1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
51 /* cleanup_cfg maintains following flags for each basic block. */
55 /* Set if BB is the forwarder block to avoid too many
56 forwarder_block_p calls. */
57 BB_FORWARDER_BLOCK
= 1,
58 BB_NONTHREADABLE_BLOCK
= 2
61 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
62 #define BB_SET_FLAG(BB, FLAG) \
63 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
64 #define BB_CLEAR_FLAG(BB, FLAG) \
65 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
67 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
69 static bool try_crossjump_to_edge
PARAMS ((int, edge
, edge
));
70 static bool try_crossjump_bb
PARAMS ((int, basic_block
));
71 static bool outgoing_edges_match
PARAMS ((int,
72 basic_block
, basic_block
));
73 static int flow_find_cross_jump
PARAMS ((int, basic_block
, basic_block
,
75 static bool insns_match_p
PARAMS ((int, rtx
, rtx
));
77 static bool label_is_jump_target_p
PARAMS ((rtx
, rtx
));
78 static bool tail_recursion_label_p
PARAMS ((rtx
));
79 static void merge_blocks_move_predecessor_nojumps
PARAMS ((basic_block
,
81 static void merge_blocks_move_successor_nojumps
PARAMS ((basic_block
,
83 static bool merge_blocks
PARAMS ((edge
,basic_block
,basic_block
,
85 static bool try_optimize_cfg
PARAMS ((int));
86 static bool try_simplify_condjump
PARAMS ((basic_block
));
87 static bool try_forward_edges
PARAMS ((int, basic_block
));
88 static edge thread_jump
PARAMS ((int, edge
, basic_block
));
89 static bool mark_effect
PARAMS ((rtx
, bitmap
));
90 static void notice_new_block
PARAMS ((basic_block
));
91 static void update_forwarder_flag
PARAMS ((basic_block
));
92 static int mentions_nonequal_regs
PARAMS ((rtx
*, void *));
94 /* Set flags for newly created block. */
103 if (forwarder_block_p (bb
))
104 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
107 /* Recompute forwarder flag after block has been modified. */
110 update_forwarder_flag (bb
)
113 if (forwarder_block_p (bb
))
114 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
116 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
119 /* Simplify a conditional jump around an unconditional jump.
120 Return true if something changed. */
123 try_simplify_condjump (cbranch_block
)
124 basic_block cbranch_block
;
126 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
127 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
130 /* Verify that there are exactly two successors. */
131 if (!cbranch_block
->succ
132 || !cbranch_block
->succ
->succ_next
133 || cbranch_block
->succ
->succ_next
->succ_next
)
136 /* Verify that we've got a normal conditional branch at the end
138 cbranch_insn
= cbranch_block
->end
;
139 if (!any_condjump_p (cbranch_insn
))
142 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
143 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
145 /* The next block must not have multiple predecessors, must not
146 be the last block in the function, and must contain just the
147 unconditional jump. */
148 jump_block
= cbranch_fallthru_edge
->dest
;
149 if (jump_block
->pred
->pred_next
150 || jump_block
->next_bb
== EXIT_BLOCK_PTR
151 || !FORWARDER_BLOCK_P (jump_block
))
153 jump_dest_block
= jump_block
->succ
->dest
;
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block
= cbranch_jump_edge
->dest
;
159 if (!can_fallthru (jump_block
, cbranch_dest_block
))
162 /* Invert the conditional branch. */
163 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
167 fprintf (rtl_dump_file
, "Simplifying condjump %i around jump %i\n",
168 INSN_UID (cbranch_insn
), INSN_UID (jump_block
->end
));
170 /* Success. Update the CFG to match. Note that after this point
171 the edge variable names appear backwards; the redirection is done
172 this way to preserve edge profile data. */
173 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
175 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
177 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
178 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
179 update_br_prob_note (cbranch_block
);
181 /* Delete the block with the unconditional jump, and clean up the mess. */
182 flow_delete_block (jump_block
);
183 tidy_fallthru_edge (cbranch_jump_edge
, cbranch_block
, cbranch_dest_block
);
188 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
189 on register. Used by jump threading. */
192 mark_effect (exp
, nonequal
)
198 switch (GET_CODE (exp
))
200 /* In case we do clobber the register, mark it as equal, as we know the
201 value is dead so it don't have to match. */
203 if (REG_P (XEXP (exp
, 0)))
205 dest
= XEXP (exp
, 0);
206 regno
= REGNO (dest
);
207 CLEAR_REGNO_REG_SET (nonequal
, regno
);
208 if (regno
< FIRST_PSEUDO_REGISTER
)
210 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
212 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
218 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
220 dest
= SET_DEST (exp
);
225 regno
= REGNO (dest
);
226 SET_REGNO_REG_SET (nonequal
, regno
);
227 if (regno
< FIRST_PSEUDO_REGISTER
)
229 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
231 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
240 /* Return nonzero if X is an register set in regset DATA.
