occr->insn) == pred_bb->index)
3197 return 1;
3199 visited[pred_bb->index] = 1;
3202 /* Ignore this predecessor if it kills the expression. */
3203 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3204 visited[pred_bb->index] = 1;
3206 /* Does this predecessor generate this expression? */
3207 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3209 /* Is this the occurrence we're looking for?
3210 Note that there's only one generating occurrence per block
3211 so we just need to check the block number. */
3212 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3213 return 1;
3215 visited[pred_bb->index] = 1;
3218 /* Neither gen nor kill. */
3219 else
3221 visited[pred_bb->index] = 1;
3222 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3223 visited))
3225 return 1;
3229 /* All paths have been checked. */
3230 return 0;
3233 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3234 memory allocated for that function is returned. */
3236 static int
3237 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3238 struct occr *occr;
3239 struct expr *expr;
3240 basic_block bb;
3241 int check_self_loop;
3243 int rval;
3244 char *visited = (char *) xcalloc (last_basic_block, 1);
3246 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3248 free (visited);
3249 return rval;
3252 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3253 If there is more than one such instruction, return NULL.
3255 Called only by handle_avail_expr. */
3257 static rtx
3258 computing_insn (expr, insn)
3259 struct expr *expr;
3260 rtx insn;
3262 basic_block bb = BLOCK_FOR_INSN (insn);
3264 if (expr->avail_occr->next == NULL)
3266 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3267 /* The available expression is actually itself
3268 (i.e. a loop in the flow graph) so do nothing. */
3269 return NULL;
3271 /* (FIXME) Case that we found a pattern that was created by
3272 a substitution that took place. */
3273 return expr->avail_occr->insn;
3275 else
3277 /* Pattern is computed more than once.
3278 Search backwards from this insn to see how many of these
3279 computations actually reach this insn. */
3280 struct occr *occr;
3281 rtx insn_computes_expr = NULL;
3282 int can_reach = 0;
3284 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3286 if (BLOCK_FOR_INSN (occr->insn) == bb)
3288 /* The expression is generated in this block.
3289 The only time we care about this is when the expression
3290 is generated later in the block [and thus there's a loop].
3291 We let the normal cse pass handle the other cases. */
3292 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3293 && expr_reaches_here_p (occr, expr, bb, 1))
3295 can_reach++;
3296 if (can_reach > 1)
3297 return NULL;
3299 insn_computes_expr = occr->insn;
3302 else if (expr_reaches_here_p (occr, expr, bb, 0))
3304 can_reach++;
3305 if (can_reach > 1)
3306 return NULL;
3308 insn_computes_expr = occr->insn;
3312 if (insn_computes_expr == NULL)
3313 abort ();
3315 return insn_computes_expr;
3319 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3320 Only called by can_disregard_other_sets. */
3322 static int
3323 def_reaches_here_p (insn, def_insn)
3324 rtx insn, def_insn;
3326 rtx reg;
3328 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3329 return 1;
3331 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3333 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3335 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3336 return 1;
3337 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3338 reg = XEXP (PATTERN (def_insn), 0);
3339 else if (GET_CODE (PATTERN (def_insn)) == SET)
3340 reg = SET_DEST (PATTERN (def_insn));
3341 else
3342 abort ();
3344 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3346 else
3347 return 0;
3350 return 0;
3353 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3354 value returned is the number of definitions that reach INSN. Returning a
3355 value of zero means that [maybe] more than one definition reaches INSN and
3356 the caller can't perform whatever optimization it is trying. i.e. it is
3357 always safe to return zero. */
3359 static int
3360 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3361 struct reg_set **addr_this_reg;
3362 rtx insn;
3363 int for_combine;
3365 int number_of_reaching_defs = 0;
3366 struct reg_set *this_reg;
3368 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3369 if (def_reaches_here_p (insn, this_reg->insn))
3371 number_of_reaching_defs++;
3372 /* Ignore parallels for now. */
3373 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3374 return 0;
3376 if (!for_combine
3377 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3378 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3379 SET_SRC (PATTERN (insn)))))
3380 /* A setting of the reg to a different value reaches INSN. */
3381 return 0;
3383 if (number_of_reaching_defs > 1)
3385 /* If in this setting the value the register is being set to is
3386 equal to the previous value the register was set to and this
3387 setting reaches the insn we are trying to do the substitution
3388 on then we are ok. */
3389 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3390 return 0;
3391 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3392 SET_SRC (PATTERN (insn))))
3393 return 0;
3396 *addr_this_reg = this_reg;
3399 return number_of_reaching_defs;
3402 /* Expression computed by insn is available and the substitution is legal,
3403 so try to perform the substitution.
3405 The result is nonzero if any changes were made. */
3407 static int
3408 handle_avail_expr (insn, expr)
3409 rtx insn;
3410 struct expr *expr;
3412 rtx pat, insn_computes_expr, expr_set;
3413 rtx to;
3414 struct reg_set *this_reg;
3415 int found_setting, use_src;
3416 int changed = 0;
3418 /* We only handle the case where one computation of the expression
3419 reaches this instruction. */
3420 insn_computes_expr = computing_insn (expr, insn);
3421 if (insn_computes_expr == NULL)
3422 return 0;
3423 expr_set = single_set (insn_computes_expr);
3424 if (!expr_set)
3425 abort ();
3427 found_setting = 0;
3428 use_src = 0;
3430 /* At this point we know only one computation of EXPR outside of this
3431 block reaches this insn. Now try to find a register that the
3432 expression is computed into. */
3433 if (GET_CODE (SET_SRC (expr_set)) == REG)
3435 /* This is the case when the available expression that reaches
3436 here has already been handled as an available expression. */
3437 unsigned int regnum_for_replacing
3438 = REGNO (SET_SRC (expr_set));
3440 /* If the register was created by GCSE we can't use `reg_set_table',
3441 however we know it's set only once. */
3442 if (regnum_for_replacing >= max_gcse_regno
3443 /* If the register the expression is computed into is set only once,
3444 or only one set reaches this insn, we can use it. */
3445 || (((this_reg = reg_set_table[regnum_for_replacing]),
3446 this_reg->next == NULL)
3447 || can_disregard_other_sets (&this_reg, insn, 0)))
3449 use_src = 1;
3450 found_setting = 1;
3454 if (!found_setting)
3456 unsigned int regnum_for_replacing
3457 = REGNO (SET_DEST (expr_set));
3459 /* This shouldn't happen. */
3460 if (regnum_for_replacing >= max_gcse_regno)
3461 abort ();
3463 this_reg = reg_set_table[regnum_for_replacing];
3465 /* If the register the expression is computed into is set only once,
3466 or only one set reaches this insn, use it. */
3467 if (this_reg->next == NULL
3468 || can_disregard_other_sets (&this_reg, insn, 0))
3469 found_setting = 1;
3472 if (found_setting)
3474 pat = PATTERN (insn);
3475 if (use_src)
3476 to = SET_SRC (expr_set);
3477 else
3478 to = SET_DEST (expr_set);
3479 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3481 /* We should be able to ignore the return code from validate_change but
3482 to play it safe we check. */
3483 if (changed)
3485 gcse_subst_count++;
3486 if (gcse_file != NULL)
3488 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3489 INSN_UID (insn));
3490 fprintf (gcse_file, " reg %d %s insn %d\n",
3491 REGNO (to), use_src ? "from" : "set in",
3492 INSN_UID (insn_computes_expr));
3497 /* The register that the expr is computed into is set more than once. */
3498 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3500 /* Insert an insn after insnx that copies the reg set in insnx
3501 into a new pseudo register call this new register REGN.
3502 From insnb until end of basic block or until REGB is set
3503 replace all uses of REGB with REGN. */
3504 rtx new_insn;
3506 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3508 /* Generate the new insn. */
3509 /* ??? If the change fails, we return 0, even though we created
3510 an insn. I think this is ok. */
3511 new_insn
3512 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3513 SET_DEST (expr_set)),
3514 insn_computes_expr);
3516 /* Keep register set table up to date. */
3517 record_one_set (REGNO (to), new_insn);
3519 gcse_create_count++;
3520 if (gcse_file != NULL)
3522 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3523 INSN_UID (NEXT_INSN (insn_computes_expr)),
3524 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3525 fprintf (gcse_file, ", computed in insn %d,\n",
3526 INSN_UID (insn_computes_expr));
3527 fprintf (gcse_file, " into newly allocated reg %d\n",
3528 REGNO (to));
3531 pat = PATTERN (insn);
3533 /* Do register replacement for INSN. */
3534 changed = validate_change (insn, &SET_SRC (pat),
3535 SET_DEST (PATTERN
3536 (NEXT_INSN (insn_computes_expr))),
3539 /* We should be able to ignore the return code from validate_change but
3540 to play it safe we check. */
3541 if (changed)
3543 gcse_subst_count++;
3544 if (gcse_file != NULL)
3546 fprintf (gcse_file,
3547 "GCSE: Replacing the source in insn %d with reg %d ",
3548 INSN_UID (insn),
3549 REGNO (SET_DEST (PATTERN (NEXT_INSN
3550 (insn_computes_expr)))));
3551 fprintf (gcse_file, "set in insn %d\n",
3552 INSN_UID (insn_computes_expr));
3557 return changed;
3560 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3561 the dataflow analysis has been done.
3563 The result is nonzero if a change was made. */
3565 static int
3566 classic_gcse ()
3568 int changed;
3569 rtx insn;
3570 basic_block bb;
3572 /* Note we start at block 1. */
3574 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3575 return 0;
3577 changed = 0;
3578 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3580 /* Reset tables used to keep track of what's still valid [since the
3581 start of the block]. */
3582 reset_opr_set_tables ();
3584 for (insn = bb->head;
3585 insn != NULL && insn != NEXT_INSN (bb->end);
3586 insn = NEXT_INSN (insn))
3588 /* Is insn of form (set (pseudo-reg) ...)? */
3589 if (GET_CODE (insn) == INSN
3590 && GET_CODE (PATTERN (insn)) == SET
3591 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3592 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3594 rtx pat = PATTERN (insn);
3595 rtx src = SET_SRC (pat);
3596 struct expr *expr;
3598 if (want_to_gcse_p (src)
3599 /* Is the expression recorded? */
3600 && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
3601 /* Is the expression available [at the start of the
3602 block]? */
3603 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3604 /* Are the operands unchanged since the start of the
3605 block? */
3606 && oprs_not_set_p (src, insn))
3607 changed |= handle_avail_expr (insn, expr);
3610 /* Keep track of everything modified by this insn. */
3611 /* ??? Need to be careful w.r.t. mods done to INSN. */
3612 if (INSN_P (insn))
3613 mark_oprs_set (insn);
3617 return changed;
3620 /* Top level routine to perform one classic GCSE pass.
3622 Return nonzero if a change was made. */
3624 static int
3625 one_classic_gcse_pass (pass)
3626 int pass;
3628 int changed = 0;
3630 gcse_subst_count = 0;
3631 gcse_create_count = 0;
3633 alloc_hash_table (max_cuid, &expr_hash_table, 0);
3634 alloc_rd_mem (last_basic_block, max_cuid);
3635 compute_hash_table (&expr_hash_table);
3636 if (gcse_file)
3637 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
3639 if (expr_hash_table.n_elems > 0)
3641 compute_kill_rd ();
3642 compute_rd ();
3643 alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
3644 compute_ae_gen (&expr_hash_table);
3645 compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
3646 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3647 changed = classic_gcse ();
3648 free_avail_expr_mem ();
3651 free_rd_mem ();
3652 free_hash_table (&expr_hash_table);
3654 if (gcse_file)
3656 fprintf (gcse_file, "\n");
3657 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3658 current_function_name, pass, bytes_used, gcse_subst_count);
3659 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3662 return changed;
3665 /* Compute copy/constant propagation working variables. */
3667 /* Local properties of assignments. */
3668 static sbitmap *cprop_pavloc;
3669 static sbitmap *cprop_absaltered;
3671 /* Global properties of assignments (computed from the local properties). */
3672 static sbitmap *cprop_avin;
3673 static sbitmap *cprop_avout;
3675 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3676 basic blocks. N_SETS is the number of sets. */
3678 static void
3679 alloc_cprop_mem (n_blocks, n_sets)
3680 int n_blocks, n_sets;
3682 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3683 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3685 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3686 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3689 /* Free vars used by copy/const propagation. */
3691 static void
3692 free_cprop_mem ()
3694 sbitmap_vector_free (cprop_pavloc);
3695 sbitmap_vector_free (cprop_absaltered);
3696 sbitmap_vector_free (cprop_avin);
3697 sbitmap_vector_free (cprop_avout);
3700 /* For each block, compute whether X is transparent. X is either an
3701 expression or an assignment [though we don't care which, for this context
3702 an assignment is treated as an expression]. For each block where an
3703 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3704 bit in BMAP. */
3706 static void
3707 compute_transp (x, indx, bmap, set_p)
3708 rtx x;
3709 int indx;
3710 sbitmap *bmap;
3711 int set_p;
3713 int i, j;
3714 basic_block bb;
3715 enum rtx_code code;
3716 reg_set *r;
3717 const char *fmt;
3719 /* repeat is used to turn tail-recursion into iteration since GCC
3720 can't do it when there's no return value. */
3721 repeat:
3723 if (x == 0)
3724 return;
3726 code = GET_CODE (x);
3727 switch (code)
3729 case REG:
3730 if (set_p)
3732 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3734 FOR_EACH_BB (bb)
3735 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3736 SET_BIT (bmap[bb->index], indx);
3738 else
3740 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3741 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3744 else
3746 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3748 FOR_EACH_BB (bb)
3749 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3750 RESET_BIT (bmap[bb->index], indx);
3752 else
3754 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3755 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3759 return;
3761 case MEM:
3762 FOR_EACH_BB (bb)
3764 rtx list_entry = canon_modify_mem_list[bb->index];
3766 while (list_entry)
3768 rtx dest, dest_addr;
3770 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3772 if (set_p)
3773 SET_BIT (bmap[bb->index], indx);
3774 else
3775 RESET_BIT (bmap[bb->index], indx);
3776 break;
3778 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3779 Examine each hunk of memory that is modified. */
3781 dest = XEXP (list_entry, 0);
3782 list_entry = XEXP (list_entry, 1);
3783 dest_addr = XEXP (list_entry, 0);
3785 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3786 x, rtx_addr_varies_p))
3788 if (set_p)
3789 SET_BIT (bmap[bb->index], indx);
3790 else
3791 RESET_BIT (bmap[bb->index], indx);
3792 break;
3794 list_entry = XEXP (list_entry, 1);
3798 x = XEXP (x, 0);
3799 goto repeat;
3801 case PC:
3802 case CC0: /*FIXME*/
3803 case CONST:
3804 case CONST_INT:
3805 case CONST_DOUBLE:
3806 case CONST_VECTOR:
3807 case SYMBOL_REF:
3808 case LABEL_REF:
3809 case ADDR_VEC:
3810 case ADDR_DIFF_VEC:
3811 return;
3813 default:
3814 break;
3817 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3819 if (fmt[i] == 'e')
3821 /* If we are about to do the last recursive call
3822 needed at this level, change it into iteration.
