1 /* ET-trees datastructure implementation.
2 Contributed by Pavel Nejedly
3 Copyright (C) 2002 Free Software Foundation, Inc.
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
21 The ET-forest structure is described in:
22 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23 J. G'omput. System Sci., 26(3):362 381, 1983.
28 #include "coretypes.h"
30 #include "et-forest.h"
31 #include "alloc-pool.h"
33 struct et_forest_occurrence
;
34 typedef struct et_forest_occurrence
* et_forest_occurrence_t
;
36 /* The ET-forest type. */
39 /* Linked list of nodes is used to destroy the structure. */
42 alloc_pool occur_pool
;
45 /* Single occurrence of node in ET-forest.
46 A single node may have multiple occurrences.
48 struct et_forest_occurrence
50 /* Parent in the splay-tree. */
51 et_forest_occurrence_t parent
;
53 /* Children in the splay-tree. */
54 et_forest_occurrence_t left
, right
;
56 /* Counts of vertices in the two splay-subtrees. */
57 int count_left
, count_right
;
59 /* Next occurrence of this node in the sequence. */
60 et_forest_occurrence_t next
;
62 /* The node, which this occurrence is of. */
63 et_forest_node_t node
;
73 /* First and last occurrence of this node in the sequence. */
74 et_forest_occurrence_t first
, last
;
78 static et_forest_occurrence_t splay
PARAMS ((et_forest_occurrence_t
));
79 static void remove_all_occurrences
PARAMS ((et_forest_t
, et_forest_node_t
));
80 static inline et_forest_occurrence_t find_leftmost_node
81 PARAMS ((et_forest_occurrence_t
));
82 static inline et_forest_occurrence_t find_rightmost_node
83 PARAMS ((et_forest_occurrence_t
));
84 static int calculate_value
PARAMS ((et_forest_occurrence_t
));
86 /* Return leftmost node present in the tree roted by OCC. */
87 static inline et_forest_occurrence_t
88 find_leftmost_node (occ
)
89 et_forest_occurrence_t occ
;
97 /* Return rightmost node present in the tree roted by OCC. */
98 static inline et_forest_occurrence_t
99 find_rightmost_node (occ
)
100 et_forest_occurrence_t occ
;
108 /* Operation splay for splay tree structure representing occurrences. */
109 static et_forest_occurrence_t
111 et_forest_occurrence_t node
;
113 et_forest_occurrence_t parent
;
114 et_forest_occurrence_t grandparent
;
118 parent
= node
->parent
;
121 return node
; /* node == root. */
123 grandparent
= parent
->parent
;
128 /* Now there are four possible combinations: */
130 if (node
== parent
->left
)
132 if (parent
== grandparent
->left
)
134 et_forest_occurrence_t node1
, node2
;
138 count1
= node
->count_right
;
139 node2
= parent
->right
;
140 count2
= parent
->count_right
;
142 grandparent
->left
= node2
;
143 grandparent
->count_left
= count2
;
145 node2
->parent
= grandparent
;
146 parent
->left
= node1
;
147 parent
->count_left
= count1
;
149 node1
->parent
= parent
;
150 parent
->right
= grandparent
;
151 parent
->count_right
= count2
+ grandparent
->count_right
+ 1;
152 node
->right
= parent
;
153 node
->count_right
= count1
+ parent
->count_right
+ 1;
155 node
->parent
= grandparent
->parent
;
156 parent
->parent
= node
;
157 grandparent
->parent
= parent
;
161 if (node
->parent
->left
== grandparent
)
162 node
->parent
->left
= node
;
164 node
->parent
->right
= node
;
169 /* parent == grandparent->right && node == parent->left*/
170 et_forest_occurrence_t node1
, node2
;
174 count1
= node
->count_left
;
176 count2
= node
->count_right
;
178 grandparent
->right
= node1
;
179 grandparent