241 Called via for_each_rtx. */
243 mentions_nonequal_regs (x
, data
)
247 regset nonequal
= (regset
) data
;
253 if (REGNO_REG_SET_P (nonequal
, regno
))
255 if (regno
< FIRST_PSEUDO_REGISTER
)
257 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (*x
));
259 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
265 /* Attempt to prove that the basic block B will have no side effects and
266 always continues in the same edge if reached via E. Return the edge
267 if exist, NULL otherwise. */
270 thread_jump (mode
, e
, b
)
275 rtx set1
, set2
, cond1
, cond2
, insn
;
276 enum rtx_code code1
, code2
, reversed_code2
;
277 bool reverse1
= false;
282 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
285 /* At the moment, we do handle only conditional jumps, but later we may
286 want to extend this code to tablejumps and others. */
287 if (!e
->src
->succ
->succ_next
|| e
->src
->succ
->succ_next
->succ_next
)
289 if (!b
->succ
|| !b
->succ
->succ_next
|| b
->succ
->succ_next
->succ_next
)
291 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
295 /* Second branch must end with onlyjump, as we will eliminate the jump. */
296 if (!any_condjump_p (e
->src
->end
))
299 if (!any_condjump_p (b
->end
) || !onlyjump_p (b
->end
))
301 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
305 set1
= pc_set (e
->src
->end
);
306 set2
= pc_set (b
->end
);
307 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
308 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
311 cond1
= XEXP (SET_SRC (set1
), 0);
312 cond2
= XEXP (SET_SRC (set2
), 0);
314 code1
= reversed_comparison_code (cond1
, e
->src
->end
);
316 code1
= GET_CODE (cond1
);
318 code2
= GET_CODE (cond2
);
319 reversed_code2
= reversed_comparison_code (cond2
, b
->end
);
321 if (!comparison_dominates_p (code1
, code2
)
322 && !comparison_dominates_p (code1
, reversed_code2
))
325 /* Ensure that the comparison operators are equivalent.
326 ??? This is far too pessimistic. We should allow swapped operands,
327 different CCmodes, or for example comparisons for interval, that
328 dominate even when operands are not equivalent. */
329 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
330 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
333 /* Short circuit cases where block B contains some side effects, as we can't
335 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
);
336 insn
= NEXT_INSN (insn
))
337 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
339 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
345 /* First process all values computed in the source basic block. */
346 for (insn
= NEXT_INSN (e
->src
->head
); insn
!= NEXT_INSN (e
->src
->end
);
347 insn
= NEXT_INSN (insn
))
349 cselib_process_insn (insn
);
351 nonequal
= BITMAP_XMALLOC();
352 CLEAR_REG_SET (nonequal
);
354 /* Now assume that we've continued by the edge E to B and continue
355 processing as if it were same basic block.
356 Our goal is to prove that whole block is an NOOP. */
358 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
) && !failed
;
359 insn
= NEXT_INSN (insn
))
363 rtx pat
= PATTERN (insn
);
365 if (GET_CODE (pat
) == PARALLEL
)
367 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
368 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
371 failed
|= mark_effect (pat
, nonequal
);
374 cselib_process_insn (insn
);
377 /* Later we should clear nonequal of dead registers. So far we don't
378 have life information in cfg_cleanup. */
381 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
385 /* cond2 must not mention any register that is not equal to the
387 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
390 /* In case liveness information is available, we need to prove equivalence
391 only of the live values. */
392 if (mode
& CLEANUP_UPDATE_LIFE
)
393 AND_REG_SET (nonequal
, b
->global_live_at_end
);
395 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, goto failed_exit
;);
397 BITMAP_XFREE (nonequal
);
399 if ((comparison_dominates_p (code1
, code2
) != 0)
400 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
401 return BRANCH_EDGE (b
);
403 return FALLTHRU_EDGE (b
);
406 BITMAP_XFREE (nonequal
);
411 /* Attempt to forward edges leaving basic block B.
412 Return true if successful. */
415 try_forward_edges (mode
, b
)
419 bool changed
= false;
420 edge e
, next
, *threaded_edges
= NULL
;
422 for (e
= b
->succ
; e
; e
= next
)
424 basic_block target
, first
;
426 bool threaded
= false;
427 int nthreaded_edges
= 0;
431 /* Skip complex edges because we don't know how to update them.
433 Still handle fallthru edges, as we can succeed to forward fallthru
434 edge to the same place as the branch edge of conditional branch
435 and turn conditional branch to an unconditional branch. */
436 if (e
->flags
& EDGE_COMPLEX
)
439 target
= first
= e
->dest
;
442 while (counter
< n_basic_blocks
)
444 basic_block new_target
= NULL
;
445 bool new_target_threaded
= false;
447 if (FORWARDER_BLOCK_P (target
)
448 && target
->succ
->dest
!= EXIT_BLOCK_PTR
)
450 /* Bypass trivial infinite loops. */
451 if (target
== target
->succ
->dest
)
452 counter
= n_basic_blocks
;
453 new_target
= target
->succ
->dest
;
456 /* Allow to thread only over one edge at time to simplify updating
458 else if (mode
& CLEANUP_THREADING
)
460 edge t
= thread_jump (mode
, e
, target
);
464 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
470 /* Detect an infinite loop across blocks not
471 including the start block. */
472 for (i
= 0; i
< nthreaded_edges
; ++i
)
473 if (threaded_edges
[i
] == t
)
475 if (i
< nthreaded_edges
)
477 counter
= n_basic_blocks
;
482 /* Detect an infinite loop across the start block. */
486 if (nthreaded_edges
>= n_basic_blocks
)
488 threaded_edges
[nthreaded_edges
++] = t
;
490 new_target
= t
->dest
;
491 new_target_threaded
= true;
498 /* Avoid killing of loop pre-headers, as it is the place loop
499 optimizer wants to hoist code to.