3823 This function is called enough to be worth it. */
3824 if (i == 0)
3826 x = XEXP (x, i);
3827 goto repeat;
3830 compute_transp (XEXP (x, i), indx, bmap, set_p);
3832 else if (fmt[i] == 'E')
3833 for (j = 0; j < XVECLEN (x, i); j++)
3834 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3838 /* Top level routine to do the dataflow analysis needed by copy/const
3839 propagation. */
3841 static void
3842 compute_cprop_data ()
3844 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
3845 compute_available (cprop_pavloc, cprop_absaltered,
3846 cprop_avout, cprop_avin);
3849 /* Copy/constant propagation. */
3851 /* Maximum number of register uses in an insn that we handle. */
3852 #define MAX_USES 8
3854 /* Table of uses found in an insn.
3855 Allocated statically to avoid alloc/free complexity and overhead. */
3856 static struct reg_use reg_use_table[MAX_USES];
3858 /* Index into `reg_use_table' while building it. */
3859 static int reg_use_count;
3861 /* Set up a list of register numbers used in INSN. The found uses are stored
3862 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3863 and contains the number of uses in the table upon exit.
3865 ??? If a register appears multiple times we will record it multiple times.
3866 This doesn't hurt anything but it will slow things down. */
3868 static void
3869 find_used_regs (xptr, data)
3870 rtx *xptr;
3871 void *data ATTRIBUTE_UNUSED;
3873 int i, j;
3874 enum rtx_code code;
3875 const char *fmt;
3876 rtx x = *xptr;
3878 /* repeat is used to turn tail-recursion into iteration since GCC
3879 can't do it when there's no return value. */
3880 repeat:
3881 if (x == 0)
3882 return;
3884 code = GET_CODE (x);
3885 if (REG_P (x))
3887 if (reg_use_count == MAX_USES)
3888 return;
3890 reg_use_table[reg_use_count].reg_rtx = x;
3891 reg_use_count++;
3894 /* Recursively scan the operands of this expression. */
3896 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3898 if (fmt[i] == 'e')
3900 /* If we are about to do the last recursive call
3901 needed at this level, change it into iteration.
3902 This function is called enough to be worth it. */
3903 if (i == 0)
3905 x = XEXP (x, 0);
3906 goto repeat;
3909 find_used_regs (&XEXP (x, i), data);
3911 else if (fmt[i] == 'E')
3912 for (j = 0; j < XVECLEN (x, i); j++)
3913 find_used_regs (&XVECEXP (x, i, j), data);
3917 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3918 Returns nonzero is successful. */
3920 static int
3921 try_replace_reg (from, to, insn)
3922 rtx from, to, insn;
3924 rtx note = find_reg_equal_equiv_note (insn);
3925 rtx src = 0;
3926 int success = 0;
3927 rtx set = single_set (insn);
3929 validate_replace_src_group (from, to, insn);
3930 if (num_changes_pending () && apply_change_group ())
3931 success = 1;
3933 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3935 /* If above failed and this is a single set, try to simplify the source of
3936 the set given our substitution. We could perhaps try this for multiple
3937 SETs, but it probably won't buy us anything. */
3938 src = simplify_replace_rtx (SET_SRC (set), from, to);
3940 if (!rtx_equal_p (src, SET_SRC (set))
3941 && validate_change (insn, &SET_SRC (set), src, 0))
3942 success = 1;
3944 /* If we've failed to do replacement, have a single SET, and don't already
3945 have a note, add a REG_EQUAL note to not lose information. */
3946 if (!success && note == 0 && set != 0)
3947 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3950 /* If there is already a NOTE, update the expression in it with our
3951 replacement. */
3952 else if (note != 0)
3953 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3955 /* REG_EQUAL may get simplified into register.
3956 We don't allow that. Remove that note. This code ought
3957 not to happen, because previous code ought to synthesize
3958 reg-reg move, but be on the safe side. */
3959 if (note && REG_P (XEXP (note, 0)))
3960 remove_note (insn, note);
3962 return success;
3965 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3966 NULL no such set is found. */
3968 static struct expr *
3969 find_avail_set (regno, insn)
3970 int regno;
3971 rtx insn;
3973 /* SET1 contains the last set found that can be returned to the caller for
3974 use in a substitution. */
3975 struct expr *set1 = 0;
3977 /* Loops are not possible here. To get a loop we would need two sets
3978 available at the start of the block containing INSN. ie we would
3979 need two sets like this available at the start of the block:
3981 (set (reg X) (reg Y))
3982 (set (reg Y) (reg X))
3984 This can not happen since the set of (reg Y) would have killed the
3985 set of (reg X) making it unavailable at the start of this block. */
3986 while (1)
3988 rtx src;
3989 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
3991 /* Find a set that is available at the start of the block
3992 which contains INSN. */
3993 while (set)
3995 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3996 break;
3997 set = next_set (regno, set);
4000 /* If no available set was found we've reached the end of the
4001 (possibly empty) copy chain. */
4002 if (set == 0)
4003 break;
4005 if (GET_CODE (set->expr) != SET)
4006 abort ();
4008 src = SET_SRC (set->expr);
4010 /* We know the set is available.
4011 Now check that SRC is ANTLOC (i.e. none of the source operands
4012 have changed since the start of the block).
4014 If the source operand changed, we may still use it for the next
4015 iteration of this loop, but we may not use it for substitutions. */
4017 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4018 set1 = set;
4020 /* If the source of the set is anything except a register, then
4021 we have reached the end of the copy chain. */
4022 if (GET_CODE (src) != REG)
4023 break;
4025 /* Follow the copy chain, ie start another iteration of the loop
4026 and see if we have an available copy into SRC. */
4027 regno = REGNO (src);
4030 /* SET1 holds the last set that was available and anticipatable at
4031 INSN. */
4032 return set1;
4035 /* Subroutine of cprop_insn that tries to propagate constants into
4036 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4037 it is the instruction that immediately precedes JUMP, and must be a
4038 single SET of a register. FROM is what we will try to replace,
4039 SRC is the constant we will try to substitute for it. Returns nonzero
4040 if a change was made. */
4042 static int
4043 cprop_jump (bb, setcc, jump, from, src)
4044 basic_block bb;
4045 rtx setcc;
4046 rtx jump;
4047 rtx from;
4048 rtx src;
4050 rtx new, new_set;
4051 rtx set = pc_set (jump);
4053 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4054 then substitute that given values in this expanded JUMP. */
4055 if (setcc != NULL
4056 && !modified_between_p (from, setcc, jump)
4057 && !modified_between_p (src, setcc, jump))
4059 rtx setcc_set = single_set (setcc);
4060 new_set = simplify_replace_rtx (SET_SRC (set),
4061 SET_DEST (setcc_set),
4062 SET_SRC (setcc_set));
4064 else
4065 new_set = set;
4067 new = simplify_replace_rtx (new_set, from, src);
4069 /* If no simplification can be made, then try the next
4070 register. */
4071 if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set)))
4072 return 0;
4074 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4075 if (new == pc_rtx)
4076 delete_insn (jump);
4077 else
4079 /* Ensure the value computed inside the jump insn to be equivalent
4080 to one computed by setcc. */
4081 if (setcc
4082 && modified_in_p (new, setcc))
4083 return 0;
4084 if (! validate_change (jump, &SET_SRC (set), new, 0))
4085 return 0;
4087 /* If this has turned into an unconditional jump,
4088 then put a barrier after it so that the unreachable
4089 code will be deleted. */
4090 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4091 emit_barrier_after (jump);
4094 #ifdef HAVE_cc0
4095 /* Delete the cc0 setter. */
4096 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4097 delete_insn (setcc);
4098 #endif
4100 run_jump_opt_after_gcse = 1;
4102 const_prop_count++;
4103 if (gcse_file != NULL)
4105 fprintf (gcse_file,
4106 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4107 REGNO (from), INSN_UID (jump));
4108 print_rtl (gcse_file, src);
4109 fprintf (gcse_file, "\n");
4111 purge_dead_edges (bb);
4113 return 1;
4116 static bool
4117 constprop_register (insn, from, to, alter_jumps)
4118 rtx insn;
4119 rtx from;
4120 rtx to;
4121 int alter_jumps;
4123 rtx sset;
4125 /* Check for reg or cc0 setting instructions followed by
4126 conditional branch instructions first. */
4127 if (alter_jumps
4128 && (sset = single_set (insn)) != NULL
4129 && NEXT_INSN (insn)
4130 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
4132 rtx dest = SET_DEST (sset);
4133 if ((REG_P (dest) || CC0_P (dest))
4134 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
4135 return 1;
4138 /* Handle normal insns next. */
4139 if (GET_CODE (insn) == INSN
4140 && try_replace_reg (from, to, insn))
4141 return 1;
4143 /* Try to propagate a CONST_INT into a conditional jump.
4144 We're pretty specific about what we will handle in this
4145 code, we can extend this as necessary over time.
4147 Right now the insn in question must look like
4148 (set (pc) (if_then_else ...)) */
4149 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
4150 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
4151 return 0;
4154 /* Perform constant and copy propagation on INSN.
4155 The result is nonzero if a change was made. */
4157 static int
4158 cprop_insn (insn, alter_jumps)
4159 rtx insn;
4160 int alter_jumps;
4162 struct reg_use *reg_used;
4163 int changed = 0;
4164 rtx note;
4166 if (!INSN_P (insn))
4167 return 0;
4169 reg_use_count = 0;
4170 note_uses (&PATTERN (insn), find_used_regs, NULL);
4172 note = find_reg_equal_equiv_note (insn);
4174 /* We may win even when propagating constants into notes. */
4175 if (note)
4176 find_used_regs (&XEXP (note, 0), NULL);
4178 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4179 reg_used++, reg_use_count--)
4181 unsigned int regno = REGNO (reg_used->reg_rtx);
4182 rtx pat, src;
4183 struct expr *set;
4185 /* Ignore registers created by GCSE.
4186 We do this because ... */
4187 if (regno >= max_gcse_regno)
4188 continue;
4190 /* If the register has already been set in this block, there's
4191 nothing we can do. */
4192 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4193 continue;
4195 /* Find an assignment that sets reg_used and is available
4196 at the start of the block. */
4197 set = find_avail_set (regno, insn);
4198 if (! set)
4199 continue;
4201 pat = set->expr;
4202 /* ??? We might be able to handle PARALLELs. Later. */
4203 if (GET_CODE (pat) != SET)
4204 abort ();
4206 src = SET_SRC (pat);
4208 /* Constant propagation. */
4209 if (CONSTANT_P (src))
4211 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
4213 changed = 1;
4214 const_prop_count++;
4215 if (gcse_file != NULL)
4217 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
4218 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
4219 print_rtl (gcse_file, src);
4220 fprintf (gcse_file, "\n");
4224 else if (GET_CODE (src) == REG
4225 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4226 && REGNO (src) != regno)
4228 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4230 changed = 1;
4231 copy_prop_count++;
4232 if (gcse_file != NULL)
4234 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4235 regno, INSN_UID (insn));
4236 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4239 /* The original insn setting reg_used may or may not now be
4240 deletable. We leave the deletion to flow. */
4241 /* FIXME: If it turns out that the insn isn't deletable,
4242 then we may have unnecessarily extended register lifetimes
4243 and made things worse. */
4248 return changed;
4251 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4252 their REG_EQUAL notes need updating. */
4254 static bool
4255 do_local_cprop (x, insn, alter_jumps, libcall_sp)
4256 rtx x;
4257 rtx insn;
4258 int alter_jumps;
4259 rtx *libcall_sp;
4261 rtx newreg = NULL, newcnst = NULL;
4263 /* Rule out USE instructions and ASM statements as we don't want to
4264 change the hard registers mentioned. */
4265 if (GET_CODE (x) == REG
4266 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
4267 || (GET_CODE (PATTERN (insn)) != USE
4268 && asm_noperands (PATTERN (insn)) < 0)))
4270 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
4271 struct elt_loc_list *l;
4273 if (!val)
4274 return false;
4275 for (l = val->locs; l; l = l->next)
4277 rtx this_rtx = l->loc;
4278 rtx note;
4280 if (l->in_libcall)
4281 continue;
4283 if (CONSTANT_P (this_rtx)
4284 && GET_CODE (this_rtx) != CONSTANT_P_RTX)
4285 newcnst = this_rtx;
4286 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
4287 /* Don't copy propagate if it has attached REG_EQUIV note.