->count_right
= count1
;
181 node1
->parent
= grandparent
;
182 parent
->left
= node2
;
183 parent
->count_left
= count2
;
185 node2
->parent
= parent
;
186 node
->left
= grandparent
;
187 node
->count_left
= grandparent
->count_left
+ count1
+ 1;
188 node
->right
= parent
;
189 node
->count_right
= parent
->count_right
+ count2
+ 1;
191 node
->parent
= grandparent
->parent
;
192 parent
->parent
= node
;
193 grandparent
->parent
= node
;
197 if (node
->parent
->left
== grandparent
)
198 node
->parent
->left
= node
;
200 node
->parent
->right
= node
;
206 /* node == parent->right. */
207 if (parent
== grandparent
->left
)
209 et_forest_occurrence_t node1
, node2
;
213 count1
= node
->count_left
;
215 count2
= node
->count_right
;
217 parent
->right
= node1
;
218 parent
->count_right
= count1
;
220 node1
->parent
= parent
;
221 grandparent
->left
= node2
;
222 grandparent
->count_left
= count2
;
224 node2
->parent
= grandparent
;
226 node
->count_left
= parent
->count_left
+ count1
+ 1;
227 node
->right
= grandparent
;
228 node
->count_right
= grandparent
->count_right
+ count2
+ 1;
230 node
->parent
= grandparent
->parent
;
231 parent
->parent
= node
;
232 grandparent
->parent
= node
;
236 if (node
->parent
->left
== grandparent
)
237 node
->parent
->left
= node
;
239 node
->parent
->right
= node
;
244 /* parent == grandparent->right && node == parent->right*/
245 et_forest_occurrence_t node1
, node2
;
249 count1
= node
->count_left
;
250 node2
= parent
->left
;
251 count2
= parent
->count_left
;
253 grandparent
->right
= node2
;
254 grandparent
->count_right
= count2
;
256 node2
->parent
= grandparent
;
257 parent
->right
= node1
;
258 parent
->count_right
= count1
;
260 node1
->parent
= parent
;
261 parent
->left
= grandparent
;
262 parent
->count_left
= count2
+ grandparent
->count_left
+ 1;
264 node
->count_left
= count1
+ parent
->count_left
+ 1;
266 node
->parent
= grandparent
->parent
;
267 parent
->parent
= node
;
268 grandparent
->parent
= parent
;
272 if (node
->parent
->left
== grandparent
)
273 node
->parent
->left
= node
;
275 node
->parent
->right
= node
;
282 /* parent == root. */
283 /* There are two possible combinations: */
285 if (node
== parent
->left
)
287 et_forest_occurrence_t node1
;
291 count1
= node
->count_right
;
293 parent
->left
= node1
;
294 parent
->count_left
= count1
;
296 node1
->parent
= parent
;
297 node
->right
= parent
;
298 node
->count_right
= parent
->count_right
+ 1 + count1
;
299 node
->parent
= parent
->parent
; /* the same as = 0; */
300 parent
->parent
= node
;
304 if (node
->parent
->left
== parent
)
305 node
->parent
->left
= node
;
307 node
->parent
->right
= node
;
312 /* node == parent->right. */
313 et_forest_occurrence_t node1
;
317 count1
= node
->count_left
;
319 parent
->right
= node1
;
320 parent
->count_right
= count1
;
322 node1
->parent
= parent
;
324 node
->count_left
= parent
->count_left
+ 1 + count1
;
325 node
->parent
= parent
->parent
; /* the same as = 0; */
326 parent
->parent
= node
;
330 if (node
->parent
->left
== parent
)
331 node
->parent
->left
= node
;
333 node
->parent
->right
= node
;
340 /* Remove all occurrences of the given node before destroying the node. */
342 remove_all_occurrences (forest
, forest_node
)
344 et_forest_node_t forest_node
;
346 et_forest_occurrence_t first
= forest_node
->first
;
347 et_forest_occurrence_t last
= forest_node
->last
;
348 et_forest_occurrence_t node