501 For fallthru forwarders, the LOOP_BEG note must appear between
502 the header of block and CODE_LABEL of the loop, for non forwarders
503 it must appear before the JUMP_INSN. */
504 if (mode
& CLEANUP_PRE_LOOP
)
506 rtx insn
= (target
->succ
->flags
& EDGE_FALLTHRU
507 ? target
->head
: prev_nonnote_insn (target
->end
));
509 if (GET_CODE (insn
) != NOTE
)
510 insn
= NEXT_INSN (insn
);
512 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& !INSN_P (insn
);
513 insn
= NEXT_INSN (insn
))
514 if (GET_CODE (insn
) == NOTE
515 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
518 if (GET_CODE (insn
) == NOTE
)
521 /* Do not clean up branches to just past the end of a loop
522 at this time; it can mess up the loop optimizer's
523 recognition of some patterns. */
525 insn
= PREV_INSN (target
->head
);
526 if (insn
&& GET_CODE (insn
) == NOTE
527 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
533 threaded
|= new_target_threaded
;
536 if (counter
>= n_basic_blocks
)
539 fprintf (rtl_dump_file
, "Infinite loop in BB %i.\n",
542 else if (target
== first
)
543 ; /* We didn't do anything. */
546 /* Save the values now, as the edge may get removed. */
547 gcov_type edge_count
= e
->count
;
548 int edge_probability
= e
->probability
;
552 /* Don't force if target is exit block. */
553 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
555 notice_new_block (redirect_edge_and_branch_force (e
, target
));
557 fprintf (rtl_dump_file
, "Conditionals threaded.\n");
559 else if (!redirect_edge_and_branch (e
, target
))
562 fprintf (rtl_dump_file
,
563 "Forwarding edge %i->%i to %i failed.\n",
564 b
->index
, e
->dest
->index
, target
->index
);
568 /* We successfully forwarded the edge. Now update profile
569 data: for each edge we traversed in the chain, remove
570 the original edge's execution count. */
571 edge_frequency
= ((edge_probability
* b
->frequency
572 + REG_BR_PROB_BASE
/ 2)
575 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
576 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
582 first
->count
-= edge_count
;
583 if (first
->count
< 0)
585 first
->frequency
-= edge_frequency
;
586 if (first
->frequency
< 0)
587 first
->frequency
= 0;
588 if (first
->succ
->succ_next
)
592 if (n
>= nthreaded_edges
)
594 t
= threaded_edges
[n
++];
597 if (first
->frequency
)
598 prob
= edge_frequency
* REG_BR_PROB_BASE
/ first
->frequency
;
601 if (prob
> t
->probability
)
602 prob
= t
->probability
;
603 t
->probability
-= prob
;
604 prob
= REG_BR_PROB_BASE
- prob
;
607 first
->succ
->probability
= REG_BR_PROB_BASE
;
608 first
->succ
->succ_next
->probability
= 0;
611 for (e
= first
->succ
; e
; e
= e
->succ_next
)
612 e
->probability
= ((e
->probability
* REG_BR_PROB_BASE
)
614 update_br_prob_note (first
);
618 /* It is possible that as the result of
619 threading we've removed edge as it is
620 threaded to the fallthru edge. Avoid
621 getting out of sync. */
622 if (n
< nthreaded_edges
623 && first
== threaded_edges
[n
]->src
)
628 t
->count
-= edge_count
;
633 while (first
!= target
);
640 free (threaded_edges
);
644 /* Return true if LABEL is a target of JUMP_INSN. This applies only
645 to non-complex jumps. That is, direct unconditional, conditional,
646 and tablejumps, but not computed jumps or returns. It also does
647 not apply to the fallthru case of a conditional jump. */
650 label_is_jump_target_p (label
, jump_insn
)
651 rtx label
, jump_insn
;
653 rtx tmp
= JUMP_LABEL (jump_insn
);
659 && (tmp
= NEXT_INSN (tmp
)) != NULL_RTX
660 && GET_CODE (tmp
) == JUMP_INSN
661 && (tmp
= PATTERN (tmp
),
662 GET_CODE (tmp
) == ADDR_VEC
663 || GET_CODE (tmp
) == ADDR_DIFF_VEC
))
665 rtvec vec
= XVEC (tmp
, GET_CODE (tmp
) == ADDR_DIFF_VEC
);
666 int i
, veclen
= GET_NUM_ELEM (vec
);
668 for (i
= 0; i
< veclen
; ++i
)
669 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
676 /* Return true if LABEL is used for tail recursion. */
679 tail_recursion_label_p (label
)
684 for (x
= tail_recursion_label_list
; x
; x
= XEXP (x
, 1))
685 if (label
== XEXP (x
, 0))
691 /* Blocks A and B are to be merged into a single block. A has no incoming
692 fallthru edge, so it can be moved before B without adding or modifying
693 any jumps (aside from the jump from A to B). */
696 merge_blocks_move_predecessor_nojumps (a
, b
)
701 barrier
= next_nonnote_insn (a
->end
);
702 if (GET_CODE (barrier
) != BARRIER
)
704 delete_insn (barrier
);
706 /* Move block and loop notes out of the chain so that we do not
709 ??? A better solution would be to squeeze out all the non-nested notes
710 and adjust the block trees appropriately. Even better would be to have
711 a tighter connection between block trees and rtl so that this is not
713 if (squeeze_notes (&a
->head
, &a
->end
))
716 /* Scramble the insn chain. */
717 if (a
->end
!= PREV_INSN (b
->head
))
718 reorder_insns_nobb (a
->head
, a
->end
, PREV_INSN (b
->head
));
719 a
->flags
|= BB_DIRTY
;
722 fprintf (rtl_dump_file
, "Moved block %d before %d and merged.\n",
725 /* Swap the records for the two blocks around. */
728 link_block (a
, b
->prev_bb
);
730 /* Now blocks A and B are contiguous. Merge them. */
731 merge_blocks_nomove (a
, b
);
734 /* Blocks A and B are to be merged into a single block. B has no outgoing
735 fallthru edge, so it can be moved after A without adding or modifying
736 any jumps (aside from the jump from A to B). */
739 merge_blocks_move_successor_nojumps (a
, b
)
742 rtx barrier
, real_b_end
;
745 barrier
= NEXT_INSN (b
->end
);
747 /* Recognize a jump table following block B. */
749 && GET_CODE (barrier
) == CODE_LABEL
750 && NEXT_INSN (barrier
)
751 && GET_CODE (NEXT_INSN (barrier
)) == JUMP_INSN
752 && (GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_VEC
753 || GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_DIFF_VEC
))
755 /* Temporarily add the table jump insn to b, so that it will also
756 be moved to the correct location. */
757 b
->end
= NEXT_INSN (barrier
);
758 barrier
= NEXT_INSN (b
->end
);
761 /* There had better have been a barrier there. Delete it. */
762 if (barrier
&& GET_CODE (barrier
) == BARRIER
)
763 delete_insn (barrier
);
765 /* Move block and loop notes out of the chain so that we do not
768 ??? A better solution would be to squeeze out all the non-nested notes
769 and adjust the block trees appropriately. Even better would be to have
770 a tighter connection between block trees and rtl so that this is not
772 if (squeeze_notes (&b
->head
, &b
->end
))
775 /* Scramble the insn chain. */
776 reorder_insns_nobb (b
->head
, b
->end
, a
->end
);
778 /* Restore the real end of b. */
782 fprintf (rtl_dump_file
, "Moved block %d after %d and merged.\n",
785 /* Now blocks A and B are contiguous. Merge them. */
786 merge_blocks_nomove (a
, b
);
789 /* Attempt to merge basic blocks that are potentially non-adjacent.