4288 At this point this only function parameters should have
4289 REG_EQUIV notes and if the argument slot is used somewhere
4290 explicitly, it means address of parameter has been taken,
4291 so we should not extend the lifetime of the pseudo. */
4292 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
4293 || GET_CODE (XEXP (note, 0)) != MEM))
4294 newreg = this_rtx;
4296 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
4298 /* If we find a case where we can't fix the retval REG_EQUAL notes
4299 match the new register, we either have to abandon this replacement
4300 or fix delete_trivially_dead_insns to preserve the setting insn,
4301 or make it delete the REG_EUAQL note, and fix up all passes that
4302 require the REG_EQUAL note there. */
4303 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
4304 abort ();
4305 if (gcse_file != NULL)
4307 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
4308 REGNO (x));
4309 fprintf (gcse_file, "insn %d with constant ",
4310 INSN_UID (insn));
4311 print_rtl (gcse_file, newcnst);
4312 fprintf (gcse_file, "\n");
4314 const_prop_count++;
4315 return true;
4317 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
4319 adjust_libcall_notes (x, newreg, insn, libcall_sp);
4320 if (gcse_file != NULL)
4322 fprintf (gcse_file,
4323 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4324 REGNO (x), INSN_UID (insn));
4325 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
4327 copy_prop_count++;
4328 return true;
4331 return false;
4334 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4335 their REG_EQUAL notes need updating to reflect that OLDREG has been
4336 replaced with NEWVAL in INSN. Return true if all substitutions could
4337 be made. */
4338 static bool
4339 adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
4340 rtx oldreg, newval, insn, *libcall_sp;
4342 rtx end;
4344 while ((end = *libcall_sp++))
4346 rtx note = find_reg_equal_equiv_note (end);
4348 if (! note)
4349 continue;
4351 if (REG_P (newval))
4353 if (reg_set_between_p (newval, PREV_INSN (insn), end))
4357 note = find_reg_equal_equiv_note (end);
4358 if (! note)
4359 continue;
4360 if (reg_mentioned_p (newval, XEXP (note, 0)))
4361 return false;
4363 while ((end = *libcall_sp++));
4364 return true;
4367 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
4368 insn = end;
4370 return true;
4373 #define MAX_NESTED_LIBCALLS 9
4375 static void
4376 local_cprop_pass (alter_jumps)
4377 int alter_jumps;
4379 rtx insn;
4380 struct reg_use *reg_used;
4381 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
4382 bool changed = false;
4384 cselib_init ();
4385 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
4386 *libcall_sp = 0;
4387 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4389 if (INSN_P (insn))
4391 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4393 if (note)
4395 if (libcall_sp == libcall_stack)
4396 abort ();
4397 *--libcall_sp = XEXP (note, 0);
4399 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4400 if (note)
4401 libcall_sp++;
4402 note = find_reg_equal_equiv_note (insn);
4405 reg_use_count = 0;
4406 note_uses (&PATTERN (insn), find_used_regs, NULL);
4407 if (note)
4408 find_used_regs (&XEXP (note, 0), NULL);
4410 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4411 reg_used++, reg_use_count--)
4412 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
4413 libcall_sp))
4415 changed = true;
4416 break;
4419 while (reg_use_count);
4421 cselib_process_insn (insn);
4423 cselib_finish ();
4424 /* Global analysis may get into infinite loops for unreachable blocks. */
4425 if (changed && alter_jumps)
4427 delete_unreachable_blocks ();
4428 free_reg_set_mem ();
4429 alloc_reg_set_mem (max_reg_num ());
4430 compute_sets (get_insns ());
4434 /* Forward propagate copies. This includes copies and constants. Return
4435 nonzero if a change was made. */
4437 static int
4438 cprop (alter_jumps)
4439 int alter_jumps;
4441 int changed;
4442 basic_block bb;
4443 rtx insn;
4445 /* Note we start at block 1. */
4446 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4448 if (gcse_file != NULL)
4449 fprintf (gcse_file, "\n");
4450 return 0;
4453 changed = 0;
4454 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4456 /* Reset tables used to keep track of what's still valid [since the
4457 start of the block]. */
4458 reset_opr_set_tables ();
4460 for (insn = bb->head;
4461 insn != NULL && insn != NEXT_INSN (bb->end);
4462 insn = NEXT_INSN (insn))
4463 if (INSN_P (insn))
4465 changed |= cprop_insn (insn, alter_jumps);
4467 /* Keep track of everything modified by this insn. */
4468 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4469 call mark_oprs_set if we turned the insn into a NOTE. */
4470 if (GET_CODE (insn) != NOTE)
4471 mark_oprs_set (insn);
4475 if (gcse_file != NULL)
4476 fprintf (gcse_file, "\n");
4478 return changed;
4481 /* Perform one copy/constant propagation pass.
4482 PASS is the pass count. If CPROP_JUMPS is true, perform constant
4483 propagation into conditional jumps. If BYPASS_JUMPS is true,
4484 perform conditional jump bypassing optimizations. */
4486 static int
4487 one_cprop_pass (pass, cprop_jumps, bypass_jumps)
4488 int pass;
4489 int cprop_jumps;
4490 int bypass_jumps;
4492 int changed = 0;
4494 const_prop_count = 0;
4495 copy_prop_count = 0;
4497 local_cprop_pass (cprop_jumps);
4499 alloc_hash_table (max_cuid, &set_hash_table, 1);
4500 compute_hash_table (&set_hash_table);
4501 if (gcse_file)
4502 dump_hash_table (gcse_file, "SET", &set_hash_table);
4503 if (set_hash_table.n_elems > 0)
4505 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4506 compute_cprop_data ();
4507 changed = cprop (cprop_jumps);
4508 if (bypass_jumps)
4509 changed |= bypass_conditional_jumps ();
4510 free_cprop_mem ();
4513 free_hash_table (&set_hash_table);
4515 if (gcse_file)
4517 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4518 current_function_name, pass, bytes_used);
4519 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4520 const_prop_count, copy_prop_count);
4522 /* Global analysis may get into infinite loops for unreachable blocks. */
4523 if (changed && cprop_jumps)
4524 delete_unreachable_blocks ();
4526 return changed;
4529 /* Bypass conditional jumps. */
4531 /* The value of last_basic_block at the beginning of the jump_bypass
4532 pass. The use of redirect_edge_and_branch_force may introduce new
4533 basic blocks, but the data flow analysis is only valid for basic
4534 block indices less than bypass_last_basic_block. */
4536 static int bypass_last_basic_block;
4538 /* Find a set of REGNO to a constant that is available at the end of basic
4539 block BB. Returns NULL if no such set is found. Based heavily upon
4540 find_avail_set. */
4542 static struct expr *
4543 find_bypass_set (regno, bb)
4544 int regno;
4545 int bb;
4547 struct expr *result = 0;
4549 for (;;)
4551 rtx src;
4552 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
4554 while (set)
4556 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4557 break;
4558 set = next_set (regno, set);
4561 if (set == 0)
4562 break;
4564 if (GET_CODE (set->expr) != SET)
4565 abort ();
4567 src = SET_SRC (set->expr);
4568 if (CONSTANT_P (src))
4569 result = set;
4571 if (GET_CODE (src) != REG)
4572 break;
4574 regno = REGNO (src);
4576 return result;
4580 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4581 basic block BB which has more than one predecessor. If not NULL, SETCC
4582 is the first instruction of BB, which is immediately followed by JUMP_INSN
4583 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4584 Returns nonzero if a change was made. */
4586 static int
4587 bypass_block (bb, setcc, jump)
4588 basic_block bb;
4589 rtx setcc, jump;
4591 rtx insn, note;
4592 edge e, enext;
4593 int i, change;
4595 insn = (setcc != NULL) ? setcc : jump;
4597 /* Determine set of register uses in INSN. */
4598 reg_use_count = 0;
4599 note_uses (&PATTERN (insn), find_used_regs, NULL);
4600 note = find_reg_equal_equiv_note (insn);
4601 if (note)
4602 find_used_regs (&XEXP (note, 0), NULL);
4604 change = 0;
4605 for (e = bb->pred; e; e = enext)
4607 enext = e->pred_next;
4608 if (e->flags & EDGE_COMPLEX)
4609 continue;
4611 /* We can't redirect edges from new basic blocks. */
4612 if (e->src->index >= bypass_last_basic_block)
4613 continue;
4615 for (i = 0; i < reg_use_count; i++)
4617 struct reg_use *reg_used = &reg_use_table[i];
4618 unsigned int regno = REGNO (reg_used->reg_rtx);
4619 basic_block dest, old_dest;
4620 struct expr *set;
4621 rtx src, new;
4623 if (regno >= max_gcse_regno)
4624 continue;
4626 set = find_bypass_set (regno, e->src->index);
4628 if (! set)
4629 continue;
4631 src = SET_SRC (pc_set (jump));
4633 if (setcc != NULL)
4634 src = simplify_replace_rtx (src,
4635 SET_DEST (PATTERN (setcc)),
4636 SET_SRC (PATTERN (setcc)));
4638 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4639 SET_SRC (set->expr));
4641 if (new == pc_rtx)
4642 dest = FALLTHRU_EDGE (bb)->dest;
4643 else if (GET_CODE (new) == LABEL_REF)
4644 dest = BRANCH_EDGE (bb)->dest;
4645 else
4646 dest = NULL;
4648 old_dest = e->dest;
4649 if (dest != NULL
4650 && dest != old_dest
4651 && dest != EXIT_BLOCK_PTR)
4653 redirect_edge_and_branch_force (e, dest);
4655 /* Copy the register setter to the redirected edge.
4656 Don't copy CC0 setters, as CC0 is dead after jump. */
4657 if (setcc)
4659 rtx pat = PATTERN (setcc);
4660 if (!CC0_P (SET_DEST (pat)))
4661 insert_insn_on_edge (copy_insn (pat), e);
4664 if (gcse_file != NULL)
4666 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4667 regno, INSN_UID (jump));
4668 print_rtl (gcse_file, SET_SRC (set->expr));
4669 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4670 e->src->index, old_dest->index, dest->index);
4672 change = 1;
4673 break;
4677 return change;
4680 /* Find basic blocks with more than one predecessor that only contain a
4681 single conditional jump. If the result of the comparison is known at
4682 compile-time from any incoming edge, redirect that edge to the
4683 appropriate target. Returns nonzero if a change was made. */
4685 static int
4686 bypass_conditional_jumps ()
4688 basic_block bb;
4689 int changed;
4690 rtx setcc;
4691 rtx insn;
4692 rtx dest;
4694 /* Note we start at block 1. */
4695 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4696 return 0;
4698 bypass_last_basic_block = last_basic_block;
4700 changed = 0;
4701 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4702 EXIT_BLOCK_PTR, next_bb)
4704 /* Check for more than one predecessor. */
4705 if (bb->pred && bb->pred->pred_next)
4707 setcc = NULL_RTX;
4708 for (insn = bb->head;
4709 insn != NULL && insn != NEXT_INSN (bb->end);
4710 insn = NEXT_INSN (insn))
4711 if (GET_CODE (insn) == INSN)
4713 if (setcc)
4714 break;
4715 if (GET_CODE (PATTERN (insn)) != SET)
4716 break;
4718 dest = SET_DEST (PATTERN (insn));
4719 if (REG_P (dest) || CC0_P (dest))
4720 setcc = insn;
4721 else
4722 break;
4724 else if (GET_CODE (insn) == JUMP_INSN)
4726 if (any_condjump_p (insn) && onlyjump_p (insn))
4727 changed |= bypass_block (bb, setcc, insn);
4728 break;
4730 else if (INSN_P (insn))
4731 break;
4735 /* If we bypassed any register setting insns, we inserted a
4736 copy on the redirected edge. These need to be committed. */
4737 if (changed)
4738 commit_edge_insertions();
4740 return changed;
4743 /* Compute PRE+LCM working variables. */
4745 /* Local properties of expressions. */
4746 /* Nonzero for expressions that are transparent in the block. */
4747 static sbitmap *transp;
4749 /* Nonzero for expressions that are transparent at the end of the block.
4750 This is only zero for expressions killed by abnormal critical edge
4751 created by a calls. */
4752 static sbitmap *transpout;
4754 /* Nonzero for expressions that are computed (available) in the block. */
4755 static sbitmap *comp;
4757 /* Nonzero for expressions that are locally anticipatable in the block. */
4758 static sbitmap *antloc;
4760 /* Nonzero for expressions where this block is an optimal computation
4761 point. */
4762 static sbitmap *pre_optimal;
4764 /* Nonzero for expressions which are redundant in a particular block. */
4765 static sbitmap *pre_redundant;
4767 /* Nonzero for expressions which should be inserted on a specific edge. */
4768 static sbitmap *pre_insert_map;
4770 /* Nonzero for expressions which should be deleted in a specific block. */
4771 static sbitmap *pre_delete_map;
4773 /* Contains the edge_list returned by pre_edge_lcm. */
4774 static struct edge_list *edge_list;
4776 /* Redundant insns. */
4777 static sbitmap pre_redundant_insns;
4779 /* Allocate vars used for PRE analysis. */
4781 static void
4782 alloc_pre_mem (n_blocks, n_exprs)
4783 int n_blocks, n_exprs;
4785 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4786 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4787 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4789 pre_optimal = NULL;
4790 pre_redundant = NULL;
4791 pre_insert_map = NULL;
4792 pre_delete_map = NULL;
4793 ae_in = NULL;
4794 ae_out = NULL;
4795 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4797 /* pre_insert and pre_delete are allocated later. */
4800 /* Free vars used for PRE analysis. */
4802 static void
4803 free_pre_mem ()
4805 sbitmap_vector_free (transp);
4806 sbitmap_vector_free (comp);
4808 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4810 if (pre_optimal)
4811 sbitmap_vector_free (pre_optimal);
4812 if (pre_redundant)
4813 sbitmap_vector_free (pre_redundant);
4814 if (pre_insert_map)
4815 sbitmap_vector_free (pre_insert_map);
4816 if (pre_delete_map)
4817 sbitmap_vector_free (pre_delete_map);
4818 if (ae_in)
4819 sbitmap_vector_free (ae_in);
4820 if (ae_out)
4821 sbitmap_vector_free (ae_out);
4823 transp = comp = NULL;
4824 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4825 ae_in = ae_out = NULL;
4828 /* Top level routine to do the dataflow analysis needed by PRE. */
4830 static void
4831 compute_pre_data ()
4833 sbitmap trapping_expr;
4834 basic_block bb;
4835 unsigned int ui;
4837 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4838 sbitmap_vector_zero (ae_kill, last_basic_block);
4840 /* Collect expressions which might trap. */
4841 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
4842 sbitmap_zero (trapping_expr);
4843 for (ui = 0; ui < expr_hash_table.size; ui++)
4845 struct expr *e;
4846 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
4847 if (may_trap_p (e->expr))
4848 SET_BIT (trapping_expr, e->bitmap_index);
4851 /* Compute ae_kill for each basic block using:
4853 ~(TRANSP | COMP)
4855 This is significantly faster than compute_ae_kill. */
4857 FOR_EACH_BB (bb)
4859 edge e;
4861 /* If the current block is the destination of an abnormal edge, we
4862 kill all trapping expressions because we won't be able to properly
4863 place the instruction on the edge. So make them neither
4864 anticipatable nor transparent. This is fairly conservative. */
4865 for (e = bb->pred; e ; e = e->pred_next)
4866 if (e->flags & EDGE_ABNORMAL)
4868 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4869 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4870 break;
4873 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4874 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4877 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
4878 ae_kill, &pre_insert_map, &pre_delete_map);
4879 sbitmap_vector_free (antloc);
4880 antloc = NULL;
4881 sbitmap_vector_free (ae_kill);
4882 ae_kill = NULL;
4883 sbitmap_free (trapping_expr);
4886 /* PRE utilities */
4888 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
4889 block BB.