;
353 first
->left
->parent
= 0;
355 first
->right
->parent
= 0;
362 last
->left
->parent
= 0;
364 last
->right
->parent
= 0;
367 if (last
->right
&& first
->left
) /* actually, first->left would suffice. */
369 /* Need to join them. */
370 et_forest_occurrence_t prev_node
, next_node
;
372 prev_node
= splay (find_rightmost_node (first
->left
));
373 next_node
= splay (find_leftmost_node (last
->right
));
374 /* prev_node and next_node are consecutive occurrences
376 if (prev_node
->next
!= next_node
)
379 prev_node
->right
= next_node
->right
;
380 prev_node
->count_right
= next_node
->count_right
;
381 prev_node
->next
= next_node
->next
;
382 if (prev_node
->right
)
383 prev_node
->right
->parent
= prev_node
;
385 if (prev_node
->node
->last
== next_node
)
386 prev_node
->node
->last
= prev_node
;
388 pool_free (forest
->occur_pool
, next_node
);
397 et_forest_occurrence_t next_node
;
402 node
->left
->parent
= 0;
404 node
->right
->parent
= 0;
406 next_node
= node
->next
;
407 pool_free (forest
->occur_pool
, node
);
412 pool_free (forest
->occur_pool
, first
);
414 pool_free (forest
->occur_pool
, last
);
417 /* Calculate ET value of the given node. */
419 calculate_value (node
)
420 et_forest_occurrence_t node
;
422 int value
= node
->count_left
;
426 if (node
== node
->parent
->right
)
427 value
+= node
->parent
->count_left
+ 1;
438 /* Create ET-forest structure. */
443 et_forest_t forest
= xmalloc (sizeof (struct et_forest
));
446 forest
->occur_pool
= create_alloc_pool ("et_forest_occurrence pool", sizeof (struct et_forest_occurrence
), 300);
447 forest
->node_pool
= create_alloc_pool ("et_forest_node pool", sizeof (struct et_forest_node
), 300);
453 /* Deallocate the structure. */
455 et_forest_delete (forest
)
460 free_alloc_pool (forest
->occur_pool
);
461 free_alloc_pool (forest
->node_pool
);
465 /* Create new node with VALUE and return the edge.
466 Return NULL when memory allocation failed. */
468 et_forest_add_node (forest
, value
)
472 /* Create node with one occurrence. */
473 et_forest_node_t node
;
474 et_forest_occurrence_t occ
;
476 node
= pool_alloc (forest
->node_pool
);
477 occ
= pool_alloc (forest
->occur_pool
);
479 node
->first
= node
->last
= occ
;
484 occ
->left
= occ
->right
= occ
->parent
= 0;
486 occ
->count_left
= occ
->count_right
= 0;
490 /* Add new edge to the tree, return 1 if successful.
491 0 indicates that creation of the edge will close the cycle in graph. */
493 et_forest_add_edge (forest
, parent_node
, child_node
)
494 et_forest_t forest ATTRIBUTE_UNUSED
;
495 et_forest_node_t parent_node
;
496 et_forest_node_t child_node
;
498 et_forest_occurrence_t new_occ
, parent_occ
, child_occ
;
500 if (! parent_node
|| ! child_node
)
503 parent_occ
= parent_node
->first
;
504 child_occ
= child_node
->first
;
509 if (parent_occ
->parent
)
510 return 0; /* Both child and parent are in the same tree. */
513 abort (); /* child must be root of its containing tree. */
515 new_occ
= pool_alloc (forest
->occur_pool
);
517 new_occ
->node
= parent_node
;
518 new_occ
->left
= child_occ
;
519 new_occ
->count_left
= child_occ
->count_right
+ 1; /* count_left is 0. */
520 new_occ
->right
= parent_occ
->right
;
521 new_occ
->count_right
= parent_occ
->count_right
;
522 new_occ
->parent
= parent_occ
;
523 new_occ
->next
= parent_occ
->next
;
524 child_occ
->parent
= new_occ
;
525 parent_occ
->right
= new_occ
;
526 parent_occ
->count_right
= new_occ