790 Return true iff the attempt succeeded. */
793 merge_blocks (e
, b
, c
, mode
)
798 /* If C has a tail recursion label, do not merge. There is no
799 edge recorded from the call_placeholder back to this label, as
800 that would make optimize_sibling_and_tail_recursive_calls more
801 complex for no gain. */
802 if ((mode
& CLEANUP_PRE_SIBCALL
)
803 && GET_CODE (c
->head
) == CODE_LABEL
804 && tail_recursion_label_p (c
->head
))
807 /* If B has a fallthru edge to C, no need to move anything. */
808 if (e
->flags
& EDGE_FALLTHRU
)
810 int b_index
= b
->index
, c_index
= c
->index
;
811 merge_blocks_nomove (b
, c
);
812 update_forwarder_flag (b
);
815 fprintf (rtl_dump_file
, "Merged %d and %d without moving.\n",
821 /* Otherwise we will need to move code around. Do that only if expensive
822 transformations are allowed. */
823 else if (mode
& CLEANUP_EXPENSIVE
)
825 edge tmp_edge
, b_fallthru_edge
;
826 bool c_has_outgoing_fallthru
;
827 bool b_has_incoming_fallthru
;
829 /* Avoid overactive code motion, as the forwarder blocks should be
830 eliminated by edge redirection instead. One exception might have
831 been if B is a forwarder block and C has no fallthru edge, but
832 that should be cleaned up by bb-reorder instead. */
833 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
836 /* We must make sure to not munge nesting of lexical blocks,
837 and loop notes. This is done by squeezing out all the notes
838 and leaving them there to lie. Not ideal, but functional. */
840 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
841 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
844 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
846 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
847 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
850 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
851 b_fallthru_edge
= tmp_edge
;
853 /* Otherwise, we're going to try to move C after B. If C does
854 not have an outgoing fallthru, then it can be moved
855 immediately after B without introducing or modifying jumps. */
856 if (! c_has_outgoing_fallthru
)
858 merge_blocks_move_successor_nojumps (b
, c
);
862 /* If B does not have an incoming fallthru, then it can be moved
863 immediately before C without introducing or modifying jumps.
864 C cannot be the first block, so we do not have to worry about
865 accessing a non-existent block. */
867 if (b_has_incoming_fallthru
)
871 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
873 bb
= force_nonfallthru (b_fallthru_edge
);
875 notice_new_block (bb
);
878 merge_blocks_move_predecessor_nojumps (b
, c
);
886 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
889 insns_match_p (mode
, i1
, i2
)
890 int mode ATTRIBUTE_UNUSED
;
895 /* Verify that I1 and I2 are equivalent. */
896 if (GET_CODE (i1
) != GET_CODE (i2
))
902 if (GET_CODE (p1
) != GET_CODE (p2
))
905 /* If this is a CALL_INSN, compare register usage information.
906 If we don't check this on stack register machines, the two
907 CALL_INSNs might be merged leaving reg-stack.c with mismatching
908 numbers of stack registers in the same basic block.
909 If we don't check this on machines with delay slots, a delay slot may
910 be filled that clobbers a parameter expected by the subroutine.
912 ??? We take the simple route for now and assume that if they're
913 equal, they were constructed identically. */
915 if (GET_CODE (i1
) == CALL_INSN
916 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
917 CALL_INSN_FUNCTION_USAGE (i2
))
918 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
922 /* If cross_jump_death_matters is not 0, the insn's mode
923 indicates whether or not the insn contains any stack-like
926 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
928 /* If register stack conversion has already been done, then
929 death notes must also be compared before it is certain that
930 the two instruction streams match. */
933 HARD_REG_SET i1_regset
, i2_regset
;
935 CLEAR_HARD_REG_SET (i1_regset
);
936 CLEAR_HARD_REG_SET (i2_regset
);
938 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
939 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
940 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
942 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
943 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
944 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
946 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
956 ? ! rtx_renumbered_equal_p (p1
, p2
) : ! rtx_equal_p (p1
, p2
))
958 /* The following code helps take care of G++ cleanups. */
959 rtx equiv1
= find_reg_equal_equiv_note (i1
);
960 rtx equiv2
= find_reg_equal_equiv_note (i2
);
963 /* If the equivalences are not to a constant, they may
964 reference pseudos that no longer exist, so we can't
966 && (! reload_completed
967 || (CONSTANT_P (XEXP (equiv1
, 0))
968 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
970 rtx s1
= single_set (i1
);
971 rtx s2
= single_set (i2
);
972 if (s1
!= 0 && s2
!= 0
973 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
975 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
976 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
977 if (! rtx_renumbered_equal_p (p1
, p2
))
979 else if (apply_change_group ())
990 /* Look through the insns at the end of BB1 and BB2 and find the longest
991 sequence that are equivalent. Store the first insns for that sequence
992 in *F1 and *F2 and return the sequence length.