4891 VISITED is a pointer to a working buffer for tracking which BB's have
4892 been visited. It is NULL for the top-level call.
4894 We treat reaching expressions that go through blocks containing the same
4895 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4896 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4897 2 as not reaching. The intent is to improve the probability of finding
4898 only one reaching expression and to reduce register lifetimes by picking
4899 the closest such expression. */
4901 static int
4902 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4903 basic_block occr_bb;
4904 struct expr *expr;
4905 basic_block bb;
4906 char *visited;
4908 edge pred;
4910 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4912 basic_block pred_bb = pred->src;
4914 if (pred->src == ENTRY_BLOCK_PTR
4915 /* Has predecessor has already been visited? */
4916 || visited[pred_bb->index])
4917 ;/* Nothing to do. */
4919 /* Does this predecessor generate this expression? */
4920 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4922 /* Is this the occurrence we're looking for?
4923 Note that there's only one generating occurrence per block
4924 so we just need to check the block number. */
4925 if (occr_bb == pred_bb)
4926 return 1;
4928 visited[pred_bb->index] = 1;
4930 /* Ignore this predecessor if it kills the expression. */
4931 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4932 visited[pred_bb->index] = 1;
4934 /* Neither gen nor kill. */
4935 else
4937 visited[pred_bb->index] = 1;
4938 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4939 return 1;
4943 /* All paths have been checked. */
4944 return 0;
4947 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4948 memory allocated for that function is returned. */
4950 static int
4951 pre_expr_reaches_here_p (occr_bb, expr, bb)
4952 basic_block occr_bb;
4953 struct expr *expr;
4954 basic_block bb;
4956 int rval;
4957 char *visited = (char *) xcalloc (last_basic_block, 1);
4959 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4961 free (visited);
4962 return rval;
4966 /* Given an expr, generate RTL which we can insert at the end of a BB,
4967 or on an edge. Set the block number of any insns generated to
4968 the value of BB. */
4970 static rtx
4971 process_insert_insn (expr)
4972 struct expr *expr;
4974 rtx reg = expr->reaching_reg;
4975 rtx exp = copy_rtx (expr->expr);
4976 rtx pat;
4978 start_sequence ();
4980 /* If the expression is something that's an operand, like a constant,
4981 just copy it to a register. */
4982 if (general_operand (exp, GET_MODE (reg)))
4983 emit_move_insn (reg, exp);
4985 /* Otherwise, make a new insn to compute this expression and make sure the
4986 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4987 expression to make sure we don't have any sharing issues. */
4988 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4989 abort ();
4991 pat = get_insns ();
4992 end_sequence ();
4994 return pat;
4997 /* Add EXPR to the end of basic block BB.
4999 This is used by both the PRE and code hoisting.
5001 For PRE, we want to verify that the expr is either transparent
5002 or locally anticipatable in the target block. This check makes
5003 no sense for code hoisting. */
5005 static void
5006 insert_insn_end_bb (expr, bb, pre)
5007 struct expr *expr;
5008 basic_block bb;
5009 int pre;
5011 rtx insn = bb->end;
5012 rtx new_insn;
5013 rtx reg = expr->reaching_reg;
5014 int regno = REGNO (reg);
5015 rtx pat, pat_end;
5017 pat = process_insert_insn (expr);
5018 if (pat == NULL_RTX || ! INSN_P (pat))
5019 abort ();
5021 pat_end = pat;
5022 while (NEXT_INSN (pat_end) != NULL_RTX)
5023 pat_end = NEXT_INSN (pat_end);
5025 /* If the last insn is a jump, insert EXPR in front [taking care to
5026 handle cc0, etc. properly]. Similary we need to care trapping
5027 instructions in presence of non-call exceptions. */
5029 if (GET_CODE (insn) == JUMP_INSN
5030 || (GET_CODE (insn) == INSN
5031 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
5033 #ifdef HAVE_cc0
5034 rtx note;
5035 #endif
5036 /* It should always be the case that we can put these instructions
5037 anywhere in the basic block with performing PRE optimizations.
5038 Check this. */
5039 if (GET_CODE (insn) == INSN && pre
5040 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5041 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5042 abort ();
5044 /* If this is a jump table, then we can't insert stuff here. Since
5045 we know the previous real insn must be the tablejump, we insert
5046 the new instruction just before the tablejump. */
5047 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
5048 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
5049 insn = prev_real_insn (insn);
5051 #ifdef HAVE_cc0
5052 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5053 if cc0 isn't set. */
5054 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
5055 if (note)
5056 insn = XEXP (note, 0);
5057 else
5059 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
5060 if (maybe_cc0_setter
5061 && INSN_P (maybe_cc0_setter)
5062 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
5063 insn = maybe_cc0_setter;
5065 #endif
5066 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5067 new_insn = emit_insn_before (pat, insn);
5070 /* Likewise if the last insn is a call, as will happen in the presence
5071 of exception handling. */
5072 else if (GET_CODE (insn) == CALL_INSN
5073 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
5075 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5076 we search backward and place the instructions before the first
5077 parameter is loaded. Do this for everyone for consistency and a
5078 presumption that we'll get better code elsewhere as well.
5080 It should always be the case that we can put these instructions
5081 anywhere in the basic block with performing PRE optimizations.
5082 Check this. */
5084 if (pre
5085 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5086 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5087 abort ();
5089 /* Since different machines initialize their parameter registers
5090 in different orders, assume nothing. Collect the set of all
5091 parameter registers. */
5092 insn = find_first_parameter_load (insn, bb->head);
5094 /* If we found all the parameter loads, then we want to insert
5095 before the first parameter load.
5097 If we did not find all the parameter loads, then we might have
5098 stopped on the head of the block, which could be a CODE_LABEL.
5099 If we inserted before the CODE_LABEL, then we would be putting
5100 the insn in the wrong basic block. In that case, put the insn
5101 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5102 while (GET_CODE (insn) == CODE_LABEL
5103 || NOTE_INSN_BASIC_BLOCK_P (insn))
5104 insn = NEXT_INSN (insn);
5106 new_insn = emit_insn_before (pat, insn);
5108 else
5109 new_insn = emit_insn_after (pat, insn);
5111 while (1)
5113 if (INSN_P (pat))
5115 add_label_notes (PATTERN (pat), new_insn);
5116 note_stores (PATTERN (pat), record_set_info, pat);
5118 if (pat == pat_end)
5119 break;
5120 pat = NEXT_INSN (pat);
5123 gcse_create_count++;
5125 if (gcse_file)
5127 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
5128 bb->index, INSN_UID (new_insn));
5129 fprintf (gcse_file, "copying expression %d to reg %d\n",
5130 expr->bitmap_index, regno);
5134 /* Insert partially redundant expressions on edges in the CFG to make
5135 the expressions fully redundant. */
5137 static int
5138 pre_edge_insert (edge_list, index_map)
5139 struct edge_list *edge_list;
5140 struct expr **index_map;
5142 int e, i, j, num_edges, set_size, did_insert = 0;
5143 sbitmap *inserted;
5145 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5146 if it reaches any of the deleted expressions. */
5148 set_size = pre_insert_map[0]->size;
5149 num_edges = NUM_EDGES (edge_list);
5150 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
5151 sbitmap_vector_zero (inserted, num_edges);
5153 for (e = 0; e < num_edges; e++)
5155 int indx;
5156 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
5158 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5160 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5162 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
5163 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5165 struct expr *expr = index_map[j];
5166 struct occr *occr;
5168 /* Now look at each deleted occurrence of this expression. */
5169 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5171 if (! occr->deleted_p)
5172 continue;
5174 /* Insert this expression on this edge if if it would
5175 reach the deleted occurrence in BB. */
5176 if (!TEST_BIT (inserted[e], j))
5178 rtx insn;
5179 edge eg = INDEX_EDGE (edge_list, e);
5181 /* We can't insert anything on an abnormal and
5182 critical edge, so we insert the insn at the end of
5183 the previous block. There are several alternatives
5184 detailed in Morgans book P277 (sec 10.5) for
5185 handling this situation. This one is easiest for
5186 now. */
5188 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5189 insert_insn_end_bb (index_map[j], bb, 0);
5190 else
5192 insn = process_insert_insn (index_map[j]);
5193 insert_insn_on_edge (insn, eg);
5196 if (gcse_file)
5198 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5199 bb->index,
5200 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5201 fprintf (gcse_file, "copy expression %d\n",
5202 expr->bitmap_index);
5205 update_ld_motion_stores (expr);
5206 SET_BIT (inserted[e], j);
5207 did_insert = 1;
5208 gcse_create_count++;
5215 sbitmap_vector_free (inserted);
5216 return did_insert;
5219 /* Copy the result of INSN to REG. INDX is the expression number. */
5221 static void
5222 pre_insert_copy_insn (expr, insn)
5223 struct expr *expr;
5224 rtx insn;
5226 rtx reg = expr->reaching_reg;
5227 int regno = REGNO (reg);
5228 int indx = expr->bitmap_index;
5229 rtx set = single_set (insn);
5230 rtx new_insn;
5232 if (!set)
5233 abort ();
5235 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
5237 /* Keep register set table up to date. */
5238 record_one_set (regno, new_insn);
5240 gcse_create_count++;
5242 if (gcse_file)
5243 fprintf (gcse_file,
5244 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5245 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5246 INSN_UID (insn), regno);
5247 update_ld_motion_stores (expr);
5250 /* Copy available expressions that reach the redundant expression
5251 to `reaching_reg'. */
5253 static void
5254 pre_insert_copies ()
5256 unsigned int i;
5257 struct expr *expr;
5258 struct occr *occr;
5259 struct occr *avail;
5261 /* For each available expression in the table, copy the result to
5262 `reaching_reg' if the expression reaches a deleted one.
5264 ??? The current algorithm is rather brute force.
5265 Need to do some profiling. */
5267 for (i = 0; i < expr_hash_table.size; i++)
5268 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5270 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5271 we don't want to insert a copy here because the expression may not
5272 really be redundant. So only insert an insn if the expression was
5273 deleted. This test also avoids further processing if the
5274 expression wasn't deleted anywhere. */
5275 if (expr->reaching_reg == NULL)
5276 continue;
5278 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5280 if (! occr->deleted_p)
5281 continue;
5283 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5285 rtx insn = avail->insn;
5287 /* No need to handle this one if handled already. */
5288 if (avail->copied_p)
5289 continue;
5291 /* Don't handle this one if it's a redundant one. */
5292 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5293 continue;
5295 /* Or if the expression doesn't reach the deleted one. */
5296 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5297 expr,
5298 BLOCK_FOR_INSN (occr->insn)))
5299 continue;
5301 /* Copy the result of avail to reaching_reg. */
5302 pre_insert_copy_insn (expr, insn);
5303 avail->copied_p = 1;
5309 /* Emit move from SRC to DEST noting the equivalence with expression computed
5310 in INSN. */
5311 static rtx
5312 gcse_emit_move_after (src, dest, insn)
5313 rtx src, dest, insn;
5315 rtx new;
5316 rtx set = single_set (insn), set2;
5317 rtx note;
5318 rtx eqv;
5320 /* This should never fail since we're creating a reg->reg copy
5321 we've verified to be valid. */
5323 new = emit_insn_after (gen_move_insn (dest, src), insn);
5325 /* Note the equivalence for local CSE pass. */
5326 set2 = single_set (new);
5327 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
5328 return new;
5329 if ((note = find_reg_equal_equiv_note (insn)))
5330 eqv = XEXP (note, 0);
5331 else
5332 eqv = SET_SRC (set);
5334 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
5336 return new;
5339 /* Delete redundant computations.
5340 Deletion is done by changing the insn to copy the `reaching_reg' of
5341 the expression into the result of the SET. It is left to later passes
5342 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5344 Returns nonzero if a change is made. */
5346 static int
5347 pre_delete ()
5349 unsigned int i;
5350 int changed;
5351 struct expr *expr;
5352 struct occr *occr;
5354 changed = 0;
5355 for (i = 0; i < expr_hash_table.size; i++)
5356 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5358 int indx = expr->bitmap_index;
5360 /* We only need to search antic_occr since we require
5361 ANTLOC != 0. */
5363 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5365 rtx insn = occr->insn;
5366 rtx set;
5367 basic_block bb = BLOCK_FOR_INSN (insn);
5369 if (TEST_BIT (pre_delete_map[bb->index], indx))
5371 set = single_set (insn);
5372 if (! set)
5373 abort ();
5375 /* Create a pseudo-reg to store the result of reaching
5376 expressions into. Get the mode for the new pseudo from
5377 the mode of the original destination pseudo. */
5378 if (expr->reaching_reg == NULL)
5379 expr->reaching_reg
5380 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5382 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5383 delete_insn (insn);
5384 occr->deleted_p = 1;
5385 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5386 changed = 1;
5387 gcse_subst_count++;
5389 if (gcse_file)
5391 fprintf (gcse_file,
5392 "PRE: redundant insn %d (expression %d) in ",
5393 INSN_UID (insn), indx);
5394 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5395 bb->index, REGNO (expr->reaching_reg));
5401 return changed;
5404 /* Perform GCSE optimizations using PRE.