->count_left
+ new_occ
->count_right
+ 1;
527 parent_occ
->next
= new_occ
;
529 new_occ
->right
->parent
= new_occ
;
531 if (parent_node
->last
== parent_occ
)
532 parent_node
->last
= new_occ
;
536 /* Remove NODE from the tree and all connected edges. */
538 et_forest_remove_node (forest
, node
)
540 et_forest_node_t node
;
542 remove_all_occurrences (forest
, node
);
545 pool_free (forest
->node_pool
, node
);
548 /* Remove edge from the tree, return 1 if successful,
549 0 indicates nonexisting edge. */
551 et_forest_remove_edge (forest
, parent_node
, child_node
)
552 et_forest_t forest ATTRIBUTE_UNUSED
;
553 et_forest_node_t parent_node
;
554 et_forest_node_t child_node
;
556 et_forest_occurrence_t parent_pre_occ
, parent_post_occ
;
558 splay (child_node
->first
);
560 if (! child_node
->first
->left
)
563 parent_pre_occ
= find_rightmost_node (child_node
->first
->left
);
564 if (parent_pre_occ
->node
!= parent_node
)
567 splay (parent_pre_occ
);
568 parent_pre_occ
->right
->parent
= 0;
570 parent_post_occ
= parent_pre_occ
->next
;
571 splay (parent_post_occ
);
573 parent_post_occ
->left
->parent
= 0;
575 parent_pre_occ
->right
= parent_post_occ
->right
;
576 parent_pre_occ
->count_right
= parent_post_occ
->count_right
;
577 if (parent_post_occ
->right
)
578 parent_post_occ
->right
->parent
= parent_pre_occ
;
580 parent_pre_occ
->next
= parent_post_occ
->next
;
582 if (parent_post_occ
== parent_node
->last
)
583 parent_node
->last
= parent_pre_occ
;
585 pool_free (forest
->occur_pool
, parent_post_occ
);
589 /* Return the parent of the NODE if any, NULL otherwise. */
591 et_forest_parent (forest
, node
)
592 et_forest_t forest ATTRIBUTE_UNUSED
;
593 et_forest_node_t node
;
597 if (node
->first
->left
)
598 return find_rightmost_node (node
->first
->left
)->node
;
604 /* Return nearest common ancestor of NODE1 and NODE2.
605 Return NULL of they are in different trees. */
607 et_forest_common_ancestor (forest
, node1
, node2
)
608 et_forest_t forest ATTRIBUTE_UNUSED
;
609 et_forest_node_t node1
;
610 et_forest_node_t node2
;
612 int value1
, value2
, max_value
;
613 et_forest_node_t ancestor
;
618 if (! node1
|| ! node2
)
621 splay (node1
->first
);
622 splay (node2
->first
);
624 if (! node1
->first
->parent
) /* The two vertices are in different trees. */
627 value2
= calculate_value (node2
->first
);
628 value1
= calculate_value (node1
->first
);
641 while (calculate_value (ancestor
->last
) < max_value
)
643 /* Find parent node. */
644 splay (ancestor
->first
);
645 ancestor
= find_rightmost_node (ancestor
->first
->left
) ->node
;
651 /* Return the value pointer of node set during it's creation. */
653 et_forest_node_value (forest
, node
)
654 et_forest_t forest ATTRIBUTE_UNUSED
;
655 et_forest_node_t node
;
657 /* Alloc threading NULL as a special node of the forest. */
663 /* Find all sons of NODE and store them into ARRAY allocated by the caller.
664 Return number of nodes found. */
666 et_forest_enumerate_sons (forest
, node
, array
)
667 et_forest_t forest ATTRIBUTE_UNUSED
;
668 et_forest_node_t node
;
669 et_forest_node_t
*array
;
672 et_forest_occurrence_t occ
= node
->first
, stop
= node
->last
, occ1
;
674 /* Parent is the rightmost node of the left successor.
675 Look for all occurrences having no right successor
676 and lookup the sons. */
682 occ1
= find_leftmost_node (occ
->right
);
683 if (occ1
->node
->first
== occ1
)
684 array
[n
++] = occ1
->node
;