994 To simplify callers of this function, if the blocks match exactly,
995 store the head of the blocks in *F1 and *F2. */
998 flow_find_cross_jump (mode
, bb1
, bb2
, f1
, f2
)
999 int mode ATTRIBUTE_UNUSED
;
1000 basic_block bb1
, bb2
;
1003 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1006 /* Skip simple jumps at the end of the blocks. Complex jumps still
1007 need to be compared for equivalence, which we'll do below. */
1010 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1012 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1015 i1
= PREV_INSN (i1
);
1020 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1023 /* Count everything except for unconditional jump as insn. */
1024 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1026 i2
= PREV_INSN (i2
);
1032 while (!active_insn_p (i1
) && i1
!= bb1
->head
)
1033 i1
= PREV_INSN (i1
);
1035 while (!active_insn_p (i2
) && i2
!= bb2
->head
)
1036 i2
= PREV_INSN (i2
);
1038 if (i1
== bb1
->head
|| i2
== bb2
->head
)
1041 if (!insns_match_p (mode
, i1
, i2
))
1044 /* Don't begin a cross-jump with a USE or CLOBBER insn. */
1045 if (active_insn_p (i1
))
1047 /* If the merged insns have different REG_EQUAL notes, then
1049 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1050 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1052 if (equiv1
&& !equiv2
)
1053 remove_note (i1
, equiv1
);
1054 else if (!equiv1
&& equiv2
)
1055 remove_note (i2
, equiv2
);
1056 else if (equiv1
&& equiv2
1057 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1059 remove_note (i1
, equiv1
);
1060 remove_note (i2
, equiv2
);
1063 afterlast1
= last1
, afterlast2
= last2
;
1064 last1
= i1
, last2
= i2
;
1068 i1
= PREV_INSN (i1
);
1069 i2
= PREV_INSN (i2
);
1073 /* Don't allow the insn after a compare to be shared by
1074 cross-jumping unless the compare is also shared. */
1075 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1076 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1079 /* Include preceding notes and labels in the cross-jump. One,
1080 this may bring us to the head of the blocks as requested above.
1081 Two, it keeps line number notes as matched as may be. */
1084 while (last1
!= bb1
->head
&& !active_insn_p (PREV_INSN (last1
)))
1085 last1
= PREV_INSN (last1
);
1087 if (last1
!= bb1
->head
&& GET_CODE (PREV_INSN (last1
)) == CODE_LABEL
)
1088 last1
= PREV_INSN (last1
);
1090 while (last2
!= bb2
->head
&& !active_insn_p (PREV_INSN (last2
)))
1091 last2
= PREV_INSN (last2
);
1093 if (last2
!= bb2
->head
&& GET_CODE (PREV_INSN (last2
)) == CODE_LABEL
)
1094 last2
= PREV_INSN (last2
);
1103 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1104 the branch instruction. This means that if we commonize the control
1105 flow before end of the basic block, the semantic remains unchanged.
1107 We may assume that there exists one edge with a common destination. */
1110 outgoing_edges_match (mode
, bb1
, bb2
)
1115 int nehedges1
= 0, nehedges2
= 0;
1116 edge fallthru1
= 0, fallthru2
= 0;
1119 /* If BB1 has only one successor, we may be looking at either an
1120 unconditional jump, or a fake edge to exit. */
1121 if (bb1
->succ
&& !bb1
->succ
->succ_next
1122 && !(bb1
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)))
1123 return (bb2
->succ
&& !bb2
->succ
->succ_next
1124 && (bb2
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0);
1126 /* Match conditional jumps - this may get tricky when fallthru and branch
1127 edges are crossed. */
1129 && bb1
->succ
->succ_next
1130 && !bb1
->succ
->succ_next
->succ_next
1131 && any_condjump_p (bb1
->end
)
1132 && onlyjump_p (bb1
->end
))
1134 edge b1
, f1
, b2
, f2
;
1135 bool reverse
, match
;
1136 rtx set1
, set2
, cond1
, cond2
;
1137 enum rtx_code code1
, code2
;
1140 || !bb2
->succ
->succ_next
1141 || bb2
->succ
->succ_next
->succ_next
1142 || !any_condjump_p (bb2
->end
)
1143 || !onlyjump_p (bb2
->end
))
1146 /* Do not crossjump across loop boundaries. This is a temporary
1147 workaround for the common scenario in which crossjumping results
1148 in killing the duplicated loop condition, making bb-reorder rotate
1149 the loop incorrectly, leaving an extra unconditional jump inside
1152 This check should go away once bb-reorder knows how to duplicate
1153 code in this case or rotate the loops to avoid this scenario. */
1154 if (bb1
->loop_depth
!= bb2
->loop_depth
)
1157 b1
= BRANCH_EDGE (bb1
);
1158 b2
= BRANCH_EDGE (bb2
);
1159 f1
= FALLTHRU_EDGE (bb1
);
1160 f2
= FALLTHRU_EDGE (bb2
);
1162 /* Get around possible forwarders on fallthru edges. Other cases
1163 should be optimized out already. */
1164 if (FORWARDER_BLOCK_P (f1
->dest
))
1165 f1
= f1
->dest
->succ
;
1167 if (FORWARDER_BLOCK_P (f2
->dest
))
1168 f2
= f2
->dest
->succ
;
1170 /* To simplify use of this function, return false if there are
1171 unneeded forwarder blocks. These will get eliminated later
1172 during cleanup_cfg. */
1173 if (FORWARDER_BLOCK_P (f1
->dest
)
1174 || FORWARDER_BLOCK_P (f2
->dest
)
1175 || FORWARDER_BLOCK_P (b1
->dest
)
1176 || FORWARDER_BLOCK_P (b2
->dest
))
1179 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1181 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1186 set1
= pc_set (bb1
->end
);
1187 set2
= pc_set (bb2
->end
);
1188 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1189 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1192 cond1
= XEXP (SET_SRC (set1
), 0);
1193 cond2
= XEXP (SET_SRC (set2
), 0);
1194 code1
= GET_CODE (cond1
);
1196 code2
= reversed_comparison_code (cond2
, bb2
->end
);
1198 code2
= GET_CODE (cond2
);
1200 if (code2
== UNKNOWN
)
1203 /* Verify codes and operands match. */
1204 match
= ((code1
== code2
1205 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1206 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1207 || (code1
== swap_condition (code2
)
1208 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1210 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1213 /* If we return true, we will join the blocks. Which means that
1214 we will only have one branch prediction bit to work with. Thus
1215 we require the existing branches to have probabilities that are
1219 && maybe_hot_bb_p (bb1
)
1220 && maybe_hot_bb_p (bb2
))
1224 if (b1
->dest
== b2
->dest
)
1225 prob2
= b2
->probability
;
1227 /* Do not use f2 probability as f2 may be forwarded. */
1228 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1230 /* Fail if the difference in probabilities is greater than 50%.