5405 This is called by one_pre_gcse_pass after all the dataflow analysis
5406 has been done.
5408 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5409 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5410 Compiler Design and Implementation.
5412 ??? A new pseudo reg is created to hold the reaching expression. The nice
5413 thing about the classical approach is that it would try to use an existing
5414 reg. If the register can't be adequately optimized [i.e. we introduce
5415 reload problems], one could add a pass here to propagate the new register
5416 through the block.
5418 ??? We don't handle single sets in PARALLELs because we're [currently] not
5419 able to copy the rest of the parallel when we insert copies to create full
5420 redundancies from partial redundancies. However, there's no reason why we
5421 can't handle PARALLELs in the cases where there are no partial
5422 redundancies. */
5424 static int
5425 pre_gcse ()
5427 unsigned int i;
5428 int did_insert, changed;
5429 struct expr **index_map;
5430 struct expr *expr;
5432 /* Compute a mapping from expression number (`bitmap_index') to
5433 hash table entry. */
5435 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5436 for (i = 0; i < expr_hash_table.size; i++)
5437 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5438 index_map[expr->bitmap_index] = expr;
5440 /* Reset bitmap used to track which insns are redundant. */
5441 pre_redundant_insns = sbitmap_alloc (max_cuid);
5442 sbitmap_zero (pre_redundant_insns);
5444 /* Delete the redundant insns first so that
5445 - we know what register to use for the new insns and for the other
5446 ones with reaching expressions
5447 - we know which insns are redundant when we go to create copies */
5449 changed = pre_delete ();
5451 did_insert = pre_edge_insert (edge_list, index_map);
5453 /* In other places with reaching expressions, copy the expression to the
5454 specially allocated pseudo-reg that reaches the redundant expr. */
5455 pre_insert_copies ();
5456 if (did_insert)
5458 commit_edge_insertions ();
5459 changed = 1;
5462 free (index_map);
5463 sbitmap_free (pre_redundant_insns);
5464 return changed;
5467 /* Top level routine to perform one PRE GCSE pass.
5469 Return nonzero if a change was made. */
5471 static int
5472 one_pre_gcse_pass (pass)
5473 int pass;
5475 int changed = 0;
5477 gcse_subst_count = 0;
5478 gcse_create_count = 0;
5480 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5481 add_noreturn_fake_exit_edges ();
5482 if (flag_gcse_lm)
5483 compute_ld_motion_mems ();
5485 compute_hash_table (&expr_hash_table);
5486 trim_ld_motion_mems ();
5487 if (gcse_file)
5488 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
5490 if (expr_hash_table.n_elems > 0)
5492 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
5493 compute_pre_data ();
5494 changed |= pre_gcse ();
5495 free_edge_list (edge_list);
5496 free_pre_mem ();
5499 free_ldst_mems ();
5500 remove_fake_edges ();
5501 free_hash_table (&expr_hash_table);
5503 if (gcse_file)
5505 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5506 current_function_name, pass, bytes_used);
5507 fprintf (gcse_file, "%d substs, %d insns created\n",
5508 gcse_subst_count, gcse_create_count);
5511 return changed;
5514 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5515 If notes are added to an insn which references a CODE_LABEL, the
5516 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5517 because the following loop optimization pass requires them. */
5519 /* ??? This is very similar to the loop.c add_label_notes function. We
5520 could probably share code here. */
5522 /* ??? If there was a jump optimization pass after gcse and before loop,
5523 then we would not need to do this here, because jump would add the
5524 necessary REG_LABEL notes. */
5526 static void
5527 add_label_notes (x, insn)
5528 rtx x;
5529 rtx insn;
5531 enum rtx_code code = GET_CODE (x);
5532 int i, j;
5533 const char *fmt;
5535 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5537 /* This code used to ignore labels that referred to dispatch tables to
5538 avoid flow generating (slighly) worse code.
5540 We no longer ignore such label references (see LABEL_REF handling in
5541 mark_jump_label for additional information). */
5543 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5544 REG_NOTES (insn));
5545 if (LABEL_P (XEXP (x, 0)))
5546 LABEL_NUSES (XEXP (x, 0))++;
5547 return;
5550 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5552 if (fmt[i] == 'e')
5553 add_label_notes (XEXP (x, i), insn);
5554 else if (fmt[i] == 'E')
5555 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5556 add_label_notes (XVECEXP (x, i, j), insn);
5560 /* Compute transparent outgoing information for each block.
5562 An expression is transparent to an edge unless it is killed by
5563 the edge itself. This can only happen with abnormal control flow,
5564 when the edge is traversed through a call. This happens with
5565 non-local labels and exceptions.
5567 This would not be necessary if we split the edge. While this is
5568 normally impossible for abnormal critical edges, with some effort
5569 it should be possible with exception handling, since we still have
5570 control over which handler should be invoked. But due to increased
5571 EH table sizes, this may not be worthwhile. */
5573 static void
5574 compute_transpout ()
5576 basic_block bb;
5577 unsigned int i;
5578 struct expr *expr;
5580 sbitmap_vector_ones (transpout, last_basic_block);
5582 FOR_EACH_BB (bb)
5584 /* Note that flow inserted a nop a the end of basic blocks that
5585 end in call instructions for reasons other than abnormal
5586 control flow. */
5587 if (GET_CODE (bb->end) != CALL_INSN)
5588 continue;
5590 for (i = 0; i < expr_hash_table.size; i++)
5591 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5592 if (GET_CODE (expr->expr) == MEM)
5594 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5595 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5596 continue;
5598 /* ??? Optimally, we would use interprocedural alias
5599 analysis to determine if this mem is actually killed
5600 by this call. */
5601 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5606 /* Removal of useless null pointer checks */
5608 /* Called via note_stores. X is set by SETTER. If X is a register we must
5609 invalidate nonnull_local and set nonnull_killed. DATA is really a
5610 `null_pointer_info *'.
5612 We ignore hard registers. */
5614 static void
5615 invalidate_nonnull_info (x, setter, data)
5616 rtx x;
5617 rtx setter ATTRIBUTE_UNUSED;
5618 void *data;
5620 unsigned int regno;
5621 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5623 while (GET_CODE (x) == SUBREG)
5624 x = SUBREG_REG (x);
5626 /* Ignore anything that is not a register or is a hard register. */
5627 if (GET_CODE (x) != REG
5628 || REGNO (x) < npi->min_reg
5629 || REGNO (x) >= npi->max_reg)
5630 return;
5632 regno = REGNO (x) - npi->min_reg;
5634 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5635 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5638 /* Do null-pointer check elimination for the registers indicated in
5639 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5640 they are not our responsibility to free. */
5642 static int
5643 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5644 nonnull_avout, npi)
5645 unsigned int *block_reg;
5646 sbitmap *nonnull_avin;
5647 sbitmap *nonnull_avout;
5648 struct null_pointer_info *npi;
5650 basic_block bb, current_block;
5651 sbitmap *nonnull_local = npi->nonnull_local;
5652 sbitmap *nonnull_killed = npi->nonnull_killed;
5653 int something_changed = 0;
5655 /* Compute local properties, nonnull and killed. A register will have
5656 the nonnull property if at the end of the current block its value is
5657 known to be nonnull. The killed property indicates that somewhere in
5658 the block any information we had about the register is killed.
5660 Note that a register can have both properties in a single block. That
5661 indicates that it's killed, then later in the block a new value is
5662 computed. */
5663 sbitmap_vector_zero (nonnull_local, last_basic_block);
5664 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5666 FOR_EACH_BB (current_block)
5668 rtx insn, stop_insn;
5670 /* Set the current block for invalidate_nonnull_info. */
5671 npi->current_block = current_block;
5673 /* Scan each insn in the basic block looking for memory references and
5674 register sets. */
5675 stop_insn = NEXT_INSN (current_block->end);
5676 for (insn = current_block->head;
5677 insn != stop_insn;
5678 insn = NEXT_INSN (insn))
5680 rtx set;
5681 rtx reg;
5683 /* Ignore anything that is not a normal insn. */
5684 if (! INSN_P (insn))
5685 continue;
5687 /* Basically ignore anything that is not a simple SET. We do have
5688 to make sure to invalidate nonnull_local and set nonnull_killed
5689 for such insns though. */
5690 set = single_set (insn);
5691 if (!set)
5693 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5694 continue;
5697 /* See if we've got a usable memory load. We handle it first
5698 in case it uses its address register as a dest (which kills
5699 the nonnull property). */
5700 if (GET_CODE (SET_SRC (set)) == MEM
5701 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5702 && REGNO (reg) >= npi->min_reg
5703 && REGNO (reg) < npi->max_reg)
5704 SET_BIT (nonnull_local[current_block->index],
5705 REGNO (reg) - npi->min_reg);
5707 /* Now invalidate stuff clobbered by this insn. */
5708 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5710 /* And handle stores, we do these last since any sets in INSN can
5711 not kill the nonnull property if it is derived from a MEM
5712 appearing in a SET_DEST. */
5713 if (GET_CODE (SET_DEST (set)) == MEM
5714 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5715 && REGNO (reg) >= npi->min_reg
5716 && REGNO (reg) < npi->max_reg)
5717 SET_BIT (nonnull_local[current_block->index],
5718 REGNO (reg) - npi->min_reg);
5722 /* Now compute global properties based on the local properties. This
5723 is a classic global availability algorithm. */
5724 compute_available (nonnull_local, nonnull_killed,
5725 nonnull_avout, nonnull_avin);
5727 /* Now look at each bb and see if it ends with a compare of a value
5728 against zero. */
5729 FOR_EACH_BB (bb)
5731 rtx last_insn = bb->end;
5732 rtx condition, earliest;
5733 int compare_and_branch;
5735 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5736 since BLOCK_REG[BB] is zero if this block did not end with a
5737 comparison against zero, this condition works. */
5738 if (block_reg[bb->index] < npi->min_reg
5739 || block_reg[bb->index] >= npi->max_reg)
5740 continue;
5742 /* LAST_INSN is a conditional jump. Get its condition. */
5743 condition = get_condition (last_insn, &earliest);
5745 /* If we can't determine the condition then skip. */
5746 if (! condition)
5747 continue;
5749 /* Is the register known to have a nonzero value? */
5750 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
5751 continue;
5753 /* Try to compute whether the compare/branch at the loop end is one or
5754 two instructions. */
5755 if (earliest == last_insn)
5756 compare_and_branch = 1;
5757 else if (earliest == prev_nonnote_insn (last_insn))
5758 compare_and_branch = 2;
5759 else
5760 continue;
5762 /* We know the register in this comparison is nonnull at exit from
5763 this block. We can optimize this comparison. */
5764 if (GET_CODE (condition) == NE)
5766 rtx new_jump;
5768 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5769 last_insn);
5770 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5771 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5772 emit_barrier_after (new_jump);
5775 something_changed = 1;
5776 delete_insn (last_insn);
5777 if (compare_and_branch == 2)
5778 delete_insn (earliest);
5779 purge_dead_edges (bb);
5781 /* Don't check this block again. (Note that BLOCK_END is
5782 invalid here; we deleted the last instruction in the
5783 block.) */
5784 block_reg[bb->index] = 0;
5787 return something_changed;
5790 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5791 at compile time.
5793 This is conceptually similar to global constant/copy propagation and
5794 classic global CSE (it even uses the same dataflow equations as cprop).
5796 If a register is used as memory address with the form (mem (reg)), then we
5797 know that REG can not be zero at that point in the program. Any instruction
5798 which sets REG "kills" this property.
5800 So, if every path leading to a conditional branch has an available memory
5801 reference of that form, then we know the register can not have the value
5802 zero at the conditional branch.
5804 So we merely need to compute the local properties and propagate that data
5805 around the cfg, then optimize where possible.
5807 We run this pass two times. Once before CSE, then again after CSE. This
5808 has proven to be the most profitable approach. It is rare for new
5809 optimization opportunities of this nature to appear after the first CSE
5810 pass.
5812 This could probably be integrated with global cprop with a little work. */
5815 delete_null_pointer_checks (f)
5816 rtx f ATTRIBUTE_UNUSED;
5818 sbitmap *nonnull_avin, *nonnull_avout;
5819 unsigned int *block_reg;
5820 basic_block bb;
5821 int reg;
5822 int regs_per_pass;
5823 int max_reg;
5824 struct null_pointer_info npi;
5825 int something_changed = 0;
5827 /* If we have only a single block, then there's nothing to do. */
5828 if (n_basic_blocks <= 1)
5829 return 0;
5831 /* Trying to perform global optimizations on flow graphs which have
5832 a high connectivity will take a long time and is unlikely to be
5833 particularly useful.