1231 This rules out two well-predicted branches with opposite
1233 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1236 fprintf (rtl_dump_file
,
1237 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1238 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1244 if (rtl_dump_file
&& match
)
1245 fprintf (rtl_dump_file
, "Conditionals in bb %i and %i match.\n",
1246 bb1
->index
, bb2
->index
);
1251 /* Generic case - we are seeing a computed jump, table jump or trapping
1254 /* First ensure that the instructions match. There may be many outgoing
1255 edges so this test is generally cheaper.
1256 ??? Currently the tablejumps will never match, as they do have
1257 different tables. */
1258 if (!insns_match_p (mode
, bb1
->end
, bb2
->end
))
1261 /* Search the outgoing edges, ensure that the counts do match, find possible
1262 fallthru and exception handling edges since these needs more
1264 for (e1
= bb1
->succ
, e2
= bb2
->succ
; e1
&& e2
;
1265 e1
= e1
->succ_next
, e2
= e2
->succ_next
)
1267 if (e1
->flags
& EDGE_EH
)
1270 if (e2
->flags
& EDGE_EH
)
1273 if (e1
->flags
& EDGE_FALLTHRU
)
1275 if (e2
->flags
& EDGE_FALLTHRU
)
1279 /* If number of edges of various types does not match, fail. */
1281 || nehedges1
!= nehedges2
1282 || (fallthru1
!= 0) != (fallthru2
!= 0))
1285 /* fallthru edges must be forwarded to the same destination. */
1288 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1289 ? fallthru1
->dest
->succ
->dest
: fallthru1
->dest
);
1290 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1291 ? fallthru2
->dest
->succ
->dest
: fallthru2
->dest
);
1297 /* In case we do have EH edges, ensure we are in the same region. */
1300 rtx n1
= find_reg_note (bb1
->end
, REG_EH_REGION
, 0);
1301 rtx n2
= find_reg_note (bb2
->end
, REG_EH_REGION
, 0);
1303 if (XEXP (n1
, 0) != XEXP (n2
, 0))
1307 /* We don't need to match the rest of edges as above checks should be enought
1308 to ensure that they are equivalent. */
1312 /* E1 and E2 are edges with the same destination block. Search their
1313 predecessors for common code. If found, redirect control flow from
1314 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1317 try_crossjump_to_edge (mode
, e1
, e2
)
1322 basic_block src1
= e1
->src
, src2
= e2
->src
;
1323 basic_block redirect_to
, redirect_from
, to_remove
;
1324 rtx newpos1
, newpos2
;
1327 /* Search backward through forwarder blocks. We don't need to worry
1328 about multiple entry or chained forwarders, as they will be optimized
1329 away. We do this to look past the unconditional jump following a
1330 conditional jump that is required due to the current CFG shape. */
1332 && !src1
->pred
->pred_next
1333 && FORWARDER_BLOCK_P (src1
))
1334 e1
= src1
->pred
, src1
= e1
->src
;
1337 && !src2
->pred
->pred_next
1338 && FORWARDER_BLOCK_P (src2
))
1339 e2
= src2
->pred
, src2
= e2
->src
;
1341 /* Nothing to do if we reach ENTRY, or a common source block. */
1342 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1347 /* Seeing more than 1 forwarder blocks would confuse us later... */
1348 if (FORWARDER_BLOCK_P (e1
->dest
)
1349 && FORWARDER_BLOCK_P (e1
->dest
->succ
->dest
))
1352 if (FORWARDER_BLOCK_P (e2
->dest
)
1353 && FORWARDER_BLOCK_P (e2
->dest
->succ
->dest
))
1356 /* Likewise with dead code (possibly newly created by the other optimizations
1358 if (!src1
->pred
|| !src2
->pred
)
1361 /* Look for the common insn sequence, part the first ... */
1362 if (!outgoing_edges_match (mode
, src1
, src2
))
1365 /* ... and part the second. */
1366 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1370 /* Avoid splitting if possible. */
1371 if (newpos2
== src2
->head
)
1376 fprintf (rtl_dump_file
, "Splitting bb %i before %i insns\n",
1377 src2
->index
, nmatch
);
1378 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1382 fprintf (rtl_dump_file
,
1383 "Cross jumping from bb %i to bb %i; %i common insns\n",
1384 src1
->index
, src2
->index
, nmatch
);
1386 redirect_to
->count
+= src1
->count
;
1387 redirect_to
->frequency
+= src1
->frequency
;
1388 /* We may have some registers visible trought the block. */
1389 redirect_to
->flags
|= BB_DIRTY
;
1391 /* Recompute the frequencies and counts of outgoing edges. */
1392 for (s
= redirect_to
->succ
; s
; s
= s
->succ_next
)
1395 basic_block d
= s
->dest
;
1397 if (FORWARDER_BLOCK_P (d
))
1400 for (s2
= src1
->succ
; ; s2
= s2
->succ_next
)
1402 basic_block d2
= s2
->dest
;
1403 if (FORWARDER_BLOCK_P (d2
))
1404 d2
= d2
->succ
->dest
;
1409 s
->count
+= s2
->count
;
1411 /* Take care to update possible forwarder blocks. We verified
1412 that there is no more than one in the chain, so we can't run
1413 into infinite loop. */
1414 if (FORWARDER_BLOCK_P (s
->dest
))
1416 s
->dest
->succ
->count
+= s2
->count
;
1417 s
->dest
->count
+= s2
->count
;
1418 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1421 if (FORWARDER_BLOCK_P (s2
->dest
))
1423 s2
->dest
->succ
->count
-= s2
->count
;
1424 if (s2
->dest
->succ
->count
< 0)
1425 s2
->dest
->succ
->count
= 0;
1426 s2
->dest
->count
-= s2
->count
;
1427 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1428 if (s2
->dest
->frequency
< 0)
1429 s2
->dest
->frequency
= 0;
1430 if (s2
->dest
->count
< 0)
1431 s2
->dest
->count
= 0;
1434 if (!redirect_to
->frequency
&& !src1
->frequency
)
1435 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1438 = ((s
->probability
* redirect_to
->frequency
+
1439 s2
->probability
* src1
->frequency
)
1440 / (redirect_to
->frequency
+ src1
->frequency
));
1443 update_br_prob_note (redirect_to
);
1445 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1447 /* Skip possible basic block header. */
1448 if (GET_CODE (newpos1
) == CODE_LABEL
)
1449 newpos1
= NEXT_INSN (newpos1
);
1451 if (GET_CODE (newpos1
) == NOTE
)
1452 newpos1
= NEXT_INSN (newpos1
);
1454 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1455 to_remove
= redirect_from
->succ
->dest
;
1457 redirect_edge_and_branch_force (redirect_from
->succ
, redirect_to
);
1458 flow_delete_block (to_remove
);
1460 update_forwarder_flag (redirect_from
);
1465 /* Search the predecessors of BB for common insn sequences. When found,
1466 share code between them by redirecting control flow. Return true if
1467 any changes made. */
1470 try_crossjump_bb (mode
, bb
)
1474 edge e
, e2
, nexte2
, nexte
, fallthru
;
1478 /* Nothing to do if there is not at least two incoming edges. */
1479 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1482 /* It is always cheapest to redirect a block that ends in a branch to
1483 a block that falls through into BB, as that adds no branches to the
1484 program. We'll try that combination first. */
1485 for (fallthru
= bb
->pred
; fallthru
; fallthru
= fallthru
->pred_next
, n
++)
1487 if (fallthru
->flags
& EDGE_FALLTHRU
)
1494 for (e
= bb
->pred
; e
; e
= nexte
)
1496 nexte
= e
->pred_next
;
1498 /* As noted above, first try with the fallthru predecessor. */
1501 /* Don't combine the fallthru edge into anything else.
1502 If there is a match, we'll do it the other way around. */
1506 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1514 /* Non-obvious work limiting check: Recognize that we're going
1515 to call try_crossjump_bb on every basic block. So if we have
1516 two blocks with lots of outgoing edges (a switch) and they
1517 share lots of common destinations, then we would do the
1518 cross-jump check once for each common destination.
1520 Now, if the blocks actually are cross-jump candidates, then
1521 all of their destinations will be shared. Which means that
1522 we only need check them for cross-jump candidacy once. We
1523 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1524 choosing to do the check from the block for which the edge
1525 in question is the first successor of A. */
1526 if (e
->src
->succ
!= e
)
1529 for (e2
= bb
->pred
; e2
; e2
= nexte2
)
1531 nexte2
= e2
->pred_next
;
1536 /* We've already checked the fallthru edge above. */
1540 /* The "first successor" check above only prevents multiple
1541 checks of crossjump(A,B). In order to prevent redundant
1542 checks of crossjump(B,A), require that A be the block
1543 with the lowest index. */
1544 if (e
->src
->index
> e2
->src
->index
)
1547 if (try_crossjump_to_edge (mode
, e
, e2
))
1559 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1560 instructions etc. Return nonzero if changes were made. */
1563 try_optimize_cfg (mode
)
1566 bool changed_overall
= false;
1571 if (mode
& CLEANUP_CROSSJUMP
)
1572 add_noreturn_fake_exit_edges ();
1575 update_forwarder_flag (bb
);
1577 if (mode
& CLEANUP_UPDATE_LIFE
)
1580 if (! (* targetm
.cannot_modify_jumps_p
) ())
1582 /* Attempt to merge blocks as made possible by edge removal. If
1583 a block has only one successor, and the successor has only
1584 one predecessor, they may be combined. */
1591 fprintf (rtl_dump_file
,
1592 "\n\ntry_optimize_cfg iteration %i\n\n",
1595 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1599 bool changed_here
= false;
1601 /* Delete trivially dead basic blocks. */
1602 while (b
->pred
== NULL
)
1606 fprintf (rtl_dump_file
, "Deleting block %i.\n",
1609 flow_delete_block (b
);
1614 /* Remove code labels no longer used. Don't do this
1615 before CALL_PLACEHOLDER is removed, as some branches
1616 may be hidden within. */
1617 if (b
->pred
->pred_next
== NULL
1618 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1619 && !(b
->pred
->flags
& EDGE_COMPLEX