5835 In normal circumstances a cfg should have about twice as many edges
5836 as blocks. But we do not want to punish small functions which have
5837 a couple switch statements. So we require a relatively large number
5838 of basic blocks and the ratio of edges to blocks to be high. */
5839 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5840 return 0;
5842 /* We need four bitmaps, each with a bit for each register in each
5843 basic block. */
5844 max_reg = max_reg_num ();
5845 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
5847 /* Allocate bitmaps to hold local and global properties. */
5848 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5849 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5850 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5851 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5853 /* Go through the basic blocks, seeing whether or not each block
5854 ends with a conditional branch whose condition is a comparison
5855 against zero. Record the register compared in BLOCK_REG. */
5856 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
5857 FOR_EACH_BB (bb)
5859 rtx last_insn = bb->end;
5860 rtx condition, earliest, reg;
5862 /* We only want conditional branches. */
5863 if (GET_CODE (last_insn) != JUMP_INSN
5864 || !any_condjump_p (last_insn)
5865 || !onlyjump_p (last_insn))
5866 continue;
5868 /* LAST_INSN is a conditional jump. Get its condition. */
5869 condition = get_condition (last_insn, &earliest);
5871 /* If we were unable to get the condition, or it is not an equality
5872 comparison against zero then there's nothing we can do. */
5873 if (!condition
5874 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5875 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5876 || (XEXP (condition, 1)
5877 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5878 continue;
5880 /* We must be checking a register against zero. */
5881 reg = XEXP (condition, 0);
5882 if (GET_CODE (reg) != REG)
5883 continue;
5885 block_reg[bb->index] = REGNO (reg);
5888 /* Go through the algorithm for each block of registers. */
5889 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5891 npi.min_reg = reg;
5892 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5893 something_changed |= delete_null_pointer_checks_1 (block_reg,
5894 nonnull_avin,
5895 nonnull_avout,
5896 &npi);
5899 /* Free the table of registers compared at the end of every block. */
5900 free (block_reg);
5902 /* Free bitmaps. */
5903 sbitmap_vector_free (npi.nonnull_local);
5904 sbitmap_vector_free (npi.nonnull_killed);
5905 sbitmap_vector_free (nonnull_avin);
5906 sbitmap_vector_free (nonnull_avout);
5908 return something_changed;
5911 /* Code Hoisting variables and subroutines. */
5913 /* Very busy expressions. */
5914 static sbitmap *hoist_vbein;
5915 static sbitmap *hoist_vbeout;
5917 /* Hoistable expressions. */
5918 static sbitmap *hoist_exprs;
5920 /* Dominator bitmaps. */
5921 dominance_info dominators;
5923 /* ??? We could compute post dominators and run this algorithm in
5924 reverse to perform tail merging, doing so would probably be
5925 more effective than the tail merging code in jump.c.
5927 It's unclear if tail merging could be run in parallel with
5928 code hoisting. It would be nice. */
5930 /* Allocate vars used for code hoisting analysis. */
5932 static void
5933 alloc_code_hoist_mem (n_blocks, n_exprs)
5934 int n_blocks, n_exprs;
5936 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5937 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5938 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5940 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5941 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5942 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5943 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5946 /* Free vars used for code hoisting analysis. */
5948 static void
5949 free_code_hoist_mem ()
5951 sbitmap_vector_free (antloc);
5952 sbitmap_vector_free (transp);
5953 sbitmap_vector_free (comp);
5955 sbitmap_vector_free (hoist_vbein);
5956 sbitmap_vector_free (hoist_vbeout);
5957 sbitmap_vector_free (hoist_exprs);
5958 sbitmap_vector_free (transpout);
5960 free_dominance_info (dominators);
5963 /* Compute the very busy expressions at entry/exit from each block.
5965 An expression is very busy if all paths from a given point
5966 compute the expression. */
5968 static void
5969 compute_code_hoist_vbeinout ()
5971 int changed, passes;
5972 basic_block bb;
5974 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5975 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5977 passes = 0;
5978 changed = 1;
5980 while (changed)
5982 changed = 0;
5984 /* We scan the blocks in the reverse order to speed up
5985 the convergence. */
5986 FOR_EACH_BB_REVERSE (bb)
5988 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5989 hoist_vbeout[bb->index], transp[bb->index]);
5990 if (bb->next_bb != EXIT_BLOCK_PTR)
5991 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5994 passes++;
5997 if (gcse_file)
5998 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
6001 /* Top level routine to do the dataflow analysis needed by code hoisting. */
6003 static void
6004 compute_code_hoist_data ()
6006 compute_local_properties (transp, comp, antloc, &expr_hash_table);
6007 compute_transpout ();
6008 compute_code_hoist_vbeinout ();
6009 dominators = calculate_dominance_info (CDI_DOMINATORS);
6010 if (gcse_file)
6011 fprintf (gcse_file, "\n");
6014 /* Determine if the expression identified by EXPR_INDEX would
6015 reach BB unimpared if it was placed at the end of EXPR_BB.
6017 It's unclear exactly what Muchnick meant by "unimpared". It seems
6018 to me that the expression must either be computed or transparent in
6019 *every* block in the path(s) from EXPR_BB to BB. Any other definition
6020 would allow the expression to be hoisted out of loops, even if
6021 the expression wasn't a loop invariant.
6023 Contrast this to reachability for PRE where an expression is
6024 considered reachable if *any* path reaches instead of *all*
6025 paths. */
6027 static int
6028 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
6029 basic_block expr_bb;
6030 int expr_index;
6031 basic_block bb;
6032 char *visited;
6034 edge pred;
6035 int visited_allocated_locally = 0;
6038 if (visited == NULL)
6040 visited_allocated_locally = 1;
6041 visited = xcalloc (last_basic_block, 1);
6044 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
6046 basic_block pred_bb = pred->src;
6048 if (pred->src == ENTRY_BLOCK_PTR)
6049 break;
6050 else if (pred_bb == expr_bb)
6051 continue;
6052 else if (visited[pred_bb->index])
6053 continue;
6055 /* Does this predecessor generate this expression? */
6056 else if (TEST_BIT (comp[pred_bb->index], expr_index))
6057 break;
6058 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
6059 break;
6061 /* Not killed. */
6062 else
6064 visited[pred_bb->index] = 1;
6065 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
6066 pred_bb, visited))
6067 break;
6070 if (visited_allocated_locally)
6071 free (visited);
6073 return (pred == NULL);
6076 /* Actually perform code hoisting. */
6078 static void
6079 hoist_code ()
6081 basic_block bb, dominated;
6082 basic_block *domby;
6083 unsigned int domby_len;
6084 unsigned int i,j;
6085 struct expr **index_map;
6086 struct expr *expr;
6088 sbitmap_vector_zero (hoist_exprs, last_basic_block);
6090 /* Compute a mapping from expression number (`bitmap_index') to
6091 hash table entry. */
6093 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
6094 for (i = 0; i < expr_hash_table.size; i++)
6095 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
6096 index_map[expr->bitmap_index] = expr;
6098 /* Walk over each basic block looking for potentially hoistable
6099 expressions, nothing gets hoisted from the entry block. */
6100 FOR_EACH_BB (bb)
6102 int found = 0;
6103 int insn_inserted_p;
6105 domby_len = get_dominated_by (dominators, bb, &domby);
6106 /* Examine each expression that is very busy at the exit of this
6107 block. These are the potentially hoistable expressions. */
6108 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
6110 int hoistable = 0;
6112 if (TEST_BIT (hoist_vbeout[bb->index], i)
6113 && TEST_BIT (transpout[bb->index], i))
6115 /* We've found a potentially hoistable expression, now
6116 we look at every block BB dominates to see if it
6117 computes the expression. */
6118 for (j = 0; j < domby_len; j++)
6120 dominated = domby[j];
6121 /* Ignore self dominance. */
6122 if (bb == dominated)
6123 continue;
6124 /* We've found a dominated block, now see if it computes
6125 the busy expression and whether or not moving that
6126 expression to the "beginning" of that block is safe. */
6127 if (!TEST_BIT (antloc[dominated->index], i))
6128 continue;
6130 /* Note if the expression would reach the dominated block
6131 unimpared if it was placed at the end of BB.
6133 Keep track of how many times this expression is hoistable
6134 from a dominated block into BB. */
6135 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6136 hoistable++;
6139 /* If we found more than one hoistable occurrence of this
6140 expression, then note it in the bitmap of expressions to
6141 hoist. It makes no sense to hoist things which are computed
6142 in only one BB, and doing so tends to pessimize register
6143 allocation. One could increase this value to try harder
6144 to avoid any possible code expansion due to register
6145 allocation issues; however experiments have shown that
6146 the vast majority of hoistable expressions are only movable
6147 from two successors, so raising this threshhold is likely
6148 to nullify any benefit we get from code hoisting. */
6149 if (hoistable > 1)
6151 SET_BIT (hoist_exprs[bb->index], i);
6152 found = 1;
6156 /* If we found nothing to hoist, then quit now. */
6157 if (! found)
6159 free (domby);
6160 continue;
6163 /* Loop over all the hoistable expressions. */
6164 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
6166 /* We want to insert the expression into BB only once, so
6167 note when we've inserted it. */
6168 insn_inserted_p = 0;
6170 /* These tests should be the same as the tests above. */
6171 if (TEST_BIT (hoist_vbeout[bb->index], i))
6173 /* We've found a potentially hoistable expression, now
6174 we look at every block BB dominates to see if it
6175 computes the expression. */
6176 for (j = 0; j < domby_len; j++)
6178 dominated = domby[j];
6179 /* Ignore self dominance. */
6180 if (bb == dominated)
6181 continue;
6183 /* We've found a dominated block, now see if it computes
6184 the busy expression and whether or not moving that
6185 expression to the "beginning" of that block is safe. */
6186 if (!TEST_BIT (antloc[dominated->index], i))
6187 continue;
6189 /* The expression is computed in the dominated block and
6190 it would be safe to compute it at the start of the
6191 dominated block. Now we have to determine if the
6192 expression would reach the dominated block if it was
6193 placed at the end of BB. */
6194 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6196 struct expr *expr = index_map[i];
6197 struct occr *occr = expr->antic_occr;
6198 rtx insn;
6199 rtx set;
6201 /* Find the right occurrence of this expression. */
6202 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6203 occr = occr->next;
6205 /* Should never happen. */
6206 if (!occr)
6207 abort ();
6209 insn = occr->insn;
6211 set = single_set (insn);
6212 if (! set)
6213 abort ();
6215 /* Create a pseudo-reg to store the result of reaching
6216 expressions into. Get the mode for the new pseudo
6217 from the mode of the original destination pseudo. */
6218 if (expr->reaching_reg == NULL)
6219 expr->reaching_reg
6220 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6222 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6223 delete_insn (insn);
6224 occr->deleted_p = 1;
6225 if (!insn_inserted_p)
6227 insert_insn_end_bb (index_map[i], bb, 0);
6228 insn_inserted_p = 1;
6234 free (domby);
6237 free (index_map);
6240 /* Top level routine to perform one code hoisting (aka unification) pass
6242 Return nonzero if a change was made. */
6244 static int
6245 one_code_hoisting_pass ()
6247 int changed = 0;
6249 alloc_hash_table (max_cuid, &expr_hash_table, 0);
6250 compute_hash_table (&expr_hash_table);
6251 if (gcse_file)
6252 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
6254 if (expr_hash_table.n_elems > 0)
6256 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
6257 compute_code_hoist_data ();
6258 hoist_code ();
6259 free_code_hoist_mem ();
6262 free_hash_table (&expr_hash_table);
6264 return changed;
6267 /* Here we provide the things required to do store motion towards
6268 the exit. In order for this to be effective, gcse also needed to
6269 be taught how to move a load when it is kill only by a store to itself.
6271 int i;
6272 float a[10];
6274 void foo(float scale)
6276 for (i=0; i<10; i++)
6277 a[i] *= scale;
6280 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6281 the load out since its live around the loop, and stored at the bottom
6282 of the loop.
6284 The 'Load Motion' referred to and implemented in this file is
6285 an enhancement to gcse which when using edge based lcm, recognizes
6286 this situation and allows gcse to move the load out of the loop.
6288 Once gcse has hoisted the load, store motion can then push this
6289 load towards the exit, and we end up with no loads or stores of 'i'
6290 in the loop. */
6292 /* This will search the ldst list for a matching expression. If it
6293 doesn't find one, we create one and initialize it. */
6295 static struct ls_expr *
6296 ldst_entry (x)
6297 rtx x;
6299 struct ls_expr * ptr;
6301 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6302 if (expr_equiv_p (ptr->pattern, x))
6303 break;
6305 if (!ptr)
6307 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6309 ptr->next = pre_ldst_mems;
6310 ptr->expr = NULL;
6311 ptr->pattern = x;
6312 ptr->loads = NULL_RTX;
6313 ptr->stores = NULL_RTX;
6314 ptr->reaching_reg = NULL_RTX;
6315 ptr->invalid = 0;
6316 ptr->index = 0;
6317 ptr->hash_index = 0;
6318 pre_ldst_mems = ptr;
6321 return ptr;
6324 /* Free up an individual ldst entry. */
6326 static void
6327 free_ldst_entry (ptr)
6328 struct ls_expr * ptr;
6330 free_INSN_LIST_list (& ptr->loads);
6331 free_INSN_LIST_list (& ptr->stores);
6333 free (ptr);
6336 /* Free up all memory associated with the ldst list. */
6338 static void
6339 free_ldst_mems ()
6341 while (pre_ldst_mems)
6343 struct ls_expr * tmp = pre_ldst_mems;
6345 pre_ldst_mems = pre_ldst_mems->next;
6347 free_ldst_entry (tmp);
6350 pre_ldst_mems = NULL;
6353 /* Dump debugging info about the ldst list. */
6355 static void
6356 print_ldst_list (file)
6357 FILE * file;
6359 struct ls_expr * ptr;
6361 fprintf (file, "LDST list: \n");
6363 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6365 fprintf (file, " Pattern (%3d): ", ptr->index);
6367 print_rtl (file, ptr->pattern);
6369 fprintf (file, "\n Loads : ");
6371 if (ptr->loads)
6372 print_rtl (file, ptr->loads);
6373 else
6374 fprintf (file, "(nil)");
6376 fprintf (file, "\n Stores : ");
6378 if (ptr->stores)
6379 print_rtl (file, ptr->stores);
6380 else
6381 fprintf (file, "(nil)");
6383 fprintf (file, "\n\n");
6386 fprintf (file, "\n");
6389 /* Returns 1 if X is in the list of ldst only expressions. */
6391 static struct ls_expr *
6392 find_rtx_in_ldst (x)
6393 rtx x;
6395 struct ls_expr * ptr;
6397 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6398 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6399 return ptr;
6401 return NULL;
6404 /* Assign each element of the list of mems a monotonically increasing value. */
6406 static int
6407 enumerate_ldsts ()
6409 struct ls_expr * ptr;
6410 int n = 0;
6412 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6413 ptr->index = n++;
6415 return n;
6418 /* Return first item in the list. */
6420 static inline struct ls_expr *
6421 first_ls_expr ()
6423 return pre_ldst_mems;
6426 /* Return the next item in ther list after the specified one. */
6428 static inline struct ls_expr *
6429 next_ls_expr (ptr)
6430 struct ls_expr * ptr;
6432 return ptr->next;
6435 /* Load Motion for loads which only kill themselves. */
6437 /* Return true if x is a simple MEM operation, with no registers or
6438 side effects. These are the types of loads we consider for the
6439 ld_motion list, otherwise we let the usual aliasing take care of it. */
6441 static int
6442 simple_mem (x)
6443 rtx x;
6445 if (GET_CODE (x) != MEM)
6446 return 0;
6448 if (MEM_VOLATILE_P (x))
6449 return 0;
6451 if (GET_MODE (x) == BLKmode)
6452 return 0;
6454 if (!rtx_varies_p (XEXP (x, 0), 0))
6455 return 1;
6457 return 0;
6460 /* Make sure there isn't a buried reference in this pattern anywhere.