)
1620 && GET_CODE (b
->head
) == CODE_LABEL
1621 && (!(mode
& CLEANUP_PRE_SIBCALL
)
1622 || !tail_recursion_label_p (b
->head
))
1623 /* If the previous block ends with a branch to this
1624 block, we can't delete the label. Normally this
1625 is a condjump that is yet to be simplified, but
1626 if CASE_DROPS_THRU, this can be a tablejump with
1627 some element going to the same place as the
1628 default (fallthru). */
1629 && (b
->pred
->src
== ENTRY_BLOCK_PTR
1630 || GET_CODE (b
->pred
->src
->end
) != JUMP_INSN
1631 || ! label_is_jump_target_p (b
->head
,
1632 b
->pred
->src
->end
)))
1634 rtx label
= b
->head
;
1636 b
->head
= NEXT_INSN (b
->head
);
1637 delete_insn_chain (label
, label
);
1639 fprintf (rtl_dump_file
, "Deleted label in block %i.\n",
1643 /* If we fall through an empty block, we can remove it. */
1644 if (b
->pred
->pred_next
== NULL
1645 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1646 && GET_CODE (b
->head
) != CODE_LABEL
1647 && FORWARDER_BLOCK_P (b
)
1648 /* Note that forwarder_block_p true ensures that
1649 there is a successor for this block. */
1650 && (b
->succ
->flags
& EDGE_FALLTHRU
)
1651 && n_basic_blocks
> 1)
1654 fprintf (rtl_dump_file
,
1655 "Deleting fallthru block %i.\n",
1658 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1659 redirect_edge_succ_nodup (b
->pred
, b
->succ
->dest
);
1660 flow_delete_block (b
);
1665 /* Merge blocks. Loop because chains of blocks might be
1667 while ((s
= b
->succ
) != NULL
1668 && s
->succ_next
== NULL
1669 && !(s
->flags
& EDGE_COMPLEX
)
1670 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1671 && c
->pred
->pred_next
== NULL
1673 /* If the jump insn has side effects,
1674 we can't kill the edge. */
1675 && (GET_CODE (b
->end
) != JUMP_INSN
1676 || simplejump_p (b
->end
))
1677 && merge_blocks (s
, b
, c
, mode
))
1678 changed_here
= true;
1680 /* Simplify branch over branch. */
1681 if ((mode
& CLEANUP_EXPENSIVE
) && try_simplify_condjump (b
))
1682 changed_here
= true;
1684 /* If B has a single outgoing edge, but uses a
1685 non-trivial jump instruction without side-effects, we
1686 can either delete the jump entirely, or replace it
1687 with a simple unconditional jump. Use
1688 redirect_edge_and_branch to do the dirty work. */
1690 && ! b
->succ
->succ_next
1691 && b
->succ
->dest
!= EXIT_BLOCK_PTR
1692 && onlyjump_p (b
->end
)
1693 && redirect_edge_and_branch (b
->succ
, b
->succ
->dest
))
1695 update_forwarder_flag (b
);
1696 changed_here
= true;
1699 /* Simplify branch to branch. */
1700 if (try_forward_edges (mode
, b
))
1701 changed_here
= true;
1703 /* Look for shared code between blocks. */
1704 if ((mode
& CLEANUP_CROSSJUMP
)
1705 && try_crossjump_bb (mode
, b
))
1706 changed_here
= true;
1708 /* Don't get confused by the index shift caused by
1716 if ((mode
& CLEANUP_CROSSJUMP
)
1717 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
1720 #ifdef ENABLE_CHECKING
1722 verify_flow_info ();
1725 changed_overall
|= changed
;
1730 if (mode
& CLEANUP_CROSSJUMP
)
1731 remove_fake_edges ();
1733 clear_aux_for_blocks ();
1735 return changed_overall
;
1738 /* Delete all unreachable basic blocks. */
1741 delete_unreachable_blocks ()
1743 bool changed
= false;
1744 basic_block b
, next_bb
;
1746 find_unreachable_blocks ();
1748 /* Delete all unreachable basic blocks. */
1750 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
1752 next_bb
= b
->next_bb
;
1754 if (!(b
->flags
& BB_REACHABLE
))
1756 flow_delete_block (b
);
1762 tidy_fallthru_edges ();
1766 /* Tidy the CFG by deleting unreachable code and whatnot. */
1772 bool changed
= false;
1774 timevar_push (TV_CLEANUP_CFG
);
1775 if (delete_unreachable_blocks ())
1778 /* We've possibly created trivially dead code. Cleanup it right
1779 now to introduce more opportunities for try_optimize_cfg. */
1780 if (!(mode
& (CLEANUP_NO_INSN_DEL
1781 | CLEANUP_UPDATE_LIFE
| CLEANUP_PRE_SIBCALL
))
1782 && !reload_completed
)
1783 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1788 while (try_optimize_cfg (mode
))
1790 delete_unreachable_blocks (), changed
= true;
1791 if (mode
& CLEANUP_UPDATE_LIFE
)
1793 /* Cleaning up CFG introduces more opportunities for dead code
1794 removal that in turn may introduce more opportunities for
1795 cleaning up the CFG. */
1796 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
1798 | PROP_SCAN_DEAD_CODE
1799 | PROP_KILL_DEAD_CODE
1803 else if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_PRE_SIBCALL
))
1804 && !reload_completed
)
1806 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1811 delete_dead_jumptables ();
1814 /* Kill the data we won't maintain. */
1815 free_EXPR_LIST_list (&label_value_list
);
1816 timevar_pop (TV_CLEANUP_CFG
);