6461 If there is, invalidate the entry for it since we're not capable
6462 of fixing it up just yet.. We have to be sure we know about ALL
6463 loads since the aliasing code will allow all entries in the
6464 ld_motion list to not-alias itself. If we miss a load, we will get
6465 the wrong value since gcse might common it and we won't know to
6466 fix it up. */
6468 static void
6469 invalidate_any_buried_refs (x)
6470 rtx x;
6472 const char * fmt;
6473 int i, j;
6474 struct ls_expr * ptr;
6476 /* Invalidate it in the list. */
6477 if (GET_CODE (x) == MEM && simple_mem (x))
6479 ptr = ldst_entry (x);
6480 ptr->invalid = 1;
6483 /* Recursively process the insn. */
6484 fmt = GET_RTX_FORMAT (GET_CODE (x));
6486 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6488 if (fmt[i] == 'e')
6489 invalidate_any_buried_refs (XEXP (x, i));
6490 else if (fmt[i] == 'E')
6491 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6492 invalidate_any_buried_refs (XVECEXP (x, i, j));
6496 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6497 being defined as MEM loads and stores to symbols, with no
6498 side effects and no registers in the expression. If there are any
6499 uses/defs which don't match this criteria, it is invalidated and
6500 trimmed out later. */
6502 static void
6503 compute_ld_motion_mems ()
6505 struct ls_expr * ptr;
6506 basic_block bb;
6507 rtx insn;
6509 pre_ldst_mems = NULL;
6511 FOR_EACH_BB (bb)
6513 for (insn = bb->head;
6514 insn && insn != NEXT_INSN (bb->end);
6515 insn = NEXT_INSN (insn))
6517 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6519 if (GET_CODE (PATTERN (insn)) == SET)
6521 rtx src = SET_SRC (PATTERN (insn));
6522 rtx dest = SET_DEST (PATTERN (insn));
6524 /* Check for a simple LOAD... */
6525 if (GET_CODE (src) == MEM && simple_mem (src))
6527 ptr = ldst_entry (src);
6528 if (GET_CODE (dest) == REG)
6529 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6530 else
6531 ptr->invalid = 1;
6533 else
6535 /* Make sure there isn't a buried load somewhere. */
6536 invalidate_any_buried_refs (src);
6539 /* Check for stores. Don't worry about aliased ones, they
6540 will block any movement we might do later. We only care
6541 about this exact pattern since those are the only
6542 circumstance that we will ignore the aliasing info. */
6543 if (GET_CODE (dest) == MEM && simple_mem (dest))
6545 ptr = ldst_entry (dest);
6547 if (GET_CODE (src) != MEM
6548 && GET_CODE (src) != ASM_OPERANDS)
6549 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6550 else
6551 ptr->invalid = 1;
6554 else
6555 invalidate_any_buried_refs (PATTERN (insn));
6561 /* Remove any references that have been either invalidated or are not in the
6562 expression list for pre gcse. */
6564 static void
6565 trim_ld_motion_mems ()
6567 struct ls_expr * last = NULL;
6568 struct ls_expr * ptr = first_ls_expr ();
6570 while (ptr != NULL)
6572 int del = ptr->invalid;
6573 struct expr * expr = NULL;
6575 /* Delete if entry has been made invalid. */
6576 if (!del)
6578 unsigned int i;
6580 del = 1;
6581 /* Delete if we cannot find this mem in the expression list. */
6582 for (i = 0; i < expr_hash_table.size && del; i++)
6584 for (expr = expr_hash_table.table[i];
6585 expr != NULL;
6586 expr = expr->next_same_hash)
6587 if (expr_equiv_p (expr->expr, ptr->pattern))
6589 del = 0;
6590 break;
6595 if (del)
6597 if (last != NULL)
6599 last->next = ptr->next;
6600 free_ldst_entry (ptr);
6601 ptr = last->next;
6603 else
6605 pre_ldst_mems = pre_ldst_mems->next;
6606 free_ldst_entry (ptr);
6607 ptr = pre_ldst_mems;
6610 else
6612 /* Set the expression field if we are keeping it. */
6613 last = ptr;
6614 ptr->expr = expr;
6615 ptr = ptr->next;
6619 /* Show the world what we've found. */
6620 if (gcse_file && pre_ldst_mems != NULL)
6621 print_ldst_list (gcse_file);
6624 /* This routine will take an expression which we are replacing with
6625 a reaching register, and update any stores that are needed if
6626 that expression is in the ld_motion list. Stores are updated by
6627 copying their SRC to the reaching register, and then storeing
6628 the reaching register into the store location. These keeps the
6629 correct value in the reaching register for the loads. */
6631 static void
6632 update_ld_motion_stores (expr)
6633 struct expr * expr;
6635 struct ls_expr * mem_ptr;
6637 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6639 /* We can try to find just the REACHED stores, but is shouldn't
6640 matter to set the reaching reg everywhere... some might be
6641 dead and should be eliminated later. */
6643 /* We replace SET mem = expr with
6644 SET reg = expr
6645 SET mem = reg , where reg is the
6646 reaching reg used in the load. */
6647 rtx list = mem_ptr->stores;
6649 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6651 rtx insn = XEXP (list, 0);
6652 rtx pat = PATTERN (insn);
6653 rtx src = SET_SRC (pat);
6654 rtx reg = expr->reaching_reg;
6655 rtx copy, new;
6657 /* If we've already copied it, continue. */
6658 if (expr->reaching_reg == src)
6659 continue;
6661 if (gcse_file)
6663 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6664 print_rtl (gcse_file, expr->reaching_reg);
6665 fprintf (gcse_file, ":\n ");
6666 print_inline_rtx (gcse_file, insn, 8);
6667 fprintf (gcse_file, "\n");
6670 copy = gen_move_insn ( reg, SET_SRC (pat));
6671 new = emit_insn_before (copy, insn);
6672 record_one_set (REGNO (reg), new);
6673 SET_SRC (pat) = reg;
6675 /* un-recognize this pattern since it's probably different now. */
6676 INSN_CODE (insn) = -1;
6677 gcse_create_count++;
6682 /* Store motion code. */
6684 /* This is used to communicate the target bitvector we want to use in the
6685 reg_set_info routine when called via the note_stores mechanism. */
6686 static sbitmap * regvec;
6688 /* Used in computing the reverse edge graph bit vectors. */
6689 static sbitmap * st_antloc;
6691 /* Global holding the number of store expressions we are dealing with. */
6692 static int num_stores;
6694 /* Checks to set if we need to mark a register set. Called from note_stores. */
6696 static void
6697 reg_set_info (dest, setter, data)
6698 rtx dest, setter ATTRIBUTE_UNUSED;
6699 void * data ATTRIBUTE_UNUSED;
6701 if (GET_CODE (dest) == SUBREG)
6702 dest = SUBREG_REG (dest);
6704 if (GET_CODE (dest) == REG)
6705 SET_BIT (*regvec, REGNO (dest));
6708 /* Return nonzero if the register operands of expression X are killed
6709 anywhere in basic block BB. */
6711 static int
6712 store_ops_ok (x, bb)
6713 rtx x;
6714 basic_block bb;
6716 int i;
6717 enum rtx_code code;
6718 const char * fmt;
6720 /* Repeat is used to turn tail-recursion into iteration. */
6721 repeat:
6723 if (x == 0)
6724 return 1;
6726 code = GET_CODE (x);
6727 switch (code)
6729 case REG:
6730 /* If a reg has changed after us in this
6731 block, the operand has been killed. */
6732 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6734 case MEM:
6735 x = XEXP (x, 0);
6736 goto repeat;
6738 case PRE_DEC:
6739 case PRE_INC:
6740 case POST_DEC:
6741 case POST_INC:
6742 return 0;
6744 case PC:
6745 case CC0: /*FIXME*/
6746 case CONST:
6747 case CONST_INT:
6748 case CONST_DOUBLE:
6749 case CONST_VECTOR:
6750 case SYMBOL_REF:
6751 case LABEL_REF:
6752 case ADDR_VEC:
6753 case ADDR_DIFF_VEC:
6754 return 1;
6756 default:
6757 break;
6760 i = GET_RTX_LENGTH (code) - 1;
6761 fmt = GET_RTX_FORMAT (code);
6763 for (; i >= 0; i--)
6765 if (fmt[i] == 'e')
6767 rtx tem = XEXP (x, i);
6769 /* If we are about to do the last recursive call
6770 needed at this level, change it into iteration.
6771 This function is called enough to be worth it. */
6772 if (i == 0)
6774 x = tem;
6775 goto repeat;
6778 if (! store_ops_ok (tem, bb))
6779 return 0;
6781 else if (fmt[i] == 'E')
6783 int j;
6785 for (j = 0; j < XVECLEN (x, i); j++)
6787 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6788 return 0;
6793 return 1;
6796 /* Determine whether insn is MEM store pattern that we will consider moving. */
6798 static void
6799 find_moveable_store (insn)
6800 rtx insn;
6802 struct ls_expr * ptr;
6803 rtx dest = PATTERN (insn);
6805 if (GET_CODE (dest) != SET
6806 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6807 return;
6809 dest = SET_DEST (dest);
6811 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6812 || GET_MODE (dest) == BLKmode)
6813 return;
6815 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6816 return;
6818 if (rtx_varies_p (XEXP (dest, 0), 0))
6819 return;
6821 ptr = ldst_entry (dest);
6822 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6825 /* Perform store motion. Much like gcse, except we move expressions the
6826 other way by looking at the flowgraph in reverse. */
6828 static int
6829 compute_store_table ()
6831 int ret;
6832 basic_block bb;
6833 unsigned regno;
6834 rtx insn, pat;
6836 max_gcse_regno = max_reg_num ();
6838 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
6839 max_gcse_regno);
6840 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6841 pre_ldst_mems = 0;
6843 /* Find all the stores we care about. */
6844 FOR_EACH_BB (bb)
6846 regvec = & (reg_set_in_block[bb->index]);
6847 for (insn = bb->end;
6848 insn && insn != PREV_INSN (bb->end);
6849 insn = PREV_INSN (insn))
6851 /* Ignore anything that is not a normal insn. */
6852 if (! INSN_P (insn))
6853 continue;
6855 if (GET_CODE (insn) == CALL_INSN)
6857 bool clobbers_all = false;
6858 #ifdef NON_SAVING_SETJMP
6859 if (NON_SAVING_SETJMP
6860 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6861 clobbers_all = true;
6862 #endif
6864 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6865 if (clobbers_all
6866 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6867 SET_BIT (reg_set_in_block[bb->index], regno);
6870 pat = PATTERN (insn);
6871 note_stores (pat, reg_set_info, NULL);
6873 /* Now that we've marked regs, look for stores. */
6874 if (GET_CODE (pat) == SET)
6875 find_moveable_store (insn);
6879 ret = enumerate_ldsts ();
6881 if (gcse_file)
6883 fprintf (gcse_file, "Store Motion Expressions.\n");
6884 print_ldst_list (gcse_file);
6887 return ret;
6890 /* Check to see if the load X is aliased with STORE_PATTERN. */
6892 static int
6893 load_kills_store (x, store_pattern)
6894 rtx x, store_pattern;
6896 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6897 return 1;
6898 return 0;
6901 /* Go through the entire insn X, looking for any loads which might alias
6902 STORE_PATTERN. Return 1 if found. */
6904 static int
6905 find_loads (x, store_pattern)
6906 rtx x, store_pattern;
6908 const char * fmt;
6909 int i, j;
6910 int ret = 0;
6912 if (!x)
6913 return 0;
6915 if (GET_CODE (x) == SET)
6916 x = SET_SRC (x);
6918 if (GET_CODE (x) == MEM)
6920 if (load_kills_store (x, store_pattern))
6921 return 1;
6924 /* Recursively process the insn. */
6925 fmt = GET_RTX_FORMAT (GET_CODE (x));
6927 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6929 if (fmt[i] == 'e')
6930 ret |= find_loads (XEXP (x, i), store_pattern);
6931 else if (fmt[i] == 'E')
6932 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6933 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6935 return ret;
6938 /* Check if INSN kills the store pattern X (is aliased with it).
6939 Return 1 if it it does. */
6941 static int
6942 store_killed_in_insn (x, insn)
6943 rtx x, insn;
6945 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6946 return 0;
6948 if (GET_CODE (insn) == CALL_INSN)
6950 /* A normal or pure call might read from pattern,
6951 but a const call will not. */
6952 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6955 if (GET_CODE (PATTERN (insn)) == SET)
6957 rtx pat = PATTERN (insn);
6958 /* Check for memory stores to aliased objects. */
6959 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6960 /* pretend its a load and check for aliasing. */
6961 if (find_loads (SET_DEST (pat), x))
6962 return 1;
6963 return find_loads (SET_SRC (pat), x);
6965 else
6966 return find_loads (PATTERN (insn), x);
6969 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6970 within basic block BB. */
6972 static int
6973 store_killed_after (x, insn, bb)
6974 rtx x, insn;
6975 basic_block bb;
6977 rtx last = bb->end;
6979 if (insn == last)
6980 return 0;
6982 /* Check if the register operands of the store are OK in this block.
6983 Note that if registers are changed ANYWHERE in the block, we'll
6984 decide we can't move it, regardless of whether it changed above
6985 or below the store. This could be improved by checking the register
6986 operands while looking for aliasing in each insn. */
6987 if (!store_ops_ok (XEXP (x, 0), bb))
6988 return 1;
6990 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6991 if (store_killed_in_insn (x, insn))
6992 return 1;
6994 return 0;
6997 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6998 within basic block BB. */
6999 static int
7000 store_killed_before (x, insn, bb)
7001 rtx x, insn;
7002 basic_block bb;
7004 rtx first = bb->head;
7006 if (insn == first)
7007 return store_killed_in_insn (x, insn);
7009 /* Check if the register operands of the store are OK in this block.
7010 Note that if registers are changed ANYWHERE in the block, we'll
7011 decide we can't move it, regardless of whether it changed above
7012 or below the store. This could be improved by checking the register
7013 operands while looking for aliasing in each insn. */
7014 if (!store_ops_ok (XEXP (x, 0), bb))
7015 return 1;
7017 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
7018 if (store_killed_in_insn (x, insn))
7019 return 1;
7021 return 0;
7024 #define ANTIC_STORE_LIST(x) ((x)->loads)
7025 #define AVAIL_STORE_LIST(x) ((x)->stores)
7027 /* Given the table of available store insns at the end of blocks,
7028 determine which ones are not killed by aliasing, and generate
7029 the appropriate vectors for gen and killed. */
7030 static void
7031 build_store_vectors ()
7033 basic_block bb, b;
7034 rtx insn, st;
7035 struct ls_expr * ptr;
7037 /* Build the gen_vector. This is any store in the table which is not killed
7038 by aliasing later in its block. */
7039 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7040 sbitmap_vector_zero (ae_gen, last_basic_block);
7042 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7043 sbitmap_vector_zero (st_antloc, last_basic_block);
7045 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7047 /* Put all the stores into either the antic list, or the avail list,
7048 or both. */
7049 rtx store_list = ptr->stores;
7050 ptr->stores = NULL_RTX;
7052 for (st = store_list; st != NULL; st = XEXP (st, 1))
7054 insn = XEXP (st, 0);
7055 bb = BLOCK_FOR_INSN (insn);
7057 if (!store_killed_after (ptr->pattern, insn, bb))
7059 /* If we've already seen an available expression in this block,
7060 we can delete the one we saw already (It occurs earlier in
7061 the block), and replace it with this one). We'll copy the
7062 old SRC expression to an unused register in case there
7063 are any side effects. */
7064 if (TEST_BIT (ae_gen[bb->index], ptr->index))
7066 /* Find previous store. */
7067 rtx st;
7068 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
7069 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
7070 break;
7071 if (st)
7073 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
7074 if (gcse_file)
7075 fprintf (gcse_file, "Removing redundant store:\n");
7076 replace_store_insn (r, XEXP (st, 0), bb);
7077 XEXP (st, 0) = insn;
7078 continue;
7081 SET_BIT (ae_gen[bb->index], ptr->index);
7082 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7083 AVAIL_STORE_LIST (ptr));
7086 if (!store_killed_before (ptr->pattern, insn, bb))
7088 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
7089 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7090 ANTIC_STORE_LIST (ptr));
7094 /* Free the original list of store insns. */
7095 free_INSN_LIST_list (&store_list);
7098 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7099 sbitmap_vector_zero (ae_kill, last_basic_block);
7101 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7102 sbitmap_vector_zero (transp, last_basic_block);
7104 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7105 FOR_EACH_BB (b)
7107 if (store_killed_after (ptr->pattern, b->head, b))
7109 /* The anticipatable expression is not killed if it's gen'd. */
7111 We leave this check out for now. If we have a code sequence
7112 in a block which looks like:
7113 ST MEMa = x
7114 L y = MEMa
7115 ST MEMa = z
7116 We should flag this as having an ANTIC expression, NOT
7117 transparent, NOT killed, and AVAIL.
7118 Unfortunately, since we haven't re-written all loads to
7119 use the reaching reg, we'll end up doing an incorrect
7120 Load in the middle here if we push the store down. It happens in
7121 gcc.c-torture/execute/960311-1.c with -O3
7122 If we always kill it in this case, we'll sometimes do
7123 unnecessary work, but it shouldn't actually hurt anything.
7124 if (!TEST_BIT (ae_gen[b], ptr->index)). */
7125 SET_BIT (ae_kill[b->index], ptr->index);
7127 else
7128 SET_BIT (transp[b->index], ptr->index);
7131 /* Any block with no exits calls some non-returning function, so
7132 we better mark the store killed here, or we might not store to
7133 it at all. If we knew it was abort, we wouldn't have to store,
7134 but we don't know that for sure. */
7135 if (gcse_file)
7137 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
7138 print_ldst_list (gcse_file);
7139 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
7140 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
7141 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
7142 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
7146 /* Insert an instruction at the beginning of a basic block, and update
7147 the BLOCK_HEAD if needed. */
7149 static void
7150 insert_insn_start_bb (insn, bb)
7151 rtx insn;
7152 basic_block bb;
7154 /* Insert at start of successor block. */
7155 rtx prev = PREV_INSN (bb->head);
7156 rtx before = bb->head;
7157 while (before != 0)
7159 if (GET_CODE (before) != CODE_LABEL
7160 && (GET_CODE (before) != NOTE
7161 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
7162 break;
7163 prev = before;
7164 if (prev == bb->end)
7165 break;
7166 before = NEXT_INSN (before);
7169 insn = emit_insn_after (insn, prev);
7171 if (gcse_file)
7173 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
7174 bb->index);
7175 print_inline_rtx (gcse_file, insn, 6);
7176 fprintf (gcse_file, "\n");
7180 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7181 the memory reference, and E is the edge to insert it on. Returns nonzero
7182 if an edge insertion was performed. */
7184 static int
7185 insert_store (expr, e)
7186 struct ls_expr * expr;
7187 edge e;
7189 rtx reg, insn;
7190 basic_block bb;
7191 edge tmp;
7193 /* We did all the deleted before this insert, so if we didn't delete a
7194 store, then we haven't set the reaching reg yet either. */
7195 if (expr->reaching_reg == NULL_RTX)
7196 return 0;
7198 reg = expr->reaching_reg;
7199 insn = gen_move_insn (expr->pattern, reg);
7201 /* If we are inserting this expression on ALL predecessor edges of a BB,
7202 insert it at the start of the BB, and reset the insert bits on the other
7203 edges so we don't try to insert it on the other edges. */
7204 bb = e->dest;
7205 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7207 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7208 if (index == EDGE_INDEX_NO_EDGE)
7209 abort ();
7210 if (! TEST_BIT (pre_insert_map[index], expr->index))
7211 break;
7214 /* If tmp is NULL, we found an insertion on every edge, blank the
7215 insertion vector for these edges, and insert at the start of the BB. */
7216 if (!tmp && bb != EXIT_BLOCK_PTR)
7218 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7220 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7221 RESET_BIT (pre_insert_map[index], expr->index);
7223 insert_insn_start_bb (insn, bb);
7224 return 0;
7227 /* We can't insert on this edge, so we'll insert at the head of the
7228 successors block. See Morgan, sec 10.5. */
7229 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7231 insert_insn_start_bb (insn, bb);
7232 return 0;
7235 insert_insn_on_edge (insn, e);
7237 if (gcse_file)
7239 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7240 e->src->index, e->dest->index);
7241 print_inline_rtx (gcse_file, insn, 6);
7242 fprintf (gcse_file, "\n");
7245 return 1;
7248 /* This routine will replace a store with a SET to a specified register. */
7250 static void
7251 replace_store_insn (reg, del, bb)
7252 rtx reg, del;
7253 basic_block bb;
7255 rtx insn;
7257 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
7258 insn = emit_insn_after (insn, del);
7260 if (gcse_file)
7262 fprintf (gcse_file,
7263 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7264 print_inline_rtx (gcse_file, del, 6);
7265 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7266 print_inline_rtx (gcse_file, insn, 6);
7267 fprintf (gcse_file, "\n");
7270 delete_insn (del);
7274 /* Delete a store, but copy the value that would have been stored into
7275 the reaching_reg for later storing. */
7277 static void
7278 delete_store (expr, bb)
7279 struct ls_expr * expr;
7280 basic_block bb;
7282 rtx reg, i, del;
7284 if (expr->reaching_reg == NULL_RTX)
7285 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7288 /* If there is more than 1 store, the earlier ones will be dead,
7289 but it doesn't hurt to replace them here. */
7290 reg = expr->reaching_reg;
7292 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7294 del = XEXP (i, 0);
7295 if (BLOCK_FOR_INSN (del) == bb)
7297 /* We know there is only one since we deleted redundant
7298 ones during the available computation. */
7299 replace_store_insn (reg, del, bb);
7300 break;
7305 /* Free memory used by store motion. */
7307 static void
7308 free_store_memory ()
7310 free_ldst_mems ();
7312 if (ae_gen)
7313 sbitmap_vector_free (ae_gen);
7314 if (ae_kill)
7315 sbitmap_vector_free (ae_kill);
7316 if (transp)
7317 sbitmap_vector_free (transp);
7318 if (st_antloc)
7319 sbitmap_vector_free (st_antloc);
7320 if (pre_insert_map)
7321 sbitmap_vector_free (pre_insert_map);
7322 if (pre_delete_map)
7323 sbitmap_vector_free (pre_delete_map);
7324 if (reg_set_in_block)
7325 sbitmap_vector_free (reg_set_in_block);
7327 ae_gen = ae_kill = transp = st_antloc = NULL;
7328 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7331 /* Perform store motion. Much like gcse, except we move expressions the
7332 other way by looking at the flowgraph in reverse. */
7334 static void
7335 store_motion ()
7337 basic_block bb;
7338 int x;
7339 struct ls_expr * ptr;
7340 int update_flow = 0;
7342 if (gcse_file)
7344 fprintf (gcse_file, "before store motion\n");
7345 print_rtl (gcse_file, get_insns ());
7349 init_alias_analysis ();
7351 /* Find all the stores that are live to the end of their block. */
7352 num_stores = compute_store_table ();
7353 if (num_stores == 0)
7355 sbitmap_vector_free (reg_set_in_block);
7356 end_alias_analysis ();
7357 return;
7360 /* Now compute whats actually available to move. */
7361 add_noreturn_fake_exit_edges ();
7362 build_store_vectors ();
7364 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7365 st_antloc, ae_kill, &pre_insert_map,
7366 &pre_delete_map);
7368 /* Now we want to insert the new stores which are going to be needed. */
7369 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7371 FOR_EACH_BB (bb)
7372 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7373 delete_store (ptr, bb);
7375 for (x = 0; x < NUM_EDGES (edge_list); x++)
7376 if (TEST_BIT (pre_insert_map[x], ptr->index))
7377 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7380 if (update_flow)
7381 commit_edge_insertions ();
7383 free_store_memory ();
7384 free_edge_list (edge_list);
7385 remove_fake_edges ();
7386 end_alias_analysis ();
7390 /* Entry point for jump bypassing optimization pass. */
7393 bypass_jumps (file)
7394 FILE *file;
7396 int changed;
7398 /* We do not construct an accurate cfg in functions which call
7399 setjmp, so just punt to be safe. */
7400 if (current_function_calls_setjmp)
7401 return 0;
7403 /* For calling dump_foo fns from gdb. */
7404 debug_stderr = stderr;
7405 gcse_file = file;
7407 /* Identify the basic block information for this function, including
7408 successors and predecessors. */
7409 max_gcse_regno = max_reg_num ();
7411 if (file)
7412 dump_flow_info (file);
7414 /* Return if there's nothing to do. */
7415 if (n_basic_blocks <= 1)
7416 return 0;
7418 /* Trying to perform global optimizations on flow graphs which have
7419 a high connectivity will take a long time and is unlikely to be
7420 particularly useful.
7422 In normal circumstances a cfg should have about twice as many edges
7423 as blocks. But we do not want to punish small functions which have
7424 a couple switch statements. So we require a relatively large number
7425 of basic blocks and the ratio of edges to blocks to be high. */
7426 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
7428 if (warn_disabled_optimization)
7429 warning ("BYPASS disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
7430 n_basic_blocks, n_edges / n_basic_blocks);
7431 return 0;
7434 /* If allocating memory for the cprop bitmap would take up too much
7435 storage it's better just to disable the optimization. */
7436 if ((n_basic_blocks
7437 * SBITMAP_SET_SIZE (max_gcse_regno)
7438 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
7440 if (warn_disabled_optimization)
7441 warning ("GCSE disabled: %d basic blocks and %d registers",
7442 n_basic_blocks, max_gcse_regno);
7444 return 0;
7447 /* See what modes support reg/reg copy operations. */
7448 if (! can_copy_init_p)
7450 compute_can_copy ();
7451 can_copy_init_p = 1;
7454 gcc_obstack_init (&gcse_obstack);
7455 bytes_used = 0;
7457 /* We need alias. */
7458 init_alias_analysis ();
7460 /* Record where pseudo-registers are set. This data is kept accurate
7461 during each pass. ??? We could also record hard-reg information here
7462 [since it's unchanging], however it is currently done during hash table
7463 computation.
7465 It may be tempting to compute MEM set information here too, but MEM sets
7466 will be subject to code motion one day and thus we need to compute
7467 information about memory sets when we build the hash tables. */
7469 alloc_reg_set_mem (max_gcse_regno);
7470 compute_sets (get_insns ());
7472 max_gcse_regno = max_reg_num ();
7473 alloc_gcse_mem (get_insns ());
7474 changed = one_cprop_pass (1, 1, 1);
7475 free_gcse_mem ();
7477 if (file)
7479 fprintf (file, "BYPASS of %s: %d basic blocks, ",
7480 current_function_name, n_basic_blocks);
7481 fprintf (file, "%d bytes\n\n", bytes_used);
7484 obstack_free (&gcse_obstack, NULL);
7485 free_reg_set_mem ();
7487 /* We are finished with alias. */
7488 end_alias_analysis ();
7489 allocate_reg_info (max_reg_num (), FALSE, FALSE);
7491 return changed;
7494 #include "gt-gcse.h"